

Delft University of Technology

On the Reaction to Deprecation of 25,357 Clients of 4+1 Popular Java APIs

Sawant, Anand; Robbes, Romain; Bacchelli, Alberto

DOI
10.1109/ICSME.2016.64
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings - 2016 IEEE International Conference on Software Maintenance and Evolution, ICSME 2016

Citation (APA)
Sawant, A., Robbes, R., & Bacchelli, A. (2016). On the Reaction to Deprecation of 25,357 Clients of 4+1
Popular Java APIs. In Proceedings - 2016 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2016 (pp. 400-410). IEEE. https://doi.org/10.1109/ICSME.2016.64

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSME.2016.64
https://doi.org/10.1109/ICSME.2016.64

On the reaction to deprecation
of 25,357 clients of 4+1 popular Java APIs

Anand Ashok Sawant
Delft University of Technology

Delft, The Netherlands
A.A.Sawant@tudelft.nl

Romain Robbes
PLEIAD @ DCC

University of Chile, Chile
rrobbes@dcc.uchile.cl

Alberto Bacchelli
Delft University of Technology

Delft, The Netherlands
A.Bacchelli@tudelft.nl

Abstract—Application Programming Interfaces (APIs) are a
tremendous resource—that is, when they are stable. Several
studies have shown that this is unfortunately not the case. Of
those, a large-scale study of API changes in the Pharo Smalltalk
ecosystem documented several findings about API deprecations
and their impact on API clients.

We conduct a partial replication of this study, considering
more than 25,000 clients of five popular Java APIs on GitHub.
This work addresses several shortcomings of the previous study,
namely: a study of several distinct API clients in a popular,
statically-typed language, with more accurate version informa-
tion. We compare and contrast our findings with the previous
study and highlight new ones, particularly on the API client
update practices and the startling similarities between reaction
behavior in Smalltalk and Java.

I. INTRODUCTION

An Application Programming Interface (API) is a definition
of functionalities provided by a library or framework that is
made available to an application developer. APIs promote the
reuse of existing software systems [1]. In his landmark essay
“No Silver Bullet” [2], Brooks argued that reuse of existing
software was one of the most promising attacks on the essence
of the complexity of programming: “The most radical possible
solution for constructing software is not to construct it at all.”

Revisiting the essay three decades later [3], Brooks found
that indeed, reuse continues to be the most promising attack
on essential complexity. APIs enable this: To cite a single
example, we found at least 15,000 users of the Spring API.

However, reuse comes with the cost of dependency on other
components. This is not an issue when said components are
stable. But evidence shows that APIs are not always stable:
The Java standard API for instance has an extensive deprecated
API 1. API developers often deprecate features and replace
them with new ones, and over time remove these deprecated
features. These changes can break the client’s code. Studies
such as Dig and Johnson’s [4] found that API changes breaking
client code are common.

The usage of a deprecated feature can be potentially harm-
ful. Features may be marked as deprecated because they are
not thread safe, there is a security flaw, or will be replaced by
a superior feature. The inherent danger of using a feature that
has been marked as obsolete is good enough motivation for

1see http://docs.oracle.com/javase/8/docs/api/deprecated-list.html

developers to transition to the replacement feature as suggested
by the API developers themselves.

Besides the above dangers of using deprecated features, they
also lead to reduced code quality, and therefore to increased
maintenance costs. With deprecation being a maintenance
issue, we would like to see if API clients actually react to
deprecated features of an API.

To our knowledge, Robbes et al. conducted the largest study
of the impact of deprecation on API clients [5], investigat-
ing deprecated methods in the Squeak and Pharo software
ecosystems. This study mined more than 2,600 Smalltalk
projects hosted on the SqueakSource platform. Based on the
information gathered they looked at whether the popularity of
deprecated methods either increased, decreased or remained
as is after their deprecation.

The Smalltalk study found that API changes caused by dep-
recation can have a major impact on the ecosystem. However,
a small percentage of the projects actually reacts to an API
deprecation. Out of the projects that do react, most of them
systematically replace the calls to deprecated features with
those that are recommended by API developers. Surprisingly,
this was done despite the fact that API developers in Smalltalk
do not appear to be documenting their changes as well as can
be expected.

The main limitation of this study is being focused on a niche
programming community i.e., Pharo. This resulted in a small
dataset with information from only 2,600 projects in the entire
ecosystem. Additionally, with Smalltalk being a dynamically
typed language, the authors had to rely on heuristics to identify
the reaction to deprecated API features.

We conduct a non-exact replication [6] of the previous
Smalltalk [5] study, also striving to overcome its limitations.
We study the reactions of more than 25,000 clients of 5
different APIs, using the statically-typed Java language; we
also collect accurate API version information.

Our results confirm that only a small fraction of clients
react to deprecation, also in the Java ecosystem. Out of those,
systematic reactions are rare and most clients prefer to delete
the call made to the deprecated entity as opposed to replacing
it with the suggested alternative one. This happens despite
the carefully crafted documentation accompanying most dep-
recated entities.

2016 IEEE International Conference on Software Maintenance and Evolution

978-1-5090-3806-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSME.2016.64

400

II. METHODOLOGY

We define the research questions and describe our research
method contrasting it with the study we partially replicate [5].

A. Research Questions
In line with our partial replication target, we try to keep as

much as possible the same research questions as the original
work. Given our additional information, we add one novel
research questions (RQ0) and alter the order and partially the
methodology we use to answer the research questions; this
leads to some differences in the formulation. The research
questions we investigate are:

RQ0: What API versions do clients use?
RQ1: How does API method deprecation affect clients?
RQ2: What is the scale of reaction in affected clients?
RQ3: What proportion of deprecations does affect clients?
RQ4: What is the time-frame of reaction in affected clients?
RQ5: Do affected clients react similarly?

B. Research Method, Contrasted With Previous Study
Robbes et al. analyzed projects hosted on the SqueakSource

platform, that used the Monticello versioning system. The
dataset contained 7 years of evolution of more than 2,600
systems, which collectively had over 3,000 contributors. They
identified 577 deprecated methods and 186 deprecated classes
in this dataset. If its results were very informative, this
previous study had several shortcoming that this follow-up
study addresses. We describe the methodology for collecting
the data for this study by describing it at increasingly finer
granularity: Starting from the selection of the subject systems,
to detecting the use of versions, methods, and deprecations.

