

Delft University of Technology

Data Smells in Public Datasets

Shome, Arumoy; Cruz, Luis; Deursen, Arie Van

DOI
10.1145/3522664.3528621
Publication date
2022
Document Version
Final published version
Published in
Proceedings - 1st International Conference on AI Engineering - Software Engineering for AI, CAIN 2022

Citation (APA)
Shome, A., Cruz, L., & Deursen, A. V. (2022). Data Smells in Public Datasets. In Proceedings - 1st
International Conference on AI Engineering - Software Engineering for AI, CAIN 2022 (pp. 205-216).
(Proceedings - 1st International Conference on AI Engineering - Software Engineering for AI, CAIN 2022).
IEEE. https://doi.org/10.1145/3522664.3528621
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3522664.3528621
https://doi.org/10.1145/3522664.3528621

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Data Smells in Public Datasets

Arumoy Shome
Delft University of Technology

Netherlands

a.shome@tudelft.nl

Luís Cruz
Delft University of Technology

Netherlands

l.cruz@tudelft.nl

Arie van Deursen
Delft University of Technology

Netherlands

arie.vandeursen@tudelft.nl

ABSTRACT

The adoption of Artificial Intelligence (AI) in high-stakes do-

mains such as healthcare, wildlife preservation, autonomous

driving and criminal justice system calls for a data-centric

approach to AI. Data scientists spend the majority of their

time studying and wrangling the data, yet tools to aid them

with data analysis are lacking. This study identifies the recur-

rent data quality issues in public datasets. Analogous to code

smells, we introduce a novel catalogue of data smells that can

be used to indicate early signs of problems or technical debt in

machine learning systems. To understand the prevalence of

data quality issues in datasets, we analyse 25 public datasets

and identify 14 data smells.

ACM Reference Format:

Arumoy Shome, Luís Cruz, and Arie van Deursen. 2021. Data Smells in

Public Datasets. In 1st Conference on AI Engineering - Software Engineering

for AI (CAIN’22), May 16–24, 2021, Pittsburgh, PA, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3522664.3528621

1 INTRODUCTION

Data analysis is a critical and dominant stage of the machine learn-

ing lifecycle. Once the data is collected, most of the work goes

into studying and wrangling the data to make it fit for training. A

highly experimental phase follows where a model is selected and

tuned for optimal performance. The final model is then produc-

tionised and monitored constantly to detect data drifts and drop in

performance [8, 23, 43, 46].

When compared to traditional software, the feedback loop of

a machine learning system is longer. While traditional software

primarily experiences change in code, a machine learning system

matures through changes in data, model & code [43]. Given the

highly tangled nature of machine learning systems, a change in

any of the stages of the lifecycle triggers a ripple effect through-

out the entire pipeline [46]. Testing such changes also becomes

challenging since all three components need to be tested. Besides

the traditional test suites, a full training-testing cycle is required

which incurs time, resource and financial costs. The surrounding

infrastructure of a machine learning pipeline becomes increasingly

complex as we move towards a productionised model. Thus catch-

ing potential problems in the early, upstream phase of data analysis

becomes extremely valuable as fixes are faster, easier and cheaper

to implement.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9275-4/21/05.
https://doi.org/10.1145/3522664.3528621

AI has had a significant impact on the technology sector due to

the presence of large quantities of unbiased data [38]. But AI’s true

potential lies in its application in critical sectors such as healthcare,

wildlife preservation, autonomous driving, and criminal justice

system [12]. Such high-risk domains almost never have an existing

dataset and require practitioners to collect data. Once the data is

collected, it is often small and highly biased. While AI research is

primarily dominated by model advancements, this new breed of

high-stakes AI supports the need for a more data-centric approach

to AI [29, 42, 54].

Since the study of software systems with machine learning com-

ponents is a fairly young discipline, resources are lacking to aid

practitioners in their day-to-day activities. The highly data-driven

nature of machine learning makes data equivalent to code in tra-

ditional software. The notion of code smells is critical in software

engineering to identify early indications of potential bugs, sources

of technical debt and weak design choices. Code smells have existed

for over 30 years. A large body of scientific work has catalogued

the different smells, the context in which they occur and their po-

tential side-effects. To the best of our knowledge, such a catalogue

however does not exist for data science.

The research questions along with the contributions of this paper

are listed below.

• RQ1. What are the recurrent data quality issues that

appear in public datasets?

Analogous to code smells, we introduce the notion of data

smells. Data smells are anti-patterns in datasets that indicate

early signs of problems or technical debt.

• RQ2.What is the prevalence of such data quality issues

in public datasets?

We create a catalogue of 14 data smells by analysing 25 pop-

ular public datasets1. The catalogue also presents real-world

examples of the smells along with refactoring suggestions

to circumvent the problem.

Additionally, we plan to publish the catalogue online under

the creative commons license in hopes that students and

practitioners find it valuable.

The remainder of the paper is structured as follows. Section 2

provides an overview of related concepts and prior work that has

been done. The methodology followed by this paper is presented in

Section 3 followed by the results in Section 4. The paper concludes

with a discussion of the results, limitations and future work in

Section 5, 6 and 7 respectively.

2 RELATEDWORK

This section provides an overview of relevant prior work in code

smells, data validation and AI engineering.

1Our analysis of the datasets can be found on Figshare
https://figshare.com/s/fd608796dd65f0808e7e

205

2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN)

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA Arumoy Shome, Luís Cruz, and Arie van Deursen

Figure 1: Overview of scientific process

Code smells were originally proposed by Kent Beck in the 1900s

and later popularised by Fowler in his book Refactoring [16, 17].

Code smells are indications of potential problems in the code and

require engineers to investigate further. Common code smells in-

clude presence of bloated code such as large classes & long methods,

redundant code such as duplicate code & dead code paths and exces-

sive coupling such as feature envy [17, 19]. Code smells have been

widely adopted by the software engineering community to improve

the design and quality of their codebase. The notion of code smells

has also been extended to other areas such as testing [6, 48, 49],

bug tracking [50], code review [15] and database management sys-

tems [13, 37, 47]. Code smells however still suffer from the problem

of lacking generalisability over a large population as most smells

are subjective to the developer, team or organisation.

Data validation is a well established field of research with roots

in Database Management Systems (DBMS). With the wide adoption

of data-driven decision-making by businesses, significant efforts

have been made towards automated data cleaning and quality as-

surance [11, 22, 28, 44]. In the context of machine learning, several

tools and techniques have been proposed for improving data qual-

ity and automated data validation [7, 9, 27, 32, 40, 55]. Hynes et al.

present a data linting tool in the context of Deep Neural Networks

(DNNs). The tool checks the training data for potential errors both

at the dataset and feature level. The paper presents empirical evi-

dence of applying the linter to over 600 open source datasets from

Kaggle, along with several proprietary Google datasets. The results

indicate that such a tool is useful for new machine learning prac-

titioners and educational purposes [24]. Although there is some

overlap between the data linter by Hynes et al. and our data smells

project, We argue that Hynes et al. did not follow a systematic

approach to collect the linting rules. Our work is complimentary

to data linters as our approach exhaustively extracts potential data

quality issues from datasets. Our catalogue of data smells can be

seen as a framework for systematically extending, or creating new

data linting and validation tools.

