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Summary 
Concrete breakwater armour units sometimes collide with each other under heavy wave attack. This 

process, called rocking, leads to stresses in the concrete units, which can become so high that the 

concrete units break. This is problematic for the stability of the breakwater, but it is not yet 

incorporated in the design practice. This report provides a probabilistic method to determine the 

breakage probability of concrete breakwater armour units, elaborated for Xbloc®s. The starting point 

is to determine the impact velocity, which is then used as input to determine the impact force. By 

identifying the critical failure mechanism, and with the impact force as input, the relevant stresses 

can be determined. This stress is compared with the impact strength of concrete, to predict crack 

formation in the concrete. By performing a Monte Carlo simulation of this process, it is possible to 

quantify exceedance probabilities and to give an expected failure percentage. Figure 1 provides a 

flow chart of all the required steps to reach the goal of predicting breakage of an armour unit, 

including the parameters and variables that are needed in each step. 

 

Figure 1: Flow chart of the whole model  
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The impact velocity is based on a 2D schematization of the forces on an armour unit under wave 

attack. The wave drag force is determined using the run-up velocity, and the submerged weight is 

used. From the moments that result from these forces, the rotational acceleration is determined, 

which can be translated to an impact velocity, by taking into account the travelled distance up to 

impact. Only rotation is considered for the movement, since it is often observed that rocks and 

blocks rotate instead of undergoing a translation. In the derivation of the impact velocity formula, it 

is assumed that the acceleration is constant, but this is not the case, so a correction factor is 

established to reduce this error. The impact velocity and its parameters and variables are elaborated 

for both cubes and Xbloc®s. A validation is performed by comparing it with physical model test 

results, which shows that the modelled impact velocity is in the right order of magnitude. 

The impact force is based on an energy balance between the kinetic energy of the moving block and 

the potential energy in the form of a spring stiffness. This energy balance does not include kinetic 

energy of the stricken armour unit, nor energy losses due to local crushing of the concrete. Though 

both could potentially be significant in some situations, they are neglected, because they are 

unknown. The force is thus determined from the spring energy, for which the spring stiffness is based 

on a system of two springs in series: one spring represents the armour unit stiffness, the other 

represents the stiffness of the gravel bed beneath the armour unit. The armour unit stiffness itself is 

based on the compressive stiffness and bending stiffness of an armour unit leg. A validation is 

performed by comparing the modelled impact force with physical model test results, although the 

physical test did not include the breakwater bed, so it is temporarily excluded from the model as 

well, to make a fair comparison. For this comparison, the modelled impact force is in the right order 

of magnitude, but it is not validated if the representation of the breakwater bed is correct. 

In order to determine the stresses, it is important to first find the failure mechanism. Failure due to 

tensile bending stresses is identified as the most important failure mechanism, with the base of the 

leg as critical cross section. Some other failure mechanisms may occur, such as local crushing or 

chipped off corners, but these are not taken into account because they generally do not have a 

severe effect on the overall state of the breakwater. The stresses at the critical location are 

determined from a strut-and-tie model, which gives a 2D representation of the armour unit leg. A 

FEM model is used to find the stress distribution at the critical location, which, together with the tie 

force from the strut-and-tie model, results in an expression for the maximum tensile stress. The 

stress is then compared with the tensile impact stress of the concrete, to evaluate if the concrete 

fails. Predicted failure in the model is thus defined as the formation of cracks, which is assumed to 

eventually lead to complete rupture of the leg, due to the repeated loading by the waves. 

All the derived expressions are implemented in the eventual model, for which values are estimated 

for each parameter, and stochastic variables are given a  probabilistic distribution. The model then 

needs only the significant wave height and the armour unit diameter as input, in order to perform a 

Monte Carlo simulation that determines distributions of the impact velocity, the impact force, and 

the maximum tensile stresses, and predicts failure for N independent cases. The model results show 

that failure of the concrete happens more frequently as waves and armour units get larger, up to  

predicted failure in 15.8% of the simulated cases for a case of Hs = 10.01 m and dn = 2.71 m. Failure of 

armour units generally is more problematic in cases with larger waves and armour units, so it is good 

that the model represents this.  
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A Reference area (in drag formula)     [m²] 
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1. Introduction 

1.1 Background of the problem 
Many coasts and harbours are protected against waves by means of breakwaters. Usually, the 

breakwater is the first line of defence against the water and is thus subjected to the heaviest waves. 

Several types of breakwaters have been developed to withstand those waves. A commonly applied 

type, and the subject of this MSc thesis, is the rubble mound breakwater, which has an armour layer 

of large rocks or concrete elements to take away the wave energy, and a gravel and sand core to 

prevent the water from flowing through the breakwater. A schematization of a rubble mound 

breakwater is given in Figure 1.1.  

 

 

Figure 1.1: Schematized cross-section rubble mound breakwater 

Rubble mound breakwaters have been used for many years now, but there are still developments. In 

the early days, large natural rocks were used in the armour layer, which is still a solid solution in 

moderate wave climates. However, in heavy conditions, the waves can be so large that it is difficult 

to find any natural rocks of sufficient size and weight. Therefore, concrete armour units were being 

developed, as they can be fabricated in the required size. Originally, simple concrete cubes were 

being used, but people realized that the stability of the armour units could be improved by improving 

the interlocking between the armour units, leading to the development of armour units with legs. 

Emphasizing on this feature led to slender armour units with greatly improved interlocking, but then 

a new problem arose: several breakwaters failed when many armour units broke due to rocking. 

Rocking is the situation when an armour unit moves due to wave attack and collides with another 

unit. The general design conventions at the time mainly focussed on hydraulic problems, but it 

became clear that the structural strength is important as well. The Dutch ‘Civieltechnisch Centrum 

Uitvoering Research en Regelgeving’, abbreviated as the CUR, carried out an extensive research to 

the strength of concrete armour units, after several breakwaters failed in the 1980’s (CUR, 1989 – 1, 

2 and 1990 – 1, 2). They researched the impact velocity and impact force during rocking, in order to 

create a prediction for breakage of armour units due to rocking. 

Though breakage of armour units due to rocking is nowadays recognized as a failure mechanism of 

breakwaters, it is still barely incorporated in the standard design procedures, partially because there 

is not yet enough knowledge about predicting breakage due to rocking. Therefore, this MSc thesis 

attempts to contribute to this knowledge, in order to eventually obtain a methodology to design 

breakwaters with low vulnerability  to rocking.  



2 
 

1.2 Goal  
The goal of this MSc thesis is to determine the rocking-induced stresses in concrete breakwater 

armour units theoretically, by means of analytical expressions, in order to predict breakage of these 

units in a probabilistic way.  

These rocking-induced stresses are determined in a few separate steps. To start, the impact velocity 

of a collision between two armour units will be determined. This velocity will then  be used as input 

to determine the impact forces on these units, which in turn will be used as input to determine the 

stresses. Based on these stresses and the concrete strength under  a short impact load, a prediction 

of failure of the concrete can be made.  

The impact velocity will be based on the acceleration that follows from a force balance on an armour 

unit under wave attack. The impact velocity will be determined for armour units at or around the still 

water line. This impact velocity will be validated by physical model test results. The impact velocity is 

an input variable to determine the impact force, which will be done based on an energy balance. The 

impact force will also be validated by physical model test results. The rocking-induced tensile 

bending stresses will be determined using the force as input, based on a strut-and-tie model of a 

deep beam. Eventually, a prediction of breakage can be given, based on the stresses and the 

concrete strength. Ultimately, each relevant variable will be given a probabilistic distribution, such 

that a probabilistic breakage prediction is obtained when putting everything together in one model. 

 

1.3 Outline of the report 
The structure of this report is presented in a flow chart in Figure 1.2 and will shortly be described 

here. First, some relevant knowledge from the literature study will be presented, which was used as 

a starting point for this MSc thesis. Subsequently, an analytical expression will be derived to 

determine the impact velocity of one armour unit hitting another unit, based on the acceleration that 

is obtained from a force balance of an armour unit under wave attack. Several parameters and 

variables needed in this impact velocity expression will also be determined. The impact velocity is 

then used to determine the impact force during the collision, based on an energy balance. The next 

chapter, about failure of the concrete, treats the different failure mechanisms of a concrete armour 

unit, and gives an estimate for the concrete strength under short impact loading. Then, the rocking-

induced stresses can be determined based on the impact force, and the identified critical failure 

mechanism.  Now, the whole model is complete and can be put together. An approximated 

probabilistic distribution will be given to all input parameters, resulting in a probabilistic breakage 

prediction. Finally, an overview of the conclusions will be given, followed by a short list of 

recommendations for future research and possible improvements of this research. 
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Figure 1.2: Flow chart outline report 
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2. Study of previous research and knowledge 
This chapter is dedicated to finding useful information, either from previous research or knowledge 

in any other way. An overview of relevant findings is given in this chapter. 

2.1 General breakwater information 
In order to properly analyse the stresses in concrete armour units due to rocking, a basic 

understanding of the functioning and design of breakwaters is important. There are a few different 

types of breakwaters, with the most relevant one for this MSc thesis being the rubble mound 

breakwater. Rubble mound breakwaters have been used for centuries to protect coasts and 

harbours. A typical cross-section of a rubble mound breakwater is given in Figure 2.1.  

 

Figure 2.1: Schematized cross-section rubble mound breakwater 

A rubble mound breakwater consists of a core and an armour layer on top, possibly with one or more 

intermediate layers in between. The core of the breakwater usually consists of sand or gravel and 

prevents water from flowing through the breakwater. The breakwater can be designed to allow for 

some permeability, as its main function is to nullify the wave energy. The armour layer protects the 

core and consist of large, heavy rocks that should be able to withstand the waves. The wave energy 

dissipates as it runs up the slope of the armour layer. The breakwater must be sufficiently high to 

prevent overflow and overtopping. The rocks must provide enough stability to prevent being washed 

away by the waves. Logically, the larger the waves, the larger the required rocks to maintain stability. 

At some point, the waves are so large that it becomes very difficult to find natural rocks that are 

heavy enough to provide sufficient stability. Therefore, concrete armour units were being developed, 

as they can be made with the required weight, but for now, the information will be treated without 

looking specifically at rocks or concrete units. 
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2.2 Stability formulas 
How large and heavy the rocks need to be in order to withstand certain waves has been a topic of 

many research. Iribarren (1938) considered a force equilibrium for a block on a slope, to derive a 

formula for calculating the required rock size. He considered four main forces on the rock: own 

weight, buoyancy, wave force, and frictional resistance. In order to fully understand what is 

happening, the derivation of the formula is repeated in a similar way, following the lecture notes of 

Van den Bos and Verhagen (2018). The situation can be schematized as in Figure 2.2. 

 

Figure 2.2: Schematization forces on a rock on a breakwater slope 

The weight W and buoyancy B both work in vertical direction, but opposite to each other.. Since the 

weight is larger than the buoyancy, this can be depicted as a net downward force. This net force can 

be decomposed in a component along the slope and a component perpendicular to  the slope, as 

done in Figure 2.2. Then, a balance can be made of this component along the slope, the friction and 

the wave force, as in Equation 2.1. 

 𝐹𝑤𝑎𝑣𝑒 = 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + (𝑊 − 𝐵) sin 𝛼   Equation 2.1 

For the wave force, a relatively simple equation is assumed, similar to uniform flow, where 

𝐹 =  𝐶𝑖𝜌𝑤𝑢2𝑑𝑛
2, and 𝑢 ≈  √𝑔𝐻 for shallow water waves. 

 𝐹𝑤𝑎𝑣𝑒 = 𝜌𝑤𝑔𝑑𝑛
2𝐻  Equation 2.2 

The weight W and buoyancy B follow from relatively simple expressions: 

 𝑊 =  𝜌𝑠𝑔𝑑𝑛
3    Equation 2.3 

 𝐵 =  𝜌𝑤𝑔𝑑𝑛
3 Equation 2.4 

Finally, the friction force is a function of a certain friction coefficient μ and the force perpendicular to 

the slope. 

 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝜇(𝑊 − 𝐵) cos 𝛼   Equation 2.5 
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Putting everything in Equation 2.1 results in: 

  𝜌𝑤𝑔𝑑𝑛
2𝐻 =  𝜇(𝜌𝑠𝑔𝑑𝑛

3 − 𝜌𝑤𝑔𝑑𝑛
3) cos 𝛼 +  (𝜌𝑠𝑔𝑑𝑛

3 − 𝜌𝑤𝑔𝑑𝑛
3) sin 𝛼  Equation 2.6 

Further evaluation leads to: 

 𝜌𝑤

𝜌𝑠 − 𝜌𝑤 

𝐻

𝑑𝑛
 =  𝜇 cos 𝛼 + sin 𝛼    Equation 2.7 

 𝐻

Δ𝑑𝑛
= 𝜇 cos 𝛼 + sin 𝛼    Equation 2.8 

 

Though the resulting formula Equation 2.8 is not perfect for application in the more complex real 

world, it is useful to give insight in the relevant parameters. The incoming wave is represented via 

wave height H, the relative weight of the rock via Δdn, the friction via μ, and the slope angle via α. 

The friction μ can also be related to the angle of repose. It is then used as μ = tanφ. Many newer 

formulas also use the form of 
𝐻

Δ𝑑𝑛
, which is often called the stability number. Some formulas have 

also been developed specifically for a certain type of concrete armour unit. 

 

Another important formula  is proposed by Hudson (1953). He performed many tests and eventually 

came up with: 

 
𝑀 =

𝜌𝑠𝐻𝑠𝑐
3

𝐾𝐷∆3𝑐𝑜𝑡𝛼
  

Equation 2.9 

More often seen in the rewritten form: 

 𝐻𝑠𝑐

Δ𝑑
= √𝐾𝐷𝑐𝑜𝑡𝛼3    Equation 2.10 

The KD-value is sometimes called a ‘dustbin parameter’, in which among others the friction, 

interlocking and accepted damage level are included. Therefore, different types of armour units will 

have a different KD-value. There are artificial elements with increased interlocking between the 

elements, which increases the stability and they will therefore have a higher KD-value. 

It must be noted that although Hudson’s formula is used worldwide, it does have its limitations. The 

textbook written by Schiereck (Updated by Verhagen, 2016) sums up some limitations. Most 

importantly, cotα is insufficient to describe friction and equilibrium on a slope. Therefore, the 

formula is only valid for slope angles of 1.5 < cotα < 4.0. Furthermore, the wave period is not 

included in the formula. Wave period is related to wave steepness and hence the breaking pattern of 

the wave on the slope, which does affect stability. Next, permeability also plays a role in stability, but 

is not included in Hudson’s formula. A lack of permeability will cause a pressure build-up, which can 

eventually help to push the stones from their position. Additionally, it appeared from later tests that 

also the number of waves has some influence, which makes sense, since the more waves, the greater 

the chance of a large one. That is another limitation, since Hudson did not include the number of 

waves in his formula. The last limitation mentioned is the damage level, which is supposedly included 

in the KD-value to be valid for 5% damage, but it is not clear how damage is defined. Therefore, it is 

also unclear for what damage you allow when designing a breakwater with Hudson’s formula.  
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Despite all these limitations, Hudson’s formula became popular and is used around the world. Thanks 

to its popularity, many time and research is spent on finding and correcting recommended KD-values, 

which helped to maintain utility for the Hudson’s formula. Even for newly developed armour units, it 

is still determined what their KD-value is.  

To overcome the limitations of Hudson’s formula, extensive tests were carried out in the 

Netherlands. Many large and small scale tests were performed, of which the results were curve-fitted 

to eventually lead to the following formulas by Van der Meer (1988 - 1): 

 𝐻𝑠𝑐

Δ𝑑𝑛50
= 6.2𝑃0.18 (

𝑆

√𝑁
)

0.2
𝜉−0.5                  (plunging breakers) 

Equation 2.11 

   

 𝐻𝑠𝑐

Δ𝑑𝑛50
= 1.0𝑃−0.13 (

𝑆

√𝑁
)

0.2
𝜉𝑃√𝑐𝑜𝑡𝛼         (surging breakers) 

Equation 2.12 

 

The Van der Meer formulas include the permeability via P, the damage via S, the number of waves 

via N, and also the wave period is included via the Iribarren parameter ξ, since 𝜉 = tan 𝛼 / √𝐻/𝐿0 , 

in which the deep water wavelength 𝐿0 =
𝑔𝑇2

2𝜋
. The Van der Meer formulas are therefore definitely 

an improvement from the Hudson’s formula, as it covers all of the main limitations of Hudson’s 

formula. Still, even Van der Meer’s formulas are not perfect, particularly because they are empirically 

curve-fitted, instead of having a purely physical base. The addition of extra parameters makes it 

more difficult to use, though it is generally more accurate than the Hudson’s formula. Thanks to its 

simplicity however, some people prefer using Hudson’s formula instead of Van der Meer’s formulas. 

Though stability formulas are useful for designing breakwater armour, they do not really give 

information about the movement of individual blocks. Therefore, more specific information is 

needed to find out how to translate wave attacks into forces on the units due to rocking, and how 

these forces lead to breakage of the armour units.  
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2.3 CUR Reports 
The Dutch CUR, ‘Civieltechnisch Centrum Uitvoering Research en Regelgeving’, or ‘Centre for Civil 

Engineering Research and Codes’ in English, has carried out an extensive research in the 1980’s about 

the strength of concrete armour units of breakwaters, CUR (1989, 1990). Multiple cases of newly 

built breakwaters that failed or were severely damaged, led to the believe that the conventional 

methods to design breakwaters were not sufficient anymore. Especially because the problems with 

most of these breakwaters did not just come from a hydraulic background, but from structural 

strength of the armour units as well. An analysis of the failure cases showed that in all of these cases, 

a considerable percentage of armour units was broken. The former conventions in breakwater design 

mainly focussed on hydraulic problems, while the importance of structural strength was not 

recognized, or underestimated. The hydraulic stability of breakwater amour units underwent a 

significant improvement by the development of slender interlocking units. The dimensions of these 

special units increased, until eventually the structural strength of the units started being critical, 

rather than the hydraulic stability. Since this requires a different point of view for design, the CUR set 

up this research to investigate whether a new design procedure should be pursued and whether 

unprecedented research would be needed.  

A part of the research was dedicated to finding force-time relations of the impact, CUR (1989 - 1). 

Theoretically, the area under the force-time curve is equal to the total momentum (mass times 

velocity). An analysis of experiments shows that the area under the measured force-time curve is 

indeed approximately equal to the momentum. This is the basis for mathematical determination of 

the force-time curve. The force-time relation is based on an elasto-plastic model, divided in a rising 

stage at the start, followed by a more or less flat stage, and a restitution stage, as shown in Figure 

2.3: Force-time relation elasto-plastic model, CUR (1990 – 2). 

 

Figure 2.3: Force-time relation elasto-plastic model, CUR (1990 – 2) 
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The contact stiffnesses in the model are based on Hertz’s contact law, that states: 

 𝑃 = 𝐾𝛿3/2    Equation 2.13 

Where P is a force [kN] , K is a contact stiffness [kN/mm3/2], and δ is a deformation [mm]. 

The first stage has a constant loading rate, characterized by contact stiffness parameter Ke1. The 

procedure for calculating the value of Ke1 is, to follow the rising segment of the measurements by 

means of a sine curve. The values of Pmax and tmax that belong to the peak of the sine curve are then 

used to calculate Ke1, using the following formula: 

 Ke1 = 1.79 
𝑃𝑚𝑎𝑥

(𝑣∙𝑡𝑚𝑎𝑥)3/2 
  Equation 2.14 

Where v is the impact velocity. 

The development of the force over time is captured by: 

 
𝑃 = 𝑃𝑚𝑎𝑥 ∙ sin

𝑡∙
𝜋

2

𝑡𝑚𝑎𝑥
   

Equation 2.15 

 

For the second, plastic stage, a constant load is assumed, characterized by contact stiffness 

parameter Kp. The value of Kp is based on yielding in the contact zone. Tests were carried out by the 

CUR to determine contact stress during failure. Another method to verify the contact stress is by 

means of Meijer’s contact law, instead of Hertz’s law. Calculations were performed using Meijer’s 

law, which showed that the contact stress was as expected in the order of three times the cube 

compressive strength of the concrete. 

The third stage, the restitution stage, is governed by elastic recovery of the material under and 

around the contact zone. This elastic behaviour can also be described by means of Hertz’s contact 

law. It was found that the value of Ke2 is approximately equal to 70% of Ke1. The restitution in the 

force-time relation can be described well by this value. 

The starting point of composing the force-time relation is to set the area under the force-time 

diagram equal to the  total momentum. Due to spalling of concrete or energy losses, the 

measurement could be off a little. However, the deviations of the theoretical values will generally be 

small. The rising stage of the force-time relation is based on the value of Ke1. The sinusoidal shape of 

Equation 2.15 will be captured by the following formulas: 

 𝑃𝑚𝑎𝑥 = (1.25 ∙ 𝛼 ∙ 𝑣2 ∙ 𝐾2/3)
3/5

   Equation 2.16 

 
𝑡𝑚𝑎𝑥 = 1.47 ∙ (1.25 ∙

𝛼

𝑣
1
2∗𝐾

)
2/5

     
Equation 2.17 

Where α is the effective mass, which is defined as: 

 𝛼 =
𝑚1 ∙ 𝑚2

𝑚1 + 𝑚2
  Equation 2.18 

With m1 = mass of moving element, m2 = mass of stricken element. 
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The maximum force for which the element fails determines the horizontal level in the force-time 

relation, given by the value Kp. This level is governed by the yield stress of the concrete in the contact 

area during failure. 

The restitution is captured by the value of Ke2, for which Ke2 = 70%∙Ke1 is determined. The restitution 

will also be approximated by a sinusoidal curve. 

 

The CUR also investigated possible modification to the concrete surface, to help reduce the 

vulnerability against rocking, CUR (1990 - 1). One way to do this is by shape modifications of the 

concrete armour units. More specifically, adding ‘saw tooth’ ridges to the surface, without changing 

the actual shape of the concrete armour unit. After a few impacts due to rocking, some ridges will be 

damaged, which is supposed to have a neutralizing effect. The CUR tested this for the case of 

tetrapods, but it will have a similar effect on other interlocking armour units. 

Another option is to create a ‘softer’ surface. This would help to dampen the rocking and  reduce the 

contact stiffness. Several possibilities are opted to create a ‘soft’ surface by adding a different 

material on the concrete surface. The most promising of these possibilities are: adding a layer of an 

asphalt like product or adding wooden strips or plastic strips. The idea is to reduce the contact 

parameter, such that a relatively large amount of energy will be dissipated during rocking.   

 

The investigation of force-time relations of concrete on concrete impact have shown that adding the 

‘saw tooth’ ridges has a beneficial effect on the impact force. The contact parameter of the test 

sample reduced to 5 to 10 kN/mm3/2, which strongly reduces the impact force. However, when the 

number of collisions increases, the contact parameter will also increase, provided that the collision 

takes place at the same spot. During the first impacts, the ridges will be damaged, reducing their 

effectiveness. Damage to the ridges is allowed though, it is mainly important that breakage of the 

armour units is prevented. The tests for the breakage behaviour have shown that the addition of 

ridges gives a significant reduction in the percentage of broken units. The other option of surface 

modification, by adding wooden or plastic strips, turned out to be even more effective in reducing 

the breakage percentage. It is again noted that the contact parameter is of great importance. Adding 

strips of a material with a very low contact parameter would therefore be highly effective. 
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3. Impact velocity 
When a rubble mound breakwater is under heavy wave attack, the waves can induce motion of the 

breakwater armour units. The moving armour unit may then collide with another armour unit. The 

goal of this chapter is to find an expression for the velocity of the moving breakwater armour unit, at 

the moment of collision with a surrounding armour unit. The route to finding this impact velocity will 

be described here shortly. The starting point is to schematize all acting forces on an armour unit 

under wave attack. Based on these forces, the acceleration of the armour unit can be determined via 

Newton’s 2nd law, although via a rotation rather than translation. Taking into account the available 

movement space, it can be determined how much the armour unit has accelerated at the moment of 

impact, leading to an expression for the impact velocity. To fill in the expression, several parameters 

and variables have to be determined, which will be done for cubes and for Xbloc®s. A small scale lab 

test will be performed to estimate several geometrical variables for Xbloc®. Once the impact velocity 

is determined, it will be validated by means of the results from physical model tests. The whole 

process covered in this chapter is visualised by a flow chart in Figure 3.1. 

 

 

Figure 3.1: Flowchart chapter 3. Impact velocity 
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3.1 Theoretical determination of impact velocity 
This paragraph gives the analytical expression to determine the impact velocity, a quick overview of 

all required parameters, and the assumptions that lead to the derived equation. Subsequently, the 

full derivation of this impact velocity equation will be given.  

3.1.1 Equation, model and assumptions 

The equation of the impact velocity is based on the forces acting on a breakwater armour unit under 

wave attack, illustrated in Figure 3.2. There is a force from the wave itself, a downward force in the 

form of the own weight of the block, an upward force in the form of a lift force or buoyancy, a 

friction force that resists the movement, and a contact force from the underground, as the block will 

not be able to push through the underground. Note that these forces are not necessarily drawn to 

scale.  

