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Abstract—Spatial object detection and environmental un-
derstanding are fundamental aspects of autonomous driving
in mobile robots. In this work, a stochastic approach to 2D
LiDAR and stereo camera sensor fusion for object detection is
presented. By tracking LiDAR clusters 360° around the robot
and continuously updating knowledge of their corresponding
object types using Bayesian inference when they are within
the camera’s view, uncertainties in the detection algorithm are
addressed. Additionally, localisation and sensor uncertainties
are accounted for by using Gaussian distributions to model the
locations of entities. By estimating the state of these entities,
dynamic objects can be tracked throughout the environment,
while remembering their type from when they were last visible
in the camera’s view. The results demonstrate correct linking
of camera detections with LiDAR clusters, with an average
positional inaccuracy of objects of 0.12m in simulation, and
0.25m across different experiments on the robot, as well as
the ability to track humans even when they move out of the
camera’s field of view with an average tracking error of 0.33m
in simulation.

I. INTRODUCTION

Accurate spatial object detection and environment under-
standing are fundamental for autonomous driving in mobile
robots. For a robot to navigate and interact safely and effec-
tively in dynamic environments, it must accurately perceive
and model its surroundings. This involves not only detecting
objects, but also classifying their types and tracking their
movements over time.

The Rober robot [1] is such a mobile robot, designed
to transport food in restaurants, while navigating dynamic
spaces. It is equipped with a 2D LiDAR at the bottom, and
a stereo camera at the front, as shown in Figure 2.

The LiDAR sensor provides high-resolution spatial data
for detecting objects and obstacles but lacks information on
their identity or type. To complement the spatial awareness
provided by LiDAR, the stereo camera captures visual data,
allowing object classification based on appearance. However,
these sensors are not 100% accurate due to noise and inac-
curacies, which should be taken into account. Additionally,
the robot’s self-localisation is not always precise.

One important aspect of objects in the environment of
a robot is persistence: confidence in an object’s presence

(a) YOLO detections of objects in the testing environment. Two
chairs and one potted plant were detected by the algorithm.

(b) Mapped objects by the proposed system. Small cuboids are
clusters in the LiDAR data, while the tall cylinders are objects
detected by the camera. The LiDAR clusters are correctly linked
to the detected objects. The purple circles represent the uncertainty
in the location of the entities.

Fig. 1: Modeled environment at the bottom, and the image
from the camera with the object detections at the top.

should increase as more evidence accumulates over time.
Additionally, once detected, the system should maintain
awareness of their presence, even if they temporarily move
out of sight. [2]

This paper presents a ROS2-based system that integrates
the strengths of LiDAR and camera technologies to perform
object detection, classification, and tracking for autonomous
mobile robots. The system is designed to address real-world
uncertainties, including sensor noise and localisation
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Fig. 2: The robot used in the experiments. It has a 2D LiDAR
at the bottom, and a stereo camera at the front. [1]

inaccuracies. In this system, LiDAR data is clustered and
tracked over time, with clusters being associated with
objects detected by the YOLO algorithm [3] on the camera.
Through Bayesian inference, the system continuously
updates these associations, enabling persistent object
tracking even when objects move outside the camera’s
field of view. This is particularly valuable for tracking
moving objects, such as humans, and ensures continuous
object awareness. By combining data from both sensors, the
system constructs a comprehensive environmental model
that integrates spatial layout with object semantics. Figure 1
provides a visualisation of the system’s output, showing
correctly linked objects and clusters.

In section II the related work is discussed, followed by
an overview of the method in section III. Key aspects of
the model are further explained in the sections IV, V and
section VI. The performance is tested in section VII, and the
results are discussed and concluded in sections VIII and IX
respectively.

II. RELATED WORK

Modelling an environment has always been a key aspect
of autonomous robotics. Most robots still rely on geometric
maps of static environments for navigation and localisa-
tion. However, dynamic or changing environments pose
challenges to these approaches. In recent years, significant
progress has been made toward giving robots a deeper
understanding of their environment.

Object-level Mapping with Camera: While numerous
methods exist for recreating environments by modeling the
mesh of objects ([4], [5], [6]), more computationally efficient
approaches focus on tracking the position and orientation of
objects, rather than their full shape. Slam++ [7] achieves this
by detecting and modeling prescanned objects, avoiding the
need to compute object meshes for each instance. Simpler
methods rely on 2D camera images to detect objects, as
seen in the work of Dong et al. [2], who used YOLO to
detect objects and employed Bayesian inference to increase
confidence in their presence as they appeared in multiple
frames. This approach also retained memory of objects even
when they became occluded or moved out of view. However,

dynamic objects were treated as outliers in their work.
CubeSLAM [8] also uses YOLO and accounts for dynamic
objects by assuming constant motion, while DynaSLAM II
[9] and VDO-SLAM [10] use custom detection algorithms
to track objects by comparing visual features across images
using optical flow, although they achieve limited tracking
accuracy due to the inaccuracy of camera depth estimation.

Object-level Mapping with 2D LiDAR: Although many
methods exist for object detection using 3D LiDAR, research
on object detection with 2D LiDAR is less common, as
planar data alone is insufficient to determine object types.
Kwon et al. [11] developed a stochastic map building method
in 1999 that could handle quasi-static environments. By clus-
tering 2D LiDAR points and parameterising them stochasti-
cally, they were able to model the environment and update it
by comparing new data with the existing model. Similarly,
[12] performed circle fitting on clusters to identify objects
in agricultural environments and updated their positions over
time. However, both methods are limited by their inability to
handle dynamic objects. [13] also attempts to find circular
poles in vineyards but also accounts for dynamic objects,
using an analytical approach instead of Euclidean clustering.
This analytical approach is also described in [14].

In the context of autonomous vehicles on the road, the
approach in [15] addresses dynamic objects by detecting
vehicles, fitting L shapes (from the two visible sides of a
vehicle) on clustered data, and associating detected objects
using a global nearest neighbor algorithm. However, this
system is restricted to tracking vehicle shapes. The work
in [16] can handle other shapes on the road by modeling
objects with a set of sample points along their boundaries
and updating them with raw LiDAR data. This approach is
computationally more intensive, and the data association is
more challenging.

Object-level LiDAR Camera Fusion: Numerous systems
perform 3D LiDAR and camera bounding box fusion. Some
methods detect objects using the camera image, after which
the 3D position of the object is estimated using the LiDAR
[17]. Approaches discussed in [18] and [19] enhance the
LiDAR pointcloud with camera information to perform
detection using the combined 3D pointcloud. Additionally,
deep learning networks are used to fuse LiDAR clouds with
images to compute 3D object positions [20], [21].

