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Abstract: Forecasting shoreline evolution for sandy coasts is important for sustainable coastal
management, given the present-day increasing anthropogenic pressures and a changing future
climate. Here, we evaluate eight different time-series forecasting methods for predicting future
shorelines derived from historic satellite-derived shorelines. Analyzing more than 37,000 transects
around the globe, we find that traditional forecast methods altogether with some of the evaluated
probabilistic Machine Learning (ML) time-series forecast algorithms, outperform Ordinary Least
Squares (OLS) predictions for the majority of the sites. When forecasting seven years ahead, we find
that these algorithms generate better predictions than OLS for 54% of the transect sites, producing
forecasts with, on average, 29% smaller Mean Squared Error (MSE). Importantly, this advantage
is shown to exist over all considered forecast horizons, i.e., from 1 up to 11 years. Although the
ML algorithms do not produce significantly better predictions than traditional time-series forecast
methods, some proved to be significantly more efficient in terms of computation time. We further
provide insight in how these ML algorithms can be improved so that they can be expected to
outperform not only OLS regression, but also the traditional time-series forecast methods. These
forecasting algorithms can be used by coastal engineers, managers, and scientists to generate future
shoreline prediction at a global level and derive conclusions thereof.

Keywords: forecasting shorelines; shoreline-trajectories; sandy beaches; coastal engineering; coastal
oceanography; time-series forecasting; data science; machine learning; deep learning

1. Introduction

Sandy beaches form an essential part of coastal zones as they play a key role in the
ecosystem, while providing socio-economic values and services at the same time. Despite
the ecological and social importance of these ecosystems, sandy beaches are increasingly
under anthropogenic pressure. Sea levels have already risen throughout the twentieth
century and are expected to rise increasingly this century, effectively constituting another
serious threat to stability of coastal ecosystems [1]. Shoreline retreat can particularly be
harmful to coastal communities, natural preserves and infrastructure. It is, therefore,
important that effective management of sandy shores includes sustainable multiple use
that does not comprise the future [2]. Effective management further requires optimal long-
term sustainable use of the sandy coasts and maintenance of the most natural environment
possible [2]. To meet these demands, coastal managers have an increasing need for accurate
shoreline predictions, which empowers them to assess vulnerability and protect coastal
infrastructure, human safety and habitats [3].

Traditionally, dynamic coastal zones have been hard to monitor because monitoring
involved time-consuming field work and/or expensive imagery stations at multiple loca-
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tions. However, at present these disadvantages can to some extent be overcome by using
Earth-observing satellite data. During recent years, remote sensing data have played an
increasingly important role in achieving data-driven understanding of beach dynamics on
various time- and spatial scales [4–7].

Typically, shoreline evolution is predicted at local level by process-driven models,
e.g., [3,8,9]. Although these models have provided a step from accidental to rather in-
tentional coastal engineering they are relatively labor intensive and computationally
expensive—especially when such studies aim to cover mesoscale or larger areas. In a
blind-tested comparison of shoreline prediction models, ref. [10] considered ML meth-
ods, but note that in general the models often fail to produce reliable forecasts outside
the in-sample window. At longer time-scales ambient shoreline change-rates present in
Satellite-derived Shorelines (SDS) data have been used to assess which shorelines are under
extinction threat [11]. However, extrapolating OLS regression through the SDS to forecast
2100 shorelines might be an unreasonable simplification of shoreline dynamics. South-
gate [12] already showed other time-series modeling methods are substantially superior to
OLS regression through a signal of shoreline-positions, although his study was limited to
forecasting five years ahead.

In this study, we take advantage of the extensive amount of data, computer resources
and a wide variety of time-series forecasting models that nowadays exist. We compare
eight time-series modeling approaches to forecast shoreline evolution from SDS. The results
show that most classical and ML methods are able to outperform OLS baselines and that
this advantage is steady over increasing forecasting horizon. To the best of our knowledge
this is the first time that shoreline evolution forecasting is approached by learning patterns
across a collection of SDS time-series with ML techniques. To illustrate the potential of
these methods we present some probabilistic shoreline evolution forecasts from 2016 until
2030. We also provide insight to how ML models can be further improved so that they can
also outperform classical time-series forecast methods.

1.1. Monitoring Satellite-Derived Shoreline Changes

Although the shoreline is strictly defined as the intersection of water and land surfaces,
the dynamic nature of this boundary and its dependence on the temporal and spatial scale
at which it is being considered, results to use a range of shoreline indicators [13]. In
this study, we use an indicator based on image-processing techniques that has been one
of the key factors that led to several coastal monitoring applications [5]; some of them
directly targeting shoreline monitoring [4,6,7]. All these applications relied on supervised
classification of composite satellite imagery, usually by means of some computationally
cheap decision tree algorithm. They are able to provide excellent results in satellite imagery
classification, especially when spectral indices are used as input features. Water and wet
surfaces characteristically show strong absorption in the near-infrared and short-wave
infrared spectrum, while dry soils, dry sand and vegetation reflect a large proportion
of the radiation in these spectral ranges. Therefore, these spectral bands and indices
derived thereof, have a high potential for measuring moisture levels in soils and vegetation
and are now widely used indicators for water body delineation and wetland mapping.
Derivation of the SDS used in this study relied especially on the Normalized Difference
Water Index (NDWI).

The quality of (historical) shoreline change studies is proportional to the temporal
and spatial resolution of the satellites providing data. With advances in remote sensing
technology over the last decades both temporal and spatial resolution have steadily in-
creased [14]. The long running record of the Landsat program and its global coverage
make the data exceptionally useful for large scale studies on multi-annual to multi-decadal
time frame, especially since it has been freely available from 2008 onward [15]. The spatial
resolution of the sensors used in the Landsat program has generally been 30-m. Hage-
naars et al. [16] found that the accuracy of SDS detection is within sub-pixel precision
(15-m) for composite imagery.
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1.2. Forecasting Time-Series of Shoreline Positions

Historical shoreline positions, albeit being derived from different types of shoreline
indicators, have a long history for being used to determine erosion rates and derive shore-
line predictions thereof (e.g., [11,17–20]). Typically, erosion rates are extracted by means
of a least-squares regression and extrapolated into the future. Although several statistical
methods of higher complexity have been considered to predict future shorelines from a
collection of historical shoreline positions—such as binning [20], basis functions [21,22]
and time-series forecast methods [12,23]—OLS presently still forms the (scientific) basis of
Dutch coastal management [23] and long-term coastal erosion rates in the US [24]. How-
ever, whereas many naturally evolving shorelines can follow a linear trend for a certain
period, some shorelines are influenced by processes where a straight trend line does not
capture the relevant processes [25]. Examples include seasonality, storm induced retreat,
sand waves, coastal interventions, accelerated coastal retreat due to gas or groundwater ex-
traction below the coastal zone and accelerated Sea-level Rise (SLR). In such circumstances
other forecast algorithms might be more suitable as they are able to take these processes
into account.

