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A B S T R A C T

3D indoor reconstruction has been an important research area in the
field of computer vision and photogrammetry. While the initial tech-
niques developed for this purpose use sensor devices and multiple
images for data acquisition and extracting 3D information and repre-
sentation of the scene, with the advent of deep learning techniques,
there has been a good progress in extracting 3D information of an
indoor scene reconstruction using a single image. This has potential
in minimizing user efforts and cost for data acquisition. The current
state of the art method involves two main components, the global
depth map and plane instances. After investigating the current state
of the art methods, it is observed that there is inconsistency in recon-
structed surface boundaries and depth estimation over the curvature
and edges of the objects present in the scene, despite having good
3D representation in the surrounding regions. We devise a loss func-
tion for optimizing depth estimation during supervision of the neural
network by providing geometric awareness to the pixels at local level
based on its neighborhood properties defined by spatial compatibility
and color similarity. A similar function is used during 3D reconstruc-
tion for orientation consistency of normals in the point cloud. Based
on the quantitative and qualitative analysis, it is observed that the pro-
posed approach helps in improving the 3D reconstruction of objects
in the indoor environment.
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1 I N T R O D U C T I O N

For a human being, it takes a single glance at a room to understand
the indoor built environment. A person understands both its seman-
tic and geometric details. For example, there are table, walls, doors,
windows and furniture present in the room and the door is at the
right side of table or there is a visible walkable path to the door. Pro-
cessing this information through a machine is a very challenging task
and has been an important area of research in the field of computer
vision. Getting 3D information has many applications. For example,
it can be used for home or work assistance robots for indoor environ-
ment to understand various elements in the indoor space and take
desired actions. A user can create a virtual model of the house or of-
fice which can further be used for redesigning by the real estate com-
pany. Similarly, 3D indoor environment is useful for infrastructure
management, energy simulations and emergency services[Zlatanova
and Isikdag, 2015]. This has a lot of applications in indoor navigation
where a 3D model can be reconstructed and used as database for lo-
calisation. Few of the applications have been depicted in Figure 1.1
and Figure 1.2.

1.1 background

3D reconstruction has evolved significantly over the years. To get
3D information such as depth or planar surfaces from indoor space,
a combination of various sensors such as using laser scanning de-
vice with Global Position System (GPS) device, Inertial measurement
unit (IMU) and wifi access points, can provide 3D point clouds of in-
door scene [Choi et al., 2015]. However, due to expensive setup and
expertise, using multi-view stereo reconstruction proposed in [Sinha
et al., 2009] and [Furukawa et al., 2009] is convenient than sensor-
based approach. In this, multiple images having a minimum overlap
to reconstruct the geometric primitives like vanishing points, planes,
lines, and local features such as corners, blobs, which are grouped
together into planar or surface patches[Gallup et al., 2010]. How-
ever, these techniques still face many difficulties: 1) there is occlu-
sion present in image, thus only limited observation about objects is
present, 2) the variation of light and texture hinders the feature extrac-
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2 introduction

Figure 1.1: An example of 3D indoor model of a building which can be
used for navigation, infrastructure development, virtual reality
applications for cultural heritage.[Zlatanova and Isikdag, 2017]

Figure 1.2: An example of understanding an indoor space using 3D model
[Donaubauer et al., 2010]
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tion algorithms for feature reconstruction, and 3) the complexity of
placement of various objects challenges the Manhattan world norms.
The neural networks [Liu et al., 2015] try to tackle these challenges by
looking at an image from a holistic perspective. Keeping this in mind,
extracting 3D information using a single image to extract 3D informa-
tion can make the data acquisition process easier and can be critical
when it is difficult to use traditional techniques. Getting maximum
information from one image processing becomes crucial for many ap-
plications of real time 3D reconstruction. If reliable and good models
can be generated from a single image, it will be helpful in minimiz-
ing the user efforts in post processing and the financial cost of data
acquisition.

With the evolution of the deep learning techniques, the Convolu-
tion Neural networksConvolutional Neural Network (CNN) have been
utilized to infer information such as depth maps, surface normals
and meshes from a single image[Kang et al., 2020]. Using supervised
learning techniques, ground truth information per pixel for an im-
age is used to train a model and infer semantic labels, their location
in an image and reconstructed depth[Mousavian et al., 2016]. Re-
cently, new models have been developed which perform these tasks
using networks designed for segmentation to reconstruct depth-map
from single image, [Liu et al., 2018],[Yang and Zhou, 2018],[Yu et al.,
2019]. Among these, PlaneRCNN [Liu et al., 2019] is the state-of-the-
art method that outperforms the others in piecewise planar 3D recon-
struction in indoor environment. It uses MaskRCNN,[He et al., 2017]
as the convolutional backbone network and make improvements for
extracting planar surfaces and global depth map from single image.
In the basic model, 3D reconstruction involves two main components,
one is the global depth map and the other is the plane segmenta-
tion. The detected plane instances and global depth information are
combined to reconstruct the final piece-wise planar model. Through
the analysis of the reconstruction of current techniques, it is observed
that there is relatively higher error around the curvature and edges
of the objects present in the indoor environment specially non-planar
surfaces. The depth is not consistent over the parts of the object de-
spite having good information available in nearby areas. An example
of this is shown in Figure 1.3, wherein, we can see that the table
top surface in the planar model is not accurately reconstructed when
compared to ground truth. Similarly, the 3D point cloud generated
does not distinguish boundaries between objects clearly and does not
provide good understanding of the scene .

We propose a new energy function to enforce the spatial compati-
bility of depth and color information based on the local context and
maintain depth consistency in accordance with surrounding neighbor-
hood. The aim of this research project is to develop a geometry aware
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Ground TruthInput Image

Planar Model Point Cloud

Figure 1.3: An example of 3D reconstruction from a single image using
model of [Liu et al., 2019]. In side view of the planar model, it
can be observed that the table surface is wrongly reconstructed
and side view of the 3D point cloud, the boundaries of objects
are not clearly distinguishable and has potential for improve-
ment.
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Oversegmentation  
based on color and 
spatial compatibility

Figure 1.4: Superpixel representation of image helps in handling pixel
neighboring region of pixels based on color and spatial prox-
imity

optimization approach that can help in improving the 3D reconstruc-
tion process by providing supervision on depth map during training
process of the neural network. The motivation is to influence the 3D
Reconstruction process using a single image and provide insights into
the whole procedure and investigate the role of global depth estima-
tion as well.

1.2 research questions
Based on the information available at hand, our main research ques-
tion is :

”Can optimization based on the spatial and color compatibility of
pixels within image, help in the improvement of 3D reconstruction

from a single image?”

By spatial and color compatibility of pixels, we refer to over-segmentation
of an image that creates superpixels from image based on k-means al-
gorithm using color information and pixel positions [Achanta et al.,
2010] depicted in Figure 1.4. To support our main research objective,
a sub question has also been formulated as following :

• How does the optimization approach influence the process of 3D
Reconstruction and depth estimation in an indoor environment
?

Scope of the thesis

To focus on particular aspects of the main research question, we will
only consider the following things :



6 introduction

• Only indoor scenes will be used for research. Hence, no outdoor
scenes or buildings will be considered.

• Only a single image will be used as data input. Thus, no multi-
ple images are utilized.

• Only those models are considered for research which deal with
3D Reconstruction. Stand alone depth estimation techniques are
not considered for research.

• Our main focus will be on improving 3D reconstruction and
investigating the effect of our optimization approach, although
there are potential related research areas in this project which
cannot be explored due to limitation of time. These have been
provided in the later sections

1.3 thesis outline
Chapter 2 provides an overview of conventional approaches for 3D
reconstruction, followed by the current state of the art methods that
use single image as input. Lastly, observations based on visual anal-
ysis of results is provided for understanding the problems in the cur-
rent approach. In Chapter 3, the methodology is provided which
first presents a brief overview of the pipeline used in the research,
followed by detailed description of each component of the pipeline.
Afterwards, Chapter 4 lays down the practical details for implement-
ing the methodology and conducting experiments. In Chapter 5, the
results and analysis of the conducted experiments are presented along
with the evaluation. Lastly, Chapter 6 provides the conclusion of the
research answering the research questions and discussing future work.



2 R E L AT E D W O R K

In this chapter, we will look at the current techniques available in the
literature that use deep learning techniques for 3D reconstruction us-
ing single images. Firstly, an overview of traditional approaches will
be provided followed by methods that use deep learning techniques
for object and scene level 3D reconstruction. In the end, observations
from current state of the art methods in piecewise planar reconstruc-
tion will be provided to support the motivation for the project.

2.1 conventional 3d reconstruction
approach

To obtain 3D information from the real world, conventional approaches
use either multiple images and information of camera trajectory or
sensor based approach, in which different devices such as depth cam-
era or laser scanners are used to directly obtain the depth or 3D co-
ordinates [Kang et al., 2020] of the environment. A classic algorithm
is Structure From Motion (SFM) technique which uses triangulation
of feature matches among different images, and can also involve in-
crementally retrieving information using different sets of images and
refining camera poses using bundle adjustment to minimize the re-
projection error for a particular point in 3D space [Ullman, 1979].
Among many methods proposed to find the key points among pair
of images, ”Scale-invariant feature transform” Scale-invariant feature
Transform (SIFT) is a benchmark , wherein, the features, invariant to
the scale are detected using a image pyramid network, gradients at
local level and normal orientation refinement [Lowe, 2004].

