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SUMMARY

We are entering the era of the second quantum revolution, where we aim to harness
the power of quantum mechanics to create new technologies. Quantum technologies
have the potential to revolutionize the fields of simulation, computation, communica-
tion, sensing, metrology, and many others. Here we discuss analog quantum simula-
tion, which has attracted a lot of attention in the last few years from several platforms.
Although arrays of gate-defined quantum dots exhibit significant potential for analog
simulation, example experiments have been few and far between. This thesis focuses
on simulating the Fermi-Hubbard model using two dimensional (2d) arrays of quantum
dots.

The first experiment describes the creation and measurement of a 2x2 quantum dot
array. Historically, most experiments with quantum dots have been performed with lin-
ear arrays due to the relative ease of fabrication. We introduce a bi-layer gate structure,
facilitated by the lift-off of sputtered silicon nitride, to create the 2x2 dot array. This gate
design enables us to achieve unprecedented tunability of the tunnel coupling between
all nearest-neighbor pairs of dots in 2d arrays. We also demonstrate individual control
over the chemical potential and the electron occupation of each dot along with accu-
rate measurement of the on-site and inter-site interaction terms. The use of virtual gates
significantly aids in the tuning of tunnel coupling and chemical potential. The demon-
strated high degree of control of the system along with fast single-shot spin-readout
achieved through Pauli spin blockade establish this dot array as a promising simulator
of the Fermi-Hubbard model.

The 2x2 dot array is used to simulate Nagaoka ferromagnetism in the next exper-
iment. This form of itinerant ferromagnetism arises from the Fermi-Hubbard model,
and was first shown analytically in the limit of infinite interaction strengths and infinite
lattices by Nagaoka in 1966. Nagaoka ferromagnetism has been a topic of rigorous the-
oretical studies ever since, but its experimental signature has eluded us for more than
five decades. In this experiment, we load the four dot plaquette with three electrons
and demonstrate the emergence of spontaneous ferromagnetism by measuring the spin
correlation of two out of the three electrons. Changing the topology of the array to an
open chain is shown to destroy the ferromagnetic signature, consistent with the Lieb-
Mattis theorem. We also show indications that this ferromagnetic ground state can be
destroyed by applying a perpendicular magnetic field, unlike most other forms of fer-
romagnetism. However, this ground state shows striking robustness to the offset in the
local potential of any dot. This is the first experimental verification of Nagaoka’s predic-
tion as well as the first simulation of magnetism using quantum dot arrays.

The final experiment takes a different approach to simulate the Fermi-Hubbard model
with a large 2d array of quantum dots. The dot array is created using only three gates in a
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x SUMMARY

top-down approach. This allows for only global control over the electron filling and tun-
nel coupling of the dots, contrary to the previous experiments. The readout is performed
with capacitance spectroscopy, which allows us to directly probe the density of states of
the two-dimensional electron systems. We measure the disorder levels and optimize
both substrates and gating strategies to induce periodic potential, sufficiently stronger
than the disorder level, at the 2d electron gas. Although we demonstrate a novel plat-
form for the realization of artificial lattices of interacting particles, this effort is currently
limited by the substrate inhomogeneity.



SAMENVATTING

We betreden het tijdperk van de tweede quantumrevolutie, waarin het doel is de kracht
van quantummechanica te exploiteren om nieuwe techologië te creeën. Quantumtech-
nologie heeft de potentie een revolutie te ontketenen in vakgebieden als simulatie, be-
rekening, communicatie, sensoren, metrologie en vele anderen. Hier bespreken we ana-
loge quantumsimulatie, dat de afgelopen jaren de aandacht heeft getrokken van ver-
schillende platformen. Hoewel roosters van door elektrodes gedefinieerde quantumdots
significant potentieel bezitten voor het uitvoeren van analoge simulaties, zijn er weinig
of geen experimenten. Dit proefschrift focust op het simuleren van het Fermi-Hubbard-
model met behulp van tweedimensionale roosters van quantumdots.

Het eerste experiment beschrijft het vormen en meten van een 2x2-quantumdotrooster.
Historisch zijn de meeste experimenten met quantumdots uitgevoerd met lineaire roos-
ters vanwege de relatief gemakkelijke fabricage. We introduceren een dubbellaagse elek-
trodestructuur, mogelijk gemaakt door lift-off van gesputterd siliciumnitride, om een
2x2-quantumdotrooster te creeën. Dit elektrodeontwerp stelt ons in staat niet eerder ge-
demonstreerde controle over de tunnelkoppeling tussen alle aan elkaar grenzende quan-
tumdots in tweedimensionale roosters te bereiken. Tevens demonstreren we individuele
controle over het chemische potentiaal en de elektronbezetting van iedere quantumdot
in combinatie met accurate meting van de intradot- en interdotinteractietermen. Het
gebruik van virtuele elektrodes draagt significant bij aan het instellen van de tunnel-
koppeling en de chemische potentiaal. De gedemonstreerde hoge mate van controle
over het systeem in combinatie met snelle uitlezing van individuele spins, bereikt door
Pauli-spinblokkade, vestigt dit quantumdotrooster als veelbelovende simulator van het
Fermi-Hubbard-model.

In het volgende experiment gebruiken we het 2x2-quantumdotrooster om Nagaoka-
ferromagnetisme te simuleren. Deze vorm van ferromagnetisme gebaseerd op mobiele
elektronen komt voort uit het Fermi-Hubbard-model en werd voor het eerst analytisch
getoond in de limiet van oneindige interactiesterktes en oneindige roosters door Na-
gaoka in 1966. Nagaoka-ferromagnetisme is sindsdien onderwerp van diepgaand theo-
retisch onderzoek, maar experimentele waarneming blijft al meer dan vijf decennia uit.
In dit experiment laden we het rooster van vier quantumdots met drie elektronen en
tonen het ontstaan van spontaan ferromagnetisme aan door het meten van spincorrela-
ties tussen twee van de drie elektronen. Het veranderen van de topologie van het roos-
ter naar een open rij verbreekt de ferromagnetische kenmerken, in overeenstemming
met het Lieb-Mattis-theorema. Tevens laten we aanwijzingen zien dat deze ferromag-
netische grondtoestand wordt verbroken door het aanbrengen van een loodrecht mag-
neetveld, in tegenstelling tot de meeste andere vormen van ferromagnetisme. Echter,
deze grondtoestand is verbazingwekkend goed bestand tegen verschillen in het lokale
potentiaal van elk van de quantumdots. Dit is de eerste experimentele verificatie van
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Nagaoka’s voorspelling en tevens de eerste simulatie van magnetisme met behulp van
quantumdotroosters.

Het laatste experiment maakt gebruik van een andere aanpak om het Fermi-Hubbard-
model te simuleren door middel van een groot tweedimensionaal rooster van quantum-
dots. Het quantumdotrooster wordt gevormd met behulp van slechts drie elektrodes
door middel van een top-down-aanpak. In tegenstelling tot de eerder experimenten, laat
dit enkel globale controle over de elektronbezetting en tunnelkoppeling van de quan-
tumdots toe. Uitlezen vindt plaats op basis van capaciteitspectroscopie, dat ons in staat
stelt de toestandsdichtheid van het tweedimensionale elektronsysteem direct te onder-
zoeken. We meten het niveau van wanorde en optimaliseren zowel substraten als stra-
tegiën om periodieke potentialen voldoende sterker dan de wanorde in het tweedimen-
sionaal elektronengas te induceren. Hoewel we een nieuwe platform voor het realiseren
van kunstmatige roosters van interacterende deeltjes demonstreren, wordt deze aanpak
op dit moment gelimiteerd door substraathomogeniteit.



1
INTRODUCTION

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d
better make it quantum mechanical, and by golly it’s a wonderful problem, because it

doesn’t look so easy.

Richard Feynman

1
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2 1. INTRODUCTION

1.1. QUANTUM SIMULATION
The elegance of physics lies in its brevity. A few laws or axioms can explain innumerable
phenomena. But this is only the beginning of the story. Knowing a theory of physics only
allows us to express any problem using a few elegant equations, which we then need to
solve in order to find the relevant answers. These solutions often tend to get quite te-
dious, especially for large systems. Generally, we use computers to help us solve these
equations. Unfortunately, this is not a viable approach when the problem at hand is gov-
erned by the laws of quantum mechanics with interacting particles. The quantum corre-
lations between the constituent particles of these problems grow exponentially with the
number of particles and quickly become intractable by a classical computer. For exam-
ple, even with the best supercomputers available today, it will take longer than the age
of the universe to simulate a single molecule with tens of atoms. As the natural world
around us is inherently quantum, to understand it better, we need a realistic way of solv-
ing these problems. To tackle this issue, Richard Feynman first introduced the idea of
simulating quantum with quantum [1]. Building on this idea, one can use a quantum
system to simulate another and thus avoid the exponential scaling of required resources.

Quantum systems are difficult to prepare, protect and measure. Due to their con-
stant interaction with the environment, the information stored in a quantum state is
lost rather quickly. Moreover, the traditional measurement tools used by scientists are
classical in nature and not readily suited for quantum measurements. For decades, all
these essentially prevented researchers from using quantum systems in any controlled
experiment.

But tremendous technological advances made in the last few decades have enabled
us to exploit the full potential of quantum mechanics in experiments. Scientists now
routinely use single electrons or photons to generate superpositions and entanglements
in labs. This, in turn, has facilitated numerous efforts to utilize the power of quantum to
revolutionize technologies in the areas of computation, simulation, secure communica-
tion, just to name a few. In this thesis, I am going to focus on simulation.

There are two main ways to simulate a system of interest using another quantum sys-
tem, namely digital and analog simulation. The ideas are quite similar to their classical
counterparts. Let’s say we want to simulate the air drag of a car in a wind tunnel. We can
make a computer model of the car and the wind and solve the equations to get our an-
swer. The quantum equivalent of this approach is known as digital quantum simulation.
Here, we use a highly programmable quantum processor to map the Hamiltonian of the
system of interest and measure the energies of different states after the desired time-
evolution. Alternatively, we can emulate the car-air drag problem by measuring the air
drag on a scaled model of the car in a model wind tunnel. Similarly, in an analog quan-
tum simulation, we map one system on to a similar, more controllable, artificial system.
By changing the parameters of this artificial system and measuring their effects, we try
to learn about the actual system of interest. The control required over these artificial
systems is still significantly less than in digital simulations.

Due to its slightly relaxed control requirement, analog simulation is perfectly suited
for implementation using currently available, noisy, intermediate-scale quantum tech-
nology [2]. Essentially, in this approach, we can sacrifice the full coherent control of a
quantum system, which is proven to be particularly tricky with increasing system size, in
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favor of faster scaling up. One of the main challenges in analog simulation is to find an
artificial system close enough to the system of interest. As one can imagine, the validity
of analog simulation results depends largely on the initial similarity. In the last few years,
researchers have used several platforms [3–6], such as optical lattices and trapped ions,
to successfully simulate physical systems of interest.

Arrays of gate-defined quantum dots are especially promising candidates for ana-
log quantum simulation. These quantum dots are islands of electrons electrostatically
created by strategic depletion of a two-dimensional electron gas (2DEG). Electrons are
loaded in these dots from nearby reservoirs and the number of electrons in each dot
can be controlled up to single electron. Additionally, we can control the tunnel cou-
pling between the neighboring sites. These arrays form a natural platform for emulat-
ing the Fermi-Hubbard model, as they adhere to almost the same Hamiltonian. The
Fermi-Hubbard model provides a description of interacting electrons in a lattice. This
seemingly simple model reveals strong quantum correlations, which can explain strik-
ing phenomena such as superconductivity [7] or certain forms of magnetism [8]. But
solutions to the Fermi-Hubbard model become intractable by classical methods with
increasing lattice size. With quantum dot arrays however, the ease of tunability, con-
trol of the relevant parameters, low electron temperature, fast measurement of the spin
and charge states, and potential for scalability potentially enable us to venture into un-
explored territory in the Fermi-Hubbard phase-space. Furthermore, we hope to utilize
the breakthroughs coming from a booming interest in the field, both from industries
and research labs, in using quantum dots as the basic underlying hardware of quantum
computers.

Most experiments involving quantum dots have so far been conducted with a hand-
ful of dots in linear configurations [9–14]. In 2017, Hensgens et. al. demonstrated
the required control over a three-dot linear array and simulated the transition between
Coulomb blockade and collective Coulomb blockade [15]. Scaling the number of dots
in a linear array has historically been limited by the manual tuning required to fight
both the intrinsic and the fabrication-induced disorders. Moreover, the distance be-
tween dots and electron reservoirs introduces an extra challenge for (un)loading elec-
trons. Scaling from a linear to a two-dimensional (2D) array introduces additional chal-
lenges in terms of routing of the gates, which make it difficult to fabricate a 2D array with
similar control to that of linear arrays. Recently, researchers have come up with prelimi-
nary ideas for efficient tuning of larger linear arrays. Meanwhile, the handful of attempts
to go beyond a linear array of dots have lacked the control over the parameter-space
needed to try out simulation experiments, especially involving spins [16–18]. The only
instance of simulation with such an array probes the charge-frustration in a triangular,
three-dot system [19].

The aim of this thesis is to explore ways to scale up to 2D quantum dot arrays and use
them in analog simulation of the Fermi-Hubbard model. The quantum dots are created
in a 2DEG, formed in a GaAs/AlGaAs heterostructure. We use two separate methods to
scale up the arrays. On one hand, we investigate a top-down approach to make a large
2D array of 1000 × 1000 dots without site-specific control. We analyze the feasibility of
using this system to simulate the metal - Mott insulator transition. On the other hand, we
employ a bottom-up approach to fabricate and tune up a 2 × 2 dot array. We address the



1

4 1. INTRODUCTION

issue of the tunability of the system up to a point where it is possible to simulate physical
models in this device. Finally, we use this device to perform simulation of Nagaoka ferro-
magnetism, the occurrence of ferromagnetic ground state in an almost-half-filled lattice,
driven by interactions. This unusual form of ferromagnetism exists without the presence
of a magnetic field. Furthermore, the ferromagnetic ground state can be destroyed with
an external magnetic field. The results obtained from this experiment could enhance
our understanding of magnetism as a whole.

Although the main target of my work is analog simulation, the advances made in
my thesis should also be useful for quantum computation experiments using quantum
dots. Moreover, we look into the fabrication of an eight-dot linear array, to be used for
quantum simulations. Furthermore, the bottom-up fabrication technique to create the
2 × 2 dot array can readily be extended to a ladder array of size 2 × N.

Chapter 1
Introduction

Chapter 2
Theory of Hubbard model and quantum dots

Chapter 3
Device fabrication and experimental setup

Chapter 4
A 2x2 quantum dot array with controlable

inter-dot tunnel couplngs

Chapter 5
Simulating Nagaoka ferromagnetism

 in a 2x2 quantum dot array 

Chapter 6
A capacitance spectroscopy-based platform
for realizing gate-de�ned electronic lattices

Chapter 7
Conclusion and Outlook

Figure 1.1: Structure of the dissertation
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1.2. THESIS OUTLINE
As mentioned earlier, I followed two different approaches to perform quantum simula-
tion using 2D quantum-dot arrays. Although, my initial work was with the 1000 × 1000
dot array, for reasons which will be clear after reading this thesis, most of my research
uses the 2 × 2 dot array. As these two approaches are rather different, they are treated
separately here. Chapters 3 to 5 elaborate on our work using the 2 × 2 dot array. In
chapter 6, the findings from the 1000 × 1000 dot work are discussed. Finally, the two
approaches are combined again in chapter 7. The structure of the dissertation is shown
in Fig. 1.1.

Finally, here is a brief outline of the chapters:
Chapter 2 reviews the essential theoretical concepts needed to understand the ex-

perimental results in the following chapters. First, I describe the underlying principles
of electrons in electrostatically-defined lateral quantum dots in a 2DEG. This is followed
by a discussion of the Fermi-Hubbard model and its similarities to a quantum dot array.
Finally, the chapter ends with a short introduction to Nagaoka ferromagnetism.

In Chapter 3, I start with a detailed description of the fabrication for the 2x2 quantum
dot array, measured during the course of this research. This is followed by a discussion
of the experimental set-up used in Chapters 4 and 5.

Chapter 4 focuses on creating a 2x2 dot system, with individual control over each dot.
Here, I present measurements that demonstrate control over electron filling and nearest-
neighbour tunnel coupling, together with fast single-shot spin read-out — establishing
our system as a promising solid-state analog quantum simulator.

I present the results of one such simulation in Chapter 5. We used the symmetry
present in our sample to show the emergence of a ferromagnetic ground state in an al-
most half-filled square lattice, as theoretically predicted by Nagaoka in 1966. We then
tuned the Hamiltonian parameters to move between regions with ferromagnetic and un-
polarised ground states to further test this interpretation.

Chapter 6 describes our effort to dramatically scale up the number of quantum dots
in an array at the cost of individual control over the dots. In this context, I discuss the
disorder and the (in)homogeneity of the devices measured. We used capacitance spec-
troscopy as a global measurement technique for this part of the research.

Chapter 7 summarizes the key findings of this thesis and outlines possible steps to-
wards fabricating and using larger dot arrays for quantum simulation.
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2
BASICS OF GATE-DEFINED

QUANTUM-DOT ARRAYS AND THEIR

RESEMBLANCE TO THE

FERMI-HUBBARD MODEL

The purpose of this chapter is to outline the essential theoretical concepts that elucidate
the experimental results described in the later chapters. We start by explaining the basics
of gate-defined quantum dots and how to create, control and measure them. Next, we
present a short review of the Fermi-Hubbard model, along with its importance in solid-
state physics. Finally, the similarities between the physics of a quantum-dot array and the
Fermi-Hubbard model are discussed.

7



2

8
2. BASICS OF GATE-DEFINED QUANTUM-DOT ARRAYS AND THEIR RESEMBLANCE TO THE

FERMI-HUBBARD MODEL

2.1. GATE-DEFINED QUANTUM-DOT ARRAYS
Quantum dots are artificially created islands of electrons (holes), where the charge oc-
cupation can be precisely controlled. The energy levels in a quantum dot are discrete at
low temperature due to their small size (1 - 100 nm) and three-dimensional (3D) confine-
ment. This, along with the tunability of several parameters of quantum dots enable us to
use them as artificial atoms. Researchers around the world use different kinds of quan-
tum dots, e.g.: quantum dots defined in semiconductor nano-wires [1, 2] and carbon
nanotubes [3], self-assembled quantum dots [4], single molecules controlled by elec-
trodes [5] etc., for various experiments. Here, we discuss gate-defined quantum dots
[6, 7] within a 2DEG created in a semiconductor heterostructure of GaAs/AlGaAs.

2.1.1. FORMATION OF GATE-DEFINED QUANTUM DOTS IN A 2DEG
As mentioned earlier, the quantum dots are created by confining charge particles in 3D.
Due to the heterostructure design, the electrons in the 2DEG are confined in the verti-
cal (z) direction, whereas the confinement in the other two directions comes from the
applied electric field through gate voltages.

The 2DEG is formed in a heterostructure of GaAs and AlGaAs (AlxGa1−x As) grown
using molecular beam epitaxy. During this growth, a very thin Si delta-doping band is
introduced within the AlGaAs layer. A triangular potential well forms at the interface of
the GaAs and the AlGaAs layers due to the differences in bandgap between them. The
extra electrons coming from the Si dopants accumulate at this potential well to create
the 2DEG. At low temperature, only the lowest mode of the well gets populated with
electrons. This effectively restricts their movement perpendicular to the plane of the
2DEG. These electrons can still move freely in the 2DEG plane. The matching lattice
constants for GaAs and AlGaAs and tremendous development in growth technique help
in creating heterostructures with a low disorder. The wafers used for the works described
in chapters 3-5 have the 2DEG roughly 90 nm below the surface of the heterostructure
with x ≈ 0.3, mobility ∼ 2x106 cm2/Vs, and electron density ∼ 2x1011 cm−2.

The confinement of electrons in a 2DEG acts as the first step in forming gate-defined
quantum dots. We fabricate metal gates on the surface of the heterostructure to obtain
the confinement from the other two directions. The potential landscape of the 2DEG
can be altered by applying voltages to these gates. This change in potential landscape
enables the creation of a quantum dot by depleting parts of the 2DEG and confining a
certain number of electrons in a well-defined location. We can control the number of
electrons in a dot by changing the voltage applied to certain gates. We can also control
the coupling between two dots or a dot and a reservoir by using gate voltages. The design
of the gate-structure dictates the size and the shape of a quantum dot array. Details of
the gate-structures used are discussed in Chapter 3.

2.1.2. SENSING A QUANTUM DOT ARRAY
We have discussed how to create and control electron-occupation of a quantum dot by
changing gate-voltages in the previous subsection. Here, we describe how one can de-
tect the response of electrons in a quantum dot array to changes in gate-voltages, using
charge-sensing [7]. In charge-sensing, the response of a nearby charge sensor is mea-
sured as a function of the gate voltages, which create the dot array. The charge sensor
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is able to detect the movement of electrons through capacitive coupling to the dot array
of interest. As this detection technique does not affect the charge state of the dot array
of interest, we prefer it rather than measuring the current transport through quantum
dots [6]. Several quantum objects, such as quantum-point contacts [8] and quantum
dots [9], has been used as a charge-sensor so far. We use a separate quantum dot as a
charge-sensing dot.

To use a quantum dot as a charge sensor, we first tune the gate voltages to be on a
steep flank of a Coulomb peak. The current passing through the sensing dot in this con-
figuration is highly sensitive to any small change in the electrostatic environment around
it. Any addition, removal or movement of charge in the quantum dot array results in a
change of the current measured through the sensing dot. The response of the sensing
dot as a function of different gate-voltages that define the array is used to recognize dif-
ferent charge configurations of the dot array. Plots of these responses are commonly
known as the charge-stability diagrams. These diagrams enable us to load a determinis-
tic number of electrons in each dot by changing gate voltages. The sensitivity of a charge
sensor depends on the capacitive coupling between the sensor and the dot array. The
coupling decreases with increasing distance between the two. Multiple sensing dots can
be used to sense all parts of a large quantum dot array.
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Figure 2.1: Charge stability diagram of a double-dot array, measured by charge sensing. The differentiated
signal of the charge sensor is plotted as a function of two gate voltages. In the label (a,b), a and b denote the
number of electrons in dots 1 and 2 respectively.

A double dot charge stability diagram is shown in Fig. 2.1. The diagram indicates the
electron occupation of the dot array from (0,0) to (2,2), where (a,b) depicts the number
of electrons in dots 1 and 2 respectively. The lines in this plot represent the movement
of electrons in the dot array. The almost vertical and horizontal lines are addition lines
for dots 1 and 2 respectively. We can change gate voltages and add (remove) one elec-
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tron from a reservoir to a dot by crossing an addition line corresponding to the dot. As
a result, going over any addition line changes the total number of electrons in the dot
array. It is essential to know the exact electron occupation of the array at a given set of
gate voltages to perform quantum dot measurements and experiments. To keep track of
the exact number of electrons in the dots, increasingly negative voltages are applied to
the gates, until no new addition line appears in the diagram, indicating that both quan-
tum dots are empty (for example, the blue circle in Fig. 2.1). From this point, electrons
can be added to each dot by crossing the corresponding addition lines. A close look at
Fig. 2.1 reveals another kind of line, which appears when two addition lines cross each
other. Going across these lines doesn’t change the total electron number in the dot ar-
ray, but moves one electron from one dot to another. These are called inter-dot lines. In
general, addition lines appear more prominently than inter-dot lines in a charge stability
diagram.

We have routinely used charge-stability diagrams to tune-up and control the dot-
arrays. With an increasing number of dots in an array, these diagrams become harder to
interpret, due to cross-talk between different gates and dots [10]. These effects can be
compensated by using a linear combination of multiple gate voltages as a virtual gate [11,
12]. Changing a virtual gate voltage is supposed to only influence a particular quantum
dot while keeping the other dots unaffected. A detailed description of how these virtual
gates are defined can be found in section 4.4.

Apart from measuring the electron occupancy of each dot, we also use the charge
stability diagrams to estimate different relevant energies (see subsection 2.3) related to a
dot array. The exact estimation processes are described in details in chapter 4.

2.1.3. HYPERFINE INTERACTION
The spin of an electron in a dot interacts with the nuclear spins of the host material
via hyperfine interaction. In a GaAs quantum dot, an electron is surrounded by atoms
(both Ga and As) with non-zero nuclear spin. The Hamiltonian for this Fermi contact
hyperfine interaction is given by

H HF =
N∑

k=1
Ak~I k .~S (2.1)

The vectors~I k and ~S denote the spin operator for nucleus k and the electron spin under
consideration respectively [13]. The coupling strength (Ak ) depends on the overlap be-
tween the electron and the nucleus wavefunctions. For a typical GaAs dot, roughly 106

nuclei contribute with nonzero individual coupling.
We can model the effect of this ensemble of nuclear spins by an effective magnetic

field

(
~B N =

∑N
k=1 Ak~I k

gµB

)
, known as the Overhauser field. Under this assumption:

HHF = gµB~B N .~S (2.2)

where g is the electron g-factor and µB is Bohr magneton. BN attains its maximum value
(BN ,max ∼ 5 T in GaAs [14]) when all the nuclear spins are fully polarized. However in al-
most all our experiments, the nuclear spins should be completely unpolarized as there is
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no external magnetic field. So, we expect the average value of BN to be 0 with a Gaussian

distribution of width σN = BN ,maxp
N

≈ 5 mT in all directions [15].

Next, we discuss the effect of this Overhauser field on electrons in more than one
dot. Two or more spatially separated dots experience slightly different Overhauser fields
(∆BN ) from each other due to local fluctuations. These differences can be used to drive
transitions between different spin states. For example, in the case of two electrons in two
dots, the x, y and z components of ∆BN mix the S(1,1) state with the T+(1,1), T−(1,1) and
T0(1,1) states [7, 16].

