Using **neural networks** to model the behavior in vessel trajectories

Programme

- [1] terminology & relevance
- [2] research question
- [3] experiments & results
- [4] conclusions

Vessel trajectories

Automatic Identification System (AIS)

- Global
- Laws enforce AIS
- Coverage is good
- Additional information:
 - Longitude
 - Latitude
 - Speed
 - Rate of turn
 - Vessel ID
 - Vessel type
 - Etc.

Automatic Identification System (AIS)

Vessel X

time	Х	Υ	speed	turn
0	0	0	0	0
64	12	3	0.5	12
123	23	7	0.7	345
191	24	5	1.3	13
235	21	8	0.9	56

Why analyze this information?

Some examples

- Classification
- Segmentation
- Forecasting
- •

We use algorithms

turning right or left?

Rule-based algorithm

calculate cross product:

$$A \times B$$

set rules:

We use algorithms

Deep learning

We use algorithms

dog or cat?

We use algorithms

Neural network (NN)

Research question

To what extent can **neural networks** contribute to modeling the behavior in vessel trajectories?

- What is a good way to represent a trajectory for a neural network?
- How should the trajectories be segmented?
- What type of neural network is fit to do this?
- How well does it work?

Data set & tools

data

- global AIS 2016 2017
- coastal receivers
- 1 billion messages

hardware

- remote server
- database system

software

- Python **programming**
- PostgreSQL database system
- Keras **deep learning**

Some experiments

1. Classifying vessel type based on trajectory

- Vessel type is included in AIS messages
- These types are most prevalent
- Objective: find out if NN can learn from movement data
- What if wanted classes are not included in AIS?
 - Use small set to train NN

class	vessel type
1	Cargo
2	Tanker
3	Fishing
4	Tug
5	Passenger

Data representation

1. Classifying vessel type based on trajectory

Raw data

- coordinates
- attributes (speed, turn)
- bias included

Image

- coordinates as pixels
- attributes in channels
- waste of space

Sequence

- relative coordinates
- attributes (speed, turn)
- good solution

Data preprocessing

1. Classifying vessel type based on trajectory

true class: cargo

Data set compilation

1. Classifying vessel type based on trajectory

Trajectory per vessel

dx	dy	а

. . .

- Sample length of 2,000
- Retrieve several samples based on N
- Non overlapping
- Random position

$$L = 2,000$$

- Equal amount of samples per class
- Distinct vessels per partition

N to 150,000

predicted: tug

partition: ~55,000 samples

70 % training

Cargo	~7,700
Tanker	~7,700
Fishing	~7,700
Tug	~7,700
Passenger	~7,700

15 % validation

15 % testing

Configurating neural network

1. Classifying vessel type based on trajectory

Configurating neural network

1. Classifying vessel type based on trajectory

Training neural network

1. Classifying vessel type based on trajectory

true class: cargo

1. Classifying vessel type based on trajectory

Loss 1.10 Accuracy 0.57

confusion matrix

Some experiments

2. Detecting fishing activity based on trajectory (fishing vessels)

class	vessel type	speed
1	Dredge	0.2-1.5
2	Beam trawler	2.5-5
3	Beam 255 kW+	2.5-7.5
4	Otter trawler	2-4

- vessels classified by Niels Hintzen
- points labeled on basis of speed
- 384 training samples
- 64 test samples
- Length of 2000 points per sample

Configurating neural network

2. Detecting fishing activity based on trajectory

P(fishing)
0.1
0.6
1.0
1.0
1.0
0.7
0.2
0.0
0.0

Training neural network

2. Detecting fishing activity based on trajectory

Predicted
0.0
1.0
1.0
1.0
1.0
0.0
0.0
0.0
0.0

True	
0.0	
0.0	
0.0	
1.0	
1.0	
1.0	
1.0	
0.0	
0.0	

2. Detecting fishing activity based on trajectory

Metrics	dx/dy
Loss	0.22
Accuracy	0.93
Precision	0.86
Recall	0.95
F1-score	0.90

speed	
0.14	
0.95	
0.91	
0.98	
0.94	

Sequence of movement vectors

Sequence of speed

Sequence of rates of turn

Sequence of ocean depth

Some **experiments**

3. Representation learning with synthetic trajectories

When labeled data is not available!

Data set compilation

3. Representation learning with synthetic trajectories

3. Representation learning with synthetic trajectories

A: arching B: curly C: random

Encoded space (N=64)

Used dimensionality reduction algorithm to get From 64 to 2 dimensions

- 3. Representation learning with synthetic trajectories
 - Step further: **variational** model
 - Put constraint on encoded space: make it Gaussian
 - Encoded space is now continuous

Encoded space (N=64)

Abstract dimension

3. Representation learning with synthetic trajectories

Model has a generative aspect!

- Step further: **variational** mode
- Put constraint on encoded space: make it Gaussian
- Encoded space is now continuous

Encoded space (N=64)

Encoded space (64D)

Decoded space

Abstract dimension

1. What is a good way to represent a trajectory for a neural network?

Standardization

- As sequence makes most sense
- Standardizing is a good idea
- Removing outliers
- Using relative movement vectors works best

Recommendations

- Look at better ways to store the data
- Create single application

2. How should the trajectories be segmented?

Within trajectory classification

Sub trajectory classification

- Segmentation can be dealt with by NN
- If not, choose length as long as necessary
- Long samples take much longer to process, but encompass more information

Recommendations

 Use time intervals as segmentation

3. What type of neural network is fit to do this?

convolutional NN

- Recurrent NN's are a logical choice with sequences
- For vessel types it only worked together with convolutional NN
- Stacking multiple layers did not work well

Recommendations

- Keep good logbooks
- Use grid search
- Use GPU

4. How well does it work?

- Explore use cases of generative model
 - Realistic simulations?

- In all experiments the NN is able to learn from the data
- Performance may increase based on different factors:
 - Better network design
 - Better data samples
 - Better data

Recommendations

 Talk to domain experts for performance criteria

Using **neural networks** to model the behavior in vessel trajectories

References

- [1] https://ai.googleblog.com/2017/11/feature-visualization.html
- [2] https://towardsdatascience.com/image-captioning-in-deep-learning-9cd23fb4d8d2
- [3] https://www.pinclipart.com/maxpin/Thwhxi/
- [4] http://pngimg.com/imgs/miscellaneous/dna/