
 
 

Delft University of Technology

Visually-guided motion planning for autonomous driving from interactive demonstrations

Pérez-Dattari, Rodrigo; Brito, Bruno; de Groot, Oscar; Kober, Jens; Alonso-Mora, Javier

DOI
10.1016/j.engappai.2022.105277
Publication date
2022
Document Version
Final published version
Published in
Engineering Applications of Artificial Intelligence

Citation (APA)
Pérez-Dattari, R., Brito, B., de Groot, O., Kober, J., & Alonso-Mora, J. (2022). Visually-guided motion
planning for autonomous driving from interactive demonstrations. Engineering Applications of Artificial
Intelligence, 116, Article 105277. https://doi.org/10.1016/j.engappai.2022.105277

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.engappai.2022.105277
https://doi.org/10.1016/j.engappai.2022.105277


Engineering Applications of Artificial Intelligence 116 (2022) 105277

V
d
R
C

A

K
I
M
A
D
M
H

1

i
t
c
d
p
q
c

i
l
g
e
t
e
h
t
c
c
r

(

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

isually-guided motion planning for autonomous driving from interactive
emonstrations
odrigo Pérez-Dattari ∗,1, Bruno Brito1, Oscar de Groot, Jens Kober, Javier Alonso-Mora
ognitive Robotics (CoR) department, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands

R T I C L E I N F O

eywords:
nteractive Imitation Learning
odel Predictive Control
utonomous driving
eep learning
otion planning
uman in the loop

A B S T R A C T

The successful integration of autonomous robots in real-world environments strongly depends on their ability
to reason from context and take socially acceptable actions. Current autonomous navigation systems mainly
rely on geometric information and hard-coded rules to induce safe and socially compliant behaviors. Yet, in
unstructured urban scenarios these approaches can become costly and suboptimal. In this paper, we introduce
a motion planning framework consisting of two components: a data-driven policy that uses visual inputs and
human feedback to generate socially compliant driving behaviors (encoded by high-level decision variables),
and a local trajectory optimization method that executes these behaviors (ensuring safety). In particular, we
employ Interactive Imitation Learning to jointly train the policy with the local planner, a Model Predictive
Controller (MPC), which results in safe and human-like driving behaviors. Our approach is validated in realistic
simulated urban scenarios. Qualitative results show the similarity of the learned behaviors with human driving.
Furthermore, navigation performance is substantially improved in terms of safety, i.e., number of collisions,
as compared to prior trajectory optimization frameworks, and in terms of data-efficiency as compared to prior
learning-based frameworks, broadening the operational domain of MPC to more realistic autonomous driving
scenarios.
. Introduction

Autonomous navigation in unstructured human environments (e.g.,
ndoor and urban) poses a combination of problems, such as con-
inuously changing conditions (e.g., sunny and cloudy), interaction/
oordination with other agents (e.g., pedestrians, bicycles, human
rivers and/or other automated vehicles), and ensuring the safety of
eople inside the vehicle and/or other agents in environment. Conse-
uently, building robust robotic solutions in such environments remains
hallenging.

The safety of Autonomous Vehicles (AV) has been a main topic of
nterest in the research community. Optimization-based techniques for
ocal trajectory planning, such as Model Predictive Control (MPC), have
ained popularity, since they can provide safety guarantees through the
nforcement of constraints, e.g., for collision avoidance. Nevertheless,
he performance of optimization-based methods is limited in complex
nvironments, since they typically rely on geometric information and
ard-coded rules to control high-level variables (e.g., switching be-
ween behaviors, controlling velocity references, etc.), which are either
ostly or lead to suboptimal solutions. Hence, the interaction and
oordination of AVs with other agents, in unstructured environments,
emains challenging.
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To address this limitation, recently, there has been a growing in-
terest in approaches that combine the strengths of optimization-based
methods with the ones of learning-based methods (Veličković and
Blundell, 2021; Zamfirache et al., 2022). Learning techniques have
shown to be a powerful tool for finding complex solutions directly from
environment data, without requiring models.

In this work, we propose to learn human-like driving behaviors and
encode them in a Model Predictive Contouring Control (MPCC) plan-
ner (Ferranti et al., 2019). Human-like driving behaviors are desired
in AVs as they produce trust in other human drivers and facilitate co-
ordination/interaction with other agents by acting predictably (Waytz
et al., 2014). However, human data can be expensive to obtain, and
modeling complex environments with changing conditions may require
large amounts of data. Consequently, we propose to follow an Interac-
tive Imitation Learning (IIL) approach (Amershi et al., 2014; Chernova
and Veloso, 2009; Kelly et al., 2019), which—in contrast to non-
interactive Imitation Learning approaches (e.g., Behavioral Cloning)—
is data efficient. IIL employs online human feedback to transfer implicit
knowledge from humans to robots.

To induce the learned behavior in the solutions of the MPCC,
we propose to learn to control high-level variables used in its objective
https://doi.org/10.1016/j.engappai.2022.105277
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Fig. 1. Proposed framework, Social MPCC. The Visual Guidance observes the environ-
ment from state 𝐬h and suggests the next velocity reference 𝐮h to the Local Planner.
Then, the Local Planner—as a function of the state 𝐬l, the velocity reference 𝐮h and
the global path P—computes a local trajectory and sends a control command 𝐮𝑙 to
the vehicle. Depending on the resulting vehicle behavior, the teacher may correct the
Visual Guidance through the signal 𝐡 to improve its behavior.

function such that the resulting optimization process yields solutions
corresponding to the desired behavior. As a first step, we focus on
controlling the forward velocity reference of the MPCC. This reference
has a large impact on the vehicle’s behavior and it is challenging to
design otherwise, given that it depends on many variables (Kolekar
et al., 2020). To closely match human behavior, we propose to learn
to control this reference from (approximately) the same visual input
that humans use, the first-person front-view of the vehicle (see Fig. 1).

The main contributions of this work are:

• Combining the state-of-the-art from control and machine learning
in a unified framework and problem formulation for motion
planning.

• A framework to generate safe and socially-compliant trajectories
in unstructured urban scenarios by learning human-like driving
behavior efficiently.

We present simulation results2 in realistic driving scenarios using
the CARLA simulator (Dosovitskiy et al., 2017). The presented results
show that our approach can data-efficiently learn velocity references
from human feedback using images as input, enhancing the perfor-
mance of local trajectory planners and generating safe and socially
compliant behaviors. Furthermore, we compare our approach with
optimization-based-only and learning-based-only baselines,
demonstrating the strength of combining both methods. Finally, quali-
tative results show the ability of the method to learn human-like driving
behaviors.