Subject systems. The original study was based on a rather
specific dataset, the Squeak and Pharo ecosystems found on
SqueakSource. Due to this, the set of systems that were
investigated in the previous study was relatively small.
To overcome this limitation, we focus on a mainstream
ecosystem: Java projects hosted on the social coding platform
GitHub. Java is the most popular programming language
according to various rankings [7], [8] and GitHub is the most
popular and largest hosting service [9]. Our criteria for selec-
tion included popularity, reliability, and variety: We measure
popularity in terms of number of clients in GitHub, length
of history, and overall reputation (e.g., in Stack Overflow); we
ensure reliability by picking APIs that are regularly developed
and maintained; and we select APIs pertaining to different
domains. These criteria ensure that the APIs result in a
representative evolution history, do not introduce confounding
factors due to poor management, and do not limit the types of
clients that use them.
We limit our study to Java projects that use the Maven build
system, because Maven based projects use Project Object
Model (POM) files to specify and manage the API depen-
dencies that the project refers to. We searched for POM files
in the master branch of Java projects and found approximately
42,000 Maven based ones on GitHub. By parsing their POM
files, we were able to obtain all the APIs that they depend on.

We then created a ranking of the most popular APIs, which
we used to guide our choice of APIs to investigate.
This selection step results in the choice of 5 APIs hosted
on GitHub, namely: Easymock [10], Guava [11], Guice [12],
Hibernate [13], and Spring [14].2 The first 6 columns of Table I
provide additional information on these APIs.
Subsequently, we select the main subjects of this study: The
clients of APIs introducing deprecated methods. Using the
aforementioned analysis of the POM files, we have the list
of all possible clients. We refine it using the GHTorrent
dataset [15], to select only active projects. We also remove
clients that had not been actively maintained in the 6 months
preceding our data collection, to eliminate ‘dead’ or ‘stagnat-
ing’ projects. We totaled 25,357 projects that refer to one or
more of 5 aforementioned popular APIs. The seventh column
in Table I provides an overview of the clients selected, by API.

API version usage. Explicit library dependencies are rarely
mentioned in Smalltalk and there are several ways to specify
them, often programmatically and not declaratively; also,
Smalltalk does not use import statements as Java does. Thus, it
is hard to detect dependencies between projects (heuristics are
needed [16]) and to analyze the impact of deprecated methods
on client. In contrast, Maven projects specify their dependen-
cies explicitly and declaratively: We can determine the API
version a project depends on, hence answer more questions,
such as if projects freeze or upgrade their dependencies.
In particular, we only consider projects that encode specific
versions of APIs, or unspecified versions (which are resolved
to the latest API version at that date). We do not consider
ranges of versions, however very few projects use those (84
for all 5 APIs, while we include 25,357 API dependencies to
these 5 APIs). In addition, few projects use unspecified API
versions (269 of the 25,357, which we do include).

Fine-grained method/annotation usage. Due to the lack
of explicit type information in Smalltalk, there is no way
of actually knowing if a specific class is referenced and
whether the method invocation found is actually from that
referenced class. This does not present an issue when it comes
to method invocations on methods that have unique names in
the ecosystem. However, in the case of methods that have
common names such as toString or name or item, this
can lead to some imprecise results. In the previous study,
Robbes et al. resorted to manual analysis of the reactions to
an API change, but had to discard cases which were too noisy.
In this study, Java’s static type system addresses this issue
without the need for a tedious, and conservative manual
analysis. On the other hand, Java APIs can be used in various
manners. In Guava, actual method invocations are made on
object instances of the Guava API classes, as one would
expect. However in Guice, clients use annotations to invoke
API functionality, resulting in a radically different interaction
model. These API usage variabilities must be considered.

2We do not mine the JDK itself, because to identify the JDK version
required by a client one needs to rely on the client using the Maven compiler
plugin. Yet, this plugin is rarely used, since it is mainly used to specify a
JDK version other than the default one used by the client.

401

Table I
SUMMARY INFORMATION ON SELECTED CLIENTS AND APIS

API
(GitHub repo) Description Inception Releases

Unique entities Number of
clients

Usage across history
Classes Methods Invocations Annotations

EasyMock
(easymock/
easymock)

A testing framework that allows for the mocking of
Java objects during testing. Feb 06 14 102 623 649 38,523 -

Guava
(google/guava)

A collections API that provides data structures that are
an extension to the datastructures already present in
the Java SDK. Examples of these new datastructures
includes: multimaps, multisets and bitmaps.

Apr 10 18 2,310 14,828 3,013 1,148,412 -

Guice
(google/guice) A dependency injection library created by Google. Jun 07 8 319 1,999 654 59,097 48,945

Hibernate
(hibernate/

hibernate-orm)

A framework for mapping an object oriented domain to
a relational database domain. We focus on the core
and entitymanager projects under the hibernate
banner.

Nov 08 77 2,037 11,625 6,038 196,169 16,259

Spring
(spring-projects/

spring-framework)

A framework that provides an Inversion of Control(IoC)
container, which allows developers to access Java
objects with the help of reflection. We choose to focus
on just the spring-core, spring-context and spring-test
modules due to their popularity.

Feb 07 40 5,376 41,948 15,003 19,894 40,525

While mining for API usage we have to ensure that we connect
a method invocation or annotation usage to the parent class to
which it belongs. There are multiple approaches that can be
taken to mining the usage data from source code. The first uses
pattern matching to match a method name and the import in a
Java file to find what API a certain method invocation belongs
to. The second uses the tool PPA [17] which can work on
partial programs and find the usage of a certain method of an
API. The third builds the code of a client project and then parse
the bytecode to find type-resolved invocations. Finally, the
fourth uses the Eclipse JDT AST parser to mine type-resolved
invocations from a source code file. We created a method, fine-
GRAPE, based on the last approach [18], [19] that meets the
following requirements:3 (1) fine-GRAPE handles the large-
scale data in GitHub, (2) it does not depend on building the
client code, (3) it results in a type-checked API usage dataset,
(4) it collects explicit version usage information, and (5) it
processes the whole history of each client.

