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Abstract
Systems engineers are equipped to design complex networked systems such as infrastructures.

A key goal is cost minimization over a vast solution space. However, finding a minimum-cost

system while comprehensively satisfying different stakeholders is challenging and lacks proper

methodological support. Stakeholders often employ their own expert estimations for lack of suit-

able decision-supportmethods. In these settings, systems engineers typically requiremid-fidelity,

easy-to-use methods. We present a rigorous method that quickly finds minimum-cost solutions

for networks with multiple sources and sinks, focusing on pipeline topology, length, and capacity.

It can serve as a discussion tool in multiactor design processes, to demarcate the design space,

indicate sources of uncertainty, and provoke further analyses, different designs, or contractual

negotiations. It is applicable to a wide variety of cases, including many prominent infrastructures

needed to mitigate CO2. We prove that the optimal layout is a minimum-cost Gilbert tree, and

develop a heuristic based on the Gilbert-Melzak method. We demonstrate the method’s efficacy

for a case set regarding solution quality, computational time, and scalability.We also show its effi-

ciency and usefulness for systems engineers in real-world settings. Systems engineers can use the

generated cost-optimal system designs to benchmark any design changes in real-world negotia-

tion processes.

K EYWORDS

cost minimization, decision support method, multiactor network design, multisource multisink,
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1 INTRODUCTION

Networked infrastructures such as roads, telecom, gas, and water

pipelines or power grids provide essential utilities and services to soci-

ety. Common characteristics of such infrastructures include high initial

capital costs, generally long lifetimes andas a consequence irreversibil-

ity once the construction of such networks has finished.1 Although

Western societies alreadyhavemature infrastructurenetworks, devel-

opment of new networks and the expansion or adaptation of these

networks are very topical and minimization of the associated costs is

of high societal relevance, in particular in the energy sector. Pressing,

present-day, system-architecting challenges for energy infrastructure

networks related tomitigating CO2 are, for example,
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the original work is properly cited.
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• Biogas, produced on farms in rural areas, can be used to partially

replace natural gas. The volume of the produced biogas often sur-

passes the demand on the farm. Farms could transport the biogas to

a network, connecting various farms. Such a network is a determin-

ing cost factor. Therefore, farmers, or their intermediates, search for

a cost minimum architecture or topology of the biogas network to

reduce the cost of biogas distribution. This case is further explored

in this paper in Section 4.4.

• A prominent option for meeting Europe’s CO2 targets is to capture

CO2 at various large-capacity point sources such as power plants or

steel mills, and transport this CO2 to subsurface or subsea storage

facilities such as depleted gas fields. Realizing carbon capture stor-

age (CCS) is crucial as it is the largest individual measure in terms
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of CO2 reduction until 2030 in the Netherlands (as agreed upon

the Dutch government agreement, being 18Mton out of 56Mton2).

However, there is still a huge gap between what is expected and

what has been realized.3 As to date, noCO2 network exists that con-

nects sources and sinks in awide geographical spread. Such network

investments need to be borne by different actors, and we do not

yet know what actors, and such investments have a strong public-

private characteristic, given the societal value of CO2 reduction.
4 It

is therefore of crucial importance to find a cost-minimal solution for

the design of such network.

• Many large-scale wind farms on the North Sea Germany, the UK,

Norway, Denmark, Sweden, and the Netherlands will be developed

in the next decades. Research5,6 has shown that depending on the

technologies chosen and the governance framework that is put into

place, different topologies of the network will emerge, the theoreti-

cal minimum-cost network would give the actors a sense of how far

away they are from this minimum.