The remaining of this paper is organized as follows: Section 2
presents works related to decision-making algorithms for motion plan-
ning and IIL methods, Section 3 the problem formulation, Section 4 the
proposed method and Section 5 the experimental results.

2. Related work

In this section, we review work from the two fields that are brought
together in this paper: (1) Motion Planning and (2) Interactive Imitation
Learning.

2 Code available at: https://github.com/rperezdattari/Social-MPCC.
2

2.1. Motion planning

Classical autonomous navigation systems frequently employ a hier-
archic planning architecture decomposing the navigation pipeline into
a sequence of blocks performing different sub-tasks such as perception,
high-level decision making and motion planning (Paden et al., 2016).
These works can be divided into three main categories: rule-based,
optimization-based and learning-based.

Rule-based methods aim to translate human-driving rules and be-
haviors into handcrafted functions. These methods have demonstrated
good performance in some real structured scenarios such as prece-
dence at an intersection (Baker and Dolan, 2008). Nevertheless, these
methods are scenario specific and are prone to fail if the environment
structure changes.

Optimization-based approaches typically model the decision-
making problem as a Partially Observable Markov Decision Process
(POMDP) as the other agents’ intentions are not directly observable
(Hubmann et al., 2017). To model interaction, Zhou et al. (2018)
proposed a joint approach for behavior prediction and planning, com-
bining online POMDP solvers (Cai et al., 2021) for behavior prediction
and nonlinear receding horizon control for trajectory planning (Brito
et al., 2019). Nevertheless, these approaches have scalability issues and
assume structured navigation scenarios.

Learning-based methods can scale to cluttered and unstructured
environments (Everett et al., 2021) allowing to incorporate high-
dimensional data (e.g., RGB-D images, LiDAR point-clouds, etc.) into
the decision-making policy (Fan et al., 2020). For instance, Reinforce-
ment Learning (RL) methods have been used to learn end-to-end control
policies for autonomous racing (Schwarting et al., 2021) and indoor
navigation (Kulhánek et al., 2021) by learning a policy optimizing
for long-term rewards. To generate socially compliant behaviors, Chen
et al. (2017b) proposed to introduce social rules into the learning
framework by designing a reward function penalizing the agent when
not respecting human navigation norms. Yet, these methods do not
provide any robustness or safety guarantees (Huang et al., 2017).

Recently, works combining learning-based approaches for decision-
making and optimization-based methods for motion planning have
demonstrated to achieve superior performance by providing guidance
on high-level decision variables needed to solve the optimization (Qiao
et al., 2020; Song and Scaramuzza, 2020). Closely related to our
work, Tolani et al. (2021) learned a subgoal policy from visual informa-
tion using Model Predictive Control (MPC) as supervisor. In contrast,
we propose to learn a visual decision-making policy from human feed-
back. Similarly, Huang et al. (2021) used adversarial learning to train
an end-to-end decision-making module from human demonstrations.
Nevertheless, it assumes a high-definition map to be available and
considers a discrete set of decisions limiting the applicability of this
approach only to well constrained driving scenarios.

2.2. Interactive Imitation Learning

Interactive Imitation Learning (IIL) is a branch of Imitation Learning
(IL) whose objective is to develop algorithms that transfer a policy from
a teacher to a learning agent (learner) through interactions between
the teacher and the learner (Argall et al., 2009; Kelly et al., 2019;
Pérez-Dattari et al., 2020). Some examples of feedback are demon-
strations (Chernova and Veloso, 2009; Ross et al., 2011), relative
corrections (Celemin and Ruiz-del Solar, 2019; Pérez-Dattari et al.,
2020), preferences (Christiano et al., 2017), and evaluations (Knox and
Stone, 2009). In autonomous driving, it is common to find methods that
work with humans as teachers, and demonstrations as feedback (Bo-
jarski et al., 2016; Kelly et al., 2019; Zhan et al., 2019; Prakash et al.,
2020; Codevilla et al., 2019), given that (1) it is easy to find humans
that know how to drive a vehicle, and (2) human-like driving is a
desired feature in autonomous vehicles (Kolekar et al., 2020; Zhan

https://github.com/rperezdattari/Social-MPCC


R. Pérez-Dattari, B. Brito, O. de Groot et al. Engineering Applications of Artificial Intelligence 116 (2022) 105277

a
b
(
o
l
o
n

3

f
o
f
w
T
p
a
T
h
𝑘
𝜋
g
𝐮
u

S

n

et al., 2019). Therefore, building on top of this evidence, the IIL part
of our work follows this same strategy.

Although, in the context of IIL, demonstrations are interpreted
as feedback, they can be applied in non-interactive IL algorithms as
well, i.e., Behavioral Cloning (BC) and Inverse Reinforcement Learning
(IRL) (Osa et al., 2018). However, compared to non-interactive meth-
ods, IIL poses an ideal setting to learn from humans, as it reduces
human effort by being data efficient. This is achieved by providing
feedback online over trajectories induced by the learner’s policy, which
improves its behavior only in the relevant regions of the state space
(i.e., the ones that are likely to be visited) (Ross et al., 2011; Spencer
et al., 2022) Furthermore, IRL, not only suffers from inefficiency in
terms of amount of demonstrations, but also suffers from inefficiency
in terms of interactions with the environment (Ho and Ermon, 2016;
Osa et al., 2018), which can be a limitation when a realistic simulator
of the environment is not available.

The IIL method employed in this paper can be interpreted as a
practical variation of DAgger (Ross et al., 2011), since DAgger is
not designed to work interactively with humans. DAgger expects the
teacher to provide demonstrations at every state visited by the learner,
and the trajectories generated by the learner are a results of a mixed
control setting that combines actions from the learner and from the
teacher. However, humans are sensitive to timing and latency; there-
fore, providing good demonstrations over an agent that is partially
controlled is counter intuitive and cognitively demanding (Laskey et al.,
2017). Alternatively, the teacher can observe the learner’s behavior
and intervene whenever this behavior is not appropriate, taking control
over the learner and use these actions as demonstrations, as proposed
by Kelly et al. (2019), Waytowich et al. (2018) and Spencer et al.
(2022). The method used in this work belongs to this group of ap-
proaches. Note that this group can be extended (Mandlekar et al., 2020)
and combined with other types of feedback (Chisari et al., 2022) and/or
active learning (Ablett et al., 2020).