Detect deprecation. In Smalltalk, users insert a call to a
deprecation method in the body of the deprecated method. This
call often indicates which feature replaces the deprecated call.
However, there is no IDE support. The IDE does not indicate
to developers that the feature being used is deprecated. Instead,
calls to deprecated methods output runtime warnings.
In contrast Java provides two different mechanisms to mark a
feature as deprecated. The first is the @deprecated anno-
tation provided in the Javadoc specification. This annotation
is generally used to mark an artifact as deprecated in the
documentation of the code. This feature is present in Java
since JDK version 1.1. Since this annotation is purely for
documentation purposes, there is no provision for it to be
used in compiler level warnings. This is reflected in the Java
Language Specification(JLS). However, the standard Sun JDK

3More details on fine-GRAPE can be found in our prior work [19].

compiler does issue a warning to a developer when it encoun-
ters the usage of an artifact that has been marked as deprecated
using this mechanism. More recently, JDK 1.5 introduced a
second mechanism to mark an artifact as deprecated with a
source code annotation called @Deprecated (The same JDK
introduced the use of source code annotations). This annotation
is a compiler directive to define that an artifact is deprecated.
This feature is part of the Java Language Specification; as
such any Java compiler supports it. It is now common practice
to use both annotations when marking a certain feature as
deprecated. The first is used so that developers can indicate in
the Javadoc the reasons behind the deprecation of the artifact
and the suggested replacement. The other is now the standard
way in which Java marks features as deprecated.
To identify the deprecated features we first download the
different versions of the APIs used by the clients from the
Maven central server. These APIs are in the form of Java
Archive (JAR) files, containing the compiled classes of the
API source. We use the ASM [20] class file parsing library to
parse all the classes and their respective methods. Whenever
an instance of the @Deprecated annotation is found we
mark the entity it refers to as deprecated and store this
in our database. Since our approach only detects compiler
annotations, we do not handle the Javadoc tag. See the threats
to validity section for a discussion of this. We also do not
handle methods that were removed from the API without
warning, as these are out of scope of this study.

III. RESULTS

In this section we answer the research questions we detailed
in Section II-A. Figure 1 exemplifies the behavior of an API
and its clients, when possible we refer to it to explain the
methodology behind the answer to each research question.

402

Example API

goo
boo
foo

v4
goo
boo
foo

goo

foo

ggoo

foo

g
v5 v6 v7

Client 2
used API versions
and API methods

v6
foo

Client 4
used API versions
and API methods

v4 v5 v6
boo

Client 1
used API versions
and API methods

v4
foo
foo

Client 5
used API versions
and API methods

v4 v5 v4
boo

time to deprecation time to react

Client 3
used API versions
and API methods

v7v6v4
boo

foo
boo boo

v5 time to react

time to
deprecation

data collection point

& deprecated methods

released versions,
declared methods,

Figure 1. Exemplification of the behavior of an API and its clients

3.2.0

2.5.2

3.1.0

3.0.0

11

13

14

2.0.0

3.2.2
4.1.9
3.6.10

3.1.0

3.0.5

3.1.1

18

4.0.0-b4

4.3.6

4.1.0

100%

75%

50%

25%

0%
3rd most pop. release2nd most pop. release1st most pop. release

Latest API release Other releases

3.0.0

1.0.0

Easymock Guava Guice Hibernate Spring

Figure 2. Popularity breakdown of versions, by API

RQ0: What API versions do clients use?
Our first research question seeks to investigate popularity of

API versions and to understand the version change behavior
of the clients. This sets the ground for the following answers.

We start considering all the available versions of each API
and measure the popularity in terms of how many clients were
actually using it at the time of our data collection. In the
example in Figure 1, we would count popularity as 1 for v7,
2 for v6, and 1 for v4. The column ‘number of clients’ in
Table I specifies the absolute number of clients per each API
and Figure 2 reports the version popularity results, by API.

The general trend shows that a large number of different
versions of the APIs are used and the existence of a significant

fragmentation between the versions (especially in the case of
Hibernate, where the top three versions are used by less than
25% of the clients). Further, the general trend is that older
versions of the APIs are more popular.

This initial results hint at the fact that clients have, to say
the least, a delayed upgrading behavior, which could be related
with how they deal with maintenance and deprecated methods.
For this reason, we analyze whether the clients ever updated
their dependencies or if they “froze” their dependencies—that
is, if they never updated their API version. In the example in
Figure 1, we count three clients who upgraded version in their
history. If projects update we measure how long they took to
do so (time between the release of the new version of the API
in Maven central, and when the project’s POM file is updated).

Table II
UPDATE BEHAVIOR OF CLIENTS, BY API

update time (in days)updated clients mean median Q1 Q3
Easymock 63 10% 404 272 103 592
Guava 610 20% 140 72 32 139
Guice 49 8% 783 909 251 1,150
Hibernate 2,454 41% 245 63 33 368
Spring 11,112 74% 195 69 37 186

Table II summarizes the results. The vast majority of the
clients we consider freeze to one single version of the API they
use. Further, we see that this holds for all the APIs, except for
Spring, whose clients have at least one update in 74% of the
cases. In terms of time to update, interestingly, the median is
lower for clients of APIs that have more clients that update,
such as Hibernate and Spring. In general, update time varies
considerably—we will come back to this in RQ3.

403

RQ1: How does API method deprecation affect clients?
In RQ0 we showed that most clients do not adopt new API

versions. We now focus on the clients that use deprecated
methods and on whether and how they react to deprecation.

Affected by deprecation. From the data, we classify clients
into 4 categories, which we describe referring to Figure 1:
◦ Unaffected: These clients never use a deprecated method.

None of the clients in Figure 1 belong to this category.
◦ Potentially affected: These clients do not use any deprecated

method, but should they upgrade their version, they would
be affected. Client 1 in Figure 1 belongs to this category.

◦ Affected: These clients use a method when it was declared
as deprecated, but do not change the API version throughout
their history, as it happens in the case of Client 2.

◦ Affected and changing version: These clients use at least
one method declared as deprecated and also update their
API version. Clients 3, 4, and 5 belong to this category.

100%

25%

0%

Easymock Guava Hibernate Spring

37%

Potentially affectedUnaffected Affected
Affected and changing version

Figure 3. Deprecation status of clients of each API

Figure 3 reports the breakdown of the clients in the four
categories. The clearest pattern is that the vast majority of
clients, across all APIs, never use any deprecated method
throughout their entire history. This is particularly surprising in
the case of Hibernate, as it deprecated most of its methods (we
will discuss this in RQ3). Clients affected by deprecation vary
from more than 20% for Easymock and Guava, to less than
10% for Hibernate, and barely any for Spring. Of these, less
than one third also change their API version, thus highlighting
a very static behavior of clients with respect to API usage,
despite our selection of active projects.

Common reactions to deprecation. We investigate how
‘Affected and changing version’ clients deal with deprecation.
We exclude ‘Affected’ clients, since they do not have strong
incentives to fix a deprecation warning if they do not update
their API, as the method is still functional in their version.
The ‘Affected and changing version’ clients of Easymock and
Guava largely react to deprecated entities (71% and 65%). For
Hibernate and Spring we see a similar minority of clients that
react (31% and 32%). For all the APIs the relative number of

clients that fix all calls made to a deprecated entity is between
16% and 22%. Out of the clients that react, we find that at
the method level, the most popular reaction is to delete the
reference to the deprecated method (median of 50% to 67%
for Easymock, Guava and Hibernate and 100% for Spring). We
define as deletion a reaction in which the deprecated entity is
removed and no new invocation to the same API is added.
Some Hibernate and Guava clients roll back to a previous
version where the entity is not yet deprecated. Easymock,
Guava and Hibernate clients tend to replace deprecated calls
with other calls to the same API, however this number is
small. Surprisingly, a vast majority of projects (95 to 100%)
add calls to deprecated API elements, despite the deprecation
being already in place. This concerns even the ones that end
up migrating all their deprecated API elements later on.