Many algorithms have been proposed that use a multi-view ap-
proach to first find correspondences between images and use epipo-
lar geometry constraints to obtain 3D information [Goldlücke et al.,
2014]. In [Furukawa and Ponce, 2009] and [Galliani et al., 2015], photo-
metric and visibility constraints are used to produce a depth map,
while in latter, normal information is also used to improve the perfor-
mance. A depiction of multi-view stereo reconstruction is depicted
in Figure 2.1 wherein, a dense point cloud is obtained using images

7
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Figure 2.1: Images from different views of object are taken to retrieve point
cloud with rich texture information[Kang et al., 2020]

from multiple views. In a sensor based approach, devices such as
laser scanners and depth cameras are used to obtain depth or 3D
point cloud representing the scanned scene. To recover the 3D infor-
mation, common approaches use a type of structure from motion tech-
nique known as ”Simultaneous Localization and Mapping” (SLAM)
[Durrant-Whyte and Bailey, 2006] to combine information from dif-
ferent locations of device trajectory to recover the final point cloud.
Once a dense point cloud is obtained, surface can be extracted by
employing various algorithms depending on the user requirements.
These can be smooth surface reconstruction, piecewise plane recon-
struction [Gallup et al., 2010], or Poisson reconstruction [Kang et al.,
2020]. These methods are often time-consuming and statistical opti-
mization is required to achieve accurate results. This also restricts
their utility in real-time applications.

2.2 3d reconstruction using single
images

With the advent of deep learning techniques, the indoor 3D recon-
struction has become popular research topic at the intersection of field
of Deep Learning, Computer Vision and Photogrammetry. There is ac-
tive research in generating object and scene level reconstruction from
a single image.
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 Input Image Pixel2MeshGEOMetrics

(a) (b)

Figure 2.2: (a) A comparison of GEOMetrics and Pixel2Mesh models
clipped from [Smith et al., 2019]. (b) An example of 3D recon-
struction of indoor scene clipped from [Gkioxari et al., 2019]

2.2.1 Object level 3D Reconstruction

Many approaches proposed for object wise 3D reconstruction using
deep learning networks provide representation of single or more ob-
jects from a single image. Initial methods conceptually follow an ap-
proach of deforming a given mesh into 3D structures. In [Wang et al.,
2018], ”Pixel2Mesh” is proposed which uses an ellipsoid as the input
mesh while in [Smith et al., 2019], ”GEOMetrics” model is proposed
in which, an ”adaptive face splitting” procedure is used to incorpo-
rate local context of vertices while mesh reconstruction and provide
higher details of objects. A depiction of this is shown in Figure 2.2a.
While these approaches focused on synthetic images, in [Gkioxari
et al., 2019], a ”MeshRCNN” is proposed which provides meshes of
multiple objects from real world indoor scenes. They propose a voxel
branch in the MaskRCNN model proposed in [He et al., 2017], a pop-
ular instance segmentation model and use new losses for supervision
on mesh generated from sub-sampled point cloud of the objects dur-
ing training. This is depicted in Figure 2.3.

2.2.2 Scene Level 3D Reconstruction

In scene level reconstruction, a single image is used to generate a 3D
representation of the full scene. This representation can be of various
types having different level of information. It provides an understand-
ing of objects present in the room besides the room layout along with
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Figure 2.3: Depiction of overview of ”Mesh R-CNN” from [Gkioxari et al.,
2019], representing the voxel branch that provides a voxel rep-
resentation of objects and a mesh refinement branch to deform
the generated mesh and provide a detailed representation of de-
tected objects in image.

Figure 2.4: Two separate networks are used to improve the final depth
prediction by using both fine and coarse level features of im-
age[Eigen et al., 2014]

topological alignment of primitives in the 3D representation. One
of the early pioneers in this field, [Saxena et al., 2006] infers depth
from outdoor scenes using ”markov random fields” to incorporate
both global and local features of an image to refine depth prediction.
With the advent of the deep neural networks, many convolutional
neural network based techniques have been produced to infer depth
maps or surface normals from single image [Li et al., 2015]. One
well known approach was proposed by [Eigen et al., 2014], wherein,
two networks are used to improve the final depth prediction by using
both fine and coarse level features of image as depicted in Figure 2.4.
But these methods do not provide planar segmentation or parameters
which can help in inferring topological relationships among various
elements in the scene.
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Figure 2.5: Planenet : provides a set of plane parameters, plane segmenta-
tion masks and a global depthmap using high resolution feature
maps from a pretrained model and ground truth 3D planes [Liu
et al., 2018]

Recently, a novel model, ”Planenet”, was proposed by [Liu et al.,
2018] to reconstruct a ”piecewise depth map”, given a single RGB-
image using end-to-end deep neural network built upon DRN pro-
posed in [Yu et al., 2017]. As depicted in Figure 2.5, using high resolu-
tion feature maps at the end of DRN, three separate output branches
are established. The network uses ground truth 3D planes for train-
ing to collectively provide a set of plane parameters, segmentation
masks and a global depth map.[Liu et al., 2018]. In another approach,
”PlaneRecover”, a Fully Convolution Network (FCN) based on Disp-
Net, [Mayer et al., 2015], simultaneously predicts plane segmentation
map and plane parameters, taking advantage of ground truth seman-
tic labels, depth map and known camera pose, in outdoor RGB-D
dataset, and categorising scene into planar and non-planar depend-
ing upon their semantic labels[Yang and Zhou, 2018]. The non-planar
pixels are not considered in the depth prediction. It is important to
note here that backbone networks used in above methods are flexi-
ble networks for image classification (global tasks) and semantic seg-
mentation (pixel wise prediction tasks)[Yu et al., 2017]. Both Planenet
and PlaneRecover provide limited number of planes(4-10) in the scene
which generalises various small planes into one large plane, thus loos-
ing complexity in reconstructed 3D model.

The problem of generalisation of scene was recently resolved in [Yu
et al., 2019], wherein, a encoder-decoder architecture is adopted to
provide a proposal free instance level plane segmentation and plane
parameters in a two stage process. The encoder is built upon Resnet-
101 implemented by [Zhou et al., 2018], an established benchmark
for semantic classification. In first stage, two decoders train CNN to
infer plane segmentation and pixel level embedding which are fur-
ther merged to provide instance level embedding. In second stage,
these instance aware planar segmentation is combined with pixel-
level plane parameters to provide final piece-wise planar 3D model[Yu
et al., 2019].
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Figure 2.6: Associative embedding : Learns instance embedding to form
proposals using mean shift clustering[Newell et al., 2016]

Figure 2.7: PlaneRCNN : Three separate networks are used to estimate
plane instances, refine plane segmentation and incorporate warp-
ing loss module to boost performance [Liu et al., 2019]

In another method, a proposal-based method was adopted. ”Plan-
eRCNN”, recently, made breakthrough in 3D planar reconstruction
using single image by proposing a novel neural architecture in [Liu
et al., 2019]. As depicted in Figure 2.7, it contains three networks:
firstly, a plane detection network based on MaskRCNN,[He et al.,
2017],[Kim, 2017] infers plane normals and offset information along
with global depthmap to provide both instance level planar masks
and global depth map. Secondly, a joint refinement network takes the
output from previous stage to refine each planar instance mask and
lastly a warping loss module is used to optimize the reconstructed
3D model from nearby view during training for performance boost.
It provides significant improvement in planar reconstruction from all
past methods. A visual comparison of some methods discussed in the
literature so far, is shown in Figure 2.9, clipped from [Liu et al., 2019].

While piecewise planar representation provides a mid-level infor-
mation for the scene, the curved surfaces are reconstructed as planar
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(a)

(b)

Figure 2.8: a) Total3D : Three separate networks are used to extract the room
layout, object bounding boxes and meshes from a single image
[Nie et al., 2020]; b)An example of scene level 3D reconstruction
from [Nie et al., 2020]

surface and a rough room layout depending on the scene. Recently,
a new approach proposed in [Nie et al., 2020] provides the bound-
ing box of objects, the room layout and meshes using a single image
as input, by combining 3 different modules. The ”layout estimation
module” provides supervision on the the camera pose and room lay-
out in the scene. The ”object detection network” provides supervision
on object level orientation and position with respect to the scene and
camera. Finally, the ”mesh generation network” is used to get objects
level meshes present in the scene by generating a target shape prior
from the image and using it to perform deforming of a sphere mesh
[Nie et al., 2020]. An overview depiction of the network is shown in
Figure 2.8a and an inference from indoor environment scene is shown
in Figure 2.8b. The model uses combination of losses from different
modules and jointly optimize them to get the final model.
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Figure 2.9: From left to right: input image, Planenet [Liu et al., 2018],
PlaneRecover [Yang and Zhou, 2018],and PlaneRCNN[Liu et al.,
2019]

2.3 observations
In existing literature for neural networks in the 3D reconstruction, it
is observed that the architectures are largely based on the image seg-
mentation networks. A pre-trained model can be utilized to get the
feature maps and new features are learnt by adding new modules on
old architecture. The new weights are estimated by training only the
new modules first and then end-to-end training is performed. This
technique of transfer learning can be helpful in customizing state of
the art methods for further research. For establishing a benchmark
model, we look at both [Liu et al., 2019] and [Yu et al., 2019] for vi-
sual analysis. An example of an inference from an image is shown
in Figure 2.10. From visual analysis, it becomes clear that the first
approach by PlaneRCNN performs qualitatively better over second
approach. It is globally and locally, better representation of indoor
scene. In Figure 2.11, and Figure 2.12, both approaches do not main-
tain the orthogonality of planes at all places and their placement is
also not consistent with nearby objects. However, PlaneRCNN has
denser distribution of points and preserves the topology better than
PlanarReconstruction where geometric complexity is not preserved.

