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Abstract
3D modeling of indoor spaces is a prerequisite for daylight
simulation, and the accuracy of the 3D models can have
a significant impact on the simulation. The goal of this
study was to quantify the errors caused by modeling in-
door spaces at different accuracy levels to find the optimal
balance between the reliability of the results and labor in-
vestment. For this purpose, we introduce a Level of Detail
(LOD) concept for indoor spaces based on the size of non-
permanent indoor objects by inclusion and exclusion from
the simulation scene. The errors corresponding to models
with low accuracies are measured on six case study offices
by climate-based simulation using an improved two-phase
method. Our results show that inaccurate modeling of in-
door spaces can cause between 10%-70% error in Total
Annual Illumination (TAI) with a 25% median across all
spaces of our study.

Highlights
• We introduce a concept of level of detail for indoor

daylight applications.

• Inaccurate modeling of indoor spaces causes be-
tween 10%-70% errors on climate-based daylight
simulation results.

• Our study lays the theoretical ground for automation
of 3D modelling for indoor daylight simulation.

Introduction
In the past decade, climate-based daylight modeling has
become an integral component of daylight assessments in
many national and international standards and certifica-
tions, e.g., LEED, UK Education Funding Agency (EFA),
EN 17037(EN, 2019; EFA, 2014; USGBC, 2013).
The required geometrical level of detail for efficient
daylight modeling of indoor space is not yet known for
different applications, e.g., design, and post-occupancy
evaluation, potentially leading to significant errors in
final results and to design solutions that do not efficiently
address building occupants’ needs and requirements. This
issue still requires a better understanding of what is op-
timum balance between performance, labour investment
and accuracy.
Post-occupancy evaluation is a common means to
understand the daylight performance and the design
quality of a building in the post-construction phases

of the building’s life cycle. Such studies can inform
retrofitting strategies, as well as forming a knowledge
base to improve the planning and design of new buildings.
Calibrated climate-based daylight models play a pivotal
role in such evidence-based knowledge in the existing
building stock (Quek and Jakubiec (2021)). Yet, given the
large number of existing buildings, a standardization of
3-dimensional data acquisition and modeling techniques
is essential for achieving this goal with minimum labor
cost, since creating and preprocessing 3D models for
daylight simulation can be labor-intensive. This, for the
main part is attributed to the permanent structures of the
spaces, e.g. walls, windows, ceiling, but in most indoor
spaces the effort of surveying all furniture is even heavier.
Several studies have been targeting the optimization of
such a 3-dimensional representation of the building for
the intended spatial analysis. The concept of Level of De-
tail (LOD), for instance, is developed in 3D city modeling
for efficient representation of the building depending
on the intended use. The idea of LOD has extensively
been studied and applied in urban-level 3D modeling of
buildings to balance the acquisition and reconstruction
cost with respect to the desired application requirements
(Biljecki et al. (2016); Kutzner et al. (2020)).
On the contrary, for indoor spatial analyses, the existing
literature is more limited and there are still many open
questions that research needs to answer. Boeters et al.
(2015) proposed an enhancement for CityGML LOD2
for area determination. Kim et al. (2014) studied the
possible integration of IndoorGML with CityGML.
(Billen et al., 2012) proposed 3 LODs for developing
the CityGML v2.0(OGC, 2012). Kemec et al. (2012)
proposed additional indoor LoDs of 1.5, 2.5, and 3.5 with
corresponding buildings objects of story, compartment,
and apartment, respectively to be applied to natural
disaster risk communication purposes. Hagedorn et al.
(2009) proposed an indoor LOD for route visualization
by including three components of thematic models,
geometry model, and routing model for indoor route
visualization. Löwner et al. (2013) and Benner et al.
(2013) proposed an expanded concept of interior LOD for
CityGML by differentiating between geometrical LOD
and Semantical LOD, separately for building interior and
building exterior. Pang et al. (2020) suggested new LODs,
consisting of three semantic levels (SLOD) including
enclosing components, connecting components, and
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decorating components. Besides semantic LODs, it also
proposed geometric LOD (GLOD) and evolutionary pro-
cesses (PLOD). Following a similar approach, Kang et al.
(2018) defined indoor LOD by defining position accuracy
(PLOD), geometric (GLOD), completeness (CLOD), and
semantics (SLOD), and focuses on the requirements for
indoor disaster management service. Boeters et al. (2015)
proposed interior LOD corresponding to exterior LOD2
with comparable complexity and a methodology for
automatically generating them from an existing exterior
model with LOD2.
Geiger et al. (2015) investigated and described the
concept of generating generalized representations, i.e.,
representations with lower LOD suitable for regional and
urban levels (transforming BIM to GIS), for buildings
and building elements in BIM format based on the LOD
concept of CityGML.
The above studies all propose definitions that suit a
particular application and are not applicable to other
types of indoor physical and spatial analyses, e.g., indoor
daylight analysis, which is the focus of this study.
To address the lack of established LODs for indoor
daylight analysis, it is crucial to quantify errors in results
stemming from simplified geometric models. This
study aims to fill this gap by measuring errors that arise
when non-permanent objects, such as chairs, tables, and
screens, are excluded from the model based on their size.
The results of this study will be useful to propose LOD
framework suitable for indoor daylight applications in
order to optimize between performance, labor investment,
and reliability of results, and to understand the errors
caused by inaccurate geometry definitions.