AI engineering is a relatively young discipline of software engi-

neering (SE) research. The primary focus of the field is to compare

and contrast machine learning systems to traditional software sys-

tems and adopt best practices from the SE community. The semi-

nal paper by Sculley et al. was the first to recognise that machine

learning systems accumulate technical debt faster than traditional

software [46]. This accelerated rate of technical debt accumulation

is due to the highly tangled nature of machine learning models to

its data. Machine learning is data-centric as each problem—which

requires new or combination of existing datasets—needs to be ad-

dressed individually [4, 5, 8, 26, 46, 52].

Data scientists spend the majority of their time working with

data, yet unlike in software engineering, lack tools that can aid

them in their analysis [8, 23]. This study proposes a catalogue of

data smells that can be beneficial to practitioners and used as a

framework for development of tools in the future.

3 METHODOLOGY

Figure 1 presents an overview of the scientific process followed

in this study. The methodology can be divided into three distinct

phases which are presented in more detail below.

3.1 Data selection phase
This study uses Kaggle—an online data repository—to discover

datasets for the analysis 2. All public datasets available on Kaggle

are sorted by the Most Votes criteria and 25 datasets are shortlisted

based on the inclusion criterion presented in Table 2. The sample of

datasets only includes CSV files of size smaller than 1GB to facilitate

the analysis on a personal laptop. Analysis of unstructured datasets

such as text corpus, images, videos and audio is excluded as this

calls for specialised tools, additional time and effort which was

deemed beyond the scope of this study. Structured datasets on

the other hand are more commonly occurring. Practitioners and

academics frequently work with structured datasets that are often

used for educational purposes. Therefore, we invested our efforts in

analysing structured datasets to make our work relevant to a larger

demographic. The 25 datasets selected for this study are listed in

Table 1. The table also includes additional metadata such as the size,

number of rows and columns, number of votes and the latest version

at the time of analysis.

3.2 Smell detection phase

2https://www.kaggle.com

206

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

Data Smells in Public Datasets CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA

Table 1: Selected Datasets

Name Description Size Rows Columns Votes Version

abalone Predicting age of abalone from physical

measurements

188K 4177 9 99 3

adult Predicting whether income exceeds

$50K/yr based on census data

3.8M 32561 15 475 3

airbnb Airbnb listings and metrics in NYC, NY,

USA

6.8M 48895 16 2502 3

avocado Historical data on avocado prices and sales

volumn in Multiple US markets

1.9M 18249 13 2770 1

bitcoin Bitcoin data at 1-min intervals from select

exchanges, Jan 2012 to March 2021

303M 4857377 8 2876 7

breast-cancer Predict whether the cancer is benign or

malignant

123K 569 33 2537 2

comic-dc FiveThirtyEight DC comic characters 1.1M 6896 13 2465 111

comic-marvel FiveThirtyEight Marvel comic characters 2.3M 16376 13 2465 111

covid-vaccine Daily and total vaccination for COVID-19 11M 53595 15 1978 234

covid-vaccine-

manufacturer

Vaccinations for COVID-19 by manufac-

turer

793K 19168 4 1978 234

earthquake Date, time and location of all earthquakes

with magnitude of 5.5 or higher

2.3M 23412 21 435 1

fraud Anonymised credit card transactions la-

beled as fraudulent or genuine

144M 284807 31 8775 3

happiness Happiness scored according to economic

production, social support, etc

8.7K 156 9 3401 2

heart UCI heart disease dataset 12K 302 14 5601 1

insurance Insurance forecast by using linear regres-

sion

55K 1338 7 1621 1

iris Classify iris plants into three species 4.5K 150 5 2779 2

netflix Listings of movies and tv shows on Netflix 3.3M 8807 12 6155 5

permit San Francisco building permits 76M 198900 37 194 1

playstore Google play store apps data 1.3M 10841 13 47 1

student Marks secured by students in various sub-

jects

71K 1000 8 3050 1

suicide Suicide rates overview 1985 to 2016 2.6M 27820 12 2766 1

telco Telco customer churn 955K 7043 21 1902 1

vgsales Video game sales 1.3M 16598 11 4248 2

wine Red wine quality 11K 178 14 1918 2

youtube Trending YouTube video statistics 60M 40949 16 4381 115

Table 2: Inclusion criterion for datasets

Key Inclusion Criteria

IC1 Dataset is of CSV format.

IC2 Dataset is smaller than 1GB in size.

IC3 Dataset contains structured data.

IC4 Dataset primarily contains numerical and cate-

gorical features.

We used the Python programming language 3 along with the

data analysis package Pandas 4 to perform the analysis. The smells

3https://www.python.org
4https://pandas.pydata.org

are identified using a two pass technique which is manually con-

ducted by the first author. The first pass focuses on identifying

characteristics of datasets that are indicative of a smell. Since the

catalogue of smells evolved as more datasets were analysed during

the first pass, a second pass is used to validate the original smells

observed in the datasets. The second pass also helps to identify

newer smells which were missed in the older datasets during the

first pass.

The first pass conducts a preliminary analysis of the datasets

listed below. This is a standard list of checks performed by data

scientists during data understanding under the CRISP-DM model

of data mining [25, 34, 41, 45].

(1) Reading the accompanying data documentation when avail-

able.

207

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA Arumoy Shome, Luís Cruz, and Arie van Deursen

Table 3: Exclusion criterion for smells

Key Exclusion Criteria

EC1 Smell is not generalisable to structured

datasets.

EC2 Smell is not generalisable to other program-

ming languages and tools.

(2) Analysing their head and tail—both in its entirety and on a

feature-by-feature basis.

(3) Observing the column headers and datatypes for relevant

meta data such as the expected schema of the dataset.

(4) Analysing the descriptive statistics of the dataset.

(5) Checking for missing values and duplicate rows.

(6) And finally checking correlations amongst features.

We did not analyse the distribution of the features and their rela-

tionship with one another (besides checking for correlation). This is

because the insights gained from distributional and relational anal-

ysis of a particular dataset are not generalisable to other datasets

and domains. This is touched upon in more detail in Section 6.

3.3 Catalogue creation phase

We further prune the list of smells using the exclusion criterion

listed in Table 3 and additional validation from the second author.