The current approaches often fail in critical boundary conditions,
resulting in misplaced planes or inconsistency in depth values. For
example, in Figure 2.12 a table and rug in the image are together pre-
dicted as table while in the 3D model shown in Figure 2.12, major
points of table are predicted between ground and table and only a
small portion is table is appeared at a height in PlaneRCNN while
a good part of table appears as planar surface in PlanarReconstruc-
tion. Similarly for pillows in Figure 2.11, there is no depth consis-
tency maintained for single object and when the boundary is chang-
ing. More examples of piecewise planar model are provided in Fig-
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Figure 2.10: From left to right: 3D mesh reproduced from model, generated
point cloud using predicted depth, and colored point cloud us-
ing original image rgb values

Figure 2.11: From left to right: point cloud generated from PlaneRCNN and
PlanarReconstruction respectively and zoomed in on couch and
pillows.
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Figure 2.12: From left to right: point cloud generated from PlaneRCNN and
PlanarReconstruction respectively and zoomed in on the table

Planar ModelInput

Figure 2.13: From left to right: input image and piecewise planar 3D model
generated using [Liu et al., 2019]
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ure 2.13. The red markings show the boundary and surface recon-
struction problems in the basic version of [Liu et al., 2019]. Hence,
adding a new energy function to enforce the relationship between
depth and color information has a potential to improve the depth es-
timation and 3D reconstruction. In order to design a energy function
that can provide geometric awareness during supervision of depth es-
timation based on color consistency and spatial proximity, the neural
network needs to enforce the conditions in which the pixels in a spa-
tially connected neighborhood should have consistent depth values.
Thus, sudden depth changes should be penalised in a neighborhood
of similar colors. We can formulate this as a loss function which has
to be minimized by the neural network to provide geometric aware-
ness for depth estimation. To further explain the conceptual idea, we
will move to next chapter which defines the methodology in detailed
manner for each step.





3 M E T H O D O LO GY

This chapter provides details of the methodology adopted for the re-
search. Firstly, an overview is presented providing the full pipeline.
Afterwards, a detailed description of the proposed loss function and
neural network architecture used in the research is provided followed
by 3D reconstruction.

3.1 overview
A schematic overview of the methodology is provided in Figure 3.1.
For 3D planar reconstruction using single image, we need to extract
plane parameters and per pixel depth map. Firstly, data needs to be
prepared and pre-processed to use it as input for training a neural
network. For each iteration, a set of RGB image, pose information,
depth image and plane annotation ares needed. In a single iteration,
a RGB image is passed into the neural network , where loss func-
tions are used for supervised learning to extract plane segments and
global depth-map which then are used to calculate piece-wise planar
depth. With known, camera intrinsic, a piece-planar model can be re-
constructed using plane instance parameters and depth information
or a point cloud can be obtained.

3.2 neural network architecture
Keeping our objective in mind, we use the neural network architecture
used in PlaneRCNN [Liu et al., 2019] for our research to investigate
the role of depth estimation and plane segmentation in 3D reconstruc-
tion process. A depiction of neural network architecture is provided
in Figure 3.2. The basic model builds upon the MaskRCNN network
based on Resnet-101 and Feature Pyramid Network (FPN) architec-
ture. In the first stage, the input image is normalized by subtracting
the mean pixel values from the image, and padding is provided if
necessary to resize the image into (640X640) size. This is fed into a
bottom-up pathway based on the Resnet-101 architecture consisting
of five convolutional modules, each extracting the features at differ-
ent scale reducing the spatial resolution as we move up by half at
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DATA COLLECTION

CNN MODEL SET UP AND 
TRAINING

LEARNING ALGORITHM

EVALUATION

OUTPUT

          3D RECONSTRUCTION

Split into Training, Validation and testing dataset :
RGB Image, Ground truth Depthmap, Plane annüations,  

Camera Intrinsic and EXtrinsic Parameters 

Hyperparameter 
Optimization using 
validation dataset

Use the proposed loss þnction for 
depth optimization apart from losses

 for plane instances

EXPERIMENTS

Predictions :
 Depth Map, Plane Instances

 Quantitative and Visual Analysis on 
testing datasets divided into two broad 
categories: Curved and Planar Dataset

Depthmap : Pointcloud
Plane Instances : 3D Model 

Testing for suitable parameters 
of loss þnction and its effect 

Figure 3.1: Full Pipeline of our methodology



3.2 neural network architecture 21

CONVOLUTIONAL 
BACKBONE

RPN  

BOUNDING
    BOX

NORMAL MASKS  DEPTH

DEPTH LOSS

PLANE 
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ROIAlign LAYER

SAME SIZE 
FEATURE MAPS

DECODER

FULLY CONNECTED LAYERS

PLANE  LOSSú
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FEATURE 
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Ground Truth 
DepthGround Truth 

Annotations

Predicted DepthPredicted Plane Instances

Backpropagation

Feed Forward
CONVOLUTIONAL BACKBONE

Geometry  Awareness

Figure 3.2: Neural network architecture for plane detection and depth map
estimation
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Figure 3.3: Depiction of backbone of the neural network based on Resnet
101-FPN clipped from [Chen et al., 2019]. a feature pyramid map
is created by following a top-bottom pathway using the features
from bottom-up pathway using lateral connections.

each level. Then, a feature pyramid map is created by following a top-
bottom pathway using the features from bottom-up pathway using
lateral connections. Each layer of top-bottom pathway is up-sampled,
and is added element wise to each layer of bottom-up pathway after
convolution. This is then merged together to generate a feature map
at one level. This is done at all corresponding levels of the pathways
to generate the final feature maps except the second layer of bottom-
up pathway[He et al., 2017]. This has been depicted in Figure 3.3.

Plane Instances Estimation

Once, the feature maps from the backbone network are generated, the
region proposal network is used as a sliding window at each level of
FPN to predict plane instances and provide the normal predictions for
the same. To obtain the plane normals, these anchor normals are de-
fined on the basis of the ground truth plane normals. By using the K-
means clustering algorithm on randomly sampled plane annotations
in training dataset, the normals in equally distributed k directions are
used to formulate cluster centers for each anchor normal[Liu et al.,
2019]. A depiction of anchor normal and residual vector is provided
in Figure 3.4. The anchor normals are then, selected using a cross
entropy loss function. In the next stage, the regional proposals gener-
ated from first stage are resized to same dimensions using a ROIAlign
method. In this method, for each Region of Interest (ROI), the resized
features are estimated based on bilinear interpolation of the nearest
cell feature values. The feature output of ROIAlign is passed on to
the plane instance head comprising of fully connected layers to get
the plane instance mask and 3D residual vector for normal estimation.
To generate supervision on the residual vector, the nearest anchor nor-
mal is estimated and smooth L1 loss is used as proposed by [Liu et al.,
2019]. A post processing is done to get the information according to
input image and preserve the spatial compatibility of instances.
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Figure 3.4: Normals of plane are estimated in the respective camera coordi-
nate system using k anchor normals and finding residual vector
by PlaneRCNN, [Liu et al., 2019]

Depth Estimation

For global depth map, a decoder is added after the FPN, wherein, a
convolutional block of five convolutional modules, each having con-
volutional layer, a batch normalization layer and a rectified linear ac-
tivation unit layer with stride 1 and size 3 kernel is connected to a
deconvolutional block with five respective deconvolutional modules
each having a up-sampling layer with scale factor 2, a batch normal-
ization layer and a a rectified linear activation unit layer is used. The
features are then fed into the final convolutional layer to predict the
global depth map in the dimension of (640 X 640)[Liu et al., 2019].

3.3 geometry aware depth loss
To optimize the depth values based on the local neighborhood geo-
metric context, we formulate a loss function with two terms. The first
term allows the pixels of the predicted depth to get geometric aware-
ness on super-pixel level while the other term balances the error with
respect to the nearby super-pixels to maintain depth consistency us-
ing a grpah like structure within a spatial neighborhood. A depiction
of the conceptual idea is provided in Figure 3.5. The overall loss func-
tion can be estimated by combining the loss from both terms :

L = (1− w)L1 + wL2 (3.1)

Let S be a set of superpixels in Image I. For a given super-pixel
s ∈ S, the pixels inside it are represented by set P, the centroid is rep-
resented by the mean of positions of all pixels within it. Using centers,
we collect the neighbouring points using the Delaunay triangulation
[Delaunay, 1934]. Doing this, we get a graph like structure where each
superpixel assumed as a simplex is connected to neighboring super-
pixels. The color information for each super-pixel is represented by its
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(b) Overview of geometry aware depth optimization

Figure 3.5: Depiction of how the superpixels can be used provide geometric
awareness to predicted depth



3.4 3d reconstruction 25

Hue Saturation Value (HSV) histogram represented by H. The depth
information can be represented either by mean of depth of all valid
pixels inside the super-pixel or pixels at the centroid of the super-
pixel. Thus, for each superpixel s ∈ S, we have p,n,H,D representing
its number of valid pixels, the number of neighbors , the histogram
values and depth information representing the depth information.

For the first loss term, for each pixel, the predicted depth is com-
pared against the ground truth depth of its representative super-pixel
depth. This helps in constraining the pixel depth values based on
the superpixel depth values to provide a small surface representation.
The cumulative error is the weighted average of this regression for all
super-pixels. It is depicted by equation below:

L1 =
∑N

s=1 ∑
ps
i=1

∣∣∣Dpred
i − Dgt

s

∣∣∣
∑N

s=1 ps
(3.2)

where, Dgt
s is the ground truth depth of superpixel, Dpred

i is the pre-
dicted depth of the pi pixel in the superpixel. ps is the number of
valid pixels belonging to the superpixel and N is the total number of
superpixels in the image.