2.1.4. SPIN-ORBIT INTERACTION

The magnetic moment (µB = 9.27×10−24 J/T) of the spin of an electron interacts with any
magnetic environment. An electron moving in a electric field (~E) experiences an effective
magnetic field, ~BSO ∝ ~E × ~p. Here ~p is the momentum of the electron. The resulting
interaction of an electron spin and the magnetic field arising from its motion is called
the spin-orbit interaction (SOI). The spin-orbit Hamiltonian has the form HSO ∝~σ.~BSO ,
where~σ is the Pauli vector.

There are two main origins of spin-orbit coupling in a GaAs/AlGaAs heterostructure.

1. The local electric fields due to the bulk inversion asymmetry (BIA) in GaAs crystals
lead to the Dresselhaus contribution to the SOI [17].

2. The structural inversion asymmetry (SIA) due to the asymmetric confining poten-
tial at the GaAs/AlGaAs interface gives rise to the Rashba contribution to the SOI
[18].

For a 2DEG grown along the (001) crystallographic direction, the spin-orbit Hamilto-
nian is given by

H 2D,(001) =α(−pyσx +pxσy )+β(−pxσx +pyσy ) (2.3)

Here x and y refer to (100) and (010) crystallographic directions respectively and α,β
are the strengths of Rashba and Dresselhaus interactions. α depends on material prop-
erties and the confining potential, whereas β depends on the material properties and〈

p2
z

〉
. From Eqn. 2.3, we can see that the Rashba and Dresselhaus interactions orient dif-

ferently in different directions in the XY plane (Fig. 2.2). As a result, effective spin-orbit
interaction also depends on the direction of the electron’s motion.

The SOI enables electric-field fluctuations to cause spin-relaxation [20]. An electric
field cannot couple to pure spin states. However, due to SOI, the eigenstates become
admixtures of spin and orbital states [21]. The orbital parts of these states couple to the
electric field and as a result enable spin-relaxation through SOI. In Chapter 5, we discuss
the effects of SOI on our experiment in detail.

2.1.5. SPIN READOUT USING PAULI SPIN BLOCKADE
Finally, we discuss how to measure the spins of the electrons in a quantum dot. We have
used the principle of Pauli spin blockade (PSB) [22] to perform spin measurements in our
work. PSB is used to determine if two electron-spins in two separate dots are in singlet or
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[110]

[110]

px || [100]

py || [010]

Figure 2.2: The spin-orbit field ( ~BSO ) acting on an electron moving in a 2DEG with momentum ~p. The red and
blue arrows refer to Rashba and Dresselhaus components (chosen with different modulus and α < 0,β > 0)
respectively. This figure is adopted from Ref. [19].

triplet configuration. We start in the charge state (1,1) of a double dot and try to quickly
pulse to the (2,0) state (or (0,2) state). This protocol should show us two different signals
in the charge-sensor depending on the relative spin-configuration of the electrons under
the right conditions. If the two electrons are in a spin-singlet configuration, they will
instantly move to the same dot ((2,0) charge configuration). However, a transition to
(2,0) charge state is forbidden if the two electrons are in spin-triplet configuration, as
the three (2,0) triplet states (T0, T+ and T−) are higher in energy due to Pauli exclusion
principle [23]. The electrons will then remain in the (1,1) charge configuration, which
can be measured by the charge sensor signal [24]. The effect is known as the Pauli spin
blockade (PSB). This blockade is lifted after a finite time as the difference in the hyperfine
field (∆BN ) mixes the three triplet states with the singlet (S(1,1)) state, which allows a
transition to the (2,0) charge state [7, 25]. The mixing rates of the S(1,1) state with the
T+(1,1), T−(1,1) and T0(1,1) states are expected to be equal without the presence of an
external magnetic field (relevant for our experiments). This, in turn, gives one relaxation
time from all three triplet states to the singlet state. We note that this phenomenon is
detectable in a small detuning range close to the resonance condition between (1,1) and
(2,0) charge states. Outside this detuning range, the blockade is quickly lifted through
an exchange of one electron with one of the dot reservoirs, making it hard to detect.
The read-out window can be adjusted by changing the tunnel coupling of the dots to
their individual reservoirs [26]. Experimental results of PSB readout in our system are
described in Chapter 4.



2.2. FERMI-HUBBARD MODEL

2

13

2.2. FERMI-HUBBARD MODEL
The properties of electrons in various materials is an active field of research for sev-
eral decades. Different models are used to study these properties depending on the
interactions present between the electrons and the ion cores. The free electron model
[27] successfully describes the behavior of delocalized valence electrons in metals, by
neglecting electron-electron and electron-ion interactions. Whereas, the tight binding
model describes electrons tightly confined to individual atoms [28]. These highly local-
ized electrons have limited interaction with electrons in neighboring atoms through the
superposition of electron wave functions. We focus on the Hubbard model [29] in this
thesis due to its applicability to quantum dot arrays. The Hubbard model is commonly
used to describe Coulomb-induced strongly-correlated electron systems. Although this
model was first introduced to study transition-metal monoxides (FeO, CoO, etc), it has
since been used to study several fascinating systems, such as heavy fermions [30] and
high-temperature superconductors[31].

The Hubbard model in its simplest form approximates a solid-state system by a col-
lection of atoms (sites) each with a single electronic orbital (band). Each orbital can have
at most two electrons with opposite spins (↑ or ↓) following Pauli’s exclusion principle.
The nuclei of these atoms are considered to be fixed in position and create a lattice. The
electrons interact via Coulomb interaction. We only consider the interaction between
electrons in the same atomic orbital. This interaction is either zero (if the orbital is empty
or has a single electron) or U (if the orbital has two electrons). We assume no interaction
between electrons in different atomic orbitals in the basic Hubbard model. The kinetic
energy of these electrons is given by the ability of electrons to move from one orbital to
another. The energy scale t of this ‘hopping’ is given by the overlap of electronic wave-
functions of the two atomic orbitals under consideration. The hopping is significant only
between nearest neighbors. The basic form of the Hubbard model consists of only these
two energy terms. We write the Hubbard Hamiltonian in second quantization notation,
using fermionic creation and annihilation operators (c† and c):

H =U
∑

i
ni↑ni↓− t

∑
〈i , j〉,σ

[
c†

iσc jσ+h.c.
]

(2.4)

Here, σ=↑ or ↓ denote the spin of an electron and i , j refer to the index of the lattice
site. c†

iσ (ciσ) refers to the creation (annihilation) operator of an electron of spinσ on site

i . Finally, niσ = c†
iσciσ is the number operator which gives us the number of electrons

with spinσ on site i . The value of this number operator can either be 0 or 1 in this model.
We add another energy term µ (chemical potential) to this Hamiltonian, which controls
the filling of electrons on each site. The resultant Hamiltonian takes the following form:

H =U
∑

i
ni↑ni↓− t

∑
〈i , j〉,σ

[
c†

iσc jσ+h.c.
]
−µ∑

i
ni (2.5)

For an atom with multiple orbitals, the inner orbitals are considered together with
the nucleus as a fixed ion core, whereas the outermost orbital is considered as the single
band.
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This model looks reasonably simple at first glance. But, a strong electron-electron
correlation arises from this model with increasing lattice size. Several interesting physi-
cal phenomena emerge from the simple looking model due to these correlations, as we
start to change the different Hubbard parameters. In the limit of low temperature and
t <<U , the Hubbard model gives rise to a Mott insulator phase at half filling (one elec-
tron per site). Tunneling is suppressed in this limit, as it results in double-occupancy of
a site, which is energetically unfavorable. As a result, the energy band breaks into two.
The electrons going into an empty site fills the lower band. Whereas, the electrons occu-
pying an already singly-occupied site fills the upper band. Thus at half-filling, the lower
band is full whereas the upper band is empty, making the system behave like an insulator
[32]. One can destroy the Mott-insulator phase by decreasing the ratio of U /t . Quantum
fluctuations (hopping) becomes more and more favorable with decreasing U /t and the
electrons tend to move around the lattice. This essentially closes the gap between the
upper and the lower band and makes the system behave like a metal. A similar effect is
also expected if the thermal fluctuation is too large. Another way to destroy this insulator
phase is to change the lattice filling (introduce doping) using the chemical potential (µ).
The Mott insulators are also closely related to high-temperature (cuprate) superconduc-
tors [31, 33]. It is predicted that this superconducting phase can be accessed by gradually
introducing doping away from half filling in a Mott insulator, at very low temperatures.

We can also use the Hubbard model to explain certain kinds of magnetism. The
Stoner model of ferromagnetism can be derived from the Hubbard model using a mean
field approximation [34]. Also for a finite U, the Hubbard model ground state shows an-
tiferromagnetic ordering at half-filling. However, a ferromagnetic phase arises slightly
away from half-filling at strong enough coupling (U ) in two or three dimensions (but not
in one dimension) [35]. Further doping away from half-filling eliminates any magnetic
ordering. We discuss one form of ferromagnetism arising slightly way from half-filling in
two dimensions (Nagaoka ferromagnetism [36]) in chapter 5.

One can derive the Heisenberg model of spin-spin interaction from the Hubbard
model in the limit of U >> t . Hopping of electrons through the lattice is energetically
suppressed in this limit. Using hopping as a perturbation on the dominant Coulomb re-
pulsion, we can see that the effective Hamiltonian only consists of spin-spin interactions
[37]. This spin-spin interaction is used to perform gate-operations for experiments with
spin-qubits [38].

These diverse applications have made the Hubbard model one of the most active
research topics in condensed matter physics. Unfortunately, the solution to this model
becomes intractable with increasing lattice size. Physicists have studied this model using
a wide range of analytic and numerical techniques in the last few decades. A more recent
approach is to study the Hubbard model using analog quantum simulation [12, 39–43].
Most of these simulation experiments have been performed using ultracold atoms so far.
We discuss the capability of gate-defined quantum dot arrays to mimic the fermionic
Hubbard model in the next subsection.
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2.3. SIMILARITIES BETWEEN THE FERMI-HUBBARD MODEL AND

GATE-DEFINED QUANTUM-DOT ARRAYS
A gate-defined quantum dot array has properties largely similar to those described in
the Hubbard model [44–49]. The confinement potential of each quantum-dot plays the
role of an atomic potential in the model to create a single site. The control over the
fabrication process allows us to create a regular array of these dots. Moreover, we can
restrict gate-voltages to only allow a maximum of two electrons per dot. Combining all
these attributes, a quantum-dot array can be programmed to mimic the assumptions of
the Hubbard model, with some modification.

Table 2.1: Typical energy scales for Hubbard parameters in a gate-defined quantum-dot array

Energy Term Typical Values in a quantum-dot array (meV)
ti j 0 - 0.5
µi 0 - 15
Ui 1 - 3
Vi j 0 - 1

Next, we examine the similarities between the energy terms. The Hubbard model has
three energy terms, namely U , t , and µ (see Eqs. 2.5). The Coulomb on-site interaction
between two electrons in the same dot plays the role of U in the quantum-dot arrays.
Unlike the atomic lattice, not all quantum-dots are nominally identical. The values of U
thus become site-dependent and we replace U by Ui to modify the model accordingly.
The role of hopping (t ) is played by the tunnel-coupling between two dots. This tunnel-
coupling is governed by the overlap of electron wave-functions between the two dots.
Each quantum dot also has a local energy offset which controls the electron filling of the
dot, similar to the Hubbard model µ. Both t and µ are also site dependent for quantum
dot arrays and are replaced by ti j (= t∗j i ) and µi respectively. However, unlike the Hub-

bard model, we cannot ignore the interaction between electrons in different dots. We
extend the Hamiltonian to incorporate this inter-site interaction (Vi j ). This is the energy
penalty to add one additional electron to dot i , due to the presence of an electron in dot
j or vice versa. The resultant model, with the extra energy term, is typically known as the
extended Hubbard model. The effective Hamiltonian for our system can be written as:

H =− ∑
〈i , j〉,σ

ti j

[
c†

iσc jσ+h.c.
]
−∑

i
µi ni +

∑
i

Ui ni↑ni↓+
∑
i , j

Vi j ni n j (2.6)

The first two energy terms (ti j and µi ) of Eqs. 2.6 can be tuned in a quantum-dot
array using gate voltages. Whereas, the values of the final two terms (Ui and Vi j ) are
not gate-tunable, but these can be measured quite accurately. These values mainly de-
pend on the shapes and positions of the dots and stay rather constant once the dots are
formed. The typical values observed for these energy terms are shown in Table 2.1. We
note that the range of 0−15 meV for µi is actually the range over which the local energy



2

16 BIBLIOGRAPHY

of a quantum dot can be tuned. The energy offset required to load two electrons into an
empty band of a dot is lower than this range. So, strictly from the Hubbard model per-
spective, we have full control over µi to go from an empty to a full band. Moreover, the
quantum dots are operated at a dilution temperature, where the thermal energy (kT ) is
less than 0.01meV . As a result, the system can be tuned to have all other energies signifi-
cantly larger than the thermal energy. This tunable access to a large range of parameters
potentially enables us to simulate the Fermi-Hubbard model using quantum dot arrays.
We show an example of this tunability in a 2x2 quantum-dot array in chapter 4.

Table 2.2: Typical control of Fermi-Hubbard parameters achieved using quantum dot arrays [12, 50] and ultra-
cold atom lattices [39–43]

Platform U /t t/kT
Arrays of gate defined quantum dots O (1)−O (100) O (1)−O (10)

Lattices of ultracold atoms O (1)−O (10) O (0.1)−O (1)

Finally, we compare the quantum dot arrays to the ultracold atom lattices for their
capacities to simulate the Fermi-Hubbard model. The main (dis)advantages of the two
platforms in this regard are discussed below:

1. It is desirable to have access over a large range of U /t values while keeping the
thermal energy (kT ) as low as possible with respect to hopping (t ). Table 2.2 shows
that the quantum dot arrays currently have more tunability in U /t and higher val-
ues of t/kT , compared to the ultracold atoms. These make the quantum dot arrays
potentially better equipped to probe a larger range of the Fermi-Hubbard phase
space, including the low-temperature regime that is of highest interest.

2. Control over the chemical potential (µ) enables us to dope the system away from
half-filling. This is essential to explore several exotic phases of the Hubbard model,
such as superconductivity and certain forms of ferromagnetism. Experiments us-
ing both platforms have demonstrated the desired control over µ.

3. The size of the quantum simulator is another important feature. For small system
sizes, the simulation results can also be reproduced numerically. This becomes
increasingly difficult and eventually impossible with larger systems. Scaling up
the number of sites in a lattice has been easier with ultracold atoms so far. The
intrinsic disorders in the 2DEG make it difficult to create and manipulate large
arrays of quantum dots. The largest quantum dot arrays reported so far contain
eight [51] and nine dots [52, 53]. Whereas, the Fermi-Hubbard model has been
simulated on a two-dimensional square lattice of ∼ 80 sites using ultracold atoms
[43].
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3
DEVICE FABRICATION AND

EXPERIMENTAL SETUP

This chapter discusses the procedure for device fabrication and describes details of the ex-
perimental setups that were used to obtain the results in the next two chapters.
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3.1. DEVICE FABRICATION
As discussed in chapter 1, most measurements involving quantum dot arrays have so far
been performed with linear arrays with a few quantum dots. In this section, I discuss
our fabrication effort to scale up these quantum dot arrays. We have developed recipes
to fabricate a small 2D array of four dots in 2x2 geometry and a linear eight-dot array.
We start with a general description of the steps used to fabricate these samples. Most of
these steps are quite standard and can also be found in previous works from our group
[1]. I include them here for the sake of completion. This is followed by the new devel-
opments made during the course of this dissertation. Full fabrication recipes for both
devices can be found in Appendix A.

3.1.1. OVERVIEW OF THE FABRICATION STEPS
The following steps are needed to make samples on a substrate received from the grow-
ers:

• Both devices were fabricated on similar substrates with GaAs/AlGaAs heterostruc-
tures. These substrates have a coating of Gallium (Ga) paste on the back surface.
Ga is used as an adhesive, while the heterostructure is grown in a molecular-beam
epitaxy (MBE) system to create a 2DEG. Cleaning this Ga is the very first and a cru-
cial step of any fabrication run. If left on the wafer, Ga contaminates not only the
sample under fabrication but also the machines used in the fabrication run. Wet
etching in hot, diluted hydrochloric acid (HCl) is used to remove this layer of Ga.
But HCl can also destroy the heterostructure. To prevent this, the top surface of the
substrate is protected with a few µm thick spin-coated photo-resist (S1813). The
clean wafer is then diced into smaller pieces for individual fabrication runs, with
the resist still on it. Before starting an individual run, the photo-resist is finally
stripped in acetone.

• Each individual run starts with the deposition of titanium/gold (Ti/Au) alignment
markers. These markers are patterned with electron-beam (ebeam) lithography
and are later used to align the subsequent layers in ebeam steps. Moreover, they
define the boundary of a device unit-cell.

• In the next step, a mesa pattern is defined and etched to remove the 2DEG from
all the unnecessary places. The 2DEG is only needed to create dots, electron reser-
voirs, and ohmic connections to the reservoirs. This etching of GaAs/AlGaAs is
performed using diluted Piranha solution (1:8:240 H2SO4:H2O2:H2O) yielding etch
rates of roughly 4 nm/s. The mesa disconnects the ohmic contacts from one an-
other, as well as reduces the probability of leakage between the large gates and the
2DEG.

• This is followed by the creation of the ohmic contacts to the reservoirs. A metal
layer consisting of nickel/gold-germanium/nickel (Ni/AuGe/Ni) is deposited, which
diffuses through the heterostructure and connects to the 2DEG when annealed
in forming gas environment. These ohmic contacts are used to voltage-bias the
reservoirs and to measure current through the quantum dots.
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• The next step is to pattern the fine gates. The quantum dots are created by deplet-
ing electrons from the 2DEG using voltages on these gates. As a result, the design
of this gate structure determines the shape of the resulting dot array. Depending
on the dot-array, this step might contain several layers and materials. The details
of the fine gate structures for individual arrays are discussed in the following sub-
sections.

• Finally, we create the large gates, which are made of Ti/Au. These gates extend the
fine gates and create bond-pads where external wire-bonds can be connected.

After the fabrication steps, a typical chip contains nine unit-cells. These cells can
have either the same or different dot-arrays. The finished chip is then covered with
photo-resist and diced into individual device unit-cells. The devices are then cleaned
in acetone and stored in a vacuum desiccator. Before measurement, one such device is
glued on a printed circuit board (PCB) using concentrated PMMA (polymethyl methacry-
late - an ebeam resist) for wire-bonding.

3.1.2. FINE GATE STRUCTURE OF 2X2 DOT ARRAY
As we discussed before, the shape of a quantum dot array is defined by the fine gate
structure. Here we discuss the developments made to fabricate the fine gate structure
of a 2x2 dot array. The quantum-dot community is well experienced in controlling small
linear arrays. The 2x2 array, the simplest form of 2D array, is a first step towards eventu-
ally scaling up to larger arrays. Our aim is to make a 2x2 dot array with extensive control
over the desired parameters, as described in chapter 2.

Initially, a slightly modified version of the well-tested linear array gate-design was
explored to make this dot array. Fig. 3.1(a) shows a scanning electron microscope (SEM)
image of one such device, with expected positions of the dots and reservoirs. In this
design, all the gates exist on the same 2D plane, similar to the previous effort to make a
2x2 dot array [2].

Initial experiments using these devices showed limited, if any, potential to access the
desired values for different tunnel couplings in the dot array. We postulate that only low
tunnel couplings can be achieved using these devices. The four dots will tend to merge
into a single dot as these couplings are increased, as there is no gate to stop this merging.
We haven’t tested this prediction with experiments. Controlling the desired parameters
of the dot array is also rather difficult in these devices due to the lack of individual control
knobs. For example, to increase the tunnel coupling between dots 2 and 3, the voltage
on gate C2 needs to be increased. But, this in turn also increases the tunnel coupling
between dots 1 and 4. Although cross-capacitance between the gates and the dots can
be used to partially compensate for these effects, it severely restricts the access to the
parameter-space.

To overcome these problems, we introduce a modified design with one extra gate, D0

(Fig. 3.1(b)). This gate is needed to separate the four dots, as well as have an individual
tuning knob for all nearest-neighbour tunnel couplings. Although the new design looks
rather similar to the previous one at first glance, there is a fundamental difference in
terms of fabrication between these two gate structures. Unlike all the other gates, the
D0 gate cannot be routed via the same 2D plane without affecting the dot-system. Any
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Figure 3.1: (a) SEM image of a device made using the first gate design. (b) Schematic diagram of the second
gate design. In both figures, the red circles represent the main dot array, whereas the yellow ellipses show the
position of the sensing dots. Both devices contain six electron reservoirs for the quantum dots, each of which
is marked with a cross in a square.

voltage applied to the gate D0 will equally influence not only the center of the four dot
system but also under the lead up to the gate. This will either stop us from making one
of the four dots or significantly reduce the coupling between two neighbouring dots,
depending on the position of the lead.

One way to circumvent this issue is to bring the D0 gate from a different plane, suffi-
ciently away from the heterostructure surface, and contact the surface only at the center
of the dot-array. This can significantly reduce the effect of D0 at unwanted places. This
effect may be further reduced if the lead to the center gate goes over another gate, which
runs on the surface. In this case, the potential on the 2DEG will be screened from the
voltage on the lead by the voltage on the gate below it. Both these outcomes can be
achieved by introducing a double layer gate-design with a dielectric between the layers.
This dielectric layer should electrically isolate the D0 gate from all the gates in bottom
layer. Here, the main challenge is to figure out a way to have the D0 gate run over the
dielectric and land on the substrate only at the center of the array.

We considered several approaches, such as wet/dry etch of aluminum oxide (Al2O3)
and fabrication of an air-bridge, to create the double-layer gate structure. Eventually, we
used a slab of silicon nitride (SiNx ) as the dielectric layer. In this approach, the fine gate
structure is created in three steps. The schematics of these three layers are shown in Fig.
3.2(a-c) respectively. Fig. 3.2(d-f) show the SEM images of the same layers. In the first
step, all gates except D0 are fabricated using 5/20 nm thick Ti/Au on the bare substrate.
This is followed by the lift-off of a sputtered SiNx slab on top of the gates C3 and P3.
This slab is 50 nm thick, 200 nm wide and 1.5 µm long. Finally, the D0 gate is deposited
using lift-off of 10/100 nm thick Ti/Au. This gate runs over the gate C3 before contacting
the substrate. The alignment of these three layers is crucial for proper operation of the
device. Bringing the markers close to the fine gate structure and using different markers
for each of the three steps, we could align with only a few nanometers of error between
layers using the ebeam machine (Raith EBPG5200) in Kavli nanolab, Delft.



3.1. DEVICE FABRICATION

3

25

a

e fd

b c
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Figure 3.2: [(a)-(c)] Design schematic of the three steps to create the fine gate structure for the 2x2 dot array.
The gates in the first layer (golden) are created first, followed by the SiNX slab (grey). Finally the D0 gate (cyan)
is deposited over the SiNX slab, contacting the bare substrate at the center of the structure. [(d)-(f)] SEM
images of a device, nominally identical to the one used for measurements, after each fabrication step shown
in (a)-(c) respectively.

The lift-off of SiNx is a non-trivial step, which required quite a bit of recipe develop-
ment. A lift-off process is generally used for making patterns with metals deposited using
evaporation technique. Because of the specific direction of deposition, evaporation can
reduce step-coverage of the resist mask. This, in turn, helps in lifting off the metals from
unwanted regions. However, all the available dielectric deposition techniques result in
a much better step-coverage than metal evaporation. This makes lift-off of dielectrics
rather difficult. Fortunately, the stress present in the films allows us to use the lift-off
process successfully for sputtered SiNx . Due to the step-coverage from sputtering, SiNx

covers the sidewall of the resist and produces standing-edges at the boundary of the
dielectric slab. The height of such an edge is equal to the resist thickness, which is gen-
erally taller than the SiNx slab. These standing-edges create a potential problem for the
following step. The chance of the D0 gate breaking, while crawling over a standing-edge,
increases with the height difference between the slab and the edge.

Although it is almost impossible to completely eliminate these SiNx edges, their heights
can be controlled by optimizing the fabrication recipe. As discussed earlier, the heights
of these edges depend on the height of the resist used for lift-off. After optimizing, an 80
nm thick single layer AR-P 6200.081 resist is used to lift-off 50 nm thick SiNx . The result-

1Csar 62 (AR−P 6200), http://www.allresist.com/csar-62-ar-p-6200/

http://www.allresist.com/csar-62-ar-p-6200/
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Figure 3.3: (a) Tilted SEM image of a lithographically identical device to the one measured, showing the con-
tinuity of the D0 gate. (b) Pinch-off of the current channel through the center of the device using negative
voltage in the D0 gate, confirming its continuity electrically. [(c)-(f)] Current pinch-off through the same chan-
nel with all four C gates. For (b)-(f), the measured current runs between the two reservoirs marked (X in a box)
in the device schematic shown in respective insets. In each of the schematics, the voltage on the blue gate is
varied during measurement, whereas the two red gates are biased sufficiently with negative voltage to assist
the pinch-off. All the other gates are connected to ground during these measurements.
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ing edge is only a few tens of nm higher than the slab. This can be successfully covered
by making the D0 gate with 10/100 nm of Ti/Au. Fig. 3.3(a) shows a tilted SEM image of
the three-layer fine gate structure. Here the D0 gate is seen to be going over the C3 gate
before contacting the substrate at the center without any sign of breakage.