Smells which cannot be generalised to other structured datasets

are removed. Similarly, smells which are relevant only when using

a specific programming language and tools (such as Python and

Pandas) but not applicable when using a different toolset (such as

Matlab 5, R 6 or Julia 7) are excluded.

4 RESULTS

This section presents the results obtained from the analysis of public

datasets. The most recurrent data quality issues are presented first.

A catalogue of data smells showing the prevalence of such data

quality issues is presented next (See RQ1 and RQ2 in Section 1).

This study analysed 25 public datasets from which 14 data smells

were discovered. We group the smells into 4 distinct categories

based on their similarity as listed below.

(1) Redundant value smells or smells which occur due to pres-

ence of features that do not contribute any new information.

(2) Categorical value smells or smells which occur due to

presence of features containing categorical data.

(3) Missing value smells or smells which occur due to absence

of values in a dataset.

(4) String value smells or smells which occur due to presence

of features containing string type data.

Additionally, three more smells were found which could not be

grouped into the above categories and are put under theMiscella-

neous smells category.

Table 4 presents an overview of all data smells along with their

distribution. The remainder of this report frequently refers to these

5https://www.mathworks.com/products/matlab.html
6https://www.r-project.org/
7https://julialang.org/

Table 4: List of smells

Key Name Count

Redundant value smells (red) 33

red-corr Correlated features 19

red-uid Unique identifiers 11

red-dup Duplicate examples 3

Categorical value smells (cat) 17

cat-hierarchy Hierarchy from label encoding 12

cat-bin Binning categorical features 5

Miscellaneous value smells (misc) 14

misc-unit Unknown unit of measure 9

misc-balance Imbalanced examples 3

misc-sensitive Presence of sensitive features 2

Missing value smells (miss) 13

miss-null Missing values 11

miss-sp-val Special missing values 1

miss-bin Binary missing values 1

String value smells (str) 12

str-num Numerical feature as string 5

str-sanitise Strings with special characters 5

str-human Strings in human-friendly formats 2

smells by their unique key which is also provided here. The redun-

dant and categorical value smells are the most common categories

with a total occurrence of 33 and 17 respectively. The missing &

string value smells are the least common categories with a total

occurrence of 13 and 12 respectively. red-corr is the most common

smell, observed in 19 of the 25 datasets. The remaining top five

smells include cat-hierarchy, miss-null, red-uid and misc-unit which

are observed inmore than 10 datasets. The least frequently observed

smells include misc-balance, str-human, misc-sensitive, miss-sp-val

and miss-bin which are observed in less than 5 datasets.

Finally we also analyse the distribution of smells within the

datasets. Figure 2 shows a two dimensional histogram of the smells

and datasets such that the intersection of datasets where a particular

smell occurred is filled. The histogram is colour-coded based on the

smell category which allows us to observe the most common smell

categories at a glance. The figure also contains two marginal plots

across the x and y axes. The marginal plot along the x axis presents

a count of smells within each dataset such that we can identify the

datasets with the most and least number of smells. Similarly, the

marginal plot along the y axis presents a count of smells across all

datasets such that we can identify the most and least frequently

occurring smells.

The remainder of this section presents the smell groups and

their corresponding smells in more detail. We present examples of

the smells discovered along with an explanation of the underlying

problems that may arise. Where applicable, potential strategies to

mitigate the problem, context in which the smells may not apply

and references from literature (both scientific and grey) are also

presented.

208

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

Data Smells in Public Datasets CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA

Figure 2: Joint distribution of smells and datasets

4.1 Redundant Value Smells

This section presents smells that indicate presence of redundant

information in datasets. This was the most prominent group of

smells as 33 occurrences were observed in this study.

4.1.1 Correlated features (red-corr). This study identified 19 datasets

that contained correlated features.

Checking for correlation amongst features is a common practise

in data science. The correlation between two numerical features

is a representation of the linear relationship between them. From

a machine learning perspective, presence of uncorrelated features

indicates that the features impart new information. But the presence

of correlated features is a smell for redundant information.

Datasets come in all shapes and sizes, often containing rows or

columns which do not offer new or valuable information. Themodel

training stage usually helps identify features which do not need to

be included in the training data, allowing us to engineer a more

efficient dataset. Engineering efficient datasets is important since

the machine learning lifecycle consists of several deeply coupled

stages. Naturally, any form of optimisation—no matter how small—

propagates through the downstream stages. A small dataset is easier

to understand, faster to train a model on and takes up less storage.

The benefits of a small dataset are appreciated especially during

the model development phase where many experiments along with

their accompanying dataset, model and code are versioned and

stored [5, 43].

Presence of correlated features gives practitioners the oppor-

tunity to perform feature selection and drop redundant features

which do not affect the model’s performance.

4.1.2 Unique identifiers (red-uid). This study identified 11 datasets

that contained columns containing a unique identifier (uid) for

each example in the dataset. For example, the youtube, earthquake,

netflix, telco and avocado datasets all contain a column carrying a

uid for the examples.

Relational databases are the most popular type of databases be-

ing used today. Such databases have a column containing a unique

identifier (uid) commonly referred to as the primary key. Machine

learning pipelines are often automated and perform end-to-end

operations, starting with data consumption from large data ware-

houses and data lakes, all the way to publishing a trained machine

learning model in production. Although uids are useful when per-

forming merge or join operations on two or more database tables,

they become redundant when training machine learning models.

Their presence in a dataset is a smell for potential problems in

downstream stages.

A machine learning model may learn some hidden relationship

between the uids and the target values that produces a high accu-

racy during training. Such an insight however prevents the model

from learning relationships and trends that are generalisable to

unseen data and limits its ability to provide meaningful predictions.

Furthermore, uids may also prevent the detection of duplicate ex-

amples in a dataset. This is another smell that was discovered in

this study and discussed further in Section 4.1.3 below.

Although features containing uids in general should not be in-

cluded in the training set, they can sometimes provide valuable

insights during the data analysis stage. The airbnb dataset contains

the host_id and id features containing uids for the hosts and the

properties respectively. One may regard them as redundant feature

and drop them. However further analysis of the columns may lead

to interesting insights. For instance, the host_id column contains

duplicate entries which presents the insight that hosts may own

multiple properties. This can further be engineered into a new

feature which may help during training. Analysing the columns to-

gether can help detect truly duplicate examples (rows with the same

property and host id) and outliers (rows with the same property id

but different host ids).

4.1.3 Duplicate examples (red-dup). This study identified three

datasets, namely heart, insurance and iris, that contained duplicate

rows. We ignore timeseries data where an event can occur several

times resulting in duplicate rows.

Duplicate examples in a dataset are defined as two or more rows

which refer to the same entity. They do not serve any purpose and

can be removed from the dataset, making their presence a smell for

redundancy in the dataset.