 
Figure 3.2: Considered forces on an armour unit 

Alongside these considered forces, there are a few important assumptions and simplifications: 

- Only armour units around the water line will be considered in this MSc thesis (though the 

run-up fluid velocity could be adjusted when looking at units higher on the slope). 

- The wave force is represented as a drag force, acting on the upper part of the block. 

- An upward force is included in the form of buoyancy, which effectively reduces the weight. 

- Rotation of the block is more important for rocking than translation, since most translational 

motion is directly blocked by the surrounding armour units, so the impact velocity will be 

based on the rotation. 

- The friction force and contact force work through the rotation point and have therefore no 

effect on the sum of moments. 

- Wave energy dissipation during the movement of the block is neglected. 

- For the derivation of the formula, the acceleration is said to be constant, thus neglecting the 

decrease of the relative velocity, between the fluid and the block, while the fluid decelerates 

and the block accelerates, as well neglecting the change in the arms of the forces that lead to 

a different sum of moments.  The effect of this assumption is investigated in Appendix B, 

where a velocity correction factor is determined for the impact velocity of Xbloc®s. 

- The situation is treated as a 2D case, so 3D effects are neglected.  
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From the forces, a sum of moments can be determined, from which an angular acceleration can be 

determined, which leads to the impact velocity. A full derivation will be given later, in paragraph 

3.1.2, but the resulting expression is already given here, in Equation 3.1 and in a dimensionless form 

in Equation 3.2. 

 
𝑣 =  𝑓𝑐𝑜𝑟 ∙ √2𝑠 (𝑘1

𝐶𝐷𝑢2

(∆+1)𝑑𝑛
− 𝑘2 [1 −

1

∆+1
] 𝑔)       

Equation 3.1 

 

 𝑣

√𝑔𝐻𝑠
 =  𝑓𝑐𝑜𝑟 ∙ √

2𝑠

𝐻𝑠
(𝑘1

𝐶𝐷𝑢2

(∆+1)𝑔𝑑𝑛
− 𝑘2 [1 −

1

∆+1
] )    

Equation 3.2 

 

Where: 

- 𝑓𝑐𝑜𝑟 is an empirical factor that corrects for the invalid assumption of constant acceleration, 

established for Xbloc® in Appendix B as: 𝑓𝑐𝑜𝑟 = 1 −
√𝑠

4
. 

- s is the available space between the blocks, i.e. the distance a block travels before it hits 

another block 

- CD is the drag coefficient of the armour unit 

- u is the velocity of the water during run-up, determined as: 𝑢 =  √2𝑔(𝑅𝑢 − 𝑧𝐴), with 𝑧𝐴 the 

location on the slope relative to still water level, so 𝑧𝐴 = 0 around the waterline, and run-up 

level 𝑅𝑢 determined by 
𝑅𝑢2%

𝐻𝑚0
= 1.75 ∙ 𝛾𝑏 ∙ 𝛾𝑓 ∙ 𝛾𝛽 ∙ 𝜉𝑚−1,0 

- dn is the nominal diameter of the armour unit 

- Hs is the significant wave height 

- Δ is the relative density, Δ =
𝜌𝑠 − 𝜌𝑤

𝜌𝑤
, here: 𝜌𝑠 = 2400 𝑘𝑔/𝑚3, 𝜌𝑤 = 1025 𝑘𝑔/𝑚3  

- g is the gravitational acceleration of 9.81 m/s² 

-  k1 and k2 are dimensionless variables, included to consider all the dimensionless parameters 

that are taken into account in the model. 

These dimensionless factors are defined as: 

 𝑘1 =
1

2
∙𝑓𝑎𝑟𝑒𝑎∙𝑓𝑟𝐹∙𝑓ℎ𝑖𝑡

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎
        and  𝑘2 =

𝑓𝑟𝑊∙𝑓ℎ𝑖𝑡

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎
  

Where: 

- farea is the fraction of the area that is subjected to the drag force, a fraction of dn
2. For 

example if the affected area is 0.5dn
2, then farea = 0.5 

- frF is the arm of the wave force to the rotation point, as a fraction of dn.  

- fhit is the distance of the hit point/collision point C to the rotation point R, as a fraction of dn. 

For example for the upper corner of a cube as the point of impact, fhit = 1.0 

- finertia is the dimensionless part of the mass moment of inertia, as  𝐼 = 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎 ∙ 𝑚 ∙ 𝑑𝑛², 

where finertia is then dependent on the type of armour unit and the rotation point 

- frW is the arm of the weight to the rotation point, as a fraction of dn.  

 



16 
 

The main variables are therefore: the area subjected to the wave, described by farea, the initial 

orientation angle of the block, θ, the location of the rotation point, R, the location of the collision 

point, C, and the travel distance of the block before it collides, s, depending on the space between 

the blocks. Everything else is either a constant that has to be determined once, like the CD-value and 

slope angle α, or can be determined from these main variables, like the arms of the forces, frF and frW. 

The main variables are illustrated in Figure 3.3, and since these are different for each block, they will 

be stochastic variables for the probabilistic method. 

 

Figure 3.3: Schematic of the main variables 
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An overview of the required parameters and variables to calculate the impact velocity is given in 

Table 3.1. An elaboration of how these variables are obtained is given in paragraph 3.2 for cubes, and 

in paragraph 3.3 for Xbloc®s. Some can be given as a single value, while some others are determined 

from an expression, and there are some stochastic variables for which the estimated distribution will 

be given. 

 Value for cubes Value for Xbloc® 

Constants 

Mass density water, 
𝜌𝑤[𝑘𝑔/𝑚³]  

1025 1025 

Mass density concrete, 
𝜌𝑠 [𝑘𝑔/𝑚³] 

2400 2400 

Slope angle, 𝛼  2𝑉: 3𝐻 2𝑉: 3𝐻 
Berm coefficient, 𝛾𝑏 1.0 1.0 

Roughness coefficient, 𝛾𝑓 0.50 0.45 

Oblique wave coefficient, 
𝛾𝛽 

1.0 1.0 

Drag coefficient, 𝐶𝐷 1.05 1.20 
 

Variables 

Arm of the wave force, 
𝑓𝑟𝐹 

0.75

cos(𝜃−𝛼)
− (0.5 − 𝑅) ∙  sin(|𝜃 − 𝛼|)   

 

0.96 + sin(𝛼) ∙ 𝑅 

Arm of the weight, 𝑓𝑟𝑊 𝑅 ∙ cos 𝜃 + 0.5 ∙ sin 𝜃 𝑅 
Inertia factor, 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎 5/12 + 𝑅2 0.7783 + 𝑅2 
 

Stochastic variables 

Rotation point, 𝑅 Uniform distribution: 
𝑈(min = 0 ; max = 0.5) 

Normal distribution: 
𝑁(𝜇 = 0 ; 𝜎 =  0.144) 

Initial orientation angle, 
𝜃 

𝑁(𝜇 =  33.69 ; 𝜎 =  10) Not relevant for Xbloc® 

Movement space, 𝑠 Exponential distribution: 
𝐸𝑥𝑝(𝜆 = 0.4) 

Special distribution: 
0                        𝑓𝑜𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠

𝐸𝑥𝑝(0.0408) 𝑓𝑜𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠
 

Collision point, 𝑓ℎ𝑖𝑡 Special distribution: 
𝑈(0.75 ; 1.0)   𝑓𝑜𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠
1.0 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠

 

Uniform distribution: 
𝑈(min = 0.58 ; max = 1.44) 

Area subjected to wave, 
𝑓𝑎𝑟𝑒𝑎  

Uniform distribution: 
𝑈(min = 0.2 ; max = 0.4) 

Normal distribution: 
𝑁(𝜇 = 0.381 ; 𝜎 = 0.083) 

Individual wave height, 
𝐻 [𝑚] 

Rayleigh distribution: 

√− 
1

2
ln (𝑝(𝐻 > 𝐻))  ∙ 𝐻𝑠  

Rayleigh distribution: 

√− 
1

2
ln (𝑝(𝐻 > 𝐻))  ∙ 𝐻𝑠  

Spectral wave period, 
𝑇𝑚−1,0[𝑠] 

√5 ∙ 𝐻 + (𝐻 + 3) ∙ 𝑈(0,1) √5 ∙ 𝐻 + (𝐻 + 3) ∙ 𝑈(0,1) 

Table 3.1: Parameters and variables in the impact velocity formula 
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3.1.2 Derivation of the impact velocity formula  

For the derivation of the formula, the acceleration of the armour unit due to the wave attack is 

assumed to be constant, such that it can be considered a uniformly accelerated motion, for which: 

𝑣 = 𝑎 ∙ 𝑡    

𝑠 =
1

2
𝑎 ∙ 𝑡2  → 𝑡 =  √

2∙𝑠

𝑎
  

𝑣 = 𝑎 ∙ √
2∙𝑠

𝑎
= √2 ∙ 𝑠 ∙ 𝑎   

 
The acceleration a is based on the rotation of the block. a [m/s²] is related to the angular 

acceleration aR [rad/s²] via the distance of the observed point to the rotation point. The observed 

point is the point of the armour unit that collides with another unit, called the collision point, C. The 

distance of this point to the rotation point, R, can be expressed as a factor times the diameter, say 

fhit∙dn, such that: 𝑎 = 𝑎𝑅 ∙ 𝑓ℎ𝑖𝑡 ∙ 𝑑𝑛  

The angular acceleration aR can be determined as the sum of moments divided by the mass moment 

of inertia: 𝑎𝑅 =
∑ 𝑀

𝐼
  

The mass moment of inertia can be written in the form of:  𝐼 = 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎 ∙ 𝑚 ∙ 𝑑𝑛².  Where finertia is a 

dimensionless factor that depends on the shape of the armour unit and the rotation point. The mass 

m can be calculated as: 𝑚 =  𝜌𝑠 ∙ 𝑑𝑛³. Therefore:  𝐼 = 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎 ∙ 𝜌𝑠 ∙ 𝑑𝑛
5  

The sum of moments can be determined from the forces acting on the block. The relevant forces are 

the wave force, Fwave, and the effective weight, W, which is the weight of the block minus the upward 

force from buoyancy. The forces and their arms to the rotation point are schematized in Figure 3.4. 

 
Figure 3.4: Schematization forces for rotation 

The sum of moments can be calculated as:  ∑ 𝑀 = 𝐹𝑤𝑎𝑣𝑒 ∙ 𝑟𝐹 − 𝑊 ∙ 𝑟𝑊  

Where:  𝐹𝑤𝑎𝑣𝑒 =
1

2
𝜌𝑤𝐶𝐷𝐴 𝑢² =

1

2
𝜌𝑤𝐶𝐷 𝑓𝑎𝑟𝑒𝑎 ∙ 𝑑𝑛

2 ∙ 𝑢², and:  𝑟𝐹 = 𝑓𝑟𝐹 ∙ 𝑑𝑛   

 
𝑊 = (𝜌𝑠 − 𝜌𝑤)𝑔 ∙ 𝑑𝑛³, and:  𝑟𝑊 = 𝑓𝑟𝑊 ∙ 𝑑𝑛  
 

Resulting in:  ∑ 𝑀 =  
1

2
𝜌𝑤𝐶𝐷 𝑓𝑎𝑟𝑒𝑎 ∙ 𝑑𝑛

2 ∙ 𝑢2 ∙  𝑓𝑟𝐹 ∙ 𝑑𝑛  −   (𝜌𝑠 − 𝜌𝑤)𝑔 ∙ 𝑑𝑛
3  ∙   𝑓𝑟𝑊 ∙ 𝑑𝑛    

 

               =  
1

2
𝜌𝑤𝐶𝐷 𝑓𝑎𝑟𝑒𝑎 ∙ 𝑑𝑛

3 ∙ 𝑢2 ∙  𝑓𝑟𝐹  −   (𝜌𝑠 − 𝜌𝑤)𝑔 ∙ 𝑑𝑛
4  ∙   𝑓𝑟𝑊      



19 
 

The angular acceleration is then: 

𝑎𝑅 =
∑ 𝑀

𝐼
=

1

2
𝜌𝑤𝐶𝐷 𝑓𝑎𝑟𝑒𝑎∙𝑑𝑛

3 ∙𝑢2∙ 𝑓𝑟𝐹 −  (𝜌𝑠−𝜌𝑤)𝑔∙𝑑𝑛
4  ∙  𝑓𝑟𝑊

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎∙𝜌𝑠∙𝑑𝑛
5   

Then from 𝑎 = 𝑎𝑅 ∙ 𝑓ℎ𝑖𝑡 ∙ 𝑑𝑛 follows: 

𝑎 =
1

2
𝜌𝑤𝐶𝐷 𝑓𝑎𝑟𝑒𝑎∙𝑑𝑛

3 ∙𝑢2∙ 𝑓𝑟𝐹 −  (𝜌𝑠−𝜌𝑤)𝑔∙𝑑𝑛
4  ∙  𝑓𝑟𝑊

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎∙𝜌𝑠∙𝑑𝑛
5 ∙ 𝑓ℎ𝑖𝑡 ∙ 𝑑𝑛  

    =  
1

2
𝜌𝑤𝐶𝐷 𝑓𝑎𝑟𝑒𝑎∙𝑑𝑛

4 ∙𝑢2∙ 𝑓𝑟𝐹∙𝑓ℎ𝑖𝑡 −  (𝜌𝑠−𝜌𝑤)𝑔∙𝑑𝑛
5  ∙  𝑓𝑟𝑊∙𝑓ℎ𝑖𝑡

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎∙𝜌𝑠∙𝑑𝑛
5   

    =  
1

2
𝑓𝑎𝑟𝑒𝑎∙ 𝑓𝑟𝐹∙𝑓ℎ𝑖𝑡∙𝜌𝑤𝐶𝐷 𝑢2  

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎∙𝜌𝑠∙𝑑𝑛
 −

𝑓𝑟𝑊∙𝑓ℎ𝑖𝑡∙(𝜌𝑠−𝜌𝑤)𝑔   

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎∙𝜌𝑠
   

Which can be rewritten to: 𝑎 = 𝑘1 ∙
𝜌𝑤𝐶𝐷𝑢2

𝜌𝑠𝑑𝑛
− 𝑘2 ∙

𝜌𝑠−𝜌𝑤

𝜌𝑠
∙ 𝑔  

With:  𝑘1 =
1

2
∙𝑓𝑎𝑟𝑒𝑎∙𝑓𝑟𝐹∙𝑓ℎ𝑖𝑡

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎
, and: 𝑘2 =

𝑓𝑟𝑊∙𝑓ℎ𝑖𝑡

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎
 

Then, from 𝑣 =  √2 ∙ 𝑠 ∙ 𝑎 follows that:   𝑣 =  √2 ∙ 𝑠 ∙ (𝑘1 ∙
𝜌𝑤∙𝐶𝐷∙𝑢2

𝜌𝑠∙𝑑𝑛
− 𝑘2 ∙

𝜌𝑠−𝜌𝑤

𝜌𝑠
∙ 𝑔)                              

It is perhaps more convenient to replace 𝜌𝑠 and 𝜌𝑤 by the relative density Δ, defined as Δ =
𝜌𝑠−𝜌𝑤

𝜌𝑤
=

𝜌𝑠

𝜌𝑤
− 1. Therefore, 

𝜌𝑤

𝜌𝑠
=

1

Δ+1
, which can be inserted in the above formula for 𝑣,  resulting in: 

𝑣 =  √2𝑠 (𝑘1
𝐶𝐷𝑢2

(∆+1)𝑑𝑛
− 𝑘2 [1 −

1

∆+1
] 𝑔)       

Finally, include a dimensionless correction factor for the invalid assumption that the acceleration is 

constant. This factor, 𝑓𝑐𝑜𝑟, is established for Xbloc® in Appendix B. The final  formula then becomes: 

𝑣 =  𝑓𝑐𝑜𝑟 ∙ √2𝑠 (𝑘1
𝐶𝐷𝑢2

(∆+1)𝑑𝑛
− 𝑘2 [1 −

1

∆+1
] 𝑔)    

It is sometimes preferred to have a formula in a dimensionless form, which can be achieved by 

dividing the left- and right-hand side of the formula by √𝑔 ∙ 𝐻𝑠, such that: 

𝑣

√𝑔∙𝐻𝑠
=

[
𝑚

𝑠
]

[√
𝑚  

𝑠2 ∙√𝑚]
=

[
𝑚

𝑠
]

[
𝑚

𝑠
]

= [−]  

The dimensionless form of the formula then becomes: 

𝑣

√𝑔𝐻𝑠
 =  √

2𝑠

𝐻𝑠
(𝑘1

𝐶𝐷𝑢2

(∆+1)𝑔𝑑𝑛
− 𝑘2 [1 −

1

∆+1
] )     
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3.2 Impact velocity of cubes 
In order to validate the derived impact velocity expression, the impact velocity will be determined for 

cubes, and will be compared to the model test results obtained by the CUR (1989 – 2). All parameters 

and variables required to fill in the analytical expression must be estimated, and in order to get a 

probabilistic distribution of the impact velocity, a probabilistic distribution must be estimated for 

several parameters. Once all parameters and variables are available, a Monte Carlo simulation can be 

performed to obtain the distribution of the impact velocity, which can be compared to the 

distribution that was obtained by the CUR. 

3.2.1 Parameter estimation cubes 

A full elaboration of all variables and parameters will be given here for the simple cubes.  

Arm of the wave force, frF, and arm of the weight, frW 

The arms of the forces, frF and frW, depend on the orientation angle of the block θ, and frF also 

depends on the slope angle α. The location of the rotation point is also needed. This will be called R 

here, and is defined as a value from 0 to 0.5, with 0 being in the middle and 0.5 at the corner, 

illustrated in Figure 3.5. In this illustration, imagine a wave going from left to right, causing a 

clockwise rotation of the block. It is then assumed, that the rotation point may vary from the middle 

of the block to the corner.   

 

Figure 3.5: Location rotation point 

The arms of the forces are calculated with the following formulas: 

 𝑓𝑟𝐹 =
0.75

cos(𝜃−𝛼)
− (0.5 − 𝑅) ∙ sin(|𝜃 − 𝛼|)   

 

Equation 3.3 

 𝑓𝑟𝑊 = 𝑅 ∙ cos 𝜃 + 0.5 ∙ sin 𝜃  Equation 3.4 

These equations may seem complicated, so an explanation of the derivation will be given below. The 

main idea and purpose is to take the orientation angle and rotation point into account when 

determining the arm of the forces. For a single case, they can be estimated or assumed, but for the 

probabilistic approach, an equation is required, such that the arms will also be varying with the 

stochastic variables.  

 

 



21 
 

For the determination of the arm of the wave force, Equation 3.3, it was assumed that the arm of the 

wave force is 0.75dn when the block lays parallel to the slope, because the wave force is working on 

the upper part of the block. Furthermore, the wave force is assumed to work along the slope. When 

the block is at an initial orientation θ, that deviates from slope angle α, the arm will increase. This will 

be accounted for by dividing by cos(θ-α). Since cos(0) = 1, the arm will stay equal to 0.75 while θ = α. 

Additionally, when the rotation point is not at the corner, the arm is reduced. This will be accounted 

for by subtracting (0.5-R)∙sin(|θ-α|), such that there will be no subtraction when R = 0.5 (at the 

corner), nor when θ = α, since sin(0) = 0. Note that the sine is anti-symmetric, while the cosine is 

symmetric, so the angle difference has to be taken as an absolute value for the sine, as the sine could 

become negative otherwise. The method to determine the arm of the wave force is illustrated in 

Figure 3.6, to clarify how it is done. The red dot indicates the rotation point again. The green dots in 

the far right image indicate where the angle |θ-α| returns, to calculate the sine and cosine with. The 

arm can then be calculated from the two triangles as the red line minus the blue line. 

 

Figure 3.6: Arm between wave force and rotation point 

The determination of the arm of the weight, Equation 3.4, is illustrated in Figure 3.7. For the simple 

cases, it can easily be checked if the formula is correct. When θ = 0, sinθ = 0 and cosθ = 1, so the arm 

is simply equal to the deviation of the rotation point, defined as R. When the block is under an angle, 

and with the rotation point at the middle of the block, R = 0, the arm will be equal to 0.5dn∙sinθ, but 

since frW is defined as a fraction of dn, frW = 0.5∙sinθ. The last block shows the full formula, with the 

block under an angle and a deviation of the rotation point. The green dots indicate where the angle θ 

returns, such that the arm can be calculated from the two triangles, with the hypotenuse being 0.5∙dn 

and R∙dn respectively.  

 

Figure 3.7: Arm between weight and rotation point 
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Mass moment of inertia 

The mass moment of inertia of a cube around its centre of gravity can be calculated as:          

𝐼𝐺_𝑐𝑢𝑏𝑒 = 1/6  𝑚𝑑𝑛². With a rotation point at the edge of the cube, there is additional contribution 

to the mass moment of inertia, determined with Steiner’s rule: 𝐼 = 𝐼𝐺 + 𝑚 ∙ 𝑑2, with d as the 

distance between the centre of gravity and the rotation point, which thus depends on the location of 

the rotation point. This distance d can be determined as: 𝑑 = √(
1

2
)

2
+ 𝑅2   ∙ 𝑑𝑛, where R is the 

location of the rotation point, 0 ≤ R ≤ 0.5, where 0 is the middle and 0.5 is the corner of the cube. The 

determination of distance d is further illustrated in Figure 3.8, for the two extreme cases R = 0 and        

R = 0.5. 

 

Figure 3.8: Determination distance d for Steiner's rule 

Ultimately, filling the values in into Steiner’s rule leads to a mass moment of inertia of:  

𝐼𝑐𝑢𝑏𝑒 =
1

6
𝑚𝑑𝑛² + 𝑚 (√(

1

2
)

2
+ 𝑅2   )

2

𝑑𝑛² = (
1

6
+ (

1

2
)

2
+ 𝑅2) 𝑚 𝑑𝑛² = (

5

12
+ 𝑅2) 𝑚𝑑𝑛²  

If written as: 𝐼𝑐𝑢𝑏𝑒 = 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎  𝑚 𝑑𝑛² , then 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =
5

12
+ 𝑅2 

Parameters wave drag force 

As discussed before, the wave force acting on the armour unit is treated as a drag force. The 

equation to determine the wave force can be written as: 𝐹𝑤𝑎𝑣𝑒 =
1

2
𝜌𝑤𝐶𝐷𝐴(Δ𝑢)².  

The drag coefficient CD depends on the shape of the armour unit, but CD also depends on the 

Reynolds number (𝑅𝑒 =
𝑢∙𝐿

𝜈
 ), as described in the book Engineering Fluid Mechanics by Elger et al. 

(2014). Though, for high Reynolds numbers, Re > 104, the drag coefficients tends to become more or 

less constant and a value for CD can be attached to the shape of an object. The kinematic viscosity of 

water is in the order of  𝜈 ~ 1 ∙ 10−6 𝑚2/𝑠, and in the observed case, the velocity is in the order of             

𝑢 ~ 10 𝑚/𝑠, and the length scale is in the order of 𝐿 ~ 1 𝑚. The Reynolds number will therefore be 

in the region Re > 104 in the observed case.  
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The book Engineering Fluid Mechanics, by Elger et al. (2014) also gives a table for various shapes in 

the case of Re > 104. Some relevant cases are given in Figure 3.9. 

 

Figure 3.9: CD-values for a few shapes 

Note that the position of the cube is of importance for the CD-value. For randomly placed cubes, the 

position varies and so does the CD-value. A value of CD = 1.05 will be used for the cubes, though it 

could be opted to include it as a stochastic variable in the probabilistic calculations.   

The affected area A will be treated as a frontal area, and has to be estimated based on the 

positioning of the blocks. The lower part of the armour unit is sheltered by the surrounding armour 

units. The upper part is subject to the drag force from the wave. Since all blocks are positioned 

slightly differently, there is not a single value valid for all cases. Therefore, a stochastic variable will 

granted to the affected area, with an assumed distribution ranging from 0.2dn² to 0.4dn². 

Furthermore, ∆𝑢 = 𝑢 − 𝑣, the difference between the fluid velocity 𝑢 and the velocity of the armour 

unit 𝑣, has to be determined. The velocity of the armour unit 𝑣 is increasing during the acceleration 

of the unit, though this is neglected in the probabilistic approach treated in paragraph 3.1.4. It is an 

option to repeat the calculation for a number of time steps, updating the armour unit velocity during 

each time step, such that a more correct velocity difference between fluid and block will be used, but 

it is left out of the probabilistic determination. The fluid velocity 𝑢 will be determined from the 

incoming wave. This velocity will be based on the run-up velocity.  