Once all three layers looked good in scanning electron microscopy, we performed
electrical measurements at dilution temperature to check if the device can be used to
make the 2x2 dot array, as expected. First, the leakage between gates D0 and C3 (P3)
was measured, which showed no leakage up to a difference of 2 V between the gates.
This showed that the SiNx dielectric slab successfully separates the gates of two different
layers. Next, we checked the electrical continuity of the D0 gate. Fig. 3.3(b) shows how
the current between the two indicated reservoirs is pinched-off by applying a negative
voltage to D0. Finally Fig. 3.3(c-f) show how the same current channel can be pinched
of independently by all C gates.

All these results together indicate that the device design can be used to create a 2x2
dot array with extensive control over desired parameters, especially the tunnel coupling
between all pairs of double-dots. In chapters 4 and 5, I will discuss experimental results
using a 2x2 dot array device of this design.

3.1.3. FINE GATE STRUCTURE OF AN EIGHT-DOT LINEAR ARRAY

The fine gate structure used for the eight-dot linear array is a direct extension of the four
dot array measured before [3, 4]. Fig. 3.4(a) shows this gate structure with the expected
dot positions. In this thesis, I will only discuss the fabrication of these devices, not the
results obtained using them. The devices are currently being measured, and the first
results about electron-filling and controlling one such eight-dot array have already been
reported [5].
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Figure 3.4: (a) An SEM image of a eight-dot linear array device. The red circles show the intended location of
the eight dots of the array, whereas the yellow ellipses indicate the sensing dot locations. (b) SEM image of a
similar device with broken gate structure.
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The main challenge here is to create seventeen gates (B0 to B8) parallel to each other
with 80 nm pitch. A common problem is to have one or a few of these gates partially
broken (see Fig. 3.4(b)). Note where one gate is broken, the two neighbouring gates are
wider than the rest. We think this is caused by the collapse of the e-beam resist-walls
before the metal deposition. The probability of such a collapse increases with increasing
height and decreasing width of the walls. As the widths are fixed by design, the solution
is to use a thinner resist layer. A common practice is to optimize the fine-gate structure
recipe without the other fabrication steps, and then use that recipe to make final devices
with all steps. Initially, this led to nice looking structures for test runs and broken gates
in actual devices. After careful investigation, it was found that the thickness of the re-
sist layer is affected by the mesa structure mentioned in subsection 3.1.1. While using
the same recipe, the resist was systematically thicker for substrates with mesa. So we
optimized the resist-thickness on substrates with mesa to solve the problem.

3.1.4. PRACTICAL TIPS AND TRICKS FOR SAMPLE SELECTION, HANDLING,
AND BONDING

• In the final fabrication run, we found the device yield to be roughly 50%. To avoid
a lot of unwanted wire-bonding, it is better to select samples with intended fine
gate structures. Although we can image the samples in SEM for this selection, it is
feared that the high-velocity electrons may induce charge traps and this can dete-
riorate the device performance. We can image the samples with an atomic force
microscope (AFM) instead, using tapping mode in air, which is not expected to
harm the sample. The AFM images have enough resolution to aid in the selection
of a good device, which can be seen in Fig. 3.5(a-b).
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Figure 3.5: (a) AFM image of the 2x2 device measured. (b) AFM image of a linear eight-dot array.

• Utmost care should be taken while carrying and wire-bonding a sample to avoid
blowing up the fine gate structure due to electrostatic discharge (ESD). Note that,
once a wire is attached to a bond-pad of a sample, it should not be taken off, as
this drastically increases the probability of ESD. If the other side of the wire does
not contact the PCB, the dangling wire should be pressed to the PCB bond-pad
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using the wedge tool, to complete the bond. Samples should always be carried in
an ESD-safe box, and once bonding is done, the gates should be grounded through
the PCB.

• Although the performance of the gates cannot be tested at room temperature, the
ohmic connections to the reservoirs should be tested before a device is cooled
down. For working devices, the typical resistance measured between two ohmics
is around 100 kΩ.

3.2. EXPERIMENTAL SETUP
Here I describe the experimental setup used to perform measurements reported in chap-
ters 4 and 5. The experimental setup is divided into two main subsections: the dilution
refrigerator to cool down the devices and the electronics to control and measure them.

3.2.1. DILUTION REFRIGERATOR

Due to the three dimensional confinement, the energy levels of quantum dots are dis-
cretized. To trap electrons in these levels and avoid thermal excitation, experiments are
typically performed in dilution refrigerators. Both the 2x2 and eight-dot linear array de-
vices are cooled down in a Bluefors XLD-400 dry fridge simultaneously using a home-
made cold-finger attached to the mixing chamber (MC) plate. Fig. 3.6(a-b) show dif-
ferent parts of the fridge used. The base temperature of the fridge reaches below 7 mK
with constant voltages on the gates. However, this temperature can rise up to 30 mK,
when voltage pulses are applied to several gates. Although the phonons in the substrate
should reach the base temperature, the electrons in the 2DEG remain at a higher tem-
perature. This is due to thermal and electrical contact of the 2DEG to the warmer parts of
the fridge through measurement wiring and due to electrical noise coupling in from the
instrumentation. The wires are electrically filtered and thermally contacted to different
plates in the fridge to reduce this electron temperature. Ideally, a radiation shield is also
connected to the MC plate to protect the samples from higher temperature radiation.
The fridge has a uniaxial superconducting magnet, which can provide fields up to 3 T. To
apply a magnetic field perpendicular to the plane of the 2x2 dot array, we had to remove
the MC radiation shield in order to create room to mount the sample PCB horizontally.
As a result, the samples are subjected to radiation from the can attached to the still plate,
which typically has a temperature of 800 mK.

3.2.2. CONTROL AND MEASUREMENT ELECTRONICS

The electronics used are designed to allow for fast control and readout while minimizing
unwanted back action on the system. Here we categorize them into four different parts
described below.

1. PRINTED CIRCUIT BOARD

A printed circuit board (PCB) (Fig. 3.6(c)) is used to connect a device to the control and
measurement lines in the fridge. The sample is glued to the center of the PCB using
concentrated PMMA, which is then attached on to the cold-finger for thermal anchoring.
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Figure 3.6: (a) Inside of the Bluefors XLD-400 dry fridge from top plate to mixing chamber plate. (b) Bottom
of the MC plate and the Cold-finger attached to it. (c) PCB used to cool down the 2x2 dot device. The PCB has
nine high-frequency lines (1), each combined with a DC line using a bias-tee. The RF-readout line (2) is split
in four, each of which has a DC line connected through a bias-tee. Individual inductors of different inductance
need to be connected to these lines to use them for RF-readout via frequency multiplexing. Finally, DC lines
are filtered with 100 pF capacitance (3) to ground.
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There are 48 DC lines in the PCB to apply voltage bias on the gates. The device bond-
pads are electrically connected to these lines via wire-bonds. The lines are connected to
two FFC connectors in parallel, one connector to keep the gates on the device grounded
while connecting them to the DC wires in the fridge using the other connector.

Moreover, the PCB has nine high-frequency (HF) co-planar wave-guides, which can
be connected to coax lines in the fridge through SMP connectors. Each HF line is com-
bined with a DC line using a bias-tee with an RC time constant of ∼ 470 ms. Using these
lines, fast voltage pulses can be applied to selected gates on the sample to aid in tuning
and measurement. To minimize high-frequency cross-talk, each DC line is filtered with
a 100 pF capacitor to ground.

Finally, there is another HF wave-guide in the PCB used for RF reflectometry. This
wave-guide is split into four readout lines, each containing an LC-tank circuit. Each
readout line is coupled with a DC line using a bias-tee and is connected to one reser-
voir per sensing dot. RF reflectometry enables us to measure the conductance of the
individual sensing dots simultaneously using frequency multiplexing. The details of this
method are discussed later in this chapter.

2. DC ELECTRONICS

The DC electronics serve two main purposes in the experimental setup.

1. To apply bias voltages to the nano-fabricated gates to create the quantum dots.

2. To measure the DC current between two electron reservoirs, through single or
multiple quantum dots.

The gates are biased using digital to analog converter (DAC) modules. The modules
can apply voltages from -4 V to 4 V with a 60 µV resolution. Currents through the quan-
tum dots are measured using an I-V converter connected to one reservoir adjacent to the
dot, while a bias (∼ 100µV) is applied to the other adjacent reservoir. The DC control and
measurement modules are battery powered and isolated from other instruments, which
are connected to the 50 Hz power line. The DACs and the measurement computer com-
municate with each other using optical cables.

As mentioned before, there are 96 DC lines distributed equally between the two PCBs.
Inside the fridge, two different kinds of lines are used to carry DC signal from the top-
plate to the mixing chamber plate: theromocoax lines (24 pieces) and phosphor-bronze
looms (3 looms). Each of these looms contains 24 DC lines. The lines in a phosphor-
bronze loom are connected to a matrix module2 outside the fridge using a 24-pin Fischer
cable. Each of these lines goes through a Pi-filter3 in the matrix module to filter out high-
frequency components and provide a ripple-free DC voltage. The thermocoax lines are
connected to individual coax lines outside the fridge. The other end of each of these coax
lines connects to a low-pass filter (DC - 2.5 MHz)4, which is attached to the output of the
matrix module. All 96 lines are connected to a home-made RC-filter board, attached to
the mixing chamber plate inside the fridge. They are filtered with a second-order RC

2For details of this module, see: http://qtwork.tudelft.nl/~schouten/matrix/index-matrix.htm
3For details, see: http://qtwork.tudelft.nl/~schouten/sampwfilters/index-sampwfilters.htm
4Mini-Circuits SLP-2.5+

http://qtwork.tudelft.nl/~schouten/matrix/index-matrix.htm
http://qtwork.tudelft.nl/~schouten/sampwfilters/index-sampwfilters.htm
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filter having cutoff frequency of either 5 Hz (for lines connected to gates) or 150 kHz
(for lines connected to reservoirs). The output of this RC-filter board has two 50-pin FFC
connectors, one for each PCB in the fridge. Depending on the specific placement of gates
and reservoirs in a sample, the filter frequency of each line is chosen. So, a different filter
board might be required for a new sample. Each set of lines then goes through a Cu-
powder filter5, attached to the cold-finger, before connecting to a PCB. The Cu-powder
filter is used to filter out signals with very high frequency (from few 10s up to 100s of
GHz), where other filters don’t work well. 50 pin FFC cables are used to connect the RC
filter board to Cu-powder filter and Cu-powder filter to PCB.

3. RF CONTROL ELECTRONICS

In experiments with quantum dots, RF control electronics is typically used for the fol-
lowing purposes:

1. To apply microwave (MW) excitation (up to 40 GHz) to the sample for qubit oper-
ations, photon-assisted tunneling etc.

2. To apply fast voltage pulses (with nanoseconds rise-time) on the gates to rapidly
change chemical potentials of different dots.

3. To ramp gate voltages (with a time-period of milliseconds) for fast mapping of
charge stability diagrams.

Microwave excitations are generally applied with MW-sources. No microwave excita-
tion was required in our experiments. Arbitrary waveform generators (AWG): Tektronix
AWG5014C are used for both pulsing and ramping gate voltages. The output of each
AWG channel is connected to a flexible coax cable, which is wrapped around a ferrite-
core before connecting to an HF line in the fridge. The ferrite-core introduces a high
impedance for the ground loop current passing through the coax, while not affecting the
signal from the AWG. Generally, a low-pass filter (DC - 200 MHz) is also attached to an
AWG output channel, but we often remove it to achieve faster voltage pulses.

The fridge contains sixteen HF lines, equally divided between the two devices. To re-
duce the thermal noise reaching the sample through these lines, one HF line is made of
six coax pieces. Each of these coax pieces connects two consecutive plates of the fridge
and one cryo-attenuator is used per plate to improve thermal anchoring of an HF line
to each plate. Two different sets of lines with slightly different total attenuation are used
for the 2x2 and the eight-dot devices. Fig. 3.7 shows an overview of the attenuator distri-
bution of the two sets of lines. In addition, we use graphite coated CuNi coax cables to
reduce vibration-induced electrical noise.

4. RF READOUT

The sensing dots in a device are used to detect movement of charge close to it. By care-
fully creating sensing dots in the vicinity of the main dot array, we can detect electrons
moving between two dots or between a dot and a reservoir. We perform RF-readout by
combining each sensing dot to an LCR circuit to increase the measurement bandwidth

5For details, see: http://qtwork.tudelft.nl/~schouten/sampwfilters/index-sampwfilters.htm

http://qtwork.tudelft.nl/~schouten/sampwfilters/index-sampwfilters.htm
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Figure 3.7: Schematic diagram of the high frequency control lines

compared to DC charge-sensing. In this circuit, the R is given by the resistance of the
sensing dot used. An external inductor is attached to the PCB to provide the L. Finally,
the C is the total parasitic capacitance coming from the inductor, the sample, and the
PCB line. Using this RF-readout technique, we could achieve ∼ 1 MHz measurement
bandwidth. Moreover, an RF-frequency of the order of 100 MHz is typically used as car-
rier frequency, which is later demodulated to measurement bandwidth around the car-
rier frequency. This helps us to dramatically reduce the contribution of 1/f noise. The
details of the RF-readout circuit is described below.

Let Z be the impedance of the sensing dot. The sensing dot has maximum charge

sensitivity
(

d Z
d q

)
at the slope of a Coulomb peak, where the resistance (R) is 100 - 200 kΩ.

But for a normal RF-circuit, the signal is carried by a coax line with 50Ω impedance (Z0).
Now the complex voltage reflection coefficient (Γ) for such circuit is given by:

Γ= ZL −Z0

ZL +Z0
(3.1)

For optimal d Z
d q , high load resistance (ZL = R ∼ 100 kΩ) leads to almost all the signal

being reflected (Γ ≈ 1), resulting in a poor signal-to-noise (SNR) ratio. This SNR can be
improved by bringing ZL close to Z0 (= 50Ω) and thus reducing Γ. One can use the idea
of a matching circuit to modify the effective value of ZL . In a matching LCR circuit, the

equivalent impedance at resonance frequency
(

f ≈ 1
2π

p
LC

)
is given by:

Zeq = L

RC
(3.2)

Here the only controllable parameter is L, as the values of R and C are set by other
experimental considerations. As discussed earlier, R is about 100 kΩ for the most sen-
sitive sensor. The parasitic capacitance, C, has a typical value of 0.7 pF, for the samples
measured. Using L ≈ 3 µH, the Zeq can be brought close to 50 Ω at the resonance fre-
quency, f ∼ 100 MHz. To avoid high resistance from the inductors, we use home-made
NbTiN spiral inductor on a quartz substrate. As NbTiN is a superconductor at the base
temperature of the fridge, the resistance of the inductor goes to zero. Using frequency
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a b

Figure 3.8: (a) Sensing dot signal in transport measurement. (b) Sensing dot signal in RF-reflectometry mea-
surement

multiplexing, a single coax line can be used to perform RF-sensing with multiple sensing
channels simultaneously. Appropriate inductors are chosen to bring the Zeq sufficiently
close to 50 Ω to reduce Γ as much as possible while keeping the corresponding reso-
nance frequencies sufficiently separated compared to the measurement bandwidth of
∼ 1 MHz. For the 2x2 device, RF-sensing is performed using two sensing dots with in-
ductors of 4.6 and 2.0 µH. The resonance frequencies turn out to be 84.6 and 131.5 MHz
respectively. Fig. 3.8 (a-b) show a comparison of the DC and the demodulated RF signal
through the same sensing dot.
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The details of the RF-reflectometry setup are described below (Fig. 3.9). We use
home-made modules6 for both RF signal generation and demodulation of the output
signal. First, the RF signals of two separate frequencies are coupled using a power split-

6For details of these modules, see: http://qtwork.tudelft.nl/~mtiggelman/modules.html

http://qtwork.tudelft.nl/~mtiggelman/modules.html


BIBLIOGRAPHY

3

35

ter (combiner)7 and transmitted forward through a DC-block8. Inside the fridge, the
input signal is carried by CuNi semi-rigid coax cable, where the signal goes through a
DC-block at the 4K plate and gets attenuated at the 4K and the MC plates by 20 dB and
10 dB respectively. After the mixing chamber attenuator, this signal is carried to the input
port of a directional coupler9, attached to the MC plate. The coupled port of the direc-
tional coupler is connected to the PCB to carry both the input and the reflected output
signals. Next, the output signal from the coupler is carried using a NbTi superconducting
coax through another DC-block to a low-noise cryogenic amplifier10, attached to the 4K
plate. The output signal from this amplifier is then carried out of the fridge, where the
signal is split into two equal parts with a power splitter. Finally, each part of this signal is
demodulated with the carrier frequency using a home-made demodulation unit.
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4
A 2×2 QUANTUM DOT ARRAY WITH

CONTROLLABLE INTER-DOT

TUNNEL COUPLINGS

The interaction between electrons in arrays of electrostatically defined quantum dots is
naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tun-
ability of these systems makes them a powerful platform to simulate different regimes of
the Hubbard model. However, most quantum dot array implementations have been lim-
ited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell
of 2×2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a
double-layer gate technique. We probe the properties of the array using nearby quantum
dots operated as charge sensors. We show that we can deterministically and dynamically
control the charge occupation in each quantum dot in the single- to few-electron regime.
Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel
couplings over a range 0-40 µeV. Finally, we demonstrate fast (∼ 1 µs) single-shot readout
of the spin state of electrons in the dots, through spin-to-charge conversion via Pauli spin
blockade. These advances pave the way for analog quantum simulations in two dimen-
sions, not previously accessible in quantum dot systems.

Parts of this chapter have been published in Applied Physics Letter 112, 183505 (2018)[1].
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4.1. INTRODUCTION

Electrostatically defined quantum dots in semiconductors have been proposed as the
basic underlying hardware in quantum computation [2], as well as digital and analog
quantum simulations [3–6]. This is due to their ease of tunability, control of the rele-
vant parameters, fast measurement of the spin and charge states, and their potential for
scalability. In particular, quantum dot arrays are natural candidates for simulating the
Fermi-Hubbard model, as they adhere to the same Hamiltonian:

H = ∑
i

Ui ni↑ni↓−
∑

i , j ,σ
ti , j

(
c†

iσc jσ+h.c.
)
−∑

i
µi ni

+∑
i , j

Vi , j ni n j (4.1)

The on-site interaction energy Ui corresponds to the quantum dot charging energy on
site i and the hopping energy ti , j corresponds to the tunnel coupling between dots i and
j . The chemical potential term µi controls the electron number in each dot, as well as
the relative energy detuning between dots. For quantum dot arrays, there is an addi-
tional term Vi , j that describes the inter-site Coulomb interaction energy. The operators

ci ,c†
i ,ni in Eqs. 4.1 represent the second quantization annihilation, creation, and num-

ber operators, respectively, with the individual spins of the electrons being denoted by
the subscript σ= {↑,↓}. For simplicity, we have assumed that no external magnetic field
is present in the system.

For the study of Fermi-Hubbard physics, control of the ratio U /t is essential [7–9].
The hopping term can be tuned electrostatically, covering a range t ≈ 0− 100 µeV be-
tween nearest neighbors in a linear array [10]. The on-site interaction energy U is set by
the shape of the confinement potential and is not freely tunable, but it can be accurately
measured with typical values of 1 - 10 meV [11]. Similarly, V is not tunable independently
but can be measured precisely.

Quantum simulations of the Fermi-Hubbard model have previously been explored
experimentally in cold atom systems [12–16], manipulating arrays of the order of 100
atoms. However, these experiments are often limited by the initial entropy of the sys-
tem [13–15]. Quantum dot arrays can overcome this problem by operating in dilution
refrigerators, where electron temperatures can reach kTe ∼ 1 µeV. On the other hand,
experiments with quantum dots are still mainly being performed with linear arrays with
no more than a few sites [10, 17, 18]. Efforts to go beyond 1D with quantum dot arrays
have so far stopped short of achieving well-characterized tunnel couplings in the few-
electron regime [19–21].

In this letter, we report on the design, fabrication, and measurement of a quantum-
dot plaquette in a 2×2 geometry. We describe a fabrication technique used to imple-
ment a two-layer gate structure needed for this device. We then present measurements
that demonstrate deterministic filling of electrons in all dots and controllable tunnel
coupling over a large range (0 - 40 µeV) between all nearest-neighbor pairs. As the fi-
nal ingredient for this quantum simulator, we perform single-shot measurements of the
two-electron singlet/triplet states (|S〉/|T 〉) using two dots in the array.
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Figure 4.1: (a) Schematic of the gate design, with the dot locations labeled in the center. (The first layer in the
top inset and the bottom inset shows a schematic of the dot plaquette, with relevant Hubbard model terms.)
(b) SEM image of a device from the same batch as the one used for measurements. The overlaid blue circles
are impressions of the dot wave-functions. (c)-(d) Charge stability diagrams showing controlled filling of all
four quantum dots in the single- (c) and few- (d) electron regime. The data in (c) and Fig. 4.3 was taken in one
device cooldown and the data in panel (d), Table 4.1 and Fig. 4.2 in another cooldown.

4.2. DEVICE DETAILS
The device contains electrostatically defined quantum dots formed by selectively deplet-
ing electrons using nano-fabricated gate electrodes on the surface of a GaAs/AlGaAs het-
erostructure. The gate pattern is designed to form four quantum dots in a 2×2 geometry,
where the nearest neighbors are cyclic, i.e. i +4 = i (Fig. 4.1(a)). The coupling of each of
the dots to its own electron reservoir is controlled through the constriction created be-
tween the Bi+1 and the Ci gates. This is designed to allow for operation of the quantum
dots in the isolated regime [17, 22]; however, we do not explore this configuration here.
Deterministic electron filling of the quantum dots is achieved by adjusting µi relative to
the Fermi energy of the reservoirs, through the use of the gates Pi . A center gate (D0)
reaches the substrate at the center of the plaquette. Biasing this gate negatively effec-
tively separates the dots from each other. It thereby suppresses tunnel couplings along
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Table 4.1: Relevant gate voltages and lever arms

B1 B2 B3 B4 P1 P2 P3 P4 C1 C2 C3 C4 D0 X1 X2 Y1 Y2 S1 S2

Voltages at 1111 (mV) -150 -230 -130 -100 -263 -60 -9 -221 -120 -180 -180 -220 -180 -360 -120 -280 -270 -110 -390

Voltages at 3131 (mV) -100 -20 -90 -194 -169 -335 -30 -469 -188 -141 -37 -57 -135 -343 -95 -310 -274 -429 -504

Bias cooling voltage (mV) 300 250 300 250 150 150 150 150 250 250 250 250 200 350 350 300 300 200 200

Lever Arms (µeV/mV) 39 41 54 31

(Plungers to dots) (D1) (D2) (D3) (D4)

the two diagonals of the array and also influences the nearest-neighbor tunnel couplings
(along the perimeter of the array), since the combination of D0 with a Ci gate controls
ti ,i+1. The device design also includes an extra set of gates (Xi , Yi , Si ) used to define two
larger dots to be operated as charge sensors. The GaAs/Alx Ga1−x As heterostructure is
Si-doped, with a two-dimensional electron gas at the 90 nm deep interface (x = 0.314,
mobility = 1.6x106cm2/Vs and electron density = 1.9x1011cm−2). All gates except D0 are
fabricated in the first layer with Ti/Au of thickness 5/20 nm, evaporated on the bare sub-
strate and patterned following standard procedures[23] (the top inset in Fig. 4.1(a) shows
the schematic of this layer). The D0 gate runs above gate C3 and contacts the substrate
at the center of the array with a foot of ∼ 50 nm radius. It is fabricated using 10/100
nm evaporated Ti/Au and isolated from the bottom layer gates using a 50 nm thick, 200
nm wide, and 1.5 µm long dielectric slab of SiNx , fabricated using sputtering and lift-off.
For this step, an 80 nm thick layer of AR-P 6200[24] is used as the e-beam resist and lift-
off is performed in hot (80oC) N-Methyl-2-Pyrrolidone. A scanning electron microscope
(SEM) image of a completed device is shown in Fig. 4.1(b).

4.3. CONTROLLABLE CHARGE OCCUPATION
The device was cooled down with positive bias voltages (see values in Table 4.1) on all
gates in order to decrease charge noise [25]. All the Pi and Ci gates are connected to high-
frequency (∼ 1 GHz) lines for pulsing and fast sweeping. One reservoir for each sensing
dot is connected to a resonant RF circuit for high-bandwidth (up to 3 MHz) charge sens-
ing. The two readout circuits have resonance frequencies of 84.5 and 130.6 MHz, are
connected to a single amplifier chain and are read out simultaneously using frequency
multiplexing [26]. By measuring charge stability diagrams using different combinations
of gates, we can identify and tune the four dots to the few-electron regime. In Fig. 4.1(c-
d), we show examples of two charge stability diagrams, where we have identified the
charge states of the four dots, ranging from (0000) to (4142), where (klmn) indicate the
charge occupation of dots 1 through 4. The different cross-capacitances between the
dots and the gates lead to charge transition lines with four different slopes in the charge
stability diagrams, corresponding to the filling of the four dots.