Duplicate examples make a dataset bloated. They do not con-

tribute any new information during the data analysis stage. Further-

more, training a machine learning model with a dataset containing

duplicate examples can impede the model’s performance on un-

seen data. Training a model using duplicate examples might lead

to overfitting as it may learn once from the original example and

then again from the duplicate example(s).

4.2 Categorical Value Smells

This section presents smells that arise from the presence of cate-

gorical data. This study found 17 occurrences of smells from this

group.

4.2.1 Hierarchy from label encoding (cat-hierarchy). The values of

the education feature in the adult dataset have a clear hierarchy

amongst themselves. Figure 3 shows the probability density plot of

the education levels of adults conditioned on their income class. For

the given dataset, the probability that an adult earns more given

209

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA Arumoy Shome, Luís Cruz, and Arie van Deursen

Figure 3: Probability density plot of adult education based

on income

that they have better education is higher. We can expose the hier-

archy amongst the education levels by assigning a number starting

from 0 in ascending order such that higher levels of education are

assigned a higher numerical value. This encoding scheme can aid a

machine learning model to accurately predict the income class of an

individual. Using the same encoding scheme for the sex and race

features in the same dataset can however lead to biased outcomes.

An important characteristic of categorical data is the notion of hi-

erarchy amongst its values. Label or dummy encoding is a common

technique used in data science to encode categorical data as num-

bers. This technique preserves the hierarchy amongst the values

which may impart useful information to the model during training.

Some categorical features however contain sensitive information

(sensitive features are discussed in more detail in Section 4.3.1) and

do not have hierarchy amongst their values. Label encoding such

features can introduce bias into a machine learning model and af-

fect its performance. The presence of sensitive categorical features

are therefore a smell to avoid introducing bias into the model.

Label encoding sensitive categorical features can introduce un-

wanted hierarchy amongst the values and lead to incorrect and

biased results in machine learning models. The model may incor-

rectly associate a sex or race with a higher numerical value to be

superior to other values with a lower number. This can be avoided

using the one-hot encoding technique as opposed to label encod-

ing [2].

4.2.2 Binning categorical features (cat-bin). Figure 4 presents the

distribution of the neighbourhood feature in the airbnb dataset. It

is a categorical feature that contains over 200 unique values but

several values are rare and do not occur that often. Another example

is found in the adult dataset where the native-country feature

contains 42 unique values.

One-hot encoding a feature with high cardinality can result in

a very large feature space and incur higher memory, disk space

and computation costs throughout the machine learning lifecycle.

Presence of categorical features with high cardinality in their data

is a smell to perform potential data transformations to reduce the

cardinality.

A common practise amongst data scientists to address such

a problem is to bin several values together. For example, the

native-county values can be binned into the seven continents.

As an alternative to the neighbourhood feature, the airbnb dataset

also contains the neighbourhood_group feature which bins the

neighbourhood values into 5 broader areas.

4.3 Miscellaneous Smells

This section presents three smells which did not fit into groups

presented earlier. This study identified 14 occurances of smells from

this group.

4.3.1 Presence of sensitive features (misc-sensitive). The adult

dataset presents census information of individuals from 1994.

Amongst others, the dataset contains information regarding the

sex, race & income of individuals. Figure 5a presents the probability

density plot of the income class conditioned on the race and sex

of individuals. We see that for this dataset, the probability that a

male of lighter skin earns more than their female and darker skin

counterpart, is significantly higher.

Not all features contribute equally towards knowledge, whether

it be during the analysis or model training. Section 4.1 motivated the

need to remove redundant features from a dataset, leaving behind

high-impact features that contribute the most towards analysis and

model training. While most high-impact features lead to interesting

insights during analysis, not all should be used to train machine

learning models. Presence of high-impact features are a smell to

identify sensitive features that may lead to biased and unfair model

predictions.

Going back to the example presented above, a machine learning

model trained and tested on this dataset would be able to predict

the income class of an individual with high accuracy. However such

a model when used in production to making business decisions

will lead to unfair and biased predictions given it was trained with

historical data with similar traits [1, 36, 53]. Use of biased models

for predictive policing and criminal justice systems can have far

more devastating consequences [21, 30, 35].

Potential mitigation strategies include not using sensitive fea-

tures during model training and introducing appropriate regularisa-

tion techniques to combat the bias. For instance, in the adult dataset,

the sex and race can be excluded from the training set so that the

model can learn from more generalisable features such as the age

and the level of education of an individual. More recently, the trust-

worthy AI research field has also seen significant developments

to address issues regarding safety and robustness, explainability,

fairness and privacy in machine learning models [31].

4.3.2 Imbalanced examples (misc-balance). The fraud dataset con-

tains anonymised information on credit card transactions for over

200, 000 European cardholders. The dataset also contains a binary
class feature where fraudulent transactions are assigned a value

of 1 and others a value of 0. As seen from Figure 5b, a model trained

on this dataset to detect fraudulent transactions will not perform

well as the dataset contains very few examples for the fraudulent

transactions class.

When performing classification using supervised learning algo-

rithms, the target feature can also contribute to bias in the model. A

special case of themisc-sensitive smell is the presence of unbalanced

examples for the classes in a dataset.

210

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

Data Smells in Public Datasets CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA

Figure 4: Histogram of neighbourhoods in airbnb dataset with high cardinality.

(a) Probability density plot of adult income based on their

race (along x axis) and sex (along y axis).

(b) Histogram of class feature
from fraud dataset.

Figure 5: Distribution of sensitive features from the adult and fraud datasets.

Common techniques for working with skewed datasets include

using more robust performance metrics such as precision and recall,

increasing the size of the training set or manipulating the training

set such that the number of examples per class is equal.

4.3.3 Unknown unit of measure (misc-unit). The breast-cancer

dataset contains several numerical features such as radius,

perimeter & area of tumours. However the column names and

documentation fail to mention the unit in which the features were

measured.

Numerical data or data of the type int or float are the most

common data types in structured datasets. Understanding the distri-

bution and trends within numerical features constitutes the bulk of

the data analysis stage. This helps in gaining a deep understanding

of its characteristics which is vital to determine how a model will

perform when trained on such a feature set. Consistency is of high

importance when working with numerical features, and lack of a

common unit of measure for all observations of a feature is an early

indicator of problems during model training.

Lack of standardised data collection procedure, long durations

of data collection and use of undocumented data sources can all

lead to observations measured in different units. A mix of units

can also lead to incorrect results from outlier detection and prop-

agate to engineered features. Mean removal and variance scaling

are common pre-processing techniques used to standardise the

numerical features of a dataset prior to training a model. But such

a transformation is unfruitful if the observations are not recorded

with the same unit of measure.

4.4 Missing Value Smells

This section presents smells that arise from presence of missing

values in datasets. This study identified 13 occurrences of smells

from this group.

4.4.1 Nulltype missing values (miss-null). A common problem ob-

served in the analysed datasets is the absence of data which can be

an early indicator of potential problems in downstream processes.