The run-up velocity can be determined based on a balance between kinetic and potential energy, as 

described in a paper by Van der Meer (2011). The following is considered:   

𝐸𝑘𝑖𝑛 = 𝐸𝑝𝑜𝑡     

𝐸𝑘𝑖𝑛 = 0.5 ∙ 𝑚 ∙ 𝑢𝑑
2   𝐸𝑝𝑜𝑡 = 𝑚 ∙ 𝑔 ∙ (𝑅𝑢 − 𝑧𝐴) 

Where: 

- m =  mass of water 

- ud  =  run-down velocity 

- g   =  gravitational acceleration, 9.81 m/s² 

- Ru  =  maximum wave run-up level relative to still water level 

- zA  = location on the slope relative to still water level 
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Elaboration of the energy formulas gives: 

 𝑢𝑑 =   √2𝑔(𝑅𝑢 − 𝑧𝐴)   Equation 3.5 

A similar equation is valid for the run-up velocity, written as: 

 𝑢 = 𝑐𝑢√𝑔(𝑅𝑢 − 𝑧𝐴)   Equation 3.6 

Where cu is a coefficient that has to be determined by research, though a first estimation of 𝑐𝑢 = √2 

is generally a good approximation. Values of 𝑐𝑢 = 1.4 − 1.5 are also suggested in the Overtopping 

Manual, EurOtop (2018). 

When looking at rocking around the waterline, zA can simply be set to zero, resulting in the largest 

run-up velocity, which is the most interesting value.  

Then there is still one unknown left, namely the maximum run-up level Ru. A formula for 

determination of Ru2%, the run-up level exceeded by 2% of the waves, is given in the Overtopping 

Manual, EurOtop (2018): 

 𝑅𝑢2%

𝐻𝑚0
= 1.75 ∙ 𝛾𝑏 ∙ 𝛾𝑓 ∙ 𝛾𝛽 ∙ 𝜉𝑚−1,0  Equation 3.7 

Where γb, γf and γβ are influence factors for a berm, roughness of the slope, and oblique wave attack 

respectively. Hm0 is the significant wave height (from the wave spectrum), and ξm-1,0 is the breaker 

parameter: 

 𝜉𝑚−1,0 =  
tan 𝛼

√𝑠0𝑚−1,0
, with 𝑠0𝑚−1,0 =

2𝜋𝐻𝑠

𝑔𝑇𝑚−1,0
2 , where α is the slope angle, Hs the significant wave height, 

and Tm-1,0 is a spectral wave period. 

Note that the coefficient 1.75 is a stochastic variable where 1.65 is the mean value, with a standard 

deviation of 0.10. For a design and assessment approach, the Overtopping Manual suggests to use a 

value of 1.75 instead of 1.65. This MSc thesis can be considered as an assessment approach, so the 

value of 1.75 will be used. 

The influence factors γb and γβ are set to 1.0, since no berm reduction is considered, and no oblique 

waves are considered (wave angle β = 0°). These two factors can therefore be left out of the formula 

during the calculations. A table with values for γf is given in the Breakwater design lecture notes, by 

Van den Bos and Verhagen (2018). This table gives for a single layer of cubes: γf = 0.50.  

Note that this method to determine the fluid velocity near the armour units is based on the 

assumption that this fluid velocity is comparable to the run-up velocity during wave run-up, which is 

determined by several formulas that also have underlying assumptions. Therefore, there is some 

uncertainty in the determined fluid velocities, so if more accurate information about the fluid 

velocity near the armour units is known, for example from physical model tests, it would be better to 

use that data instead of this theoretical velocity. 
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Collision point 

The location of the collision point is one of the main variables, that differ for each block. The 

parameter fhit, defined the distance between the collision point and the rotation point, is directly 

related to the location of the collision point. The moving block may hit another block with its upper 

corner, but it may also be somewhere below the upper corner. Therefore, the location of the 

collision point (and thus fhit) will be included in the probabilistic method as a stochastic variable, with 

a certain distribution. 

Travel distance/space between armour units 

The travel distance is one of the main variables, that differ for each block. The travel distance 

depends on the available space between the armour units, and some blocks have more space to 

move than other blocks. There is not a single valid value, but an estimation has to be made for a 

distribution of the travel distance. 
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3.2.2 Stochastic variable distributions of cubes 

The earlier derived formula can be used in a probabilistic approach, by giving distributions to the 

stochastic variables of the armour unit, which are illustrated in Figure 3.10. 

 

Figure 3.10: Schematic of the main variables 

1. The initial orientation angle of the moving block, θ 

2. The travel distance of the block, s 

3. The location of the rotation point, R  

4. The location of the collision point, C 

5. The fraction of the area that is subjected to the wave drag force, farea 

However, there is one more variable that can be included as a stochastic variable, namely: 

 6. The wave height, H  

The type of distribution given to each parameter will be explained below. An elaboration is given 

here for the case of cubes. Note that the values of the distributions will likely change when viewing 

another type of armour unit.  

1. The initial orientation angle of the moving block is given a normal distribution around slope angle 

α. With a random placement, the orientation angle will vary, so it is given a standard deviation of 10°, 

to account for this variation. This value is not investigated in detail, but just chosen to obtain 

reasonable values. For a slope of 1:1.5, corresponding to an angle of 33.69°, the normal distribution 

𝑁(𝜇 = 33.69; 𝜎 = 10) is given in Figure 3.11.  
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Figure 3.11: Distribution orientation angle 

2. The travel distance of the block, i.e. the space in between blocks, is given an exponential 

distribution. Most blocks do not have much space for movement, but occasionally there is a larger 

gap between the blocks. The distribution of the travel distance is given as a fraction of 𝑑𝑛, so the 

actual distance is then 𝑠 ∙ 𝑑𝑛. The exponential distribution is given a value of 𝜆 = 0.4, which would be 

the maximum value that can be obtained. The distribution 𝐸𝑥𝑝(𝜆 = 0.4) is given in Figure 3.12. 

 

Figure 3.12: Distribution travel distance as a fraction of dn 

3. The location of the rotation point is given a uniform distribution. The point around which the block 

can rotate depends on the surroundings, mainly the underlayer. It is assumed that there is no 

difference in probability between the possible rotation points, so the rotation point is uniformly 

distributed. The rotation point is assumed to be always at the bottom of the block, somewhere 

between the corner and the middle. The distribution U(min =0 ; max = 0.5) is used, where the 

location of the rotation point is given as a fraction of 𝑑𝑛. 0.5 is at the corner, while 0 is at the middle 

of the block. 
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4. The location of the collision point is given an adjusted distribution, because it is much more likely 

that the moving block will hit another block with its upper corner, than with any other point. It is 

therefore decided to say that there is probability of 50% that the upper corner (at 1.0∙dn) of the 

moving block will hit the other block, while the other 50% is uniformly distributed between the upper 

corner  and a point somewhere below (0.75∙dn). This is an arbitrary choice, but note that this is only 

used to determine the velocity and is not binding  for the eventual determination of the stresses in 

the blocks. This distribution can be expressed as: 

𝑓ℎ𝑖𝑡 =  {
𝑈(min = 0.75 ; max = 1.0)    𝑓𝑜𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠

1.0                    𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠
  

The distribution of the location of the collision point as a fraction of dn will then look like what is 

given below in Figure 3.13.  

 

Figure 3.13: Distribution collision point 

5. The fraction of the area that is subjected to the wave drag force is given a uniform distribution.  

This area is not investigated in detail, but it is clear that a large part of the block is sheltered by the 

surrounding blocks. The area that is affected by the waves is depending on the position of the block, 

the slope angle, and the position of the surrounding blocks. Without extensive investigation of the 

distribution of the affected area, it is decided to use a uniform distribution between 0.2 and 0.4 as a 

fraction of dn², or denoted as U(min = 0.2 ; max = 0.4).  

6. The distribution of the wave height can be described by a Rayleigh distribution, as in Equation 3.8, 

which is widely used and described for example in the book ‘Waves in Oceanic and Coastal Waters’ 

by Holthuijsen (2010). Note that this equation is for the case of deep water, which is assumed to be 

valid here. In case of shallow water, the wave height distribution by Battjes and Groenendijk can be 

used, which is similar, but flattens for the higher waves, since the high waves start breaking in 

shallow water.   

 
𝑝( 𝐻 > 𝐻) = exp (−2 (

𝐻

𝐻𝑠
)

2
)    

Equation 3.8 
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Alternatively, this equation can be rewritten to determine H for a certain probability: 

𝐻 =  √− 
1

2
ln (𝑝(𝐻 > 𝐻))  ∙ 𝐻𝑠  

By filling in a large number of probabilities in the above expression, a distribution of the wave height 

is obtained, representing a wave field with a certain significant wave height Hs. A random value can 

be picked from this distribution, i.e. one wave out of the wave field.  

The distribution depends on the significant wave height, Hs, and is thus not constant. An example of 

the cumulative wave height distribution is given in Figure 3.14, for significant wave height Hs = 5.0 m.  

 

Figure 3.14: Cumulative wave height distribution for Hs = 5.0 m 

When varying the wave height, it is important to also vary the wave period, as those two are 

correlated, so it would not make much sense to use only a single value for the wave period. Sadly, 

there is no clear expression to link the wave height to the wave period, since there tends to be a 

large scatter, and it usually differs for each individual case. Still, the wave period has to be 

determined in some way here, in order to be able to use it for determining the impact velocity, which 

is why the following expression is created, to try to get realistic values: 

𝑇𝑚−1,0 =  √5 ∙ 𝐻 + (𝐻 + 3) ∙ 𝑈(min = 0, max = 1)  

Where H is simply the wave height, and the uniform distribution of U(min = 0, max = 1) indicates a 

random number between zero and one, incorporated to create some scatter in the wave period 

versus wave height.  

This artificial relation between wave height and wave period is plotted in Figure 3.15. This is by no 

means meant as an accurate way to link the wave height and wave period, but is solely meant as a 

tool to be able to incorporate a  variation in the wave period, linked to the wave height, thus trying 

to approximate a real situation. If any wave data is available, that should be always be used instead 

of this method. 
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Figure 3.15: Artificial wave height vs wave period 

Once all probabilistic distributions are defined, a Monte Carlo simulation can be performed to 

determine the impact velocity for a certain exceedance probability, for example by means of a 

Python script. A random value is picked for each stochastic variable, with which the calculation is 

then performed. This procedure is repeated N times, for example N = 100,000 times, picking new 

random values every time.  
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3.2.3 Empirical determination of impact velocity of cubes, CUR research 

This paragraph treats the formulas for the impact velocity as the determined in the research by the 

CUR. 

In the tests in the wave flume, performed by the CUR (1989 – 2), the accelerations during impact 

were measured inside armour elements. The impact velocity is obtained by integrating the 

accelerations over time. The measured elements were placed at several locations, giving some 

variation in space. The wave conditions are varied as well, giving a variation in time. There is thus 

variation in time and in space, though the variation in time (many different waves) is prevalent, since 

only a few different locations are measured. 

The research by the CUR (1989 – 2) resulted in formulas for the distribution of impact velocities. It is 

defined such that the impact velocity can be calculated for a certain probability of exceedance p(
𝑣

√𝑔𝑑𝑛
). 

The formula for the impact velocity of cubes is given as: 

 
𝑝 (

𝑣

√𝑔𝑑𝑛
) = exp (−

 
𝑣

√𝑔𝑑𝑛
− 𝑐

𝐵
)   

Equation 3.9 

 

with: 𝑐 = 0.049 ∙ exp (−0.4 ∙ |
𝑦

𝑑𝑛
|)  

and 𝐵 = 0.025 ∙ exp (−0.4 ∙ |
𝑦

𝑑𝑛
|) ∙

𝐻𝑠

Δ𝑑𝑛
  

Where y is the vertical distance relative to the still water level. When looking at the impact velocities 

at the waterline, y = 0 m, which essentially reduces c and B to 𝑐 = 0.049, and 𝐵 = 0.025
𝐻𝑠

Δ𝑑𝑛
.   

The formula can be rewritten to directly calculate the impact velocity: 

 
𝑣𝑐𝑢𝑏𝑒𝑠 =  √𝑔𝑑𝑛 ∙ (−𝐵 ∙  ln (𝑝 (

𝑣

√𝑔𝑑𝑛
)) + 𝑐 )   

Equation 3.10 

 

The values for the nominal diameter dn, specific weight Δ, and significant wave height Hs can be 

defined, so the impact velocity can be calculated for a range of exceedance probabilities.  
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3.2.4 Comparison theoretical and empirical impact velocity of cubes 

Now, the previously determined theoretical impact velocity and the empirical impact velocity will be 

compared, to see if the derived theoretical expression gives reasonable values for the impact 

velocity. Both methods give a probabilistic distribution of the impact velocity, which can be plotted in 

the same figure to be able to compare them easily. 

Up front, there is already a notable difference between the theoretical and empirical formulas, 

namely the wave period, which is included in the theoretical impact velocity formula as derived in 

this MSc thesis, but is not included in the empirical formula from the CUR report 

Furthermore, in the theoretical method in this MSc thesis, the blocks will not move at all for a 

favourable set of stochastic variables, thus give a value of zero for the impact velocity. This differs 

from the formula from the CUR report, which never gives values of zero, probably because non-

moving blocks were already excluded when the curve was fitted. To be able to make a better 

comparison, all zero values are removed from the theoretically determined impact velocities. 

A Python script is written, where the formulas from the CUR report are added, and the whole 

probabilistic method as established in this MSc thesis is implemented, carrying out a Monte Carlo 

simulation for N = 100,000, in order to have sufficient moving blocks. Again, note that non-moving 

blocks are removed for the plots, in order to obtain a useful comparison. Both are then plotted in the 

same graph, to make the comparison easier. Figure 3.16 shows a plots for a relatively small 

significant wave height, with corresponding dn, loosely based on the Hudson formula to have a 

realistic situation, with blocks near their stability limit. Figure 3.17 then shows the plot for a relatively 

high significant wave height, in order to assess the validity for various cases. Several wave heights in 

between have been checked as well, and it is observed that the results follow a trend, with a 

decreasing deviation between the two formulas for increasing wave height and unit diameter. 

 

Figure 3.16: Comparison formulas for cubes, Hs = 3.0 m, dn = 1.2 m 
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Figure 3.17: Comparison formulas for cubes, Hs = 8.0 m, dn = 3.4 m 

Conclusions 

Overall, it can be said that the theoretical approach in this MSc thesis is relatively close to the 

empirical formulas from the CUR report; at least in the same order of magnitude. It is also realised 

that the CUR formulas are not perfect either, so there is no need to try to approach those values. A 

notable difference is the deviation at the lower probabilities, because the CUR formulas do not start 

from an impact velocity of zero. Though, the higher impact velocities are more interesting anyway, as 

they may cause breakage of the armour units, so it is more important to predict those correctly. 

Furthermore, the approach for this MSc thesis seems to work slightly better for higher waves, but it 

is difficult to link that to a range of viability.  

All in all, the results are good enough to use this method of determining the impact velocity in the 

remainder of this MSc thesis. 

 

 

 

 

 

 

 

  



34 
 

3.3 Impact velocity Xbloc® 
The previous paragraph determined the impact velocity of cubes. Now, this procedure will be 

repeated for Xbloc®. In order to get a reasonably accurate estimate of the parameters and their 

distributions, a laboratory measurement is performed on a small scale breakwater. The data from 

this measurement will be converted to distributions that can be used as input to eventually 

determine a distribution of the impact velocity. 

3.3.1 Laboratory measurements of Xbloc® parameters 

For the determination of the parameters of the Xbloc®, a breakwater piece is recreated in the 

laboratory of the TU Delft. The parameters of a block can then be determined from the position of 

the block and by moving it slightly. By repeating this for a large number of blocks, a probabilistic 

distribution of these parameters can be obtained. Note that these distributions also depend on the 

situation. A different packing density (possibly caused by settlements) leads to slightly different 

parameter distributions. The obtained distributions are therefore never 100% correct, but they surely 

will be better approximations than when the distributions would just be assumed. 

The test is performed on a slope that happened to be available in the laboratory, as a leftovers from 

tests in the wave flume. It is a wooden slope of 2V:3H. Gravel of approximately dn50 = 1 cm is glued 

on the wooden surface, to function as an underlayer. A picture of this slope is given in Figure 3.18. 

 

Figure 3.18: Slope with glued underlayer 

The main dimension of the Xbloc®s that were used is 𝐷 = 5.64 𝑐𝑚, which translates to 𝑑𝑛 = 3.9 𝑐𝑚. 

The first layer of Xbloc®s is placed regularly, with their cubical leg on the base, to create a stable first 

layer. In all other layers, the blocks are placed randomly, while making sure that they touch two 

blocks below to secure them, which is the normal placing procedure. For the placing density, a 

centre-to-centre distance is kept of 𝐷𝑥 = 1.32 ∙ 𝐷 in horizontal direction, and 𝐷𝑦 = 0.63 ∙ 𝐷 upward 

along the slope, in accordance with the guidelines provided by Delta Marine Consultants (2018). All 

odd rows consist of 11 blocks, while the even rows consist of 10 blocks. To prevent inaccuracies from 

the edge blocks, only the inner blocks are included in the determination of the parameters. The first 

two rows and last two rows are excluded, as well as the outer blocks of each row. An overview of all 

blocks on the slope is given in Figure 3.19. 
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Figure 3.19: Overview of the Xbloc®s on the slope 

The following parameters will be determined for each block: 

- The fraction of the area that is not sheltered, thus the fraction of the area that will be 

subjected to the wave, farea. It is estimated as a fraction of D². 

- The available movement space, thus the travelled distance 𝑠 when a block hits another block. 

It will be determined in [cm] and will later be converted to a fraction of dn. 

- The initial orientation angle θ, determined relative to slope angle α, as that is slightly easier 

to estimate quickly. 

- The rotation point 𝑅, around which the block rotates, as the distance from the centre, as a 

fraction of D. Note that 𝑅 is determined as a horizontal distance. This is slightly easier to 

determine in the test, and is also convenient later on, when determining the arm of the 

weight force, which is then equal to 𝑅. 

- The contact/collision point on the moving block, as a distance to the rotation point, as a 

fraction of D.  

- The contact/collision point on the stricken block. It is noted as the location on the stricken 

leg of the armour unit, between 0 and 1, with 0 being the top of the leg, and 1 being the 

bottom of the leg, where it is attached to the body. It is also noted if a spiky leg or cubical leg 

is hit, such that a separation can be made if needed.  

- The angle of the incoming force θF, i.e. the angle under which one block hits the other. The 

angle is relative to the stricken leg, where 0° is parallel to the leg and 90° is perpendicular to 

the leg. 
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In an attempt to clarify the measured parameters, they are added in a picture of an Xbloc® on the 

slope, given in Figure 3.20. The block rotates around 𝑅, until 𝐶1 hits 𝐶2, after travelling over distance 

𝑠 Note that the angle of in the incoming force θF is actually lower than 90° in this case, although it 

looks larger, because of the 3D visualisation. 

 

Figure 3.20: Xbloc® position parameters 

The parameters are determined by slightly moving the blocks by hand. By starting on the lower rows, 

some artificial settlements are created, to imitate settlements on a real breakwater slope. The results 

are therefore for the case of a slightly settled configuration, and not for a breakwater that is still in its 

original packing density. It is done this way, because that seems most relevant for a real case. 

3.3.2 Estimated parameter distributions based on lab measurements 

Now, the data obtained from the measurements in the laboratory will be used to determine 

probabilistic distributions. The 7 parameters are individually estimated for 97 blocks, which is 

sufficient to get an idea of the parameter distributions. For each parameter, a histogram is plotted 

for the probability density, and the cumulative distribution is plotted in a separate graph. Then, the 

probabilistic distribution is  estimated, for which the probability density function (pdf) and 

cumulative distribution function (cdf) are plotted in the corresponding graph in the form of a red line. 

The distributions of the parameters will individually be treated below. Where needed, the 

probabilistic distribution obtained from the data will be translated to a function of dn, such that they 

are ready to be included in the determination of the impact velocity.  

Note that some of the estimated parameters here are not needed to determine the impact velocity, 

but are important later on when determining the impact force and resulting stresses. It is decided to 

those in this paragraph as well, to keep all laboratory measurements together.  
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Fraction of the area subjected to wave attack, farea 

 

Figure 3.21: Distribution farea 

Based on the obtained data, the fraction of the area that is subjected to waves seems normally 

distributed. The mean and standard deviation can be obtained from the data as: 𝜇 = 0.184 and 

𝜎 = 0.058. However, it is decided to use a slightly lower standard deviation of 𝜎 = 0.04, which 

increases the peak around the mean, but secures that the probability of getting impossible negative 

values, is negligible. 

The obtained probabilistic distribution is thus: 

𝑓𝑎𝑟𝑒𝑎

𝐷2 = 𝑁(𝜇 =  0.184;  𝜎 =  0.04)  

In order to use this distribution in the impact velocity determination, it will be translated to dn², by 

𝐷 = 1.443𝑑𝑛, resulting in the distribution as in Figure 3.22, expressed  by: 

𝑓𝑎𝑟𝑒𝑎

𝑑𝑛
2 = 𝑁(𝜇 =  0.381;  𝜎 =  0.083)  

 

Figure 3.22: Distribution subjected area, as a function of 1/dn² 
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Travel distance/movement space, s 

 

Figure 3.23: Distribution travel distance/movement space, s 

Most of the blocks have (almost) no movement space, while there are some blocks that do have 

significant space. An exponential distribution can approximate this, but will either give a severe 

overestimation for the lower values, as visualise by the black dashed line in the right graph of Figure 

3.23, or will severely underestimate the higher values if a much lower λ-value is chosen. Therefore, a 

custom exponential distribution is made, where 𝑠 is set to 0 for 50% of the cases, visualised by the 

red line in the right graph of Figure 3.23. This is an arbitrary choice, but it does give a better 

representation of the movement space, because many blocks simply do not have any space to move, 

because they are directly secured by surrounding blocks. The obtained probabilistic distribution is: 

𝑠[𝑐𝑚] = {
0                  𝑓𝑜𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠

𝐸𝑥𝑝(𝜆 =  0.16)   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠
  

The expression obtained from the data of the absolute value of the space, will be rewritten as a 

fraction of dn in order to incorporate it in the determination of the impact velocity. For this test, 

𝐷 =  5.64 𝑐𝑚, equal to 𝑑𝑛 = 3.91 𝑐𝑚, so the expression becomes: 

𝑠

𝑑𝑛
= {

0                       𝑓𝑜𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠

𝐸𝑥𝑝(𝜆 =  0.0408)   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠
  

 

Figure 3.24: Distribution movement space, as a fraction of dn 
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Initial orientation angle, θ 

 

Figure 3.25: Distribution initial orientation angle, θ 

The initial orientation is measured relative to the slope angle. Note that the orientation angle is 

arbitrary, because there are multiple orientations possible, due to the symmetry of the block. This 

difficulty is further enhanced by the fact that most blocks are slightly twisted. Based on the obtained 

data, it is not entirely clear whether a normal distribution or a uniform distribution would be most 

fitting, but since the blocks are supposed to be placed randomly, a normal distribution seems 

appropriate. The mean of the data is slightly below 0, but 𝜇 = 0° will be used, as that seems 

appropriate for random placement. A standard deviation of 𝜎 = 10° is used. 

The obtained probabilistic distribution is then: 

𝜃 = 𝑁(𝜇 =  0 ; 𝜎 =  10)  

Where θ is defined relative to the slope angle α. 
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Rotation point, R 

 

Figure 3.26: Distribution rotation point 

From the data it seems that the rotation point is either close to the centre, or close to the edge of 

the block, and not somewhere in between. Nevertheless, a normal distribution seems appropriate. 

Mean 𝜇 = 0 and standard deviation 𝜎 = 0.1 are used, to obtain the plots as in Figure 3.26, which is 

acceptable. 

The obtained probabilistic distribution is thus: 

𝑅

𝐷
= 𝑁(𝜇 =  0 ; 𝜎 =  0.1)  

In order to use this distribution in the impact velocity determination, it will be translated to dn, by 

𝐷 = 1.443𝑑𝑛, resulting in the distribution as in Figure 3.27, expressed  by: 

𝑅

𝑑𝑛
= 𝑁(𝜇 =  0 ; 𝜎 =  0.144)  

 

Figure 3.27: Distribution rotation point, as fraction of dn 
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Collision point moving block, C1 

 

Figure 3.28: Distribution collision point moving block, C1 

The point of the moving block that hits another block is estimated as the distance to the rotation 

point, as a fraction of block size D. The data is not entirely clear, but there seems to be a uniform 

distribution from roughly 0.4 to 1.0. Many blocks are estimated at 0.5, so it could be opted to give a 

higher probability of occurrence to 0.5, but that may as well be a measuring error. 