Using these diagrams, appropriate voltages can be applied to the gates to achieve
deterministic filling of the dots. Although we can reach the regime with one electron
in each dot, it was difficult to tunnel couple all neighboring dots. We attribute this to
the center gate being slightly too large. To bypass this problem, we keep the first orbital
shells of dots 1 and 3 filled with two electrons each. In this configuration, the electron
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wavefunction is larger, which facilitates tunnel coupling neighboring dots. However, it
is important to note that in this configuration, the unpaired electron occupies an anti-
symmetric (2p) orbital [27], which can result in effects such as a sign inversion in the
tunnel coupling. The gate voltages needed to achieve (1111) and (3131) charge states
are specified in Table 4.1. We perform finite voltage-bias measurements [28, 29] to ex-
tract the lever arm (see Table 4.1) between gate voltage and dot chemical potential en-
ergy. Using these, the charging energies for the four dots are then estimated from the
distance between charge transition lines in the charge stability diagrams [U1 = 2.1 meV,
U3 = 2.3 meV (3 electron dots) and U2 = 3.4 meV, U4 = 3.3 meV (1 electron dots)]. From
the same diagrams, we also extract the inter-site Coulomb interaction energies V1,2 =
0.67 meV, V2,3 = 0.55 meV, V3,4 = 0.47 meV, V4,1 = 0.39 meV.
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Figure 4.2: (a) Charge stability diagram zoomed in on an inter-dot transition. (b) A line cut of panel (a) along
the detuning axis (blue line in (a)) and fitting of the line to get tunnel coupling and excess charge distribution.
(c) Excess charge extracted from the sensing dot signal when changing gate voltages along the detuning axis
for the four different double dots in the plaquette. The data show controllable tunnel couplings between all
nearest-neighbor double-dot pairs. All the curves of the same color were taken using the same global gate
configuration.
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4.4. CONTROLLABLE NEAREST-NEIGHBOUR TUNNEL COUPLING
We next characterize and control the four inter-dot tunnel couplings. Starting with the
array in the (3131) charge state, we measure ti , j by moving to a gate voltage configuration
that removes one electron from the system and is centered at µi = µ j while keeping the
other two dots (slightly) detuned. Around this point, the charge stability diagram shows
an inter-dot transition line (Fig. 4.2(a)). As we sweep the voltage along the detuning axis
(perpendicular to the inter-dot transition), the charge sensor signal displays a step as the
extra electron moves over from one dot to the other. The width of this step is dependent
on the tunnel coupling ti , j and the electron temperature Te [10, 30]. Fig. 4.2(b) shows
a sample measurement where the sensor signal is plotted as we sweep the gate voltages
across the inter-dot transition. This signal is then fitted to extract ti , j given Te ∼ 70 mK
(∼ 6 µeV). Te was measured by fitting a similar trace for the case t << Te . Note that this
measurement of Te provides an upper bound for the charge noise. From the fits to the
current traces, we derive the excess charge as a function of detuning between the two
dots (Fig. 4.2(b)).

Nearest-neighbor tunnel couplings can be controlled electrostatically by opening/closing
the constrictions created between D0 and the Ci gates. However, if we vary these gates
only, the cross-capacitance between these gates and the dots results in unwanted changes
in the chemical potential of the dots. To remedy this, we map out a cross-capacitance
matrix that expresses the capacitive coupling between all gates and every dot. For small
changes in gate voltage (<∼ 100 mV), we can assume these cross-capacitances to remain
constant and the changes in the individual dot energies can be expressed as linear com-
binations of gate voltages:


δµ1

δµ2

δµ3

δµ4

= ζδG , G =



P1

P2

P3

P4

C1

C2

C3

C4

D0


where ζ is a 4×9 matrix of cross-capacitances: ζi ,i corresponds to the lever-arm of

gate Pi to dot i , and ζi , j = ζi ,iηi , j , where ηi , j = δPi /δG j is the slope of the charge transi-
tion of dot i , which can be extracted from a charge stability diagram. Once extracted, ζ
can then be used to define virtual gates [10] (C′

i or D′
0) that allow us to vary one of the Ci

or D0 gates, while simultaneously adjusting all the Pi gates to keep δµi = 0. For example,
for C′

i the adjustment of Pi can be calculated from:


δP1

δP2

δP3

δP4

=−δC1


ζ1,1 ζ1,2 ζ1,3 ζ1,4

ζ2,1 ζ2,2 ζ2,3 ζ2,4

ζ3,1 ζ3,2 ζ3,3 ζ3,4

ζ4,1 ζ4,2 ζ4,3 ζ4,4


−1 

ζ1,5

ζ2,5

ζ3,5

ζ4,5

 (4.2)
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This technique significantly simplified the process of adjusting the tunnel barriers
and was a key element in achieving effective tunnel coupling control. In Fig. 4.2(c)
this control is demonstrated by uniformly setting all four tunnel couplings to 5 GHz
(∼ 20 µeV, blue traces) and 10 GHz (∼ 40 µeV, red traces).

The same device can be tuned to different regimes by changing bias-cooling and gate
voltages. In subsection 4.7.1, we discuss tuning to achieve controllable tunnel coupling
with one electron per dot. The experiment in chapter 5 is performed using this device
configuration.
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Figure 4.3: (a) Schematic of the spin to charge conversion process used to read out the spin states via Pauli spin
blockade. (b) Example single-shot read-out traces for singlet (blue) and triplet (orange) states. (c) A histogram
of the current signal at time τM constructed from 10000 single-shot measurements. Solid lines are Gaussian fits
to the two peaks in the histogram corresponding to singlet (blue) and triplet (orange) states. (d) Average signal
obtained from 10000 read-out traces. The solid line is an exponential fit, from which we extract the relaxation
time T1.

4.5. SINGLE SHOT SPIN READOUT
Finally, we demonstrate single-shot read-out of two-spin states using a three-stage pulse [31].
The Pauli exclusion principle [32] is used to convert a charge measurement into a mea-
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surement that distinguishes between singlet and triplet states of two spins occupying
neighboring quantum dots. We follow a protocol used previously to read out spins in a
double dot [33] where a random two-spin state is loaded in the (1,1) charge configura-
tion. The detuning between the dots is then pulsed to favor tunneling towards the (2,0)
charge state. We call this detuning configuration the read-out point. For a singlet (|S〉),
tunneling to (2,0) is allowed. For a triplet (|T 〉) however, the Pauli exclusion principle
requires the (2,0) state to occupy the first excited state orbital of the dot, which is ener-
getically inaccessible (∼ 0.4 meV away). Therefore, spins in |T 〉 remain in the (1,1) state
(Fig. 4.3(a)) until they relax to |S〉, with rate 1/T1. To identify the spin states, we monitor
the charge sensor signal at a specific time τM after the start of the read-out pulse. We in-
tegrate the signal for 0.1 µs around τM. If the integrated signal exceeds (does not exceed)
a fixed threshold, we conclude that the charge state was (1,1) [(2,0)] indicating a |T 〉 (|S〉)
spin state (Fig. 4.3(b)).

The read-out fidelity is limited by several factors. A histogram of the integrated sens-
ing dot signal at time τM constructed from 10000 single-shot measurements with a ran-
dom initial spin state shows two peaks, corresponding to the signal measured for each
of the spin states (Fig. 4.3(d)). Due to noise in the current traces, there is a small overlap
between the two peaks that will lead to spin read-out errors. From a double Gaussian fit
to the histograms, we extract an error contribution eN = 0.006. When averaging 10000
complete read-out traces, the sensor signal shows an exponential decay, with a time
constant T1 (Fig. 4.3(c)). The T1 value varies with inter-dot detuning [33], reaching up
to T1 = 11.4 µs. A relaxation event before τM leads to a measurement error, and so, it is
important to keep τM short. In order to achieve a sufficient signal-to-noise ratio, we low-
pass filtered the signal with a 1 MHz cut-off, which in turn leads us to choose τM = 0.8 µs.
The |T 〉 measurement error due to relaxation is then eT1 = 1−exp(−τM/T1) = 0.07. This is
the dominant source of error in this system, with smaller error contributions from ther-
mal excitation, limiting the average measurement fidelity to FM ≈ 0.96. Details of this
thermal excitation are discussed in subsection 4.7.2.

4.6. DISCUSSION

In summary, we have implemented and operated a quantum dot plaquette with reliable
control of electron filling and tunnel coupling, for which we demonstrated single-shot
spin measurements. This makes this system a promising analog quantum simulator of
Fermi-Hubbard physics. The two-dimensional lattice configuration presents symme-
tries not accessible in the more common linear arrays, enabling the emulation of phe-
nomena such as Nagaoka ferromagnetism [34] and resonating valence bond states [35],
which have been predicted for high-temperature superconductors. Moreover, using the
two-layer fabrication technique shown here, the 2×2 geometry can be extended directly
to a ladder of quantum dots (size 2×N), which is the smallest system capable of showing
pairing in under- or over-doped lattices [36] and other interesting quantum phases [37].
Moreover, leveraging the fabrication experience of the semiconductor industry, quan-
tum dot arrays might be scaled up to N×N arrays, opening up a host of possibilities.
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4.7. ADDITIONAL MATERIAL

4.7.1. CONTROLLABLE NEAREST-NEIGHBOUR TUNNEL-COUPLING WITH ONE

ELECTRON PER DOT

The tuning of nearest-neighbour tunnel coupling is an essential step towards success-
fully simulating the Fermi-Hubbard model in the 2x2 device. We have demonstrated
controllable tunnel coupling over a range of 0 to 40 µeV in the (3131) charge state. Al-
though this range itself meets the immediate requirement, having three electrons in a
dot could introduce additional challenges for the Hubbard model simulations. The third
electron occupies one of the two antisymmetric 2p orbitals of a dot. The energy sep-
aration between these 2p orbitals is caused by the asymmetry in the dot shape that is
typical of realistic devices. The next electron added to the dot occupies one of these two
orbitals depending on this energy separation. To use a three-electron dot to simulate the
Hubbard model, the third and the fourth electrons must have opposite spins. This is en-
forced by Pauli’s exclusion principle only if the electrons occupy the same orbital. How-
ever, these spins lack any correlation if the third and the fourth electrons occupy different
2p orbitals, which prevents the dot from being used in the Hubbard model simulation.
The sign inversion of tunnel coupling, introduced in section 4.3, can further complicate
these simulations. This sign inversion is also difficult to measure experimentally.
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Figure 4.4: Excess charge extracted from the sensing dot signal when changing gate voltages along the detuning
axis for the four different double dots in the plaquette. The data is taken in (1111) charge configuration. The
different signal-to-noise ratio in these traces arises from the difference in sensitivity of the charge sensors to
each inter-dot transition.
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Table 4.2: Relevant gate voltages and lever arms for the retuned dot-system

B1 B2 B3 B4 P1 P2 P3 P4 C1 C2 C3 C4 D0 X1 X2 Y1 Y2 S1 S2

Voltages at 1111 (mV) -90 -53 -75 -45 -237 -188 -136 -442 -185 -280 -115 -317 -87 -191 -217 -351 -253 -186 -178

Bias cooling voltage (mV) 300 250 300 250 150 150 150 200 250 250 250 250 200 350 350 300 300 200 200

Lever Arms (µeV/mV) 29.5 45 55.4 38

(Plungers to dots) (D1) (D2) (D3) (D4)

We changed the system configuration to obtain tunable tunnel coupling with one
electron per dot and avoid the potential problems. This was accomplished using the
same device in a different cool-down with slightly modified bias voltages (see Table 4.2).
The gate voltages needed to achieve (1111) charge state and the lever arm between gate
voltages and dot chemical potential energies for this system are mentioned in Table 4.2.
We use charge stability diagrams to estimate the on-site ([U1, U2, U3, U4] ≈ [2.9, 2.6, 2.9,
3.0] meV) and inter-site ([V12, V23, V34, V41, V13, V24] ≈ [0.47, 0.35, 0.43, 0.30, 0.28, 0.18]
meV) Coulomb interaction energies. The method mentioned in subsection 4.4 is used
to estimate the tunnel couplings between nearest-neighbour double dot pairs. These
tunnel couplings are found to be controllable, although the range is smaller than what
has been achieved in the (3131) charge configuration (see subsection 4.4). We demon-
strate this control in Fig. 4.4 by simultaneously setting all four nearest-neighbour tunnel
couplings to 4GHz (∼ 16 µeV).

Pulse Sequence (µs)

Se
ns

in
g 

D
ot

 S
ig

na
l (

a.
u.

) Empty Load Read-out

0 5 10 15 20 25 30

-0.10

-0.30

-0.35

-0.25

-0.15

-0.20

Figure 4.5: Example single shot traces showing thermal excitation for both singlet (blue) and triplet (orange)
initial spin states.

4.7.2. THERMAL EXCITATION DURING SPIN READOUT

The (2,0) charge state is energetically favored at the read-out point (see section 4.5). So
at steady-state (time (τ) À T1), one would expect the two electrons to attain this charge
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configuration and remain there until the detuning between the dots is changed. Unfor-
tunately, this is not true in our system. We observe spontaneous excitation from (2,0)
to (1,1) charge configuration while waiting at the read-out point. We attribute this phe-
nomenon to thermal excitation, as it appeared only when we removed the mixing cham-
ber radiation shield of the fridge (see subsection 3.2.1 for details).

We note that the thermal excitation does not depend on the initial spin state of the
electrons. Fig 4.5 shows this spontaneous excitation in single-shot read-out traces for
both singlet (blue) and triplet (orange) initial spin-states. The rate of this excitation is
given by 1/Tth . We measure 60000 traces of sensor signal at the read-out point for 960
µs each to determine this Tth . Fig. 4.6(a) shows a histogram of time spent by the system
in the (2,0) state, before a transition to (1,1) charge state. The value of Tth is extracted
to be 67.9 µs from a fitted exponential decay to this histogram. Similarly, we estimate
T1 = 13.1 µs from the fit to the histogram of time spent by the system in the (1,1) state
(Fig. 4.6(b)). The thermal excitation introduces an error in the spin read-out, but only
for singlet state (|S〉). The |S〉 measurement error due to this excitation is given by eTH =
1−exp(−τM/Tth) ≈ 0.01, which affects the read-out fidelity by less than 1%.
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Figure 4.6: (a) A histogram of time spent by the system at (2,0) charge state, before a transition to (1,1) charge
state, constructed from 60000 single traces of 960 µs each. The red line is an exponential decay fit to estimate
Tth . (b) A histogram of time spent by the system at (1,1) charge state, before a transition to (2,0) charge state,
constructed from the same dataset, with exponential fit to estimate T1 (red line).

Finally, we discuss the effect of this thermal excitation on the steady-state (τ À T1, Tth)
probability of measuring triplet (PT ) ((2,0) charge state) at the read-out point. The steady-
state value of PT (P ss

T ) is expected to be 0 without the thermal excitation. The rate equa-
tion for the transition to (2,0) charge state in our system is given by

dPT

dτ
= −Γ1PT + Γ2(1−PT ) (4.3)

Where Γ1 and Γ2 are given by 1/T1 and 1/Tth respectively. Solving Eqn. 4.3, we get

PT (τ) = Γ2

Γ1 + Γ2
−

(
Γ2

Γ1 + Γ2
− P 0

T

)
e−(Γ1+Γ2)τ (4.4)
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P 0
T is the initial probability of measuring triplet. The steady-state condition (τ À T1, Tth)

can be applied on Eqn. 4.4 to estimate

P ss
T = Γ2

Γ1 + Γ2
= T1

T1 +Tth

Both T1 and Tth depend on the detuning between the dots, and they can be used to
estimate the value of P ss

T . Meanwhile, P ss
T can also be measured experimentally, which

matches the estimated value very well. For the data shown in Fig. 4.6, P ss
T = 0.16.
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5
NAGAOKA FERROMAGNETISM

OBSERVED IN A QUANTUM DOT

PLAQUETTE

The analytical tractability of Nagaoka ferromagnetism makes it a convenient model to ex-
plore the capabilities of quantum simulators of collective electron interactions. However,
the small ground-to-excited state energy compared to electron interactions, as well as the
difficulty of measuring magnetization in few-particle devices, have made the Nagaoka
model experimentally unattainable. Here we present experimental signatures of the fer-
romagnetic ground state, predicted for 3 electrons in a 4 site square plaquette, engineered
using electrostatically defined quantum dots. We test the robustness of the Nagaoka con-
dition under different scenarios of lattice topology, device homogeneity and magnetic flux
through the plaquette. This long-sought demonstration of Nagaoka ferromagnetism es-
tablishes quantum dot systems as prime candidates for quantum simulators of magnetic
phenomena driven by electron-electron interactions.

This chapter has been published in arxiv:1904.05680 [1].
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5.1. INTRODUCTION
The emergence of magnetism in itinerant electron systems presents a fascinating and
challenging problem at the heart of quantum many-body physics [2, 3]. This may sound
surprising since the most common ferromagnetic material–iron–is a metal. However,
in iron, as well as many other materials including cobalt, nickel, manganite materials,
magnetism is dominated by spins of nearly localized electrons, with conduction band
electrons providing indirect exchange interactions. Going back to Stoner [4], simple
models have been introduced to provide simple theoretical models for itinerant ferro-
magnetism. Here, magnetism must emerge from a delicate quantum mechanical inter-
play between the potential energy that can be saved through building appropriate sym-
metries and correlations into electronic wave functions, and the corresponding costs in
kinetic energy. Despite their simplicity, the existence of ferromagnetic phases in these
models remains a subject of considerable controversy [5]. The most recent experimental
effort towards observing a ferromagnetic instability in itinerant Fermi systems has been
undertaken with ultracold atoms [6], although the interpretation of those experiments
has evolved in time [7]. On the theory side, there are only few rigorous theoretical results
for itinerant magnetism, for instance in systems with special flat bands and Nagaoka’s
ferromagnetism (see Ref. [8] and references therein).

The Nagaoka model of ferromagnetism [9] relies on the simplicity of the Hubbard
model [10], which captures complex correlations between electrons in a lattice using
only two Hamiltonian parameters. Using this single-band model, Nagaoka proved ana-
lytically that for some lattice configurations and in the limit of very strong interactions,
the presence of a single hole on top of a Mott insulating state with one electron per site
renders the ground state ferromagnetic.

This elegant theoretical demonstration of ferromagnetism in the Hubbard model
poses the question whether the ferromagnetic ground state will persist in an experimen-
tal setting, in the presence of long-range interactions and disorder, as well as additional
available orbitals. The feasibility of performing a quantum simulation of Nagaoka fer-
romagnetism has been explored for quantum dots [11–13] as well as optical superlat-
tices [14]. In spite of the maturity of quantum simulations of the Hubbard model, led
by the cold atoms community [15], there has been no experimental observation of a
high-spin ground state in an almost half-filled lattice or array of itinerant electrons–the
smoking gun of Nagaoka ferromagnetism.

Electrostatically defined semiconductor quantum dots [16–18] have been gaining at-
tention as excellent candidates for quantum simulations of the Hubbard model [19, 20].
Recent results have demonstrated the feasibility to extend these systems into 2D lat-
tices [21–25]. The ability to reach interesting interaction regimes along with low temper-
atures, as well as the ability to perform spin correlation measurements, make quantum
dot arrays particularly appealing for overcoming the challenges of observing evidence of
Nagaoka ferromagnetism.

In this article, we present experimental signatures of Nagaoka ferromagnetism, using
a quantum dot device designed to host a 2×2 lattice of electrons [24]. Using the high de-
gree of parameter tunability, we study how external magnetic fields and disorder in local
potentials affect the ferromagnetic ground state. Furthermore, by effectively tuning the
geometry of the system from periodic to open boundary conditions, we experimentally
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demonstrate the suppression of magnetism expected from the Lieb-Mattis theorem [26].

5.2. NAGAOKA MODEL IN THE QUANTUM DOT PLAQUETTE
The single-band Hubbard model provides a simple description of interacting electrons
in a lattice, through a Hamiltonian that contains competing kinetic energy and electron-
electron interaction terms:

HH =− ∑
〈i , j 〉σ

ti , j c†
iσc jσ+

∑
i

Ui ni↑ni↓−
∑

i
µi ni , (5.1)

where ti , j is the matrix element accounting for electron tunneling between sites i and
j , Ui is the on-site Coulomb repulsion energy on site i and µi is a local energy offset at
dot i , which can be electrostatically controlled. The operators ciσ, c†

iσ and niσ represent
the second quantization annihilation, creation and number operators for an electron on
site i with spin projection σ= {↑,↓}.

To study the conditions under which Nagaoka ferromagnetism can manifest itself on
a square plaquette, we restrict the system to 3 electrons (i.e. one less than half filling),
with nearest-neighbor only coupling and periodic boundary conditions (see schematic
in inset of Fig. 5.1(a)). This case is analytically solvable [11] for homogeneous interac-
tions (Ui =U , ti , j = t , µi = 0) and in the limit U À t , where the eigenstates have energies:

E3/2 =−2t and E1/2 =−p3t − 5t 2

U
, (5.2)

where E3/2 is the energy of the ferromagnetic quadruplets (with total spin s = 3/2 and
spin projections m = {±1/2,±3/2}) and E1/2 is the energy of the 2 sets of low-spin s = 1/2
doublets, which are degenerate in this model.

The simple Hamiltonian in Eq. (5.1) does not account for some of the essential fea-
tures of the experimental device. For comparison with experimental results, we employ
a more general model Hamiltonian, in which we account for interdot Coulomb repul-
sion (in Fig. 5.2(a)), spin-orbit and hyperfine interactions (in Fig. 5.3(b)), as well as the
effects of external magnetic fields (in Fig. 5.5(a-b)). The implementation of these terms
is described in detail in subsection 5.6.2. A detained ab initio calculation based on mul-
tiple orbitals solved from a potential landscape with 2x2 minima [1] also shows results
very similar to those obtained with Eq. (5.1).

5.3. EXPERIMENTAL ACCESS TO THE NAGAOKA REGIME
The quantum dot plaquette (Fig. 5.1(a)) is formed by biasing metallic gates patterned on
top of an AlGaAs/GaAs heterostructure, to control the local density of a 2-dimensional
electron gas (2DEG) located 90 nm below the surface of the substrate. We use two addi-
tional nearby dots as charge sensors, to measure charge stability diagrams where we can
observe charge tunneling events either between an electron reservoir and a dot, or be-
tween two dots in the plaquette. These diagrams (such as the one in Fig. 5.2(a)) allow us
to map out the charge occupation of the system, as a function of voltage in the gates. The
device is tuned to a regime where the system is loaded with 3 electrons, and the charge
configuration energies of the electrons are resonant. We set the local energy reference at
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Figure 5.1: (a) False colored SEM image of a device from the same batch as the one used in the experiments.
The gate structure used to define the quantum dots is colored in dark gold. A slab of silicon nitride (colored
in green) is laid over gates C3 and P3, to electrically isolate those gates from the D0 gate (colored in bright
gold) which runs over them and contacts the substrate at the center of the structure. A sketch of the expected
2DEG density in blue shows the 4 dots forming a plaquette in the center of the device, along with nearby
charge sensors and electron reservoirs. (b) Energy spectrum as a function of tunnel coupling using the solution
expressed in Eq. (5.2), with U = 2.9 meV. Shaded area shows the experimentally accessible range of t in this
system.
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this regime as µi (N ) = 0 eV for all dots, and refer to this condition as point N (see inset
of Fig. 5.2(a)). Different features of the charge stability diagrams are also used to esti-
mate the effective Hamiltonian parameters in our experimental system. The effective
on-site interaction Ui is measured by extracting the local energy offset in dot i required
to change the occupation from 1 electron to 2 electrons. The effective tunnel coupling
term ti , j is measured by analyzing the width of the step in the charge sensing signal as
the detuning between dots i and j is swept to transfer a single electron between them.
Virtual gates provide knobs to effectively control the µi and ti , j parameters in the ex-
perimental system, by canceling the effects of cross-talk between gates. A more detailed
description of the fabrication, operation, measurement protocols and implementation
of the virtual gates can be found in the subsection 5.6.1 and in Ref. [24].

The simple model described by Eqs. (5.1) and (5.2) already provides some useful in-
sight into the parameter regimes that are relevant to the experiment. The ferromagnetic
state is the ground state at large U /t , with a transition to a low-spin ground state occur-
ring at U /t = 18.7. The quantum dot array used in this work has an average U ≈ 2.9 meV
across the four sites, with tunable nearest-neighbor tunnel couplings in the range of
0 < t . 20 µeV. Unless otherwise stated, the couplings in these measurements are tuned
to ti ,i+1 ≈ 16 µeV. This means that we are probing the regime where the ground state
is expected to be ferromagnetic and the transition to the low-spin state is out of exper-
imental reach (see Fig. 5.1(b)). Moreover, the expected energy gap between the ferro-
magnetic and low-spin states in the system is E1/2 −E3/2 ≈ 4 µeV, which is comparable
to the measured electron temperature kB Te ≈ 6 µeV (70 mK) [24]. This complicates the
measurement, because we cannot distinguish the ground state of the system at equilib-
rium. Instead, we need to drive the system out of equilibrium in order to try to amplify
the probability in the ground state. To this end, we have developed techniques to probe
the different energy levels and probe the spin state of the system on timescales faster
than the thermal relaxation.

Measurement protocol. Since the sensing dots are only sensitive to charge tunneling
events, a spin-to-charge conversion protocol is needed in order to perform measure-
ments of the spin state of the system. We do this at point M , whereµM

i ≈ [−2.5, 0.0, 1.0, −0.5]
meV (see inset of Fig. 5.2(a)). There, the ground charge state is [2,0,0,1] (where [n1,n2,n3,n4]
corresponds to the number of electrons with dot number in the subscript), while the first
excited charge state is [1,1,0,1]. These states have an uncoupled spin in dot 4, with the
remaining 2 spins in a singlet |S〉 (triplet |T 〉) configuration for the ground (first excited)
state. The charge stability diagram in Fig. 5.2(a) is simulated and measured (inset) using
a gate combination that allows one to see both points N and M in the same diagram.

Fig. 5.2(b) shows the lowest three multiplets of the energy spectrum of the 3-electron
system, along the line that connects point M to point N . Close to point M we see a
typical double quantum dot spectrum corresponding to the [2,0,0,1] ↔ [1,1,0,1] charge
transition with the |S〉 and |T 〉 branches, while in the region around point N the spins
delocalize and we see branches corresponding to the quadruplets and doublets of the
3-electron system.