The strange case of Guice. We analyzed all the Guice
projects and looked for usage of a deprecated annotation or
method, however we find that none of the projects have used
either. The reason is that Guice does not have many methods or
annotations that have been deprecated. In fact, Guice follows a
very aggressive deprecation policy: methods are removed from
the API without being deprecated previously. We observed
this behavior in the Pharo ecosystem as well, and studied it
separately [21]. In our next research questions, we thus do not
analyze Guice, as the deprecations are not explicitly marked.

RQ2: What is the scale of reaction in affected clients?
The work we partially replicate [5] measures the reactions

of individual API changes in terms of commits and developers
affected. Having exact API dependency information, we can
measure API evolution on a per-API basis, rather than per-API
element. It is hence more interesting to measure the magnitude
of the changes necessary between two API versions in terms of
the number of methods calls that need to be updated between
two versions. Another measure of the difficulty of the task is
the number of different deprecated methods one has to react to:
It is easier to adapt to 10 usages of the same deprecation than
it is to react to 10 usages of 10 different deprecated methods.

Actual reactions. We measure the scale of the actual
reactions of clients that do react to API changes. We count
separately reactions to the same deprecated method and the
number of single reactions. In Figure 1, client 3, after upgrad-
ing to v5 and before upgrading to v6, makes two modifications
to statements including the deprecated method ‘boo’. We
count these as two reactions to deprecation but count one
unique deprecated method. We consider that client 5 reacts
to deprecation, when rolling back from v5 to v4: we count
one reaction and one unique deprecated method.
We focus on the upper half of the distribution (median, upper
quartile, 95th percentile, and maximum), to assess the critical
cases; we expect the effort needed in the bottom half to be
low. Table III reports the results. The first column reports the
absolute number of non-frozen affected clients that reacted.
The scale of reaction varies: the majority of clients react on
less than a dozen of statements with a single unique deprecated
method involved. Springs stands out with a median number of

404

statements with reactions of 31 and the median number of
unique deprecated methods involved of 17. Outliers, invest
more heavily in reacting to deprecated methods. As seen next,
this may explain the reluctance of some projects to update.

Table III
SCALE OF ACTUAL CLIENTS’ REACTION TO METHOD DEPRECATION

non-frozen
affected

clients that
reacted

statements with reaction
(unique deprecated methods involved)

median Q3 95th perc. max

Easymock 17 11 (1) 21 (2) 109 (3) 109 (3)

Guava 161 3 (1) 8 (2) 127 (5) 283 (10)

Hibernate 40 5 (1) 20 (16) 41 (27) 59 (40)

Spring 10 31 (17) 54 (21) 104 (27) 131 (27)

Potential reactions. Since a large portion of project do not
react, we wondered how much work was accumulating should
they wish to update their dependencies. We thus counted the
number of updates that a project would need to perform in
order to make their code base compliant with the latest version
of the API (i.e., removing all deprecation warnings). In Fig-
ure 1, the only client that is potentially affected by deprecation
is client 1, which would would have two statements needing
reaction (i.e., those involving the method ‘foo’) in which only
one unique deprecated method is involved.
As before, we focus on the upper half of the distribution.
Table IV reports the results. In this case the first column reports
the absolute number of clients that would need reaction. We
notice that the vast majority of clients use two or less unique
deprecated methods. However, they would generally need to
react to a higher number of statements, compared to the clients
that reacted reported in Table III, except for those using Spring.
Overall, if the majority of projects would not need to invest
a large effort to upgrade to the latest version, a significant
minority of projects, would need to update a large quantities of
methods. This can explain their reluctance to do so. However,
this situation, if left unchecked—as is the case now—can and
does grow out of control. If there is a silver lining, it is that
the number of unique methods to update is generally low,
hence the adaptations can be systematic. Outliers would run
in troubles, with several unique methods to adapt to.

Table IV
SCALE OF POTENTIAL CLIENTS’ REACTION TO METHOD DEPRECATION

clients
potentially

needing
reaction

statements potentially needing reaction
(unique deprecated methods involved)

median Q3 95th perc. max

Easymock 178 55 (1) 254 (1) 1,120 (5) 4,464 (7)

Guava 917 12 (1) 42 (2) 319 (7) 8,568 (44)

Hibernate 521 15 (1) 35 (1) 216 (2) 17,471 (140)

Spring 41 3 (1) 4 (1) 51 (2) 205 (55)

RQ3: What proportion of deprecations does affect clients?

The previous research question shows that most of the
actual and potential reactions of clients to method deprecations
involves a few unique methods. This does not tell us how these
methods are distributed across all the deprecated API methods.
We compute the proportion of deprecated methods clients use.

In Figure 1, there is at least one usage of deprecated
methods ‘boo’ and ‘foo’, while there is no usage of ‘goo’.
In this case, we would count 3 unique deprecated methods, of
which one is never used by clients.

Table V
DEPRECATED METHODS AFFECTING CLIENTS, BY API

unique deprecated methods
defined by API used by clients

count % over
total count % over all

deprecated
Easymock 124 20% 16 13%

Guava 1,479 10% 104 7%

Hibernate 7,591 65% 487 6%

Spring 1,320 3% 149 11%

Table V summarizes the results, including the total count
of deprecated methods per API with proportion over the
total count of methods and the count of how many of these
deprecated methods are used by clients. APIs are not shy in
deprecating methods, with more than 1,000 deprecations for
Guava, Spring, or Hibernate. The case of Hibernate is partic-
ularly striking with 65% of unique methods being eventually
deprecated, indicating that this API makes a heavy usage of
this feature of Java. The proportion of deprecated methods that
affect clients is rather low, around 10% in all 4 of the APIs.

RQ4: What is the time-frame of reaction in affected clients?

We investigate the amount of time it takes for a method to
become deprecated (‘time to deprecation’) and the amount of
time developers take to react to a it (‘time to react’). The
former is defined as the interval between the introduction
of the call and when it was deprecated, as seen in client 3
(Figure 1); the latter is the amount of time between the reaction
to a deprecation and when it was deprecated (clients 3 and 5).