The obtained probabilistic distribution is: 

𝐶1

𝐷
= 𝑈(min = 0.4 ; max = 1.0)  

In order to use this distribution in the impact velocity determination, it will be translated to dn, 

resulting in the distribution as in Figure 3.29, expressed  by: 

𝐶1

𝑑𝑛
= 𝑈(min = 0.58 ; max = 1.44)  

 

Figure 3.29: Distribution collision point moving block, as a fraction of dn 
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Collision point stricken block, C2 

 

Figure 3.30: Distribution collision point stricken block, spiky leg, C2s 

 

Figure 3.31: Distribution collision point stricken block, cubical leg, C2c 

The distribution of the collision point of the stricken block is divided in two parts: the spiky leg, given 

in Figure 3.30, and the cubical leg, given in Figure 3.31. It was necessary to split the two different 

legs, because there is a significant deviation, namely that the spiky legs can get hit lower on the leg 

(i.e. closer to the body) than the cubical legs. Also, the cubical legs are way more likely to get hit on 

the top than the spiky legs. 

The collision point is defined as the location on the leg, where the collision takes place, as a fraction 

of the length of the leg, with 0 at the top of the leg, and 1 at the bottom of the leg, where it is 

connected to the body. Both of the distributions have a higher density at 0 (the top of the leg), while 

the rest of locations are more or less uniformly distributed. For the spiky legs, the estimated 

distribution goes up to 0.9 (close to the body), while 10% of the hits are said to be at 0. For the 

cubical legs, the estimated distribution goes up to 0.6, while 40% of the hits are said to be at 0. 

These are not standard applied distributions, but they can be obtained from a uniform distribution 

relatively easily when programming in e.g. Python. Just start the uniform distribution below 0, then 

make a loop to set any negative values to zero.  
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The obtained distributions are then: 

𝐶2𝑠𝑝𝑖𝑘𝑦 𝑙𝑒𝑔

𝐿𝑠𝑝𝑖𝑘𝑦
= 𝑈(min = − 0.1 ; max = 0.9), but set any negative values to zero 

𝐶2𝑐𝑢𝑏𝑖𝑐𝑎𝑙 𝑙𝑒𝑔

𝐿𝑐𝑢𝑏𝑖𝑐𝑎𝑙
= 𝑈(min = − 0.4 ; max = 0.6), but set any negative values to zero  

 

Angle of incoming force, θF 

 

Figure 3.32: Distribution of the angle of the incoming force, θF 

The distribution of the angle of the incoming force is not split in separate distributions for spiky legs 

and cubical legs, because there did not seem to be a significant difference between the different 

legs. The probability density of the angle of the incoming force has a sort of triangular shape, which 

can be approximated by two linear lines. The cdf can be calculated as the integral of the pdf, so a 

squared function is obtained from the linear lines.  

To create the pdf, keep in mind that the integral over the pdf should equal 1, so the area of the 

triangle 𝐴 =
1

2
∙ 𝑏𝑎𝑠𝑒 ∙ ℎ𝑒𝑖𝑔ℎ𝑡 = 1. With a base of 0° to 105°, the height should thus be 2.0/105. 

Therefore the first line is described by: 

𝑝𝑑𝑓1(𝜃𝐹) =
2.0

105
∙

𝜃𝐹

𝑝
, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [0 ;  𝑝]  where 𝑝 is the peak angle, the top of the triangle 

The ascending line is then described by: 

𝑝𝑑𝑓2(𝜃𝐹) =
2.0

105
 − 

𝜃𝐹−𝑝

105−𝑝
∙

2.0

105
=

2.0

105
+

2𝑝

1052−105𝑝
−

2𝜃𝐹

1052−105𝑝
 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ⟨𝑝 ;  105]  

Then, the cdf is the integral of the pdf, so: 

𝑐𝑑𝑓1(𝜃𝐹) =  ∫ 𝑝𝑑𝑓1 = ∫
2.0

105
∙

𝜃𝐹

𝑝
 𝑑𝜃𝐹  =

𝜃𝐹
2

105𝑝

𝑝

0
 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [0 ;  𝑝]  

𝑐𝑑𝑓2(𝜃𝐹) = ∫ 𝑝𝑑𝑓2 = ∫
2.0

105
+

2𝑝

1052−105𝑝
−

2𝜃𝐹

1052−105𝑝
 𝑑𝜃𝐹  =

105

𝑝
    

        (
2.0

105
+

2𝑝

1052−105𝑝
) ∙ 𝜃𝐹 −

𝜃𝐹
2

1052−105𝑝
 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ⟨𝑝 ;  105]    
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For the plot in Figure 3.32, 𝑝 = 85° is used as the turning point, i.e. the top of the triangle.  

The obtained probabilistic distribution is then: 

𝑐𝑑𝑓 =  {

𝜃𝐹
2

8925
 ,                    𝑓𝑜𝑟 0 ≤ 𝜃𝐹 ≤ 𝑝  

0.1 ∙ 𝜃𝐹 −
𝜃𝐹

2

2100
 ,   𝑓𝑜𝑟 𝑝 < 𝜃𝐹 ≤ 105

  

 

3.3.3 Other Xbloc® parameters 

There are still a few parameters left that were not determined by the laboratory measurements, so 

they will be treated here. 

Drag force 

The wave drag force depends on the drag coefficient ( 𝐹𝑤𝑎𝑣𝑒 =
1

2
𝜌𝑤𝐶𝐷𝐴(Δ𝑢)² ) . This CD-value is 

based on the values given in Figure 3.33, obtained from . 

 

Figure 3.33: CD-values for a few shapes 

Xbloc®s have a more complicated shape than cubes, where the arms could be considered as square 

rods, though definitely not infinite, so the drag coefficient will be slightly higher than for cubes, but 

not up to CD = 1.50. This idea is supported by a value found by Ten Oever (2006), who performed a 

study on Xbloc®s and found a value for the drag coefficient of CD = 1.20, by comparing numerical 

calculations to model test results.  

Roughness coefficient 

The roughness coefficient is used to determine the run-up velocity, that is used to determine the 

wave drag force. The determination of the run-up velocity is treated in the determination of the 

parameters of cubes. Only the roughness coefficient γf differs in the case of Xbloc®s. A table with 

values for γf is given in the Breakwater design lecture notes, by Van den Bos and Verhagen (2018). 

This table gives  for a single layer of Xbloc®s: γf = 0.45. 
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Arm of the wave force, frF, and arm of the weight, frW 

For the cubes, the arms where estimated as being dependent on the initial orientation angle of the 

cube on the slope. Due to all the possible orientations of an Xbloc®, with twists in multiple planes, it 

would be very complicated to define the arms of the forces in a similar way. Therefore, the initial 

orientation angle of the block is not used, as it would be unreliable, since there is not a single angle 

that defines the position of the block. Instead, the arm of the weight is estimated directly in the 

laboratory measurements, since the rotation point 𝑅 is determined as the horizontal distance from 

the centre of the block, which is exactly equal to the arm of the weight, thus: 

𝑓𝑟𝑊 = 𝑅  

The arm of the wave force is not easily determined, since it really depends on which parts of the 

block are exposed to wave attack, and there is not a solid area, with the legs sticking out of the body. 

Therefore, it is decided to say that the wave force works mostly on the upper part of the block, with 

the resultant force acting at distance of 2/3 D to the rotation point. 

𝑓𝑟𝐹 =
2

3
𝐷 = 0.96 𝑑𝑛  

Mass moment of inertia 

This is elaborated in Appendix A, where the mass moment of inertia of an Xbloc® around its centre of 

gravity was found to be:  

𝐼𝑐𝑔𝑋𝑏𝑙𝑜𝑐
= 0.25988  𝜌𝑑𝑛

5  

Though, for a rotation around a point that is not the centre of gravity, there is an additional 

contribution from Steiner’s rule: 

𝐼𝑋𝑏𝑙𝑜𝑐 = 𝐼𝑐𝑔𝑋𝑏𝑙𝑜𝑐
+ 𝑚𝑑2 = 0.25988  𝜌𝑑𝑛

5 + 𝜌𝑑𝑛
3 ∙ 𝑑2  

Where 𝑑 is the distance from the centre of gravity to the rotation point, visualised in Figure 3.34. 

From Pythagoras’ theorem follows that:  

𝑑 =  √(
1

2
𝐷)

2
+ 𝑟2   

 

Figure 3.34: Distance of centre of gravity to rotation point 
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Now, D = 1.443 dn, and using 𝑟 = 𝑅, the earlier estimated horizontal distance between the rotation 

point and the centre as a fraction of dn, it follows that: 

 𝑑 =  √0.722 + 𝑅2 ∙ 𝑑𝑛 

Inserting this into the equation for the mass moment of inertia: 

𝐼𝑋𝑏𝑙𝑜𝑐 = 𝐼𝑐𝑔𝑋𝑏𝑙𝑜𝑐
+ 𝑚𝑑2 = 0.25988 𝜌𝑑𝑛

5 + 𝜌𝑑𝑛
3 ∙ (√0.722 + 𝑅2 ∙ 𝑑𝑛)

2
  

𝐼𝑋𝑏𝑙𝑜𝑐 = (0.25988 +  0.722 + 𝑅2)𝜌𝑑𝑛
5     

𝐼𝑋𝑏𝑙𝑜𝑐 = (0.7783 +  𝑅2)𝜌𝑑𝑛
5   

Finally, the mass moment of inertia as a fraction of 𝜌𝑑𝑛
5 is then: 

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 0.7783 + 𝑅2  

Velocity correction factor 

In the derivation of the impact velocity formula, it was assumed that the acceleration of the armour 

unit is constant during its movement. However, it is realised, that the acceleration is not really 

constant. The sum of moments changes due to a decrease of the wave drag force when the armour 

unit accelerates, and due to a change of the arm of the weight force when the unit rotates. These 

effects are investigated in Appendix B, where a velocity correction factor is determined for Xbloc®s.  

This factor is established as: 

𝑓𝑐𝑜𝑟 = 1 −
√𝑠

4
  

Such that the corrected velocity becomes: 

𝑣𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑓𝑐𝑜𝑟 ∙ 𝑣, which is added in Equation 3.1. 
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3.3.4 Validation impact velocity Xbloc® 

All the required parameters and variables are determined in the previous subparagraphs, so the 

distribution of the impact velocity of Xbloc®s can now be determined for various wave heights and 

armour unit diameters. In fact, even for small scale waves and units, such as the ones used in 

laboratory tests. Caldera (2019) performed such tests on Xbloc®s with a size of D = 5.64 cm, 

corresponding to dn = 3.91 cm. She used significant wave height of the wave field of Hs = 11.5 cm 

during one of the tests, leading to the results in Figure 3.35. These values of Hs and dn are used as 

input for the model that is developed in this MSc thesis, for which the results are given in Figure 3.36. 

Note that it is now plotted without a log scale, to resemble the graphs made by Ganga Caldera.

 

Figure 3.35: Probability of exceedance of impact velocity, measured by Ganga Caldera (2019) 

 

Figure 3.36: Probability of exceedance impact velocity, Hs = 11.5 cm, dn = 3.91 cm 
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For the comparison, it is important to know that the test results of Caldera (2019) are obtained from 

a measurement unit that is positioned slightly different for each test, thus having different position 

parameters per test. However, in the method of this MSc thesis, every single simulation has a 

completely new set of position parameters, eventually leading to some very unfavourable cases in 

the number of simulated cases. It is therefore most logical to compare the results of this MSc thesis 

with the results obtained for the most unfavourable case measured by Caldera (2019), plotted with 

the blue line. 

With this in mind, it is seen that there are two measurements of around  𝑣 = 0.45 𝑚/𝑠. The model 

of this MSc thesis gives somewhat higher highest values, with a few values higher than 𝑣 = 0.6 𝑚/𝑠. 

However, these are just a few cases out of a simulation of N = 100,000, so logically, there will be 

some higher values simply because the sample size is so much larger. Therefore, it is opted to make a 

plot with less simulations, as shown in Figure 3.37, with N = 100. Coincidentally, the highest obtained 

value is now 𝑣 = 0.46 𝑚/𝑠. It is therefore concluded that the impact velocity for the very low 

probabilities of exceedance is decently accurate. 

A point of attention is that the shape of the simulated model is somewhat different. The tail is less 

steep, so while the highest values are perhaps correct, the values around 𝑝 = 0.1 − 0.3 are 

significantly higher. For example, at 𝑝 = 0.1, the model gives approximately 𝑣 = 0.22 𝑚/𝑠 , while 

the measurements give approximately 𝑣 = 0.13 𝑚/𝑠.  

 

Figure 3.37: Probability of exceedance impact velocity, Hs = 11.5 cm, dn = 3.91 cm, N = 100 
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4. Impact force 
The goal of this chapter is to find an expression to determine the maximum force during a collision 

between the moving armour unit and another unit. The first step  to determining this impact force is 

to set up an energy balance, containing the kinetic energy of the moving unit (where the impact 

velocity is used as input) and the potential energy. The force can then be determined by representing 

this potential energy as a spring energy. Therefore, the system must be schematized as a spring, 

which must contain the effect of the armour unit and of the breakwater bed. This method to 

determine the force will then be validated by means of the results of physical model tests. The whole 

process covered in this chapter is visualised by a flow chart in Figure 4.1. 

 

 

Figure 4.1: Flow chart chapter 4. Impact force 
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4.1 Forces via energy balance 
This paragraph treats the determination of the forces in a theoretical way, via an energy balance. The 

goal is to determine the forces in an analytical way, such that a probabilistic distribution can be 

applied to the input variables, in order to incorporate the determination of the force in a 

probabilistic method. First, the eventual model with analytical equations will be shown, including the 

main assumptions. Subsequently, the derivation of said equations will be treated. 

4.1.1 Equation, model and assumptions 

In the observed situation, an armour unit is moved by a wave impact, causing a collision of this 

armour unit with another armour unit. The kinetic energy of the moving armour unit can be 

absorbed by elastic or plastic deformation during the impact, or can partially be converted kinetic 

energy of the stricken armour unit, if the stricken unit is able to move as well. Plastic deformation is 

undesirable though, as that may quickly lead to breakage of the armour unit. In order to determine if 

plastic deformation will occur, the stresses in the concrete must eventually be determined, for which 

first the force during impact will be determined. This can be done by means of an energy balance, as 

in,  including the aforementioned kinetic energy of the moving unit (block 1) and of the stricken unit 

(block 2), as well as a potential energy, representing elastic stiffness. 

Before going to the equations, a list of assumptions will be given, that were necessary to obtain the 

equations: 

 Rupture of the legs is assumed to be the most important failure mechanism 

 It is assumed that the critical cross-sections are located at the junctions, where the legs are 

connected to the main body of the armour unit 

 The energy balance consists of the kinetic energy of the moving block, a potential energy, 

and possibly the kinetic energy of the stricken block, which may move due to the collision 

 The potential energy is introduced in the form of elastic/spring energy, which includes a 

force and a stiffness, which eventually allows the determination of the force 

 The stiffness of the system is a combination of the stiffness of the breakwater bed, and the 

stiffness of the Xbloc® leg, which is represented as springs in series 

 The mechanical model of the legs is treated as a beam that is clamped at the connection with 

the main body, illustrated in Figure 4.2 

 This “beam” has an axial stiffness and a bending stiffness, which are modelled in a mass-

spring system by a vertical (k1) and horizontal spring (k2) for which a combined stiffness (k) 

will be determined in order to determine the force 
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The formula to determine the force derived from the energy balance is given by: 

 𝐹 =  √𝑚1𝑣1
2𝑘 − 𝑚2𝑣2

2𝑘     Equation 4.1 

Where: 
- 𝑚1 is the mass of object 1, the moving armour unit 

- 𝑣1 is the velocity of object 1 at the moment of impact 

- 𝑘 is the stiffness of the leg, the resistance to deformations, determined with      Equation 4.2 

- 𝑚2 is the mass of object 2, the stricken armour unit, and is equal to 𝑚1 

- 𝑣2 is the velocity of object 2, which can be left out when it is unknown how much of the 

energy is converted into kinetic energy, reducing the formula to: 𝐹 =  √𝑚1𝑣1
2𝑘   

The stiffness 𝑘 of the system is determined from: 

 

Where the stiffness of the bed is estimated as: 

𝑘𝑏𝑒𝑑 = 69.4 ∙ 106 ∙ 𝑑𝑛
2   

The stiffness of the leg can be determined as the combined stiffness of the two springs in the mass-

spring system, shown in Figure 4.2, using the following equation: 

 𝑘𝑙𝑒𝑔 =
1

√
cos2 𝜃𝐹

(
𝐸𝐴
𝐿

)
2  + 

sin2 𝜃𝐹

(
3𝐸𝐼

𝐿3 )
2    

    

  

Equation 4.3 

Where: 

- 𝜃𝐹 is the angle of the incoming impact force, see the definition further ahead in Figure 4.5 

- 𝐸 is the Young’s modulus of the concrete 

- 𝐴 is the area of the observed cross-section 

- 𝐼 is the area moment of inertia of the observed cross-section 

- 𝐿 is the length of the leg 

 

Figure 4.2: Schematization leg armour unit 

 1

𝑘
=

1

𝑘𝑏𝑒𝑑
+

1

𝑘𝑙𝑒𝑔
       Equation 4.2 
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An overview of the values of the parameters and variables used for determining the impact force is 

given in Table 4.1. 

 Values 

Parameters 

Mass density concrete, 𝜌𝑠[𝑘𝑔/𝑚³] 2400 

Young’s modulus of the concrete, 𝐸 [𝑁/𝑚𝑚²]  32837 

 

Variables 

Area of the cross section, 𝐴 [𝑚2] 0.2297 ∙ 𝑑𝑛
2 

Area moment of inertia of the cross section, 
𝐼  [𝑚4] 

0.004461 ∙ 𝑑𝑛
4  

Full length of the leg, 𝐿𝑙𝑒𝑔[𝑚] Spiky leg: 0.540 ∙ 𝑑𝑛 
Cubical leg: 0.481 ∙ 𝑑𝑛 

Spring stiffness representing the breakwater bed, 
𝑘𝑏𝑒𝑑[𝑁/𝑚] 

69.4 ∙ 106 ∙ 𝑑𝑛
2 

 

Stochastic variables 

Incoming angle of the force, 𝜃𝐹 [°] Special probabilistic distribution: 

𝑐𝑑𝑓 =   

𝜃𝐹
2

8925
 ,                    𝑓𝑜𝑟 0 ≤ 𝜃𝐹 ≤ 85  

0.1 ∙ 𝜃𝐹 −
𝜃𝐹

2

2100
 ,   𝑓𝑜𝑟 85 < 𝜃𝐹 ≤ 105

 

 
Table 4.1: Parameters and variables used to determine the impact force 

4.1.2 Derivation of the equations 

Due to a wave impact, one armour unit starts moving, leading to a collision with another armour 

unit. Say, the moving armour unit is called ‘block 1’, and the stricken armour unit is called ‘block 2’. 

An energy balance as in Equation 4.4 can be set up, including the kinetic energy of block 1, a 

potential energy, and a kinetic energy of block 2, which might also move due to the collision. 

Although block 2 must first experience an acceleration, the possible movement of this block can still 

be described by a kinetic energy, since the acceleration will take place during the contact moment 

between the two blocks, such that block 2 will have a certain velocity once the contact is over.   

 𝐸𝑘𝑖𝑛,1 = 𝐸𝑝𝑜𝑡 + 𝐸𝑘𝑖𝑛,2   Equation 4.4 

Kinetic energy can be described by:  
 𝐸𝑘𝑖𝑛 =

1

2
𝑚𝑣2   Equation 4.5 

Where 𝑚 is the mass of the moving object, and 𝑣 is the velocity of said object.   
The impact force can eventually be determined from the potential energy, though some assumptions 

are required in order to describe the potential energy. The potential energy will be treated in the 

form of an elastic energy, or also called spring energy, which can be described as: 

 𝐸𝑝𝑜𝑡,𝑠𝑝𝑟𝑖𝑛𝑔 =
1

2
𝑘𝛿2   Equation 4.6 

Where 𝑘 [𝑁/𝑚] is the spring stiffness, and 𝛿 [𝑚] is the deformation. 
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However, since the force in a spring is 𝐹 = 𝑘 ∙ 𝛿, and thus 𝛿 =
𝐹

𝑘
, this can be rewritten to a more 

convenient expression, that directly includes the force: 

 𝐸𝑝𝑜𝑡,𝑠𝑝𝑟𝑖𝑛𝑔 =
𝐹2

2𝑘
   Equation 4.7 

The energy balance of Equation 4.4 can now be rewritten to determine the force: 

1

2
𝑚1𝑣1² =  

𝐹2

2𝑘
+

1

2
𝑚2𝑣2²  

 𝐹 = √𝑚1𝑣1²𝑘 − 𝑚2𝑣2²𝑘  Equation 4.8 

The mass of the armour units can be determined relatively easily. The velocity of the moving armour 

unit, 𝑣1, is the impact velocity, treated earlier, which can also be determined. It is not yet known how 

much of the energy that the stricken block receives, will be converted into kinetic energy, so the 

velocity of that block, 𝑣2, will be neglected for now, but it is good to note that it is possible to include 

movement of the stricken block in the determination of the force. The stiffness is the last unknown in 

order to determine the force.  

The stiffness will be determined from two springs in series: a spring to represent the stiffness of the 

bed, and a spring to represent the stiffness of the Xbloc® leg, schematized in Figure 4.3. Note that the 

stricken leg is not necessarily in contact with the bed, but the force will flow through the body, which 

transfers the force to the bed.   

 

Figure 4.3: Spring system in series 

 

The armour unit is modelled as a relatively simple mass-spring system, containing two springs. A leg 

of the armour unit can be schematized as a cantilever beam, clamped at the ‘bottom’, where it is 

attached to the body of the amour unit. Depending on the direction of the force, the ‘beam’ will 

experience axial loading and/or bending, resisting deformations in either direction thanks to a certain 

stiffness. The model is illustrated in Figure 4.4, where a spiky leg is depicted, but the same model can 

be applied to the cubical leg of the Xbloc®. 
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Figure 4.4: Schematization leg armour unit 

In this mass-spring system, spring 1 represents the axial stiffness, with 𝑘1 = 𝐸𝐴/𝐿, and spring 2 

represents the bending stiffness, with 𝑘2 = 3𝐸𝐼/𝐿³, which will both be derived below. 

 

For a beam under axial loading, the stress can be determined as the force over the area: 𝜎 =
𝐹

𝐴
 

Furthermore, Hooke’s law states that the stress equals the strain multiplied by the Young’s modulus: 

𝜎 = 𝜀 ∙ 𝐸                

Therefore:  
𝐹

𝐴
= 𝜀 ∙ 𝐸   →   𝐹 = 𝜀 ∙ 𝐸 ∙ 𝐴             

The strain is defined as the deformation over the total length: 𝜀 = 𝛿/𝐿                 

Then: 𝐹 =
𝛿

𝐿
∙ 𝐸 ∙ 𝐴                 

In analogy with the spring force, 𝐹 = 𝑘 ∙ 𝛿, it becomes clear that the axial stiffness can be written as: 

 𝑘1 =
𝐸𝐴

𝐿
   Equation 4.9 

The basic structural mechanics rules give that the deflection of a clamped beam can be determined 
as: 
 𝛿 =

𝐹𝐿3

3𝐸𝐼
    Equation 4.10 

This can be rewritten in accordance with the spring force, 𝐹 = 𝑘 ∙ 𝛿, to:  𝐹 =
3𝐸𝐼

𝐿3 ∙ 𝛿  

Therefore, the spring that accounts for the bending stiffness will have a stiffness of:  
 𝑘2 =

3𝐸𝐼

𝐿3   

 

Equation 4.11 
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Since the stiffness differs for a different direction of the force, this direction must be determined in 

order to calculate the force. For differing situations, the moving block will hit another block in a 

slightly different way, and under a different angle. There is thus some variation in the angle of the 

incoming force. For a probabilistic analysis, it is important to define the incoming angle in order to 

perform the evaluation systematically. This definition of the incoming angle is depicted in Figure 4.5. 

An angle of 0° gives a purely axial loading, while an angle of 90° indicates a load perpendicular to the 

leg, for which the stiffness is determined purely from bending. 

 

 

Figure 4.5: Definition incoming angle of the force 

As said, the angle of the force varies and may very well be somewhere in between parallel and 

perpendicular to the leg of the armour unit. The resulting stiffness would then be a combination of 

the axial stiffness and the bending stiffness. Though, a force can be decomposed into a parallel and 

perpendicular component, as illustrated in Figure 4.6.  

 

Figure 4.6: Decomposition of the force 
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This decomposition of the force helps to determine the combined stiffness of the two springs. Based 

on the decomposed forces, a vertical deformation δV and a horizontal deformation δH can be 

determined, using the stiffnesses of the vertical spring and the horizontal spring. The total 

deformation δ can be determined from δV and δH via Pythagoras’ theorem, which eventually leads to 

a description of the total stiffness 𝑘. The situation is clarified in Figure 4.7, followed by the 

derivation. 