3. Preliminaries

Throughout this paper we use the term ego-agent to refer to the
gent controlled by our method (e.g., autonomous vehicle or mo-
ile robot) and other agents to refer to the non-controllable agents
e.g., human-driven vehicles, pedestrians, or robots) in the surrounding
f the ego-agent. Moreover, vectors are denoted in bold lowercase
etters, 𝐱, and sets in calligraphic uppercase, . The Euclidean norm
f 𝐱 is denoted by ‖𝐱‖ and ‖𝐱‖𝑄 = 𝐱𝑇𝑄𝐱 denotes the weighted squared
orm.

.1. Problem formulation

Consider the navigation scenario where an ego-agent must navigate
rom an initial position 𝐩0 to a goal position 𝐠. At the beginning
f an episode, the ego-agent receives a global reference path P to
ollow from a path planner consisting of a sequence of 𝑀 reference
ay points 𝐩ref

𝑚 = [𝑥ref
𝑚 , 𝑦ref

𝑚 ] ∈ R2 with 𝑚 ∈ M ∶= {1,… ,𝑀}.
hen, consider a hierarchical control structure with a high-level control
olicy 𝜋h

𝜽 , defined as a parametrized function with parameters 𝜽, and
predefined optimization-based low-level controller 𝜋l that follows P .
he superscripts h and l are used to denote the variables related to the
igh-level and low-level controllers, respectively. For each time step
, the high-level policy receives the state 𝐬h𝑘 and takes an action 𝐮h

𝑘 =
h
𝜽 (𝐬

h
𝑘). Subsequently, 𝐮h

𝑘 is provided, along with the state 𝐬l𝑘 and the
lobal reference path, to the low-level controller, which takes an action
l
𝑘 = 𝜋l(𝐬l𝑘,𝐮

h
𝑘 ;P). This action leads to the next state 𝐬l𝑘+1 = 𝑓 (𝐬l𝑘,𝐮

l
𝑘),

nder the dynamic model 𝑓 (𝐬l𝑘,𝐮
l
𝑘).

3

3 This is identical to the Vehicle Model used in the simulation defined in
ection 4.3.1.
3

The policy that encompasses the combination of 𝜋h
𝜽 and 𝜋l is de-

oted as 𝜋𝜽(𝐬𝑘;P), where 𝐬𝑘 = [𝐬h𝑘 , 𝐬
l
𝑘]. Note that the control output

𝐮𝑘 = 𝜋𝜽(𝐬𝑘;P) is the same as 𝐮l
𝑘, since 𝐮l

𝑘 is the output applied to the
vehicle, while 𝐮h

𝑘 acts on the parameters of 𝜋l.
Simultaneously, we consider that for each time step, the ego-agent

receives the feedback signal 𝐡𝑘, which provides information about a
desired, expert behavior, 𝜋exp. The goal is to employ 𝐡𝑘 to find the
parameters 𝜽 such that 𝜋𝜽 converges to 𝜋exp. By doing so, 𝜋h

𝜽 learns
to guide 𝜋l such that a desired behavior is achieved when following P .

Let 𝑝𝜋𝜽 (𝜏) be a distribution over trajectories 𝜏 induced by 𝜋𝜽, and
𝑝𝜋exp (𝜏) a trajectory distribution induced by 𝜋exp, then, the problem can
be formulated as the minimization of the (forward) Kullback–Leibler
divergence between the trajectories induced by 𝜋𝜽 and 𝜋exp (Bishop,
2006):

𝜽∗ = argmin
𝜽

𝐷KL

(

𝑝𝜋𝜽 (𝜏) ∥ 𝑝𝜋exp (𝜏)
)

(1a)

s.t. 𝐬l𝑘+1 = 𝑓
(

𝐬l𝑘,𝐮
l
𝑘
)

, (1b)

𝐮l
𝑘 = 𝜋l(𝐬l𝑘,𝐮

h
𝑘 ;P), (1c)

𝐮l
𝑘 ∈  l, 𝐮h

𝑘 ∈  h, 𝐬l𝑘 ∈  l, 𝐬h𝑘 ∈ h, (1d)
∀𝑘 ∈ R+

where (1b) are the kino-dynamic constraints and (1d) represents the
state and control constraints where  𝑖 and  𝑖, 𝑖 ∈ {l,h}, are the set
of admissible states and control inputs (e.g., maximum agents’ speed),
respectively.

Note that, in this work, 𝐡𝑘 is provided by a human; hence, 𝜽∗ will
depend on the human’s judgment about the task.

4. Method

In this section, we introduce the proposed socially-aware Model
Predictive Contouring Control (Social-MPCC) framework.

4.1. Overview

The proposed driving system can be divided into two parts: Visual
Guidance and Local Motion Planner. The Local Motion Planner 𝜋l

follows a given set of way points and ensures to avoid obstacles. Simul-
taneously, the Visual Guidance system 𝜋h

𝜽 uses images captured by the
front camera view of the vehicle to command a desired forward velocity
reference 𝑣ref to the Local Motion Planner such that human-like driving
behavior is generated. Given that the vehicle’s steering commands are
defined by the local planner only, it is not possible to exactly match
a reference human-like behavior by means of controlling 𝑣ref alone.
Nevertheless, arguably, 𝑣ref

𝑘 is expressive enough to accurately resemble
human-like behavior in most of the situations; for instance, in the case
of a vehicle in a city, the vehicle should reduce its velocity in the
crossroads, stop at red lights, accelerate when overtaking other cars,
etc.

4.2. Visual Guidance

For each time step 𝑘, the Visual Guidance system (VG), represented
as the parametrized policy 𝜋h

𝜽 , translates human driving behavior and
scene context into a forward velocity reference 𝑣ref

𝑘 , which corresponds
the high-level control output 𝐮h

𝑘 ∶= 𝑣ref
𝑘 . The state of this function 𝐬h𝑘

corresponds to the front camera view of the vehicle 𝐣𝑘, and, eventually,
other information such as the vehicle’s current speed. The objective
is to find 𝐮h∗

𝑘 ∀𝑘 such that, given the Local Motion Planner, Eq. (1)
is solved. As discussed in Sections 1 and 2, given the challenges in
modeling human behavior, Interactive Imitation Learning (IIL) arises
as an appealing and effective approach to tackle this problem, since it
allows to data-efficiently and robustly learn behaviors from humans.
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4.2.1. Interactive Imitation Learning Formulation
In IIL, a human that acts as a teacher is involved in the learn-

ing process of an agent. Feedback signals 𝐡𝑘 are generated by the
human to modify the learner’s policy towards a desired behavior in
an online learning manner. The context of autonomous navigation
provides a framework where humans, by driving a vehicle, are able
to execute the actions which they consider to be the best for a given
state. Consequently, it comes natural to use feedback in the form of
demonstrations.