Research on 2D LiDAR-camera fusion is relatively lim-
ited. Mulyanto et. al [22], and more recently Hwang et. al
[23], presented a system that fused camera and 2D LiDAR
measurements to improve distance measurements to objects
in each frame.

Most methods for LiDAR-camera fusion process the data
on a per-frame basis. Although these methods can achieve
high accuracy for individual frames, they do not account
for time when fusing LiDAR data with camera images.
Incorporating data from multiple timestamps can improve
the robustness of sensor fusion, making it less susceptible
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to noise and sensor inaccuracies.

III. SYSTEM OVERVIEW

The Rober robot, used in the experiments (see Figure 2),
is equipped with a 2D RPLIDAR S2 360° laser scanner
at the bottom and an OAK-D Pro FF stereo camera at the
front. With YOLOv4 [3] running on the camera, objects are
detected with bounding boxes and depth estimations, derived
by analysing the stereo point cloud from the camera. This
process is further explained in appendix B. Additionally, the
LiDAR detects parts of objects close to the floor, such as
chair- or human legs. The visibility of the robot’s sensors
are visualised in Figure 3, where the YOLO detection of
the chair is displayed in the horizontal plane, alongside the
LiDAR measurements of its legs in Figure 3b.

(a) YOLO detection of a chair in front of the robot.

(b) Visibility of the robot from above. The LiDAR (red) detects
the 4 legs of a chair (blue) as separate clusters, while the camera
detects the chair on the image with a bounding box, mapped to a
horizontal plane with a purple line. The green dotted lines represent
the camera’s field of view.

Fig. 3: Sensor measurements from the robot. (a) shows
YOLO’s object detection on the camera image, and (b)
displays both the projected bounding box and LiDAR mea-
surements on the horizontal plane.

The LiDAR data is first clustered using the Euclidean-
ClusterExtraction algorithm from the Point Cloud Library
(PCL) [24], which implements a Kd-tree structure for finding
the nearest neighbors of LiDAR points, inspired by [25].
Clustering the pointcloud greatly reduces the computational

load of the system, while allowing it to process all detected
entities. The goal is to connect the LiDAR clusters to their
corresponding objects detected by the camera, to increase
the positional accuracy of the objects, and to enable object
tracking outside camera’s field of view.

The resulting environment model consists of two types of
entities: clusters and objects.

Clusters represent entities detected by the 2D lidar. Each
cluster has a global position on the map, which is updated
whenever the cluster is visible in the LiDAR data. Newly
detected clusters are compared with existing ones in the
environment model to find matches, allowing the model to
be updated accordingly. Moving clusters are tracked over
time by updating their positions using Bayesian inference.

Objects are labeled entities composed of one or multiple
clusters. For example, the four legs of a chair are visible
in LiDAR data as separate clusters, though they belong to
the same object, the chair. Confidence in the association
between clusters and objects grows over time as more
evidence from the camera becomes available. Object labels
are updated when they are visible to the camera, while object
positions are also updated based on LiDAR clusters outside
the camera’s view.

The system operates at 10 Hz and has two main steps.
The first step involves receiving and preparing new measure-
ments from the LiDAR and camera. Positional uncertainties
in these measurements are determined based on sensor in-
accuracies and robot localisation uncertainties, as explained
in section IV

The second step involves associating these new
measurements with existing data when applicable, and
updating the environment. This is discussed in section V.

IV. MEASUREMENT UNCERTAINTY

The first step in the process is to gather new data. As
mentioned earlier, the system uses both a LiDAR and a
stereo camera, which deliver their data independently.

A. LiDAR data

After the LiDAR data is clustered, each cluster has a
position in the world frame. However, there are uncertainties
regarding the exact position. The positional uncertainties of
the clusters are due to both sensor noise and localisation
inaccuracy. The measured position MC of a cluster can be
modeled as a function of the cluster’s true position PC , with
added noise from the sensor and localisation, expressed as:

MC = PC + NoiseSLiDAR + NoiseL, (1)

where both noise terms are assumed to follow a zero-mean
Gaussian distribution with covariances ΣSLiDAR and ΣL
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(a) Probability distribution of a LiDAR cluster
in map frame with sensor uncertainty.

(b) Probability distribution of a LiDAR cluster
in map frame with sensor uncertainty and posi-
tional localisation uncertainty.

(c) Probability distribution of a LiDAR cluster
in map frame with sensor uncertainty, positional
localisation uncertainty and rotational localisa-
tion uncertainty.

Fig. 4: Probability distribution of a cluster in map frame with the uncertainties added step by step. The uncertainties implemented are
the sensor uncertainty (a), positional localisation uncertainty (b) and rotational localisation uncertainty (c). The LiDAR is visualized in
red.

respectively.

The LiDAR sensor uncertainty can be decomposed into
angular and distance uncertainties, which are first defined
in polar coordinates and then transformed to Cartesian
coordinates using the Jacobian matrix:

Σcart
SLiDAR

= JΣpolar
SLiDAR

JT (2)

With

J =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]
(3)

Σpolar
SLiDAR

=

[
σ2
rLiDAR

0
0 σ2

θLiDAR

]
(4)

where θ and r are the angle and distance of the LiDAR
cluster relative to the sensor, and σ2

rLiDAR
and σ2

θLiDAR
are

distance and angular covariances of the LiDAR, pre-set by
the user or manufacturer. In the tests, the angular standard
deviation σθLiDAR is set at 0.05, which is a combination
of the angular resolution of the LiDAR and additional
uncertainty in the LiDAR’s mounting on the robot. Due to
divergence of the light beam of the LiDAR, the uncertainty
in the distance of the measurement also depends on the
distance itself. In the tests, the distance standard deviation
σrLiDAR is set at 0.05 + 0.01d, with d being the distance
of the measurement to the sensor. Similar to the angular
measurement, this is a combined uncertainty of the value
specified by the manufacturer (0.03m [26]) and uncertainty
in the exact position of the LiDAR on the robot. In
Figure 4a, this sensor uncertainty is visualised.