For the second term, firstly, only those neighbors are considered
for each super-pixel which have high correlation whose value can be
calculated by comparing the HSV histograms of the two super-pixels.
The second term of the loss function is thus given by:

L2 =
1
N

N

∑
s=1

1
ns

ns

∑
n=1

corr (Hs, Hn)×
∣∣∣Dpred

s − Dpred
n

∣∣∣ (3.3)

In equation 3.1, the term corr (a, b) is calculated by:

Corr(a, b) =
∑k

b=1 (ai − a)
(

bi − b
)

√
∑k

i=1 (ai − a)2 ∑k
i=1

(
bi − b

)2
(3.4)

The Pseudo-Code for the algorithm to calculate loss function is pro-
vided in Algorithm 3.1

3.4 3d reconstruction
The global depth map estimated from the neural network and plane
instances are used for estimating the plane offsets and point coordi-
nates for 3D reconstruction. An overview of the process is provided
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Algorithm 3.1: Geometric Aware Depth Optimization
Input: A RGB image I , a ground truth depth image Dgt, a

predicted depth image Dpr, number of segments N,
compactness c

1 for each image I do
2 Get superpixels and metadata : histograms, neighbors,

ground truth depth
3 for s← 0 to N do
4 if valid (superpixel) then

// Calculate the L1 term

5 for each valid pixel do
6 error1 = regression at super pixel level;

7 l1 = sum(error1)
// Calculate the L2 term

8 for each neighbor n of superpixel do
9 C = Color similarity with current superpixel;
10 error2 = proportionally regress the respective

superpixel predicted depths;

11 l2 = average(error2)

12 L1 = weighted average of l1;
13 L2 = average of l2;

14 return L = L1 + L2
Output: L: Depth Loss value using geometric aware loss

function

CNN MODEL INFERENCE

          3D Point Cloud

PL
AN

ú
DE

PT
H

Piecewise Planar Model

Connected Superpixel 
Segmentation

Piecewise Planar Depth

Figure 3.6: Overview of 3D reconstruction
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in Figure 3.6. Using the camera intrinsic parameters, a point cloud
can be generated from the depth map. For a point Pc in the camera
coordinate system, let (xc, yc, zc, 1)t be the homogeneous coordinates
for a pixel PI in image with (i, j, 1)t as homogeneous coordinates. The
pinhole camera equation provided by Equation 3.5 gives us:

PI = π (Pc) =

(
fxxc + cx

z (PI)
,

fyyc + cx

z (PI)
, 1
)t

, (3.5)

where fx, fy are focal lengths in x and y direction; cx, cy are respective
principal point offsets; z (pI) is the depth value of 2d point pI . If the
depth is known for the 2D point, it can be projected back to a 3D
point using inverse projection function provided by Equation 3.6 :

Pc = π−1 (PI , z (PI)) = z (PI)

(
i− cx

fx
,

j− cy

fy
, 1
)t

(3.6)

For the pixel PI, the predicted plane normal n is used to obtain the
plane offset d using the equation below :

d =
∑i mi

(
n>
(
z (pI)π

−1PI
))

∑i mi
(3.7)

We use a normal consistency term to re-orient the normals of points
based on the superpixel segmentation depicted in Algorithm 3.1 and
calculated in Equation 3.3.

3.5 evaluation
For evaluating our designed loss function, we compare the perfor-
mance with the basic version of [Liu et al., 2019] as baseline. The
depth loss in the baseline model is a pixel level loss between ground
truth and predicted depth. If dpr

i represents the predicted depth and
dgt

i represents the ground truth depth of a pixel i and N is the number
of pixels in images to be tested, the baseline loss can be calculated by
:

∑N
i=1

∣∣∣dpr
i − dgt

i

∣∣∣
N

(3.8)

For all testing, only those pixels in the image are considered which
have valid ground truth label for predicted depth and plane masks.
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3.5.1 Geometric Accuracy

Following the previous works, the non planar gobal depth and piece-
wise planar depth estimation of the new model will be evaluated by
using metrics adopted in [Eigen et al., 2014] and [Wang et al., 2015].
then the following errors will be calculated using their respective
equations:

• mean relative error :

1
N

N

∑
i=1

∣∣∣dpr
i − dgt

i

∣∣∣
dgt

i

(3.9)

• Root mean square error(rmse) :√√√√ 1
N

N

∑
i=1

(
dpr

i − dgt
i

)2
(3.10)

• mean log 10 error :

1
N

N

∑
i=1

∥∥∥log10
(
dpr

i
)
− log10

(
dgt

i

)∥∥∥ (3.11)

• scale invariant rmse log error: rmse log error of normalized
predicted and ground truth depth

• accuracy with respect to a certain threshold th, defined by equa-
tion 3.12 :

max

(
dgt

i

dpr
i

,
dpr

i

dgt
i

)
= δ < th (th ∈ [1.25]) (3.12)

3.5.2 Plane Detection Accuracy

• Random Index(RI): This measures the proportion of pixel pairs
between the predicted and ground truth segmentation that are
consistent [Arbelaez et al., 2010]. It ranges from 0 (for no inter-
section) to 1(for same clustering). If Spr represents the predicted
segmentation clusters and Sgt represents the ground truth seg-
mentation cluster. Then for pmn amount of points for mth cluster
of Spr and nth cluster of Sgt and N number of pixels in the image,
the index can be estimated by :

RI
(
Sgt, Spr

)
=

{(
N
2

)
− 1/2

{
∑m

(
∑n pij

)2

+∑n (∑m pmn)
2 −∑ ∑ p2

mn

}}( N
2

) (3.13)
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Predicted Depth

Ground Truth Depth

Error =  |Predicted - Ground Truth |

Figure 3.7: Visualization of the predicted and ground truth depth and the
estimated error with the range in meters and respective colorbar
for representing the information.

• Variation of Information (VOI): This measures the randomness
in a image segmentation with respect to other. In [Meilă, 2005],
it is calculated by using the entropy information , H and mutual
information,I between two images using :

VOI
(
Sgt, Spr

)
= H

(
Sgt
)
+ H

(
Spr
)
− 2I

(
Sgr, Spr

)
(3.14)

• Segmentation Covering (SC): This measures the overlap between
the predicted region, Rpr and ground truth region Rgt segmen-
tation, [Arbelaez et al., 2010] by using:

O
(

Rpr, Rgt
)
=

∣∣Rpr ∩ Rgt
∣∣∣∣Rpr ∪ Rgt
∣∣ (3.15)

• Average Precision(AP): is the index to measure the ration of
True positives to the sum of True and False positives. It can
be calculated for a particular depth error and Intersection Over
Union (IoU) of ground truth and predicted plane instances.

For plane reconstruction accuracy of plane reconstruction, average
precision of plane instance detection at three depth error thresholds
is considered : 0.4 m, 0.6 m ,0.9 m.

3.5.3 Visual Analysis

To visually depict the depth map generated from the neural network,
we use a continuous jet colormap from Hunter [2007] with maximum
value being 5 meters, while for error visualization we use a discrete
interval inverse version of the same colormap. The error values are
clamped at 1.8 meters. This has been depicted in Figure 3.7





4 I M P L E M E N TAT I O N

4.1 datasets
In order to conduct our research, we use the publicly available estab-
lished benchmark data-sets which provide real world RGB-D ground
truth with rich annotations at indoor level and toolbox to do pre-
processing. For each iteration of experiment, we need a RGB image,
ground truth depth image for supervision, plane annotations which
provides the pixel wise anchor normal id, intrinsic and extrinsic pa-
rameters of camera and laser scanner used for data collection. For
training and validation, we use the Scannet dataset while for final
evaluation we use both NYUv2 and Scannet datasets. For plane anno-
tations, we use the benchmark data provided by [Liu et al., 2019].

• ScanNet : Presented in [Dai et al., 2017], there are 1513 anno-
tated scans available for 707 different spaces such as classrooms,
apartments, offices, apartments. They have 1205 scans for train-
ing and other 312 scans for testing. We use the second version
to create a dataset consisting of 7000 images for training, 1000

images for validation, 800 images for testing purposes.

• NYU-Depth : There are two versions of v1[Silberman and Fer-
gus, 2011] and v2 [Nathan Silberman and Fergus, 2012] intro-
duced in 2011 and 2012, respectively. The first one has 64 indoor
scenes with 2347 RGBD images available for training and testing
at 60-40 ratio respectively. The second version has 1449 RGBD
images with pixel level labelling for 26 scene types. There are
795 images for training set and 654 images for the testing set.
We use the second version whole test dataset for evaluation of
our models.

4.2 programming environment
In order to conduct experiments, the following hardware and soft-
wares were used for implementation. For programming and inference
purposes, a device with Ubuntu 18.04 having graphics card, NVIDIA
QUADRO P1000 with 4GB GDDR5 on-board memory is used. For
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conducting training and testing, High Power Computing cluster, TU
Delft is used. For each experiment, a certain virtual environment us-
ing Conda or venv is created to load CUDA modules. Then, for deep
learning and basic operations, Pytorch 1 and Python2 are used. Some
of the other dependencies such as Numpy3, Scipy4, OpenCV5 and
Sklearn6 are also used. Open3d7 is used for processing and rendering
3D models and point clouds. We adopt the PlaneRCNN repository 8

for our research framework and add further modules to implement
our methods.