With this device, we can probe the spin state of the 3-electron system using the fol-
lowing protocol: 1 - repeatedly (10000 times) pulse rapidly from point N to point M , 2
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Figure 5.2: (a) Simulated charge stability diagram showing the approximate gate space used in the experiment.
In the experiment we pulse in a straight line in gate space from point M to point N and back. Top-right inset
shows a schematic of the local energies at points N and M , highlighting in the latter how the measurement
of 2 spins in the singlet-triplet basis is performed through spin-to-charge conversion. Lower-left inset shows
a measured charge stability diagram of the dotted region, with the same gate voltage ratios as the simulation,
which we use in the experiment to calibrate the gate voltages at point N . (b) Calculated energy spectrum
as a function of detuning proportion, using the theoretical model (Eq. (5.1) and supplementary text) without
spin-coupling effects. Parameter values were set to Ui = [2.9,2.6,2.9,3.0] meV and ti , j = 16 µeV, as extracted
from the experiment. Inset shows a zoomed-in spectrum of the region where the 3 spins are delocalized on all 4
dots, where there are a total of 8 states: the s = 3/2 quadruplets (red) and the 2 sets of s = 1/2 doublets (blue), of
which one set connects with the |T 〉 branch and the other with the |S〉 branch at point M . Line colors represent
the spin state of the system in each region, denoted by the labels in the figure. The energies extracted from the
numerical solutions are offset by the energy of |s,m〉 = |3/2,+3/2〉. (c) Pulse sequence used in the experiment
(see main text for detailed description).

- for each repetition, perform single-shot |S〉/|T 〉 measurements using dots 1 and 2 and
taking 2 out of the 3 electrons, and 3 - extract the triplet probability PT . Under ideal
conditions, this constitutes a 2-spin projective measurement of the 3-electron system,
resulting in P (3/2)

T = 1 when the 3-electron system is in a ferromagnetic state (any of the
s = 3/2 quadruplets). In the low-spin sector (s = 1/2), there are two sets of doublet states
available, one of which projects 2 spins to |S〉, while the other projects to |T 〉. In this sys-
tem the doublets are effectively degenerate (see Fig. 5.2(b)), and their hybridization will
result in P (1/2)

T = 0.5 (see subsection 5.6.3 for detailed calculation).
Due to the low ratio of energy level splitting to temperature at point N , we cannot

probe the ground state of the system by way of relaxation. Instead, we apply a gate
pulse sequence that follows the detuning range shown in the energy spectrum plotted
in Fig. 5.2(b). Using the pulse sequence drawn in Fig. 5.2(c), a 2-spin singlet state with
a third, free spin sitting on dot 4, is initialized by waiting at point M for 500 µs. Next
we apply simultaneous pulses to the Pi gates of different amplitudes, such that we ef-
fectively pulse along the ‘detuning proportion’ pε axis in Fig. 5.2(b) (see also the line
along the charge stability diagram in Fig. 5.2(a)), defined such that µi (pε) = (1−pε)µM

i .
We then wait a time τw ai t at µi (pε), before finally pulsing back to point M to perform
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the measurement. Importantly, the level crossings seen in Fig. 5.2(b) are in fact avoided
level crossings with spin-orbit and nuclear hyperfine mediated coupling between the
spin states (see subsection 5.6.2). This avoided level crossing allows to probe the differ-
ent states in the region around pε = 1, by varying the ramp rate in the pulse sequence:
a slow (fast) ramp rate results in an adiabatic (diabatic) passage through the avoided
level crossings, so the ground (excited) state is reached. In practice, in order to avoid
leakage to excited states along the way, 80% of the pulse is performed adiabatically, with
the variable ramp time τr amp only for the remaining 20%. Varying τw ai t allows us to
study the relaxation dynamics in the system. As long as τw ai t is shorter than the ther-
mal relaxation time-scale, the measurement of PT will be able to distinguish between
ferromagnetic and low-spin states at point N .

5.4. MEASUREMENT RESULTS
Fig. 5.3(a) shows plots of PT (pε) when we apply the experimental protocol described
above. The inset of the figure shows the entire range of pε, highlighting that PT remains
at a low value for most of the range, with a sharp increase as pε approaches 1 (point N ).
This is consistent with expectation based on the energy spectrum plotted in Fig. 5.2(b),
where the initialized singlet state is not subject to any energy-level crossing until the re-
gion close to point N , where the levels cross and the electrons become delocalized in the
array, leading to a sharp increase in the observed PT . The non-zero triplet fraction at
low values of pε is attributed partly to infrequent thermal excitations during the initial-
ization stage–as a consequence of the finite electron temperature–and partly to a small
probability of leakage to excited states during the pulse.

The main figure shows the measurement around point N , for a range of τr amp . In the
region where 0.99 < pε < 1.03, a clear increase of PT is observed as τr amp is increased,
consistent with a gradual transition from diabatically pulsing into the low-spin state, to
adiabatically pulsing into the ferromagnetic state, where PT is maximum. For the faster
pulses, we see ‘peaks’ of PT at pε = 0.99 and 1.03, where the pulse reaches the energy-
level crossings, as all the spin states can be expected to quickly (i.e., much faster than
the experimental timescales) mix by the nuclear hyperfine fields and spin-orbit cou-
pling [27–29].

From the τr amp timescale for the diabatic to adiabatic transition (see Fig. 5.3(b)) we
can extract information about the spin-coupling mechanisms at the avoided crossings.
To this end we have expanded the model in Eq. (5.1), to include the effects of spin-orbit
interaction and the hyperfine induced magnetic field gradients (see subsection 5.6.2).
The model suggests that the random hyperfine field gradients dominate the spin cou-
pling present at the avoided level crossing (i.e., around pε ≈ 0.97). We can use the model
to fit the data in Fig. 5.3(b), through time-evolution simulations (for details see subsec-
tion 5.6.2), from which we estimate a hyperfine coupling parameter δN = 73 ± 3 neV,
defined as the standard deviation of the Gaussian probability distribution of the hyper-
fine field in each dot. The extracted δN is in agreement with previous observations and
calculations, which have estimated 70 neV to 120 neV in similar GaAs quantum dot sys-
tems [29–31]. We note that the observed behavior can be qualitatively captured by a
simple two-level Landau-Zener model (for details see subsection 5.6.2).

If we keep pε = 1 fixed and vary the wait time τw ai t spent at point N, we observe
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relaxation of the s = 1/2 and s = 3/2 states, reflected in the decay of PT to an interme-
diate level between the PT observed for slow and rapid sweeps, at the shortest τw ai t

(see Fig. 5.3(c)). This is consistent with thermal equilibration in the system, in which the
electron temperature is comparable to the energy gap between the s = 1/2 and s = 3/2
states at point N . The thermal equilibration occurs on a timescale τr el ax ∼ 2 µs. We note
that we cannot directly assign the values of PT to s = 1/2 and s = 3/2 populations, be-
cause the observed PT is subject to measurement imperfections caused by mechanisms
that are difficult to disentangle, such as the finite measurement bandwidth, the signal to
noise ratio and |T 〉 to |S〉 relaxation, as well as unwanted leakage to other states during
the pulsed passages.
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Figure 5.4: (a) Comparison of 3 measurements with the following values of tunnel couplings [t12, t23, t34, t41]
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spectrum as a function of detuning proportion, using the tunnel coupling values corresponding to the green
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Boundary conditions and the Lieb-Mattis theorem. Considering that the square pla-
quette can be thought of as a 1D ring, the observation of a ferromagnetic ground state
may appear to be in contradiction with the Lieb-Mattis theorem [26] which states that
the ground state of a 1D array of electrons has the lowest possible spin. However, as
later pointed out by Mattis himself [11] the Lieb-Mattis theorem was only proven for 1D
chains with open boundary conditions, explicitly excluding arrays with periodic bound-
ary conditions such as the case of the plaquette. We can intuitively understand the dif-
ference between these two configurations when we consider how the hole tunnels to its
next-nearest neighbor [32]. In a 2D plaquette, the hole has 2 possible paths to the next-
nearest neighbor. If the system is initialized in any of the s = 1/2 configurations, the 2
paths will leave the system in 2 different configurations. On the other hand, for an s = 3/2
system the 2 paths are identical, and interfere constructively to lower the kinetic energy
of the system. In contrast, in an open boundary 1D array, the kinetic energy of the hole
is independent of the spin configurations of the neighboring electrons (i.e., there is only
one path for the hole to follow through the array), therefore the total energy of the system
will obey the Lieb-Mattis theorem.

One powerful feature of the quantum dot system is that the tunnel barriers can be
tuned independently, allowing us to test different array topologies. In Fig. 5.4 we com-
pare diabatic and adiabatic sweeps, as we raise the tunnel barrier that controls t23, ef-
fectively transforming the plaquette into a system that behaves more like the 1D system
described by Mattis. In the latter regime, we see that PT becomes insensitive to sweep
rate. Additionally, we no longer observe the peaks of PT for the fast sweep rate, which we
had associated with mixing at the avoided level crossings. From these observations we
infer that for the open chain, the instantaneous ground state does not exhibit an avoided
crossing between an s = 1/2 state and an s = 3/2 state as the system is taken to point N.
This interpretation is also consistent with the numerical simulations of the energy spec-
trum shown in Fig. 5.4(b).

Destroying ferromagnetism with magnetic fields. Given that Nagaoka ferromagnetism
can be explained through interference effects due to the trajectories of the hole around
the ring, it then follows that a magnetic flux through the plaquette will add an Aharonov-
Bohm phase [33] that disturbs the interference effects. We capture this effect in the theo-
retical model by modifying the second term in Eq. (5.1) as : −∑

〈 j ,k〉σ t j ,k exp
(−iϕ j k

)
c†

jσckσ

(see subsection 5.6.2). We use the gauge in which ϕ41 = 2πΦ
Φ0

, where Φ = B`2 is the flux
generated by a magnetic field B through the plaquette with estimated distance between
nearest-neighbor dots `, andΦ0 = h/e is the flux quantum. Using this gauge, the phases
for the other links vanish. In addition, the application of an external field subjects the
system to the Zeeman effect, causing a spin-dependent energy offset EZ = gµB Bm to
each eigenstate, where g =−0.4 is the electron g -factor in GaAs and µB is the Bohr mag-
neton.

Fig. 5.5(a) shows the effect of the magnetic flux on the spectrum, ignoring the Zee-
man effect. The lowest s = 1/2 and s = 3/2 levels at point N are shown as a function of the
applied field, where periodic crossings can be observed. In the range 30 < B < 160 mT,
the system ground state transitions to the low-spin state, with the – perhaps counterin-
tuitive – implication that we can destroy the ferromagnetic state by applying a magnetic
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Figure 5.5: (a) Lowest eigenenergies of the s = 1/2 (blue) and s = 3/2 (red) states at point N as a function of
the magnetic field, obtained from the numerical model after including the effect of an Aharonov-Bohm phase
(details in subsection 5.6.2). (b) Same as (a) but with the addition of the Zeeman effect, and the lowest 4
eigenenergies of each s states are shown. (c) Experimental measurement using diabatic passage, for different
fields in the range of 0 to 16 mT. Inset shows a numerically calculated spectrum at 12 mT, with the Aharonov-
Bohm phase and Zeeman effect included in the model.

field. Additionally, this effect highlights that the ferromagnetic state in this system is
dominated by the Nagaoka effect and not by long-range interactions. Indeed, the ab ini-
tio calculations suggest that long-range interactions only account for ∼ 20% of the ferro-
magnetic polarization. When we include the Zeeman effect (see Fig. 5.5(b)) the picture
becomes more complicated, because both Zeeman and orbital effects cause perturba-
tions of similar energy scales.

From this initial numerical analysis, it is clear that the experimental characterization
of the applied external field will be challenging, due to the increased complexity of the
spectral structure of the spin states as a function of field. The small energy splittings that
appear both at point N , as well as at lower pε values (see inset of Fig. 5.5(c)) are expected
to cause mixing of the spin states during the adiabatic pulses. To minimize this mixing,
we adjusted the pulsing protocol such that we pulse adiabatically (1 µs ramp) to pε = 0.2,
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then pulse diabatically (5 ns ramp) the rest of the way. The results in Fig. 5.5(c) show that
from 4 to 8 mT PT increases at point N, and we stop observing the characteristic dip.
Note that the range of field that we were able to probe is still below the estimated ground
state transition point (∼ 30 mT). Therefore, we infer that the observed increase in PT is
the effect of hybridization of the s = 1/2 and s = 3/2 states as their energy gap reduces.
We cannot claim that the observed hybridization of states is occurring solely at point N ,
as it is evident from the increase in PT at pε < 0.97 (i.e. prior to the energy-level crossings)
that some of the mixing is occurring during the pulse. However, we do see that PT in all
plots converge at the energy-level crossings (pε ≈ 0.97 and pε ≈ 1.03) suggesting that the
Aharonov-Bohm orbital effects are partly responsible for the additional mixing in the
region around point N .
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Figure 5.6: Experimental measurements with point N purposefully redefined to have a ±50 µeV offset on each
of the 4 dots. Panels correspond to offsets in dots 1 to 4, clockwise from the top-left. Insets show numerically
calculated spectra for the same experimental condition.

Sensitivity to local energy offsets. We also use the tunability available in quantum dot
systems to study the effects of disorder of the local potential present in each dot. For
the plots in Fig. 5.6, we modified the experimental protocol used to probe the states at
point N , pulsing instead to a point N ′, where the local energy of one of the dots is offset
by ±50 µeV. We can do this by employing the virtual gates technique [20, 24], which gives
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access to control knobs that map a linear combination of Pi gates onto local dot energy
offsets. The insets of the panels in Fig. 5.6 show the expected energy spectra when we
simulate the experimental conditions using the model in Eq. (5.1). The spectra show that
for all cases there remains a region in the detuning trajectory where the ferromagnetic
state is the ground state, but both the width and the position of this region around point
N ′ varies with the different local offsets applied. The experimental results in the main
panels show excellent qualitative agreement with the variations observed in the calcu-
lated spectra, further confirming the validity of the experimental protocol. Remarkably,
we have also pushed the offset of dot 1 to the range 100 to −800 µeV and the system still
shows signs of the ferromagnetic ground state (Fig. 5.7).
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Figure 5.7: Each panel experimental measurements comparing adiabatic and diabatic passages (as explained
in the main text), where point N has been redefined such that the chemical potential of dot 1 is offset by
the amount shown on the top right of each panel. Insets show simulated spectra using the same local offset
conditions as the experiment of the corresponding panel.
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5.5. DISCUSSION
In this work, we have presented the first measurements showing experimental evidence
of Nagaoka’s 50-year old theory in a small scale system. The large degree of tunabil-
ity, high ratio of interaction strength to temperature, and fast measurement techniques
available to quantum dot systems allowed observing both the ferromagnetic ground
state and the low-spin excited state of an almost-half-filled lattice of electrons. Even
though the problem of 3 electrons in a 4-site plaquette can be solved analytically us-
ing the Hubbard picture, a complete description of this experimental system that in-
cludes all its available orbitals is not easily tractable, analytically or numerically. Indeed,
the computational cost of the ab initio calculation [1], with all interaction terms being
considered, is on the order of 10000 CPU hours. In addition, this small scale quantum
simulation provides value beyond proof-of-principle in two important ways. First, by
performing a quantum simulation involving charge and spin states, it builds on pre-
vious demonstrations [20] that quantum dot systems can be useful simulators of the
Hubbard model, despite their inhomogeneities in the potential shape and local ener-
gies. Additionally, small scale simulations on tractable models can be used to system-
atically benchmark the performance of devices as the scale-up technology develops to-
wards devices that can perform classically intractable simulations. Finally, in this work,
we showed a flavor of the capabilities for studying the sensitivity to disorder, and these
experiments already revealed some surprising effects, when we found that the Nagaoka
condition can still be observed after offsetting a local energy by amounts much larger
than the tunnel coupling. This can readily be studied in further detail, along with other
possibilities for exploring the effects of disorder, which could bring insights into e.g., the
stability of the ferromagnetic state.

This experiment is an important step forward in answering the question of whether
itinerant magnetism can occur in real systems. Larger realizations of similar quantum
dot systems (or any other experimentally controllable system), such as 2×N or M ×N
arrays can shed more light on the discussion. As the system becomes larger the exchange
interaction grows proportionally to the system size, creating a competition against the
hopping energy that is characteristic of Nagaoka ferromagnetism, and leaving the fate of
the Nagaoka mechanism in larger systems in the realm of the unknown.

5.6. ADDITIONAL MATERIAL

5.6.1. DEVICE FABRICATION AND METHODS

The experiment was performed using an array of four gate-defined quantum dots in a
2x2 geometry. We employed a double-layer gate-structure to form this dot array. The
first layer of gates–which includes all gates except D0–was created using electron-beam
lithography, evaporation, and lift-off of Ti/Au with 5/20 nm thickness (see Fig. 1(a) of
the main text). We then fabricate a 1.5× 0.2 µm dielectric slab on top of the gates C3

and P3, using electron-beam lithography, sputtering and lift-off of SiNx slab with 50 nm
thickness. Finally, the D0 gate is created using the same process as the other gates, with
10/100 nm thick Ti/Au. This gate runs over the gate C3 before contacting the substrate
at the center of the dot array. The gates created in the first layer are 30 nm wide, whereas
the width of the D0 gate is 100 nm.
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Figure 5.8: Sample stability diagrams showing how we tune to the Nagaoka condition. We have highlighted
the visible interdot transitions (identified in the right panel), where the electrochemical potentials of two dots
become resonant (i.e., an electron is allowed tunnel between the two dots). In the center panel, dashed black
lines delimit the regions with a fixed total electron occupation in the system. From the left to right panels,
we gradually tune the gate voltages in order to reach the Nagaoka condition, where the three visible interdot
transitions are aligned in the three-electron configuration (right panel). The intersite interaction in the system
provides an effective isolation from the reservoirs for a narrow range of gate voltages, such that the system can
remain stable with three electrons in the resonant configuration.

Different parameters of the dot array can be controlled using voltages on different
gates. The Pi gates are designed to control the electron filling of dot i by adjusting the
dot chemical potential µi . Gates D0 and Ci are designed to control the tunnel coupling
ti , j , while gates Bi and Ci+1 are designed to control the coupling between dot i and its
reservoir. In reality, the proximity between the gates causes non-negligible cross capac-
itances, preventing independent control of the parameters that the gates were designed
to control. For some of the tuning stages, we make use of linear combination of gate
voltages – known as virtual gates [20, 24] – to provide a direct experimental knob to the
parameter of interest. We use charge stability diagrams [17] to identify the charge state
of the system as a function of different Pi voltages. These diagrams are also used to mea-
sure and tune the effective ti , j parameters independently, using the technique described
in detail in Refs. [20, 24], which requires analyzing the interdot transition of a single elec-
tron across dots i and j .

In order to observe signatures of Nagaoka ferromagnetism, we need to tune the sys-
tem such that it is loaded with three electrons isolated from the reservoirs and these
three electrons must be itinerant in the four dot system. In Fig. 5.8, we show some sam-
ple charge stability diagrams and describe the tuning method used to tune the gate volt-
ages to identify point N . To tune ti ,i+1 close to point N , we first localize 2 of the electrons
in dots i+2, i+3 (i.e. by slightly loweringµi+2, µi+3), and keep dots i , i+1 resonant using
the remaining electron to measure their tunnel coupling. Here we use cyclic dot indices
with i = {1,2,3,4}.

Next, we identify the gate voltages suitable to perform the two spin projection mea-
surement (point M in Fig. 2(a) in the main text). Once we have identified point M and
fine-tuned the gates to optimize the spin-readout fidelity, we define a linear combina-
tion of Pi voltages that joins the points M and N by a straight line in gate voltage space.
This virtual gate enables us to probe the system along the ‘detuning proportion’ pε axis
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in Fig. 2(b) in the main text.

5.6.2. EXTENDED FERMI-HUBBARD MODELS USED TO SIMULATE DIFFER-
ENT EXPERIMENTS IN THE MAIN TEXT

In this section we will describe the different parameters that are included in the model
Hamiltonians that we refer to in the main text for analytical and numerical simulations.
We begin with the simplest Fermi-Hubbard model of a 2x2 site plaquette with 3 elec-
trons, and add from there different parameters as we increase the complexity of the
model. The simplest Hamiltonian we describe (H0) has been solved analytically with the
aid of Mathematica. The more complex Hamiltonians in the following subsections were
solved numerically, using mainly the eigensolvers from the Python-based Scipy pack-
age, with the exception of the time-evolution simulations, which were solved using an
in-house solver package [34].

Representation of the quantum states. We represent the quantum states on the 2×2
plaquette as

|ψ〉 = ∑
{niσ}

a({niσ})|{niσ}〉. (5.3)

The basis consists of the states specified by the occupations of the electrons on the lattice
and their spin projections:

|{niσ}〉 = |n1↑n2↑n3↑n4↑n1↓n2↓n3↓n4↓〉, (5.4)

with niσ = 0 or 1. For N electrons on the plaquette we have
∑

iσniσ = N and the basis
states consist of all combinations of the occupations at fixed N . Hence N = 3 corre-
sponds to a space of the quantum states of dimension 8!/5!3! = 56.

The on-site energy and the Coulomb repulsion terms of the Hamiltonian
∑

i Ui ni↑ni↓−∑
i µi ni are diagonal in this basis. Tunneling involves the off-diagonal matrix elements [35]:

〈. . .1iσ . . .0 jσ′ . . . |c†
iσc jσ′ | . . .0iσ . . .1 jσ′ . . .〉 = (−1)Σ

jσ′−1
`=iσ+1n` , (5.5)

where ` goes over the elements between iσ and jσ′ (exclusive) in the list (5.4). The
Hamiltonian commutes with the spin operators S2 and Sz and its eigenstates are also
spin eigenstates |s,m〉α:

S2|s,m〉α = s(s +1)|s,m〉α,

Sz |s,m〉α = m|s,m〉α, m =−s,−s +1, . . . , s.
(5.6)

The spin operators are S2 = S2
z + 1

2 (S+S− + S−S+), Sz = 1
2

∑
i (ni↑ −ni↓), S+ = ∑

i c†
i↑ci↓,

and S− =∑
i c†

i↓ci↑. The label α distinguishes between the states with the same quantum
numbers s and m. For three electrons in the absence of a magnetic field those states
consist of energy degenerate s = 3/2 quadruplets and two sets of energy degenerate s =
1/2 doublets. In the low-energy sector relevant to the study, α distinguishes between the
two sets of s = 1/2 doublets.
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Basic construction of the 3-electron filled plaquette Fermi-Hubbard Hamiltonian. In
the simplest version of the model, the system is constrained to having 3 electrons and
each dot can be occupied with at most 2 electrons, subject to Pauli exclusion (i.e. double
occupation of a dot must be of opposite spin). For this section, the on-site interaction
U and tunnel coupling t are taken to be equal for all sites. For now we do not consider
any spin coupling or spin-dependent splitting, therefore the Hamiltonian can be divided
into two independent blocks, one for the m =±3/2 states (parallel spins) and another for
the m =±1/2 states (one flipped spin):

H 0 =H 3/2 +H 1/2 (5.7)

and for each block it is sufficient to solve for one of the m projections and assume an-
other degenerate set of states for the opposite m projection. As will be shown, these
assumptions reduce the dimensions of the Hamiltonians to 4 for H 3/2 and 24 for H 1/2,
making them simpler to solve analytically.

The quantum states for H 3/2 will be

|ψ3/2〉 = a1|0 ↑↑↑〉+a2|↑ 0 ↑↑〉+a3|↑↑ 0 ↑〉+a4|↑↑↑ 0〉 (5.8)

with the Hamiltonian

H 3/2 =


0 −t 0 −t
−t 0 −t 0
0 −t 0 −t
−t 0 −t 0

 (5.9)

with eigenvalues {−2t ,0,2t }.

For the block with m = ±1/2, double occupation is allowed, therefore we need to
consider more available states. We construct the Hamiltonian by first fixing the flipped
spin in one dot and working out all the possible states in the basis. For example, a down
spin in dot 1 results in the basis sub-set

|ψ′
1/2〉 = a1|2 ↑ 00〉+a2|20 ↑ 0〉+a3|200 ↑〉+a4|↓ 0 ↑↑〉+a5|↓↑ 0 ↑〉+a6|↓↑↑ 0〉 (5.10)

from which we then construct

H ′′′
1/2 =



U −t 0 0 t 0
−t U −t −t 0 t
0 −t U 0 −t 0
0 −t 0 0 −t 0
t 0 −t −t 0 −t
0 t 0 0 −t 0

 (5.11)

The same matrix can be used for the subspace with the flipped spin on each of the other
dots. To finish constructing the 24-dimensional Hamiltonian, we need to then work out
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the hopping matrices for the spin down, which results in the full Hamiltonian:

H 1/2 =


H ′′′

1/2 T 0 T ᵀ
T ᵀ H ′′′

1/2 T 0
0 T ᵀ H ′′′

1/2 T
T 0 T ᵀ H ′′′

1/2

 where T =



0 0 t 0 0 0
0 0 0 0 t 0
0 0 0 0 0 t
−t 0 0 0 0 0
0 −t 0 0 0 0
0 0 0 −t 0 0


(5.12)

The lowest two eigenvalues of this Hamiltonian are −2t (two states) and −p3t − 5t 2

U }
(four states). The former correspond to the m =±1/2 states of the quadruplets with total
spin s = 3/2. The remaining four states correspond to the two s = 1/2 doublets (with
m =±1/2).

As expected for a 3-spin system, the 8 lowest eigenenergies of this Hamiltonian con-
tain 4 degenerate ferromagnetic quadruplets and the 2 sets of degenerate low-spin dou-
blets.

Site specific parameters and local energy offsets. The first increase in the level of
complexity for the model is to make the parameters site specific (Ui and ti , j ), as well
as to add site specific local energy offsets µi . The resulting Hamiltonian

H 1 =− ∑
〈i , j 〉σ

ti , j c†
iσc jσ+

∑
i

Ui ni↑ni↓−
∑

i
µi ni (5.13)

can be constructed in similar way as described above, with the addition of the corre-
sponding diagonal µi elements. We numerically solve this Hamiltonian to obtain the pε
dependent energy spectra shown in the main manuscript.