Traditionally time-series forecasting has been dominated by statistical methods (e.g., [26])
such as Error Trend Seasonality (ETS) and Autoregressive Integrateded Moving Average
(ARIMA) because they are relatively simple, well understood, robust and effective on
many problems, so that they can be used by non-expert users [27,28]. Whereas ETS
models focus on describing error, trend and seasonality in data, ARIMA models aim at
the auto-correlations present in the time series. Since these parameters are determined
at individual time-series level, forecasting larger quantities of sites easily becomes too
laborious. Hyndman and Khandakar [26] specifically addressed this issue and introduced
a framework (RForecast) to automate ETS and ARIMA forecasts.

Until recently, simple forecasting methods typically outperformed more complex ones
in time-series forecasting [29,30]. Nevertheless the impressive results of deep learning
in computer vision and language-related tasks probably triggered a shift in time series
modeling from classical statistical approaches to Deep Learning (DL) based methods.
During the 2018 M4 forecasting competition numerous participants relied partly on ML [31]
and it was the first time in its competition history [32] that it was won by a model using
ML techniques [33]. Besides the M4 forecasting competition there have been various
other forecasting accuracy improvements via the usage of DL models (e.g., [34–38]) during
recent years.

Whereas most classical time-series forecast methods such as ETS and ARIMA are
local models for which the free parameters are estimated individually per time-series, ML
models typically learn the free parameters jointly over a collection of time-series. Therefore
ML models are able to extract patterns from irregular collections of time series which
cannot be distinguished at individual level. Recent studies [34,36–39] have demonstrated
that Neural Networks (NNs) are particularly well suited to take advantage of a dataset
which consists of large amounts of time-series. Moreover, whereas classical models are
typically limited to univariate inputs, NNs are able to use multiple inputs, and therefore
these types of models can be enhanced by (additional) explanatory variables. Finally,
cross-series learning enables cold-start forecasting [37] which can be used for transects
with a limited amount of observations.

1.3. Research Objective

The main aim of this study is to find out which time-series forecast algorithms are
most suitable for long-term shoreline evolution predictions. More specifically:

• To compare eight time-series forecast algorithms, for forecasting multi-annual shore-
line evolution using SDS, by means of commonly used error measures;

• To assess the reliability of these algorithms over increasing forecast horizons;
• To provide insight into learning across time-series of SDS using ML forecast algo-

rithms;
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• To illustrate the potential of conditional probabilistic time-series ML algorithms for
long-term shoreline evolution predictions.

2. Materials and Methods
2.1. Data

The ShorelineMonitor data [4] consists of SDS, at roughly 2.2-million globally de-
fined 500-m alongshore spaced transects, from 1984 until 2016. This dataset also contains
metadata for each transect, including geospatial coordinates, categorical features, soil type
(sandy vs. non sandy), and a proxy for the change rate uncertainty of the time-series [4].
After excluding approximately 400-thousand noisy transects in the polar latitudes [40]
we selected the transects flagged [4] to be located at sandy beaches, with low shoreline
detection errors and low errors in change rate or timespan. Subsequently, all detected
outliers [4,40] were removed. Finally, we selected the transects without missing values.
Thus, we obtained a dataset consisting of 37,111 time-series, with one observation per year,
based on composite satellite imagery from Luijendijk et al. [4], for the period 1984–2016.
Figure 1a shows all included time-series as a density line plot. The time-series were an-
nually averaged and are therefore equally spaced along the time axis. We excluded all
transects with one or more missing annually averaged observations since classical models
ETS and ARIMA are not able to deal with missing values and interpolating these missing
values requires several arbitrary decisions beyond the scope of this study. Thus, all time-
series are equally spaced and aligned, i.e., the starting point t = 1 equivalents for all series
to 1 January 1984 and the length is for all series 33 years with annual observation frequency
(Figure 1).

The ShorelineMonitor data includes metadata, such as the change-rate uncertainty, that
most ML methods can use directly, as a static real covariates, to condition their predictions.
In addition, we created two more static categorical covariates. With hierarchical clustering
algorithms DBSCAN [41] and OPTICS [42] the transects were clustered, by their geospatial
coordinates, into respectively 13,331 and 8938 groups of density-connected components
with a maximum distance (1-km) between the clusters. Figure 1b shows a cluster of time-
series in the area of Duck, North Carolina, USA. The figure shows that, at least for some
clusters, SDS series have a similar structure over time.
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Figure 1. (a) Density line plot of all time-series (N = 37, 111) included in the forecast evaluation. (b) The transects
are clustered into density-connected groups with a maximum dinstance between the groups using hierarchical cluster
algorithms. Here, all SDS time-series present in a group of transects (clustered by DBSCAN algorithm), in the area of Duck,
USA, are shown. The transects in this cluster are density-connected within 1-km distance.

Figure 2 shows the spatial spread of the transects included in the study. Although sites
across the whole world are included, certain areas, such as Europe, are under-represented.
This spatially unequal cover reflects the frequency of earth-observations by the Landsat pro-
gram [43], the relatively high cloud cover in certain areas [44] and the unequal distribution
of sandy coasts across the world [4].
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Figure 2. Transect sites with SDS time-series included in the forecast evaluation analysis.

2.2. Forecasting Objective

In total we consider eight forecasting algorithms and use a dataset consisting of
37,111 time-series. Let N be the set of univariate time-series {zi,1:T}N

i=1, where zi,1:T =
(zi,1, zi,2, . . . , zi,T) and zi,t ∈ R denotes the value of the i-th transect at year t, counting from
1984. Each algorithm f is provided with the same task: forecast future shoreline position
z ∈ RH given a set of historical shoreline positions z ∈ RP (Equation (1)), where P refers to
past observations and H represents the forecast horizon.

f : RP → RH (1)

In each time-series, the latter H years of observations are reserved to assess forecast
skill, by means of various Key Performance Indicators (KPIs). The time-series are split into a
train [zi,t1 , zi,t2 , . . . , zi,t0−1 ] and test partition [zi,t0 , zi,t0+1 , . . . , zi,t0+H ], where t0 denotes the time
point from which we assume zi,t to be unknown (Figure 3). In our evaluation experiments,
the models models consume up to 26 years of observations to generate a seven year forecast.
Forecast accuracy is then assessed by comparing this forecast to the observed values in the
test partition, which have remained hidden to the model.

Most DL algorithms are able to consider multivariate inputs. In our experiments
each transect has an associated covariate vector consisting of three static features: the
change-rate proxy, and the two cluster IDs (Section 2.1). Let X = {xi,1:T+H}N

i=1 be this
set of covariate vectors associated to the time-series, with xi,t ∈ RD. Please note that the
covariates are also provided to the model over the forecast horizon.