In this work, a Learning from Interventions scheme is employed,
i.e., every time the human considers the agent to be executing an erro-
neous behavior, the teacher takes control over the agent’s actions until
it gets back into a region where the observed behavior is the desired
one. The data gathered in these interventions is used as demonstrations
for improving the agent’s behavior following a supervised learning
approach. The teacher’s feedback is represented by two variables: (1) 𝑖,
a Boolean that indicates if the human is intervening (if 𝑖 = 1, the human
intervenes; if 𝑖 = 0, s/he does not), and (2) 𝐮h∗

𝑘 , which corresponds
to the teacher’s optimal action for the high-level controller to take
(i.e., these actions follow the expert policy 𝜋exp). For 𝑖 = 1, the feedback
is defined as 𝐡𝑘 = 𝐮h∗

𝑘 ; for 𝑖 = 0, it is not defined.
In practice, this works as follows: initially, the VG creates a velocity

reference 𝐮h
𝑘 that the Local Motion Planner tracks (along with a set

of way points). The human only observes the behavior of the AV
(𝑖 = 0), as long as s/he considers that it is adequate. Every time the
planner generates undesired control commands, the human (indirectly)
takes control over it (𝑖 = 1) by overwriting the output of the VG
with the correct velocity reference 𝐮h∗

𝑘 . The data from these interven-
tions (i.e., trajectories containing every state–action pair [𝐬h𝑘 ,𝐮

h∗
𝑘 ]) is

collected, and employed to improve the agent’s behavior.
Eq. (1) can be solved as an Imitation Learning problem ∀𝐡𝑘 when

𝑖 = 1 (i.e., for every state–action pair collected from the interventions).
If, every time the teacher intervenes, the demonstrated trajectories are
stored in a dataset , Eq. (1) can be solved iteratively by sampling 𝐵
trajectories with length 𝐾 from  in every iteration and minimizing

(𝜽) = − 1
𝐵

𝐵
∑

𝑏=1

𝐾
∑

𝑘=0
ln𝜋h

𝜽 (𝐮
h∗
𝑏,𝑘|𝐬

ℎ
𝑏,𝑘) (2)

through gradient descent (Abramson et al., 2020). Note that this for-
mulation assumes that 𝜋h

𝜽 is a stochastic policy, but in this work 𝜋h
𝜽 is

deterministic. However, if we assume that the optimized distribution
is Gaussian with a fixed variance, the mean of this distribution can
be equivalently obtained (and represented by the deterministic policy
𝜋h
𝜽 ) by minimizing the Mean Squared Error (MSE) (Osa et al., 2018;

Mandlekar et al., 2020)

(𝜽) = 1
𝐵

𝐵
∑

𝑏=1

𝐾
∑

𝑘=0

(

𝐮h∗
𝑏,𝑘 − 𝜋h

𝜽 (𝐬
h
𝑏,𝑘)

)2
. (3)

This optimization process does not mention the constraints shown
in Eq. (1) because they are implicitly captured in the demonstration
data (given that it was collected following actions generated by the
Local Motion Planner).

4.2.2. iDAgger
As depicted in Section 2, we use an IIL method based on demonstra-

tions similar to the one described by Goecks et al. (2019) that solves
Eq. (3); however, no name was provided by the authors to this method
specifically, as they employed a subgroup of modules from a larger
framework introduced by Waytowich et al. (2018). Hence, we will refer
to it as iDAgger (for intervention DAgger). Note that similar ideas have
been employed in other works as well (Kelly et al., 2019; Spencer et al.,
2020; Mandlekar et al., 2020).

iDAgger generates a dataset  online using feedback, in the form
of interventions, provided by a human teacher. The state–action pairs
generated in every intervention, i.e., [𝐬h𝑘 ,𝐮

h∗
𝑘 ], by the human are aggre-

gated to . Every 𝑏 time steps, the learner updates its policy 𝜋h by
𝜽

4

sampling a subset of  and minimizing Eq. (3). Furthermore, 𝜋h
𝜽 can

be initialized from an initial set of demonstrations collected offline. As
shown by Spencer et al. (2022), the policies learned with this type of
online learning algorithm are guaranteed to perform well (i.e., trajec-
tory cost grows linearly in the task horizon and imitation error) under
the intervention data distribution.

Algorithm 1 iDAgger

1: Require:  with initial demonstrations, pre-trained policy 𝜋h
𝜽 and

policy update period 𝑏
2: for 𝑘 = 1, 2, . . . do
3: observe 𝐬h𝑘
4: get intervention signal 𝑖
5: if 𝑖 is True then
6: get feedback 𝐡𝑘 ← 𝐮h∗

𝑘
7: aggregate {𝐬h𝑘 ,𝐡𝑘} to 
8: 𝐮h

𝑘 ← 𝐡𝑘
9: else

10: 𝐮h
𝑘 ← 𝜋h

𝜽 (𝐬
h
𝑘)

11: end if
12: execute 𝐮h

𝑘
13: update 𝜋h

𝜽 from  if mod(𝑘, 𝑏) is 0
14: end for

4.3. Local Motion Planner

We built upon the MPC formulation provided by the Model Pre-
dictive Contour Control (MPCC) (Ferranti et al., 2019) to generate
control commands enabling the AV to follow a reference path pro-
vided by a global path planner (e.g., Rapidly-exploring Random Trees
(RRT) Berg et al., 2021) and the forward velocity reference while
satisfying dynamic and collision constraints when a feasible solution
is found.

4.3.1. Vehicle Model
We use a kinematic bicycle model for the AV with state 𝐬l =

[𝑥, 𝑦, 𝜙, 𝑣], where 𝑥 and 𝑦 are the agent’s Cartesian position coordinates,
the heading angle and 𝑣 the forward velocity fixed in a global inertial

rame  . The model is described as follows:
𝑥̇ = 𝑣 cos(𝜙 + 𝛽)
𝑦̇ = 𝑣 sin(𝜙 + 𝛽)
𝜙̇ = 𝑣

𝑙𝑟
sin(𝛽)

𝑣̇ = 𝑢𝑎

𝛽 = arctan
(

𝑙𝑟
𝑙𝑓 + 𝑙𝑟

tan
(

𝑢𝛿
)

)

(4)

where 𝛽 is the velocity angle and 𝐮l is the vehicle control input com-
posed by the forward acceleration 𝑢𝑎 and steering angle 𝑢𝛿 , 𝐮l = [𝑢𝑎, 𝑢𝛿].
𝑙𝑟 and 𝑙𝑓 are the distances of the rear and front tires from the center of
gravity of the vehicle, respectively, and are assumed to be identical.