The localisation uncertainty consists of both positional
and rotational components. These are calculated by the

AMCL (Adaptive Monte Carlo Localisation) algorithm of
nav2 [27], which is used for localisation of the robot. The
positional x- and y-axis uncertainties are represented by the
following components of the localisation covariance matrix:

ΣLpos =

[
σ2
xxAMCL

σ2
xyAMCL

σ2
yxAMCL

σ2
yyAMCL

]
(5)

The addition of this uncertainty is visualised in Figure 4b.
The rotational uncertainty is computed similarly to the
LiDAR sensor uncertainty but involves only the rotational
component coming from the localisation algorithm:

Σcart
Lrot = JΣpolar

Lrot
JT (6)

With J equal to Equation 3 and the uncertainty matrix
given by:

Σpolar
Lrot

=

[
0 0
0 σ2

θAMCL

]
(7)

The total localisation uncertainty is the sum of both
positional and rotational uncertainties:

ΣL = ΣLpos +Σcart
Lrot (8)

Finally, the total uncertainty of the cluster’s location is a
combination of the sensor and localisation uncertainties,
resulting in a Cartesian normal distribution with the mean
at the measurement position MC and a combination of the
sensor and localisation noise: N cart(M cart

C ,Σcart
SLiDAR

+Σcart
L ).

This normal distribution consisting of all the uncertainties
is visualised in Figure 4c.
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(a) Probability distribution of an object de-
tected with a bounding box in map frame.
The camera field of view is visualised with
green dotted lines, while the bounding box is
visualised with the solid line in the middle of
the distribution.

(b) Probability distribution of an object de-
tected with a bounding box in polar coordi-
nates, with the camera being the center of
the coordinate system. The bounding box,
which is a straight line in polar coordinates,
is visualised in green.

(c) Probability distribution of an object detected with
a bounding box in bounding box frame. The x-axis
represents the angular distance to the closest part of
the bounding box.

Fig. 5: Probability distribution of bounding box detection in (a) map frame, (b) polar camera frame, and (c) bounding box frame. The
bounding box frame is similar to the polar coordinate system. However, the angular component represents the angular distance to the
bounding box.

B. Stereo camera data

Similar to the cluster data from the LiDAR, each detection
from the camera has its global position based on the depth
estimate of the stereo camera. This position is calculated by
analysing the density of the part of the stereo pointcloud
that falls within the bounding box, as further explained in
Appendix B. The measured position MD of a detection is
related to the true position of the object PO by incorporating
the sensor and the localisation noise, which can be expressed
as:

MD = PO + NoiseSCamera + NoiseL, (9)

Unlike LiDAR, where entities are represented by specific
x and y coordinates, camera detections are represented by
bounding boxes with a certain width. Therefore, instead
of modeling this as a Gaussian distribution in Cartesian
coordinates, the distribution must be adjusted so that all
coordinates within the bounding box have high probability
density, with the probability rapidly decaying outside the
box. This visualised in Figure 5a.

To achieve this, the the coordinates are transformed to
polar coordinates, with the camera position as the origin,
using the following equations:

r =
√
x2 + y2 (10)

θ = arctan(
y

x
) (11)

where x and y are the Cartesian coordinates relative to the
camera. The probability distribution in polar coordinates is
visualised in Figure 5b.

Rather than directly using the result of this transformation,
the polar coordinates are converted into a bounding-box
coordinate system. This coordinate system is unique for all
detections. In this system, the angular component represents
the angular distance to the bounding box. Any coordinate
that falls within the bounding box in polar coordinates has a
distance of zero, while points outside the bounding box have
a value equal to the distance to the nearest edge of the box.
This is visualised in Figure 5c and done using the following
equations:


θpolar > θpolar

bbox max, θbbox = θpolar − θpolar
bbox max

θpolar < θpolar
bbox min, θbbox = θpolar − θpolar

bbox min

else, θbbox = 0.0

(12)

where θbbox max and θbbox min are the angular coordinates of
the edges of the bounding box.

In this bounding-box coordinate system, the camera sen-
sor uncertainties in both the angular and distance directions
can be defined as a Gaussian distribution with covariance:

Σbbox
Scamera

=

[
σ2
rcamera

0
0 σ2

θcamera

]
(13)

In the tests, the angular standard deviation σθcamera is set at
0.05. Given the limited accuracy of depth estimation using
stereo cameras, the distance standard deviation σrcamera is set
at 0.25 + 0.15d, where d is the distance of the detection to
the sensor. This setup is similar to the uncertainty model for
the LiDAR sensor. The base uncertainty of 0.25m accounts
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for the fact that objects have a size, and the centroid of
the visible part of the object may not align with the actual
centroid. For example, a large portion of a chair visible
to the camera may be its backrest, which is offset from
the object’s centroid. Using this base uncertainty helps
ensure that elements like chair legs, which are not at the
object’s centroid, are correctly associated with the object.
The additional uncertainty of 0.15m for each meter further
from the camera, is due to the rapid decrease in depth
point cloud accuracy. Experimental comparisons between the
true distance and the camera-detected distance revealed an
approximate increase in distance error of 15 cm per meter.

Adding the localisation uncertainty follows a procedure
similar to that used for the new LiDAR clusters. However,
since the detection is in the bounding box coordinate system,
the localisation uncertainties must also be transformed. The
total localisation uncertainty becomes:

Σbbox
L = Σbbox

Lpos +Σbbox
Lrot (14)

where Σbbox
Lpos and Σbbox

Lrot
represent the positional and rota-

tional uncertainty of the localisation algorithm in bounding-
box coordinates. Since the bounding-box coordinate system
is derived from the polar coordinate system, these uncertain-
ties remain the same in polar coordinates, simplifying the
calculations. The positional uncertainty of the localisation
algorithm is initially provided in Cartesian coordinates and
can be transformed using the following equation:

Σbbox
Lpos = Σpolar

Lpos = JΣcart
LposJ

T (15)

Where

J =

[
x
r

y
r

− y
r2

x
r2

]
(16)

Σcart
Lpos =

[
σ2
xxAMCL

σ2
xyAMCL

σ2
yxAMCL

σ2
yyAMCL

]
(17)

where x and y are the position of the detection in cartesian
coordinates, and r and θ in polar coordinates. The rotational
uncertainty can be simply given by:

Σbbox
Lrot = Σpolar

Lrot
=

[
0 0
0 σ2

θAMCL

]
(18)

This results in the final positional uncertainty, represented
by a normal distribution: N bbox(M bbox

D ,Σbbox
Scamera

+Σbbox
L ).

In addition to positional uncertainty, each detection is as-
sociated with an object type and a corresponding confidence
score.