Methods
Spaces and input preparation
In this study, we select six large open office spaces located
in Singapore, previously modeled for a study on valida-
tion and calibration of climate-based daylight simulation
(Quek and Jakubiec (2021)). A representation of these
spaces is shown in Fig. 1.
To generate a daylight model of a given space, 10
threshold levels are calculated for each non-permanent
object based on their oriented bounding box area. An
oriented bounding box is simply a bounding volume
whose faces and edges are not parallel to the basis vectors
of the coordinate system in which they are defined. The
threshold levels are determined using a uniform distribu-
tion within the size range of the non-permanent objects
in the space. The size ranges in each space is presented
in Fig. 2 . For each threshold level, a corresponding
daylight model is generated. The model only includes
non-permanent objects whose oriented 3D bounding
area size exceeds the threshold value. Therefore, as the
threshold value increases, the geometrical resolution of
the model decreases.

Daylight simulation and evaluated metrics
The Radiance improved 2-phase method was chosen to
run annual daylight simulations, using the Radiance ren-
dering engine (Ward, 1994). Improved (Dynamic Day-
light Simulation (DDS)) distinguishes between the con-
tribution of various sources, including diffuse sky, diffuse
ground, indirect solar component, and direct solar compo-
nent. For the last component, the number of positions can
be defined as higher for a better accuracy, resulting in a
more realistic representation. This method is suitable for
buildings without complex fenestration systems which is
the case for the buildings in our study (Bourgeois et al.,
2008). For each model, we ran a climate-based daylight
simulation and calculated the Total Annual Illumination
(TAI) and Daylight Autonomy (DA). TAI or light expo-
sure is calculates as the sum of all the illuminance values
in the occupancy hours throughout the year. DA is de-
fined as the percentage of occupied hours that a point in
the space receives more light than a certain threshold, in
our case 300 lux. The grid points are placed at 0.8m level,
pointing upwards. We ensured that the nodes covered by
the furniture pieces were removed to avoid bias in the re-
sults. Spaces are assumed to be occupied throughout the
whole year and not just in the office hours.

Results and discussion
The Absolute Percentage Error (APE)s by size-wise
exclusion at each of the objects is shown in Fig. 6 for
three of the spaces. The errors expectably increase by
an increase in the exclusion threshold value, however,
the error range differs among different datasets, e.g.,
maximum APE on mean TAI of 15% for S2 and 27% for
S4 (Fig. 7).
In space S0, removing objects with sizes smaller than the
first threshold of 7m2, resulted in a 37% decrease in TAI
and a 5% decrease in mean DA. These percentages were
nearly as high as the maximum error observed in both
metrics. This behavior is due to the uniform size threshold
definition used in the experiment and the high variability
of object sizes, as depicted in Fig.3. The removal of many
furniture pieces located near grid points during the first
step, because of their small size, contributed significantly
to the observed changes in TAI and mean DA.
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Figure 1: The indoor datasets used in this study, from S0 (top-left) to S5(bottom-right), the non permanent indoor objects 

are highlighted in orange. Room dimensions are in meters.

Figure 2: Size distribution of furniture across the six indoor datasets, vertical lines show the first threshold for each 

dataset.

The same trend occurs in S1, with a maximum error of
28% for TAI and 4% for mean DA, where the majority
of the indoor objects fall within the first size bounds and
their exclusion causes significant errors in the annual
results. Note that mean DA remains almost constant in S0
and S1 due to the definition of this metric, which behaves
equally with all the nodes receiving more than 300lux at
each hour throughout the occupancy hours in a year.
In space S2, the APE for TAI, is 15% and the APE for
DA is 10%. The rise in error is gradual and consistent
between steps. On the last threshold removing the large
shelves located close to the window surfaces (left side of
the space, see 1) causes a 4-5% increase in the errors. The