4.3.2. Cost function
The velocity reference 𝑣ref generated by the VG allows controlling

the AV driving behavior directly: high-velocity reference values lead
to highly aggressive behavior while low-velocity reference values lead
to cautious driving behavior. Hence, we design the local planner’s cost
function as follows:

𝐽 (𝐬l𝐤,𝐮
l
𝑘, 𝜆𝑘) =

‖

‖

‖

𝑒𝑐𝑘(𝐬
l
𝑘, 𝜆𝑘)

‖

‖

‖𝑞𝑐
+ ‖

‖

‖

𝑒𝑙𝑘(𝐬
l
𝑘, 𝜆𝑘)

‖

‖

‖𝑞𝑙

+ ‖

‖

‖

𝑣ref
𝑘 − 𝑣𝑘

‖

‖

‖𝑞𝑣
+ ‖

‖

‖

𝑢𝑎𝑘
‖

‖

‖𝑞𝑢
+ ‖

‖

‖

𝑢𝛿𝑘
‖

‖

‖𝑞𝛿

(5)

where  = {𝑞𝑐 , 𝑞𝑙 , 𝑞𝑣, 𝑞𝑢, 𝑞𝛿} denotes the set of cost weights and 𝜆𝑘 is
the estimated progress along the reference path. First, we minimize
the contour error (𝑒𝑐𝑘) and lag error (𝑒𝑙𝑘), to track the reference path

closely. The contour error quantifies how much the ego vehicle deviates
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from the reference path laterally, whereas lag error is the deviation
of the ego vehicle from the reference path longitudinally. Please refer
to Ferranti et al. (2019) for more details on path parameterization and
tracking error. The third term, ‖𝑣ref

𝑘 − 𝑣𝑘‖, motivates the planner to
follow the velocity reference provided by the Visual Guidance system
closely. Finally, we add a quadratic penalty to the control commands,
𝑢𝑎𝑘 and 𝑢𝛿𝑘, to generate smooth trajectories.

4.3.3. Dynamic obstacle avoidance
First, we approximate the AV’s occupied area, ego, as union of 𝑛𝑐

circles, i.e., 𝐴̄ego ⊆
⋃

𝑐∈{1,…,𝑛𝑐}𝑐 , where 𝑐 represents the 𝑐th circle’s

rea with radius 𝑟. For the other vehicles, the occupied area by the 𝑖th

ehicle, 𝑖, is approximated by an ellipse of semi-major axis 𝑎𝑖, semi-
inor axis 𝑏𝑖 and orientation 𝜙. Then, we define a set of non-linear

onstraints enforcing that each AV’s circle 𝑐 does not intersect with the
th vehicle’s elliptical:

𝑖,𝑐
𝑘 (𝐬l𝑘, 𝐬

l𝑖
𝑘 ) =

[

𝛥𝑥𝑐𝑘
𝛥𝑦𝑐𝑘

]T

𝑅(𝜙)T
⎡

⎢

⎢

⎣

1
𝛼2

0

0 1
𝛽2

⎤

⎥

⎥

⎦

𝑅(𝜙)

[

𝛥𝑥𝑐𝑘
𝛥𝑦𝑐𝑘

]

> 1, (6)

The parameters 𝛥𝑥𝑐𝑘 and 𝛥𝑦𝑐𝑘 represent 𝑥− 𝑦 relative distances between
he disc 𝑐 and the ellipse 𝑖 for planning step 𝑘. 𝛼 and 𝛽 are function of
he AV’s radius and the other vehicle’s semi-major and semi-minor axis,
espectively, and an enlarging coefficient ensuring collision avoidance,
ith 𝛼 = 𝑎 + 𝑟disc + 𝜖 and 𝛽 = 𝑏 + 𝑟disc + 𝜖. We refer the reader to Brito

et al. (2019) for details on how 𝜖 is computed.

.3.4. Road boundaries
To compute motion plans respecting the road boundaries, we em-

loy constraints on the AV’s lateral distance (i.e., contour error) with
espect to the reference path ensuring that the vehicle stays within the
oad limits:

𝑤road
left ≤ 𝑒𝑐𝑘(𝐬

l
𝑘) ≤ 𝑤road

right (7)

here 𝑤road
left and 𝑤road

right are the left and right road limits, respectively.

.3.5. MPCC formulation

We formulate the motion planner as a Receding Horizon Trajectory
ptimization problem (8) with planning horizon 𝐻 conditioned on the

ollowing constraints:

l∗
0∶𝐻−1 = min

𝑢l
0∶𝐻−1

𝐻−1
∑

𝑘=0
𝐽 (𝐬l𝑘,𝐮

l
𝑘, 𝜆𝑘) + 𝐽 (𝐬l𝐻 , 𝜆𝐻 ) (8a)

s.t. 𝐬𝑘+1 = 𝑓 (𝐬l𝑘,𝐮
l
𝑘), (8b)

𝜆𝑘+1 = 𝜆𝑘 + 𝑣𝑘𝛥𝑡 (8c)

− 𝑤road
left ≤ 𝑒𝑐 (𝐬l𝑘) ≤ 𝑤road

right (8d)

𝑐𝑖,𝑐𝑘 (𝐬l𝑘, 𝐬
l𝑖
𝑘 ) > 1 ∀𝑐 ∈ {1,… , 𝑛𝑐}, (8e)

𝐮l
𝑘 ∈  l, 𝐬l𝑘 ∈  l, (8f)

∀𝑘 ∈ {0,… ,𝐻}. (8g)

here 𝛥𝑡 is the discretization time and 𝐮l∗
0∶𝐻−1 the locally optimal

ontrol sequence for H time-steps. The solver employed attempts to find
solution for the MPCC problem for a fixed number of iterations. If a

easible solution is found, we apply only the first control input for each
tep and recompute a new solution in the next iteration considering
ew observed information in a receding horizon fashion. Otherwise we

l
mploy a safety control command 𝐮safety.