V. UPDATE ENVIRONMENT MODEL

As explained in section III, the second step in the process
involves associating new measurements with existing entities
in the environment model, and updating the model. There

are three main aspects that need to be updated in the
environment model:

1) Clusters: As cluster positions are derived from mea-
surements with uncertainty, the clusters in the envi-
ronment also carry positional uncertainty. After as-
sociating new measurements with existing clusters,
the cluster’s position and its uncertainty should be
updated. Clusters are tracked in the environment, with
their positional uncertainty and existence probability
updated using bayesian inference based on new mea-
surements.

2) Objects: Objects are updated with new bounding-
box detections from the camera. After associating the
bounding boxes with existing objects, the object’s type
probabilities are updated using Bayesian inference.
Similarly to clusters, their existence probability is
updated based on new detections.

3) Object-cluster connections: Each cluster has a set of
potential parent objects with associated probabilities.
These probabilities are updated using the information
of the new detections. The likelihood that a cluster
belongs to an object is computed based on their
relative position to the detection.

A. Update clusters

Before updating the clusters, new measurements must be
associated with existing data. To match new measurements
with existing clusters, a nearest neighbor association
technique using the Mahalanobis distance is employed. [28]

The Mahalanobis distance measures the distance between
two points in a multivariate space, considering the covari-
ance of the distribution rather than relying on the simple
Euclidean distance. The Mahalanobis distance between a
point and a distribution is given by [29]:

Dm(N (µ⃗,Σ), p⃗) =
√

(p⃗− µ⃗)T (Σ)−1(p⃗− µ⃗) (19)

Since both the new measurement and the existing cluster
have covariance matrices, the Mahalanobis distance between
two Gaussian distributions can be expanded to account for
this. This equation is also used in track-to-track fusion for
multiple sensors and is given by [30]:

Dm(N (µ⃗1,Σ1),N (µ⃗2,Σ2)) =√
(µ⃗1 − µ⃗2)T (Σ1 +Σ2)−1(µ⃗1 − µ⃗2) (20)

To compute the likelihood that measurement Mi is associ-
ated with an existing cluster Cj , the Mahalanobis distance
can be used in the following probability function:

P (Mi → Cj) = exp(−D2
m

2
) (21)

For each measured cluster, the likelihood that it cor-
responds to each existing cluster is calculated, forming
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Fig. 6: Likelihoods of hypotheses that existing clusters A,
B and C are associated to a single measurement. The
clusters are visualised with their covariance in red. while the
distribution of the new measurement is visualised in purple.

hypotheses. Examples of these hypotheses are visualised
in Figure 6, where a single measurement is compared to
multiple existing clusters in proximity. As some existing
clusters will not be visible in the current LiDAR scan, and
new clusters will be discovered, a likelihood threshold is
used to avoid mismatches between these, as also mentioned
in [30]. Hypotheses are stored if their likelihood exceeds
this threshold. Once all new clusters are evaluated, the list
of hypotheses is sorted by likelihood, and potential matches
are processed starting with the highest likelihood.

Starting with the hypothesis with the highest likelihood,
the cluster is updated with the measurement data, and both
the new cluster and the existing cluster are marked as ”used”
to prevent further associations. Subsequent hypotheses in-
volving already matched clusters are ignored, and the next
hypothesis is evaluated. This continues until all matches are
processed and unmatched measurements are treated as newly
detected clusters. This process is given in Algorithm 1.

For each successful association, the existing cluster with
positional probability N (µ⃗prior,Σprior) is updated with the
measurement with positional probability N (µ⃗meas,Σmeas).
The parameters of the resulting posterior Gaussian distribu-
tion N (µ⃗posterior,Σposterior) are computed with the following
equations, which are the information form of the the update
step of a Kalman filter [31].

Σposterior = (Σ−1
prior +Σ−1

meas)
−1 (22)

µ⃗posterior = Σposterior(Σ
−1
priorµ⃗prior +Σ−1

measµ⃗meas) (23)

This update is visualised in Figure 7, where the old
distribution in light red is updated with the measurement,
resulting in the new distribution in darker red.

Algorithm 1 Process association hypotheses
define measurements = new cluster measurements
define clusters = existing clusters
define association hypotheses = association hypotheses

procedure PROCESS HYPOTHESES(association hypotheses,
measurements, clusters)

for hypothesis in association hypotheses do
if hypothesis.cluster.updated then

continue
end if
if hypothesis.measurement.used then

continue
end if
Update cluster with measurement
hypothesis.measurement.used← True
hypothesis.cluster.updated← True

end for
end procedure

Fig. 7: Updating the positional probability of a cluster with
a new measurement. The old distribution is visualised in
light red, and the new distribution in dark red. The position
distribution of the measurement is shown in purple.

As a cluster is updated, confidence in its existence
should increase. Bayesian updates are applied, where the
probability that a hypothesis H (that a cluster exists) is
true, given evidence E, should increase when an object is
just seen, and decrease when no information is given. More
about these update rules and the values used in specific
situations is given in Appendix C.

At each time step, new positions of the clusters are
predicted based on their last known velocity. Additional
process noise is incorporated to account for the uncertainty
in this prediction. For static clusters, this noise is modeled
as a zero-mean Gaussian distribution with covariances
of 0.02 in the x- and y-directions. For dynamic clusters,
additional uncertainty is included in the direction of their
velocity, with a velocity factor of 0.2 for the longitudinal
direction of the velocity and 0.05 for the lateral direction.
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This prediction allows the system to continue tracking
clusters even when they are temporarily occluded.

B. Update objects

For object detections, a slightly different approach is
required. As explained earlier, the positional uncertainty of
the camera detections is modelled as a Gaussian distribution
in the bounding-box coordinate system. To associate new
detections with existing objects, the positional uncertainty
of the existing objects must also be transformed into the
bounding box coordinate space. Once this transformation
is complete, the Mahalanobis distance between the two
Gaussian distributions can be calculated using Equation 20.
Examples of this positional likelihood are visualised in
Figure 8.

Fig. 8: Positional likelihoods of hypotheses that objects
A, B and C are associated to the detection. The existing
entities are visualised with their covariances in red, while
the distribution of the new detection is visualised in purple.
The bounding box is visualised by a green line.

In addition to the distance, the object type is considered
in the association process. If a newly detected chair appears
in the same location as a previously detected table, it is
less likely to be the same object compared to a situation
where a chair had been detected there earlier. This type
similarity is achieved by multiplying the confidence of the
detection with the confidence of the object being the same
type as the detection. For example, if a chair is detected
with a probability of 0.9 and compared to an object with a
probability of 0.7 of being a chair and 0.3 of being a table,
the resulting type similarity probability is 0.9 · 0.7 = 0.63.
If the detection were a table with a confidence of 0.9, the
similarity probability would be 0.9 ·0.3 = 0.27, indicating a

lower likelihood that it is the same object. However, some
objects are more similar than others, making it easier to
confuse them. Further discussion about this is provided in
section VIII.