 

Figure 4.7: Deformations in mass-spring system 

From 𝛿 =
𝐹

𝑘
  and the decomposed forces follows that: 

𝛿𝑉 =
𝐹∙cos 𝜃

𝑘1
   

𝛿𝐻 =
𝐹∙sin 𝜃

𝑘2
  

From Pythagoras’ theorem follows that: 

𝛿 =  √𝛿𝑉
2 +  𝛿𝐻

2         

𝛿 =  √ 
𝐹2∙cos2 𝜃

𝑘1
2  + 

𝐹2∙sin2 𝜃

𝑘2
2      =  √(

cos2 𝜃

𝑘1
2  + 

sin2 𝜃

𝑘2
2 ) ∙ 𝐹2  =  √(

cos2 𝜃

𝑘1
2  + 

sin2 𝜃

𝑘2
2 )  ∙ 𝐹   

Now, note again that 𝛿 =
𝐹

𝑘
 , so: 

𝛿 =  √(
cos2 𝜃

𝑘1
2  +  

sin2 𝜃

𝑘2
2 )  ∙ 𝐹 =

𝐹

𝑘
   

𝑘 =  
1

√ 
cos2 𝜃

𝑘1
2   +  

sin2 𝜃

𝑘2
2    

  

Filling in the earlier determined axial stiffness 𝑘1 =
𝐸𝐴

𝐿
 and the bending stiffness 𝑘2 =

3𝐸𝐼

𝐿3   leads to 

the following equation for the stiffness 𝑘: 
 𝑘 =

1

√ 
cos2 𝜃

(
𝐸𝐴
𝐿 )

2   +  
sin2 𝜃

(
3𝐸𝐼

𝐿3 )
2   

  Equation 4.12 
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To calculate 𝑘, several geometrical properties of the Xbloc® must be determined (area 𝐴, area 

moment of inertia 𝐼, and length 𝐿), as well as the Young’s modulus (𝐸)  of the concrete of the Xbloc®.  

The behaviour of both the spiky leg and the cubical leg will be investigated, so the geometrical 

properties will be determined for both of them individually. The dimensions of the Xbloc® are given 

again, in Figure 4.8.  

 

Figure 4.8: Xbloc® legs and dimensions 

 

Cubical leg 

The cubical leg has a symmetrical cross-section with width D/3 and height D/3, and the length of the 

leg is also D/3, which is all shown in Figure 4.9. The area, area moment of inertia, and length will be 

written as a function of the nominal diameter dn instead of total length D, since it is more convenient 

to have all parameters in terms of dn. As determined in Appendix A, D = 1.443 dn, so D/3 = 0.481 dn. 

 

Figure 4.9: Dimensions cubical leg  

The full length of the leg is: 

𝐿𝑚𝑎𝑥 =
𝐷

3
= 0.481 𝑑𝑛  
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The area is simply width times height: 

𝐴 = 𝑤 ∙ ℎ =  
𝐷

3
∙

𝐷

3
=

𝐷2

9
= 0.2297 𝑑𝑛

2  

The area moment of inertia for a rectangle is 𝐼 =
1

12
𝑤ℎ3, so: 

𝐼 =
1

12
𝑤ℎ3 =

1

12
(

𝐷

3
)

4
= 0.001029 𝐷4 = 0.004461 𝑑𝑛

4    

 

Spiky leg 

The dimensions of the spiky leg can be determined from the main dimensions of the Xbloc® as given 

in Figure 4.8, by using Pythagoras’ Theorem. Again, the dimensions will be rewritten in terms of dn, 

using 𝑎 =  0.2357 𝐷, 𝑏 =  0.14645 𝐷, and 𝐷 =  1.443𝑑𝑛 . The dimensions of the spiky leg are 

given in Figure 4.10. 

 

Figure 4.10: Dimensions spiky leg  

Note that the spiky leg does not have a constant cross-section. In the upper part, the width declines 

to zero at the top, while the lower part has a constant width.  

The full length of the leg is: 

𝐿𝑚𝑎𝑥 = √2𝑏 +
1

2
√2𝑎 = 0.540 𝑑𝑛  

The lower part of the spiky leg has the same cross section as the cubical leg, so: 

 𝐴 = 𝑤 ∙ ℎ =  
𝐷

3
∙

𝐷

3
=

𝐷2

9
= 0.2297 𝑑𝑛

2  

𝐼 =
1

12
𝑤ℎ3 =

1

12
(

𝐷

3
)

4
= 0.001029 𝐷4 = 0.004461 𝑑𝑛

4    

The upper part of the spiky leg has a declining width, which can be described as: 

 
𝐿𝑚𝑎𝑥−𝐿

0.2405 𝑑𝑛
∙ 0.481 𝑑𝑛, which can be rewritten to 1.08 𝑑𝑛 − 2𝐿, when filling in Lmax. 
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Using the definition of L as in Figure 4.10, going upward starting from the bottom of the leg, the 

width can be described as:  

𝑤(𝐿) =  {
1.08 𝑑𝑛 − 2𝐿        𝑓𝑜𝑟  0.299 𝑑𝑛 ≤ 𝐿 ≤  𝐿𝑚𝑎𝑥 

 
0.481 𝑑𝑛                𝑓𝑜𝑟  0 ≤ 𝐿 ≤ 0.299 𝑑𝑛

     

This expression for the width can be used to determine the area, and area moment of inertia for 

each location in the leg, simply via 𝐴 = 𝑤 ∙ ℎ and 𝐼 =
1

12
𝑤ℎ3  

 

Gravel bed as a spring 

Just like the concrete armour unit has a certain stiffness against deformation, the breakwater core, 

that functions as a bed for the armour units, has a stiffness as well. When a load is applied on the 

bed, it will experience a certain deformation. The force divided by this deformation could then be 

interpreted as the spring stiffness of the bed. This spring stiffness is difficult to calculate accurately, 

but an estimate will be made. This will be done via two methods, to ensure that the determined 

value is in the right order of magnitude.  

Both methods will be elaborated and compared below, resulting in an estimate of the bed spring 

stiffness of: 

𝑘𝑏𝑒𝑑[𝑁/𝑚] = 69.4 ∙ 106 ∙ 𝑑𝑛
2   

Method 1. Based on Young’s modulus 

In a similar way as for the compression of a beam, the compressive stiffness of the bed can be 

estimated as:  

𝑘𝑏𝑒𝑑 =
𝐸𝐴

𝐿
  

Some information about the Young’s modulus of soil is retrieved from Geotechdata.info (2013). The 

Young’s modulus of a gravel bed is dependent on the packing density, so there is not a single valid 

value. For sand and gravel beds, the Young’s modulus varies from 30 MPa to over 300 MPa. Since the 

breakwater consists or rocks, it is assumed to be comparable to the stiffest gravel soils, so  a Young’s 

modulus of E = 300 MPa will be used.  

The effective area, over which the force is spread, 

can be determined based on the friction angle of 

the gravel, φ = 35°. This is illustrated in             

Figure 4.11. 

 

 

 

            Figure 4.11: Force distribution through the gravel bed 
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Due to the cone-like shape over which the force is spread, the area will be determined by a circle:   

𝐴 = 𝜋𝑟2   

where: 𝑟 = tan(35°) ∙ 𝐿  

𝐴 = 𝜋 tan2(35°) ∙ 𝐿2  

Averaging the area over the length gives: 

𝐴𝑎𝑣𝑔 =
𝜋

2
tan2(35°) ∙ 𝐿2  

The effective length 𝐿 has to be estimated as well. It seems logical that 𝐿 will be larger for a larger 

force. The effective length is therefore correlated with the size of the armour unit, 𝑑𝑛. A precise 

value of the length cannot be determined without proper investigation, but just to get an idea of the 

eventual spring stiffness, a value of 𝐿 = 𝑑𝑛 will be used here. 

Now, all estimations can be filled in in the formula for the stiffness, leading to: 

𝑘𝑏𝑒𝑑 =
𝐸𝐴

𝐿
= 𝐸 ∙

𝜋

2
tan2(35°) ∙ 𝐿 = 300 ∙ 106 ∙

𝜋

2
tan2(35°) ∙ 𝑑𝑛  

𝑘𝑏𝑒𝑑 = 231 ∙ 106 ∙ 𝑑𝑛  

 

Method 2. Based on subgrade modulus 

Another possibility to determine a spring stiffness of the soil is to make use of  the subgrade 

modulus, 𝑘𝑠  [kN/m³]. This is a parameter that is used in geo-engineering, to determine the 

deformations and settlements of a soil. Though a breakwater core is different from regular soils, the 

subgrade modulus may still provide a reasonable estimate of the spring stiffness. 

The spring stiffness will then be determined as: 

𝑘𝑏𝑒𝑑 = 𝑘𝑠 ∙ 𝐴  

Where the area 𝐴 can be determined by the contact area between the armour unit and the soil. This 

can be estimated as the area of a leg of the armour unit:  

𝐴 =  
𝐷

3
∙

𝐷

3
=

𝐷2

9
= 0.231 ∙ 𝑑𝑛

2   

The subgrade modulus, 𝑘𝑠, will be based on commonly used values. An article from Avci and Gurbuz 

(2018) provides these values for several types of soil. The subgrade modulus also depends on the 

packing density etc., so there is not a single valid value. For massive rock, the subgrade modulus can 

be 𝑘𝑠 > 2,000,000 𝑘𝑁/𝑚³, while for sand or gravel, values of 𝑘𝑠 = 100,000 − 300,000 𝑘𝑁/𝑚3 are 

common. The breakwater core consists of rocks, so values for a massive rock are not appropriate. It 

is assumed that the rock bed is comparable to the stiffest gravel soils. Therefore, a value of 

𝑘𝑠 = 300,000 𝑘𝑁/𝑚³ will be used here. 
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Then, the formula to determine the bed spring stiffness becomes: 

𝑘𝑏𝑒𝑑 = 0.231 ∙ 𝑑𝑛
2 ∙  300,000 ∙ 103  

𝑘𝑏𝑒𝑑 = 69.4 ∙ 106 ∙ 𝑑𝑛
2   

Comparison method 1 and method 2 

The previously described methods will be compared, to check if their estimations of the bed spring 

stiffness are in the same order of magnitude. In Figure 4.12, both methods are plotted against the 

size of the armour unit. Due to the fact that method 1 is linearly correlated with 𝑑𝑛 and method 2 is 

correlated to 𝑑𝑛
2, there will naturally be a deviation between the two, but it is observed that both are 

roughly in the same order of magnitude, for reasonable values of 𝑑𝑛.  

 

Figure 4.12: Comparison bed stiffness methods 

Method 2, based on the subgrade modulus, seems more reliable, since the required assumptions are 

less arbitrary. It is therefore decided to use the spring stiffness obtained from method 2, so: 

𝑘𝑏𝑒𝑑 = 69.4 ∙ 106 ∙ 𝑑𝑛
2   
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4.2 Empirical determination of impact force 
The CUR (1989 – 1) performed physical model tests to determine the force over time during concrete 

on concrete impact. They used a test setup as visualised in Figure 4.13. A cube is used as moving 

element to hit a spherical specimen that is attached to a large concrete pole. The cube is attached to 

a pendulum that is able to swing in a single direction, while movement in other directions is 

prevented. The pole is attached to similar pendulums. Measuring devices are placed on both sides of 

the pole, approximately 1 m away from the start of the pole. A Doppler radar is used to measure the 

impact velocity of the swinging element.    

 
Figure 4.13: Test setup in CUR research 

Based on the physical test results, the CUR (1989 – 1) developed a method to determine the force-

time relation, based on an elasto-plastic model. The results of this method are found to be in 

relatively good accordance with the test results. The idea is to make a force-time diagram that looks 

like the one given in Figure 4.14, with a rising section, a constant section and a restitution section.  

 
Figure 4.14: Force-time relation 

The following formulas are obtained from the CUR report (1989 – 1). Note that the CUR report 

denotes forces with P, but this is changed to F in this report, to retain coherence and clarity.           

The rising section and restitution section are approximated by a sinusoidal curve. This curve is 

governed by: 

 
𝐹(𝑡) = 𝐹𝑚𝑎𝑥 ∙ sin (

𝑡∙
𝜋

2

𝑡𝑚𝑎𝑥
)   

Equation 4.13 

Where Fmax and tmax correspond to the top of this sinusoidal curve, and are calculated with: 

 
𝐹𝑚𝑎𝑥 = (1.25 ∙ 𝛼 ∙ 𝑣2 ∙ 𝐾

2

3)

3

5
    

Equation 4.14 

 
𝑡𝑚𝑎𝑥 = 1.47 ∙ (1.25 ∙

𝛼

𝑣
1
2∙𝐾

)

2

5
   

Equation 4.15 

Where K is the contact parameter, Ke1 for the rising section and Ke2 for the restitution section, v is the 

impact velocity, and α is the effective mass, defined as: 𝛼 =
𝑚1∙𝑚2

𝑚1+𝑚2
 with m1 as the mass of the 

incoming element, and m2 as the mass of the stricken element.  
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m1 can be determined as the mass of the observed armour unit. m2 is also dependent on the 

freedom of movement of the stricken armour unit. If the stricken unit would be free to move, m2 is 

just the mass of the unit, though if it were to be fully clamped, m2 should be set equal to infinity. The 

two limits are thus m2 = m1 and m2 = ∞, resulting in respectively 𝛼 =
𝑚1∙𝑚1

𝑚1+𝑚1
=

𝑚1

2
 and 𝛼 =

𝑚1∙∞

𝑚1+ ∞
=

𝑚1∙∞

∞
= 𝑚1. Therefore: 

𝑚1

2
≤ 𝛼 ≤ 𝑚1in any case. 

The CUR research concluded that the contact parameters for the rising and restitution sections 

generally are related as: 𝐾𝑒2 = 70% ∙ 𝐾𝑒1.  

Since Ke2 is lower, the restitution section is used as the starting point to capture the force-time 

relation. The area under the restitution section of the force-time diagram is set equal to 0.5∙m∙v, so 

half of the total momentum. This is an arbitrary assumption that is convenient as it helps to fully 

determine the force-time relation, but the CUR report does not make clear if this assumption is 

actually based on a clear idea. Anyway, the time interval of the restitution can then be calculated as: 

 
𝑡𝑒2 =

𝑡𝑚𝑎𝑥 
𝜋

2

∙ arccos (
(𝐹𝑚𝑎𝑥 ∙𝑡𝑚𝑎𝑥 − 0.5𝑚𝑣∙

𝜋

2
)

𝐹𝑚𝑎𝑥∙𝑡𝑚𝑎𝑥
)    

Equation 4.16 

Where Fmax and tmax are calculated based on Ke2. 

The maximum value of the force is then obtained from the sinusoidal curve that was given in 

Equation 4.13:   𝐹(𝑡𝑒2) = 𝐹𝑚𝑎𝑥 ∙ sin (
𝑡𝑒2∙ 

𝜋

2

𝑡𝑚𝑎𝑥
).  The time interval of the rising section can be obtained 

by using this relation in reverse. Using Fmax and tmax calculated with Ke1: 

𝑡𝑒1 = arcsin (
𝐹(𝑡𝑒2)

𝐹𝑚𝑎𝑥
) ∙

𝑡𝑚𝑎𝑥
𝜋

2

  

The area under the sinusoidal curve can be calculated by: 

𝐴 =
𝐹𝑚𝑎𝑥 ∙𝑡𝑚𝑎𝑥

𝜋

2

(1 − cos (
𝑡∙

𝜋

2

𝑡𝑚𝑎𝑥
))  

This area can be calculated for the rising section (A1) and the restitution section (A2). 

The total area under the force-time diagram is supposed to be equal to the total momentum: 𝑚 ∙ 𝑣. 

Therefore, the time interval of the (constant) middle section can be calculated by subtracting the 

areas of the rising and restitution section: 

𝑡𝑝 =
𝑚∙ 𝑣−𝐴1−𝐴2

𝐹(𝑡𝑒2)
  

The force-time relation is now fully captured and all sections could be plotted together in one figure, 

to create a graph similar to the one given previously, in Figure 4.14.  
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4.3 Comparison theoretical and empirical impact force 
In this paragraph, the theoretical impact force, as determined in this MSc thesis, will be compared to 

the empirical impact force from the research by the CUR (1989 – 1). 

Since the method in this MSc thesis results in just the peak force, it is most relevant to compare it 

only to the peak force in the force-time relation of the CUR report, which is given by: 

 𝐹𝑚𝑎𝑥 = (1.25 ∙ 𝛼 ∙ 𝑣2 ∙ 𝐾
2

3)

3

5
 

Where 
𝑚1

2
≤ 𝛼 ≤ 𝑚1, depending on the mobility of the stricken unit, as treated in the previous 

paragraph, and m1 is the mass of the moving element. 

The CUR found a value of K = 175 N/mm² for their test with diameter D = 420 mm, plus they 

determined that the contact parameter K for larger/smaller elements can be calculated from:  

𝐾𝑒1 = 175 ∙
𝐷

420
  

With D as the diameter in mm of the spherical element that was used in their tests.  

Since the concrete armour units are not spherical, but more cubical, the spherical diameter will be 

converted into a cubical diameter, based on their volumes: 𝑉𝑠𝑝ℎ𝑒𝑟𝑒 =
4

3
𝜋𝑟3 =

𝜋

6
𝐷𝑠𝑝ℎ𝑒𝑟𝑒

3  and 

𝑉𝑐𝑢𝑏𝑒 = 𝐷𝑐𝑢𝑏𝑒
3 , so 𝐷𝑠𝑝ℎ𝑒𝑟𝑒 =  √

6

𝜋
 

3
∙ 𝐷𝑐𝑢𝑏𝑒, where Dcube is equal to dn for cubes, so: 

𝐾𝑒1 = 175 ∙
𝑑𝑛[𝑚𝑚]∙ √

6

𝜋
 

3

420
    

Since dn is generally given in metres, this is rewritten to: 

𝐾𝑒1 = 175 ∙
𝑑𝑛[𝑚]∙ √

6

𝜋
 

3

0.420
  

𝐾𝑒1 =  516.96 ∙ 𝑑𝑛[𝑚]  

Note that this is an empirical relation; Ke1 [kN/mm3/2] and dn [m] do not have the same unit. 

Now, for the comparison, it is important to try to get the two situations as close as possible, as it 

would otherwise be an unfair comparison. That is difficult though, due to the origin of both methods: 

the theoretical method observes an Xbloc®, while the empirical method observes a certain test 

setup. In order to align the two situations as much as possible, both are viewed as having a clamped 

stricken element, thus the velocity of block 2, 𝑣2 = 0 m/s  and the effective mass, 𝛼 = 𝑚1. For the 

comparison, the spring of the bed is excluded, and the force is determined solely based on the 

stiffness of the leg. Furthermore, the elements are the same size and have the same impact velocity. 

A few plots are made, where the impact force is plotted against the impact velocity, for a certain 

block size, given in Figure 4.15 to Figure 4.17. A distinction is made between the spiky leg and the 

cubic leg of the Xbloc®s, since they result in different forces. 



65 
 

 

Figure 4.15: Comparison impact forces, dn = 1.0 m, θ = 90° 

 

Figure 4.16: Comparison impact forces, dn = 2.0 m, θ = 90° 

 

Figure 4.17: Comparison impact forces, dn = 3.0 m, θ = 90° 
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It is important to realise that the incoming angle of the force also has a large effect on the value of 

the force. The legs are much stiffer against compression than against bending, and it is generally said 

that “stiffer elements attract more of the load”, thus logically, if the leg is loaded in compression, it 

will attract a higher force, than when it is loaded in bending. This is visualised in Figure 4.18, where 

the impact force is plotted against the angle of the incoming force. Note: 0° is pure compression, 90° 

is pure bending. The force in case of pure compression is roughly twice as much as the force in case 

of pure bending.  

 

Figure 4.18: Impact force versus incoming angle 

 

Conclusions 

Based on Figure 4.15 to Figure 4.17, the theoretically determined impact force is generally higher 

than the empirically determined impact force from the CUR report. The theoretical and empirically 

determined values tend to be closer to each other for larger armour units, and also for larger impact 

velocities, which are luckily the most important regions, with larger chance of breakage. Still, the 

theoretically determined forces can get higher when changing the incoming angle of the force. This 

may seem problematic with respect to breakage, but higher forces occur when the legs are loaded 

more in compression, while compressive loads generally cause less trouble for concrete than bending 

and tension. 

All in all, the theoretical forces are relatively high with respect to the empirical forces, but it is 

important to note that the situation is treated as if the stricken block is not going to move, since it is 

unknown how much of the kinetic energy of the moving block would be converted into kinetic 

energy of the stricken block. Though, it is likely that the stricken block will also move, which reduces 

the impact force. There is so much diversity in the force for different situations, that it is difficult to 

say that the force is determined correctly in this MSc thesis. However, what can be said, is that the 

force is at least in the right order of magnitude, based on the comparison with the CUR test results. 
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5. Failure 
This chapter deals with determining whether a concrete unit will break or not. Failure is a matter of 

strength versus stresses, so those are important to determine. Though, first of all, it is important to 

identify the failure mechanism, in order to know which locations are critical, and in what way the 

concrete will fail. When the failure mechanism is known, the occurring stresses can be compared to 

the concrete strength, to predict concrete failure. The concrete strength is thus very important as 

well, so the second paragraph of this chapter is dedicated to finding a valid strength of concrete 

under impact loading. To conclude this chapter, it will shortly be described what the model results 

mean with regard to actually breaking the concrete armour unit. 

5.1 Failure mechanisms 
In this paragraph, several possible failure mechanisms of a concrete armour unit will be evaluated. 

This will be done for the case of an Xbloc®, but most failure modes are similar for other types of 

armour units. It is important to also keep in mind which failure mechanisms would have the most 

severe effect on the overall state of the breakwater, since failure of the concrete does not 

necessarily lead to failure of the breakwater as a whole. The stability of the armour units is governed 

by their weight and interlocking, so reducing the weight and interlocking. Furthermore, in nearly all 

cases, the legs of the Xbloc® are involved in the impact, not the body of the Xbloc®. Therefore, the 

observed failure mechanisms will be mainly focussed on the legs. A short description of each failure 

mechanism will be given, accompanied by an illustration to show what the failure looks like. To 

conclude, the critical failure mechanism will be identified. 
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5.1.1. Description of failure mechanisms 

Local crushing due to compression 

The impact between the armour units leads to a concentrated load. This will locally cause high 

compressive stresses, around the location of the impact. Due to the enormous weight of the large 

armour units, the concentrated loads can be so high that the local stresses exceed the concrete 

strength, and the concrete will be crushed. A small part of the concrete will be crumbled to pieces, as 

illustrated in Figure 5.1 and Figure 5.2. This will weaken the leg of the armour unit, but the loss of 

weight is minor, probably even negligible. The armour unit will still be able to interlock with the 

surrounding units as well, thus the effect on interlocking is also negligible. However, during a storm, 

multiple high waves will induce motion of the block in a similar way, thus it is probable that a block is 

repeatedly loaded at almost the same location. Repeatedly crumbling some of the concrete will 

hollow out the leg, until a larger piece of the leg will eventually break off, in which case the loss of 

weight could surely be significant. Local crushing will likely occur frequently, since the forces can be 

huge when a large block has a significant impact velocity, and the impact force is concentrated. 

However, it is not easy to estimate up front how likely the occurrence of more severe failure due to 

repeated loading would be. 

 

Figure 5.1: Schematisation of local crushing, spiky leg 

 

Figure 5.2: Schematisation of local crushing, cubical leg 
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Chipping off corners due to shear 

When one of the legs is hit near the corner of the leg, under a specific angle, the impact induces a 

shear force, which locally leads to high shear stresses, since the effective area is small near the 

corner. The corner may then be chipped off, as illustrated in Figure 5.3 and Figure 5.4. The chipped 

piece has more weight than the previously observed crumbled concrete due to local crushing, but in 

most cases it is still a relatively small piece of the leg causing only a minor decrease of the weight of 

the armour unit. The interlocking capabilities will not be severely reduced either, by the loss of a 

corner. The likelihood of a corner being chipped off  is rather large, if the force comes in at the right 

location and under the right angle. The situation of occurrence is thus very specific, so overall, it will 

probably not happen as frequent as local crushing. 

 

 

Figure 5.3: Schematisation chipped corner, spiky leg 

 

Figure 5.4: Schematisation chipped corner, cubical leg 
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Rupture of the leg due to bending 

When regarding the leg as a cantilever beam, the impact force would induce a linear 

bending moment in the leg: zero at the location of the force, up till a maximum at 

the base of the leg, where it is attached to the body.  

This bending moment may lead to cracks at the base of the leg, and due to the brittle behaviour of 

the concrete, the whole leg can be torn off, visualised in Figure 5.5 and Figure 5.6. This is the most 

severe failure mechanism, resulting in a significant loss of weight, while also losing a significant part 

of the interlocking capability. This type of failure is more likely to occur when the force acts on the 

upper part of the leg, such that it has a large arm, thus a large bending moment. 

 

 

Figure 5.5: Schematisation ruptured leg due to bending, spiky leg 

 

Figure 5.6: Schematisation ruptured leg due to bending, cubical leg 
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Rupture of the leg due to shear 

When regarding the leg as a cantilever beam, the impact force would induce a 

constant shear force in the leg, at the part of the leg between the force and the 

support. 