5

Algorithm 2 Social-MPCC
1: Require: global planner, iDAgger (Algorithm 1), MPCC and number

of episodes 𝑛episodes
2: run Visual Guidance training with iDAgger in separate thread
3: while 𝑖episode < 𝑛episodes do
4: get reference path P from a global planner
5: for 𝑘 = 1, 2, . . . do
6: get states 𝐬h𝑘 , 𝐬l𝑘 from environment
7: send 𝐬h𝑘 to iDAgger (Algorithm 1, line 3)
8: receive 𝐮h

𝑘 from iDAgger (Algorithm 1, line 12)
9: set 𝑣ref

𝑘 ← 𝐮h
𝑘

10: compute 𝐮l
𝑘 ← 𝜋l = MPCC(𝑣ref

𝑘 , 𝐬l𝑘;P) (Eq. (8))
11: execute 𝐮l

𝑘 in vehicle
12: compute done ← collision/deadlock detected or teacher

request
3: if done then
4: increment 𝑖episode
5: break
6: end if
7: end for
8: end while

4.4. Social-MPCC

Overall, the Social-MPCC framework utilizes the Visual Guidance
policy to provide a velocity reference that controls the vehicle’s be-
havior through the cost function that is optimized by the Local Motion
Planner. Imitation Learning is used to optimize the VG’s parameters to
model human behavior.

Algorithm 2 presents the overall framework. First, iDAgger (Algo-
rithm 1) is initialized to start the training of the Visual Guidance (line
2). Then, at the beginning of each episode, the reference path P to
be followed by the MPCC is obtained from a global planner (line 4).
Afterwards, for every time step of each episode, the velocity reference
𝑣ref
𝑘 = 𝐮h

𝑘 is received from iDAgger (lines 8–9) and fed to the MPCC
to compute the control command 𝐮l

𝑘 (line 10). Finally, 𝐮l
𝑘 controls the

AV (line 11). Each episode ends if a collision or a deadlock is detected.
Moreover, the human teacher can also request the end of the episode
(lines 12–15).

5. Results

This section presents simulation results in a realistic urban scenario
populated with pedestrians and other vehicles (Fig. 3). First, we quan-
tify the performance throughout the training procedure (Section 5.2).
Then, we show a qualitative evaluation of the method (Section 5.3).
Finally, we present performance results (Section 5.4) of the proposed
method against baselines.

5.1. Experimental setup

Simulation results were carried out on an Intel Core i9, 32 GB of
RAM CPU @2.40 GHz. The non-linear and non-convex MPCC problem
presented in Section 4.3 was solved using the ForcesPro (Zanelli et al.,
2020) solver. The Visual Guidance was modeled with a Deep Neural
Network (DNN) implemented and optimized in TensorFlow 2 (Abadi
et al., 2015). We used the open-source CARLA simulator (Dosovitskiy
et al., 2017) to create the simulation environment where the Traffic
Manager module was employed to simulate other vehicles and the
AI controller to control the pedestrians. The complete framework was
interfaced using the Robot Operating System (ROS) (Quigley et al.,
2009).
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Fig. 2. Visual Guidance architecture (Section 5.1.1). The segmentation module receives the image 𝐣𝑘 and provides a segmented image to the feature extraction module. The recurrent
olicy takes these features as an input and generates the velocity reference 𝑣ref

𝑘 . In this work, a CARLA module was used for the segmentation module and a pre-trained VGG19
etwork was used for feature extraction. The recurrent policy consists of six fully-connected layers (FCX), and one recurrent layer (R1). FC1, FC2, FC3, FC4 and FC5 use Leaky
eLU (Maas et al., 2013) as activation function. FC1 has 150 neurons and the other layers have 1000 neurons. FC6 has a linear activation and one neuron, as it is the output

ayer. The hidden state size of R1 is 150. The variable ext𝑘 corresponds to extensions to the input of the network, such as traffic light state and/or information about where to
o when learning in an end-to-end manner.
a
t

.1.1. Visual guidance: Deep neural network architecture
The DNN architecture employed to represent the VG is defined by

he mapping 𝜋h
𝜽 ∶ 𝐬h𝑘 ↦ 𝑣ref

𝑘 . The VG has to (1) be able to process
mages 𝐣𝑘, (2) deal with partial observability due to the absence of
emporal information in 𝐣𝑘. Moreover, to further improve the input state
f the VG, the vehicle’s speed 𝑣𝑘 can also be provided to the network.
onvolutional layers were employed to process 𝐣𝑘 and recurrent layers
o deal with the mentioned partial observability (Goodfellow et al.,
016). Hence, the high-level state was defined as 𝐬h𝑘 = [𝐣𝑘, 𝐬rec

𝑘 , 𝑣𝑘],
here 𝐬rec

𝑘 corresponds to the hidden state of the recurrent layers.
To increase the generalization properties and data-efficiency of

he network, two techniques were employed: (1) semantic segmen-
ation (Minaee et al., 2021), and (2) Transfer Learning (TL) (Tan
t al., 2018). The input image 𝐣𝑘 was semantically segmented using
CARLA module; however, in practice, DNN models such as Seg-

et (Badrinarayanan et al., 2017) or DeepLab (Chen et al., 2017a) can
e employed. For TL, we employed a VGG (Simonyan and Zisserman,
014) model pretrained on ImageNet (Deng et al., 2009). The last layer
f the VGG was removed and replaced with recurrent and fully con-
ected layers with trainable parameters to be optimized with Eq. (3).
ence, the VGG was used as a state representation/feature extraction
achine and its weights were not modified during the optimization of

h
𝜽 . LSTM (Hochreiter and Schmidhuber, 1997) layers were employed
s the recurrent layers of the network. Finally, to optimize Eq. (3)
ith a recurrent DNN, we employed the bootstrapped random updates
ethod (Hausknecht and Stone, 2015). Fig. 2 shows the complete VG
odel.

Table 1 presents the hyperparameters values used for the local
lanner, training algorithm and simulation environment.

.2. Training procedure

Fig. 3 shows the training environment. At the beginning of each
pisode, 𝑁cars cars and 𝑁pedestrians pedestrians are spawned in random
ocations. The AV receives a sequence of way-points towards a random
oal position provided by the CARLA Route Planner. An episode ends if
he AV collides, if it reaches the goal position successfully, if a deadlock
ccurs, or if a teacher request is received.