Time to deprecation. We analyzed the time to deprecation
for each of the instances where we found a deprecated entity.
The median time for all API clients is 0 days. This highlights a
startling fact: Most of the introductions of deprecated method
calls happen when clients already know they are deprecated.
In other words, when clients introduce a call to a deprecated
method, it is usually done despite the fact that they know a
priori that the call is already deprecated. This indicates that
clients do not appear to mind using deprecated features.

Time to react. Figure 4 reports the time it takes clients to
react to a method deprecation, once it is visible. We see that,
for most clients across all APIs, the median reaction time is
low: It is 0 days for Guava, Hibernate, and Spring, while for
Easymock it is 25 days. A reaction time of 0 days indicates that

405

Guava Hibernate Easymock Spring

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Reaction Time

Figure 4. Days taken by clients to react to a method deprecation once visible.

most deprecated method call are reacted upon on the same day
the call was either introduced or marked as deprecated. Barring
outliers, reaction times in Hibernate and Spring are uniformly
fast (the third quartiles being at 0 and 2.5 days). Reaction times
are however longer for clients of Guava and Easymock, with
an upper quartile of 47 and 200 days respectively. Outliers
have a long reaction time, in the order of hundreds of days.

RQ5: Do affected clients react similarly?
Replacing a deprecated entity with an invocation to a non-

deprecated one is a desirable reaction as the client of an API
continues using it. This research question seeks to investigate
the clients’ behavior when it comes to replacement reactions.

Such an analysis allows us to ascertain whether an approach
inspired by Schäfer et al.’s [22] would work on the clients
in our dataset. Their approach recommends API changes to
a client based on common, or systematic patterns in the
evolution of other clients of the same API.

Consistency of replacements. There is no definite way to
identify if a new call made to the API is a replacement for
the original deprecated call, so we rely on a heuristic: We
analyze the co-change relationships in each class file across
all the projects; if we find a commit where a client removes
a usage of a deprecated method (e.g., add(String)) and
adds a reference to another method in the same API (e.g.,
add(String, Integer)), this new method invocation is
a possible replacement for the original deprecated entity. A
drawback is that in-house replacements or replacements from
other competing APIs cannot be identified. Nonetheless, we
compute the frequencies of these co-change relationships to
find whether clients react uniformly to a deprecation.
We found that Easymock has no systematic transitions: there
are only 3 distinct methods for which there are replacements
and the highest frequency of the co-change relationships is
34%. For Guava we find 23 API replacements; in 17% of the
cases there is a systematic transition i.e., there is only one way
in which a deprecated method is replaced by clients. Spring
clients only react by deleting deprecated entities instead of

Figure 5. Example of Javadoc associated with deprecated API artifact

replacing them, resulting in no information on replacements
of features. In Hibernate, we find only 4 distinct methods
where replacements were made. There were no systematic
replacements and the maximum frequency is 75%.
Since API replacements are rather uncommon in our dataset,
with the exception of Guava, we find that while an approach
such as the one of Schäfer et al. could conceptually be quite
useful, we would not be able to implement it in our case due
to the small amount of replacement data.

Quality of documentation. There are very few clients
reacting to deprecation by actually replacing the deprecated
call with one that is not deprecated. This led us to question the
quality of the documentation of these APIs. Ideally one would
like to have a clear explanation of the correct replacement for
a deprecated method, as in the Javadoc reported in Figure 5.
However, given the results we obtained, we thought this could
be not the case. We systematically inspected the Javadoc to see
if deprecated features had documentation on why the feature
was deprecated, and if there was an indication of appropriate
replacement or whether a replacement is needed.
We perform a manual analysis to analyze the quality of the API
documentations. For Guava, we investigate all 104 deprecated
methods that had an impact on clients; for Easymock, we look
at all 16 deprecated methods that had impact on clients; for
Spring and Hibernate, we inspected sample of methods (100
each) that have an impact on the clients.
In Easymock, 15 of the 16 deprecated methods are instance
creation methods, whose deprecation message directs the
reader to using a Builder pattern instead of these methods.
The last deprecation message is the only one with a rationale
and is also the most problematic: the method is incompatible
with Java version 7 since its more conservative compiler does
not accept it; no replacement is given.
In Guava, 61 messages recommend a replacement, 39 state
the method is no longer needed and hence can be safely
deleted, and only 5 deprecated methods do not have a mes-
sage. It is also the API with the most diverse deprecation

406

messages. Most messages that state a method is no longer
needed are rather cryptic (“no need to use this”). On the
other hand, several messages have more precise rationales,
such as stating that functionality is being redistributed to other
classes. Others provides several alternative recommendations
and detailed instructions and one method provides as many
as four alternatives, although this is because the deprecated
method does not have exact equivalents. Guava also specifies
in the deprecation message when entities will be removed (e.g.,
“This method is scheduled for removal in Guava 16.0”, or even
“This method is scheduled for deletion in June 2013.”).
For Hibernate, all the messages provide a replacement, but
most provide no rationale for the deprecation. The only excep-
tions are messages stating the advantages of a recommended
database connection compared to the deprecated one.
For Spring, the messages provide a replacement (88) or state
that the method is no longer needed (12). Spring is the only
API that is consistent in specifying in which version of the
API the methods were deprecated. On the other hand, most
of the messages do not specify any rationale for the decision,
except JDK version testing methods that are no longer needed
since Spring does not run in early JDK versions anymore.
Overall, maintainers of popular APIs make an effort to provide
their clients with high-quality documentation. We classify this
as high quality documentation as there is sufficient support
provided to clients. If we found rationales as to why a
method was deprecated, this was far from systematic. Despite
replacement being not the only suggested solution, it is the
most common; this is in contrast to the actual behavior of
clients. In spite of the good quality of the documentation,
clients are far from likely to follow it.

Summary of findings
We first investigated how many API clients actively main-

tain their projects by updating their dependencies. We found
that, for all the APIs, only a minority of clients upgrade/change
the version of the API they use. As a direct consequence of
this, older versions of APIs are more popular than newer ones.

We then looked at the number of projects that are affected
by deprecation. We focused on projects that change version
and are affected by deprecation as they are the ones that show
a full range of reactions. Clients of Guava, Easymock and
Hibernate (to a lesser degree) were the ones that were most
affected, whereas clients of Spring were virtually unaffected
by deprecation and for Guice we could find no data due to
Guice’s aggressive deprecation policy. We also found that for
most of the clients that were affected, they introduced a call
to a deprecated entity, despite knowing that it was deprecated.

Looking at the reaction behavior of these clients, we saw
that ‘deletion’ was the most popular way to react to a
deprecated entity. Replacements were seldom performed, and
finding systematic replacements was rarer. This is despite the
fact that APIs provide excellent documentation that should aid
in the replacement of a deprecated feature. When a reaction
did take place, it was usually almost right after it was first
marked as deprecated.