Figure 3: Variability of object sizes in S0. The smaller-
sized objects with higher occurrences are highlighted in 

blue, and the sparsely located large objects are depicted 

in orange. same behavior is observed, in some of the other spaces
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on the first threshold where a high number of relatively
smaller-sized objects are removed from the 3D model.
Step-wise removal of the objects in S3, being one of
the largest open offices relative to the others, led to a
maximum error of 15% for mean DA and 13% for TAI.
The increase in error in the first threshold is steep, with an
increase of 8% for mean DA and 6% for TAI. Throughout
the rest of the iterations, the changes in the error rate are
almost constant.
In S4, a smaller-sized open office, after the first step, a
small increase was observed with a 4% difference in TAI
and 8% in mean DA. However, a larger increase occurred
in the third step when desk partitions and a large shelf
located close to the windows were removed from the
space, as shown in Fig.4. This increase can be attributed
to both the size of the objects and their proximity to the

Figure 4: Visualisation of non-permanent objects causing 

a sudden increase in the errors in space S4, highlighted in 

blue.

windows, which cast shadows on the work-plane grids.
In S5, the errors are considerably higher than in the other

spaces, with a 70% error rate for TAI and an 80% error
rate for mean DA. The sudden increases observed in the
final thresholds were caused by removing the partitions
that surrounded the grid points on the working plane, as
illustrated in Fig. 5. The same applies to space S4.

A summary of the distribution of the APEs after the ex-
clusion of objects at each of the nine steps is presented
in Fig.7 (top), showing that incomplete modeling of fur-

Figure 5: Visualisation of non-permanent objects causing 

a sudden increase in the errors in space S5, shown in blue,
along with the grid points.

niture can lead to up to 70% error in TAI. Fig.7 (middle)

shows the distribution of the contributions for each step
across the models or the steepness of the curve slopes at
each step in the top-row plots in Fig.6. The number of the
objects is shown in the bottom plot in Fig.7.
Looking at the step-wise errors (Fig. 7- middle) one could
see that a noticeable portion of the total error occurs in the
first step, which based on the frequency of the objects at
each size-step (Fig. 7- middle and bottom) is where 78-
98% of objects are placed. These plots show that there
exists a threshold in all the models, which is meaningful
for daylight calculations. Exclusion of objects falling be-
low that threshold, according to these plots, will lead to a
minor error in the calculation of total annual illumination.
Furthermore, that threshold is around the first step for each
dataset, which can be explained by the high number of
occurrences of furniture pieces in that range (Fig.7 mid-
dle and Fig.2). The first threshold value is between 5 and
11 m2 depending on the dataset as shown in Fig.2. More
datasets and simulations are required in order to provide
accurate size recommendations for daylight applications,
which will be done in our future work.
The office buildings in this study vary in terms of size and
window sides to be representative of open office spaces,
as such, this approach is limited to office spaces. This
is crucial for understanding how to interpret the study’s
findings because in other building types, the types of
non-permanent objects and, consequently, their sizes can
change greatly from the datasets used in this study.
According to the results, apart from the size of the non-
permanent objects, it is observed that their proximity to
windows and space configuration play roles, which will
be investigated more elaborately in our future work.
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(a) S2

(b) S3

(c) S4

Figure 6: Annual daylight results for three indoor spaces

Figure 7: Summary of APE in each step (top), frequency of 

non-permanent objects in each step (middle), and relative 

frequency(bottom) across the six studied datasets for TAI.

Conclusion and future work
In this study, we measured the impacts of incremental ac-
curacy levels for indoor 3D geometries on annual climate-
based daylight results, with a focus on non-permanent in-
door objects.
This impact is shown to be between 10% to 70% (APE),
depending primarily on size distribution in different
spaces, and the space configuration, e.g., the proximity of
windows to objects, or more importantly, the size of the
space. The exclusion of objects using a uniform defini-
tion of threshold, as implemented in this study, does not
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ensure consistency across the results of different datasets,
taking into account the variability of size ranges in differ-
ent spaces. However, size distributions in various indoor
models significantly overlap (see Fig.2). In light of this,
we aim to refine the inclusion criteria to establish general-
izable value ranges for similar indoor spaces.
The impact of the proximity of non-permanent objects to
the windows on the errors resulting from their exclusion
in the daylight model was briefly mentioned earlier. How-
ever, this aspect has not been thoroughly investigated in
this study. Additionally, it is crucial to quantify the errors
to gain deeper insights into the impact of using inaccurate
models. This has practical implications as pre-built stan-
dard 3D models (e.g., chairs chosen from a database) are
more commonly utilized than accurate 3D reconstructions
from scans. These aspects will be addressed in our future
research as part of the follow-up studies for this paper.
The findings of this study have practical implications for
practitioners involved in indoor daylight modeling, as they
can help strike a balance between the cost of modeling in-
door geometry and the intended application. Furthermore,
the findings of this study can inform the development
of automated and semi-automated methods and pipelines
for reconstructing indoor geometry from raw dense point
clouds obtained through LiDAR scanning or photogram-
metry. Apart from aiding in post-construction applica-
tions, this refinement is also useful for architects and en-
gineers during the decision-making process, as it allows
them to identify potential errors caused by incomplete de-
sign models.
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