Finally, each type of model is conditioned by its own parameters Φ. For state space
models these are for instance the latent states, while for NNs they represent the network
weights. Thus, the point forecast objective can be stated as:

f (xi,t; Φ) : RT0−1 → RT0+H (2)

Most of the considered time-series models generate probabilistic forecasts instead
of point forecasts. Whereas a point forecast compromises one expected value per future
time step, a probabilistic forecast describes the expected values in terms of a certain
distribution. The probabilistic forecast objective is therefore to predict the probability
distribution in the prediction range [zi,t0 , zi,t0+1 , . . . , zt0+H ] given observations from the
conditioning range [zi,t1 , zi,t2 , . . . , zi,t0−1 ], their associated covariates [xi,1, xi,2, . . . , xi,t0+H ]
and model parameters Φ:

p(zi,t0 :t0+H |zi,1:t0−1 , xi,1:t0+H ; Φ) (3)
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2.3. Forecasting Models

Our intention was to use a wide range of forecast algorithms. We categorize forecasting
approaches into two subclasses: classical statistical forecast methods and data-driven ML
algorithms. Although such categorization is in theory problematic and inaccurate, as it
does not respect many of the subtle characteristics of existing forecast methods, we will
use this intuitive distinction for practical purposes. From the eight algorithms evaluated in
this study three, OLS, ETS, ARIMA, can be considered statistical whereas the remaining
five, SimpleFFN, SimpleLSTM, DeepAR, MQCNN, DeepSSM belong to the ML domain.
The collection of used forecast approaches does not include all available methods; for
example, Season Trend Loess (STL) could be added to the statistical approaches whereas
DeepFactor would be another interesting ML candidate. Nevertheless we are convinced
that the methods used in this study provide a broad overview for possible pathways in
data-driven time-series-based shoreline modeling.

The ML models used in this study are all based on (combinations of) NNs. There exists
a wide variety of NNs, such as Multi-layer Perceptrons (MLPs), Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs) and Long Short Term Memory
(LSTM) NNs. RNNs especially suggest to be a good fit for time-series forecasting. These are
networks with loops in them, allowing information to persist. However, RNNs often fail to
model long-term dependencies as they suffer from the vanishing gradients problem [45].
LSTMs are specifically designed to surpass this problem [46]. The hidden units of these
networks also learn some kind of feature representations of the raw input, but here dynamic
memory is provided by feeding hidden units back to themselves in each time-step [47].
As a detailed description of NNs is beyond the scope of this study, we refer the interested
reader to [48] for a more extensive discussion on the topic.

We approach the forecasting problem as a supervised learning problem by setting
a model structure in advance and learning the model parameters using a statistical op-
timization method. For local models ETS and ARIMA the parameters were optimized
per time-series. OLS does not require any parameters and only involves least-squares
optimization. With the ML approaches at least some parameters are learned jointly over
the collection of time-series. Some ML models are designed to generate one-step ahead
forecasts, while others directly produce multi-step predictions. Nevertheless one-step
forecasting models can be used to generate multi-step forecasts by recursively feeding the
model with its own one-step ahead estimate. However, feeding the network with its own
predictions results in error propagation through the network. In other architectures, such
as in sequence-to-sequence models, error propagation is avoided by setting the decoder to
output all future target values at once so that there is no need to unroll over the forecast
horizon. Future shorelines can be estimated directly as point forecasts or modeled as prob-
ability distributions. Apart from OLS and SimpleLSTM all models generate probabilistic
forecasts, i.e., they predict a conditional distribution or density of future shorelines. In a
well calibrated probabilistic model the observation is indistinguishable from a random
draw from the predictive distribution.

2.3.1. Ordinary Least Squares

OLS was fitted, per time-series, on training observations by optimizing least squares
error. To generate future predictions the regression line is extrapolated over the forecast
horizon. Thus, future expected values ẑi,t0+1 :T0+H are equivalent to β0 +β1zi,t0+1 :t0+H , where
coefficients β0 and β1 refer respectively to the intercept and slope.

2.3.2. Error Trend Seasonality

Exponential Smoothing (ES) methods describe time-series with weighted averages of
trend and seasonality. The set of ES models is constituted by 5 different input types for the
trend component and 3 input types for the seasonal components, thus, in total there exist
15 ES methods [49]. By also considering an error component the underlying state space
models are able to generate forecasts including prediction intervals [50]. In this study, we
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implement ETS probabilistic forecasts through the RForecast package [26]. The models
are fit individually per time-series, i.e., model parameters are learned for each time-series
independently. The error, trend and seasonality component are left default so that the
package will automatically select the optimal model from the set of model candidates by
Aikake Information Criterion (AIC). Forecasts are then generated using the best model,
with optimized parameters, for the forecast horizon. The medians of these ETS probabilistic
forecast density are equivalent to the ES point forecast.

2.3.3. Autoregressive Integrated Moving Average

Whereas ES-models are describing the trend and seasonality in data, ARIMA models
focus on autocorrelations in the series [51]. The model requires three parameters: p, the
order of the autoregressive part; d, the degree of first differencing; and, q, the order of the
moving average part. Similar to ETS, ARIMA models are estimated automatically per time-
series with the RForecast package [26]. The forecast package is estimating the ARIMA
model, i.e., the parameters p, d, q, by a combination of maximum likelihood estimation, unit
root tests and minimization of the AIC criterion [51]. The technique finds values for the
parameters which maximize the probability of obtaining the data that we have observed.
The model is able to generate forecasts by replacing future observations with their forecasts,
in iterative fashion over the forecast horizon. The prediction intervals for ARIMA models
are based on assumptions that the residuals are uncorrelated and normally distributed [51].

2.3.4. Simple Long-Short-Term-Memory

The sequence-to-sequence architecture of the SimpleLSTM model consists of a fully
connected NN with 1 layer of LSTM cells. The model contains an encoder-decoder frame-
work, which allows the LSTM to map an input sequence to an output sequence of different
length. The network receives the past vector (26) of a series as input, which equivalents to
the maximum context length (26), i.e., the length of the series (33)—the forecast horizon (7).
The LSTM cell transforms this vector to its hidden size (64). Subsequently, the LSTM output
(64) is mapped using a linear sequential layer to a future vector (7). The SimpleLSTM
model is fed with pure time-series data, i.e., no other explanatory variables are provided.
The weights are updated using the Torch Adam optimizer [52] with MSE loss criterion
calculated per batch of time-series. The models weights were initialized by setting them
to 0. The learning rate was 0.01. The model was trained in batches of 50 time-series and
run for 10 epochs. The SimpleLSTM model was trained and evaluated in slightly different
fashion as the other forecasting models. Instead of separating train, validation and test
observations within each series (Figure 3), this model works with train, validation and
test series, i.e., the dataset (n = 37,111) was split into train, validation and test partitions at
time-series level. Thus, the model was trained, validated and tested respectively on 23,750,
5938 and 7423 time-series.

2.3.5. Simple Feedforward Network

The SimpleFFN [53] is a MLP NN that predicts the next target time-steps given the
previous ones. It takes as input a window of context length and produces an output
dimension prediction length. The model has 40 hidden nodes per layer. Weights are
optimized by calculating the mean of the L1 loss.