4.3 geometry aware depth loss function
To implement the loss function mentioned in Section 3.3, we first
perform over-segmentation using Simple Linear Iterative Clustering
(SLIC) algorithm [Achanta et al., 2010]. We choose this algorithm be-
cause the computation time is very less given its performance com-
pares to other segmentation techniques [Achanta et al., 2012]. For
segmentation algorithm, the two major parameters involved are the
number of segments and compactness parameter. The number of seg-
ments controls the approximate amount of superpixels to be gener-
ated in the image while the compactness parameters maintains the
balance between the color similarity and spatial proximity within re-
gions [Achanta et al., 2010]. A depiction is provided in Figure 4.1
giving superpixels with different values of parameters to show the
difference between segmentation. The segmentation connect the pix-
els in a particular superpixel to a segment id. We find the geometric
centers of each superpixel and compute delaunay triangulation using
them to create a graph network of superpixels. Then neighbors in-
dices are extracted for each segment. A representation of the graph
like structure of superpixels with neighbors is depicted in figure be-
low. For choosing only those neighbors which have high color similar-
ity we keep a restriction of 0.85 on the correlation value between the
histograms. We choose correlation measure as it provides range from
1 to -1 with 1 indicating high similarity within histograms which al-
lows us to control compatibility within the corresponding neighbors.
For estimating depth values at superpixel level, we choose two repre-
sentations to test. One is mean representation computed by using the

1 https://pytorch.org
2 https://www.python.org
3 https://www.numpy.org
4 https://www.scipy.org
5 https://opencv.org
6 https://scikit-learn.org
7 http://www.open3d.org
8 https://github.com/NVlabs/planercnn

https://pytorch.org
https://www.python.org
https://www.numpy.org
https://www.scipy.org
https://opencv.org
https://scikit-learn.org
http://www.open3d.org
https://github.com/NVlabs/planercnn
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average of depth values present inside the superpixel. Other is the
depth value represented by the geometric center of the bounding box
of the superpixel.

4.4 experiment setup

4.4.1 Training Specifications

For training, we use the technique of transfer learning to load the
pre-trained MaskRCNN weights to extract features from. Afterwards,
we train all the layers of the model using randomly sampled 7000

Scannet training images with learning rate of 0.00001, momentum of
0.9, weight decay of 0.0001. A mini-batch of 15 images is used for
faster training and stochastic gradient descent optimizer is used for
achieving the convergence. The hyper-parameters are fixed using the
performance on the validation dataset and convergence with respect
to the training dataset. We fix the hyper-parameters and keep the
procedure same for all our experiments and models for a fair compar-
ison and do not fine-tune individual models. The configurations of all
other variables involved in the neural network layers and convolution
process are kept as set up in [Liu et al., 2019] and [He et al., 2017].
The set of available training images are kept same for all experiments
with equal distribution from all type of indoor scenes such as living
room, conference room, classroom and lounge.

4.4.2 Testing Specifications

We evaluate the performance of our loss function, both quantitatively
and qualitatively. The quantitative analysis will be done on the global
depth, piece-wise planar depth reconstruction and plane instances.
The qualitative analysis involves comparison of results using human
eye which in ideal situation requires unbiased opinion from various
users. But due to the limitation of time, we tackle this issue for com-
paring depth images by visualising the error difference between pre-
dicted and ground truth depth as shown in Figure 3.7. This provides
a better idea on how the models perform in comparison to each other.
We also render the piece-wise planar model and point cloud com-
posed of planar model coordinates along with non-planar points not
present in the polygon surface model to investigate the individual ef-
fect of each term of loss function on different type of indoor scenes.
We broadly create two types of datasets from Scannet dataset, defined
as, curved and planar with set of 400 images each in the testing phase.
The curved dataset has curved objects dominating the image while
planar dataset has planar surfaces in most part of the scene. Apart
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(a) segments=400

(b) segments=800

(c) segments=1200

Figure 4.1: Depiction of over-segmentation of image with different number
of segments and same compactness
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Curved Dataset Planar Dataset

Figure 4.2: Testing dataset divided into two categories : curved and planar

from that we also test on NYU test dataset comprising of 645 images
for the final evaluation although it is expected that the accuracy will
below due to low resolution of dataset and noisy ground truth values.

4.4.3 Model Specifications

To see the effect of mean and centroid representation of depth in loss
terms, we conducted an initial experiment to determine the best rep-
resentation for our terms. We test in total 7 models including the
baseline. For both mean and centroid representation, there configura-
tion are used : a) number of segments is 1200 and the regression is of
type 1 b) number of segments is 1600 and regression is of type 1 c) the
number of segments is 1200 and the regression is of type 2. To find
out the right range of weight value in loss function we increase the
weight as a step function from 0 to 1. This also helps us in seeing the
effect of each term on different type of datasets. To tackle the issue of
removing chance bias of model, we train the baseline and our model
3 times for final comparison. A full overview of the experiments is
shown in Figure 4.3. For baseline, we choose the basic version of Liu
et al. [2019] without the refinement and warping loss module and is
represented by b. Further details of each experiment and results will
be discussed in next section.
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EXPERIMENT 1  : Test the options for regression at superpixel level to choose suitable representation for 
first and second term of loss function based on the potential for providing geometric awareness 

Model Name
Predicted 

Depth
Ground Truth 

Depth
Description for representation for 

first term of loss function (L1)

m |PR-GT | : Mean superpixel (N = 1200)

c |PR- GT| : Centroid superpixel depth (N = 1200)

m1 |PR-GT | : Mean superpixel depth (N = 1600)

c1 |PR- GT| : Centroid superpixel depth (N = 1600)

m2 |PR pixel depth - Mean GT Superpixel depth | 
(N = 1200)

c2 |PR pixel depth - Centroid GT Superpixel depth|
 (N = 1200)

EXPERIMENT 2 : Test the effect of first and second term of loss 
function based on the weight balance with m2 representation 
for first term and both mean and centroid for second term
   L =     (1-w) L1 + w (L2)

Model 
Name

L1 L2 Weight
(k is 

represent
ative of 
weight)

Predicted 
Depth

Ground 
Truth 
Depth

Predicted 
Depth

w_k k= 0- 0.9

wc_k k = 0, 0.1, 
0.2

Legend for Representation

SYMBOL Depth Value at 
Superpixel Levl

Mean of depth 
values of valid 
pixels inside 
superpixel

Depth value of 
centroid of 
superpixel

Depth value of 
pixels within the 
superpixel

Figure 4.3: Description of specifications of models used in the experiment
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This Chapter presents the results and analysis of the conducted exper-
iments during the research. Firstly, the results and analysis from each
step in the process are provided to show the motivation for particular
decision-making regarding the choice of particular parameters in our
loss function. Then, the results from our best model are presented
as compared to baseline. Afterwards, an evaluation of our method
is done with respect to the evaluation metrics and visual comparison
method provided in Section 3.5.

5.1 results

5.1.1 Experiment with mean and centroid representation

In our first experiment, we trained the models with different repre-
sentations mentioned in Section 4.4 and depicted in Figure 4.3. The
objective of this experiment was two fold : a) choosing a suitable
number of superpixels b) understanding the effect of each type of
representation for picking suitable candidate for the first and second
terms of our loss function. In Figure 5.1, it can be observed that the
mean representation for the predicted depth gives the essence of the
structure with lot of edges while the centroid representation resulted
in high smoothness. As the number of segments increase, both the
mean and centroid models loose their influence on the structure of
the chair depicted by m 1. Also, as the number of segments increase,
the time required for pre-processing also increases. The ’c 2’ model
with second type of centroid representation has over-smoothing on
the structure and it does not provide the outer curvature of the chair
with sharp features. The assessment of the quality of the depth maps
is also supported by the quantitative analysis shown in Figure 5.2.
In the curved dataset, the m 2 model has better accuracy along with
the c 2 model, however, in the planar dataset, m 2 surpasses the later
one in performance. It should also be noted that the curved dataset
showed more sensitivity towards the different representations than
the planar dataset.
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Input Ground Truth Baseline

Ours(m) Ours(m_2)Ours(m_1)

Ours(c) Ours(c_2)Ours(c_1)

Figure 5.1: Comparison of predicted depth using different representation in
our depth loss function.

From this experiment, we can observe that quantitatively and quali-
tatively, overall the ’m 2’ model representing the depth loss is suitable
for our first term. Visually, it maintains the balance between preserv-
ing edges and shape of the objects. It provides both the smoothness at
surface level and sharpness around the boundary of the objects. For
our second term, we need to provide the geometry awareness to the
superpixel with respect to the local neighborhood and care for bound-
aries of the objects. This makes the mean representation, ’m’ more
suitable for providing depth consistency. In the next experiment, we
fix the first term based on the analysis of this experiment and test
for finding the right balance between the two terms by choosing a
particular value of weight in our loss function.
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0.000
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Figure 5.2: Experiment 1 : Analysis of baseline and ours with different rep-
resentation for first term. Lower values indicate better perfor-
mance for all metrics
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5.1.2 Experiment with different weights of loss function terms

After fixing our first term of loss function in Equation 3.1, we tested
the effect of our second term of the loss function on depth estimation
to find out a suitable value of weight parameter based on the geomet-
ric accuracy. We increase the weight from 0 to 0.9 for our loss term
defined in Equation 3.3 and evaluate the performance both qualita-
tively and quantitatively. An example of the error between predicted
and ground truth depth is shown in Figure 5.3. We can see that with
only the first term, the error is slightly reduced on the sofa arm. As
the second term with weight 0.1 is used, the error further decreases
around the sofa surface as well as in the second sofa behind the first
sofa. As we further increase the weight, the error starts to increase on
the sofa surface as well as on the floor, becoming similar to baseline
method. This indicates the high influence of the second term on the
depth reconstruction.