Spin coupling terms. In order to capture the τr amp dependence of our experiments,
we have added to the model the effects of spin-orbit coupling and hyperfine interactions,
the two most important mechanisms that lead to spin flipping in GaAs [36]. Since we are
now considering spin coupling, we need the full quantum state representation with the
56-dimensional Hamiltonian.

For the quantum dot plaquette we have computed the matrix elements of the spin-
orbit coupling Hamiltonian that accounts for the Bychkov-Rashba and the Dresselhaus
effects for GaAs grown in the the crystallographic direction [001]:

H so =α(pxσy −pyσx )+β(−pxσx +pyσy ). (5.14)

here α = eγb〈E 〉/ħ and β = γd 〈k2
z 〉/ħ where e > 0 is the elementary charge, and E is

the electric field at the interface of the structure. For GaAs γb ≈ 5.2 × 10−2 nm2 and
γd ≈ 27.6meV.nm3 [37]. The axes of the coordinate system x and y correspond to the
directions [100] and [010]. When spin-orbit coupling is weak we may take as a basis the
Wannier states | j 〉 that are localized on the dots indexed by j . In this basis the matrix
elements of Eq. (5.14) are

〈 j |H so |k〉 =α(p j k
x σy −p j k

y σx )+β(−p j k
x σx +p j k

y σy ), (5.15)
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where p j k
a = 〈 j |pa |k〉, a = x, y . Those matrix elements vanish if j = k. Then in the second

quantized form Eq. (5.14) reads

H so = ∑
j kσσ′

c†
jσω

j k ·σσσ′
ckσ′ , (5.16)

withω j k ·σσσ′ = (−αp j k
y −βp j k

x )σσσ
′

x +(αp j k
x +βp j k

y )σσσ
′

y . The unit vector in the direction

of the dots j and k is ˆ̀
j k = cos(θ j k )x̂ +sin(θ j k )ŷ . Eliminating the matrix elements of the

momentum in the direction perpendicular to ˆ̀
j k , Eq. (5.16) becomes

H so = ∑
j kσσ′

c†
jσp j k

`

(
(−αsin(θ j k )−βcos(θ j k ))σσσ

′
x + (αcos(θ j k )+βsin(θ j k ))σσσ

′
y

)
ckσ′ .

(5.17)
Here p j k

`
= m〈 j | ˙̀|k〉 = i mt j k` j k /ħ, where m is the effective mass of the electron, ` j k =

` j −`k with ` j the coordinate of dot j on the ( j k) axis, and t j k equals minus the matrix
element of the one-electron Hamiltonian. Therefore

H so = ∑
〈 j ,k〉

t j k c†
j↑

(` j k

λb
e−iθ j k − i

` j k

λd
e iθ j k

)
ck↓+h.c., (5.18)

where j k are restricted to neighboring dots and we define the length scales λb = ħ/mα

and λd = ħ/mβ. Typically 〈k2
z 〉 ∼ 0.02nm−2 and 〈eE 〉 ∼ 3meV/nm. So λb ≈ 7µm and

λd ≈ 2µm, for neighbor quantum dots (` j k ≈ 0.15µm), giving` j k /λb ∼ 0.02 and` j k /λd ∼
0.08.

The large abundance of nuclear spins in the GaAs crystal means that each site in the
plaquette will be hyperfine coupled to a number of randomly oriented nuclear spins,
causing each site to experience a slightly different Overhauser field. This interaction is
described by the hyperfine coupling Hamiltonian [18, 27, 28]:

Hh f = S ·hN . (5.19)

Here S = (σx ,σy ,σz )/2 is the electron spin operator, hN =∑
i Ai Ii , Ai = Av0|ψ(ri )|2 is the

coupling parameter with nucleus i having spin operator Ii ,ψ(ri ) is the electron envelope
wave function at the nuclear site ri , and v0 is the volume of the crystal cell. Hence BN =
hN /gµB is the nuclear magnetic field acting on the electron with g-factor g , and µB is
the Bohr magneton.

The classical probability distribution of hN a (a = x, y or z) is normal [27, 28]: P (hN a) =
1√

2πδ2
N

exp(−h2
N a/2δ2

N ). The typical magnitude of the field component is δN ∼ A/
p

N ¿
hN max ∼ A, with N the number of nuclei covered by the envelope function of the elec-
tron and hN max the magnitude of the field when the nuclear spins are fully polarized.
For GaAs: N ∼ 106 and BN max/

p
N is of the order of a few mT [18], hence hN max/

p
N ∼

0.1µeV.
Since our basis states are eigenstates of the Pauli matrix σz , we express Eq. (5.19) as:

Hh f =
1

2

(
σz hN z +σ+

(
hN x − i hN y

)+σ−
(
hN x + i hN y

))
, (5.20)
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where σ± = (σx ± iσy )/2. We numerically implement Eq. (5.20) and the nuclear fields
of the four quantum dots are taken to be independent. In Fig. 5.9(a-c) we show that
the effect of the hyperfine coupling dominates over spin-orbit coupling, in the detuning
region of the energy level crossings.
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Figure 5.9: (a)-(c) Calculated spectra of the experimental system as function of detuning proportion, com-
paring the effects of different mechanisms for spin coupling: (a) spectrum without any spin coupling effects;
(b) spectrum including spin-orbit coupling effects calculated for this system as described in subsection 5.6.2;
(c) Sample spectrum with both spin-orbit and hyperfine induced Overhauser field gradients, using a single
combination of hN a fields selected from a normal distribution with standard deviation δN = 73 neV. (d) Fits
to the experimental data from Fig. 3b, using the time evolution simulations described in subsection 5.6.2, for
different values of distance between neighboring dots.

Time evolution simulations Using the full Hamiltonian with spin-coupling, we per-
form time evolution calculations to simulate the conditions in the pε pulsing experi-
ments. In the experiment, we initialize the ground state at point M and ramp adiabati-
cally to pε = 0.8, before pulsing to point N with a variable ramp time τr amp .

We use an in-house solver package [34] to simulate the evolution of the initialized
state for the last 20% of pε with varying ramp times. At pε = 0.8, we consider the ini-



5.6. ADDITIONAL MATERIAL

5

71

tialized state as a statistical mixture of the two lowest energy eigenstates, both of which
are s = 1/2 states at pε = 0.8. We consider 20 values of τr amp in the range from 50 ns to
1 µs, taking 10000 time-steps for each ramp. We then add the overlaps of the averaged
density matrix with each of the four lowest energy eigenstates at point N (i.e., the eigen-
states with s = 3/2). This overlap can be mapped to an ideal PT measurement with the
method described two sections below. For each value of τr amp , we repeat the evolution
350 times, drawing different values of hN a , and compute the average PT for the final
state. To account for imperfections of the experimental measurement of PT –caused by
the finite measurement bandwidth, the signal to noise ratio and |T 〉 to |S〉 relaxation, as
well as unwanted leakage to other states during the pulsed passages–we scale the ideal
calculated values of PT (τr amp ) to match the experimental PT at the minimum and max-
imum value of τr amp .

We vary the parameter δN and use the method above to get the best fit to our ex-
perimental data. Additionally, the spin-orbit term requires an estimate of the distance
between neighboring dots, which was lithographically designed to be ` = 150 nm. We
consider a conservative range of ` from 100 to 200 nm (see Fig. 5.9(d)), from which we
extract the estimate for δN = 73±3 neV quoted in the main text.

Extracting δN using the Landau-Zener model. The nuclear fields lead to the lifting of
the spin degeneracies of the s = 3/2 quadruplet and the s = 1/2 doublets and multiple
avoided crossings of the order of δN . A simple estimate of the characteristic time-scale
of crossover between the diabatic and the adiabatic regimes of voltage tuning can be
obtained by using the Landau-Zener formula for a two-level system [35]. Then the char-
acteristic ramp time is

τ∗r amp = ħ∆pε
2πδ2

N

d∆E

d pε
. (5.21)

For ∆pε = 0.2 this gives τ∗r amp ∼ 100ns, which is consistent with the time scale obtained
by the time-dependent numerical simulation of the model.

External magnetic field. To capture the orbitals effects resulting from a magnetic flux
through the square plaquette, we modify the tunneling term in Eq. (5.13) as:

− ∑
〈 j ,k〉σ

t j k e−iϕ j k c†
jσckσ,

with the Peierls phase:

ϕ j k = e

ħ
∫ r j

rk

dr ·A(r) = 2π

Φ0

∫ r j

rk

dr ·A(r), (5.22)

where e > 0 is the elementary charge, ħ is the reduced Planck constant, Φ0 = h/e is the
flux quantum, and A(r) is the magnetic vector potential. We use the gauge for which
ϕ41 = 2πΦ/Φ0, withΦ= B`2 the magnetic flux through the plaquette and ` the length of
the side of the plaquette, and the phases for the other links vanish.

The Zeeman contribution is:

HZ = gµB B ·S, (5.23)

where B is the external magnetic field.
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Charge stability simulations. In this work we use charge stability diagrams to identify
different charge occupation regimes and charge transitions as function of gate voltages.
To accurately simulate the charge stability diagrams, we modify our model to expand
the number of basis states such that the system is no longer constrained to a total of 3
electrons, while each dot can still be occupied by 0 to 2 electrons, and we include the
effect of intersite Coulomb repulsion, by adding a

∑
i< j Vi , j ni n j term to Eq. (5.13). Addi-

tionally, we use gate to local energy lever arms and a cross-capacitance matrix measured
from experiment to implement gate voltages Pi into the model and calculate their effect
on local energies µi . We use this model to calculate charge occupation as a function of
gate voltages. We used the simulation toolbox in the Python based package qtt [38] to
run these simulations.

5.6.3. MAPPING 3-SPIN STATES ONTO 2-SPIN MEASUREMENTS
In the main text, we state that we can distinguish between the 3-spin s = 1/2 and s =
3/2 states through a projective singlet/triplet (|S〉/|T 〉) measurement on 2 random spins.
Here we show this in the first-quantization formulation of the spin states. We use the
following 8 basis states of the system with 3 spin- 1

2 particles:

|3

2
,+3

2
〉 = |↑↑↑〉

|3

2
,+1

2
〉 = 1p

3
(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉)

|3

2
,−1

2
〉 = 1p

3
(|↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉)

|3

2
,−3

2
〉 = |↓↓↓〉

|1

2
,+1

2
〉1 = 1p

3

(
−|↑↑↓〉+e iπ/3|↑↓↑〉+e−iπ/3|↓↑↑〉

)
|1

2
,−1

2
〉1 = 1p

3

(
−|↓↓↑〉+e iπ/3|↓↑↓〉+e−iπ/3|↑↓↓〉

)
|1

2
,+1

2
〉2 = 1p

3

(
−|↑↑↓〉+e−iπ/3|↑↓↑〉+e iπ/3|↓↑↑〉

)
|1

2
,−1

2
〉2 = 1p

3

(
−|↓↓↑〉+e−iπ/3|↓↑↓〉+e iπ/3|↑↓↓〉

)

(5.24)

The 2-spin system has one singlet (|S〉) and three triplet states (|T+〉, |T0〉, |T−〉), given
by:

|S〉 = |0,0〉 = 1p
2

(|↑↓〉− |↓↑〉)

|T+〉 = |1,+1〉 = |↑↑〉
|T0〉 = |1,0〉 = 1p

2
(|↑↓〉+ |↓↑〉)

|T−〉 = |1,−1〉 = |↓↓〉

(5.25)

To obtain the 2-spin projection on the 3-spin system, we take partial inner products of
each of the eight basis states with singlet and triplet states in the first two spins. First, we
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take the basis state | 3
2 ,+ 3

2 〉 :

〈S|3

2
,+3

2
〉 = 1p

2
[〈↑↓|−〈↓↑|] [|↑↑↑〉] = 0

〈T0|3

2
,+3

2
〉 = 1p

2
[〈↑↓|+〈↓↑|] [|↑↑↑〉] = 0

〈T+|3

2
,+3

2
〉 = 〈↑↑||↑↑↑〉 = |↑〉

〈T+|3

2
,+3

2
〉 = 〈↓↓||↑↑↑〉 = 0

(5.26)

The probability of a |S〉 measurement outcome in a 2-spin projective measurement of
the | 3

2 ,+ 3
2 〉 basis state is ‖〈S| 3

2 ,+ 3
2 〉‖2 = 0. Similarly, the probability of a |T 〉 measurement

outcome is

‖〈T+|3

2
,+3

2
〉‖2 +‖〈T0|3

2
,+3

2
〉‖2 +‖〈T−|3

2
,+3

2
〉‖2 = 1+0+0 = 1.

Following similar derivations, we find that also for the other three basis states with s =
3/2, the probabilities of obtaining |S〉 and |T 〉 upon measurement are 0 and 1 respec-
tively.

Next, we take the basis state | 1
2 ,+ 1

2 〉1 :

〈S|1

2
,+1

2
〉1 = 1p

2
[〈↑↓|−〈↓↑|] 1p

3

[
−|↑↑↓〉+e iπ/3|↑↓↑〉+e−iπ/3|↓↑↑〉

]
= 1p

6

[
e iπ/3 −e−iπ/3

]
|↑〉 = ip

2
|↑〉

〈T0|1

2
,+1

2
〉1 = 1p

2
[〈↑↓|+〈↓↑|] 1p

3

[
−|↑↑↓〉+e iπ/3|↑↓↑〉+e−iπ/3|↓↑↑〉

]
= 1p

6

[
e iπ/3 +e−iπ/3

]
|↑〉 = 1p

6
|↑〉

〈T+|1

2
,+1

2
〉1 = 〈↑↑| 1p

3

[
−|↑↑↓〉+e iπ/3|↑↓↑〉+e−iπ/3|↓↑↑〉

]
=− 1p

3
|↓〉

〈T−|1

2
,+1

2
〉1 = 〈↓↓| 1p

3

[
−|↑↑↓〉+e iπ/3|↑↓↑〉+e−iπ/3|↓↑↑〉

]
= 0

(5.27)

This results in 2-spin measurement probabilities of:

‖〈S|1

2
,+1

2
〉1‖2 = 1

2
and

‖〈T+|1

2
,+1

2
〉1‖2 +‖〈T0|1

2
,+1

2
〉1‖2 +‖〈T−|1

2
,+1

2
〉1‖2 = 1

3
+ 1

6
+0 = 1

2
.

Similar calculations for the other three basis states with s = 1/2 show |S〉 and |T 〉 mea-
surement probabilities of 0.5 each. Although we have used the 2 spin singlet and triplet
states for the first two spins for the calculations, same results hold for any other two spin
combinations.



5

74 BIBLIOGRAPHY

Assuming statistical mixing of the 8 basis states with 3 spin-1/2 particles, the probability
of a two-spin singlet measurement outcome is given by:

PS = ∑
s,m

P (s,m)||〈S|s,m〉||2 (5.28)

where P (s,m) is the probability of occupation of the three-electron spin state |s,m〉. Sim-
ilarly the probability of a two-spin triplet measurement outcome is given by:

PT = ∑
s,m

P (s,m)
[||〈T+|s,m〉||2 +||〈T0|s,m〉||2 +||〈T−|s,m〉||2] (5.29)

As we have seen before, for any basis state with s = 3/2, the probability two-spin triplet
measurement outcome is 1. So, for any statistical mixture of s = 3/2 basis states, the
probability a two-spin triplet measurement outcome is also 1. Similarly, for any sta-
tistical mixture of s = 1/2 basis states, the probability a two-spin triplet measurement
outcome is 0.5. So in our experiment the expected values of P 3/2

T and P 1/2
T are 1 and 0.5,

where P 3/2
T (P 1/2

T ) is the probability a two-electron triplet state measurement outcome
from the quadruplet (doublet) configuration.
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6
A CAPACITANCE

SPECTROSCOPY-BASED PLATFORM

FOR REALIZING GATE-DEFINED

ELECTRONIC LATTICES

Electrostatic confinement in semiconductors provides a flexible platform for the emula-
tion of interacting electrons in a two-dimensional lattice, including in the presence of
gauge fields. This combination offers the potential to realize a wide host of quantum
phases. Capacitance spectroscopy provides a technique that allows one to directly probe
the density of states of such two-dimensional electron systems. Here, we present a mea-
surement and fabrication scheme that builds on capacitance spectroscopy and allows for
the independent control of density and periodic potential strength imposed on a two-
dimensional electron gas. We characterize disorder levels and (in)homogeneity and de-
velop and optimize different gating strategies at length scales where interactions are ex-
pected to be strong. A continuation of these ideas might see to fruition the emulation of
interaction-driven Mott transitions or Hofstadter butterfly physics.

This chapter has been published in Journal of Applied Physics 124, 124305 (2018)[1].
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6.1. INTRODUCTION
Artificial lattice structures have the potential for realizing a host of distinct quantum
phases[2]. Of these, the inherent length scale of optical platforms allows for a clean
emulation of quantum mechanical band physics, but also means interactions are rather
weak [3, 4]. For electronic implementations in solid-state, interactions can be made non-
perturbatively strong, potentially leading to a host of emergent phenomena. An example
is shown in graphene superlattices, where not only Hofstadter’s butterfly physics [5–8]
but also interaction-driven and emergent fractional quantum Hall states in the butterfly
appear [9]. The ideal platform would host a designer lattice with tunable electron den-
sity and lattice strength, allowing to emulate band physics for a wide variety of lattice
types and giving access to the strong-interaction limit of correlated Mott phases [10–14].
Semiconductor heterostructures with nano-fabricated gate structures provide this flexi-
bility in lattice design and operation, yet inherent disorder in the host materials, as well
as the short length scales required, make the realization of clean lattices difficult [15–17].

In this letter, we introduce a novel experimental platform for realizing artificial gate-
induced lattices in semiconductors, based on a capacitance spectroscopy technique [18–
20], with the potential to observe both single-particle band structure physics such as
Hofstadter’s butterfly and many-body physics such as the interaction driven Mott insu-
lator transition. We discuss different gating strategies for imprinting a two-dimensional
periodic potential at length scales where interactions are expected to be strong, charac-
terize intrinsic disorder levels, and show first measurements of double gate devices.

6.2. HETEROSTRUCTURE AND CAPACITANCE SPECTROSCOPY
To host the 2D electron gas (2DEG), we use a GaAs quantum well with AlGaAs barriers,
grown by molecular beam epitaxy. The substrate contains a highly Si-doped GaAs layer
that acts as a back gate. It is tunnel coupled to the 2DEG through a Alx Ga1−x As tunnel
barrier (see Fig. 6.1(a) and Table 6.1). There is no doping layer above the quantum well
in order to avoid an important source of disorder. A metallic top gate is fabricated on the
surface. A variable capacitor forms between the back and top gates: when an alternating
potential difference is applied between them, electrons tunnel back and forth between
the back gate and the 2DEG, modifying the capacitance by an amount proportional to
the density of states (DOS) of the 2DEG. The tunnel frequency depends mainly on the
thickness and the Al content (x) of the tunnel barrier. At the limits of zero or infinite
DOS, the system behaves like a simple parallel plate capacitor, described by the distance
between the top gate and the back gate or the top gate and the 2DEG, respectively. The
capacitance is read out using a bridge design with a reference capacitor [21], where the
voltage at the bridge point is kept constant (Fig. 6.1(b)) by changing the amplitude ratio
and phase difference of AC signals applied to each capacitor (see subsection 6.7.1 for
experimental details).

To impose a periodic potential in the 2DEG, we pattern a metallic gate into a grid
shape before making the top gate. From a capacitance spectroscopy perspective, this
double-gate structure can be made with two different designs. In the first design, the top
gate is separated from the grid gate by a thick dielectric layer, rendering its capacitance
to the grid gate negligible (a few pF compared to tens of pF)(Fig. 6.1(c)). Alternatively,
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we can minimize the separation between the two gate layers, such that the capacitance
between the two top gates (100s of pF) exceeds the sample capacitance. Here the two
gates effectively form a single gate (Fig. 6.1(d)), as seen in AC. We investigate both designs
below, starting with describing the fabrication (limits) and following with measurements
of disorder levels and imposed potentials.

top gate
grid gate

back gate

top gate

grid gate

back gate

10-100 mK

0.7 K

AWG Lock-intop gate
capping layer

blocking barrier

quantum well
tunnel barrier
spacer layer

doped back gate

substrate

Metal
GaAs

GaAs

GaAs

GaAs

GaAs n++

AlyGa1-yAs

AlxGa1-xAs

a b

c d

Figure 6.1: (a) Schematic diagram showing the various layers of the samples with a single global gate. (b)
Bridge set-up for equilibrium capacitance measurements, where sinusoidal signals are applied by a waveform
generator (WG) on both the sample back gate and on a reference capacitor of 45 pF. The relative amplitude
and phase difference between these two signals are adjusted to maintain a constant zero voltage at the bridge
point (red dot), which is amplified in different stages and read out using a lock-in amplifier. The bridge point
is connected to the grid gate when there is a grid gate present, and to the top gate otherwise. (c)-(d) Schematic
diagrams of two different two-layer gate geometries, designed to impose a periodic potential on the 2DEG,
comprising either of a deposited dielectric (c) or a dielectric obtained by oxidation of the first metallic layer
(d). The dielectric spacer is depicted in red. The other colors are as in panel (a).

6.3. GATE DESIGN AND FABRICATION
We distinguish devices with a single global gate (Fig. 6.1(a)) and devices with two layers
of gates: a grid gate and a uniform global gate on top (Fig. 6.1(c-d)). The former will be
used to characterize disorder levels in section 6.4, whereas the latter allows for the impo-
sition of a periodic potential. The strength of the imparted periodic potential depends
on the dielectric choice (thick or thin, compare Fig. 6.1(c-d)), gate design, grid gate pitch,
and the maximum voltages that can be applied. Grid gates are made with a pitch of 100
- 200 nm (Fig. 6.2(a-b)), which is mainly limited by the fabrication constraints. The max-
imum voltage is determined by the onset of leakage through the heterostructure or the
accumulation of charges in the capping layer and thus depends on heterostructure de-
tails such as the Al concentration and layer thicknesses.
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The expected imparted potentials at the 2DEG with typical maximum voltages for
both designs are shown in Fig. 6.2(c-f) (calculated using COMSOL electrostatic simula-
tion software). In order to observe a Mott transition and the corresponding localization
of electrons on individual sites, the periodic potential amplitude must exceed the local
Coulomb repulsion (typically several meVs) [22]. For 200 nm grids, both designs show
similar maximum effective periodic potentials, and they should suffice for the forma-
tion of quantum dots. For the 100 nm grids, however, the achievable potentials exceed
the charging energy only when using the overlapping gate design. For the smaller pitch
grid, effective shielding of the top gate voltage by the grid gate is larger when the top
gate is farther away from the heterostructure. Therefore, an overlapping gate design is
required to go to sufficiently strong periodic potentials for localization at 100 nm site-to-
site pitch.

Furthermore, we note that screening induced by mobile charges in the back gate re-
gion has both desired and undesirable consequences. An intended benefit is that disor-
der from charged impurities or defects in the heterostructure is partly screened, and the
more so the closer to the back gate the impurities or defects are located [14]. However,
electron-electron interactions and the gate-voltage imposed potential modulation itself
are partly screened as well, and more so as the lattice dimension is reduced.

Double gate devices with either a thick (Fig. 6.1(c)) or a thin dielectric (Fig. 6.1(d))
between the two gates require different fabrication processes. Here, we discuss the fab-
rication of the active regions in both designs, which have a size of 200 µm by 200 µm.
The detailed information for all steps in the fabrication is provided in subsection 6.7.2.
In both designs, the square grid metallic gates are fabricated at pitches of 100-200 nm
using electron beam lithography and evaporation of metals in a standard lift-off process
(Fig. 6.2(a-b)). In the first design, both gates are made of Ti/Au(Pd) and separated by >
200 nm layer of oxide, such as plasma-enhanced chemical vapor deposition grown SiOx

or plasma-enhanced atomic layer deposition grown AlOx . In the second design, both
gates are made of Al, and an oxygen (remote) plasma oxidation step is used after de-
positing the first Al layer to ensure sufficient electrical isolation between the two layers
by transforming part of the Al gate to Aluminum oxide [23]. In this design, we measure
resistances exceeding 1 GΩ over several volts.

Because of the fabrication process, there are limits in the periodicity and homogene-
ity of the grid gate layer. We typically find (1) that plaquettes of a smaller size than 40
nm x 40 nm will not lift off and that (2) the grain size of a particular metal determines
the narrowest lines that can be made reliably with liftoff. For the materials used here,
AuPd and Al, these effects limit the minimum lattice pitch (Fig. 6.3(a)). Furthermore,
we have analyzed the homogeneity of the lattices by using image processing techniques
to give the statistics of the non-metal plaquette areas (Fig. 6.3(b)). A more relaxed lat-
tice constant means higher relative homogeneity but this is not necessarily helpful: it
also increases the flux through a single plaquette when a perpendicular magnetic field
is applied (relevant for Hofstadter butterfly physics, as will be described below) and it
decreases the charging energy, relevant for Mott interaction physics.
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Figure 6.2: (a) Electron micrograph of 100 nm periodic AuPd and Al grid gate structures for two different gate
designs. (b) Similarly, for 200 nm periodic gate structures. (c)-(f) Electrostatic simulations of imparted po-
tential in the 2DEG in both designs and both gate pitches (100 and 200 nm) using denoted gate voltages. For
(c)-(d), we use a 350 nm SiO2 dielectric and flat top gate. For (e)-(f), we use a 5 nm spacer dielectric (oxidized
Aluminum oxide) separating the two top gates. Voltages used are roughly the empirical maximum voltage dif-
ference we can set for both designs (see fig 6.5), Vgrid =−0.45 V for both. Widths of the metal grids are taken as
22 nm and 25 nm for AuPd and Al grids respectively, for reasons explained below.