2.3.6. Deep Autoregression

DeepAR [34] is a auto-regressive RNN time-series model that learns a global model
from historical data of all time-series. Importantly DeepAR not only takes he last target
value as input, but also several lagged values that are relevant for the given frequency.
Thus, the model is autoregressive, in so far that it considers the observation at the last
time step zi,t−1; and, recurrent because the hidden units are feeding their output back to
themselves in each time-step, which can be both LSTM or Gated Recurrent Unit (GRU)
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cells. It estimates parameters of a parametric distribution or uses a parameterization of the
quantile function [53].

2.3.7. Multi-Quantile Convolutional Neural Network

MQCNNis based on a sequence-to-sequence network that is capable of directly gen-
erate multi-horizon quantile forecasts [37]. In this model the sequence-to-sequence MLP
decoder is set to output multiple quantile values per time step in the forecast horizon
and trained using the quantile loss function [37]. These quantile decoder models were
combined with RNN and Dilated causal convolution encoders (CNNs) to create RNN-QR
and CNN-QR models [53]. MQCNN is a type of CNN-QR model. More, specifically in our
experiments we used a hierarchical causal convolution 1-D encoder and a dense layer to
compute the projection weights into the quantile space [0.1, 0.2, . . . , 0.9] [53].

2.3.8. Deep State Space Models

DeepSSM [36] is a probabilistic time-series model that combines state space models
(Section 2.3.2) with DL. The model parameterizes a linear state-space model, implemented
via a Kalman filter, separately per time-series, but using a RNN whose weights are learned
globally across all time-series. The model is therefore able to combine some desired
properties of state space models such as data efficiency and interpretability, with other
advantages of global models, i.e., learn complex cross-series mappings [36]. The model
learns a globally shared mapping from the covariate vector xi,1:Ti associated with each target
time-series zi,1:T to the parameters of a linear state space model for the i-th time-series.

2.4. Software

All data and models were processed and built with Python 3.8.5 and R 4.0.3 using
several additional packages for both languages. OLS fits were calculated with SciPy
1.5.2 [54] because of its attractive computational speed. The SimpleLSTM model was
built on top of Torch 1.4.0 [52]. All other models were built using GluonTS 0.5.2 [53],
which relies on MXNet 1.6.0 for weight optimization. However, in fact both State Space
Models (SSMs) (ETS and ARIMA) were built via the GluonTS RForecastPredictor, a thin
wrapper calling the RForecast package [26]. All models were trained and evaluated on an
Intel(R) Core(TM) i5-4200M CPU @ 2.50 GHz processor. Processing time was measured
using Python’s built-in module time.

2.5. Hyper-Parameters

Most hyper-parameters of models developed in GluonTS are the same. For instance,
all were initialized with Xavier weights, 0.001 learning rate, 0.5 learning rate decay and
0.1 dropout rate. Additionally, they were all run for 100 epochs, each epoch consisting of
50 batches with 32 time-series per batch. Furthermore, the conditional probability was
modeled using the student’s t-distribution. Finally, the required frequency field in GluonTS
was set to annual frequency, matching the annually averaged observations. Model specific
(hyper-)parameters are mentioned at their description.

2.6. Model Validation and Evaluation Measures

Forecast accuracy was assessed by comparing model predictions with observed
ground truth values by means of several KPIs. For each time-series the last seven years
of SDS were reserved for accuracy assessment. Figure 3 shows how the time-series are
divided into train and test observations. The classical models optimize their free param-
eters per time-series over the training observations while performance is subsequently
assessed using the test observations (Figure 3). The DL algorithms first sample sequences
of observations from the training part of each series (Figure 3). These sequences consist
of a adjacent training and validation window. The training window corresponds to the
conditioning range, i.e., observations provided to the model to generate its predictions,
with a maximum length of 19 years during training. The validation window is the last
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output window that is used for network validation. The parameters with DL models are
learned jointly over the time-series by evaluating their performance per batch of time-series
over a validation window. When the model has trained, i.e., the network weights are
optimized, its performance can be assessed over the test observations. To update weights of
probabilistic forecast models the median quantile loss was used; for point forecast models
MSE loss was used. Probabilistic forecast predictors are set to produce 300 sample-forecasts
from the trained model. Together these trajectories yield a non-parametric representation
of the predictive distribution.

1984 1988 1992 1996 2000 2004 2008 2012 2016

train test validation window train window
Time (yrs)

Sh
or

eli
ne

 p
os

iti
on

 (m
) 

Figure 3. Schematic overview of train, validation and test partitions. The latter seven years of
observations (test partition) remain hidden to the models when optimizing their parameters and
are reserved for forecast accuracy assessment. Considering the ML models, train and validation
windows are sampled within the train sequence. These models update their weights per batch of
time-series and optimize their hyperparameters using the validation window.

To compare forecast performance of the different models we used several error mea-
sures commonly found in forecasting literature, including the MSE, Mean Absolute Error
(MAE), Mean Absolute Scaled Error (MASE), Mean Absolute Percentage Error (MAPE)
and Continuous Ranked Probability Score (CRPS). It is commonly noted that every error
measure has its own (dis)advantages and that there exists no perfect error measure. Essen-
tially these KPIs are trying to summarize model performance over all time-series in one
number which is an immense simplification of reality.

MAEi =
1
N

N

∑
t=1
|zi,t − ẑi,t| (4)

MSEi =
1
N

N

∑
t=1

(zi,t − ẑi,t)
2 (5)

Both MAE (Equation (4)) and MSE (Equation (5)) are scale dependent, i.e., their scale
depends on the scale of the data. The measures are often used to compare different methods
on the same set of data. Importantly MSE are more sensitive to outliers than MAE because
it gives more weight to most significant errors. On the other hand, MAE can be biased when
the distribution of SDS is skewed as it aims to split the dataset in two equal parts. Squared
Error (SE) and Absolute Error (AE) are further used to derive various other performance
indicators such as Root Mean Squared Error (RMSE) (

√
MSE), Normalized Root Mean

Squared Error (nRMSE) (
√

MSE
|target| ) and Normalized Difference (ND) ( AE

|target| ).

MAPEi =
100
N

N

∑
t=1

|zi,t − ẑi,t|
zi,t

(6)
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sMAPEi =
100
N

N

∑
t=1

|zi,t − ẑi,t|
(|zi,t + ẑi,t|) ∗ 2

(7)

MAPE (Equation (6)) and Symmetric Mean Absolute Percentage Error (sMAPE) (Equa-
tion (7)) are measures based on percentage errors. These metrics are often used to assess per-
formance across different datasets as they have the advantage of being scale-independent.
Although sMAPE specifically addresses the issue of irregular penalty [55] for negative
errors in MAPE, both methods are sensitive to values close to 0. When zt = 0 for any t
in the considered series these measures become infinite or undefined. Therefore, these
error measures can easily be dominated by a single forecasting outlier. This issue is cir-
cumvented by adding 1 to both nominator and denominator for all observations with
zi,t < 1e−8. Finally, percentage errors assume meaningful zero [56], i.e., the zero point is
real and actually means there is nothing. The SDS time-series are measurements of length
(m) with respect to a reference year (1984) and therefore do not violate this assumption.