The likelihood that a new detection Di corresponds to
existing object Oj can be computed using a combination of
the positional and type likelihoods:

P (Di → Oj) =

exp(−D2
m

2
) · (P (Otype

j = Dtype
i )P (Dtype

i )) (24)

Using both the positional distribution probability and
the type similarity probability, the same process used for
cluster association is applied to associate new detections with
existing objects.

For each successful association between an existing object
and a YOLO detection, the object’s stored information
is updated. Each object in the environment model has a
set of possible types, each with an associated probability,
normalized so that the total probability sums to 1. Initially,
the object is assigned the type ”unknown” with a probability
of 1.0. When new data (a YOLO detection) is collected, the
detected type is either updated if it already exists in the
object’s type list, or added as a new type if it does not exist,
with an initial probability of 0.1. The updated probability for
each type is calculated using Bayesian inference, and then
all probabilities are normalized again to ensure they sum to
1. This process is detailed in Algorithm 2.

Algorithm 2 Update object type
define detection type = type of YOLO detection
define confidence = confidence of YOLO detection
define class hypotheses = list of classes with probabilities

unknown hypothesis.type← −1
unknown hypothesis.probability ← 1.0
Add unknown hypothesis to class hypotheses

procedure UPDATE TYPE PROBABILITIES(detection type,
confidence)

for hypothesis in class hypotheses do
if hypothesis.type = detection type then

Update hypothesis.probability with confidence
Normalise probabilities
return

end if
end for
new hypothesis.type← detection type
new hypothesis.probability ← 0.1
Update hypothesis.probability with confidence
Add new hypothesis to class hypotheses
Normalise probabilities
return

end procedure
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Since the LiDAR provides more accurate positional data,
the positional uncertainty of objects depends on their as-
sociated clusters, if any exist. The xy-spread and average
uncertainty of the child clusters are used as the object’s
positional uncertainty. Similar to the existence probability of
clusters, Bayesian updates are applied to update the existence
probability of objects based on the evidence. This is further
explained in Appendix C.

C. Update object-cluster connections

New detections are not only used to update existing
objects but are also essential in linking objects to LiDAR
clusters. These associations help maintain the connection
between objects and clusters, enabling the system to track
objects even when they are not visible to the camera.

To establish this object-cluster connection, the system
checks which clusters could be part of the detection’s
bounding box. Similar to the object-association process,
likelihoods are generated for associating detections with
existing clusters. This is done using the positional likeli-
hoods visualised in Figure 8. By transforming the positional
uncertainties of clusters to the bounding-box frame of the
detection, the Mahalanobis distance is used to determine
the likelihood that a cluster is part of a detection. These
likelihoods provide new evidence for the connection to the
object associated with the detection.

Similar to the type list of objects, each cluster has a list of
possible parent objects with corresponding probabilities. Ini-
tially, the cluster is assigned no parent (-1) with a probability
of 1.0. New potential parent objects are added and updated
with their likelihoods, similar to Algorithm 2. Normalisation
ensures that the total sum of probabilities remains 1.0. When
the probability of an object surpasses a threshold of 0.5, it
is designated as the parent of the cluster, and the object will
follow the movement of the cluster. If multiple clusters are
assigned to one object and they move in different directions
(i.e. the distance between a cluster and the object increases),
the likelihood that they are part of the same object decreases,
as one or multiple of them are likely incorrectly assigned to
that object.

If an object is removed while the clusters still exist,
the probability that the cluster belongs to no object (-1) is
increased by the probability that it was previously associated
with the removed object.

VI. HUMAN TRACKING

To track humans outside the camera’s view, it is essential
to accurately monitor the movement of their legs. However,
as humans walk, one leg often moves behind the other in
the LiDAR view, causing both legs to be clustered as a
single entity. Since the legs alternate quickly between being
clustered as one or two separate clusters, it becomes difficult

to track them individually. This situation is visualised in
Figure 9.

To address this, the cluster measurement association algo-
rithm described in section V is modified. After all hypotheses
are processed, the system checks any remaining unused
hypotheses. If an existing cluster, which is part of a human
(i.e., it has a human as its parent object), is not updated
but has a hypothesis with a high probability, the system
checks whether the measurement for that hypothesis has
been used to update the other leg. If so, the measurement is
used again to update the untracked cluster. This measurement
is assumed to represent both legs, as they are very close
together at that point. This ensures that both legs can still
be tracked, even when one temporarily disappears.

(a) Human legs on LiDAR when
the legs are separated. They ap-
pear as two clusters.

(b) Human legs on LiDAR when
the they are close to each other.
They appear as one cluster,

Fig. 9: Visualisation of a human’s legs walking to the left in
a LiDAR scan. When one leg is behind the other, it becomes
invisible to the LiDAR. The human may appear as one or
two clusters depending on the position of the legs during
walking.

VII. PERFORMANCE

Tests were conducted both in simulation and on the Rober.

A. Experiments in Simulation

A Gazebo simulation was used to evaluate the system’s
performance. The simulated environment replicates an in-
door setting, including objects such as chairs and tables.
Multiple actors follow predefined trajectories while others
remain seated or stand still. The simulation is visualised in
Figure 10.

In the simulation, the system was tested on three different
aspects. First, the positional error of objects was measured
using both camera-based and fusion-based estimation at
various distances while the robot remained stationary. The
objects tested included humans and chairs, as these are
common in the robot’s operating environment. Next, the
system’s tracking capability was evaluated by observing
two humans walking around the robot. These individuals
were tracked using LiDAR after the system associated them
with human objects. Finally, a test was conducted with the
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Fig. 10: Screenshot of the simulation environment, where
multiple agents and objects are placed.

robot moving past objects. As the robot drove by, objects
appeared and disappeared from the camera’s view.

Object Positional Accuracy: To measure positional error,
objects were placed in front of the robot, where they were
visible to both the camera and the LiDAR. First, the depth
estimation from the camera was compared to the actual
distance, which is recorded as the camera error. Next, the
object’s position, once linked to the LiDAR clusters, was
compared to its true position, recorded as the fusion error.
These tests were conducted at distances of 3m and 6m from
the robot, using humans and chairs as the test objects. The
chairs were partially transparent, adding complexity to the
camera’s ability to estimate their position accurately. The
tests are repeated three times and the average results are
shown in Table I.