6.4. MEASUREMENTS

6.4.1. GLOBAL GATES: DISORDER LEVELS

In order to assess disorder levels, we first measure the devices with a single uniform top
gate. We measure the capacitance at frequencies below and above the rate at which
electrons tunnel between the 2DEG and the doped back gate region as a function of bias
voltage (Fig. 6.4(a-b)) and magnetic field. Having measured the capacitance at low and
high frequencies, we calculate the equilibrium DOS. There are essentially two unknown
parameters in this conversion, namely the distance from top to bottom gate and the rela-
tive location of the 2DEG itself. The former can be directly inferred from the capacitance
at high frequency, the latter by using either the known effective mass or the Landau level
splitting with magnetic field as benchmarks (see subsection 6.7.3 for details on this con-
version).

As a magnetic field is turned on, we see the onset of Landau level formation. For
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Figure 6.3: (a) The fraction of surface area covered by the grid gate as a function of lattice size. The black line
indicates a grid with the smallest possible plaquettes allowed by the lift-off process, whereas the blue (red) line
indicates the percentage of surface area covered by a grid with metallic lines of 35 nm (22 nm). (b) Variation
in relative area of non-metal plaquettes in the grid gate layer (Ai , see inset) as a function of lattice size, as
a measure of fabrication (in)homogeneity. The green dashed line indicates variations in plaquette area that
coincide with variations of a tenth of a flux quantum at 1 T (see Discussion below). Blue (red) points indicate
grid gates made of Al (AuPd) for both figures.

magnetic fields above 2 T, we observe a splitting between the spin subbands of the Lan-
dau levels which increases with the applied magnetic field (Fig. 6.4(c)). For a given mag-
netic field, the separation between the two subbands of any Landau level is significantly
larger than the Zeeman energy with g = -0.44 for bulk electrons in GaAs [18]. This en-
hanced Zeeman splitting is an effect of the Coulomb repulsion between electrons in the
same subband [24].

We focus on the low-field data (Fig. 6.4(d)) and infer disorder levels from the den-
sity of states data (Fig. 6.4(e)). Gaussian fits to the Landau levels yield typical widths
ranging between 0.4-1 meV at densities above 1011 cm−2, which, although hard to com-
pare directly to the mobilities reported for transport-based wafers [15–17], is comparable
to previously reported values for similar heterostructures[25]. The Landau levels them-
selves (aliased at low fields in Fig. 6.4(d)) become visible above fields of roughly 0.25 T,
corresponding to densities per Landau level of 1.2×1010 cm−2 and cyclotron gaps of 0.43
meV. The Landau level width did not change when we increased the mixing chamber
temperature from 10 mK to 100 mK or when we varied the excitation voltage. Further-
more, the Landau level width was consistent across fabrication schemes but did vary
with the wafer used. Therefore, we consider it a heuristic metric for the achievable dis-
order levels on a particular wafer.

We have tried to optimize wafer design to minimize this disorder, while allowing for
the imposition of a periodic potential. All in all, over twenty different GaAs/Alx Ga1−x As
wafers grown by molecular beam epitaxy have been used. Growth details of the wafers
can be found in Table 6.1.

The initial wafer (W1) design was based on Dial et. al.[26], and was grown on a con-
ducting substrate. This simplifies the fabrication of single-gate devices, as an unpat-
terned ohmic back gate contact can be directly evaporated on the back side of the wafer,
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while simple metallic pads fabricated on the front side can be directly bonded to and
used as a top gate. A double-gate design requires dedicated bond pads, which would
give a sizable contribution to the total capacitance when fabricated directly on the wafer.
The device used for Fig. 6.5(a-b) in the main text, fabricated on one of the first rounds of
wafers (W2), therefore, had bond pads on top of the thick dielectric separating the two
gates. This strategy is not compatible with the second design, where there is no thick
dielectric layer, and also gives a very low wire bonding yield due to poor adhesion of the
dielectric layers on the GaAs surface. Furthermore, handling both sides of a substrate
during fabrication risks contaminating the front surface, and is particularly suboptimal
when detailed features (grid gates) are present as well. Subsequent wafers were, there-
fore, grown with a 400-800 nm thin degenerately Si-doped back gate region that is con-
tacted from the front side of the wafer, and is etched to form electrically isolated device
and bond pad mesas.
We have further tried to optimize the wafer stacks aiming to increase the amplitude of
the periodic potential at the 2DEG and to decrease disorder levels. A stronger periodic
potential can be obtained by either increasing the maximum possible gate voltage, re-
ducing the separation between the grid gate and the 2DEG or increasing the distance
between the 2DEG and the back gate. The latter may also reduce disorder caused by
dopant diffusion from the back gate. Increasing the quantum well thickness is also ex-
pected to reduce the effect of disorder by accommodating more of the electron wave-
function away from the interfaces. Concretely, we have first varied spacer layer thick-
ness (25 and 35 nm) and quantum well widths (15 and 30 nm). In further attempts to
optimize the trade-off between the periodic potential that can be set at a fixed voltage
and the maximum voltage we can apply to the gates before leakage sets in, we varied
the blocking barrier thickness (40, 50, 60, and 70 nm) and fabricated devices with a thin
dielectric layer (see wafers M1 and W3) added underneath the grid gate. None of these,
however, managed to noticeably increase the maximum potential we could impose on
the 2DEG, or to decrease disorder levels. The strongest effect on disorder was obtained
by changing the aluminum concentration in the Alx Ga1−x As blocking and tunnel barrier
(from x = 0.31 everywhere to x = 0.36 in the blocking barrier and x = 0.20 in the tun-
nel barrier), while slightly increasing the tunnel barrier thickness in order to keep the
tunnel rates roughly the same (see Table 6.1). The measurements shown in Fig. 6.4 and
Fig.s. 6.5(c-d) are taken on this optimized wafer, called M2.

6.4.2. GRID GATES: PERIODIC POTENTIAL STRENGTH

For measurements of two-layer gate devices of both designs (Fig. 6.5), we keep the grid
gate potential fixed, given that it serves as the gate voltage of the first transistor in the
amplification chain, and map out the remaining two gate voltages over as large a range
as possible. Initial devices of both designs indeed show accumulation as a function of
the two gate voltages (transition from light gray to blue in Fig. 6.5(a,c). At voltages where
we expect a flat periodic potential (close to the center of each panel in Fig. 6.5), and for
our final set of devices, we can still distinguish well-defined Landau levels, indicating
that the added fabrication steps themselves do not severely increase the disorder levels
(data not shown). This disorder in the potential landscape also leads to a broadening of
the onset of accumulation, seen in the center of Fig. 6.5(a,c).
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Table 6.1: Heterostructure details.

W1 W2 M1 W3 M2
capping layer GaAs GaAs GaAs GaAs GaAs

10 nm 10 nm 5 nm 10 nm 5 nm
blocking barrier (Al content) 0.316 0.316 0.316 0.315 0.360

60 nm 60 nm 40 nm 60 nm 60 nm
quantum well GaAs GaAs GaAs GaAs GaAs

23 nm 23 nm 23 nm 23 nm 23 nm
tunnel barrier (Al content) 0.316 0.316 0.316 0.315 0.199

13 nm 13 nm 14 nm 14 nm 16 nm
spacer layer GaAs GaAs GaAs GaAs GaAs

25 nm 15 nm 15 nm 15 nm 15 nm
back gate GaAs n++ GaAs n++ GaAs n++ GaAs n++ GaAs n++

800 nm 800 nm 400 nm 400 nm 400 nm
tunneling frequency 1 MHz 200 kHz 2 kHz 30 kHz 100 kHz
at 0T, n ≈ 1011 cm−2

lowest field at which Landau 3 T 0.65 T 0.50 T 0.40 T 0.25 T
levels can be distinguished (at 4 K)
comments n++ doped n++ doped

substrate substrate

For devices of the first design, this broadening increases as we move away from the
center, along the gray-blue boundary (Fig. 6.5(a)). This suggests that we see a gate-
voltage induced spatial variation in the 2DEG potential that exceeds disorder levels (0.4-
1 meV) at low densities. Based on electrostatic simulations of the strength of the im-
posed potential, the gate-voltage induced variation is indeed expected to exceed the dis-
order levels (Fig. 6.2). The asymmetry between positive and negative top gate values seen
in the data could possibly be explained by effective disorder levels being smaller when
charges accumulate mainly underneath the grid gate, as compared to when charges ac-
cumulate mainly underneath the dielectric. Finally, in Fig. 6.5(b) we resolve separate
lines at the onset of accumulation for negative top gate voltages. Even though we expect
to see evidence of miniband formation, we do not attribute these splittings to miniband
formation, as they show a much larger periodicity in back gate voltage than the 6 mV
expected from the density of states calculation (see below).

For devices of the second design, the widening of the onset of accumulation is less
pronounced, but the effect of gating is seen at finite magnetic fields, where a voltage
difference between the grid and top gate effectively blurs out the gaps between Landau
levels (Fig. 6.5(c-d)). This indicates that the imposed local potential variation must be
comparable to or stronger than the Landau level spacing at 1 T (1.7 meV). We conclude
that also for the second design, the 200 nm periodic potential exceeds disorder levels.

Increasing further the amplitude of the potential variation induced by the gates was
limited by saturation of the gating effect. For the first gate design, we find a saturation to
the effect of the top gate in gating the 2DEG at gate voltages exceeding 35 V in absolute
value. This could be a sign of charges building up at the interface of the capping layer
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Figure 6.4: (a) Bridge equilibrium phase as function of back gate bias and measurement frequency. (b) Global
gate capacitance as function of back gate bias and measurement frequency. (c) Landau fan diagram: device
capacitance as function of back gate bias and magnetic field, showing onset of accumulation, integer quantum
Hall levels and exchange splitting. (d) Zoom in of Landau fan diagram for low field regime of (c). (e) Calculated
density of states (DOS) from (d), allowing us to assess disorder from Landau level visibility. The gaps at filling
factors ν = 4 and ν = 8 are indicated. At lower fields, the small Landau level spacing leads to aliasing in the
image.

and the dielectric, or in the dielectric itself, which screen the effect of the top gate. This
saturation limits the potential we can impose on the 2DEG. For the second gate design,
a maximum voltage difference of roughly 2 V can be set between the back gate and the
surface gates before leakage starts to occur. As an attempt to allow for larger gate voltages
before leakage through the heterostructure occurs, we have tried the same fabrication
but with an additional 5 nm ALD-grown AlOx dielectric placed underneath the grid gate.
This indeed prevents leakage but the gating effect saturated at the same voltages where
leakage occurred for devices without this additional dielectric. Therefore, 2 V was still
the maximum voltage we could apply between the back and surface gates in the second
design.
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Figure 6.5: (a) Capacitance as function of back gate and top gate voltages for a device with a 200 nm periodic
square grid gate and a 360 nm SiO2 dielectric separating the two gate layers (see inset and Fig. 6.2(b)). (b)
Derivative of capacitance data. (c)-(d) Similar data taken for a device with aluminum overlapping gates (see
inset) at 1 T. Black and white triangles in (b) and (d) indicate the gate voltages used in Fig. 6.2 (d) and (f)
respectively. The onset of accumulation shows broadening in (b) whereas Landau levels get blurred out with
increasing top gate voltage in (d)

6.5. DISCUSSION: WHAT TO SEARCH FOR IN FUTURE DATA

As we have just seen, (i) the periodic potential exceeds disorder levels. In order to see
Hofstadter’s butterfly and Mott physics, however, we also need to (ii) be able to resolve
the induced density of states modulations and (iii) the lattice potential from the grid it-
self should be sufficiently homogeneous. The latter two considerations will be discussed
below, based on the data presented.

Using either gate design, we find both gates to influence the accumulation of charges
in the quantum well as expected, but neither shows clear evidence of a lattice potential
imposed on the 2DEG (Fig. 6.5). At zero magnetic field, a lattice potential would lead to
minibands that manifest as periodic modulations in the density of states (and capaci-
tance) with a period corresponding to two electrons per lattice site, or 5×109 cm−2 for a
200 nm square grid. Expressed in mV on the back gate, this corresponds to a period of 6
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mV. Furthermore, at finite magnetic field, Landau levels are expected to show structure
due to Hofstadter butterfly physics[16, 27], with the largest gaps expected around k±1/4
of a flux quantumΦ0 threading each lattice plaquette (with k an integer;Φ0 corresponds
to 104 mT for a 200 nm grid). Finally, a strong enough periodic potential would allow
interaction effects to dominate. Miniband gaps are expected to split as filling starts to
occur with a period of one electron per lattice site, akin to the interaction-driven Mott
transition [12]. None of these effects are visible in Fig. 6.5 nor in many detailed targeted
scans of magnetic field and gate voltages on devices with 200 and 100 nm grid gate peri-
odicity.

If we compare the 5×109 cm−2 density modulations expected from miniband forma-
tion with the 1.2×1010 cm−2 broadening of low-field Landau levels (global gate devices
at high densities, i.e., we do not have evidence that we can resolve density variations
below 1.2×1010 cm−2), it is reasonable that gaps are not yet seen opening up at densi-
ties corresponding to the filling of (pairs of) electrons on each lattice site. This suggests
that either lattice size or wafer disorder has to be further reduced. As it proves hard
to lift off plaquettes of metal that are smaller than roughly 40 nm by 40 nm, there is
not much room to reduce lattice dimension further in this particular fabrication scheme
(Fig. 6.3(a)). For 100 nm pitch grids, the period of the density modulations is expected
to be four times larger but is still comparable to current best-case scenario Landau level
broadening. As such, reducing intrinsic disorder seems necessary. An appropriate goal
would be to make double layer gate devices with Landau levels that are distinguishable
at fields below 100 mT.

The visibility of Hofstadter butterfly gaps depends not only on the intrinsic disorder
in the device but also on the inhomogeneity in the plaquette sizes, as this would entail a
different number of flux quanta threading through different plaquettes. If the size vari-
ations from electron micrographs of our devices translated to identical size variations
in the periodic potential (Fig. 6.3(b)), we should just be able to distinguish the largest
gaps[16]. It is hard to assess, however, whether this indicator from the electron micro-
graphs directly correlates to the relevant physics in the 2DEG.

6.6. OUTLOOK
There is room for further optimization of these devices. On the heterostructure side, the
distance between the back gate and the 2DEG can be further increased, compensating
with a decreased Al content in the tunnel barrier to keep the tunnel-rate fixed. Further-
more, part of the spacer layer can be grown at reduced temperatures, which has been
shown to strongly reduce disorder by limiting the diffusing of Si dopants from the back
gate region[25]. On the fabrication side, there is still room left for a modest reduction of
the lattice periodicity with the current lift-off process. Even smaller length scales can be
obtained by switching to dry etching of the grid pattern, albeit at an unknown impact to
wafer disorder levels.

In summary, we have demonstrated a novel platform intended for the realization of
artificial lattices of interacting particles. Although fine-tuning the design to the point
where a sufficiently homogeneous and strong periodic potential can be applied remains
to be done, the quantum Hall data already show how the strong-interaction, low-temperature
limit can be reached. Such a platform has potential for studying the interaction-driven
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Mott insulator transition[12, 28] and Hofstadter butterfly physics[5] with finite interac-
tions, and can be extended from the steady-state measurements presented here to in-
clude time-domain measurements of excited states[26].

6.7. SUPPLEMENTARY MATERIAL

6.7.1. CAPACITANCE BRIDGE

The capacitance bridge is built on a printed circuit board (PCB) that is mounted on the
10 mK mixing chamber stage of a dilution fridge and whose main components are the
device, the reference capacitor and a high electron mobility transistor (HEMT, that serves
as the first amplifier). By mounting the HEMT orthogonal to the PCB surface, we can ap-
ply magnetic fields to the sample without influencing the amplification chain. All D/C
lines on the sample PCB have R/C filters on top of the filtering in the fridge. A 10 and
40 MΩ resistance is used to bias the bridge point and top gate in D/C, respectively, and
a bias-tee is added to bias the back gate on top of the measurement signal. The high-
frequency lines are not attenuated in the fridge, as we found this to lead to ground loop
issues, but are instead attenuated on the PCB itself. Measurement excitations are gener-
ated using a signal generator at room temperature. The bridge point voltage is amplified
further at 0.7 K and at room temperature and measured using a lock-in.

An iterative scheme is implemented to minimize the bridge point voltage by updat-
ing the amplitude ratio and phase difference of the two excitations as gate voltages and
applied magnetic field are changed. The excitation on the sample side is kept con-
stant and the excitation on the reference capacitor side is updated based on the se-
cant method. For this, we model the bridge as a linear system of complex variables:
Y = AX +B , where X is the reference signal, Y is the output from the lock-in, and A and
B are complex numbers. Given two iterations with reference signals Xi and Xi+1 and re-
spective output values Yi and Yi+1, A and B are calculated as well as Xi+2 =−B/A, which
is subsequently set and Yi+2 measured. As the first two iterations, we take the last set ref-
erence signal as well as a point with a typically 1 % higher amplitude and a tenth of a de-
gree increased phase. Convergence is reached when the amplitude difference between
the last two reference signals drops below some pre-defined value, typically chosen to be
several parts per thousand of the amplitude itself. The sample capacitance Csample fol-

lows from the reference capacitor value Cref and the applied amplitude ratio R = Vref
Vsample

and phase difference δφ=π+φref −φsample at equilibrium: Csample = cos(δφ)RCref.

6.7.2. DESIGN AND FABRICATION DETAILS

As discussed earlier, several different designs and fabrication recipes were used through-
out this work to fabricate devices. In the first part, we give some general information on
steps that have been employed for many of these fabrication runs. Next we describe
fabrication processes of different dielectrics used in the first design to separate the top
and grid gate layers. Finally, we provide detailed information for a fabrication run of the
second design with overlapping aluminum gates, which serves as a clear example from
which the steps required for fabricating the other devices measured can be deduced.
All lithography steps were performed using electron beam lithography (Vistec EBPG
5000+ or 5200) at 100kV acceleration voltage. Etching Alx Ga1−x As was done using di-
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luted Piranha (1:8:240 H2SO4:H2O2:H2O) yielding etch rates of roughly 4 nm/s. The ac-
tual etch rate decreases on a timescale of minutes as the H2O2 concentration slowly de-
creases. Spinning is done at 500 rpm for 5 seconds and then for 55 seconds at speeds
listed below. Etching SiO2 and AlOx was done using buffered HF (BOE 1:10) solutions.
After either type of wet etch, devices are rinsed repeatedly in H2O. Adhesion issues for
resists with HF etch times longer than 20 s mean iterative etching and re-baking is nec-
essary. For the 366 nm AlOx layers, this meant we had to use a dry Cl etch to etch the bulk
of the depth of the vias before finishing with a wet etch. Metallic layers were deposited
using electron-beam evaporation at room temperature and subsequent lift-off in a sol-
vent.
The first design, with a thick dielectric separating the two gate layers, has been fabricated
with two different dielectrics. For the results of Fig. 6.5(a-b), plasma-enhanced chemical
vapor deposition (PECVD) of 360 nm of SiO2 as dielectric was used, which was found
to introduce phase-noise during capacitance-bridge measurements. We have also fab-
ricated devices with 366 nm of plasma-enhanced atomic layer deposition (ALD) grown
AlOx dielectric (optical image in Fig. 6.6(a)). Although these devices had less phase-
noise, they showed large top gate hysteresis, rendering them practically impossible to
measure with (Fig. 6.6(b)). Furthermore, etching small vias through such a thick layer of
alumina is very cumbersome. All devices of the first design had low yield in wire-bonding
because of poor adhesion of the dielectric layers to the GaAs surface.

An overview of the fabrication steps for realizing double-layer gate devices with alu-
minum gates (second design) is given below. See Fig. 6.7(a) for schematic side views of
the process and Fig. 6.7(e) for the top view of a finished device.

−2 −1.5 −1 −0.5 0
35

45

55
a b

C lo
w

 (p
F)

Vback (V)

200 nm pitch

Figure 6.6: (a) Optical image of a device cell of the first design with a 366 nm thick AlOx dielectric layer. Top left
and bottom right squares are ohmic contacts, which could have also been fabricated on the back side of the
wafer. The other squares are three double-gate devices and one single-gate device, each with two bond pads.
Contacting the grid layer underneath the dielectric is done using etched vias. (b) Capacitance as a function of
back gate for a device from (a), showing hysteresis as function of either top or back gate voltage (shown).

• Ohmic contacts - spin PMMA 495K A8 resist at 6000 rpm - bake 15 min at 175 ◦C
(400 nm) - lithography - development 60 s in 1:3 MIBK/IPA - wet etch of 180 nm in
diluted Piranha - evaporation of 5/150/25 nm Ni/AuGe/Ni - lift-off in acetone and
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a b

c

Ti/Au: back gate bondpad

d
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Al: top gate

Al: grid gate (oxidized)
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SiO2: trench �ll cross-linked PMMA: “bridge”

Ni/AuGe/Ni: ohmic contact

grid gate bondpad

1 µm
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1 µm

e

600 µm

Figure 6.7: (a) Overview of the fabrication process for overlapping gates. Note that the top gate bondpad is not
shown in this view, and that the mesa and bridge steps are shown added to the same figure. (b) Electron micro-
graph of a kagome-type lattice fabricated using the same lift-off recipe as used for the square grids, with 5/15
nm Ti/Au. Note that for non-square lattice such as this, a different lattice is imposed on the 2DEG depending
on the polarity of the voltage difference between the grid and top gate. (c) Electron micrograph of a 5/15 nm
Ti/Au dice-type lattice gate. (d) Electron micrograph at the edge of a square 100 nm pitch grid, showing the
overdosed ’frame’ that is used to counter proximity effect induced inhomogeneity effects at the edge of the
grid. (e) Optical image of a device cell containing two ohmic contacts at top left and bottom right as well as
a single-gate device on the top right and three double-gate devices. The dielectric-filled etched region that
separates the device mesa from the bonding pads is visible in green.

IPA rinse - anneal 60 s at 440 ◦C in forming gas.

• Mesa etch - spin PMMA 495K A8 resist at 6000 rpm - bake 15 min at 175 ◦C (400 nm)
- lithography - development 60 s in 1:3 MIBK/IPA - wet etch of 700 nm in diluted
Piranha - sputtering 700 nm of SiO2 - lift-off in acetone and IPA rinse.

• Bridges - spin PMMA 495K A8 resist at 6000 rpm - bake 15 min at 175 ◦C (400
nm) - lithography - cross-link PMMA strips through electron beam overdose at 25
mC/cm2. These sections act as bridges over which the leads will connect sample
mesa and bond pad regions.

• Connection pads and markers - spin PMMA 495K A8 resist at 6000 rpm - bake 15
min at 175 ◦C (400 nm) - lithography - development 60 s in 1:3 MIBK/IPA - evap-
oration of 10/50 nm Ti/Au - lift-off in acetone and IPA rinse. These sections act
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either as markers or as pads that will be contacted on the top both by the Al gates
and the leads contacting the bond pads. We found these thin layers of metal to
be the most robust way to make an electrical connection (typically several Ohm)
between the Al gates and the Au bond pads.

• Grid gate - spin CSAR 62.04 resist at 5000 rpm - bake 3 min at 150 ◦C (72 nm) -
lithography - development 70 s pentyl acetate and 60 s 1:1 MIBK:IPA - evaporation
of 20 nm Al - lift-off in NMP at 70 ◦C using soft ultrasound excitation for 4 hrs and
subsequent acetone and IPA rinse - oxidation in 20 min at 200 ◦C at 100 mTorr and
300 W RF power using the remote plasma of an ALD machine. We have optimized
the lithographic sequential writing such that a 200 µm x 200 µm grid is written in
one go and at under a minute, avoiding stitching errors and reducing the effect of
drift (typically several tens of nm/min). We have done this by direct programming
of an iterative sequence that the e-beam follows in writing the grid instead of the
standard procedure of converting a design file (in this case a large square grid) to
an e-beam lithography file using BEAMER software. Furthermore, we add a 200
nm thin frame around the grids whose overdose is chosen to counter proximity
edge effects (Fig. 6.7(d)). Note also that we found the conflicting requirements
of high resolution and undercut required for lift-off to be best served using a sin-
gle layer CSAR62 resist. Finally, we find feature size, yield and reproducibility to
be limited by the grain size of the evaporated Al, instead of by the resist mask or
lithography process. To achieve a smaller grain size, we used a fast Al evaporation
rate of 0.2 nm/s. As such, Ti/Au but especially Ti/AuPd gates are easier to fabricate
than Al gates but they cannot be oxidized and would require actual deposition of
a dielectric. Also note that the lift-off based fabrication of grids allows for different
lattice types to be made, see Fig. 6.7(b-d).

• Top gate - spin PMMA 495K A8 resist at 6000 rpm - bake 15 min at 175 ◦C (400 nm) -
lithography - development 60 s in 1:3 MIBK/IPA - evaporation of 50 nm Al - lift-off
in acetone and IPA rinse.

• Bonding pads - spin OEBR-1000 (200cp) lift-off resist at 3500nm - bake 30 min at
175 ◦C (500 nm) - spin PMMA 950K A2 resist at 2000 rpm - bake 10 min at 175 ◦C
(90 nm) - lithography - evaporation of 50/200 nm Ti/Au - lift-off in acetone and
IPA rinse.

6.7.3. CONVERSION FROM CAPACITANCE TO DENSITY OF STATES
In calculating density of states from capacitance data, we follow a procedure described
before[18]. We model the system as a parallel plate capacitor made up of the top and
bottom gates, with the potential for added charges at the location of the quantum well,
as sketched in Fig. 6.8. As a start, Chigh/low are measured as function of gate voltages
and magnetic field values (Fig. 6.9(a)). Note that the heterostructure stack is designed
to keep the tunnel frequency in the middle of the experimental measurement window
(Fig. 6.4(a-b) in the main text): below 1 kHz signal to noise ratio declines (mainly be-
cause of the 1/ f noise of the first transistor in the amplification chain) and above 2 MHz
systematic errors occur (we find asymmetric cross-talk between the two excitation sig-
nals and the second transistor in the amplification chain).