MASEi =
1
N

∑N
t=1|zi,t − ẑi,t|

1
M−1 ∑M

t=2|zi,t − zi,t−1|
(8)

Scaled errors can be used to compare forecast accuracy across series with different
units. Hyndman and Koehler [56] introduce MASE, which is based on scaled errors by
using naïeve (seasonal) forecasts to calculate the relative error. With MASE the absolute
forecast errors are normalized by the average in-sample one-step naïve (seasonal) forecast
error. Thus, MASE scores larger than 1 indicate that forecast accuracy of the model under
consideration is worse than its naïve benchmark, and vic versa.

Probabilistic forecast algorithms generate a probability distribution instead of a point-
estimate value. For evaluation, various sample forecasts are drawn from the trained model,
which is described by an estimated parametric distribution. This sample of forecasts (or
sample paths) constitute the empirical distribution of forecasts. Evaluation is performed
by verifying for each sample in the set whether an observation occurred or not, i.e., if the
sample observation is observed below the prediction interval or not.

The CRPS (Equation (9)) [57] can be used to measure dissimilarity between the Cu-
mulative Distribution Function (CDF) and the observed values. The CRPS assigns a
numerical score between the CDF F̂{T0 :T0+H}|T and the observed values z{T0 :T0+H}, which
when assessed over quantile forecasts, translates to:

CRPS(Q̂, z) = 2
∫ 1

0
[Q̂(p)− z][1{z≤Q̂(p)} − p]dp (9)

where Q̂ is the estimated CDF, p a probability level, and z the observed value. In this study
we estimate the CDF by drawing 300 forecast samples from the trained model. Then the
CRPS is approximated as follows. For a given quantile level p the sum of quantile losses of
all observations in the prediction horizon are calculated as 2 ∑H

t=T0
[Q̂t,p − zt][1{zt≤Q̂(t,p)}

−
p]. This so-called pinball loss is weighted by dividing it by the sum of absolute target

values over the prediction horizon for all time-series, i.e., ∑N
i=1 pinball lossi

∑N
i=1 ∑H

t=T0
|zi,t |

, where N are the

number of transects and H is the prediction horizon. These weighted quantile losses were
calculated for quantile levels p ∈ [0.1, 0.2, . . . , 0.9]. The CRPS is approximated by mean
averaging the weighted quantile losses.

Another scoring method included for assessing probabilistic forecast performance is
the Mean Scaled Interval Score (MSIS) [58]. The metric scores at the same time upper and
lower prediction intervals.

3. Results

To compare forecast skill among used models, we first present a comparison of var-
ious error measures. We further present reliability and loss curves for the probabilistic
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algorithms and report processing time for all algorithms. We also introduce figures de-
scribing forecast error with respect to the prediction horizon. To conclude we present a
probabilistic forecast example, with shoreline predictions up to 2030.

3.1. Assessing Model Performance

Table 1 presents mean-aggregated error metrics per evaluated forecast method. All
metrics are derived from the same set of 37,111 time series, over a forecast horizon of
seven years. The SimpleLSTM model has best accuracy scores for error measures based
on squared error loss. Yet this method is also characterized by weak scores in terms of
other error measures, including both MAPE and MASE. The data further indicate that
ETS models have good and consistent forecast performance. They are outperforming
all other algorithms by MAE and MASE, while doing relatively well in terms of the
other error measures. With this data we can see that OLS fits have, besides sMAPE,
low accuracy for all error measures with respect to other methods. The results show
that ETS, ARIMA, SimpleFFN, DeepAR and MQCNN consistently have relatively good
accuracy scores, while differences within this group are notably small, especially for the
probabilistic error measure CRPS. The MQCNN model directly outputs quantile forecasts,
while other probabilistic methods derive these by sampling their CDF multiple times. Since
the MQCNN model architecture does not allow deriving MSE-based models in similar
fashion as for the other probabilistic models these accuracy metrics are not included in
the table.

Table 1. Mean-aggregated error per forecast method. Reported numbers are measured over a forecast
horizon H = 7 years. Probabilistic forecast indicators CRPS and MSIS could only be calculated
for probabilistic forecasting algorithms. Further, SE based measures for MQCNN are not included
because the network architecture does not allow deriving SE-based performance indicators in similar
fashion as the other probabilistic forecast algorithms. Lower scores indicate better forecasts.

MSE MAE * MASE MAPE sMAPE RMSE * NRMSE ND MSIS CRPS

Linear regr 2510 20.0 1.54 14.0 0.83 50.1 1.38 0.55 - -
ETS 1998 16.6 1.35 11.9 0.84 44.7 1.23 0.46 16.6 0.39
ARIMA 2032 17.1 1.38 13.4 0.88 45.1 1.24 0.47 17.0 0.40
SimpleLSTM 1686 19.0 1.66 20.4 0.92 41.1 1.11 0.51 - -
SimpleFFN 1817 17.0 1.36 11.4 0.82 42.6 1.17 0.47 17.1 0.39
DeepAR 1930 17.6 1.39 10.0 0.83 43.9 1.21 0.48 16.2 0.40
MQCNN - 17.2 1.38 11.1 0.82 - - 0.47 - 0.39
DeepSSM 2060 18.4 1.44 12.8 0.82 45.4 1.25 0.51 18.6 0.43

* Unit in meters.

Table 2 presents forecast rank scores per error measure, which are derived by rank-
ing all generated forecasts per error measure, from best to weakest performance, and
computing the sum of the ranks per method. The data shows that the SimpleFFN model
achieves best forecasting results in terms of ranking. The method outperforms all other
algorithms by MAE, MASE and sMAPE, while obtaining the second-best rank MSE and
MAPE, after ES and DeepAR respectively. Although the SimpleLSTM model is able to
outperform other algorithms by MSE-based statistics, its MSE-ranking is by far the weakest.
Moreover, the forecasts generated by this algorithm overall score the worst ranking for
all ranked error measures. In accordance with results in Table 1, OLS forecasts have a
low ranking compared to other algorithms. Overall, besides weak performance of the
SimpleLSTM model, forecast ranking scores appear to be generally in accordance with
mean error measures as presented in Table 1.

Figure 4 presents the log-normalized error distributions, of MSE, MAE, MAPE and
MASE. Error measures are log-normalized because all distributions of error are heavily
tailed. These tails exist in both directions, although the positive domain is characterized by
higher skew than the negative domain. Forecasts generated by the SimpleLSTM model are
characterized by higher MSE kurtosis than other algorithms, while its MAPE distribution
has highest overall errors. All models except SimpleLSTM are characterized by a distinctive
spike around zero-MAPE. Overall, these results suggest that underlying distributions of
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error in the forecasts are unevenly distributed and characterized by heavy tails, especially
in positive domain.