Distance (m)
3 6

Object type Camera err. Fusion err. Camera err. Fusion err.
Human 0.091 0.052 0.020 0.033
Chair 0.082 0.012 0.051 0.003

TABLE I: Average localisation error (in meters) of humans
and chairs in simulation. Tests have been carried out with
objects being 3m and 6m away from the center of the robot.
The objects are far away from any walls or other objects in
the background.

Additionally, these tests were repeated with the objects
placed directly in front of a wall. Since the wall also appears
as cluster(s) on the LiDAR, it could be mistakenly associated
with the object, potentially introducing error. The results of
these tests are shown in Table II.

Tracking Accuracy: The robot must be capable of up-
dating its environment in dynamic scenarios, particularly by
tracking moving humans and other dynamic objects. To test
this capability, two humans were positioned in the robot’s
camera view. While walking out of view, they were tracked
using LiDAR. In Figure 11, the tracked and true positions
of humans A and B are visualised. Human A walks in a

Distance (m)
3 6

Object type Camera err. Fusion err. Camera err. Fusion err.
Human 0.077 0.059 0.096 0.220
Chair 0.138 0.316 0.146 0.241

TABLE II: Average localisation error (in meters) of humans
and chairs in simulation. Tests have been carried out with
objects being 3m and 6m away from the center of the robot.
The objects are placed close to a wall in the background

straight line, while human B changes direction after moving
out of the camera’s view. Both humans were successfully
tracked, with average tracking errors of 0.302m for human
A and 0.367m for human B.

(a) True position of human A and human B walking past the robot.

(b) Measured position of human A and human B walking past the
robot.

Fig. 11: True (a) and measured (b) position of human A
and human B walking past the robot. Human A walks in
a straight line, while human B takes a change in direction
outside of camera view. The view of the camera is visualised
with dotted green lines.

Dynamic Accuracy: Since the robot needs to be able
to track objects while it is moving, the third testing area
involves a moving robot in the environment. The robot
follows a predefined path computed by the ROS2 navigation
stack [27], and the positions of objects are tracked through-
out the test. The driven path, which includes both straight
segments and turns, is visualised in Figure 12a. The simula-
tion environment and the resulting modeled environment are
visualised in Figure 12b and Figure 12c, respectively. The
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average position error of the objects was 0.044m for chairs
and 0.074m for humans.

(a) Schematic of the driven path (blue line) by the robot. Two
humans are visualised in green, and a chair in blue.

(b) Simulation environment of the dynamic test.

(c) Constructed environment by the system during the dynamic test.

Fig. 12: Overview of the dynamic test in simulation. The
driven path is visualised in (a), with (b) giving a view of the
simulation. Subfigure (c) visualises the output of the system,
where the clusters are correctly linked to the corresponding
objects.

B. Experiments on the Robot

In addition to the simulation tests, the system was
evaluated on a real robot. Some hardware limitations, such
as sensor delays, were observed. Despite this, the system
successfully handled uncertainties and delays from various
sensor sources by accurately linking LiDAR measurements
to objects and tracking them within its environment. An
example is visualised in Figure 1, where the robot was
placed in a hallway containing static objects such as

chairs and small potted plants. As shown in Figure 1a,
the YOLO detection algorithm detected these objects
with bounding boxes. Figure 1b visualises the resulting
environment created by the system. Clusters visible on the
LiDAR were correctly associated with the objects, with
their confidence levels increasing over time as more data
was gathered. Similarly, the system’s confidence in the
objects’ classifications improved as additional evidence was
collected. Similar to the tests in simulation, experiments
performed on the robot focused on positional accuracy
of objects, tracking of dynamic objects, and tracking the
environment while in motion.

Object Positional Accuracy: The positional accuracy
shown in tables I and II for the simulation was also tested
on the real robot. A human and a chair were placed 3m and
6m in front of the robot, and the error in the camera depth
estimation, as well as the positional error of the output of the
system is computed. The tests have been done for objects
placed in free space, and objects placed right in front of a
wall. The results are shown in tables III and IV respectively.

Distance (m)
3 6

Object type Camera err. Fusion err. Camera err. Fusion err.
Human 0.125 0.002 0.903 0.004
Chair 0.472 0.014 1.283 0.081

TABLE III: Average localisation error (in meters) of humans
and chairs in tests on the robot. Tests have been carried out
with objects being 3m and 6m away from the center of the
robot. The objects are far away from any walls or other
objects in the background.

Distance (m)
3 6

Object type Camera err. Fusion err. Camera err. Fusion err.
Human 0.147 0.403 1.082 0.514
Chair 0.473 0.407 1.738 0.601

TABLE IV: Average localisation error (in meters) of humans
and chairs in tests on the robot. Tests have been carried
out with objects being 3m and 6m away from the center
of the robot. The objects are placed close to a wall in the
background

Tracking Accuracy: To test the system’s tracking perfor-
mance, the robot was positioned in an open space while a
human walked from within the camera’s view towards the
side of the robot, eventually moving out of the camera’s
sight. The camera feed and the reconstructed environment
are shown in Figure 14 in appendix A. Since no ground
truth data was available for the human’s trajectory, no spe-
cific metrics were computed. However, the system correctly
tracked the human as they moved out of the camera’s view
and updated their position accordingly.
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Dynamic Accuracy: In a similar dynamic test as in the
simulation, the robot was tested while moving in an environ-
ment with surrounding objects. A chair and a human were
placed in the environment, and the robot drove past them.
The objects appeared and disappeared from the camera’s
view as the robot moved, and were tracked using LiDAR.
Again, no ground truth data was available. However, the
robot correctly associated the objects with clusters and was
able to continue tracking them even when they were no
longer visible to the camera. The camera feed with YOLO
detections, as well as the system’s output, is visualised in
Figure 15 in appendix A.

VIII. DISCUSSION AND FUTURE WORK

Although the system can accurately recreate the environ-
ment around the robot, there are some limitations in the
system that hinder further improvement of the accuracy.