6

92
6. A CAPACITANCE SPECTROSCOPY-BASED PLATFORM FOR REALIZING GATE-DEFINED

ELECTRONIC LATTICES

The total voltage difference over the device is a combination of the electric fields
V = Vback −Vtop = E1(w +d)+E2d , which in turn depends on the charges on the plates

as V = σtop(w+d)
ε + σQWd

ε . The total capacitance, which is the one measured at low enough

frequencies, is defined as Clow = ∂Q
∂V = A

∂σtop

∂V = εA
w+d − d A

w+d
∂σQW

∂V + small terms that de-
pend on changing distances and which we ignore. The first term describes the bare
capacitor, and is therefore equal to the total capacitance measured at high frequen-
cies: Chigh = εA

w+d . The second term is the one of interest. It describes changes be-
tween the capacitance measured at low and high frequency because of the addition of
charges in the quantum well, which allows us to infer changes in electron density using
∂n
∂V =− 1

e
∂σQW

∂V = 1
e A

w+d
d

(
Clow −Chigh

)
(Fig. 6.9(b)).

Vtop Vback < Vtop

σtop σQW

E1 E1 + E2

dw
σbottom

Figure 6.8: Schematic representation of the device as a parallel place capacitor of distance w +d with an in-
serted quantum well at a distance d from the back gate. When the DOS at the quantum well is nonzero, charges
can build up.

The voltage required to change the Fermi level EF of the quantum well can be found
using a similar deduction to the one described above, and is described by a voltage-
dependent lever arm α ≡ −e ∂V

∂EF
. We find the lever arm by following the dependence

of the Fermi level in the quantum well through changes in the electric field as ∂EF
∂V =

−ew ∂E1
∂V =−e

(
w

w+d + e
ε

wd
w+d

∂n
∂V

)
(Fig. 6.9(c)). The first term describes how the Fermi level

of a gapped system in the quantum well (δn = 0) changes with bias as expected given its
relative location w

w+d between the plates of a simple parallel plate capacitor (Fig. 6.9(c)).
It is the second term that encompasses the electron filling, showing the lever arm to
increase when charges can be added to the quantum well (after accumulation this be-
comes the dominant term, see Fig. 6.9(b)). Given the above expressions for density and
Fermi level changes as function of gate voltage, we can define the density of states in
the 2DEG through DOS = ∂n

∂V
∂V
∂EF

= 1
e2 A

w+d
d α

(
Clow −Chigh

)
(Fig. 6.9(d)). As indicated by

changes in Chigh in Fig. 6.9(a), the distances describing the system are non-static with
gate voltage. In the case of (w +d), this is most likely due to back gate charges populat-
ing part of the spacer layer as the electric fields bend the conduction band edge, indeed
increasing Chigh for more negative back gate voltages. The exact location of the charges
in the quantum well and related distance d , however, we cannot directly infer from an
independent measurement. As a first guess, the growth distances combined with the
(w +d) extracted from Chigh suffices. A better estimate can be made using the known
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Figure 6.9: (a) Capacitance as function of back gate bias at 0 T (red), 0.75 T (green) and 1.5 T (blue), both below
and above the tunnel frequency. Top gate is kept constant for all measurements as it is serves as the bridge
point, which is also directly contacted to the gate of the first transistor in the amplification chain. (b) Density
as function of back gate bias. As the system becomes more gapped between Landau levels at higher fields,
steps start to form in the graph that indicate the filling of distinct levels at well-defined densities. (c) Lever
arm as function of back gate bias. Note that the quantum capacitance of a large density of states in the 2DEG
increases the voltage required to change the Fermi level, as expected. At zero density of states, however, the
lever arm is simply the geometric ratio expected from the relative location of the quantum well between the
top and bottom gate. (d) Density of states as function of the Fermi energy, which is the integrated lever arm.
We choose zero in energy to lie close to accumulation.

linear degeneracy of Landau levels with magnetic field, nLL = 2eB
h (Fig. 6.9(b)). To ob-

tain the best possible calibration, however, we compensate for any further dependence
of the relative quantum well position on back gate voltage by pegging the 0 T DOS after
accumulation to the expected value of m

πħ2 ≈ 2.8×1013 eV−1cm−2 (Fig. 6.9(d)), and use
this calibration for nonzero magnetic field values.
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7.1. CONCLUSIONS
The aim of my research for the last four years was to scale up arrays of gate-defined
quantum dots and use them in analog simulations of the Fermi-Hubbard model. In this
section, I summarize the key findings of this thesis.

Chapter 3 describes our effort in fabrication to scale up the number of quantum dots
in an array using a bottom-up approach. We employ a double-layer gate design to fab-
ricate the 2x2 dot array device. A sputtered slab of SiNx is used as the dielectric material
to electrically separate the gates in different layers. We successfully developed a recipe
to lift-off this dielectric slab with low standing-edges. This facilitates a fairly easy and
flexible way of fabricating multi-layer gate stacks. We also demonstrate that more the
traditional way of scaling up linear arrays works up to eight dots.

We establish the 2x2 quantum dot array as a promising analog quantum simulator of
the Fermi-Hubbard model in chapter 4. The electron filling of each dot is controlled in
the few-electron regime. Both the on-site (U ) and the inter-site (V ) interaction energies
are measured accurately. We show that the hopping energy (t ) of the Fermi-Hubbard
model can be tuned to attain values larger than the thermal energy of the system, even
with a single electron in each dot. This hopping can be increased substantially by in-
creasing the electron occupation of the dots. The size of the center gate currently limits
the access to even larger values of t , which can be solved easily by changing the gate
width in subsequent fabrication runs. We perform high fidelity spin-readout of the elec-
trons using the Pauli spin blockade technique. Although we achieve desirable tuning of
the hopping energies (t ) and the chemical potentials (µ) with the help of virtual gates
[1, 2], the tuning process takes significant time and effort, as the disorder in the 2DEG
needs to be compensated using gate voltages to create and manipulate these dots. This
is currently the biggest challenge in tuning the quantum dot arrays.

In chapter 5, we present evidence of Nagaoka ferromagnetism using the 2x2 dot ar-
ray. We observe the signature of a ferromagnetic ground state in an almost-half-filled
lattice, driven by interactions. The high-level of control in the system enables us to
manipulate the Hamiltonian parameters and perform measurements that confirm the
validity of our interpretation. This is the first experimental realization of this ferromag-
netism, more the fifty years after Nagaoka’s theoretical prediction in 1966. This experi-
ment demonstrates the potential of gate-defined quantum dot arrays in simulating the
Fermi-Hubbard physics. At the same time, it exhibits the potential of NISQ era quantum
technologies [3].

We explore a drastic scale-up of quantum dot arrays using a top-down approach with
only global control in chapter 6. This approach requires homogeneous 2DEGs with low
disorders as the lack of individual control knobs makes it impossible to compensate for
these disorders. Although we used specially designed 2DEGs to increase homogeneity,
the disorder level was still too high to form large arrays of quantum dots and to measure
periodic effects through capacitance spectroscopy.
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From the results in this thesis, I conclude that small arrays of quantum dots are cur-
rently well poised to simulate the Fermi-Hubbard physics. We have seen great potential
to control different Hubbard parameters in a small scale array. Gradually scaling up the
system size, while keeping the same level of control, seems well within reach, although
with some effort in both fabrication and tuning of the dot arrays. Whereas, scaling to
large 2D arrays of quantum dots requires significant improvement in 2DEG homogene-
ity as well as device fabrication.

7.2. OUTLOOK
The results discussed in this thesis demonstrate the potential of gate-defined quantum
dot arrays in simulating the Fermi-Hubbard model. In this section, I will discuss a few
possible ways to build upon my research. I will describe the current challenges in achiev-
ing these and their possible solutions.

7.2.1. SIMULATION USING A 2X2 DOT ARRAY DEVICE
The control over the device parameters in the 2x2 dot array facilitated the first experi-
mental observation of Nagaoka ferromagnetism, which is described in chapter 5. These
same controls can be leveraged to explore several interesting phenomena in different
regimes in the same system. With one electron per dot and sufficiently low tunnel cou-
pling between the dots, the system can be described by the Heisenberg model of spin-
spin interaction (see section 2.2). When the Heisenberg interaction energy between all
nearest-neighbor double-dot pairs are equal in this regime, the ground state of the sys-
tem is predicted to form a resonance valance bond (RVB) state [4–6]. In a 2x2 dot array,
this RVB state will manifest as an oscillation between two vertical and two horizontal
singlets (see Fig 7.1).

1 2

34

Figure 7.1: The RVB state in the 2x2 dot array, given by an oscillating pair of singlets between the horizontal
(left) and the vertical (right) pairs of dots. The inset shows a schematic of the dot array with dot numbers.

The Pauli spin-blockade measurement allows one to determine if two electron spins
in two separate dots are in singlet or triplet configuration (see subsection 2.1.5). A corre-
lation of PSB measurements between two opposite double dots (vertical or horizontal)
can be used to look for evidence of the RVB state in the system. Next, we calculate the
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probability of the correlated singlet measurements for the two horizontal double dots
(double dots 12 and 34). The expected RVB ground state should have states |S12S34〉 and
|S14S23〉 with equal probability (see subsection 5.6.3 for the definitions of |S〉, |T+〉, |T0〉,
and |T−〉). Taking the relevant normalization into account, the ground state turns out to
be:

ψRV B = 1p
3

(|S12S34〉− |S14S23〉) (7.1)

Now for this ground state, the probability of measuring correlated singlet in the hor-
izontal double dots is given by:

‖〈S12S34|ψRV B 〉‖2 = ‖〈S12S34| 1p
3
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= 1

3
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∗

(
3

2

)2
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(7.2)

So for the RVB state, the probability of measuring correlated singlets in horizontal
double dots is 3

4 ∗100% = 75%. The probability of measuring correlated singlets in verti-
cal double dots is also 75%, following similar calculations. If due to measurement inac-
curacies the measured correlation is different from the expected value of 75%, this equal
correlation between horizontal and vertical double dots can be utilized to demonstrate
the evidence of the RVB state. These correlation measurements require consecutive PSB
measurements in two double-dot pairs. This can be achieved using a readout protocol
similar to what is reported in Ref. [7].

7.2.2. SCALING OF QUANTUM DOT ARRAYS
Scaling up the number of quantum dots in an array is essential for both quantum sim-
ulation and computation experiments. There are different aspects to this scaling. First,
we need different gate designs to make arrays of various shapes. Significant fabrication
development might be needed to make some of these gate structures. Once we fabricate
these gate structures, the next set of challenges appear in tuning these dot arrays using
gate voltages. As several gate voltages affect each parameter of the dot array, this tuning
process can become rather complex with increasing number of dots. Finally, we need
to think of sensing methods for the dot arrays. Charge sensing with sensing dots is cur-
rently the popular choice. This sensing technique requires capacitive coupling between
the sensing dot and the dot array, which is achieved by placing the sensing dot close
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to the dot array. However, the new gate architectures to create bigger dot arrays might
not allow enough space for sensing dots adjacent to the dot array, forcing us to adopt
different sensing methods.

The quantum dot community has historically been most comfortable in working
with linear dot arrays. As a result, most efforts of scaling has been based on linear ar-
rays. There are a few advantages of scaling the number of dots in a linear array. We can
copy-paste the gate structure to create single dots next to one another to increase the
size of the array, without any major problem. Moreover, the gate design allows enough
space for strategically creating sensing dots to charge sense a linear array of arbitrary
length. Furthermore, the recent developments in tuning strategy and technique enable
reasonably fast tuning of the linear arrays. The main challenges of tuning come from
the disorder in the substrate and different cross-capacitance between the gates and the
dots. These cross-talks can be compensated using virtual gates, which are linear com-
binations of multiple gate voltages designed to control only a single parameter of the
dot array. The ‘n+1 method’, introduced in Ref. [8], provides a powerful protocol to tune
any number dots in a linear array and reliably load each dot with the desired number
of electrons. Finally, tuning of the tunnel couplings between different pairs of dots can
be automatized following the technique reported in Ref. [10]. These techniques enabled
controlling linear arrays with eight [8] and nine dots [9]. Increasing the number of dots
even further should be achievable, following a similar procedure.

Figure 7.2: Proposal to scale up from a 2x2 dot array (left) to a 2x4 dot ladder (right), with the positions of the
dots (white circles). The picture on the left is an SEM image of a real device. Whereas, the picture on the right
is created by copy-pasting parts of the left image next to each other, to illustrate the scalability of the design.

Scaling the quantum dot array to the second dimension promises significant advan-
tages for simulation and computation experiments due to increased connectivity. Exact
solutions of models in 2D are often harder to achieve, compared to their linear counter-
parts. Quantum simulation offers a new way to study these 2D systems. 2D architectures
are also currently favored in error correction protocols for quantum computation. The
gate structures required to create these 2D arrays are quite different from the linear ar-
rays. In this thesis, we have implemented a double-layer gate stack, with a center gate,
to make a 2x2 dot array. This device showed significantly improved control over dot pa-
rameters compared to the previous attempt of making a 2x2 dot array [11]. Although
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our gate design cannot be readily extended to make an arbitrary 2D array of shape NxM,
creating a ladder array of shape 2xN seems rather straight-forward. Fig. 7.2 shows how
the gate-structure for the 2x2 dot array can be extended to make a 2x4 dot ladder. For
2x2 dot array as well as small ladder arrays, sensing dots can be placed adjacent to the
dot array for charge sensing. A different charge detection technique should be adopted
as the size of these ladder arrays increase. The gate-based dispersive read-out is a very
promising alternative, which is compatible with the proposed gate design [12–16]. Modi-
fied versions of the n+1 method and automated tunnel coupling tuning can be employed
to tune these arrays.

Finally, we discuss the scaling to arbitrary 2D arrays with NxM quantum dots, which
is currently the most challenging problem in scaling. There are very few attempts to
make 2D arrays larger than 2x2 dots. The 3x3 dot array reported in Ref. [17] doesn’t
exhibit the required control over the tunnel couplings. Moreover, the gate design used
in this work is not scalable to arbitrary 2D arrays. Meanwhile, our attempt to create
1000x1000 dot arrays with global control didn’t show any evidence of the Mott gap, prob-
ably due to high disorder in the 2DEG. In Ref. [18], a scalable gate-design based on cross-
bar architecture is proposed to create large 2D arrays of quantum dots. This proposal is
also currently disorder-limited as it requires the use of shared control lines. Whereas, the
proposal in Ref. [19] requires significant development in fabrication to have individual
voltage-control of each gate.

Currently, the gate voltages are optimized manually to create the dot arrays and con-
trol their parameters. As the number of dots in an array increases, we should try to au-
tomatize the tuning process. The first steps towards this automation are reported in Ref.
[10, 20, 21]. The rising interest in using machine learning to quantum tune dot arrays
can be leveraged to further improve the scope and the performance of automated tun-
ing [22–25].

7.2.3. SIMULATION USING LARGER QUANTUM DOT ARRAY DEVICES

Once we achieve the current level of control over the Hamiltonian parameters in the
larger arrays, they can be used to perform various quantum simulation experiments.
Until now, the quantum simulation experiments performed using quantum dot arrays
could be verified using numerical simulations. As we scale up the array, this will not
be possible at some point, due to the limitation in computing power. This will enable
us to achieve Feynman’s ambition of leveraging the powers of quantum mechanics to
learn new physics. This is obviously our ultimate goal for simulation experiments. But,
I will argue that it is equally essential to perform as many simulations as possible with
the smaller arrays. The experience gathered from these experiments will enable the full
utilization of the larger arrays. More importantly, the verification of simulation results
with numerical analysis will bestow the required confidence upon the uncorroborated
simulations with larger arrays.

We should also identify the problems, that can be simulated with different dot arrays.
Active collaboration with different theory groups will be extremely useful in this regard.
Here, I briefly discuss a few possible options. The linear dot arrays are well suited to
simulate different properties of the Heisenberg spin-chains [4, 26]. A quantum dot lad-
der of size 2xN will be useful to study weakly doped Hubbard ladders. The numerical
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simulations of these ladders don’t agree with analytical arguments on whether super-
conducting correlations dominate charge-density-wave correlations in these systems or
vice versa [27]. Measuring correlations in a quantum dot ladder might be useful in re-
solving this conflict. Different 2D dot arrays (2xN or MxN) can also be used to study
itinerant magnetism, as discussed in Chapter 5. Finally, a large 2D array (MxN) of quan-
tum dots with ample control over the parameter space will be a great tool to explore the
Mott-Hubbard phase space, with all its richness.
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A
FABRICATION RECIPE OF THE

QUANTUM DOT DEVICES IN GAAS

In this Appendix, I describe the details of the recipe used to fabricate both the 2x2 and
the eight-dot linear array device.

We start with some general remarks:

• The exposure details mentioned in different steps may need to be changed de-
pending on the properties of the e-beam lithography machine. For large features
(feature size ∼ µm or more), small variations of the machine don’t affect the cre-
ated structures. A dose test is recommended to deduce the required dose for finer
features, which are sensitive to e-beam configuration.

• We followed a few tricks to increase the reliability of the lift-off process. The sol-
vents are warmed up in a au-bain marie as well as stirred continuously with a ro-
tating bar magnet throughout the lift-off process. Finally, the lift-off is finished by
spraying the solvent on the sample using a syringe. This spraying doesn’t damage
the gates. Special care should be taken to not boil solvents while warming them
up.

• The spinners used to coat resist are programmed to spin at 500 rpm for 5 s before
they spin at the intended spinning speed for 55 s.
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Detailed Fabrication Recipe:

(a) Substrate preparation

Clean Ga on the backside:

• pre-bake on hot plate: 120 ◦C (10 min)

• spin coat photoresist (S1813) on the front side of the wafer, spinning
speed: 2000 rpm

• bake on hot plate: 110 ◦C (10 min)

• second layer spin coat photoresist (S1813) on the front side of the wafer,
spinning speed: 2000 rpm

• bake on hot plate: 110 ◦C (10 min)

• 2 min in hot HCl (36-38%), temperature: 50 ◦C

• H2O rinse (60 s): 30 s each in two consecutive beakers with H2O

• dry with N2 gun

• Check if there are traces of Ga left on the back of the wafer: if yes, repeat
the previous three steps. Note: As long as gas formation occurs there is
still Ga on the backside.

• acetone (30 min)

Remarks:

• The photoresist also desolves in HCl. So, one should always be careful
that the HCl doesn’t come into contact with the front surface of the wafer,
which makes the wafer unusable. We use two layers of photoresist to
prevent this.

• A small wiper (known as ’Q-tip’ in the cleanroom) is often used to wipe
the back-side of the wafer, which aids in the removal of Ga.

(b) Alignment markers

Preparation:

• acetone rinse (60 s)

• IPA rinse (60 s)

• dry with N2 gun

Resist:

• spin coat PMMA 495K A8 (e-beam resist), spinning speed: 6000 rpm

• bake on hot plate: 175 ◦C (10 min)

Exposure:

• e-beam dose: 850 µC/cm2 at 100 kV

• spot size 100 nm, beam current 250 nA

Developing:

• 1:3 MIBK / IPA (60 s)
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• IPA stop (60 s)

• dry with N2 gun

Evaporation:

• 10 nm Ti, rate 0.05 nm/s

• 80 nm Au, rate 0.15 nm/s

Lift-off:

• warm acetone (50 ◦C) 2 h while stirring with a bar magnet

• acetone spray

• IPA rinse (60 s)

• dry with N2 gun

(c) Mesa etching

Preparation:

• acetone rinse (60 s)

• IPA rinse (60 s)

• dry with N2 gun

Resist:

• spin coat PMMA 495K A8 (e-beam resist), spinning speed: 6000 rpm

• bake on hot plate: 175 ◦C (10 min)

Exposure:

• e-beam dose: 850 µC/cm2 at 100 kV

• spot size 100 nm, beam current 250 nA

Developing:

• 1:3 MIBK / IPA (60 s)

• IPA stop (60 s)

• dry with N2 gun

Etching:

• measure resist height using a profile meter to have a etching reference

• wet etch (piranha) in 1:8:240 H2O2/H2SO4/H2O, etch time: 37 s

• H2O rinse (60 s): 30 s each in two consecutive beakers with H2O

• IPA rinse (60 s)

• dry with N2 gun

• measure the height of the etched heterostructure using a profile meter,
target: 90 nm

(d) Ohmic contacts

Preparation:

• acetone rinse (60 s)
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• IPA rinse (60 s)

• dry with N2 gun

Resist:

• spin coat PMMA 495K A8 (e-beam resist), spinning speed: 6000 rpm

• bake on hot plate: 175 ◦C (10 min)

Exposure:

• e-beam dose: 850 µC/cm2 at 100 kV

• spot size 100 nm, beam current 250 nA

Developing:

• 1:3 MIBK / IPA (60 s)

• IPA stop (60 s)

• dry with N2 gun

Plasma Cleaning:

• clean with oxygen plasma in a plasma chamber (Tepla), oxygen flow: 70
mL/min, plasma power: 120 W, time: 2 min

Evaporation:

• 5 nm Ni, rate 0.05 nm/s

• 150 nm AuGe, rate 0.15 nm/s

• 25 nm Ni, rate 0.10 nm/s

Lift-off:

• warm acetone (50 ◦C) for 2 h while stirring with a bar magnet

• acetone spray

• IPA rinse (60 s)

• dry with N2 gun

Rapid thermal annealing:

• ramp from room temperature to 440 ◦C in 40 s, forming gas atmosphere
(90% N2, 10% H2)

• anneal at 440 ◦C for 60 s in forming gas atmosphere

• bring temperature down from 440 ◦C to 80 ◦C in ≈ 30 s, N2 purge

Remarks:

• The plasma cleaning is introduced to clean any unwanted organic residue
under the ohmic pads. We have sometimes faced problems with ohmic
contacts to the 2DEG and this cleaning can be useful to combat that.

(e) Fine gates

Preparation:

• acetone rinse (60 s)

• IPA rinse (60 s)
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• dry with N2 gun

Resist:

• spin coat CSAR 62 (AR-P 6200) resist of 0.04 dilution, spinning speed:
5000 rpm

• bake on hot plate 150 ◦C (3 min)

Exposure:

• e-beam dose 350 µC/cm2 at 100 kV

• estimated spot size 2-3 nm, beam current 900 pA

Developing:

• pentyl acetate (60 s)

• 1:1 MIBK / IPA (60 s)

• IPA stop (60 s)

• dry with N2 gun

Evaporation:

• 5 nm Ti, rate 0.05 nm/s

• 20 nm Au, rate 0.05 nm/s

Lift-off:

• warm NMP (N-Methyl-2-Pyrrolidone) at 80 ◦C for 2 h while stirring with
a bar magnet

• NMP spray

• cold acetone rinse (60 s)

• IPA rinse (60 s)

• dry with N2 gun

(f) SiNx patch (only for 2x2 the devices)

Preparation:

• acetone rinse (60 s)

• IPA rinse (60 s)

• dry with N2 gun

Resist:

• spin coat CSAR 62 (AR-P 6200) resist of 0.04 dilution, spinning speed:
4000 rpm

• bake on hot plate 150 ◦C (3 min)

Exposure:

• e-beam dose 450 µC/cm2 at 100 kV

• estimated spot size 2-3 nm, beam current 900 pA

Developing:

• pentyl acetate (60 s)



A

114 A. FABRICATION RECIPE OF THE QUANTUM DOT DEVICES IN GAAS

• 1:1 MIBK / IPA (60 s)

• IPA stop (60 s)

• dry with N2 gun

Evaporation:

• 10 nm Ti, rate 0.05 nm/s

• 100 nm Au, rate 0.1 nm/s

Lift-off:

• warm NMP (N-Methyl-2-Pyrrolidone) at 80 ◦C for 2 h while stirring with
a bar magnet

• NMP spray

• cold acetone rinse (60 s)

• IPA rinse (60 s)

• dry with N2 gun

(g) Center gate (only for 2x2 the devices)

Preparation:

• acetone rinse (60 s)

• IPA rinse (60 s)

• dry with N2 gun

Resist:

• spin coat CSAR 62 (AR-P 6200) resist of 0.09 dilution, spinning speed:
4000 rpm

• bake on hot plate 150 ◦C (3 min)

Exposure:

• e-beam dose 440 µC/cm2 at 100 kV

• estimated spot size 2-3 nm, beam current 900 pA

Developing:

• pentyl acetate (60 s)

• 1:1 MIBK / IPA (60 s)

• IPA stop (60 s)

• dry with N2 gun

Sputtering:

• 50 nm SiNx , Ar environment

Lift-off:

• warm NMP (N-Methyl-2-Pyrrolidone) at 80 ◦C for 2 h while stirring with
a bar magnet

• NMP spray

• cold acetone rinse (60 s)
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• IPA rinse (60 s)

• dry with N2 gun

(h) Large gates and bondpads

Preparation:

• acetone rinse (60 s)

• IPA rinse (60 s)

• dry with N2 gun

Resist:

• spin coat PMMA 495K A8 (e-beam resist), spinning speed: 6000 rpm

• bake on hot plate: 175 ◦C (10 min)

Exposure:

• e-beam dose: 850 µC/cm2 at 100 kV

• spot size 100 nm, beam current 250 nA

Developing:

• 1:3 MIBK / IPA (60 s)

• IPA stop (60 s)

• dry with N2 gun

Evaporation:

• 50 nm Ti, rate: 0.10 nm/s

• 200 nm Au, rate: 0.15 nm/s

Lift-off:

• warm acetone (50 ◦C) 2 h while stirring with a bar magnet

• acetone spray

• IPA rinse (60 s)

• dry with N2 gun
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