From Figure 5.4, we observe that, both in the planar and curved
datasets, the relative error is least when weight is 0.1. For the curved
dataset, the root mean square error is reduced both in piecewise pla-
nar and global depth as compared to the baseline. The accuracy of the
model reduces as the weight increases from 0.1 to 0.9. For the planar
dataset, this reduction is less as compared to the curved dataset. For
the planar dataset, the gap between the piecewise planar and global
depth is higher for planar dataset than for the curved one. This shows
that the planar segmentation further improved the depth estimation
in the planar dataset. Since the curved objects have less planar in-
stances the depth is also less affected by the segmentation. After
finding out this behaviour, we confirm the second term by training
the model with centroid representation in second term with weights
0.1 and 0.2 and compare it to the mean representation. It can be seen
in Figure 5.4 that the performance decreases with respect to the base-
line method and mean representation at 0.1 and 0.2 in the curved and
planar datasets.
Keeping in mind the prior observations and results, we fix our first
term with ’m 2’ representation, and second term with ’m’ representa-
tion and then, train the model with 0 and 0.1 weight, three times for
comparison.

5.1.3 Final Results

We use the model trained with our geometry aware loss function hav-
ing weight 0.1 to generate the depth maps and plane instances. Using
plane parameters, masks and depth information, a piecewise planar
model is reconstructed along with the point clouds using equations
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Input Ground Truth

Baseline Ours(w:0)

Ours(w:0.7)Ours(w:0.4)

Ours(w:0.2)Ours(w:0.1)

Figure 5.3: Comparison of predicted depth using different weights in our
depth loss function.
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Figure 5.4: Experiment 2: Analysis of baseline and ours with increasing
weight in energy function. The relative error and Root Mean
Square Error (RMSE) should be lower for better performance. (a)
Model with weight 0.1 performs best on curved dataset with 0.2
close to it (b) Model with weight 0.1 performs best but is very
close to baseline.
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mentioned in Section 3.4. An example of the full pipeline is depicted
in Figure 5.5. It can be observed that the piecewise planar model is
highly influenced by the plane instances of the sofa and does not pro-
vide good representation of the curved surface of the sofa. The 3D
point cloud instead provides better representation of the surface of
sofa. Also, it can be seen that the reconstruction is noisy and does not
provide the best surface representation. Still, the 3D point cloud com-
bined from plane instances and non-planar depth provides balance
between highly planar structure and full non-planar point cloud for
the given image.

Few more examples of the depth maps estimated from our model
have been shown in Figure 5.6 and Figure 5.19. In the first figure,
it can be observed from the left column that the circular curvature
of the table is better estimated in our model. The baseline method
provides a limited representation of the table missing the round cur-
vature as well as the cylindrical stand on the table. In the second
image, the sofa has better outer curvature and representation of the
arms. The baseline in this case misses the joint connection between
arm and head of sofa. In figure Figure 5.19, the left column result
shows the depth estimation for a table. It can be observed that there
is a slight improvement on the edges of the table and the leg of the
table. From right column, it can be seen that the chairs and table
surfaces are better represented in our case wherein, the structure is
reconstructed around the thin legs of the chair.

The piece-wise planar surface models and point clouds for few im-
ages are shown in Figure 5.8 and Figure 5.9. From Figure 5.8, it can
be observed from the 3D models that the curved curvature of the ta-
ble is broken and goes inside the wall due to high error, while in our
case, it is reconstructed as an individual curved curvature. Similarly,
in Figure 5.9, it can be observed that in the 3D models, the table in
baseline is reconstructed wrongly and goes inside the chairs while in
our case, there is a clear boundary and good orientation of planar
surface. From 3D point clouds, it can be seen that the non-planar
region is quite noisy and does not provide good understanding of
the scene while in our case after using our consistency term during
3D Reconstruction, patches have been reconstructed along with the
original planar model.
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Input

Plane Instances Piecwise planar Model

3D Point CloudGlobal Depth

3D Point CloudPiecewise planar depth 

Figure 5.5: A depiction of 3D reconstruction pipeline with an example
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Ground Truth

Ours (w:0.1)

Baseline

Figure 5.6: Comparison of depth map estimated from our model and base-
line on curved dataset. There is more robustness in our model,
when it comes to completing the curvature of the objects during
reconstruction, as compared to the baseline.
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Ground Truth

Ours (w:0.1)

Baseline

Figure 5.7: Comparison of depthmap estimated from our model and base-
line on planar dataset. There is better sharpness in bringing out
the edges of the planar surfaces from our model as compared to
baseline.
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Point Cloud

3D Model

Ground TruthInput Image

Baseline Ours

Figure 5.8: Comparison of piecewise planar model and point clouds from
our model and baseline. It can be observed from the 3D models
that the curved curvature of the table is broken and goes inside
the wall due to high error, while in our case, it is reconstructed
as an individual curved curvature
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Ground TruthInput Image

Baseline Ours

3D Model

Point Cloud

Figure 5.9: Comparison of piecewise planar model and point clouds from
our model and baseline. It can be observed that in the 3D models,
the table in baseline is reconstructed wrongly and goes inside
the chairs while in our case, there is a clear boundary and good
orientation of planar surface.
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5.2 evaluation
We tested on the created Scannet test dataset and NYU dataset, men-
tioned in the Section 4.1 and using metrics defined in Section 3.5. We
tested the geometric accuracy and plane reconstruction quality de-
pending on the dataset quality.

Quantitative

The statistical comparison of the model with our loss function with
respect to the baseline is shown in Figure 5.10. Detailed statistics are
shown in Appendix B. For the Scannet curved dataset, our model re-
duces the relative error by 17% and RMSE by 10% with respect to the
baseline method for piecewise planar depth. For global depth estima-
tion, this reduction is 20% for relative error while 13% for RMSE. There
is overall gain of 9% in accuracy of global depth map with respect to
a depth threshold(1.25). For the planar dataset, the reduction in rela-
tive error is approximately 16% for both global and piecewise planar
depth. However, the RMSE is very close to the baseline with only 2%
reduction for both the depth maps. There is gain of 10% in the ac-
curacy of piecewise planar depth maps. On NYU dataset, our loss
function leads to reduction in the relative error in piecewise planar
depth by 11% with both our terms and 6% with only first term. The
accuracy in general for NYU dataset is less for all models as compared
to the Scannet dataset. This can be attributed to the low resolution of
NYU dataset as well as it not being used during the training proce-
dure.

For plane instance detection, the metrics comparison can be ob-
served from Figure 5.11. The segmentation quality is similar to the
baseline method. The average precision of the plane reconstruction at
depth threshold of 0.4 meter increases by 33% in curved dataset while
20% in planar dataset by using weight 0.1. This increment reduces as
the error threshold increases to 0.9 meter. This shows that the recon-
struction accuracy improves as the error threshold reduces.
Overall, it is observed that there is greater effect of proposed loss func-
tion on the non-planar regions than the planar regions. The first term
is more effective alone on the curved dataset, while second term gives
improvement irrespective of the dataset. However, the quantitative
evaluation does not necessarily indicate the quality of 3D reconstruc-
tion.
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Figure 5.10: Geometric Accuracy Metrics for baseline and ours with 0.1
weight. Mean with standard deviation of the three times run
experiment with created Scannet test datasets are reported



5.2 evaluation 51

Scannet Curved Dataset : Mean values of 3 times run experiment

Models Plane Segmentation Plane Reconstruction at certain depth error 
threshold

Metric RI (high) VOI↓(low) SC(high) AP0.4m(high) AP0.6m(high) AP0.9m(high)

b 0.812 2.07 0.578 0.298 0.468 0.484

ours_0 0.806 2.109 0.575 0.369 0.471 0.478

ours_0.1 0.819 2.022 0.589 0.4 0.484 0.487

Scannet Planar Dataset : Mean values of 3 times run experiment

Models Plane Segmentation Plane Reconstruction at certain depth error 
threshold

Metric RI (high) VOI↓(low) SC(high) AP0.4m(high) AP0.6m(high) AP0.9m(high)

b 0.813 2.253 0.547 0.187 0.304 0.328

ours_0 0.81 2.254 0.546 0.211 0.293 0.319

ours_0.1 0.814 2.21 0.553 0.224 0.286 0.308

NYU Dataset : Mean values of 3 times run experiment

Piecewise Planar Depth Global Depth Plane Segmentation

Model
s

rel 
(low)

rel_sq
rt(low)

rmse 
(low)

rmse_
log

a1 
(high)

rel 
(low)

rel_sq
rt(low)

rmse 
(low)

rmse_
log

a1 
(high)

RI 
(high)

VOI↓
(low)

SC
(high)

b 0.33 0.406 0.949 0.349 0.497 0.334 0.416 0.961 0.349 0.491 0.309 2.428 0.405

ours_
0

0.307 0.363 0.935 0.36 0.491 0.312 0.373 0.949 0.369 0.485 0.336 2.334 0.435

ours_
0.1

0.291 0.335 0.944 0.342 0.473 0.295 0.344 0.943 0.341 0.469 0.319 2.407 0.415

Figure 5.11: Geometric Accuracy and Plane Detection Metrics for baseline
and ours with 0.1 weight. Mean with standard deviation of the
three times run experiment on created Scannet test dataset and
full NYU test dataset are reported



52 results and evaluation

Qualitative

A visual comparison of global and piecewise planar depth in various
cases has been shown in Figure 5.12, Figure 5.13, Figure 5.14 and Fig-
ure 5.15. From error analysis, it can be observed how both the terms
affect the depth reconstruction in curved and planar scenes. The first
term helps in reducing the error at global level while the second term
acts at local level. In Figure 5.12, there is high error around the cur-
vature of sofa cushion as well as on the floor. With first term, the
error on cushion is diminished while second term reduces the error
on the floor and lower curvature of sofa. The piecewise planar depth
is affected proportionally by this reduction in error. This reflects the
effect of the global depth estimation on the reconstructed piecewise
planar depth. Similar behaviour is seen in other cases.