The systems engineering discipline has traditionally developed

methods to minimize the overall cost of complicated engineering sys-

tems (eg, airplanes) and also yielded important methods and tools for

developing and scanning the trade space, for multiattribute decision-

making and for dealing with complexity.7 In the past decade, the atten-

tion has broadened to the design of not only highly complicated sys-

tems, but rather to complex sociotechnical systems. The design of

large-scale sociotechnical systems, such as the infrastructure systems

presented above, is a multiactor process,8 pulling systems engineer-

ing into the social science domain. This means that new disciplines

and approaches are needed to explore those problems and solve them;

approaches that can deal with the sheer size of the problem in a

multiactor context.9 Infrastructure networks have a large number of

degrees of freedom,10 which makes it hard to intuitively compare the

cost effectiveness of alternatives. This paper develops a method that

supports a systems engineer by quickly finding least-cost network

topologies. Themethod developed in this paper is particularly useful in

a multiactor process, since it enables a quick analysis of low-cost net-

works,while real-world alternatives are discussed among stakeholders

on the negotiation table.

Garber et al11 recently developed a framework to capture such

decision-making by diverse stakeholders. Our infrastructure network

design problem is, in their terminology, a cooperation game, especially

in those cases where network externalities increase when more

sources and sinks are connected. Scholars argue that the decision

process needs rigorous models to estimate values for alternative

designs, to explore the trade space, find theoretical minimum-cost

targets, and find the main values drivers.12 This requires a determinis-

tic, unbiased, and traceable calculation of those values. Supplying the

stakeholders with an agreed upon, efficient (fast) calculation process,

will allow them to execute several sensitivity analyses to explore how

their stakes change with changes in assumptions or parameters. Such

approach might go against some developments in the systems engi-

neering discipline where more and more details from social processes

and values are being incorporated into increasingly opaque models.

Our proposed approach, using mid to low fidelity, relatively simple

models, has shown to contribute to trust in the negotiation process

and therefore enhances the possibility of a reasonable outcome of

the systems engineering process.8 Finding adequate models and

processes that produce agreed upon values for the huge trade spaces

in the sociotechnical systems of systems that we are dealing with is

therefore one of the key challenges in systems engineering.

Systems engineering processes are inherently combinatorically

complicated, given the many design variables and their combinations

into solutions. One important design variable in the design of net-

worked systems is the topology of the network. However, the topology

of networked systems, under uncertainty and in the context of many

actors is an issue that has received relatively little attention in the sys-

tems engineering field. This is, on the one hand, due to the fact that

in many design cases, the network topology was more or less fixed—

for example, by street patterns to lay out city infrastructure—and, on

the other hand, due to the fact that topological design is a mathemat-

ically complex problem in itself. For infrastructure developments, like

the one we introduced earlier, the location of splitting nodes and junc-

tions is still undecided, and capacities of links are often uncertain, ren-

dering the topology challenge evenmore daunting.

For our examples, biogas, CO2, grids at sea, such decision-making

is inherently multiactor, and examples of intrinsic uncertainties are:

capacity of sources and sinks (howmuch biogas will be produced, how

muchCO2 can the aquifer store, howmanywind farmswill be built and

connected), the cost of right of way (licensing, buying out of property),

and willingness to participate by actors (veto rights, political uncer-

tainties, societal acceptance in the CO2 case). Exploring these uncer-

tainties in a the multiactor design process will help to demarcate the

design space, and to pinpoint main areas of uncertainty, and thus pro-

voking further sensitivity analyses, or different designs ormove actors

into newcontractual negotiations. The sensitive anddynamic nature of

such design and negotiation processes requires methods that are able

to quickly but accurately scan the trade space, so that different solu-

tions can be explored collectively by the stakeholders, for example, by

experimenting with parameter values, or with assumptions.

This paper describes such an efficient method to assess the relative

cost of different network topologies. Our method is to be used by sys-

tems engineers and is especially suitable to explore the trade space in

an objective manner in a multiactor setting. The method enables sys-

tems engineers to explore the range of most cost-effective physical

networks for those cases where topology and capacity are still uncer-

tain and encompass large trade spaces. For the scope of this paper,

we disregard control and institutional layers in our algorithm, as well

as those laws of nature that may govern the more detailed (multi-

phase) physical flow within the pipes of those networks, even though

theymay bemildly dependent on the network topology.We generalize

away from those details to develop and test different algorithms, while

assuming that the required capacity per producer or consumer can be

determined.