Fig. 4 presents the VG’s learning performance. The first plot shows
he amount of time the teacher corrected the policy’s actions, and the
econd plot the moving average of the mean squared error between the
eacher and the policy’s actions. The training procedure incorporates
wo phases: collection of an initial set of demonstrations used to train
n initial policy, and the interactive learning process (as shown in
lgorithm 1). Given that during the first 𝑁supervised steps the teacher
rovides feedback continuously, the amount of demonstration time

rows linearly, as depicted in the upper plot of Fig. 4 from 𝑡 = 0 s

6

Table 1
Key hyperparameters used for local planner, learning algorithm and simulated
environment.

Hyperparameter Value

Simulated environment 𝑁Cars 100
𝑁Pedestrians 200
𝑁Supervised 5
Camera FoV 90.0◦

Visual Guidance Interactive training time 2 h
Image resolution 64 × 64 pixels
Feature extractor VGG
Recurrent layer LSTM
Optimizer Adam
Learning rate 1𝑒−5
Batch size 100
Training iterations per episode 1000

Local planner 𝑄 = {𝑞𝑐 , 𝑞𝑙 , 𝑞𝑣 , 𝑞𝑢 , 𝑞𝛿} {0.1, 0.2, 1.0, 1.2, 0.1}
Number solver iterations 500
𝐮safety [−2.0, 0.0]
Solver method Primal–dual

Interior-point method

to 𝑡 ≈ 1500 s. Afterwards, feedback is only provided when the policy
cts erroneously, which will depend on the episode’s complexity and
he novelty it provides. After 𝑡 ≈ 4500 s, the total demonstration time

remains constant, showing that the policy is performing well and the
teacher does not need to provide more feedback.

The bottom plot shows that the moving average of the root mean
squared error between the VG’s action and the provided supervised
action reduces over time, stabilizing at around 2 m/s (note that 0 m/s ≤
𝐮h
𝑘 ≤ 8 m/s). Although this error may seem large, this result is ex-

pected, since humans are not always consistent about the feedback they
provide (Chernova and Veloso, 2008; Valletta et al., 2021), and data
with irreducible error is collected. Nevertheless, this is not considered
to be an issue in this experiment, as, when the mean squared error is
minimized, the modes present in the data are averaged, which was not
observed as being detrimental. Inconsistencies only arose in situations
where their average would not jeopardize the safety of the learned
behavior (e.g., cruise speed in long roads or the response time to start
accelerating after a green light), while the general rules of driving
(e.g., stopping at red lights or if there are pedestrians crossing the
street) were always respected.

5.3. Qualitative results

This section analyzes the AV behavior using our method for two
driving scenarios. In the first scenario, depicted in Fig. 5(a), the AV
approaches a crossing area and has to perform a left-turn maneuver.
Between 𝑡 and 𝑡 , the VG continuously reduces the velocity reference
1 2
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Fig. 4. Accumulated feedback and policy error evolution during training. The top plot
hows the amount of time the teacher had to correct the policy’s action and the bottom
he average policy’s action error.

s the AV approaches the crossing area yielding to the vehicle coming
rom the right. Then, the velocity reference initially increases, motivat-
ng the AV to cross the road, between 𝑡 = 215 s and 𝑡 = 217 s, and keeps
continuous reference while turning left, between 𝑡 = 217 s and 𝑡 = 222

s. Once the vehicle finishes turning left, approximately at 𝑡 = 222 s, the
velocity reference is increased again.

In the second scenario, depicted in Fig. 5(b), a pedestrian crosses
the road in front of the AV. The VG reduces the velocity reference to
let the pedestrian cross, between 𝑡 ≈ 595 s and 𝑡 ≈ 598 s. Once the
pedestrian finishes crossing, the reference is increased. Afterwards, to
safely perform a right turn maneuver, the velocity reference is reduced.

More scenarios can be found in the attached video4, where it is
possible to appreciate that the exhibited behaviors resemble human
driving.

5.4. Quantitative results

The objective of this section is to study, quantitatively, the effect
on the performance of a trajectory planner when optimization-based
and learning-based methods are combined. To achieve this, we study
three types of algorithms: (1) optimization-based only (MPCC), (2)

4 Available at: https://youtu.be/Ph7v25mEg7c
7

optimization-based and learning-based combined (Social-MPCC with
and without traffic information) and (3) completely data-driven (End-
to-end learning with traffic information), which are described below:

• MPCC: Local Motion Planner with constant velocity reference.
• Social-MPCC: the proposed Social-MPCC framework.
• Social-MPCC with traffic information: Social-MPCC with traffic

lights’ information in its state.
• End-to-end learning with traffic information: same as before,

but the AV’s control 𝐮l = [𝑢𝑎, 𝑢𝛿] is learned using iDAgger alone.

To test the flexibility of the proposed framework, two variations
f Social-MPCC are presented, one that is general to any autonomous
riving scenario and one that is specific to driving in a city. In the
eneral case, the structure of the VG is as explained in Section 5.1.1; in
he specific case, the input is extended with the traffic lights’ state (see
ig. 2). Note that, strictly speaking, the traffic lights’ status is also fed
o the neural network in the general case, as it can be perceived from
ew pixels in 𝐣𝑘 when the AV approaches a traffic light. Nevertheless,
o obtain real-time performance, it is necessary to limit the input’s
esolution; hence, the resolution of the images was not high enough
o effectively use the traffic lights’ information from them.

It is to be expected that Social-MPCC will perform better when
raffic information is included into the system than when it is not.
herefore, to obtain a fair comparison against the end-to-end policy,
he traffic lights’ state is also employed in this case. Moreover, when the
omplete behavior is learned from data, it is also necessary to provide
nformation to the network about where the vehicle should go, as in
he other methods this information is given to the MPCC through P .

To achieve this, the network was provided with sin(𝛾) (in the same way
as the traffic lights’ state, see Fig. 2), where 𝛾 is the angle between the
center of the vehicle and the next way-point located at distance of ∼15
m from it.

Finally, to test the data efficiency of Social-MPCC, only 2 h were
employed for the complete learning process of the experiments, as
opposed to other methods in the literature that can use 100–200× more
human time (e.g., ∼300 h Vitelli et al., 2022). Table 2 compares the
performance of the introduced methods in terms of number of collisions
per traveled distance and percentage of deadlocks. In terms of computa-
tion performance, the VG (i.e., DNN) has an average computation time
of 5.1 ± 0.9 ms, while the MPCC optimization problem (Eq. (8)) takes
on average 3.0 ± 1.35 ms.