We noticed certain abnormalities while analysing the descriptive

statistics of the permit, bitcoin and covid-vaccine datasets. Subse-

quently, the missing data check revealed that these datasets had

large quantities of missing values. For instance, the permit dataset

contains several datetime features where 50% of the data is missing;

25% of the data in the bitcoin dataset; and 50% of the data in the

numerical features of the covid-vaccine dataset are missing.

When a small portion of the data is missing or if sufficient num-

ber of examples for each class is available, missing data can be

omitted prior to further analysis [3]. Such a strategy ceases to be

an option in high-stakes domains where data is limited and highly

unbalanced to begin with. In such datasets, dropping missing data

amplifies the imbalance and leads to insufficient data for train-

ing machine learning models [29, 42]. Missing values are typically

ignored by data analysis tools while performing statistical compu-

tations (such as descriptive statistics), leading to inaccurate and

biased conclusions. Missing values can also lower the performance

of machine learning models due to underrepresented groups in

the dataset [33, 39]. The problem gets worse as we scale to larger

datasets which do not fit in the memory of a single computer and

211

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA Arumoy Shome, Luís Cruz, and Arie van Deursen

require a more distributed approach for storage and performing

transformations.

Such cases require further effort from data scientists to impute

the missing values. Imputation of missing data is a vast research

field in itself with techniques ranging from simple statistical tech-

niques such as mean, median and linear regression, to using ma-

chine learning models that predict the missing value [3, 40, 51].

4.4.2 Special missing values (miss-sp-val). The missing values in

the adult dataset are represented with the question mark character.

Although the null type (null or nil) is the most common data

type used to represent missing values, sometimes special string

characters and keywords such as ‘?’, ‘nil’, ‘null’ are also

used.Dummy encoding is another popular techniquewhere a unique

numerical value (such as -9999 or -6666) which is unlikely to be

observed in real-life is used. Using special characters, keywords

and numbers to represent missing values—especially when they

are undocumented—are a smell for problems in downstream stages.

Data analysis tools often contain built-in functionality to check

for presence of missing values by detecting null data types in the

dataset. Unless otherwise documented, using special characters or

numbers impedes the ability of data scientists and data analysis

tools to detect missing values accurately. We can indirectly discover

string type missing values when performing statistical computa-

tions. In such a case, the data analysis tool will fail to perform a

numerical operation on data represented as a string and raise an

error. Usage of undocumented dummy encoding is however worse

as the data analysis tool will continue to operate. This adds to

technical debt and may result in incorrect statistical conclusions

or catastrophic failure in downstream stages. The data must be

manually analysed to identify the special character or number used

to represent missing values, wasting time and effort that could have

been used to perform other productive tasks.

Using null data types to represent missing values during data

collection phase is regarded as good practise. Using special char-

acters, keywords or dummy encoding for missing values must be

documented to reduce technical debt and aid future practitioners.

4.4.3 Binary missing values (miss-bin). While analysing

the permit dataset, we identified two features (namely

structural_notification and tidf_compliance) with 90%

missing values. All non-missing values however comprised of the

string ‘Y’, a common abbreviation for ‘yes’. This indicated that the

missing values carried an implicit meaning of ‘N’ or ‘no’ and were

not indicative of truly missing values.

In Section 4.4.1 we saw how presence of excessive missing data

can be a smell for incorrect statistical observations and additional

effort for data imputation. Close attention however must be paid to

the distribution of the missing values within the dataset. Presence

of high quantities of missing data primarily within a column—as

opposed to being distributed across rows and columns—can be a

smell that the data is not truly missing. The missing values in such

cases may carry an implicit meaning of a negative binary response.

This can be validated further by observing the column header

along with the non-missing values of the feature(s) in question. If

the non-missing data is indicative of a positive response such as

‘{t,T}rue’ or ‘{y,Y}es’ then the missing data may indicate a

negative response. It is common practise in software engineering

to represent a negative response or result using a null type, such

as None in Python and null in Java. The same however does not

hold in data science as null types are commonly used to represent

missing data.

If a data scientist fails to notice this implicit meaning, they may

hastily drop the missing values or perform imputation. However in

doing so, the original information carried by the dataset is altered

leading to inaccurate results and conclusions.

4.5 String Value Smells

This section presents smells that arise from the presence of string

type data. This group of smells was least frequently observed with

a total occurrence of 12.

4.5.1 Strings with special characters (str-sanitise). The missing val-

ues in the adult dataset are represented as ‘?’. However, the ques-

tion marks also contain whitespaces, making their detection and

subsequent imputation slightly more tedious. Another example

can be found in the abalone dataset. This dataset contains the sex

categorical feature where the value can be one of ‘M’, ‘F’ or

‘I’. However due to presence of whitespaces, the data analysis

tools may consider values such as ‘ M’, ‘F ’, ‘ I ’ valid and

distinct from one another.

The presence of leading and trailing whitespaces and special

characters such as punctuation marks in structured data is a smell

for potential problems in the data analysis stage.

Categorical features are often represented as strings during the

data analysis phase and converted to a numerical representation

prior to model training. The presence of whitespace and special

characters in categorical features can confuse data analysis tools

and lead to false results. The problem is easy to rectify in the abalone

dataset since the set of correct values is 3. However things become

more challenging for categorical features whose set of values are

larger. For instance, the airbnb dataset contains the neighbourhood

feature containing names of neighbourhoods in the United States.

The feature contains over 200 valid values and presence of redun-

dant whitespace and special characters can make the data cleaning

process tedious and time consuming.

Handling presence of special characters in string features re-

quires a case-by-case analysis and solution. But this smell flags

the need to always check and remove leading and trailing whites-

paces from string features. This is a common task performed by

data scientists and popular data wrangling tools provide built in

solutions.

4.5.2 Numerical features as string (str-num). The playstore dataset

contains data for apps on the Google Playstore. The dataset con-

tains the current_ver and android_ver features which represent

the current version of the app and the supported android version

respectively. The data in these columns are in the format of release

versions such as 1.1.9, which denotes the major, minor and patch

versions of the latest release. Although the information is repre-

sented as string, we can extract 3 separate numerical features here

which can provide valuable insights.

String features may sometimes contain numerical information

embedded within itself. The smell here is the presence of features

212

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

Data Smells in Public Datasets CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA

whose name indicates numerical type data, but the data analysis

tool interprets the type as string.

Generally speaking, machine learning models tend to perform

better when trained with more data. Extracting valuable numerical

information from such features can therefore be beneficial for model

training.