IV. DISCUSSION

We now discuss our main findings and contrast them with
the findings of the Smalltalk study we partially replicate.
Based on this, we give recommendations on future research
directions. We also present threats to validity.

A. Comparison with the deprecation study on Smalltalk
Contrasting our results with those of the study we partially

replicate, several interesting findings emerge:
Proportion of deprecated methods affecting clients. Both

studies found that only a small proportion of deprecated
methods does affect clients. In the case of Smalltalk, this
proportion is below 15%, in our results we found it to be
around 10%. Considering that the two studies investigate two
largely different ecosystems, languages, and communities, this
similarity is noteworthy. Even though API developers do not
know exactly how their clients use the methods they write and
would be interested in this information [23], the functionalities
they deprecate are mostly unused by the clients, thus depre-
cation causes few problems. Nevertheless, this also suggests
that the majority of effort that API developers make in properly
deprecating some methods and documenting alternatives is not
actually necessary: API developers, in most of the cases, could
directly remove the methods they instead diligently deprecate.

Not reacting to deprecation. Despite the differences in
the deprecation mechanisms and warnings, the vast majority
of the clients in both studies do not react to deprecation. In
this study, we could also quantify the impact of deprecation
should clients decide to upgrade their API versions and find
that, in some cases, the impact would be very high. By not
reacting to deprecated calls, we see that the technical debt
accrued can grow to large and unmanageable proportions
(e.g., some Hibernate client would have to change 17,471
API invocations). We also found more counter-reactions (i.e.,
adding more calls to methods that are known to be deprecated)
than for Smalltalk clients. This may be related to the way in
which the two platforms raise deprecation warnings: In Java,
a deprecation gives a compile-time warning that can be easily
ignored, while in Smalltalk, some deprecations lead to run-
time errors, which require intervention.

Systematic changes and deprecation messages. The
Smalltalk study found that in a large number of cases, most
clients conduct systematic replacements to deprecated API
elements. In our study, we find that, instead, replacements are
not that common. We deem this difference to be extremely
surprising. In fact, the clients we consider have access to
very precise documentation that should act as an aid in the
transition from a deprecated API artifact to one that is not
deprecated; while this is not the case for Smalltalk, where
only half of the deprecation messages were deemed as useful.
This seems to indicate that proper documentation is not a good
enough incentive for API clients to adopt a correct behavior,
also from a maintenance perspective, when facing deprecated
methods. As an indication to developers of language platforms,
we have some evidence to suggest more stringent policies on
how deprecation impacts clients’ run-time behavior.

407

Clients of deprecated methods. Overall, we see in the
behavior of API clients that deprecation mechanisms are not
ideal. We thought of two reasons for this: (1) developers
of clients do not see the importance of removing references
to deprecated artifacts, and (2) current incentives are not
working to overcome this situation. Incentives could be both
in the behavior of the API introducing deprecated calls and
in the restriction posed by the engineers of the language. This
situation highlights the need for further research on this topic
to understand whether and how deprecation could be revisited
to have a more positive impact on keeping low technical
debt and improve maintainability of software systems. In the
following we detail some of the first steps in this direction,
clearly emerging from the findings in our study.

B. Future research directions

If it ain’t broke, don’t fix it. We were surprised that
so many projects did not update their API versions. Those
that do are often not in a hurry, as we see for Easymock
or Guice. Developers also routinely leave deprecated method
calls in their code base despite the warnings, and even often
add new calls. This is in spite of all the APIs providing precise
instructions on which replacements to use. As such the effort
to upgrade to a new version piles up. Studies can be designed
and carried out to determine the reasons of these choices, thus
indicating how future implementations of deprecation can give
better incentives to clients of deprecated methods.

Difference in deprecation strategies. In the clients that do
upgrade, we can see differences between the APIs. We were
particularly impressed by Spring, which has by far the most
clients and also the least clients using deprecations. It appears
that their deprecation strategy is very conservative, even if
they deprecated a lot of methods. This may explain why much
more Spring clients do upgrade their API version. Likewise,
perhaps the very aggressive deprecation policy of Guice, which
removes methods without warnings, has an impact on the vast
majority of the clients that decide to stick with their version
of Guice. We note that the APIs with the highest proportion
of projects with deprecated calls are also the ones where the
projects are least likely to upgrade. We did not investigate this
further, as our focus was mostly on the behavior of clients,
but studies suggesting API developers the best strategies for
persuading clients to follow deprecation messages would be
very informative for the actual practice of software evolution.

Impact of deprecation messages. We also wonder if the
deprecation messages that Guava has, which explicitly state
when the method will be removed, could act as a double-
edged sword: Part of the clients could be motivated to upgrade
quickly, while others may be discouraged and not update the
API or roll back. In the case of Easymock, the particular
deprecated method that has no documented alternative may
be a roadblock to upgrade. Studies can be devised to better
understand the role of deprecation messages and their real
effectiveness.

C. Threats to validity
Since we do not detect deprecation that is only specified

by Javadoc tags, we may underestimate the impact of API
deprecation in some cases. To quantify the size of this threat,
we manually checked each API and found that this is an issue
only for Hibernate before version 4, while the other APIs are
unaffected. For this reason, a fraction of Hibernate clients
could show not completely correct behavior. We considered
crawling the online Javadoc of Hibernate to recover these tags,
but we found that the Javadoc of some versions of the API
were missing (e.g. version 3.1.9).

Even though our findings are focused on the clients, for
which we have a statistically significant sample, some of the
results depend on the analyzed APIs (such as the impact of
the API deprecation strategies on the clients). As we suggested
earlier in this section, further studies could be conducted to
investigate these aspects.

The use of projects from GitHub leads to a number of
threats, as documented by Kalliamvakou et al. [24]. In our
data collection, we tried to mitigate these biases (e.g., we
only selected active projects), but some limitations are still
present. The projects are all open-source and some may be
personal projects where maintenance may not be a priority.
GitHub projects may be toy projects or not projects at all
(still from [24]); we think this is unlikely, as we only select
projects that use Maven: these are by definition Java projects,
and, by using Maven, show that they adhere to a minimum of
software engineering practices.

Finally, we only look at the master branch of the projects.
We assume that projects follow the git convention that the
master branch is the latest working copy of the code [25].
However, we may be missing reactions to API deprecations
that have not yet been merged in the main branch.