A visual comparison of 3D Reconstruction is shown in Figure 5.16

and Figure 5.17. It can be seen in Figure 5.16 that using only pixel
level loss, the baseline model creates an inaccurate reconstruction of
the table surface. By using only the first term of our loss function,
there is improvement in the extent of the table surface, however, the
floor and table surfaces are stitched together and the orientation of ta-
ble surface with respect to the sofa in the behind is wrong. By using
both terms in loss function, there is improvement in both orientation
and extent of the table surface. Furthermore, it can be observed from
the red markings in Figure 5.17 that the curvature of the round table
is better represented with both terms of our loss function. With only
the first term, there is improvement in the round curvature but there
is a false surface nearby due to high error around the edges, while
in the baseline model, the whole table is broken and going inside
the wall. A comparison of the point clouds generated by combining
planar coordinates from the model and non-planar depth for other
regions is shown in Figure 5.18. It can be observed that there is lot
of noise present in the reconstructed point cloud of baseline and over-
all structure is not maintained. This issue is resolved by using the
consistency term to reorient the point normals based on generated
superpixels during the 3D reconstruction.
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Input

Baseline

Ours (w:0.1)

Ours (w:0)

Ground Truth

Figure 5.12: Error visualization in comparison with baseline with global
depth on left and piecewise planar depth on right side
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Input

Baseline

Ours (w:0.1)

Ours (w:0)

Ground Truth

Figure 5.13: Error visualization in comparison with baseline with global
depth on left and piecewise planar depth on right side
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Input

Baseline

Ours (w:0.1)

Ours (w:0)

Ground Truth

Figure 5.14: Error visualization in comparison with baseline with global
depth on left and piecewise planar depth on right side
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Input

Baseline

Ours (w:0.1)

Ours (w:0)

Ground Truth

Figure 5.15: Error visualization in comparison with baseline with global
depth on left and piecewise planar depth on right side
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Input Image

Ours(w:0.1)

Ground Truth

Baseline

Ours(w:0)

Figure 5.16: Comparison of piecewise planar models of baseline and ours
with different weights with side view on the left hand side and
front view on the right side. It can be observed from the red
squares that there is improvement in orientation and extent of
the table surface with our both terms. With only pixel level
loss, the baseline creates an inaccurate reconstruction of table
surface.
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Input Image Ground Truth

Ours(w:0)

Ours(w:0.1)

Baseline

Figure 5.17: Comparison of piecewise planar models of baseline and ours
with different weights with side view on the left hand side and
front view on the right side. It can be observed from the red
markings that the curvature of the round table is better repre-
sented with both terms of our loss function. With only first
term, there is improvement in the round curvature with an-
other false surface is reconstructed nearby while in baseline the
whole table is broken and going inside the wall.
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Input Baseline Ours

Figure 5.18: Comparison of point clouds from baseline and ours with both
terms after using consistency term during 3D Reconstruction.
It can be observed that there is improvement in scene under-
standing from non-planar regions in our case with respect to
the baseline, apart from the improvement in planar structure.
There is inconsistency in non-planar regions in the original
point cloud which is partially resolved using consistency term.

Input Baseline Ours

Figure 5.19: Depiction of limitations from our loss function by comparing
the error in baseline and ours. The top input image. From Left
to Right: input, baseline and ours
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5.3 limitations
• When there is a region in the image where it is difficult to distin-

guish the object boundaries, then there is a high error occurring
within that area. In Figure 5.19, two examples have been pro-
vided to showcase the limitation of our loss function. In the
top row, it can be seen that the error on the walls, table and
cylinder stand decreases as represented by green box on base-
line. However, the error in the lower part of the legs of table
increases where the legs are under the shadow of table. This
may be attributed to the effect of our second term which influ-
ences the nearby depth values to be closer to each other based on
the color consistency. In another case (bottom row), the error on
the edges of sofa and table surface decreases, however, there is
high error in the immediate background of the first sofa. These
cases give cue for further investigation on using superpixels in
loss functions.

• We do see improvement with our optimization approach based
on superpixels and explore the effect of individual terms on the
3D reconstruction, however, within the scope of this project, the
exact reason why there is improvement is not explored. To do
this research, several propositions will need to be tested to pin-
point the reason. One speculation is that there is tackling of
noise present in ground truth data collected by laser scanners.
There are several types of noise in an acquired 3D dataset such
as range error, instrument error and error due to surface prop-
erties. These become points with holes or missing information,
and are not used in training. To investigate this argument, one
needs to do experiments with indoor synthetic dataset such as
one provided by [McCormac et al., 2017] and choose a particu-
lar noise model to insert noise in the perfect dataset. Creating
a noise model will itself require further research as traditional
approach of Gaussian noise will not work in this case. One
will have to develop a statistical model such as one proposed
in [Sun et al., 2008]. Moreover, it can be further beneficial to
use a refined real world dataset, instead of synthetic dataset as
there is generally inconsistency between results when using the
synthetic versus real world dataset [Sun et al., 2008]. Such com-
pleted dataset can be generated by using deep learning tech-
niques such as one proposed in [Zhang and Funkhouser, 2018].

• The non-planar region in the scene is biased towards the camera
coordinate system. From the image perspective, the 3D recon-
struction is refined but from another view, the quality of the
point cloud is not good. This can be observed in Figure 5.8
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and Figure 5.18. One reason is the small size of training dataset
used to learn the features. If more images are used and train-
ing is done on a large dataset, the noise is expected to decrease
and quality of 3D reconstruction may be improved. If warped
loss module proposed in [Liu et al., 2019] is used, then, further
improvement is expected.

• In our research, we choose a particular neural network architec-
ture based on the availability of time and the reproducibility of
the code for training and testing. Using other neural networks
with similar loss function could be beneficial for further research
and testing the effect of the extent of receptive field on 3D recon-
struction.

• The training time taken by the loss with both terms is three times
than the baseline. This can be reduced by saving the ground
truth metadata, neighbors and superpixel segmentation for the
loss function in the training dataset. This would require higher
storage size but will save computing time during training. The
algorithm time can be reduced by using CUDA during segmen-
tation as well as for finding neighbors if there is compatibility of
the programming environment of the deep learning model with
available modules. This was not possible in current scenario.

• Due to the restriction of time and computing power available
for the chosen framework, a small training and testing dataset
is used. This can be increased if more power is available. It
will give further insights on the parameters of loss function and
validation on the generalization of neural network under differ-
ent conditions. Also, the optimum values of hyper-parameters
is dependent on the experimentation by a particular individual,
making it prone to bias.

• The terms of the loss function use a particular superpixel seg-
mentation algorithm and histogram comparison method due to
less computational effort and relatively better outcome. How-
ever, the limitations of these techniques are also inherited in the
process such as problems in accurate boundary regions. A bet-
ter segmentation and a color comparison technique can be used
at the cost of execution time. This will bring out better insights
on the process.

• There is an inherent bias in this kind of research, where visual
analysis and tuning of parameters is required. Also, there is a
constant struggle between qualitative versus quantitative analy-
sis, and human vision versus computer vision. A third party sur-
vey of the 3D reconstruction results can be conducted to tackle
these issues, if time and logistics are available.
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6.1 discussion
Our research objective was to investigate the effect of the proposed
optimization approach on the 3D reconstruction process and answer
the following research question :

”Can optimization based on the spatial and color compatibility of
pixels within image, help in the improvement of 3D reconstruction

from a single image?”

Based on the quantitative and qualitative analysis, we observe that
the proposed approach helps in improving the 3D reconstruction from
a single image in indoor environment. This improvement is attributed
to both terms in the loss function. While the depth consistency term
based on connected superpixel neighborhood has effect on non-planar
and planar regions, the first term is more effective on the curved re-
gions. In planar surfaces, the superpixel loss has similar effect in
general except improvement in the boundaries. From examples of vi-
sual comparison of estimated depths and reconstructed models, we
find that an improvement in global depth estimation leads to an im-
provement in piecewise planar depth reconstruction. In planar recon-
struction, the extent and curvature of the surfaces is better and the
orientation and object pose is maintained with respect to the scene,
while in the point cloud, there is a better understanding of the scene
due to reorientation of normals of non planar regions.

The overall improvement in depth estimation is higher in curved
objects than the planar objects. The two terms of our loss function
have their individual effect on the depth estimation. The first term
provides a good context for the loss at global level for supervision
against ground truth while the second term acts at local level to im-
prove the predicted depth with respect to its own local neighborhood.
The second term has a very high influence on depth estimation and is
sensitive to the geometry of objects, thus, a low weight is required to
balance the effect. The first term influences the curved surfaces more
than the planar surfaces while providing the smoothness at surface
level while the second term handles the error better at the edges and
boundaries. Whenever there is change in the depth values, the model

63



64 conclusions

performs better than the baseline method. Although there is improve-
ment in the boundary regions of planar surfaces, the effect is less over
large surfaces due to less changes in nearby depth values.

A better global depth estimation leads to a better piecewise planar
depth estimation and 3D reconstruction. While the plane segmenta-
tion highly influences the piecewise planar reconstruction, the non
planar objects are more influenced by the global depth. The final 3D
reconstruction is affected by both plane instances and global depth
map. Thus, an improvement or reduction in quality in any step will
result in proportional change in the accuracy of 3D reconstruction.

Since the loss function uses neighborhood regions to provide geo-
metric awareness, the error is higher when the boundary between ob-
jects are not distinguishable based on color consistency. The research
conducted has some limitations dependent on the size and distribu-
tion of the datasets used for experimentation. The 3D reconstruction
quality has potential for improvement to provide better representa-
tion of surfaces when compared to the ground truth acquired data.
This can be improved by further training on a large dataset subject
to the availability of computing power and time. For more general-
ization and validation of results, training and testing with different
datasets and other neural networks can be helpful to further research
into the reasons of improvement due to proposed loss function.