5.4.1. Discussion
From Table 2 it can be observed that the performance of MPCC is

drastically improved by Social-MPCC with only 2 h of training. With the
general Social-MPCC framework, it was possible to reduce the amount

https://youtu.be/Ph7v25mEg7c
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Table 2
Statistic results for 100 episodes of Social-MPCC compared to baselines.

No. Collisions per km. % of deadlocks

MPCC (Ferranti et al., 2019) 2.60 17
Social-MPCC 0.71 17
Social-MPCC with traffic lights 0.37 13
End-to-end with traffic lights 1.94 18

of collisions per kilometer by 3.66 times. Furthermore, in the case in
hich the traffic lights’ information was provided to the VG, this value

ncremented to 7.03 and the percentage of deadlocks was reduced to
3%.

Deadlocks occurred when the vehicle was stationary for an extended
eriod of time (600 time steps in this experiment). Hence, when no fea-
ible solutions were found by the MPCC, the activation of 𝐮l

safety could
have led to deadlocks. Interestingly, the VG also generated deadlocks.
It was observed that the DNN could get stuck by constantly providing
zero forward velocity reference to the local planner. Nevertheless, the
combination of MPCC and VG did not increase the number of deadlocks
when combined in Social-MPCC; furthermore, the number of deadlocks
was reduced when the traffic lights’ information was employed in the
system. This occurred because an adaptive forward velocity reference
can help the MPCC find solutions in cases where it would otherwise get
stuck.

Finally, it was observed that the end-to-end learner achieved an
acceptable performance; however, Social-MPCC showed to be superior
after two hours of training. Increasing the action space of the VG to

also include a steering angle reference makes the learning problem

8

Table 3
Analysis of failure episodes: number of episodes per factor leading to failure. We
consider a total of 100 episodes.

Factor Number of episodes

Unusual situations 5
Outside the camera FoV 1
Wrong predictions 1
Small obstacles 8
Other agents contempt driving rules 1

Total 16/100

considerably harder. This is can be observed with both the number
of collisions per kilometer (5.24× more) and the amount of deadlocks
1.38× more) that the end-to-end learner obtained.

.4.2. Analysis Social-MPCC
Although IIL methods are very data efficient, it is still not possible to

earn a flawless behavior in 2 h; moreover, assumptions in the MPCC’s
ormulation may cause it to perform suboptimally. Hence, there are
ituations in which our method fails. We have visually inspected the
raining episodes and identified the main factors leading to failure
i.e., collisions). Table 3 presents the five main failure factors and their
requency considering a total of 100 episodes.

The categories in Table 3 are presented below:

• Unusual situations: Occasionally, the AV may get into situations
that are not common, such as interacting with oddly shape ve-

hicles or with multiple vehicles that got stuck and not moving,
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that are unlikely to by encountered during training. Therefore, the
VG may not be trained in similar circumstances and consequently
generate incorrect behaviors.

• Outside the camera Field of View (FoV): Due to the limited FoV
of the first person view camera used by the VG, our system is not
able to obtain all of the relevant visual information for driving
in every situation. Hence, there are cases in which obstacles are
not perceived on time, leaving the system too little time to react
safely.

• Wrong predictions: The MPCC framework works under the as-
sumption that other vehicles and pedestrians have constant ve-
locities. This assumption does not hold in every situation, which
may cause failures.

• Small obstacles: Small obstacles, such as children and bicycles,
are not always easily perceived by the VG. Furthermore, they
are not frequently encountered by the AV, which makes it more
challenging to properly learn about these cases during training.
Therefore, our system was not fully robust in avoiding collisions
with small obstacles.

• Other agents contempt driving rules: In some cases, other
agents, such as vehicles or pedestrians, do not respect the driving
rules. Other vehicles may ignore red lights or pedestrians may
cross the street in places where they are not allowed to, inducing
collisions with our system.

Small obstacles and unusual situations were the two most frequent
ypes of failures. Both cases occurred, in large part, due to the limited
umber of episodes during which the policy was trained. More training
ime or data augmentation techniques would largely help to decrease
he frequency of these failures.

The rest of the failure cases did not affect the performance of the AV
o a great extent, as they happened once each. However, the proposed
ramework could be extended to reduce these types of collisions. The
ailure episodes due to limited FoV can be solved by, for instance, by
ncorporating 360◦ visual information, allowing the policy to reason
bout the surrounding environment completely. Secondly, failures due
o wrong predictions can be solved with a high-fidelity prediction
odel (Brito et al., 2020) reasoning about interaction and environment

onstraints. Lastly, in the cases where other agents contempt driving
ules, the local planner’s safety bounds can be increased; moreover,
ore training time can help make the VG be more robust.

. Conclusion

In this paper we presented a framework, Social-MPCC, that com-
ines an optimization-based control method (MPCC) with a learning-
ased method (iDAgger) for learning and executing safe, human-like,
riving behaviors. Learning human-like driving behaviors is a desired
eature for AVs, as they produce trust in other human agents and
acilitate collision avoidance by acting predictably. To achieve this,
he forward velocity reference of a local trajectory planner is modified
n real time by a Visual Guidance system that learns, from humans,
o control this variable using first-person view images of a vehicle.
he learning method follows an Interactive Imitation Learning training
rocedure that enables obtaining well-performing policies in only two
ours of human training time, as opposed to other methods in the
iterature that require 100–200× more human time.

The method was experimentally validated in a realistic simulator.
ualitative results show the capacity of the method to successfully
ncode human-like driving behaviors in the MPCC. Quantitative results
ompare the performance of Social-MPCC against baselines that are
ptimization-based (i.e., MPCC) or learning-based only (i.e., end-to-
nd iDAgger). Social-MPCC substantially improved the performance of
PCC, both in terms of number of collisions and deadlocks. Further-
ore, after two hours of interactive training, the proposed method
howed to be superior to the end-to-end learning method. Finally,

9

ocial-MPCC achieved real-time performance, which allows it to be
mplemented on a real platform.

Future works can extend Social-MPCC to control a larger family
f high-level control variables of the MPCC with the Visual Guidance.
or instance, way points could be locally modified to enforce specific
ehaviors. Furthermore, modifying the weights in the MPCC’s cost
unction could also be employed for this purpose. Finally, the proposed
ramework could also be extended with other Interactive Learning tech-
iques: for example, corrective advice could be used to teach behaviors
hat may be challenging to demonstrate (Pérez-Dattari et al., 2020).
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