Clustering Limitations: The LiDAR point cloud is first
clustered before it is processed by the system. While this
greatly simplifies entity tracking computations, it has some
drawbacks. A larger object, such as a wall, is typically
grouped as a single cluster. However, if the view is par-
tially obstructed, the visible portions on either side may be
incorrectly clustered as two separate entities. The robot itself
has four blind spots, caused by structural poles that block
visibility. This is illustrated in Figure 13, where the robot,
positioned near a wall, sees the wall as two distinct entities in
the clustered data. In reality, the robot should recognise this
as a single object, with part of it occluded. This issue also
arises when other objects obstruct the LiDAR’s view. Fur-
thermore, if the object blocking the LiDAR is moving, the
’shadow’ that splits the background object will also move,
making it seem as though the two clusters representing the
background object are moving. This phenomenon occurs
not only when another object is in motion but also when
the robot itself moves, causing large background objects to
appear as if they are shifting.

If clusters move within these blind spots, they can be
tracked using the previously estimated velocity, but they are
easily lost when changing direction or remaining in these
spots for too long.

Object Position Uncertainty: Objects vary in shape
and size, and from camera images alone, it is difficult to
accurately estimate an object’s length. This information can
be crucial for linking objects with clusters. The uncertainty
in the camera data dictates which clusters are associated with
an object. Increasing the depth uncertainty allows clusters
farther away to be linked to the object. This can be useful for
objects like tables, where the legs are spread apart. However,
this is not applicable for humans. The difference in fusion
errors between Table I and Table II highlights this issue, as
fusion errors for objects near walls increase due to wall clus-
ters being incorrectly associated with objects. Solving this
problem is challenging, as for objects like tables, it makes

Fig. 13: LiDAR rays (red) from the robot when a wall (gray)
is in view. The algorithm clusters this wall into two separate
entities, despite it being a single object. The field of view
of the camera is visualised with green dotted lines.

sense for clusters slightly behind the actual measurement
to belong to the object, but for humans it is unlikely that
their legs are far apart. Incorporating prior knowledge about
object types and sizes could enhance system performance.

Furthermore, the camera’s depth point cloud is inaccurate,
causing depth points to appear farther away than they
actually are. This means that, although the correct depth
points are used to compute an object’s position, it will still
be placed slightly behind the actual object. Increasing the
uncertainty in detection could help ensure that the correct
clusters are more likely to be linked to the object. However,
this approach also risks linking incorrect clusters from
background objects, which is also evident from difference in
the tables Table III and Table IV. The inaccuracy in the depth
camera is most likely due to imperfect stereo calibration, and
this could be improved through re-calibration.

Stationary Inference Issue: The system uses Bayesian
inference to update its knowlegde of the environment. As
sensors continuously gather evidence, the system becomes
more confident about object classifications or object-cluster
connections. However, when the robot is stationary, it repeat-
edly processes the same evidence. This issue is particularly
noticeable for objects near walls, where the connection
probability between the object and nearby clusters continues
to increase. While clusters actually belonging to the object
increase their connection probabilities faster, over time,
clusters associated with the wall also reach high connection
probabilities to the object due to constant evidence accumu-
lation.

To address this, the weight of new evidence should de-
crease when the environment remains unchanged. Evidence
from newly observed objects should carry more importance
than evidence accumulated over long periods.

Ambiguous Object Detections: In some cases, the
YOLO algorithm detects multiple objects at the same lo-
cation. For instance, a human carrying a backpack may be
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detected as two separate objects occupying approximately
the same position on the map. Clusters may be linked to
both the human and the backpack, with their probabilities
fluctuating around 50%. When the human carrying the
backpack moves out of the camera’s view, only one of
the objects is tracked, depending on which has the higher
probability at the time. Incorporating prior knowledge—such
as recognising that humans can carry other objects—could
help resolve these ambiguities.

Occlusion Assumptions: As explained in subsection V-A,
positional uncertainty is added to clusters at every update
step. In the absence of new data, this leads to a uniformly
expanding uncertainty regarding the cluster’s location. While
this is useful when an object reappears slightly displaced, the
uncertainty can be improved by leveraging more knowledge
from the system. To determine whether a cluster is occluded,
the system compares the distance of the nearest three LiDAR
rays to the cluster’s distance in the model. If the cluster’s
distance is significantly shorter and remains unupdated, the
system assumes the cluster is occluded, and its positional
uncertainty grows uniformly. However, the cluster could be
occluded by a narrow object, such as one of the poles in the
robot’s structure, which the LiDAR may see around. In this
case, the uniform expansion of positional uncertainty is not
optimal. Instead, there are areas where we can confidently
say the cluster is not located. Narrowing the possible position
of the occluded cluster could reduce mismatches with new
data.

Object Type Similarity: As explained in section V, the
association of YOLO detections with existing objects is
based on both positional likelihood and type likelihood,
considering the type and confidence levels of the YOLO
detection and the existing object. However, some objects
recognised by YOLO are very similar. For example, a large
chair might be classified as either a chair or a couch.
In contrast, the algorithm will not confuse humans with
chairs. If the algorithm detects a human where a chair was
previously observed, it is unlikely to be the same object.
However, if it detects a couch where a chair was seen before,
it is more likely to be the same object. This similarity could
be leveraged to improve the accuracy of the model.

Fusion Localisation Uncertainty: As explained in sec-
tion IV, both the LiDAR clusters and camera detections
have a position uncertainty, consisting of both the sensor
uncertainty and the localisation uncertainty. This information
is useful for updating the positions of entities in the global
map. However, when linking LiDAR clusters to detections,
the localisation uncertainty is not required. Currently, the
global positions of LiDAR clusters in the map are compared
to the global positions of detections, as the new measure-
ments from both sensors are implemented separately. How-
ever, since these measurements are taken at approximately
the same time, localisation uncertainty becomes irrelevant,
as both sensors would experience the same uncertainty. To

improve this process, only the sensor uncertainties should
be considered during the matching phase.

IX. CONCLUSION

In this paper, a stochastic 2D LiDAR-camera sensor fusion
system for real-time dynamic object mapping is proposed.
The architecture leverages the spatial resolution of the Li-
DAR and the object detection capabilities of the camera.
Confidence in the existence and type of objects, as well as
the probability that a tracked LiDAR cluster corresponds to
an object detected by the camera, is continuously updated us-
ing Bayesian inference. Additionally, localisation and sensor
uncertainties are accounted for by modeling measurements
and environmental entities using Gaussian distributions. The
fusion performance, applied with Bayesian update rules,
has shown satisfactory results in both simulation and real
life experiments, demonstrating an average static positional
error of objects of 0.12m in simulation, and 0.25m across
different experiments on the robot. Furthermore, the system
performed well in tracking dynamic humans, with an average
tracking error of 0.33m in simulation.
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APPENDIX

A. Test Figures

(a) Camera image with YOLO de-
tections when human is in view.