V. RELATED WORK

Studies of API Evolution. Several studies of API evolution
have been performed, at smaller or larger scales. Most of these
studies focused on the API side, rather than the client one as
the one we conducted.
For example, Dig and Johnson studied and classified the API
breaking changes in 4 APIs [26]; they did not investigate their
impact on clients. They found that 80% of the changes were
due to refactorings. Cossette and Walker [27] studied five Java
APIs in order to evaluate how API evolution recommenders
would perform on these cases. They found that all recom-
menders handle a subset of the cases, but that none of them
could handle all the cases they referenced.
The Android APIs have been extensively studied. McDon-
nell et al. [28] investigate stability and adoption of the Android
API on 10 systems; the API changes are derived from Android
documentation. They found that the API is evolving quickly,
and that clients have troubles catching up with the evolution.
Linares-Vásquez et al. also study the changes in Android,
but from the perspective of questions and answers on Stack
Overflow [29], not API clients directly. Bavota et al. [30]
study how changes in the APIs of mobile apps (responsible

408

for defects if not reacted upon) correlate with user ratings:
successful applications depended on less change-prone APIs.
This is one of the few large-scale studies, with more than
5,000 API applications. Wang et al. [31] study the specific
case of the evolution of 11 REST APIs. Instead of analyzing
API clients, they also collect questions and answers from Stack
Overflow that concern the changing API elements.
Among the studies considering clients of API, we find for
example the one by Espinha et al. [32], who study 43
mobile client applications depending on web APIs and how
they respond to web API evolution. Also, Raemaekers et al.
investigated the relation among breaking changes, deprecation,
and semantic versioning [33]. They found that API developers
introduce deprecated artifacts and breaking changes in equal
measure across both minor and major API versions, thus
not allowing clients to predict API stability from semantic
versioning. Finally, previous work including one of the authors
of this paper (i.e., [5] and [21]) are large-scale studies of API
clients in the Pharo ecosystem. The first study focused on API
deprecations, while the second one focused on API changes
that were not marked as deprecations beforehand. Another
work [34] analyze deprecation messages in more than 600
Java systems, finding that 64% of deprecated methods have
replacement messages.

Mining of API Usage. Studies that present approaches to
mining API usage from client code are related to our work,
especially with respect to the data collection methodology.
One of the earliest works done in this field is the work of
Xie and Pei [35] where they developed a tool called MAPO
(Mining API usage Pattern from Open source repositories).
MAPO mines code search engines for API usage samples and
presents the results to the developer for inspection. Mileva et
al. [36] worked in the field of API popularity; they looked at
the dependencies of projects hosted on Apache and Source-
forge. Based on this information they ranked the usage of API
elements such as methods and classes. This allowed them to
predict the popularity trend of APIs and their elements. Hou et
al. [37] used a popularity based approach to improve code
completion. They developed a tool that gave code completion
suggestions based on the frequency with which a certain
class or method of an API was used in the APIs ecosystem.
Lämmel et al. [38] mine usages of popular Java APIs by
crawling SourceForge to create a corpus of usage examples
that forms a basis for a study on API evolution. The API
usages are mined using type resolved Java ASTs, and these
usages are stored in a database.

Supporting API evolution. Beyond empirical studies on
APIs evolution, researchers have proposed several approaches
to support API evolution and reduce the efforts of client devel-
opers. Chow and Notkin [39] present an approach where the
API developers annotate changed methods with replacement
rules that will be used to update client systems. Henkel and
Diwan [40] propose CatchUp!, a tool using an IDE to capture
and replay refactorings related to the API evolution. Dig et al.
[41] propose a refactoring-aware version control system for
the same purposes.

Dagenais and Robillard observe the framework’s evolution to
make API change recommendations [42], while Schäfer et al.
observe the client’s evolution [22]. Wu et al. present a hybrid
approach [43] that includes textual similarity. Nguyen et
al. [44] propose a tool (LibSync) that uses graph-based tech-
niques to help developers migrate from one framework version
to another. Finally, Holmes and Walker notify developer of
external changes to focus their attention on these events [45].

VI. CONCLUSION

We have presented an empirical study on the effect of
deprecation of Java API artifacts on their clients. This is a
non-exact replication of a similar study done on the Smalltalk
ecosystem. The main differences between the two studies is
in the type systems of the language targeted (static type vs
dynamic type) and the scale of the dataset (25,357 vs 2,600
clients).

We found that few API clients update the API version that
they use. In addition, the percentage of clients that are affected
by deprecated entities is less than 20% for most APIs—
except for Spring where the percentage was unusually low.
Most clients that are affected do not typically react to the
deprecated entity, but when a reaction does take place it is—
surprisingly—preferred to react by deletion of the offending
invocation as opposed to replacing it with recommended
functionality. When clients do not upgrade their API versions,
they silently accumulate a potentially large amount of technical
debt in the form of future API changes when they do finally
upgrade; we suspect this can serve as an incentive not to
upgrade at all.

The results of this study are in some aspects similar to that
of the Smalltalk study. This comes as a surprise to us as we
expected that the reactions to deprecations by clients would
be more prevalent, owing to the fact that Java is a statically
typed language. On the other hand, we found that the number
of replacements in Smalltalk was higher than in Java, despite
Java APIs being better documented. This leads us to question
as future work what the reasons behind this are and what can
be improved in Java to change this.

This study is the first to analyze the client reaction behavior
to deprecated entities in a statically-typed and mainstream
language like Java. The conclusions drawn in this study are
based on a dataset derived from mining type-checked API
usages from a large set of clients. From the data we gathered,
we conclude that deprecation mechanisms as implemented in
Java do not provide the right incentives for most developers
to migrate away from the deprecated API elements, even with
the downsides that using deprecated entities entail.

Given that there is currently a proposal to revamp Java’s
deprecation system,4 studies such as this one and its potential
follow-ups are especially timely.

4https://bugs.openjdk.java.net/browse/JDK-8065614

409

REFERENCES

[1] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
object-oriented programming, vol. 1, no. 2, pp. 22–35, 1988.

[2] F. P. Brooks, “No silver bullet,” Software state-of-the-art, pp. 14–29,
1975.

[3] S. D. Fraser, F. P. Brooks Jr, M. Fowler, R. Lopez, A. Namioka,
L. Northrop, D. L. Parnas, and D. Thomas, “No silver bullet reloaded:
retrospective on essence and accidents of software engineering,” in
Proceedings of 22nd ACM SIGPLAN Conference on Object-oriented
programming systems and applications (OOPSLA). ACM, 2007, pp.
1026–1030.

[4] D. Dig and R. E. Johnson, “The role of refactorings in api evolution,”
in ICSM 2005: Proceedings of the 21st International Conference on
Software Maintenance, 2005, pp. 389–398.

[5] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to api deprecation?: the case of a smalltalk ecosystem,” in Proceed-
ings of 20th International Symposium on the Foundations of Software
Engineering (FSE). ACM, 2012, p. 56.