Table 2. Forecast rank per error measure and evaluated method. The score is derived by ranking all
generated forecasts, from best to worst performance, and computing the sum of scored ranks per
method. Only error measures which were calculated at individual time-series level could be included
in the ranking. Note, lower scores indicate better forecasts.

Rank MSE Rank MAE Rank MASE Rank MAPE Rank sMAPE

Linear regr 131,145 151,161 152,599 154,082 146,465
ETS 123,708 142,775 141,349 144,806 146,710
ARIMA 125,312 144,471 143,431 143,954 151,876
SimpleLSTM 149,200 172,123 175,640 161,818 160,722
SimpleFFN 125,084 141,962 140,551 143,918 144,548
DeepAR 125,253 143,065 142,409 143,292 146,913
MQCNN - 142,702 140,940 143,920 145,099
DeepSSM 129,489 149,260 150,600 151,725 145,183
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Figure 4. Log-normalized density-kernel estimations for four types of error measures. The error metrics are computed over
a forecast horizon H = 7 years. (a) MAE; (b) MSE; (c) MAPE; (d) MASE.

Figure 5 shows quantile coverage and loss for the probabilistic forecasting approaches,
obtained by evaluating the algorithms over the 7 year forecast horizon. Figure 5a is a
so-called reliability plot, where the x-axis represents nominal probabilistic levels and the
y-axis describes observed levels. For a quantile forecast ẑ(α)t0+H with nominal level α = 0.5,
one expects that the observations zt0+H (y-axis) are to be less than the nominal level ẑα

t0+H
(x-axis) 50% of the times. Thus, coverage in a reliability plot indicates how much of the
data is below the predicted quantile for the given level. The optimal reliability curve is
described by y = x, i.e., the nominal probabilistic levels are equivalent to the observed
values. Figure 5a shows that quantile coverage is for all probabilistic algorithms very
close to the optimal diagonal (dashed line) over the full range of nominal quantile levels.
Deviation of this the optimal reliability curve captures conditional bias: when empirical
coverage is lower than the corresponding nominal level this indicates overshooting, and
vice versa. Thus, the data suggest that all probabilistic models are reliable.

Figure 5b shows quantile loss over the different quantile levels. Quantile loss is
computed as the pinball loss (Section 2.6) multiplied by 2, so that the 50th-percentile is
equivalent to the total AE over the forecast horizon. Thus, when mean averaging quantile
loss over the prediction horizon (Here, H = 7), the 50th-percentile is equivalent to MAE
values reported in Table 1. The figure can be used to deduce which models are preferable
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for certain parts of the probability distribution. Note, lower quantile loss indicates more
accurate predictions. The data show that quantile loss is centered approximately between
the 50-th and 60-th quantile and that loss is higher in the upper quantiles. Overall all
probabilistic algorithms describe a similar curve, although loss is considerably higher for
the DeepSSM model, especially in the upper quantile regions.
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Figure 5. Quantile coverage and weighted quantile loss for probabilistic forecast algorithms. (a) Coverage indicates how
much of the data is below the predicted quantile for the given level. The dashed blue diagonal represents the ideal scenario
where observed quantile coverage exactly matches the nominal quantile levels. (b) Quantile loss is the pinball loss multiplied
by 2, so that the 50th-percentile equivalents the total AE over the forecast horizon. Mean-averaging total AE over the
forecast horizon (H = 7) are equal to MAE error measures presented in Table 1. In this panel lower quantile loss indicates
more accurate predictions. It shows which models are preferable for certain parts of the the probability distribution.

Table 3 reports processing time per algorithm over one complete evaluation iteration.
The data show that evaluating OLS, SimpleFFN and MQCNN is considerably faster than
other algorithms.

Table 3. Processing time (minutes) of the performance evaluation, reported per algorithm, measured
over one complete evaluation iteration. For all algorithms, besides SimpleLSTM, evaluation windows
were distinguished within each time-series (Figure 3) so that the evaluation set compromises all
time-series (N = 37, 111). For SimpleLSTM runtime was measured over a 5-times cross-validation of
the test set (N = 7400); in total 37, 000 series. Considering ML algorithms, reported processing times
do not include model training.

OLS ETS ARIMA SimpleLSTM SimpleFFN DeepAR MQCNN DeepSSM

t (min) 0.3 29.4 126.1 57.1 1.6 33.0 1.45 25.1

3.2. Long-Term Predictions

To determine the effect of prediction length on the forecast skill we repeated the
analysis over a gradually increasing prediction range from 1 until 11 years. For each
forecast horizon, a separate model was trained and evaluated. Figure 6 shows the forecast
performance in terms of MSE and CRPS over increasing prediction lengths. A maximum
forecast horizon of 11 years was chosen so that the algorithms could at least be provided
with data spanning twice the forecast horizon, i.e., 22 years of SDS. Figure 6a shows
MSE for the probabilistic algorithms and OLS over increasing prediction length. In this
figure we can observe that probabilistic forecast algorithms consistently outperform OLS
over all prediction lengths by MSE. The data further shows that MSE increases with
prediction length, approximately with a linear trend, although DeepAR and DeepSSM
are characterized by somewhat more irregular trends. Overall the graph indicates that,
considering all prediction lengths, SimpleFFN, ETS and ARIMA provide best forecasts,
when evaluated by MSE. Figure 6b presents mean weighted quantile loss, an approximation
of the CRPS (Section 2.6), over prediction length. Since CRPS can only be computed for
probabilistic forecasts OLS and SimpleLSTM are not included in the graph. Overall, and
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similar to results described in panel a of Figure 6, CRPS increments approximately with a
linear trend over increasing prediction lengths, although this trend is more regular for ETS,
ARIMA, SimpleFFN, MQCNN than for DeepAR and DeepSSM. The data show that the
DeepSSM model is outperformed consistently over the full prediction length range by all
other probabilistic algorithms. Considering all predictions lengths the graph indicates that
ETS, ARIMA, SimpleFFN and MQCNN are able to produce relatively tight and accurate
results with respect to DeepSSM and DeepAR.
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Figure 6. Relation between respectively prediction length and some accuracy measure. Models were trained and evaluated
separately per prediction length. Naturally, forecast error can be expected to increase when models are set to predict longer
horizons. (a) Forecast accuracy measured by MSE; and, (b) weighted quantile loss (∗), an approximation of the CRPS. The
CRPS integrates quantile loss over all quantile levels and therefore generalizes MAE measures for probabilistic forecasts.
OLS and SimpleLSTM are not present in this panel because only probabilistic forecasts can be evaluated by CRPS.