From this visualisation though, the shear failure could happen at any plane between the force and 

the support. Since the shear force is constant, it will find its way to the weakest plane, where it will 

cause shear failure, thus complete rupture of the piece of the leg. Though, based on some 

photographs, for example the ones given in Figure 5.7, of broken breakwater armour pieces, rupture 

will normally occur at the base, and not somewhere halfway the leg, which could be an indication 

that rupture due to bending moments is governing.  

 

Figure 5.7: Broken concrete armour units, Hofland et al. (2018) 

 

Schematizations of rupture of the leg due to shear are given in Figure 5.8 and Figure 5.9. 
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Figure 5.8: Schematisation ruptured leg due to shear, spiky leg 

 

Figure 5.9: Schematization rupture leg due to shear, cubical leg 

5.1.2 Discussion of critical failure mechanism 

An overview of all failure mechanisms is given in Table 5.1. 

Type of failure Consequences  Likelihood of occurrence 

Local crushing Very minor weight loss, 
though repeated loading 
weakens the armour unit 

Likely. The forces can be huge, causing 
locally high compressive stresses 

Chipping off corners Minor weight loss Not very likely, since it only happens in 
very specific cases 

Rupture due to bending Severe weight loss For large waves, and sufficient bending 
moment arm, it is quite likely to get 
bending failure, though this is likely only  
for a few percent of the blocks 

Rupture due to shear Severe weight loss Unlikely, since rupture due to bending is 
governing in most cases 

Table 5.1: Likelihood of occurrence and consequences of several failure mechanisms 

Overall, rupture of the leg due to bending is the most interesting failure case to investigate, because 

it has severe consequences, plus a decent probability of occurrence. Rupture due to shear is 

potentially dangerous as well, but it is checked in Appendix C that shear over the full leg is normally 

not going to happen. 
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5.2 Concrete strength during impact load 
Concrete is known to be stronger against short term loading than against long term loading. This 

effect is probably best known from creep, which causes the deflections to increase when a concrete 

member is loaded over a period of months or years. The opposite is also true: concrete has a higher 

strength against a very short impact load. The collision between two breakwater armour units is such 

a case of a short impact load.  For this MSc thesis, it is thus important to take the impact strength of 

concrete into account, rather than the regular concrete strength. 

The book Concrete Technology by Neville and Brooks (2010) shortly treats the impact strength of 

concrete. It is stated that there is no unique relation between the impact strength and the static 

strength of concrete. Instead, the impact strength depends among others on the type and size of 

aggregate, and on the storage conditions of the concrete. The impact strength of water-stored 

concrete is somewhat lower than when the concrete is dry, which is disadvantageous for breakwater 

armour units, with the abundance of water nearby. The aggregate affects the impact strength in 

multiple ways. Using angular aggregate with a rough surface gives a higher impact strength than 

using rounded aggregate with a smooth surface. Furthermore, using a smaller maximum size of the 

aggregate significantly improves the impact strength. Aggregate with a low modulus of elasticity and 

a low Poisson’s ratio are also found to improve the impact strength.  

This MSc thesis does not aim to find the best way to make concrete armour unit with a high impact 

strength, but rather to find a useable value for the impact strength, relative to the static strength 

values defined by the concrete classes. Neville and Brooks (2010) refer back to a German research by 

Popp (1977), where the relation between the compressive strength and the rate of loading was 

investigated. It was found that the strength increases greatly when the load is applied faster, leading 

to an impact strength that is more than double the strength at normal rates of loading, even roughly 

2.5 times as large.  

All in all, it is clear that there is not a single expression that can relate the impact strength to the 

static strength of concrete. In order to use the impact strength in this MSc thesis, a reasonable value 

must be estimated. Therefore, it is assumed that the impact strength of the observed concrete 

armour units is twice as large as the static strength. 

𝑓𝑐,𝑖𝑚𝑝𝑎𝑐𝑡 = 2 ∙ 𝑓𝑐  

Now, the probabilistic distribution of the concrete strength will be based on the commonly used 

characteristic strength and mean strength, illustrated in Figure 5.10. Most importantly, the deviation 

between characteristic strength and mean strength is 1.64 ∙ 𝜎. 

 

Figure 5.10: Characteristic strength and mean strength, Eurocode (n.d.)  
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In the standard concrete classes, for class C30/37, the mean tensile strength is 𝑓𝑐𝑡𝑚 = 2.9 𝑁/𝑚𝑚², 

while the characteristic tensile strength is 𝑓𝑐𝑡𝑘0.05 = 2.0 𝑁/𝑚𝑚². Therefore, the standard deviation 

can be estimated as: 𝜎 =
𝑓𝑐𝑡𝑚−𝑓𝑐𝑡𝑘0.05

1.64
=

2.9−2.0

1.64
= 0.549 𝑁/𝑚𝑚². 

Since the impact strength is estimated as twice the static strength, the standard deviation will also be 

twice that of the static strength. Finally, the probabilistic distribution of the tensile impact strength is 

given by the following normal distribution: 

𝑓𝑐𝑡,𝑖𝑚𝑝𝑎𝑐𝑡 = 𝑁 (𝜇 = 5.8 𝑁/𝑚𝑚2, 𝜎 = 1.098 𝑁/𝑚𝑚²)  

 

 

5.3 Failure definition 
This short paragraph is meant to explain what is regarded as failure of the concrete armour unit in 

this MSc thesis. The failure is very complex, while this MSc thesis uses a lot of assumptions and 

simplifications. It is therefore important to explain the actual meaning of the results of the model in 

this MSc thesis. 

The stresses are determined in a linear elastic way. Therefore, it is possible to identify cases in which 

the linear elastic stresses exceed the strength of the concrete. In such cases, plastic deformations will 

occur, i.e. the concrete will start cracking. From that moment onward, the linear elastic models are 

no longer useful. In order to model plastic deformations, the stresses need to be determined by 

taking plasticity into account. That is something that is not done in this MSc thesis. 

The results in this MSc thesis will therefore only show whether plastic deformations are expected to 

start, which is assumed to eventually lead to complete rupture of an armour unit leg. When the 

strength of the concrete is only barely exceeded by the determined stress, this might only result in a 

crack, and not in complete rupture of the leg at once. However, concrete armour units are loaded 

repeatedly during a storm. The movement of most of the armour units is prevented by its 

surroundings, but the ones that have sufficient movement space will likely experience multiple 

movements during a storm. Therefore, if the stresses exceed the strength to start cracks, it is likely 

that the stresses will exceed the strength again for the next large wave. This repeated loading 

weakens the concrete armour unit every time that the strength is exceeded, so it will eventually tear 

off the whole leg of the armour unit. 
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6. Stresses 
The goal of this chapter is to find an expression to determine the maximum tensile stresses during 

the impact, which may lead to rupture of a leg of the armour unit. The starting point is to gain insight 

into the stress development in this leg, which is regarded as a deep beam. A better understanding of 

the behaviour helps to find an analytical expression for the stresses. A FEM model will be used to 

observe the stresses throughout the leg, and this can also be used to obtain the shape of the stress 

distribution at the critical location. Subsequently, a strut-and-tie model will be set up to represent 

the leg, from which a tie force is obtained at the same critical location. Now, an expression for the 

maximum tensile stress can be obtained, which can be implemented in the Monte Carlo simulation. 

The process covered in this chapter is visualised by a flow chart in Figure 6.1. 

 

 

Figure 6.1: Flow chart chapter 6. Stresses 
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6.1 Behaviour of deep beams 
The legs of an Xbloc® have a large depth with respect to their length, so they have to be treated as 

deep beams. The well-known formulas to determine the stresses in a beam are therefore not fully 

valid. Still, it is preferred to obtain a relatively simple equation to determine the maximum stresses in 

the beam, in order to incorporate it as the next step in Monte Carlo simulation of this MSc thesis. 

Therefore, an attempt is made to reduce the complex behaviour of a deep beam to a simple 

equation, that predicts the maximum stresses with acceptable accuracy. 

6.1.1 Effect of depth to span ratio 

The effect of the depth to span ratio on the behaviour of a beam is treated in an article by Patel, 

Dubey and Pathak (2014). They made several plots to show the stress distributions for various depth 

to span ratios of a simply supported beam, given in Figure 6.2 and Figure 6.3. Note that this situation 

differs from the cantilever beam that is treated in this MSc thesis, but it helps to understand the 

qualitative difference in stress development for deep beams. 

 

Figure 6.2: Bending stress distribution for a few depth to span ratios, Patel et al. (2014) 

Figure 6.2 shows that the bending stresses are significantly lower in a deep beam (d/l=0.5) than in a 

regular beam (d/l=0.133). It is also clearly visible that the bending stress distribution is not linear over 

the beam depth, because the green line (d/l=0.5) is curved. 

 
Figure 6.3: Shear stress distribution for a few depth to span ratios, Patel et al. (2014) 

Figure 6.3 shows that the shear stress is also significantly lower in a deep beam than in a regular 

beam. 
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6.1.2. Finite-element model 

In order to improve the understanding of the stress distributions in the legs of an Xbloc®, a finite-

element model will be made using DIANA. The spiky leg and cubical leg will both be modelled, to 

check if they behave significantly different.  

 

Figure 6.4: Xbloc® dimensions 

A block of size D = 3 m will be modelled, to obtain a convenient value of D/3 = 1 m = 1000 mm. For 

both legs, the horizontal force has a value of 1000 kN and is applied at a height of 621 mm, to make it 

easier to compare them. First, the legs will be modelled with a clamped edge to the body. The 

relevant output of DIANA is shown in Figure 6.5 for a spiky leg, and in Figure 6.6 for a cubical leg. The 

applied force is drawn in these figures to make clear where the force was applied in the model.  

 

Figure 6.5: Finite element model, spiky leg, horizontal force at 621 mm 
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Figure 6.6: Finite-element model, cubical leg, horizontal force at 621 mm 

It is also possible to obtain a table from DIANA with all the calculated values. This feature is used to 

obtain the stresses at the bottom of the leg, and the stress distribution at this edge is plotted in 

Excel, shown in Figure 6.7. Note that the stresses of the cubical leg are barely visible in this plot, 

because they are nearly identical to the stresses in the spiky leg. This leads to the belief that, when 

the force works on the lower part of the spiky leg, the behaviour is very similar to the cubical leg.  

 

Figure 6.7: Stresses at the bottom of the leg 

Note that the shape of the stress distribution obtained in Figure 6.7  is very similar to that of the 

bending stresses in  a deep beam in Figure 6.2, by Patel et al. (2014). 
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To check the behaviour of the stresses into the body, another finite-element model check is 

performed, where the spiky leg is modelled with a part of the body. The result of this model is given 

in Figure 6.8, where it is nicely shown that there are high bending stresses at the junction of the leg 

to the body. This strengthens the belief that this is indeed the critical location, thus making it 

acceptable to check the stresses only on this location. 

 

Figure 6.8: Finite element model, spiky leg with part of the body 
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6.2 Strut-and-tie model 
This paragraph treats the determination of the maximum tensile stresses due to bending, via a strut-

and-tie model. First, the strut-and-tie model will be set up. Then, the stresses will be determined 

from the force obtained from the strut-and-tie model. To conclude this paragraph, a quick validity 

check of the obtained stress equation will be performed. 

6.2.1 Set up of strut-and-tie model 

A strut-and-tie model is a method that can be used to determine the required amount and size of 

reinforcement in concrete structures that cannot be simplified as a beam or plate. An example of a 

strut-and-tie model in a concrete corbel is given in Figure 6.9. In the case of concrete breakwater 

armour units there is no reinforcement, but the obtained tensile force can be used to determine the 

stress distribution at a certain location, so the strut-and-tie method is still applicable. 

 
Figure 6.9: Example strut-and-tie model, Putri et al. (2018) 

The strut-and-tie model that will be applied in the model in this MSc thesis is given in Figure 6.10. It is 

illustrated for the cubical leg, but the spiky leg will have a similar strut-and-tie model. The relevant 

location for determining the maximum tensile stress is highlighted in the lower left corner. Though 

the stress will only be determined in the leg, the strut-and-tie model is extended into the body, in 

order to reduce the importance of the choice of the supports, thereby reducing the error this choice 

causes. The force comes in under an angle, but can be decomposed in a horizontal and vertical 

component. 

Note that this is a 2D representation with the force acting on the face of the leg. Oblique forces 

acting on the corner of the leg are therefore not included, though these are expected to mainly cause 

local failure of the concrete, instead of the more severe complete rupture of the leg. 

It is commonly used in design practice that the angle of the concrete compressive strut must be 

between 21.8° and 45°, which is for example stated in the book ‘Constructieleer Gewapend Beton’, 

by Braam and Lagendijk (2011). The strut-and-tie model with a double layer, depicted at the left in 

Figure 6.10, is thus actually not valid when the force acts at a location near the base of the leg, since 

the angle would be too small. Therefore, it is opted to create a strut-and-tie model with a single 

layer, depicted at the right in Figure 6.10, which will be used in cases with a force acting near the 

base of the leg. 
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Figure 6.10: Strut-and-tie model in the cubical leg 

Solving the strut-and-tie model can be done by setting up the equations for horizontal and vertical 

equilibrium for each of the nodes. The reaction forces in the supports can normally be solved by the 

outer equilibrium. However, since the system is statically indeterminate, it is more difficult to solve 

by hand. 

Luckily, there is no need to solve it by hand, because there are nifty computer programs like 

MatrixFrame that are able to solve the bar forces in such systems. As an example, the double layer 

strut-and-tie model as it looks like in MatrixFrame is given in Figure 6.11, where tension is positive 

and compression is negative. A similar model can be made in MatrixFrame for the single layer strut-

and-tie model. 

 

Figure 6.11: MatrixFrame input and results (tension is positive) 
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The model in MatrixFrame is ran for various heights of the acting force, in order to obtain an 

expression that is valid for random incoming forces. Since there is a different model when the force 

acts on the lower half of the leg, there is a slight deviation in the results there, as visible in the 

dashed line in Figure 6.12. Still, it is possible to fit a line that is a good approximation for both the 

single- and double layer model. This approximation is plotted in Figure 6.12 with the red line, and is 

given by: 

 
𝑁 = (

ℎ

𝑏
)

0.9
∙ 𝐹𝐻 − 𝐹𝑉     

Equation 6.1 

 

 

Figure 6.12: Comparison exact MatrixFrame results with the approximated expression 

6.2.2 Stresses from the strut-and-tie model 

Based on the force obtained from the strut-and-tie model, an equation to approximate the maximum 

tensile stress will be created. To do so, a stress distribution has to be determined. The stresses will be 

calculated from a linear distribution, even though it is earlier (in Figure 6.2 and Figure 6.7) already 

seen that the stress distribution over the depth of the cross section is curved, because of the deep 

beam behaviour. Therefore, a correction will be applied to compensate for this error. 

To determine the correction needed, a linear approximation will be added to the graph of Figure 6.7. 

In this approximation, it is important to keep the integral of the stresses equal, such that the 

resulting force is equal. The integral of the positive part of the nonlinear curve is calculated 

numerically. This is set equal to the integral of the linear approximation, which is calculated as the 

area of the triangle. The linear approximation has a maximum tensile stress of 𝜎𝑚𝑎𝑥,𝑙𝑖𝑛𝑒𝑎𝑟 =

3.5 𝑁/𝑚𝑚², while for the nonlinear curve: 𝜎𝑚𝑎𝑥,𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = 6.11 𝑁/𝑚𝑚². Again, note that their 

area under the graph is equal, over the positive part of the stresses.  

Based on this evaluation, by calculating the stresses in a linear way, a correction of 6.11/3.5 = 1.75 

is needed. This factor is visualised in Figure 6.13, where the y-axis of the graph is normalized. 
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Figure 6.13: Normalized graph to show the correction factor for nonlinearity 

The calculation of the stresses will thus at first be based on a 

linear distribution, for which the resulting force can be 

calculated as the stress integrated over the area: 

𝐹𝑠𝑡𝑟𝑒𝑠𝑠 = 𝜎𝑎𝑣𝑔 ∙ 𝐴 =
𝜎𝑚𝑎𝑥

2
∙

𝑏

2
∙ 𝑤𝑖𝑑𝑡ℎ   

For the squared cross section of the Xbloc® legs, 𝑤𝑖𝑑𝑡ℎ = 𝑏, 

which has a dimension of 𝐷/3: 

𝐹𝑠𝑡𝑟𝑒𝑠𝑠 =
𝜎𝑚𝑎𝑥∙𝑏2

4
=

𝜎𝑚𝑎𝑥∙(
𝐷

3
)

2

4
=

𝜎𝑚𝑎𝑥∙𝐷2

36
  

The resulting force of the stresses is equal to the force in the bar of the strut-and-tie model, which 

was determined as: 𝑁 =  (
ℎ

𝑏
)

0.9
∙ 𝐹𝐻 − 𝐹𝑉 

𝐹𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑁  

𝜎𝑚𝑎𝑥∙𝐷2

36
= (

ℎ

𝑏
)

0.9
∙ 𝐹𝐻 − 𝐹𝑉  

 

Now, add the previously determined correction factor for nonlinearity of 1.75, and rewrite it to dn via 

𝐷 = 1.443 ∙ 𝑑𝑛 to finally obtain Equation 6.2. In this equation, FH and FV are in N and dn is in m, so 

𝜎𝑡,𝑚𝑎𝑥 follows in 𝑁/𝑚².   

 
𝜎𝑡,𝑚𝑎𝑥 = 30.3 ∙

(
ℎ

𝑏
)

0.9
∙𝐹𝐻 − 𝐹𝑉

𝑑𝑛²
  

Equation 6.2 
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6.2.3 Validity check 

A validity check of the obtained stress relation is performed by comparing it to a stress calculation via 

slender beam theory. For a regular slender beam, the following equations to determine the bending 

stresses are used: 

𝑀 = 𝐹 ∙ 𝑎𝑟𝑚   𝜎𝑚𝑎𝑥 =
𝑀

1

6
𝑏ℎ2

  

The two methods to determine the stresses are plotted in the same graph, shown in Figure 6.14. 

 

Figure 6.14: Comparison stresses from strut-tie model with slender beam theory 

It is earlier noted that the stresses in a deep beam are much lower than in a regular beam, back in 

Figure 6.2, in paragraph 6.1.1 Effect of depth to span ratio. Now, Figure 6.14 clearly shows that the 

stresses from the strut-and-tie method are indeed much lower than the stresses from slender beam 

theory, as expected. Though, keep in mind that this is no solid proof that the values are actually 

correct, but it does show that it is at least in the expected range. 
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7. Final model  
In this chapter, all individual parts of the model will be put together. First, the full methodology will 

be given, recapping the earlier determined individual parts of the model. Subsequently, the results of 

the model will be presented for a few cases, and the outcome will be discussed. To conclude this 

chapter, a sensitivity analysis will be performed, to identify the most important parameters and 

variables. 

7.1 Presenting the complete model 
The model requires the significant wave height  𝐻𝑠 and the armour unit diameter 𝑑𝑛 as input, while 

all other variables follow from these inputs, or were determined separately when the model was 

made. The model takes a random set out of the stochastic variables, to capture one specific situation 

with a certain wave acting on unit with a certain position. The model will then consecutively 

determine the impact velocity, the impact force, and the stresses at the critical location, to assess 

whether the concrete will crack. This simulation is carried out multiple times via a Monte Carlo 

simulation, resulting in exceedance probabilities and a failure percentage. The estimated values of 

the parameters and variables are given in the appropriate tables later in this section. A flow chart of 

the whole model is give in Figure 7.1, and shows which parameters and variables are needed in each 

step.  

 

Figure 7.1: Flow chart of the whole model 
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Impact velocity 

The first step in the model is to determine the impact velocity. This will be done by the following 

formula, that is based on the rotation of an armour unit due to the wave drag force. It is derived in 

chapter 3 

𝑣 =  𝑓𝑐𝑜𝑟 ∙ √2𝑠 (𝑘1
𝐶𝐷𝑢2

(∆+1)𝑑𝑛
− 𝑘2 [1 −

1

∆+1
] 𝑔)                             Equation 3.1  

Where: 

- 𝑓𝑐𝑜𝑟 is an empirical factor that corrects for the invalid assumption of constant acceleration, 

established in Appendix B as: 𝑓𝑐𝑜𝑟 = 1 −
√𝑠

4
, for Xbloc® 

- s is the available space between the blocks, i.e. the distance a block travels before it hits 

another block 

- CD is the drag coefficient of the armour unit 

- u is the velocity of the water during run-up, determined as: 𝑢 =  √2𝑔(𝑅𝑢 − 𝑧𝐴), where 𝑧𝐴 is 

the location on the slope relative to still water level, so 𝑧𝐴 = 0 at the waterline, and run-up 

level 𝑅𝑢 is determined by 
𝑅𝑢2%

𝐻
= 1.75 ∙ 𝛾𝑏 ∙ 𝛾𝑓 ∙ 𝛾𝛽 ∙ 𝜉𝑚−1,0  

- dn is the nominal diameter of the armour unit 

- Hs is the significant wave height 

- Δ is the relative density, Δ =
𝜌𝑠 − 𝜌𝑤

𝜌𝑤
, here: 𝜌𝑠 = 2400 𝑘𝑔/𝑚3, 𝜌𝑤 = 1025 𝑘𝑔/𝑚3  

- g is the gravitational acceleration of 9.81 m/s² 

- k1 and k2 are dimensionless variables, included to consider all the dimensionless parameters 

that are taken into account in the model. 

These dimensionless factors are defined as: 

 𝑘1 =
1

2
∙𝑓𝑎𝑟𝑒𝑎∙𝑓𝑟𝐹∙𝑓ℎ𝑖𝑡

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎
        and  𝑘2 =

𝑓𝑟𝑊∙𝑓ℎ𝑖𝑡

𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎
  

Where: 

- farea is the fraction of the area that is subjected to the drag force, a fraction of dn
2. For 

example if the affected area is 0.5dn
2, then farea = 0.5 

- frF is the arm of the wave force to the rotation point, as a fraction of dn.  

- fhit is the distance of the collision point C to the rotation point R, as a fraction of dn.  

- finertia is the dimensionless part of the mass moment of inertia, as  𝐼 = 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎 ∙ 𝑚 ∙ 𝑑𝑛², 

where finertia is then dependent on the type of armour unit and the rotation point 

- frW is the arm of the weight to the rotation point, as a fraction of dn.  
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Values and distributions for all of the parameters and variables that are needed to determine the 

impact velocity are given in Table 7.1. 

 Values 

Constants 

Mass density water, 𝜌𝑤[𝑘𝑔/𝑚³]  1025 

Mass density concrete, 𝜌𝑠 [𝑘𝑔/𝑚³] 2400 

Slope angle, 𝛼  3𝑉: 4𝐻 
Berm coefficient, 𝛾𝑏 1.0 
Roughness coefficient, 𝛾𝑓 0.45 

Oblique wave coefficient, 𝛾𝛽 1.0 

Drag coefficient, 𝐶𝐷 1.20 

Variables 

Arm of the wave force, 𝑓𝑟𝐹 0.96 + sin(𝛼) ∙ 𝑅 

Arm of the weight, 𝑓𝑟𝑊 𝑅 
Inertia factor, 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎 0.7783 + 𝑅2 

Stochastic variables 

Rotation point, 𝑅 Normal distribution:  𝑁(𝜇 =  0 ; 𝜎 =  0.144) 

Movement space, 𝑠 Adjusted exponential distribution: 

 
0                                𝑓𝑜𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠

𝐸𝑥𝑝(𝜆 = 0.0408)   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 50% 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠
 

Collision point, 𝑓ℎ𝑖𝑡 Uniform distribution: 𝑈(min = 0.58 ; max = 1.44) 

Area subjected to wave, 𝑓𝑎𝑟𝑒𝑎  Normal distribution:  𝑁(𝜇 =  0.381 ; 𝜎 = 0.083) 

Individual wave height, 𝐻 [𝑚] 
Rayleigh distribution: √− 

1

2
ln (𝑝(𝐻 > 𝐻))  ∙ 𝐻𝑠  

Spectral wave period, 𝑇𝑚−1,0[𝑠] Correlation with wave height: 

√5 ∙ 𝐻 + (𝐻 + 3) ∙ 𝑈(min = 0, max = 1) 
Table 7.1: Parameters and variables to determine the impact velocity 

 

Impact force 

The second step is to determine the impact force, using the previously calculated impact velocity. 