[6] N. J. Juzgado and S. Vegas, “The role of non-exact replications in
software engineering experiments,” Empirical Software Engineering,
vol. 16, no. 3, pp. 295–324, 2011.

[7] “Tiobe index,” http://www.tiobe.com/tiobe index, accessed on 10 Apr
2016.

[8] “PYPL popularity of programming language,” http://pypl.github.io, ac-
cessed on 10 Apr 2016.

[9] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean
GHTorrent: Github data on demand,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp. 384–387.

[10] “Easymock api repository,” https://github.com/easymock/easymock, ac-
cessed on 7 April 2016.

[11] “Guava api repository,” https://github.com/google/guava, accessed on 7
April 2016.

[12] “Guice api repository,” https://github.com/google/guice, accessed on 7
April 2016.

[13] “Hibernate api repository,” https://github.com/hibernate/hibernate-orm,
accessed on 7 April 2016.

[14] “Spring api repository,” https://github.com/spring-projects/spring-
framework, accessed on 7 April 2016.

[15] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of the
10th Working Conference on Mining Software Repositories, ser. MSR
2013, 2013, pp. 233–236.

[16] M. Lungu, R. Robbes, and M. Lanza, “Recovering inter-project depen-
dencies in software ecosystems,” in ASE’10: Proceedings of the 25th
IEEE/ACM international conference on Automated Software Engineer-
ing, ser. ASE ’10, 2010, pp. 309–312.

[17] B. Dagenais and L. Hendren, “Enabling static analysis for partial java
programs,” ACM Sigplan Notices, vol. 43, no. 10, pp. 313–328, 2008.

[18] A. A. Sawant and A. Bacchelli, “A dataset for api usage,” in Proceedings
of 12th IEEE Working Conference on Mining Software Repositories
(MSR). IEEE, 2015, pp. 506–509.

[19] ——, “fine-grape: fine-grained api usage extractor – an
approach and dataset to investigate api usage,” Empirical
Software Engineering, pp. 1–24, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10664-016-9444-6

[20] “Asm bytecode manipulator,” http://asm.ow2.org/, accessed on 7 April
2016.

[21] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T.
Valente, “How do developers react to api evolution? the pharo ecosystem
case,” in Proceedings of 31st International Conference on Software
Maintenance and Evolution (ICSME), 2015, p. in press.

[22] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage changes
from instantiation code,” in Proceedings of 30th International Confer-
ence on Software Engineering (ICSE), 2008, pp. 471–480.

[23] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data sci-
entists in software engineering,” in Proceedings of the 36th ACM/IEEE
International Conference on Software Engineering, ser. ICSE ’14.
ACM, 2014, pp. 12–23.

[24] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th Working Conference on Mining Software Repositories.
ACM, 2014, pp. 92–101.

[25] S. Chacon, Pro git. Apress, 2009.

[26] D. Dig and R. Johnson, “How do apis evolve? a story of refactoring,”
Journal of software maintenance and evolution: Research and Practice,
vol. 18, no. 2, pp. 83–107, 2006.

[27] B. E. Cossette and R. J. Walker, “Seeking the ground truth: a retroactive
study on the evolution and migration of software libraries,” in Proceed-
ings of 20th International Symposium on the Foundations of Software
Engineering (FSE). ACM, 2012, p. 55.

[28] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stability
and adoption in the android ecosystem,” in Proceedings of 29th IEEE
International Conference on Software Maintenance (ICSM). IEEE,
2013, pp. 70–79.

[29] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk, “How do api changes trigger stack overflow discussions? a study
on the android sdk,” in Proceedings of 22nd International Conference
on Program Comprehension (ICPC). ACM, 2014, pp. 83–94.

[30] G. Bavota, M. Linares-Vasquez, C. E. Bernal-Cardenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk, “The impact of api change-and fault-
proneness on the user ratings of android apps,” IEEE Transactions on
Software Engineering (TSE), vol. 41, no. 4, pp. 384–407, 2015.

[31] S. Wang, I. Keivanloo, and Y. Zou, “How do developers react to restful
api evolution?” Service-Oriented Computing, pp. 245–259, 2014.

[32] T. Espinha, A. Zaidman, and H.-G. Gross, “Web api fragility: How
robust is your mobile application?” in Proceedings of the 2nd In-
ternational Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE, 2015, pp. 12–21.

[33] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in 28th IEEE
International Conference onSoftware Maintenance (ICSM). IEEE,
2012, pp. 378–387.

[34] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do developers
deprecate apis with replacement messages? a large-scale analysis on java
systems,” in 23nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering, SANER 2016, Osaka, Japan, March 14-
18, 2016, 2016, p. to appear.

[35] T. Xie and J. Pei, “Mapo: Mining api usages from open source
repositories,” in Proceedings of the 2006 International workshop on
Mining Software Repositories (MSR). ACM, 2006, pp. 54–57.

[36] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining api popularity,” in
Testing–Practice and Research Techniques. Springer, 2010, pp. 173–
180.

[37] D. Hou and D. M. Pletcher, “Towards a better code completion
system by api grouping, filtering, and popularity-based ranking,” in
Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, ser. RSSE ’10. New York,
NY, USA: ACM, 2010, pp. 26–30. [Online]. Available: http:
//doi.acm.org/10.1145/1808920.1808926

[38] R. Lämmel, E. Pek, and J. Starek, “Large-scale, ast-based api-usage
analysis of open-source java projects,” in Proceedings of ACM
Symposium on Applied Computing (SAC), 2011, p. 1317. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1982185.1982471

[39] K. Chow and D. Notkin, “Semi-automatic update of applications in
response to library changes,” in Proceedings of International Conference
on Software Maintenance (ICSM), 1996, pp. 359–368.

[40] J. Henkel and A. Diwan, “Catchup!: Capturing and replaying refactor-
ings to support API evolution,” in Proceedings of 27th International
Conference on Software Engineering (ICSE), 2005, pp. 274–283.

[41] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen, “Refactoring-
aware configuration management for object-oriented programs,” in 29th
International Conference on Software Engineering, 2007, pp. 427–436.

[42] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for
framework evolution,” in Proceedings of 30th International Conference
on Software engineering (ICSE), 2008, pp. 481–490.

[43] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid
approach to identify framework evolution,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1. ACM, 2010, pp. 325–334.

[44] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim,
and T. N. Nguyen, “A graph-based approach to api usage adaptation,”
in Proceedings of ACM International Conference on Object Oriented
Programming Systems Languages and Applications, 2010, pp. 302–321.

[45] R. Holmes and R. J. Walker, “Customized awareness: recommending
relevant external change events,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. ACM,
2010, pp. 465–474.

410