It is important to accentuate that we focus on developing an ade-

quate rational and straightforward tool that is to be used in social set-

tings of negotiating actors. Following Refs.13 and 14, we explicitly and
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intentionally chose to not include such social factors into our method,

as this more than often leads to unrealistic models using simple weight

factors for different actors’ goals, ultimately leading to opaque model

outcomes, and reduced trust in the model’s outcomes by actors. By

excluding much of those socioeconomic speculations and assumptions

fromourmethod, we trust in the shared use of themethod in a real-life

multiactor setting to account for many of such social values.

Our method determines a network layout that minimizes the

initial investment costs that depend on both the length and the

capacity of the pipelines, satisfying the demands of the consumers,

for multiple sources (suppliers) and multiple sinks (consumers). For

ease-of-reading, we will use the term pipelines in this paper to denote

various infrastructure connections. We will show in this paper how

our algorithm is able to find optimal network topologies, or trees,

by explaining how we used the theory and how this leads to feasible

and cost-minimum designs in reasonable computing time. The latter

performance criterion of our approach is important, given that the

algorithm needs to perform in a context where a systems engineer

would want to redesign and test solutions as quickly as possible. Also,

since we target real-world multiactor settings, table top drawing

sessions, or serious-gaming sessions, the computational performance

or our algorithm is of crucial importance.

The next section will start with a literature overview of energy

network design methods. We will root our approach in operations

research, this being an important contributor to many systems engi-

neering optimization problems. After that section, we will formulate

the mathematical design problem and discuss our assumptions, the

latter being of importance to the users of the approach. We go into

detail in explaining the underpinnings of our approach and algorithm.

Detailed descriptions can be found in the Appendices and are relevant

for userswhowant tounderstand the algorithm.Also, it allows systems

engineers to use the optimal topologies in discussion with other stake-

holders and adjust parameters in the algorithm during these debates.

Wedevelop our solutionmethod, andwewill show its efficacy and effi-

ciency in Section 4 of this paper. Finally, we test the usability and use-

fulness of the method on a number of case studies executed by groups

of systems engineering students who were challenged with a network

design problem under uncertainty in amultiactor setting.

2 MODELS AND METHODS FOR NETWORK

SYSTEM DESIGN

In the previous section, we established the need, from a systems

engineering perspective, for an accurate, yet quick optimization

method for network topologies for infrastructures. We therefore con-

ducted a thorough review of recent literature from the operations

research and systems engineering fields, and this revealed operations

research papers on the design of new energy networks, like CO2

networks15–21 or heating networks,22–24 but also new networks to

transport hydrogen,25 animal waste,26 water,27–31 or oil.32,33

Table A2 shows a short summary of the optimization problems dis-

cussed in the papers 15–33 and themethods used to solve these prob-

lems. However, none of these papers incorporates the system design

variables in theway that is core toourpaper: exploring systemsoptions

that address the development of a networkwith uncertain sources and

sinks,with anundetermined topology, andexecuted in amultiactor set-

ting. The papers do contribute various interesting (parts of) answers

on how to model particular design variables and constraints that span

up our trade space, and how to solve the design problems. We discuss

them below.

2.1 Design variable: system topology

Most authors design the network layout by minimizing investment

costs, although some take into account the operational costs on the

longer term as well. Only Bietresato et al,26 Ivić et al,31 Liu et al,33

and Steele et al30 search for networks of minimum length. Naturally,

the investment costs depend to a large extent on this length of the

pipelines to be built. If connections can only split in a given node

(source or sink), then the design of the network is given by theminimum

spanning tree (MST). This tree can easily be determined by Kruskal’s34

or Prim’s35 algorithm. Our systems engineering problem does allow

the introduction of new splitting or connection nodes, thereby vastly

increasing the trade space, so these algorithms do not suffice.