To generate some forecast examples, all models were retrained, but now without
reserving the latter 7 years of observations for accuracy assessment. The models were set to
produce shoreline evolution predictions of 14 years, until 2030. Figure 7 shows the 14-year
probabilistic forecasts of DeepAR and MQCNN, for a transect at Carova beach (36.5253◦N;
75.86103◦W), a sandy stretch of coast in North Carolina, USA. These examples illustrate
how (probabilistic) data-driven time series models can be used to project multi-decadal
shoreline evolution beyond linear realm. The graphs also show that although overall error
statistics are similar for both models, they generate fairly different shoreline predictions.
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Figure 7. Probabilistic forecasts for a transect at Carova beach (36.5253◦N; 75.86103◦W), North Carolina, USA. (a) Forecast
generated by DeepAR; and, (b) MQCNN until 2030. Please note that prediction intervals for both models are slightly
different. MQCNN’s configuration only provides forecasts at the point-decimal quantiles so that the 0.05, 0.25, 0.5, 0.95
quantiles, required to calculate the 50% and 90% prediction intervals, are missing.
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4. Discussion

In science, simple models are typically preferred over complex ones [59]. When
future shorelines can be predicted successfully with an OLS fit, such model should be
preferred over models of higher complexity. Although future shorelines can for many sites
be approximated with an OLS regression, some shorelines evolve with patterns that cannot
be captured with straight line (Figure 1b). Processes that cause seasonal and non-linear
dynamics can be both of natural origin, such as a changing seasonality of storms [60],
or human-induced, such as coastal interventions such as sand nourishments [61]. The
relatively weak (ranked) accuracy metrics of simple OLS (Tables 1 and 2) might be related
to the fact that an OLS regression cannot model these types of coastal dynamics. When
shorelines are subject to forces causing non-linear shoreline dynamics, or when shoreline
oscillations are to be included in the prediction, other forecast algorithms than OLS could
be better suitable to predict future trajectories.

The classical methods ETS and ARIMA model shoreline trajectories by estimating a
set of parameters describing structural aspects of the time-series. ARIMA models are able
to capture a flexible range of different shoreline evolution patterns using its autoregressive
component. Moreover, with a differencing operator (I-component) directly integrated into
the model it is able to deal with linear trends present in shoreline evolution, e.g., steady
erosion due to depleted sediment fluxes in a nearby river. ETS models do not assume
stationary series because trend is explicitly set as one of its parameters. While ETS are able
to deal with multiplicative trend and seasonality, ARIMA models can only account for
additive trend and seasonality. Multiplicative trends in shoreline trajectories might occur
in areas with sand extraction [62] or coastal development [63] because both presumably
grow with population and economy. The moving average component in ARIMA is derived
from errors that the model made in the past. In practice, ARIMA models can therefore
deal with shocks in shoreline evolution, such as a beach nourishment which gradually
weakens over time. Combining autocorrelations with differencing and a moving average
error dependence, or error with trend and seasonality, appears to be a powerful tool for
univariate shoreline evolution forecasting as much of the variability observed in shoreline
evolution can be captured by these components. Nevertheless, model simplicity should
be balanced against goodness-of-fit, with a model selection method such as AIC(c), to
avoid overfitting. The AIC cannot be used to compare different families of models, such
as ETS and ARIMA, because AIC has to be computed over the same set of values, while
the differencing component in ARIMA shortens the signal per applied order. For model
comparison between different types of models we therefore rely on error measures. In line
with [12], the results show that methods based on weighted averages and autocorrelations
(here, ETS and ARIMA) are a favorable choice over OLS extrapolation for modeling future
shoreline trajectories, respectively for 55% and 53% of the time-series, when evaluated by
MSE. In addition to previous studies, the data indicate that this advantage is also valid for
globally SDS and holds over longer forecast horizons; at least up to 11 years.

Contrary to statistical approaches, ML methods learn the free model parameters
globally over a collection of time-series. Therefore these models should be able to ex-
tract patterns from irregular collections of shoreline evolution series which cannot be
distinguished at individual level. Assuming that shoreline evolution at transects in close
proximity evolve in similar patterns, or are at least correlated in their evolution [64], it
was hypothesized that making the ML models spatially aware (Figure 1b) would enhance
forecast performance and result in a clear advantage of ML methods over classical ap-
proaches. Yet, the (ranked) performance indicators (Tables 1 and 2) indicate that the level
of spatial awareness we provided to the ML models was not sufficient to make them
outperform classical forecast methods (Figures 5 and 6). In addition, many of the consid-
ered time-series exhibit a trend, which is easily captured by the classical approaches [26],
but typically remains a challenge for ML models. Other reasons for the considerably
weak ML performance can, most likely, be attributed to the absence of any forcing data
of shoreline dynamics and the quality of SDS data. No additional explanatory variables
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were available at the same spatial- and temporal resolution as the SDS data. Although
used Earth-observing satellite data has global coverage, it has low temporal resolution
(annual composites) and high granularity (15/30-m), with respect to the scale of future
shoreline changes (often tens-of-meters). Performance of our ML algorithms is, most likely,
hampered by absence of any shoreline-dynamics forcing data and the quality of the SDS
data, as ML algorithms solely rely on data and its quality [65]. As a consequence, our
probabilistic ML methods, evaluated by MSE, do not outperform OLS regression for 46%
of the transects.

The results show that ETS, ARIMA, SimpleFFN, DeepAR and MQCNN consistently
outperform OLS, SimpleLSTM and DeepSSM. However, whereas OLS and DeepSSM show
weaker performance over all (ranked) error measures (Tables 1 and 2), each part of the
probability distribution (Figure 5b) and over all prediction lengths (Figure 6), SimpleLSTM
generates best forecasts by squared-error metrics (MSE, RMSE and nRMSE), but worst
in terms of other KPIs. These data particularly highlight how forecasts are optimized to
a certain learning objective. SimpleLSTM is trained to minimize MSE, which considers
every error with equal weight, across all time-series, hence, learns one global model, which
is accurate on average, but does not generate meaningful forecasts at site-specific level.
The weak performance of this model is in accordance with our assumption that one global
forecasting model for shoreline evolution, without site-specific bias, is unreasonable. To
generate meaningful forecasts with SimpleLSTM, it should either be provided with site-
specific (forcing) data or be applied to a cluster of transects, which are subject to similar
shoreline dynamics (e.g., [21,22]). The other ML algorithms are probabilistic models, which
are optimized by minimizing quantile loss. Although these models produce worse results
than SimpleLSTM over all equally weighted errors, they generate better forecasts for the
larger proportion of the dataset, because they target median forecasts. Considering the
unequal distribution (Figure 1a) of SDS and the amount of shocks present therein favoring
median forecasts appears to be a more reasonable objective.