4.5.3 Strings in human-friendly formats (str-human). The netflix

dataset contains information regarding content on the popular

streaming service. The dataset contains the duration column

which depicts the length of a particular movie or TV show as de-

picted in Table 5. In the case of movies, the data is clearly numerical

in nature (duration in minutes) but represented as a string format

that humans can easily comprehend (the str-num smell discussed

earlier in Section 4.5.2 also applies here). The data for TV shows

deviates from this format as the duration is represented as the

number of seasons of the TV show. Although this format is also

comprehensible to humans, converting them to a useful numerical

representation however comes with several challenges.

Numerical information being represented in a human-friendly

format is a smell for potential problems during the data analysis

stage. This smell can be considered a subset of the str-num smell

discussed earlier in Section 4.5.2.

Machine learning models generally perform better when trained

with standardised and uniform data (also see Section 4.3.3). In this

case, the duration should be represented in minutes for all examples.

Converting the duration for TV shows from seasons to minutes

can be difficult since the duration of each episode and the number

of episodes in a season may vary amongst TV shows. We may

wish to impute using average values however that requires domain

knowledge or further investigation to be carried out by the data

scientist.

Table 5: Excerpt from the netflix dataset showing the str-

human data smell.

type duration

0 Movie 90 min

1 TV Show 2 Seasons

2 TV Show 1 Season

3 TV Show 1 Season

4 TV Show 2 Seasons

5 TV Show 1 Season

6 Movie 91 min

7 Movie 125 min

8 TV Show 9 Seasons

9 Movie 104 min

5 DISCUSSION

This section presents the key observations made in this study.

5.1 Documentation

This study identified several instances where a lack of proper doc-

umentation was felt. The heart dataset contains several cryptic

column headers such as cp, trestbps, & fbs. This makes it

difficult to understand what information the column provides with-

out prior domain knowledge or further investigation. In the same

dataset, the sex column is label encoded (ie.male and female are rep-

resented numerically). However without documentation we cannot

ascertain the gender associated with the numerical values.

Improper documentation makes it difficult to understand the

idiosyncrasies of a dataset such as determining if missing values

are represented with special characters or if they carry an implicit

meaning (see Section 4.4). Developing a deep understanding of the

data is a fundamental step towards any data-centric work. Docu-

mentation can help in this process by providing useful metadata &

context and help practitioners (re)familiarise themselves with the

dataset. Our observations show the need for tools that aid machine

learning practitioners with documenting their work. This is also

corroborated in prior studies which show that machine learning

practitioners spend considerable amount of time documenting their

work as existing machine learning pipelines, models and datasets

lack proper documentation [20, 23, 26, 42].

In line with recommendations made by Hutchinson et al. and

Sambasivan et al., good data documentation should include (but is

not limited to) information regarding the data source and the data

collection procedure, changes that may have already been made to

the dataset along with the rationale behind the change, expected

schema of the columns, meaningful column headers, presence of

missing values & duplicate rows, correlation amongst features and

descriptive statistics. Providing such documentation can signif-

icantly improve productivity of data scientists and reduce data

understanding and development time [23, 42].

5.2 Technical debt

The analysis revealed technical debt in the datasets due to lack of

best practices and standardised procedures in upstream processes.

Undocumented data practices and transformations (Section 5.1),

presence of missing values (Section 4.4) & redundant columns (Sec-

tion 4.1), datasets with sensitive & imbalanced columns (Section 4.3)

and data in human-friendly strings (Section 4.5.3), all lead to accu-

mulation of technical debt in downstream stages.

Due to their highly tangled and experimental nature, machine

learning systems are prone to rapid accumulation of technical

debt [4, 5, 8, 46]. Although a holistic view is recommended for

monitoring machine learning systems, it is often difficult to do so

due to their complexity. Data smells however can help detect prob-

lems during the early stages of the machine learning lifecycle when

the complexity is relatively low and fixes are easier and cheaper

to implement. As with traditional software systems, accumulation

of technical debt is inevitable. However early detection can im-

prove effort estimation and help deliver projects on time with lower

financial costs [18].

5.3 Data validation

Data validation tools provide an abstraction over common tests

performed by data scientists when working with data. Analogous to

how regression testing is done when introducing changes to a code-

base, data validation ensures that the new data conforms to certain

expectations when fed into a machine learning system [11]. But

writing validation rules still requires data scientists to understand

213

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA Arumoy Shome, Luís Cruz, and Arie van Deursen

the data first. This may come naturally to seasoned practitioners,

but is non-trivial for inexperienced practitioners [9].

As opposed to traditional rule-based software, machine learning

models derive the rules automatically from the data. This reduces

the level of human involvement in such systems, allowing for higher

degrees of automation. Automation however comes at the cost of

reduced transparency as minuscule changes to the input data can

cause drastic changes in the trained model. Data validation and

linting tools can automatically validate the data in terms of correct-

ness, consistency, completeness and statistical properties. However

they lack the ability to validate dimensions such as fairness and

robustness which are critical in machine learning [7].

We believe that data smells can aid practitioners during the early

stages of data analysis when human involvement is necessary. As

seen in Section 4.3.1 and 4.2.1, data smells can aid practitioners to

catch data quality issues that lead to biased and unfair predictions

in their models. The smells also help fix other data quality issues

that results in a more robust dataset.

5.4 Data Efficiency

The availability of highly resilient and cheap hardware commodity

due to cloud-computing has enabled leaping advancements in AI.

Neural networks have consistently evolved in complexity and size,

starting with Imagenet in 2009, Resnet in 2015 and more recently

GPT-3 in 2020 which consists of 175 billion parameters [10]. Com-

plex models are data hungry, requiring training data in the scale

of Terabytes. In this era of big data and high performance comput-

ing, presence of seemingly minor data smells can lead to wasted

training cycles and cost millions [14]. Engineering efficient datasets

become crucial in such circumstances and circumvent the use of

overly complex machine learning models. Data quality plays a key

role in delivering efficient and maintainable models with a smaller

carbon footprint.

6 THREATS TO VALIDITY

This study opted for a shallow analysis of the datasets. The analysis

phase consisted of a specific set of steps that were carried out (as

outlined in Section 3) for each dataset. This was a deliberate deci-

sion, made to easily scale and reproduce the analysis steps across a

large sample of datasets. We recognise that a deeper analysis of each

dataset may reveal further smells. For instance, the current analysis

excluded outlier detection or fitting machine learning models to the

dataset. However we strongly believe that the generalisability of

smells reduces as we increase the depth of the analysis. That is,

the smells would only be valid within the context of the problem

domain.

The smells discovered by this study are linked to the version of

the data used for the analysis. For instance, Kaggle contains datasets

from the UCI Machine Learning Data Repository (UCI)8. However

the version of data found on Kaggle is different from the original

source on UCI. Similarly, it is also unclear if the version of data

hosted on UCI is the ground truth or was derived from somewhere

else. While we recognise this issue, it is also unfortunately the

nature of all data science problems. Table 1 provides a list of all

datasets that were used in this analysis along with their version at

8https://archive.ics.uci.edu/ml/datasets.php

the time it was downloaded in hopes to increase the reproducibility

of the results.