The impact force is based on an energy balance between the kinetic energy of a moving armour unit 

and the elastic energy absorbed by the stricken armour unit and the gravel bed. The following 

formula is derived in chapter 4: 

𝐹 =  √𝑚1𝑣1
2𝑘 − 𝑚2𝑣2

2𝑘            Equation 4.1 

Where: 
- 𝑚1 is the mass of object 1, the moving armour unit, 𝑚1 = 𝜌𝑠𝑑𝑛

3 

- 𝑣1 is the velocity of object 1 at the moment of impact 

- 𝑘 is the representative spring stiffness of the leg of the armour unit and the gravel bed 

- 𝑚2 is the mass of object 2, the stricken armour unit, and is equal to 𝑚1 

- 𝑣2 is the velocity of object 2, which can be left out when it is unknown how much of the 

energy is converted into kinetic energy, reducing the formula to: 𝐹 =  √𝑚1𝑣1
2𝑘   
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The representative spring stiffness is determined from the individual stiffness of the leg of the 

armour unit and the leg, which is regarded as a system in series, such that: 

1

𝑘
=

1

𝑘𝑙𝑒𝑔
+

1

𝑘𝑏𝑒𝑑
  

𝑘 =
1

1

𝑘𝑙𝑒𝑔
 + 

1

𝑘𝑏𝑒𝑑

    

With:  𝑘𝑙𝑒𝑔 =
1

√
cos2 𝜃𝐹

(
𝐸𝐴
𝐿

)
2  + 

sin2 𝜃𝐹

(
3𝐸𝐼

𝐿3 )
2    

   and   𝑘𝑏𝑒𝑑 = 69.4 ∙ 106 ∙ 𝑑𝑛
2                         

The parameters and variables required to determine the impact force are given in Table 7.2. 

 Values 

Parameters 

Young’s modulus concrete (class C30/37), 𝐸 [𝑁/𝑚𝑚²] 32837 

Variables 

Area of the cross section, 𝐴 [𝑚2] 0.2297 ∙ 𝑑𝑛
2 

Area moment of inertia of the cross section, 𝐼  [𝑚4] 0.004461 ∙ 𝑑𝑛
4  

Full length of the leg, 𝐿𝑙𝑒𝑔[𝑚] Spiky leg: 0.540 ∙ 𝑑𝑛           
Cubical leg: 0.481 ∙ 𝑑𝑛 

Stochastic variables 

Incoming angle of the force, 𝜃𝐹[°] Special probabilistic distribution: 

𝑐𝑑𝑓 =   

𝜃𝐹
2

8925
 ,                    𝑓𝑜𝑟 0 ≤ 𝜃𝐹 ≤ 85  

0.1 ∙ 𝜃𝐹 −
𝜃𝐹

2

2100
 ,   𝑓𝑜𝑟 85 < 𝜃𝐹 ≤ 105

  

Location of the collision on the armour unit leg, 
relative to the leg length, i.e. the distance between 
the acting point of the force and the junction of the 
leg with the body, 𝑓𝐿 [1/𝑑𝑛] 

Special probabilistic distributions: 
Spiky leg: 𝑈(−0.1 ; 0.9)        but set all negative 
Cubical leg: 𝑈(−0.4 ; 0.6)     values to zero 
 

Tensile impact strength (class C30/37, 
𝑓𝑐𝑡,𝑖𝑚𝑝𝑎𝑐𝑡 [𝑁/𝑚𝑚²]  

Normal distribution:  𝑁 (𝜇 = 5.8 , 𝜎 = 1.098 ) 

Table 7.2: Parameters and variables to determine the impact force and the stresses 

Stresses 

The final step is to determine the stresses due to the impact, and compare this to the impact 

strength of the concrete. Tensile failure due to bending is identified as the most important failure 

mechanism. The formula for  the maximum tensile stresses is derived in chapter 6, given by: 

𝜎𝑡,𝑚𝑎𝑥 = 30.3 ∙
(

ℎ

𝑏
)

0.9
∙𝐹𝐻 − 𝐹𝑉

𝑑𝑛²
         Equation 6.2 

With : 𝐹𝐻 = sin 𝜃𝐹 ∙ 𝐹 and 𝐹𝑉 = cos 𝜃𝐹 ∙ 𝐹 

 ℎ = (1 − 𝑓𝐿) ∙ 𝐿𝑙𝑒𝑔  

 𝑏 =
𝐷

3
= 0.481 ∙ 𝑑𝑛 

The parameters and variables required to determine the stress are given above, in Table 7.2. 
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7.2 Discussion of model assumptions and uncertainties 
This paragraph is meant to give a recap of the most important assumptions, uncertainties and 

drawbacks in the model. It will be discussed how severe these are, starting by the assumptions in 

each step of the model, finalising by giving a list of uncertainties in parameters and variables. 

The starting point of the model is the schematization of the forces acting on an armour unit. This is a 

2D representation, where the wave drag force and the submerged weight of the unit are the relevant 

forces. The wave drag force is calculated with the fluid velocity around the water line, based on the 

run-up velocity. Note that for units above the waterline, the local fluid velocity will be smaller, 

resulting in a smaller wave drag force. Now, using the aforementioned forces, the acceleration of the 

armour unit is determined for a pure rotation, so no translation is considered. Rotation is generally 

considered to be the main movement, which is recently confirmed by Caldera (2019). To derive a 

formula for the impact velocity, it was first assumed that the acceleration is constant, which is 

actually not true. Therefore, a correction factor is established, to reduce this error. 

With the impact velocity as input, the impact force is determined, based on an energy balance. This 

balance sets the kinetic energy of the moving unit equal to the potential energy in the form of a 

spring energy. Two possibly important components that are not included are the kinetic energy of 

the stricken unit, and the energy losses due to local crushing of the concrete and other sources of 

damping. These components would reduce the impact force, so it is conservative, but they are 

neglected because they are difficult to quantify without a detailed investigation. Also note that the 

damping due to local crushing is expected to decrease per loading cycle, which reduces the error of 

the model. The impact force is thus determined from the potential energy in the form of a spring 

energy, for which a representative spring stiffness must be determined. This spring stiffness is 

determined from two springs in series: a spring to represent the breakwater bed, and a spring to 

represent the stiffness of the armour unit leg against a combination bending and compression. 

The impact force is then used as input to determine the tensile stresses at the base of the leg of the 

armour unit, based on a 2D schematization with the force acting on the face. Forces acting on the 

corners are not considered, though they are expected to mainly cause local failure, which is less 

severe than total rupture of the leg, the most important failure mechanism, as identified in chapter 

5. Rupture to due bending is the only failure mechanism that is implemented in the model, though 

other failure mechanisms like local crushing and chipped off corners may happen as well, but these 

are less severe for the overall state of the breakwater. Now, to determine the stresses, the armour 

unit leg is regarded as a deep beam, for which strut-and-tie models are commonly used in design 

practice. However, this is usually done to determine the tensile force that must be taken by the 

reinforcement steel. In this case, this tensile force is used to determine the maximum stresses, based 

on a stress distribution that is obtained via a finite-element model. It is important to realise that 

some choices in the set-up of the strut-and-tie model, such as the type of supports, affect the end 

result. Different choices lead to slightly different answers, but it is important that the main errors are 

avoided here, by adding an extra row to reduce the effect due to the choice of the supports, and by 

taking the angle of the compressive concrete strut between 21.8° and 45° (Braam & Lagendijk, 2011). 

Once the stresses are determined, they are compared with the concrete strength. Since concrete is 

stronger for short impact loads (Neville & Brooks, 2010), an impact strength is estimated, which is 

much more uncertain than the regularly used static concrete strength, but it is the only way to truly 

assess whether the impact due to rocking will lead to failure of the concrete. 
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Essentially, what the final model does is to randomly pick an armour unit around the waterline, plus 

a random wave, and randomly positioned surrounding units. For this set of stochastic variables, a 

calculation will be performed, to check if the tensile impact strength will be exceeded by the peak 

stress, at the identified critical location at the base of the leg of the armour unit. If this strength is 

exceeded, it is said that cracks will start to form. Plastic behaviour is not included in the model, but 

instead it is assumed that crack formation leads to complete rupture of the leg, either immediately or 

due to cyclic loading. A breakage prediction is now made for one random case, but the model 

performs a Monte Carlo simulation of e.g. 100,000 cases, where a new set of stochastic variables is 

picked each time. The end result is a distribution of the impact velocity, impact force, and peak 

stresses, which can be used to determine exceedance probabilities and a prediction of the 

percentage of breakage of the armour unit legs. 

There are uncertainties in various parameters and variables that had to be determined as input for 

the model. The following list provides an overview of the most important uncertainties of the 

parameters and variables: 

- Many parameters and variables needed to determine the impact velocity (Equation 3.1)  

have some uncertainty, especially because some are specifically defined for this MSc thesis 

and there is no reference. However, it is only important that the impact velocity results are 

good, which can be validated by physical model tests, thereby reducing the uncertainty of all 

these variables without validating them separately.  

- The model uses the significant wave height Hs as input to create a wave field. However, Hs 

itself is usually an important uncertainty in the design of breakwaters. This is therefore not 

necessarily a drawback of the model, since Hs is still widely used, but it does give some extra 

uncertainty in the results. 

- The stiffness of the breakwater bed has a high uncertainty, which causes significant 

uncertainty in the impact force. As some form of validation, two estimations are made: one 

based on the subgrade modulus, and one based on the Young’s modulus. Still, there is a lot 

of uncertainty, because it is uncommon to represent a soil as a single spring, so it is unknown 

if the applied method is correct. Additionally, the breakwater bed consists of pretty large 

rocks, so it likely behaves differently than regular soils. 

- There are several variables regarding the position of the armour unit and its surroundings, 

such as the available movement space, the area affected by waves, and the location and 

angle of impact. All of these are estimated based on a single geometric lab experiment, and 

although it provides a much better estimation than random guesses, there is still a lot of 

uncertainty. Some of these are used as input for the impact velocity and, as mentioned 

above, their uncertainty  can be reduced by measuring the impact velocity in physical tests. 

- The impact strength of the concrete is another important uncertainty. Although the static 

strength of concrete is fairly well known, there is much less knowledge about the concrete 

strength under a short impact load. The implemented probabilistic distribution is based on 

the characteristic static strength provided in the standardised concrete classes, but the main 

uncertainty comes from translating that to a distribution for the impact strength. The impact 

strength depends on various factors, which makes it very difficult to determine it accurately. 
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7.3 Model results 
Now that the model is completed, the results will be presented for several relevant cases.  

7.3.1 Presenting the results 

The model results will be presented for a few different cases. These cases are based on the Xbloc® 

guidelines by Delta Marine Consultants (2018), where a table of advised Xbloc® dimensions is given 

for varying wave heights. A few cases are picked, in order to check the model results for a range of 

wave heights and block dimensions. The cases that will be investigated are given in Table 7.3, where 

also the results of predicted breakage are given. For all of these investigated cases, the stability 

number is: 
𝐻𝑠

Δ𝑑𝑛
 ≈ 2.75. 

Significant wave height, 
Hs [m] 

Unit height, 
D [m] 

Nominal diameter, 
dn [m] 

Percentage of simulations 
that predict breakage [%] 

3.35 1.31 0.91 5.2 

5.32 2.08 1.44 9.4 

7.38 2.88 2.00 12.8 

10.01 3.91 2.71 15.8 
Table 7.3: Investigated breakwater cases 

The full model is implemented in Python, where the results of each step of the model will be plotted. 

This will result in a plot of the impact velocity, a plot of the impact force, and a plot of the maximum 

tensile stresses, in which also the tensile impact strength is plotted, to visualise expected failure. The 

model performs a Monte Carlo simulation, in which the number of simulations is set to N = 100,000, 

but the runtime is still under a minute, so it is possible to increase N if one would be interested in 

checking the very small exceedance probabilities more accurately. The full Python script is given in 

Appendix D. 

For an easy comparison, the results of the four investigated cases are plotted in the same figure. 

Plots of the impact velocity, impact force, and the maximum tensile stresses are given in Figure 7.2 to 

Figure 7.4 respectively. 

 

Figure 7.2: Model results impact velocity Xbloc 
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Figure 7.3: Model results impact force Xbloc 

 

 

Figure 7.4: Model results maximum tensile stress Xbloc 
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7.3.2 Discussion of the results 

First, a few notes about how to interpret the graphs. 

- It can be seen that the velocity, force, and stress are all zero for the first part of the graph. 

This is solely due to the fact that it was specified that half of the units do not have any 

movement space, thus they will not move, thus no force and stress. This is based on a small 

scale lab experiment, where a small breakwater piece was recreated to obtain some 

information about the movement parameters of the Xbloc®.  

- The graphs are plotted with the probability of exceedance on a logarithmic scale, in order to 

identify the extreme cases properly.  

- For the Monte Carlo simulation, N = 100,000 is used, thus the 10-5 probability is based on a 

single randomly picked set of variables, so that value is random and will vary if the simulation 

is repeated. The values up to a probability of 10-3 should be decently stable though. 

- The model simulates completely independent events, so it is only identified how many of 

these independent events experience an exceedance of the tensile impact strength. This is 

assumed to eventually lead to failure of the armour unit, since it will be weakened, so the 

required wave height to cause damage decreases. 

Overall, the impact velocity, impact force, and the resulting stresses all get larger as the size of the 

waves and armour units increases. This leads to more broken armour units for larger waves/units. 

This tendency is as expected, since breakage of armour units is generally found to be more 

problematic in more severe conditions, with large waves and large armour units. 

The model results are expected to be an upper limit of the percentage of completely broken armour 

units in a real situation. This is partially due to the fact that certain unknowns are left out of the 

energy balance to determine the forces. This energy balance is now treated as if the kinetic energy of 

the moving block is completely converted to the potential spring energy: 𝐸𝑘𝑖𝑛 = 𝐸𝑝𝑜𝑡, leading to  

𝐹 =  √𝑚1𝑣1
2𝑘  . However, it is possible that the stricken block will also move due to the collision, such 

that a part of the energy is converted into kinetic energy of the stricken block. Another form of 

energy losses is local crushing of the concrete, which is identified as a failure mechanism of the 

concrete, but is neglected because the consequences for the breakwater are negligible. The energy 

balance would then look like: 𝐸𝑘𝑖𝑛,1 = 𝐸𝑝𝑜𝑡 + 𝐸𝑘𝑖𝑛,2 + 𝐸𝑙𝑜𝑐𝑎𝑙 𝑐𝑟𝑢𝑠ℎ𝑖𝑛𝑔, which significantly reduces the 

eventually calculated force, and thus the occurring stresses, and the expected failure percentage. 

This may be one of the causes why the failure percentage is much higher for larger waves/units. The 

forces are much higher in those cases, so local crushing is much more likely to occur than for smaller 

waves/units, thus the energy losses due to local crushing would also be much higher, so the resulting 

stresses would be overall be somewhat levelled if energy losses due to local crushing would be taken 

into account. Another failure mechanism that is neglected is chipping off the corners. It might be that 

some cases that are identified to have tensile bending failure, will actually be cases of chipped off 

corners, which would immediately relieve the pressure and stop the stresses from developing. The 

concrete would then still fail, but it will be just a chipped off corner instead of  complete failure of 

the leg. 
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7.4 Sensitivity analysis 
In order to identify which variables have a significant effect on the impact velocity, force, and 

stresses, a sensitivity analysis will be performed. For this analysis, a single set of variables will be 

chosen, in which one variable at a time will be varied. That standard set of variables is chosen such 

that there will be significant movement of the armour unit, and consists of the following values: 

- 𝑑𝑛 = 1.44 𝑚, the nominal diameter of the armour unit 

- 𝐻 = 5.32 𝑚, the wave height of a single wave 

- 𝑓𝑎𝑟𝑒𝑎 = 0.381, the area subjected to wave attack  

- 𝑠 = 0.05, the movement space  

- 𝑅 = 0.0, the distance of the rotation point to the centre of gravity 

- 𝑓ℎ𝑖𝑡 = 1.0, the distance between the collision point and the rotation point 

- 𝑓𝐿 = 0.0, the location of the impact on the stricken leg 

- 𝜃𝐹 = 80°, the angle of the incoming force 

Now, each of these variables (except 𝑑𝑛) will be varied individually over a realistic range, while 

keeping all other at their chosen value. A plot of the variation in stresses will be given for the 

sensitivity check of each variable, while a plot of the impact velocity will also be given where 

relevant. 

 

Wave height, 𝐻 

 

Figure 7.5: Sensitivity check wave height. Impact velocity 
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Figure 7.6: Sensitivity check wave height. Stresses 

Fraction of area subjected to waves, 𝑓𝑎𝑟𝑒𝑎 

 

Figure 7.7: Sensitivity check area subjected to waves. Impact velocity 

 

Figure 7.8: Sensitivity check area subjected to waves. Stresses 
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Movement space, 𝑠 

 

Figure 7.9: Sensitivity check movement space. Impact velocity 

 

Figure 7.10: Sensitivity check movement space. Stresses 

Distance of rotation point to centre of gravity, 𝑅 

 

Figure 7.11: Sensitivity check rotation point. Impact velocity 
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Figure 7.12: Sensitivity check rotation point. Stresses 

Distance of the collision point to the rotation point, 𝑓ℎ𝑖𝑡 

 

Figure 7.13: Sensitivity check collision point. Impact velocity 

 

Figure 7.14: Sensitivity check collision point. Stresses 
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Impact location on the stricken leg, 𝑓𝐿 

 

Figure 7.15: Sensitivity check impact location 

Angle of the incoming force, 𝜃𝐹 

Note that 0° is parallel to the leg, thus full compression, and 90° is perpendicular to the leg, thus full 

bending. The angle can even go beyond 90°, such that the vertical component of the force causes 

tension instead of compression. 

 

Figure 7.16: Sensitivity check angle incoming force 
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Discussion of sensitivity checks 

For each variable it will shortly be described how sensitive the results are to varying that variable, 

and how much they contribute to uncertainties of the final result. 

- 𝐻, the wave height of a single wave: since the wave height ranges essentially from zero to 

twice Hs, the resulting impact velocity and stresses also have a large range of magnitude. The 

wave height of a single wave is based on the significant wave height, Hs, which is a widely 

used variable, but it is still one of the most important uncertainties in breakwater design. 

- 𝑓𝑎𝑟𝑒𝑎, the area subjected to wave attack: variations in 𝑓𝑎𝑟𝑒𝑎 also cause significant variation in 

the resulting impact velocity and stresses. Getting either a low value of 𝑓𝑎𝑟𝑒𝑎or a high value, 

results in difference in impact velocity/stress of roughly a factor 2.0, which is in many cases 

decisive in whether a unit fails or not. Also, the distribution given to 𝑓𝑎𝑟𝑒𝑎might not be 

accurate, as it is solely based on one small lab experiment, in which it was difficult to 

estimate the values accurately. 

-  𝑠, the movement space: just like the wave height, the movement space can also be zero and 

has a large range of resulting impact velocity/stress. The results is quite sensitive to the 

available movement space. Though, unlike the wave height, it is not certain that the applied 

distribution of the movement space is very accurate, so this causes a significant amount of 

uncertainty. 

- 𝑅, the distance of the rotation point to the centre of gravity: the highest resulting impact 

velocity and stresses are roughly 30% higher than the lowest results. The variation rotation 

point does thus have a significant impact on the results, but less than most other variables. 

The distribution is not guaranteed to be correct, because it is based on a single small lab 

experiment, but it was possible to measure the location of the rotation point with 

satisfactory precision. This causes minor uncertainty. 

- 𝑓ℎ𝑖𝑡, the distance between the collision point and the rotation point: the highest resulting 

impact velocity and stresses are roughly 50% higher than the lowest results. The variation 

rotation point does thus have a significant impact on the results. Higher than for the rotation 

point, but less than most other variables. Again, the distribution is not guaranteed to be 

correct, because it is based on a single small lab experiment, but it was possible to measure 

the collision point with satisfactory precision. This causes minor uncertainty. 

- 𝑓𝐿, the location of the impact on the stricken leg: the highest resulting stresses are roughly 3 

times as high as the lowest stresses. The location of impact on the leg is thus very significant. 

Again, the distribution is not guaranteed to be correct, because it is based on a single small 

lab experiment, but it was possible to measure the collision point with satisfactory precision, 

but due to the large effect that 𝑓𝐿 has on the results, it still causes some uncertainty. 

- 𝜃𝐹, the angle of the incoming force: the resulting stresses range from compressive stresses to 

tensile stresses. For small angles, the force will be mainly compressive, thus counteracting 

the tensile bending stresses. Therefore, the armour unit will likely never fail when the angle 

of the force is small enough. This angle has a large effect on the failure of the concrete 

armour units. The probabilistic distribution of the angle of the force is solely based on a 

single small lab experiment  

Overall, the three most sensible variables are identified as: the wave height 𝐻, the movement 

space 𝑠, and the angle of the incoming force 𝜃𝐹. 
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Sensitivity checks of some uncertainties 

Though it is not treated as an independent variable, it still is interesting to investigate the sensitivity 

of the bed stiffness as a parameter, because it is highly uncertain if the determined spring stiffness to 

represent the bed is correct. Therefore, one more plot is made, with a range of 𝑘𝑏𝑒𝑑 from 

10 ∙ 106 𝑁/𝑚  to 100 ∙ 106 𝑁/𝑚. It is seen in Figure 7.17 that the bed stiffness has a significant 

effect on the eventual stresses. Therefore, it would greatly improve the accuracy of the model if 

uncertainties of the bed stiffness can be taken away, by a more detailed investigation. 

 

Figure 7.17: Sensitivity check bed stiffness 

Another uncertainty is the amount of kinetic energy of the moving block that is converted into the 

potential spring energy. In the model, it is used that 𝐸𝑘𝑖𝑛,1 = 𝐸𝑝𝑜𝑡, such that 𝐹 =  √𝑚1𝑣1
2𝑘  , but if 

the energy balance is treated as 𝐸𝑘𝑖𝑛,1 = 𝐸𝑝𝑜𝑡 + 𝐸𝑘𝑖𝑛,2 + 𝐸𝑙𝑜𝑠𝑠𝑒𝑠, the formula to determine the force 

becomes: 𝐹 =  √𝑚1𝑣1
2𝑘 − 𝑚2𝑣2

2𝑘 −  2 ∙ 𝐸𝑙𝑜𝑠𝑠𝑒𝑠 ∙ 𝑘, reducing the force, and thus the stresses. The 

effect of a reduction of the potential energy is plotted in Figure 7.18. Depending on how large the 

energy losses are, they may have a significant effect on the stresses. 

 

Figure 7.18: Sensitivity check energy 



101 
 

8. Conclusions 
This chapter shortly treats the conclusions of this MSc thesis. 

Conclusions of what is achieved in this MSc thesis 

A functioning model is made, which produces a probabilistic distribution of the impact velocity, the 

impact force and the maximum stress due to rocking. Based on the distributions of the maximum 

stress and the concrete strength, a probability of failure is obtained. In this model, failure means that 

the concrete will start to crack at the base of the armour unit leg, which is assumed to eventually 

lead to complete rupture of the leg, due to the cycling loading by the waves. The probabilistic 

distributions are obtained via a Monte Carlo simulation performed in a Python script, where the 

velocity, force, and stress are calculated by using expressions that were derived in this MSc thesis.  

The impact velocity formula is derived in such way that it can be used for any type of armour unit, 

and the formulas for the impact force and the stress are derived specifically for Xbloc®, for tensile 

failure at the base of a leg. These formulas require several uncommon variables as input. Some of 

these variables are stochastic, and have a probabilistic distribution instead of a single value. All 

required variables were determined during this MSc thesis. A lab experiment is performed to 

estimate the distributions of the geometrical stochastic variables. Physical model test results are 

used to validate the impact velocity for Xbloc® and for cubes, as well as the impact force for Xbloc®. 

 

Conclusions from model results 

The results show that the failure percentage becomes higher for larger waves and armour units, 

starting at a failure of 5% of the simulate cases for the situation of 𝐻𝑠 = 3.35 𝑚 and 𝑑𝑛 = 0.91 𝑚, up 

to a failure of nearly 16% of the simulated cases for the situation of 𝐻𝑠 = 10.01 𝑚 and 𝑑𝑛 = 2.71 𝑚. 

It was expected that a situation with larger waves and armour units leads to more breakage, so it is 

good to see this trend being represented by the model.  

Some steps of the model are validated by means of test data, though it is sometimes difficult to 

interpret these validations as the tests represent different cases, which deteriorates the comparison. 

The impact velocity formula is checked for cubes, which gave comparable results. A validation of the 

impact velocity is also performed for Xbloc®s, leading to the conclusion that the highest impact 

velocities are modelled with reasonable accuracy. The impact force is validated with test data of 

concrete to concrete impact, but this test did not include the breakwater bed, so for a fair 

comparison, it was also excluded from the model. These results were relatively good, but it still 

leaves a large uncertainty in the effect of the breakwater bed on the impact force. 

Neglecting local crushing may result in higher breakage percentages for larger waves and armour 

units, since the forces are just much larger in these cases, thus more frequent and larger energy 

losses due to local crushing are expected, relieving the tensile bending stresses. This may lead to an 

overestimation of the failure percentage, especially for cases of  larger waves and armour units, 

which exaggerates the differences between small and large waves and armour units. 
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Conclusions from model setup  

During the development of the model, it was apparent that rocking-induced stresses are very 

complex. In order to be able to model the impact velocity, the impact force, and the resulting 

stresses, many assumptions had to be made to simplify the complexity. Every assumption adds some 

uncertainty or error to the model, but this is reduced where possible. E.g. the assumption of constant 

acceleration, that was necessary to obtain the impact velocity formula, is compensated by a 

correction factor. A similar correction is applied to take the nonlinear stress distribution into account. 