Contribution

• We propose a new loss function in this research for geometry
aware depth optimization in the process of 3D reconstruction
from a single image. This function provides depth consistency
over the scene based on color similarity and spatial compatibil-
ity, reducing the error based on the local and sub-local neigh-
borhood. Similarly, we provide an orientation consistency term
during 3D reconstruction for further refinement. This provides
a new direction of research in an unexplored area, wherein, su-
perpixels are directly used for designing a learning algorithm
for the neural networks in the context of 3D reconstruction. The
simplicity and ease of use of the loss function can be helpful for
other researchers to further experiment with other neural net-
work architectures and loss functions. We will also provide the
code1 for open access and use, to encourage further research on
this topic.

• We provide insights into the state of the art method for 3D Re-
construction using single images by showcasing a full pipeline

1 https://github.com/cgarg-tud/GeomAwareLoss

https://github.com/cgarg-tud/GeomAwareLoss
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of the process. It is important to understand how each step in
the whole process affects the geometric accuracy of the final re-
construction. We show that global depth estimation is crucial
for 3D reconstruction, especially for non-planar objects while
the plane segmentation helps in extracting the planar surfaces
of the objects.

6.2 future work
• One avenue for the future work is using a normal consistency

loss in which depth information is replaced by normal orienta-
tion to provide geometric awareness during supervision.

• Since the warped loss module proposed in [Liu et al., 2019] is
influenced by the estimated depth, the effect of loss function can
further be tested by training on this module

• Another area of future work could be using the reconstructed
model for indoor navigation and localisation using images

• One direction could also be comparing the point clouds recon-
structed from the neural networks to the traditional techniques
for various types of applications in 3D simulation and virtual
reality environment

• Testing the methodology against a synthetic dataset and inves-
tigating the role of different types of noises present in various
sensing technologies use to gather real world 3D information.

• Another avenue of research is either comparing the current avail-
able techniques of single image based 3D reconstruction meth-
ods for various applications related to Geomatics. These can be
as follows:

– Using 3D output of a scene from multiple views for full
reconstruction

– Direct analysis on the 3D output using semantics labels and
room layout for post-processing to get a mesh or voxel level
representation

– Using a signature of scene from 3D output for indoor local-
isation and navigation

– Exploring the benefit of single image 3D reconstruction in
culture and heritage field to obtain 3D output using historic
images or paintings
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A R E P R O D U C I B I L I T Y
S E L F - A S S E S S M E N T

Figure A.1: Reproducibility criteria to be assessed.

Based on the criteria mentioned in Figure A.1, we do the self-assessment
for the research. For input data and pre-processing, we use publicly
available datasets for our experiments [Dai et al., 2017] and [Nathan Sil-
berman and Fergus, 2012]. Anyone can get the access to the download
link by signing the terms of use provided by the corresponding au-
thors. Thus, both are marked as 3. For methods, we provide the code
through Github. Apart from the code provided by [Liu et al., 2019]
for model setup, training and testing, we introduce new functions in
the code for loss calculations and analysis of error and provide it in
the Github. Based on this, we mark it as 3. For computational envi-
ronment, we use openly available modules such as Pytorch, python
and CUDA. Although since it may not be possible for all users to
get access to hardware such as high power computing cluster for con-
ducting experiments, we mark it as 2.5. For results, both qualitative
and quantitative, we document everything in the thesis, these can
be generated using code as well. The model used for experiment, a
checkpoint is provided in Github to generate 3D models. However,
to generate one’s results from scratch, the user needs to set up spe-
cific hardware and software for running experiments and based on
the chosen hardware, software, hyper parameters and type of dataset,

71



72 reproducibility self-assessment

the results might vary depending on the experiment setup. Overall,
the results are marked as 2.



B DATA O F Q U A N T I TAT I V E
E VA L U AT I O N

Scannet Curved Dataset : Mean values of 3 times run experiment
Piecewise Planar Depth Global Depth

Lower is better Higher is better Lower is better Higher is better

Models relative error 
(P)

rmse 
(P)

Accuracy 
(1.25 thresh)

relative 
error(G) rmse (G) Accuracy 

(1.25 thresh)
b 0.175 0.382 0.763 0.185 0.385 0.73

ours(w:0) 0.157 0.36 0.774 0.161 0.36 0.771

ours(w:0.1) 0.144 0.341 0.806 0.147 0.338 0.798

Scannet Curved Dataset : Standard deviation of 3 times run experiment

Piecewise Planar Depth Global Depth

Models relative error 
(P) rmse (P) Accuracy 

(1.25 thresh)
relative 
error(G) rmse (G) Accuracy 

(1.25 thresh)
b 0.0085 0.0092 0.0111 0.0067 0.009 0.035

ours(w:0) 0.0035 0.004 0.0125 0.005 0.0068 0.0032

ours(w:0.1) 0.004 0.0078 0.0055 0.0053 0.0075 0.0067

Scannet Planar Dataset : Mean values of 3 times run experiment
Piecewise Planar Depth Global Depth

Lower is better Higher is better Lower is better Higher is better

Models relative error 
(P)

rmse 
(P)

Accuracy 
(1.25 thresh)

relative 
error(G) rmse (G) Accuracy 

(1.25 thresh)
b 0.205 0.441 0.625 0.202 0.445 0.657

ours_0 0.194 0.452 0.656 0.196 0.446 0.658

ours_0.1 0.171 0.428 0.726 0.183 0.438 0.672

Scannet Planar Dataset : Standard deviation of 3 times run experiment

Piecewise Planar Depth Global Depth

Models relative error 
(P) rmse (P) Accuracy 

(1.25 thresh)
relative 
error(G) rmse (G) Accuracy 

(1.25 thresh)
b 0.0215 0.0187 0.0488 0.0155 0.0068 0.0181

ours(w:0) 0.0147 0.0275 0.0465 0.0064 0.008 0.021

ours(w:0.1) 0.0035 0.017 0.0144 0.009 0.0155 0.0204

Figure B.1: Quantitative Evaluation of reconstructed depth maps on Scannet
Dataset

73



74 data of quantitative evaluation

Scannet Curved Dataset : Mean values of 3 times run experiment
Plane Segmentation Plane Reconstruction

Lower is better Higher is better
Higher is better (Average Precision : AP at a 

particular depth error)

Models Random 
Index VOI↓ Segmentation 

Cover AP : 0.4m AP : 0.6m AP : 0.9m

b 0.813 2.253 0.547 0.298 0.468 0.484

ours(w:0) 0.81 2.254 0.546 0.369 0.471 0.478

ours(w:0.1) 0.814 2.21 0.553 0.4 0.484 0.487

Scannet Curved Dataset : Standard Deviation values of 3 times run experiment
Plane Segmentation Plane Reconstruction

Models Random 
Index VOI↓ Segmentation 

Cover AP : 0.4m AP : 0.6m AP : 0.9m

b 0.0038 0.038 0.0076 0.046 0.0176 0.0032

ours(w:0) 0.004 0.0099 0.0045 0.0201 0.0273 0.0255

ours(w:0.1) 0.005 0.0674 0.0132 0.0144 0.0095 0.0102

Scannet Planar Dataset : Mean values of 3 times run experiment
Plane Segmentation Plane Reconstruction

Lower is better Higher is better
Higher is better (Average Precision : AP at a 

particular depth error)

Models Random 
Index VOI↓ Segmentation 

Cover AP : 0.4m AP : 0.6m AP : 0.9m

b 0.0215 0.0187 0.0488 0.0155 0.0068 0.0181

ours(w:0) 0.0147 0.0275 0.0465 0.0064 0.008 0.021

ours(w:0.1) 0.0035 0.017 0.0144 0.009 0.0155 0.0204

Scannet Planar Dataset : Standard Deviation values of 3 times run experiment
Plane Segmentation Plane Reconstruction

Models Random 
Index VOI↓ Segmentation 

Cover AP : 0.4m AP : 0.6m AP : 0.9m

b 0.0095 0.0223 0.0095 0.0257 0.0061 0.0067

ours(w:0) 0.0243 0.1667 0.03 0.0338 0.0219 0.0162

ours(w:0.1) 0.0045 0.0098 0.002 0.0166 0.0115 0.0121

Figure B.2: Quantitative Evaluation of planar segmentation and reconstruc-
tion on Scannet Dataset



data of quantitative evaluation 75

NYU Dataset : Mean values of 3 times run experiment

Piecewise Planar Depth Global Depth

Lower is better
Higher is 

better
Lower is better

Higher is 
better

Models relative 
error rel_sqrt rmse rmse_lo

g Acc  (1.25)) relative 
error rel_sqrt rmse rmse_l

og Acc  (1.25))

b 0.33 0.406 0.949 0.349 0.497 0.334 0.416 0.961 0.349 0.491

ours_0 0.307 0.363 0.935 0.36 0.491 0.312 0.373 0.949 0.369 0.485

ours_0.1 0.291 0.335 0.944 0.342 0.473 0.295 0.344 0.943 0.341 0.469

NYU Dataset : Standard Deviation values of 3 times run experiment

Piecewise Planar Depth Global Depth

Models relative 
error rel_sqrt rmse rmse_log Acc  

(1.25))
relative 

error rel_sqrt rmse rmse_log Acc  
(1.25))

b 0.018 0.035 0.0087 0.0078 0.0036 0.0175 0.0345 0.0089 0.0038 0.0035

ours_0 0.0101 0.0172 0.0017 0.0188 0.0062 0.0095 0.0187 0.0006 0.021 0.0053

ours_0.1 0.0017 0.004 0.0074 0.005 0.0056 0.0015 0.0046 0.0095 0.004 0.0072

Figure B.3: Quantitative Evaluation of reconsturcted depth maps on NYU
Dataset
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