The current analysis does not extend to quantifying impact of

smells. For instance, we do not know if and to what extent the

unknown unit of measure (misc-unit) smell affects the model’s per-

formance on a test set (see Section 4.3.3). Such a task requires

collection of a sufficiently large sample of datasets that contain the

smell in question. The validation process involves performing a

supervised learning task which is a highly experimental and time

consuming process. The effort and time increases when we scale the

validation across multiple smells. Therefore such a time consuming

task was beyond the scope of this study.

Data smells are subject to the interpretation of the data scientist,

the team or the organisation performing the analysis. This problem

of subjectiveness is present in code smells as well. Not all long

methods are bad and god classes still exist in open source reposito-

ries. To reduce the possibility of subjective bias in our results, the

smells were reviewed by the second author prior to including them

in the catalogue.

7 CONCLUSION

Code smells are frequently used by software engineers to identify

potential bugs, sources of technical debt and weak design choices.

Code smells in the context of traditional software have existed

for over three decades and have been extensively studied by the

software engineering research community. With the growing pop-

ularity of AI and its adoption in high-stakes domains where a

data-centric approach is adopted, data smells are seen as a much

needed aid to machine learning practitioners. This study examined

25 public datasets and identified 14 recurrent data quality issues—

coined as data smells—that can lead to problems when training

machine learning models. Our results indicate a need for better

data documentation, and accumulation of technical debt due to lack

of standardised practices in upstream stages of machine learning

pipelines.

We consider our collection of data smells and the analysis of

their prevalence a first step towards aiding data scientists in the ini-

tial stages of data analysis where human involvement is necessary.

We hope that our work raises awareness amongst practitioners to

write better documentation for their datasets and follow best prac-

tises during data collection to minimise technical debt in upstream

stages. As a next step, we aim to grow the data smells catalogue by

analysing more datasets. Furthermore, we wish to remove the con-

straints introduced by IC2 (see Section 3 and Table 2) and include

datasets larger than 1GB in size.

REFERENCES
[1] 2018. Mortgage algorithms perpetuate racial bias in lending, study

finds. https://news.berkeley.edu/story_jump/mortgage-algorithms-perpetuate-
racial-bias-in-lending-study-finds/ Accessed on [2022-01-11 Tue].

[2] Taher Al-Shehari and Rakan A Alsowail. 2021. An Insider Data Leakage Detec-
tion Using One-Hot Encoding, Synthetic Minority Oversampling and Machine
Learning Techniques. Entropy 23, 10 (2021), 1258.

[3] Tahani Aljuaid and Sreela Sasi. 2016. Proper imputation techniques for miss-
ing values in data sets. In 2016 International Conference on Data Science and
Engineering (ICDSE). IEEE, 1–5.

[4] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st

214

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

Data Smells in Public Datasets CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA

International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 291–300.

[5] Anders Arpteg, Björn Brinne, Luka Crnkovic-Friis, and Jan Bosch. 2018. Software
engineering challenges of deep learning. In 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 50–59.

[6] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? an empirical study. Empirical
Software Engineering 20, 4 (2015), 1052–1094.

[7] Felix Biessmann, Jacek Golebiowski, Tammo Rukat, Dustin Lange, and Philipp
Schmidt. 2021. Automated Data Validation in Machine Learning Systems. Bulletin
of the IEEE Computer Society Technical Committee on Data Engineering.[Google
Scholar] (2021).

[8] Jan Bosch, Helena Holmström Olsson, and Ivica Crnkovic. 2021. Engineering
AI systems: A research agenda. In Artificial Intelligence Paradigms for Smart
Cyber-Physical Systems. IGI Global, 1–19.

[9] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin Zinkevich.
2019. Data Validation for Machine Learning.. In MLSys.

[10] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[11] Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data clean-
ing: Overview and emerging challenges. In Proceedings of the 2016 international
conference on management of data. 2201–2206.

[12] Kate Crawford. 2021. The Atlas of AI. Yale University Press.
[13] Francisco Gonçalves de Almeida Filho, Antônio Diogo Forte Martins, Tiago

da Silva Vinuto, José Maria Monteiro, Ítalo Pereira de Sousa, Javam de Cas-
tro Machado, and Lincoln Souza Rocha. 2019. Prevalence of bad smells in PL/SQL
projects. In 2019 IEEE/ACM 27th International Conference on Program Comprehen-
sion (ICPC). IEEE, 116–121.

[14] Payal Dhar. 2020. The carbon impact of artificial intelligence. Nature Machine
Intelligence 2, 8 (2020), 423–425.

[15] Emre Doğan and Eray Tüzün. 2022. Towards a taxonomy of code review smells.
Information and Software Technology 142 (2022), 106737.

[16] Martin Fowler. 2006. CodeSmell. https://martinfowler.com/bliki/CodeSmell.html
Accessed on [2022-01-04 Tue].

[17] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[18] Yuepu Guo, Rodrigo Oliveira Spínola, and Carolyn Seaman. 2016. Exploring the
costs of technical debt management–a case study. Empirical Software Engineering
21, 1 (2016), 159–182.

[19] Refactoring Guru. [n.d.]. Catalog of Refactoring. https://refactoring.guru/
refactoring/catalog Accessed on [2022-01-04 Tue].

[20] Mark Haakman, Luís Cruz, Hennie Huijgens, and Arie van Deursen. 2021. AI
lifecycle models need to be revised. Empirical Software Engineering 26, 5 (2021),
1–29.

[21] Will Douglas Heaven. 2020. Predictive policing algorithms are racist. They need
to be dismantled. https://www.technologyreview.com/2020/07/17/1005396/
predictive-policing-algorithms-racist-dismantled-machine-learning-bias-
criminal-justice/ Accessed on [2022-01-11 Tue].

[22] Joseph M Hellerstein. 2008. Quantitative data cleaning for large databases. United
Nations Economic Commission for Europe (UNECE) 25 (2008).

[23] Ben Hutchinson, Andrew Smart, Alex Hanna, Emily Denton, Christina Greer,
Oddur Kjartansson, Parker Barnes, and Margaret Mitchell. 2021. Towards ac-
countability for machine learning datasets: Practices from software engineering
and infrastructure. In Proceedings of the 2021 ACM Conference on Fairness, Ac-
countability, and Transparency. 560–575.

[24] Nick Hynes, D Sculley, and Michael Terry. 2017. The data linter: Lightweight,
automated sanity checking for ml data sets. In NIPS MLSys Workshop.

[25] IBM. [n.d.]. IBM SPSS Modeler CRISP-DM Guide. https://www.ibm.com/docs/
en/spss-modeler/SaaS?topic=guide-data-understanding Accessed on [2022-03-15
Tue].