(b) Constructed environment when human is in view.
The LiDAR clusters are correctly linked to the human.

(c) Camera image with YOLO de-
tections when human walks out of
view.

(d) Constructed environment when human walks out
of view. The human is tracked based on the clusters.
As the human is moving, there is a higher positional
uncertainty in the direction of the movement.

(e) Camera image with YOLO de-
tections when human is not in
view.

(f) Constructed environment when human is standing
next to the robot, outside of camera view. It is still
classified as a human and movements of the legs are
tracked by the LiDAR.

Fig. 14: Experiment with a dynamic object. The human starts in the view of the robot, and walks out of view. The robot is able to track
the human with the associated LiDAR clusters and updates its position accordingly. Figures (a), (c) and (e) represent the camera image
with the YOLO detections at different time stamps, while the figures (b), (d) and (f) are the corresponding constructed environments.
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(a) Camera image with YOLO de-
tections when chair is in view.

(b) Constructed environment when chair is in view.
The visible LiDAR clusters are correctly linked to the
chair. The human is seen on the LiDAR, but not on the
camera yet.

(c) Camera image with YOLO
detections when chair moves out
of view due to movement of the
robot. The human is now detected
by the YOLO algorithm.

(d) Constructed environment when the chair moves out
of view due to movement of the robot. The chair is
tracked based on the associated clusters. The human is
correctly classified and linked to the cluster of the legs.

(e) Camera image with YOLO de-
tections when the chair and the
human are not in view anymore
due to movement of the robot.

(f) Constructed environment when the chair and human
are out of view due to movement of the robot. The
robot still knows where the objects are.

Fig. 15: Experiment while driving with the robot. During the test, the robot sees a human and a chair which appear and disappear from
the camera image due to the movement of the robot. Figures (a), (c) and (e) represent the camera image with the YOLO detections at
different time stamps, while the figures (b), (d) and (f) are the corresponding constructed environments.
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B. Camera Depth Estimation

When objects are detected by the camera, depth estimation
can be performed using the stereo point cloud generated by
the camera. The challenge lies in determining which points
in the point cloud correspond to the object. Since the detec-
tions are represented as bounding boxes rather than pixel-
level segmentations, a significant amount of background may
be included in the detection. This is illustrated in Figure 16,
where a chair is placed 1.5m in front of a wall.

Fig. 16: YOLO detection of a chair placed in front of a wall.

By default, the Luxonis camera software estimates depth
by taking a margin from the bounding box and computing
the average distance of all points within that area [32].
While this method works well for solid objects, it can be
problematic for objects such as chairs and tables, where a
large portion of the bounding box may include background
points, leading to depth estimates that place the object
behind its actual position. In Figure 17, the density of the
pointcloud is visualised. The first peak corresponds to the
object, while the second peak represents the wall in the
background. The green line indicates the true centroid of
the object, while the red line represents the average depth
of all points, which falls between the object and the wall,
resulting in an error of 0.74m in this example.

Fig. 17: Depth points of the camera within the bounding
box. The red dotted line represents the average depth of all
points, while the blue dotted line shows the depth computed
by analyzing the point cloud density. The green line indicates
the true center of the object.

To account for this issue, an alternative approach is used.

Instead of taking the average of all the points, the point
density is analysed. After applying a moving average filter,
the first real peak in the depth density above a certain
threshold is taken as the distance to the object. This is shown
by the blue dotted line in Figure 17, reducing the error to
0.05m. This method significantly reduces the uncertainty in
the depth estimation of the object, bringing the detection
closer to the actual position of the object.

C. Existence Probability Updates

As a cluster is updated, confidence in its existence should
increase. Bayesian updates are applied, where the probability
that a hypothesis H (that a cluster exists) is true, given
evidence E, is computed as [33]:

P (H | E) =
P (E | H) · P (H)

P (E)
(25)

where P (H | E) is the posterior probability, which is the
updated probability based on the new evidence. P (E | H)
is the likelihood, the new evidence provided by the sen-
sors. P (H) is the prior probability and P (E) the marginal
likelihood. The marginal likelihood represents the general
likelihood of observing the evidence E. It can be expanded
to [33]:

P (E) = P (E | H)P (H) + P (E | ¬H)P (¬H) (26)

where ¬H is the logical negation of H (i.e. ”not H”).
The probability P (¬H), the likelihood that H is false,
is calculated as P (¬H) = 1 − P (H) since the sum of
the probabilities of H being true and false must equal 1.
P (E | ¬H) represents the likelihood of observing evidence
E when hypothesis H is false. This value typically needs to
be estimated, and in this case, it has been set to 0.1. To filter
out minor fluctuations, the updated probability is calculated
as a weighted average of the prior and the posterior, with
the prior weight set at 0.7 and the posterior weight at 0.3.

Unlike object type updates, where the YOLO detection al-
gorithm provides the new evidence, the existence probability
must be estimated. When a cluster is updated, a likelihood
of 0.99 is used. However, in certain cases, the belief in
the existence of a cluster should decrease. These likelihood
values determine how quickly the existence probability of a
cluster diminishes under different conditions:

• Occlusion of static clusters; When the cluster is blocked
by another object or wall, preventing updates, it is
assumed the object is still there but unverified. The
likelihood of existence is estimated at 0.07.

• Occlusion of dynamic clusters: Similar to static clusters,
there is no data to update the cluster. However, since
dynamic clusters are unlikely to remain in the same
position or maintain the same velocity, the likelihood
of existence is estimated at 0.02.
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• Disappeared clusters: If the cluster should be visible
but is not updated with new data, it is likely that it has
disappeared from the area. In such cases, the likelihood
of existence is estimated at 0.0001, indicating a rapid
decrease in confidence.

The outcome of these scenarios is visualised in Figure 18.

Fig. 18: Existence probability in situations where a cluster
is occluded (static or dynamic) or when an object has
disappeared from view. The y-axis represents the existence
probability of the clusters, initialized at 1.0 for clarity and
updated using Bayesian inference. The x-axis shows the
number of update iterations. The system operates at 10 Hz.

A similar approach is used for determining the existence
probability of objects. When an object is detected in multiple
frames, confidence in its existence increases with a likeli-
hood equal to the YOLO detection confidence. If an object
is expected to be in view but is not updated, its existence
probability rapidly decreases, with a likelihood of 0.001.
Additionally, when objects are out of view, their existence
probability is based on the existence probability of their
associated clusters. Objects without clusters are assigned
an existence likelihood of 0.07 when out of view, as their
position or existence cannot be updated by either sensor.
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