Furthermore, uncertainties in the input variables are reduced by performing a lab experiment to 

determine distributions for the geometric variables. 

It is noted from the sensitivity analysis that there are many factors that have a significant effect on 

the end results, further proving the complexity of the subject. Throughout the development of the 

model, several parameters and variables were defined, for which the values had to be determined. 

Many of these were estimated with reasonable accuracy in the aforementioned lab experiment, but 

the lack of other results to compare with still leaves some uncertainty. Repeating the lab experiment 

will likely give slightly different results, because the blocks are positioned randomly. 
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9. Recommendations 
This chapter treats some recommendations to improve or valid the model that is developed in this 

MSc thesis, as well as some ideas for other research. 

Usage of the model 

Although the model is not yet ready to use in design practice, it is interesting to think about the 

possible uses of the model. A few possibilities will shortly be treated below: 

- After the initial design stage, where the breakwater is designed for hydraulic stability, a 

prediction of rocking-induced breakage can be performed. A certain percentage of armour 

units is expected to break, and it is then up to the engineers to decide whether this is 

acceptable, or it would be better to increase the size of the units to reduce movement. 

- Another interesting possibility is to assess existing breakwaters. Wave heights are increasing 

due to climate change, which might endanger some existing breakwaters in the future. By 

assessing this up front, measures can be taken before the breakwater fails completely. 

Extending the model 

The current model predicts breakage of Xbloc®s around the water line, due to tensile bending 

stresses, which can be extended in three ways:  

- Predict breakage for other types of armour units. The impact velocity formula is derived 

independently from the armour unit type, so it can also be used for other types of armour 

units. There are other types of armour units with legs that have a risk of breaking, for which 

the failure types are similar. There are parameters that are determined specifically for 

Xbloc®, so these need to be determined for another type of armour unit, if one would be 

interested in using the model for a different type of armour unit.  

- Involve armour units that are located higher up the slope. The impact velocity is based on the 

run-up velocity of the water on the slope. The run-up velocity is now solely calculated at the 

water line, but can be easily be calculated at different heights on the slope as well. This 

extension is relatively easy to implement, but requires validation to see if the results are 

actually correct. 

- Add other failure mechanisms. Right now, the only implemented mechanism is failure due to 

tensile bending stresses at the base of the leg. While less severe, there are other 

mechanisms leading to failure of the concrete, and they can potentially threaten the safety 

of the breakwater. 

Investigate the energy balance 

The impact forces are based on an energy balance, in the form of: 𝐸𝑘𝑖𝑛,1 = 𝐸𝑝𝑜𝑡. The kinetic energy 

of the moving unit, block 1, is converted into a potential spring energy, which determines the force. 

Actually, the energy balance looks more like: 𝐸𝑘𝑖𝑛,1 = 𝐸𝑝𝑜𝑡 + 𝐸𝑘𝑖𝑛,2 + 𝐸𝑙𝑜𝑠𝑠𝑒𝑠. The stricken unit, 

block 2, might move due to the impact, in which case a part of the energy will be converted into 

kinetic energy of block 2. There are also other forms of energy losses, most notably local crushing of 

the concrete. Crushing the concrete requires energy, which reduces the energy that is converted into 

the potential energy that eventually leads to the tensile bending stresses. Since the kinetic energy of 

block 2 and the other energy losses are unknown, they are left out of the model, but they can give a 

significant reduction of the stresses. A better understanding of the amount of energy that is truly 

converted into potential energy will therefore significantly improve the accuracy of the model. 
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Investigate the stiffness of the bed 

The stiffness of the bed is now represented by a spring, for which the stiffness is estimated. This 

estimation is not claimed to be accurate at all, so a closer investigation could improve this 

estimation, thereby improving the model results. 

 

Further validation of the impact velocity 

Although some validation is already performed in this MSc thesis, to show that the modelled impact 

velocity is in the right order of magnitude, it is still good to do further validation. So far, the 

validation is based on measurements of a single unit, under attack by many waves. It would be 

interesting to do similar tests with multiple measurement units, to get variation in the position 

parameters of the armour units, similar to what it is done this MSc thesis, where new random 

position parameters are picked for each simulation.  

It is also possible to adjust the output of the model in order to make a better comparison with test 

results. For example, the position parameters of the block can be picked up front, such that a field of 

random waves is modelled on a single unit. This can even be extended to include multiple units with 

varying position parameters. An example is given in Figure 9.1, where four blocks are picked with 

increasing available movement space, and mean values for the other position parameters. A large 

number of random waves is modelled, resulting in a plot of the exceedance probability.  

 

Figure 9.1: Impact velocity for several defined units under random wave attack 

Ideally, if all position parameters of the measurement unit would be determined, it is possible to 

recreate the exact same situation in the model simulation, thus being able to truly make an accurate 

comparison. However, it is not even known if the position parameters are actually constant during 

heavy wave conditions. Due to the movement of the blocks, their position might change. 
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Even without knowing the position parameters during physical model tests, the results will still give 

insight in the probabilistic distribution of the impact velocity. If the measurement units are placed 

completely randomly, there will likely be several units that will not move at all, since it was estimated 

in this MSc thesis, that half of the units have no space to move. Though, it would be interesting to 

validate how much units move, it is more efficient for the higher impact velocities to ensure that all 

measurement units have at least a tiny amount of movement space. An impression of the amount of 

testing needed for a certain validation level is given below, under the assumption that half of the 

units move, so ensuring that all measurement units move doubles the efficiency. Note that it is also 

possible to use a single unit under 10000 waves to reach a 1/10000 exceedance probability, but for a 

truly accurate result, it is important to vary the position of the measurement unit as well. 

 Number of different 
unit positions 

Exceedance 
probability up to 

10 random units, 1 test, 1 wave 10 1/10 

10 moving units, 1 test, 1 wave 10 1/20 

10 random units, 10 tests, 1 wave 100 1/100 

10 moving units, 10 tests, 1 wave 100 1/200 

10 random units, 10 tests, 100 random waves per test 100 1/10000 

10 moving units, 10 tests, 100 random waves per test 100 1/20000 
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Appendix A. Mass moment of inertia, Xbloc® 
This appendix deals with the determination of the mass moment of inertia of an Xbloc®.

 

Figure A.0.1: Main dimensions Xbloc® 

The shape of the Xbloc® makes it difficult to do an integration. Therefore, the block is divided in 

several rectangles and triangles, as shown in Figure A.0.2, for which the mass moment of inertia will 

be determined individually. The total mass moment of inertia can then be determined as the sum of 

the mass moment of inertia of all individual parts, plus the contributions from Steiner’s theorem. 

 

 

The Xbloc® is divided in the following pieces: 

1. Core of the block, 3a by 3a by D/3 

2. Cubical leg, D/3 by D/3 by D/3, appears 2 times           

(at the front and at the back) 

3. Rectangular, b by b by D/3, appears 4 times 

4. Rectangular, b by a – b by D/3, appears 8 times 

5. Triangular, base b, height b, by D/3, appears 8 

times 

 

 

        Figure A.0.2: Division of Xbloc® in several pieces  
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Steiner’s theorem, also called parallel axis theorem, is a well-known principle to determine the mass 

moment of inertia of an object about any axis. It can thus be used to determine the mass moment of 

inertia about an axis that does not go through the centre of gravity of the object. This rule states 

that: 𝐼 = 𝐼𝑐𝑔 + 𝑚𝑑2, where 𝐼𝑐𝑔 is the moment of inertia about the centre of gravity of the object, 𝑚  

is the mass of the object, and 𝑑 is the distance between the centre of gravity and the new axis. This 

principle can be used to determine the moment of inertia of pieces of the Xbloc® about the axis that 

goes through the centre of gravity of the Xbloc® as a whole. The distances are shown in Figure A.0.3, 

for which d3, d4, and d5 can be calculated by applying Pythagoras’ theorem: 

𝑑3 =  √(
3

2
𝑎 +

𝑏

2
)

2
+ (

3

2
𝑎 +

𝑏

2
)

2
 

𝑑4 =  √(
3

2
𝑎 +

𝑏

2
)

2
+ (

3

2
𝑎 −

𝑎−𝑏

2
)

2
  

𝑑5 =  √(
3

2
𝑎 +

𝑏

3
)

2
+ (

𝑎

2
+

2

3
𝑏)

2
  

 

Figure A.0.3: Distances for Steiner's theorem contributions 

 

The mass moment of inertia for a rectangle, about its centre of gravity, can be calculated as:  

𝐼𝑐𝑔𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒
=

1

12
𝑚(𝐵2 + 𝐻2)                    

where m is the mass of the rectangle, B is the width, and H is the height  

The mass moment of inertia for a triangle, about its centre of gravity, can be calculated as: 

𝐼𝑐𝑔𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒
=

1

18
𝑚𝐻2                      

where m is the mass of the triangle, and H is the height 
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The mass moment of inertia of the whole Xbloc® about its centre of gravity will be written below as 

the summation of the mass moment of inertia of each of the pieces, plus the contributions of 

Steiner’s theorem. Note that the centres of gravity of piece 1 and 2 go through the same axis as the 

centre of the whole Xbloc®, so there is no additional term from Steiner’s theorem there. 

Furthermore, several pieces appear multiple times, which can be accounted for by simply multiplying 

by the number of times the piece appears. 

𝐼𝑐𝑔𝑋𝑏𝑙𝑜𝑐
=  

1

12
𝜌 ∙ 3𝑎 ∙ 3𝑎 ∙

𝐷

3
 ∙  ((3𝑎)2 + (3𝑎)2)       1𝑐𝑔   

 + 2 ∙
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12
𝜌 ∙

𝐷
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𝐷
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𝐷
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𝐷

3
)

2
+ (

𝐷

3
)

2
)           2𝑐𝑔 
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1
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𝜌 ∙ 𝑏 ∙ 𝑏 ∙

𝐷

3
 ∙  (𝑏2 + 𝑏2)                     3𝑐𝑔    

 + 4 ∙  𝜌 ∙ 𝑏 ∙ 𝑏 ∙
𝐷

3
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3

2
𝑎 +

𝑏

2
)

2
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3

2
𝑎 +

𝑏

2
)

2
)      3𝑆𝑡𝑒𝑖𝑛𝑒𝑟  

 + 8 ∙
1

12
𝜌 ∙ (𝑎 − 𝑏) ∙ 𝑏 ∙

𝐷

3
∙ ((𝑎 − 𝑏)2 + 𝑏2)            4𝑐𝑔  

 + 8 ∙ 𝜌 ∙ (𝑎 − 𝑏) ∙ 𝑏 ∙
𝐷

3
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3

2
𝑎 +

𝑏

2
)

2
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3

2
𝑎 −

𝑎−𝑏

2
)

2
)      4𝑆𝑡𝑒𝑖𝑛𝑒𝑟  

 + 8 ∙
1

18
∙ 𝜌 ∙

𝑏∙𝑏

2
∙

𝐷

3
∙ 𝑏2                                         5𝑐𝑔     

 + 8 ∙ 𝜌 ∙
𝑏∙𝑏

2
∙

𝐷

3
∙ ((

3

2
𝑎 +

𝑏

3
)

2
+ (

𝑎
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+
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3
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2
)    5𝑆𝑡𝑒𝑖𝑛𝑒𝑟   

 

From Figure A.0.1 also follows that: √2 ∙ 𝑎 =
𝐷

3
, so 𝑎 = 0.2357 ∙ 𝐷. Then, from 3 ∙ 𝑎 + 2 ∙ 𝑏 = 𝐷 

follows that: 𝑏 =
3∙𝑎+𝐷

2
= 0.14645 ∙ 𝐷 

 

By filling in 𝑎 = 0.2357 ∙ D and 𝑏 =  0.14645 ∙ D, the only variables left to determine  𝐼𝑐𝑔𝑋𝑏𝑙𝑜𝑐
 are ρ 

and 𝐷. Each term can be elaborated to: 

𝐼𝑐𝑔𝑋𝑏𝑙𝑜𝑐
= 0.013889 𝜌𝐷5 + 0.00137 𝜌𝐷5 + 1.022 ∙ 10−4 𝜌𝐷5 + 0.01042 𝜌𝐷5 + 8.544 ∙ 10−5 𝜌𝐷5  

   + 0.009675 𝜌𝐷5 + 3.407 ∙ 10−5 𝜌𝐷5 + 0.005957 𝜌𝐷5 

And this summation ultimately gives: 

𝐼𝑐𝑔𝑋𝑏𝑙𝑜𝑐
= 0.041531 𝜌𝐷5  

Now, it would be useful to rewrite this to  𝐼 = 𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝜌𝑑𝑛
5 , with the nominal diameter dn instead of 

the outer dimension D of the Xbloc®. Since 𝑚𝑋𝑏𝑙𝑜𝑐 = 𝜌𝑑𝑛
3 = 𝜌𝑉𝑋𝑏𝑙𝑜𝑐 , dn and D can be related when 

the volume of the Xbloc® is known in terms of D. This can be calculated from the same division in 

pieces as earlier, see         Figure A.0.2, which gives: 
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 𝑉𝑋𝑏𝑙𝑜𝑐 = 3𝑎 ∙ 3𝑎 ∙
𝐷

3
+ 2 ∙

𝐷

3
∙

𝐷

3
∙

𝐷

3
 + 4 ∙ 𝑏 ∙ 𝑏 ∙

𝐷

3
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𝐷

3
 + 8 ∙

𝑏∙𝑏

2
∙

𝐷

3
  

Again, fill in 𝑎 = 0.2357 ∙ D and 𝑏 =  0.14645 ∙ D, which gives: 

𝑉𝑋𝑏𝑙𝑜𝑐 = 3 ∙ 0.2357 ∙ 𝐷 ∙ 3 ∙ 0.2357 ∙ 𝐷 ∙
𝐷

3
  + 2 ∙

𝐷

3
∙

𝐷

3
∙

𝐷

3
   + 4 ∙ 0.14645 ∙ 𝐷 ∙ 0.14645 ∙ 𝐷 ∙

𝐷

3
                                    

+ 8 ∙ 0.14645 ∙ 𝐷 ∙ (0.2357 ∙ 𝐷 − 0.14645 ∙ 𝐷) ∙
𝐷

3
 + 8 ∙

0.14645∙𝐷∙0.14645∙𝐷

2
∙

𝐷

3
  

And eventually: 

𝑉𝑋𝑏𝑙𝑜𝑐 = 0.33279 𝐷3  

Then, by definition of 𝑑𝑛,  𝑉𝑋𝑏𝑙𝑜𝑐 = 𝑑𝑛
3, so: 

𝑑𝑛
3 =  0.33279 𝐷3    

𝑑𝑛 = 0.693 𝐷    ;     𝐷 = 1.443 𝑑𝑛 

Therefore: 

 𝐼𝑐𝑔𝑋𝑏𝑙𝑜𝑐
= 0.041531 𝜌𝐷5 = 0.041531 ∙ (1.443 𝑑𝑛)5 = 0.25988 𝜌𝑑𝑛

5  

The mass moment of area of the Xbloc® about its own centre of gravity is thus given by: 

𝐼𝑐𝑔𝑋𝑏𝑙𝑜𝑐
= 0.25988 𝜌𝑑𝑛

5  

Note the Xbloc® will normally not rotate around its centre of gravity, but will more likely rotate 

around a point somewhere at the edge of one of the legs. The mass moment of inertia around any 

rotation point can again be determined from Steiner’s theorem: 

𝐼𝑋𝑏𝑙𝑜𝑐 = 𝐼𝑐𝑔𝑋𝑏𝑙𝑜𝑐
+ 𝑚𝑑2 = 0.25988 𝜌𝑑𝑛

5 + 𝜌𝑑𝑛
3 ∙ 𝑑2  

Ultimately, by determining 𝑑 as a 𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝑑𝑛, the  mass moment of inertia of the Xbloc® can be 

written as 𝐼𝑋𝑏𝑙𝑜𝑐 = 𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝜌𝑑𝑛
5 
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Appendix B. Velocity correction factor 
This appendix deals with the determination of a velocity correction factor, which is eventually 

established as: 𝑓𝑐𝑜𝑟 = 1 −
√𝑠

4
  

In the derivation of the impact velocity formula, it was assumed that the acceleration of the armour 

unit is constant, in order to be able to determine the impact velocity directly from an analytical 

expression. However, the acceleration is not constant! The acceleration is based on the moments 

caused by the wave force and the own weight of the block, and these change during the motion.  

The wave force is based on a velocity difference between the water and the armour unit:        

𝐹𝑤𝑎𝑣𝑒 = ½ 𝜌𝑤𝐶𝐷𝐴(Δ𝑢)2, where Δ𝑢 = 𝑢 − 𝑣, 𝑢 = the fluid velocity, and 𝑣 =  the velocity of the 

object, i.e. the armour unit. Initially, the water has a certain velocity, while the armour unit is at rest. 

The velocity of the water will decrease when the wave loses energy, though that is mainly when the 

wave runs up on the slope, and is probably negligible during the motion of the observed armour unit 

around the water line. Though, during this motion, the armour unit is accelerating, increasing its 

velocity, thus decreasing the velocity difference between the fluid and the armour unit. Therefore, 

the wave force decreases, so the acceleration of the armour unit will decrease, during the motion of 

the armour unit. Note that the armour unit does not a have a uniform velocity due to the rotation, so 

the velocity 𝑣 must be determined at a point where the wave force acts. It is chosen to do this at a 

height of 2
3
 𝐷, or 0.96 ∙ 𝑑𝑛, because the wave force mainly acts on the upper part of the block. 

The weight of the armour unit does not change during the motion, but when it rotates, the arm 

between the centre of gravity and the rotation point does change. Therefore, there will still be a 

change in moment, and thus a change in the acceleration as well. This effect leads to a higher sum of 

moments, thus a higher acceleration, counteracting the effect of the decrease in wave force, when 

the armour unit gains velocity. 

To account for the change in acceleration when the armour unit gains velocity and rotates, a looped 

calculation can be performed, where the acceleration, the velocity, and the angular rotation are 

updated after each time step Δ𝑡. This concept will be sketched here. The acceleration is assumed to 

be constant over this time step, which is an acceptable assumption as long as the time step is very 

small. Initially, the armour unit is at rest (𝑣0 = 0 𝑚/𝑠), while the arm of the weight force is 

determined from geometry, thus the initial acceleration 𝑎0 can be calculated, leading to a certain 

velocity after the first time step 𝑣1 = 𝑎0 ∙ 𝑑𝑡. Then, for the next time step, the velocity difference 

Δ𝑢 = 𝑢 − 𝑣, must be updated, based on the new 𝑣. The arm of the weight force (𝑟𝑊, a fraction of dn) 

will be updated as well, based on the rotation of the block during the previous time step. This leads 

to a new acceleration 𝑎1, which can be used to calculate the new velocity, 𝑣2 = 𝑣1 + 𝑎1 ∙ 𝑑𝑡.  

The development of the velocity is now captured, so the last step is to define when to stop the loop. 

To determine the impact velocity, the loop must be stopped when the impact takes place, so when 

the travelled distance exceeds or is equal to the available movement space, 𝑠𝑚𝑎𝑥. Therefore, the 

travelled distance must be updated during each time step as well, based on the average velocity 

during this time step: 𝑠[𝑖] = 𝑠[𝑖 − 1] +
1

2
(𝑣[𝑖] + 𝑣[𝑖 − 1]) ∙ Δ𝑡. Then, as soon as 𝑠[𝑖]  ≥ 𝑠𝑚𝑎𝑥, the 

loop will be stopped and the last calculated value of the velocity is the impact velocity. 
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An example script is given below, written in Python. The velocity correction is determined for a case 

with 𝑑𝑛 = 2.5 𝑚, 𝐻 = 6.0 𝑚, 𝑅 = 0.0, 𝑓𝑎𝑟𝑒𝑎 = 0.8, 𝐶1 = 1.0 and a range of values is given for 𝑠 in 

this example. Later, other variables will be varied to check their influence on the corrected velocity, 

for which 𝑠 = 0.1 will be set as the standard value. 
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The time step needs to be small in order to get an accurate impact velocity, so this method will not 

be implemented in the Monte Carlo simulation during this MSc thesis, since that makes it 

computationally heavy. If a large computation time is no problem, or you have very large 

computational capacity, it is an option to implement the velocity correction in the Monte Carlo 

simulation, but that will not be done here. Instead, a correction factor will be determined, to account 

for the decreasing acceleration, without having to perform a loop. 

To determine a correction factor, the ratio between the impact velocity with correction of 

acceleration and the impact velocity without correction will be determined. Ideally, this ratio would 

be constant for all cases, but sadly there are differences for different combinations of the variables 

that affect the impact velocity. The main variables are: the diameter 𝑑𝑛, the wave height 𝐻, the area 

subjected to the wave 𝑓𝑎𝑟𝑒𝑎, the travel distance 𝑠, the collision point 𝐶, and the rotation point 𝑅.  

Using the previously given example script, the velocity correction can be compared to the 

uncorrected velocity by means of a plot. 
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The plots show that each variable affects the velocity correction. It is therefore difficult to create a 

single expression for a correction factor, as each variable should actually be included in that 

expression. Also, it would be interesting to see how much correction would be needed in all variables 

are varied together, to get to the limit of the required correction. This is done in the final plot, where 

all of the earlier variations are included. Note that the variation of the location of the collision point 

is reversed, in order to obtain the most unfavourable case, since that variable was the only one that 

showed an upward trend. 

 

Eventually, a final value of 0.832 is obtained, so in any case, the required velocity correction will be 

less than 20%. Also note that this most unfavourable case is extremely rare; rarer than one in a 

billion. Still, there are also much more probable cases that still require a correction of around 10%.  

To be able to incorporate the velocity correction in the Monte Carlo simulation, a simple correction 

factor will be established. This correction factor will be based solely on the available movement 

space, which is an arbitrary, but necessary in order to keep it simple. The movement space is 

evaluated as the most important variable, since it has a big influence on the travel time, as well as on 

the change of the arm of the weight. Looking back at the plot of the movement space variation, the 

correction factor seems to be proportional to 𝑠 via a square root, more specifically, in the form of: 

𝑓𝑐𝑜𝑟 = 1 − 𝑥 ∙ √𝑠, where 𝑥 = 1/4 is found as a reasonable fit. 
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Note that the fitted line deviates from the calculated velocity correction, but this is done 

intentionally, to account for the variation of the other variables. The velocity correction factor is thus 

not perfect, but it will help to decrease the error. 

Eventually, the velocity correction factor is determined as: 

𝑓𝑐𝑜𝑟 = 1 −
√𝑠

4
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Appendix C. Shear strength check 
This appendix is meant to prove that the shear strength is not governing for rupture of a breakwater 

leg at its base. It was earlier identified that failure due to bending was most likely the governing case, 

but this appendix attempts to prove that this is indeed true. 

The shear strength of concrete can be determined according to: 

𝑣𝑅𝑑,𝑐  [𝑁/𝑚𝑚²] = 0.035 ∙ 𝑘3/2 ∙ 𝑓𝑐𝑘  

with: 𝑘 = 1 +  √
200

𝑑
  

Where: 𝑓𝑐𝑘 is the characteristic concrete strength, and 𝑑 is the effective height of the cross section. 

Note that 𝑑 is generally used regarding reinforced concrete, for which, as a rule of thumb, 

𝑑 = 0.81 ∙ ℎ, with ℎ as the full height of the cross section. Since there is no reinforcement in this 

case, it seems appropriate to just use 𝑑 = ℎ instead. 

The allowable shear force can then simply be determine by multiplying with the cross section area. 

Note that the impact strength is assumed to be approximately twice as high as the regular strength, 

which leads to: 

𝑉𝑅𝑑,𝑐,𝑖𝑚𝑝𝑎𝑐𝑡[𝑁] = 2 ∙ 𝑣𝑅𝑑,𝑐 ∙ 𝑏 ∙ 𝑑  

The forces at the base of the leg are determined with the strut-and-tie model, which is shown once 

more in Figure C.0.1 and Figure C.0.2.  

 

Figure C.0.1: Strut-and-tie model, example for a cubical leg 
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Figure C.0.2: Strut-and-tie model results from MatrixFrame 

From the strut-and-tie model, the shear force at the bottom of the leg is identified as: 

𝑉 = 𝐹𝐻/2  

 

In Figure C.0.3, the shear force determined from the model is plotted against the probability of 

exceedance. To show that the shear resistance is not exceeded, a horizontal line that represents the 

shear resistance is drawn in the same graph. The shear resistance is not a exceeded a single time, 

proving that shear failure over the full leg is not a governing failure case. 

 

Figure C.0.3: Plot of the calculated shear force, plus the shear resistance 

Note that in other cases, with extremely large waves and very large armour units, the shear 

resistance will eventually be exceeded for some units, but even then, the tensile strength is already 

exceeded due to the bending stresses, so shear over the full leg is still not the governing failure 

mechanism. 
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Appendix D. Python script of the model 
The model is implemented in a Python script. The code is given in this appendix. 
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