[26] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2017.
Data scientists in software teams: State of the art and challenges. IEEE Transac-
tions on Software Engineering 44, 11 (2017), 1024–1038.

[27] Sanjay Krishnan, Michael J Franklin, Ken Goldberg, and Eugene Wu. 2017. Boost-
clean: Automated error detection and repair for machine learning. arXiv preprint
arXiv:1711.01299 (2017).

[28] Sanjay Krishnan, Daniel Haas, Michael J Franklin, and Eugene Wu. 2016. To-
wards reliable interactive data cleaning: A user survey and recommendations. In
Proceedings of the Workshop on Human-In-the-Loop Data Analytics. 1–5.

[29] Meghana Kshirsagar, Caleb Robinson, Siyu Yang, Shahrzad Gholami, Ivan
Klyuzhin, Sumit Mukherjee, Md Nasir, Anthony Ortiz, Felipe Oviedo, Darren
Tanner, et al. 2021. Becoming Good at AI for Good. AIES ’21: Proceedings of the
2021 AAAI/ACM Conference on AI, Ethics, and Society (2021), 664–673.

[30] Brianna Lifshitz. 2021. Racism is systematic in artificial intelligence sys-
tems, too. https://georgetownsecuritystudiesreview.org/2021/05/06/racism-is-

systemic-in-artificial-intelligence-systems-too/ Accessed on [2022-01-11 Tue].
[31] Haochen Liu, Yiqi Wang,Wenqi Fan, Xiaorui Liu, Yaxin Li, Shaili Jain, Yunhao Liu,

Anil K Jain, and Jiliang Tang. 2021. Trustworthy ai: A computational perspective.
arXiv preprint arXiv:2107.06641 (2021).

[32] Lucy Ellen Lwakatare, Ellinor Rånge, Ivica Crnkovic, and Jan Bosch. 2021. On
the experiences of adopting automated data validation in an industrial machine
learning project. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 248–257.

[33] Benjamin Marlin. 2008. Missing data problems in machine learning. Ph.D. Disser-
tation.

[34] Fernando Martínez-Plumed, Lidia Contreras-Ochando, Cesar Ferri, José Hernán-
dez Orallo, Meelis Kull, Nicolas Lachiche, Maréa José Ramírez Quintana, and
Peter A Flach. 2019. CRISP-DM twenty years later: From data mining processes
to data science trajectories. IEEE Transactions on Knowledge and Data Engineering
(2019).

[35] Natalia Mesa. 2021. Can the criminal justice system’s artificial intelligence ever
be truly fair? https://massivesci.com/articles/machine-learning-compas-racism-
policing-fairness/ Accessed on [2022-01-11 Tue].

[36] Jennifer Miller. 2020. Is an Algorithm Less Racist Than a Loan Officer? https:
//www.nytimes.com/2020/09/18/business/digital-mortgages.html Accessed on
[2022-01-11 Tue].

[37] Biruk Asmare Muse, Mohammad Masudur Rahman, Csaba Nagy, Anthony Cleve,
Foutse Khomh, and Giuliano Antoniol. 2020. On the prevalence, impact, and
evolution of SQL code smells in data-intensive systems. In Proceedings of the 17th
International Conference on Mining Software Repositories. 327–338.

[38] Andrew Ng. 2021. A Chat with Andrew on MLOps: From Model-centric to
Data-centric AI. https://youtu.be/06-AZXmwHjo Accessed on [2022-01-17
Mon].

[39] Heru Nugroho and Kridanto Surendro. 2019. Missing Data Problem in Predictive
Analytics. In Proceedings of the 2019 8th International Conference on Software and
Computer Applications. 95–100.

[40] Asma Saleem, Khadim Hussain Asif, Ahmad Ali, Shahid Mahmood Awan, and
Mohammed A Alghamdi. 2014. Pre-processing methods of data mining. In 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing. IEEE,
451–456.

[41] Jeffrey S Saltz. 2021. CRISP-DM for Data Science: Strengths, Weaknesses and
Potential Next Steps. In 2021 IEEE International Conference on Big Data (Big Data).
IEEE, 2337–2344.

[42] Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen
Paritosh, and Lora M Aroyo. 2021. “Everyone wants to do the model work, not
the data work”: Data Cascades in High-Stakes AI. In proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. 1–15.

[43] Danilo Sato, Arif Wilder, and Christoph Windheuser. 2019. Continuous Delivery
for Machine Learning. https://martinfowler.com/articles/cd4ml.html

[44] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biess-
mann, and Andreas Grafberger. 2018. Automating large-scale data quality verifi-
cation. Proceedings of the VLDB Endowment 11, 12 (2018), 1781–1794.

[45] Christoph Schröer, Felix Kruse, and Jorge Marx Gómez. 2021. A systematic
literature review on applying CRISP-DM process model. Procedia Computer
Science 181 (2021), 526–534.

[46] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine learning systems. Advances
in neural information processing systems 28 (2015), 2503–2511.

[47] Tushar Sharma, Marios Fragkoulis, Stamatia Rizou, Magiel Bruntink, and Dio-
midis Spinellis. 2018. Smelly relations: measuring and understanding database
schema quality. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice. 55–64.

[48] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto
Bacchelli. 2018. On the relation of test smells to software code quality. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 1–12.

[49] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An empirical investiga-
tion into the nature of test smells. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. 4–15.

[50] Erdem Tuna, Vladimir Kovalenko, and Eray Tüzün. 2022. Bug Tracking Process
Smells In Practice. In 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE). IEEE.

[51] Bhekisipho Twala, Michelle Cartwright, and Martin Shepperd. 2005. Compari-
son of various methods for handling incomplete data in software engineering
databases. In 2005 International Symposium on Empirical Software Engineering,
2005. IEEE, 10–pp.

[52] Zhiyuan Wan, Xin Xia, David Lo, and Gail C Murphy. 2019. How does machine
learning change software development practices? IEEE Transactions on Software
Engineering (2019).

[53] Mark Weber, Mikhail Yurochkin, Sherif Botros, and Vanio Markov.
2020. Black Loans Matter: Fighting Bias for AI Fairness in Lending.

215

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 16–24, 2021, Pittsburgh, PA, USA Arumoy Shome, Luís Cruz, and Arie van Deursen

https://mitibmwatsonailab.mit.edu/research/blog/black-loans-matter-fighting-
bias-for-ai-fairness-in-lending/ Accessed on [2022-01-11 Tue].

[54] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering

(2020).
[55] Marc-André Zöller andMarco FHuber. 2021. Benchmark and survey of automated

machine learning frameworks. Journal of Artificial Intelligence Research 70 (2021),
409–472.

216

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:24:51 UTC from IEEE Xplore. Restrictions apply.