The relatively high MSE (Table 1) reflects the sensitivity of this metric to outliers.
Whereas variability is for most time-series in the order of tens-of-meters, some are char-
acterized by sudden shocks, up to several hundreds of meters (Figure 1a). When these
shocks occur unpredictably during the test window (latter seven years) they have an
immense impact on MSE, as it is directly proportional to the square. The effect of outliers
is further illustrated by the approximately log-normal distributions of all error measures
(Figure 4) and indicates that overall forecast performance is hampered by a considerably
small amount of transects. Figure 8c shows an ARIMA forecast for a site located in Mar
del Plata, Argentina, next to a groyne (37.9658◦S; 57.5391◦W). This transects is a typical
example for one of the sites where the algorithms, unsurprisingly, fail to predict future
shoreline trajectories because the shoreline dynamics drastically change during the evalua-
tion window. Figure 8d shows a count-density plot of time-series which compromise the
5% worst forecasts per algorithm. The figure shows that for the majority of transects where
algorithms arguably fail to predict future shorelines, the shoreline trajectories drastically
change during the evaluation window. Similar to the transect example of Mar del Plata
(Figure 8c), these sudden changes can often be traced back to coastal interventions, such as
construction of coastal defenses or beach nourishments. Within this context, it is particu-
larly important to note that ML algorithms would be capable of adequately modeling these
trajectories as their predictions can be conditioned by covariates (Equation (3)).
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Figure 8. Forecast examples to illustrate typical behavior of the forecast algorithms. (a) SimpleFFN forecast for a site
located on Cape Lookout (34.9572◦N; 76.1767◦W), North Carolina, USA. This example shows how probabilistic forecasts
are typically reliable and predict the right trend, but lack (some) sharpness. (b) ETS forecast for a transect site on Peck’s
beach (39.2672◦N; −74.5840◦W), New Jersey, USA. The graph shows how classical models are able to deal with shocks in
shoreline trajectories, especially when observations lie more distantly in the past. (c) ARIMA forecast for a site located,
next to a groyne, on the coast of Mar del Plata, Argentina (37.9658◦S; 57.5391◦W). (d) Count-density plot of standarized
time-series which compromise per algorithm the 5% worst forecasts in terms of MSE.

Apart from OLS regression and the SimpleLSTM all algorithms generate probabilistic
forecasts. Describing shoreline evolution predictions in terms of probabilities respects the
dynamic and fluid behavior of these natural systems while ensuring a richer character-
ization of the data. Although all probabilistic algorithm generated reliable predictions
(Figure 5a) forecast skill appeared often to be hampered by relatively low sharpness (wide
prediction intervals) (Figures 7 and 8a,c). In general, the prediction intervals appear to
be too wide to provide basis for coastal management or derive other conclusions thereof.
Although the results indicate similar probabilistic forecast performance for SimpleFFN,
DeepAR and MQCNN (Table 1; Figures 5 and 6b), we noted that MQCNN generates
forecasts with sharper prediction intervals, which is, most likely, related to the fact that
MQCNN directly outputs quantile forecasts, while the other models generate quantile
forecasts by sampling the CDF.

Although our ML models did not significantly outperform classical approaches they
showed other advantages. Whereas most ML models were evaluated in several minutes,
ARIMA took more than two hours (Table 3). Considering applicability at global level, where
for a study conducted at the same spatial scale, approximately 2 million transects should be
considered, this will become an important factor to be taken into account. Whereas training
time of a shoreline forecasting ML algorithm will increase when additional explanatory
variables are fed to the model, inference times will remain almost instantaneous, making
these models capable of on-demand forecasting at global level. Nevertheless, the main
advantage of ML methods over classical methods is undoubtedly their capability to con-
sider additional covariates capturing processes that drive shoreline dynamics. Although
no forcing data was available for this study, we expect such data will be introduced in
near-future, bringing about major advances in learning across time-series of SDS and their
associated covariates, and hence, to better long-term predictions of future shorelines.

The algorithms and data used have several limitations directly affecting our results,
which should also be taken into account when using this approach to predict shorelines
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and draw conclusions thereof. Natural phenomena, such as foam from induced breaking
waves in areas with consistent swell, can cause poorly derived shorelines SDS, manifested
as shocks in the time series. Furthermore, the 33-year window may not fully resolve some
rare cases of coastal change, such as extreme events and human interventions [11]. Finally,
whereas this signal can be considered long enough to express decadal-scale variability [11],
observation frequency (annual composites) and signal length (33-years) are relatively small
with respect to algorithm requirements and forecast horizon [53].

5. Conclusions and Future Directions

This study can be considered as one of the first steps towards a more thorough under-
standing of shoreline modeling from a data-driven and time-series modeling perspective
that is of interest to coastal engineers, managers and scientists. Evaluating eight forecast al-
gorithms over 37-thousand SDS time-series, we find that classical forecast approaches ETS
and ARIMA altogether with ML models SimpleFFN, DeepAR, MQCNN are more skilled
than OLS regression for the majority of study sites. When predicting shorelines seven years
ahead, these algorithms are preferable over OLS regression for 54% of the transect-sites,
with, on average, 29% smaller MSEs. This study has also shown that the forecast advan-
tage of these algorithms over OLS regression exists for all considered forecast horizons
(1 to 11 years); an important indicator for that these algorithms can also be successfully
applied on multi-decadal forecast horizons. The experiments have shown that ML models
did not generate significantly better predictions than classic methods. The considerably
weak performance of the ML algorithms is attributed the absence of shoreline-dynamics
forcing data and to the granularity of the SDS data, as ML algorithms solely depend on
data and its quality. The results further show that ML approaches have significant com-
putational advantages, which will be of importance for global studies, including many
more transect-sites, and for on-demand predictions in a production environment. We also
demonstrate that ML techniques have two important advantages over classic time-series
forecast methods: they are able to consider additional explanatory variables, and that they
can do so, while learning across time-series of shorelines. We expect that these advantages
will be extensively exploited in the near-future, when shoreline-dynamics forcing data
will come available at same spatial and temporal resolution as SDS, enhancing conditional
probabilistic shoreline evolution forecasting. Although the prediction intervals of most
forecasts generated in this study are too wide to sustain reliable coastal management or to
derive other conclusions thereof, the evaluated algorithms have the potential to become
valuable tools for coastal engineers to prioritise coastal maintenance tasks; scientists who
study shoreline dynamics or wish to include future shoreline trajectories into their studies;
and, coastal managers who face important decisions about this vulnerable zone.
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Abbreviations
The following abbreviations are used in this manuscript:

SDS Satellite-derived Shorelines
NDWI Normalized Difference Water Index
SLR Sea-level Rise
ARIMA Autoregressive Integrated Moving Average
ETS Error Trend Seasonality
STL Season Trend Loess
OLS Ordinary Least Squares
ES Exponential Smoothing
SSM State Space Model
ML Machine Learning
DL Deep Learning
NN Neural Network
MLP Multi-layer Perceptron
CNN Convolutional Neural Network
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
LSTM Long Short Term Memory
AIC Akaike Information Criterion
AE Absolute Error
SE Squared Error
CDF Cumulative Distribution Function
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
sMAPE symmetric Mean Absolute Percentage Error
MSE Mean Squared Error
RMSE Root Mean Squared Error
nRMSE Normalized Root Mean
MASE Mean Absolute Scaled Error
CRPS Continuous Ranked Probability Score
MSIS Mean Scaled Interval Score
KPI Key Performance Indicator
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