Other approaches that look for minimum-length networks do allow

extra splitting points to make the network shorter. When these newly

introduced nodes can be located on optimal positions, they are called

Steiner points as they were first defined by Jacob Steiner. Theminimum

length tree is then called a Steiner minimal tree (SMT).36 For a general

number of nodes, the ratio between the length of the SMT and the

length of the MST has a lower theoretical bound equal to 0.82.37 It

thereforemakes sense to find the Steiner treewhen looking for amini-

mum cost system. Only Bietresato et al26 and Liu et al33 search for this

SMT to reduce the overall cost of the system.

2.2 Design variable: link capacity

However, in general, the investment costs do not only depend on the

length of the new pipelines, but also increase when larger pipeline

capacities are needed. The extra capacity costs can be taken into

account by using a cost function that depends both on the length and

the capacity. This capacity cost function is often formulated as a con-

cave function f(q) with q the capacity of the pipeline.15,17,25,36,38–40

Some, however, use only pipelines of specific discrete sizes and adapt

their cost function accordingly.27,28,30,32,41,42 Zhang and Zhu41 first

determine the pipeline capacity on a continuous scale after which they

round it to one of the available sizes, in order to allow the use of an

Non-Linear-Program (NLP) solver.

In this paper, we use the continuous concave function40 f(q) = q𝛽 ,

0 ≤ 𝛽 ≤ 1. If 𝛽 = 0, f(q) indicates that the capacity does not influence

the investment costs. In that case the problem translates to finding an

SMT. If 𝛽 = 1, there is no cost reduction (ie, economy of scale) for com-

bined pipelines. The function17 for costs of pipelines in the CO2 net-

work corresponds to a 𝛽-value of around 0.6. The same holds for the

cost function25 for a hydrogen network. The discrete cost table for the
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pipelines in a water network28 is best fit with 𝛽 around 0.7. In most

practical cases, 𝛽 will probably be somewhere around 0.6.

If the capacity does not influence the investment cost, then there

is no difference in minimum-cost network between a multisource

multisink and one-source multisink case. Although demand or supply

requirements will also in that case determine the needed capacity of

the pipelines, these capacities have no influence on the final invest-

ment costs. If capacity does play a role in the investment cost, then this

will also influence the optimal network topology. The models in the lit-

erature do not endogenously take into account this effect of capacity

increases or decreases of links as a result of adding new nodes.

2.3 Design variable: node function

The demand and supply functions can be formulated in different ways.

Thomas and Weng40 and Trietsch38 determine in advance for each

pair of network nodes the flow between these nodes that the network

should be able to transport. They do not explicitly distinguish between

the role of the nodes, sources, or sinks. Because of this, the minimum-

cost network could be no longer a tree (or forest) but could also con-

tain cycles. These networks are called Gilbert networks (GNs)40 or G-

Steiner trees38 as they were first mentioned by Gilbert36 and Gilbert

and Pollak.43

In our paper, we will assume an explicit division between sources

and sinks, but we do not require flows between specified pairs of

nodes. We only require that the network should be able to satisfy

the minimum demand from sinks and/or the maximum supply from

sources. This requirement is often used in multisource multisink net-

works to determine the optimal flow through an existing network44,45

but as far as we are aware, it has not been used to design a minimum-

cost network. We assume that this is a realistic requirement for new

infrastructures, and will therefore include it into our system problem

formulation.

2.4 Design constraint: operations and regulation

In many infrastructures, the network and its operation are regulated.

The supply or demand itself often is not regulated or only partly. For

example, in the case of the CO2 networks, regulation may be applied

to the price setting of the sinks and of the network, as these will be

monopolies or oligopolies at best. For offshore grids or biogas net-

works, the networks are regulated for the same reasons: they con-

stitute a monopoly. There might also be requirements on minimum

quantities to be delivered when, for example, biogas producers go

into a contract with gas distributors and resellers. Large wind farms

would typically contract out a certain capacity to the market, and any

under- or overestimations of that power (due to wind fluctuations)

would be bought or sold at the spot market or other reserve mar-

kets. Existing methods in literature have practically disregarded these

set of constraints for large networked system designs. In developing

our algorithm and model for solving the network topology problem,

we have ensured that such constraints can be implemented via the

(un)certainty profiles of the sources and sinks.

2.5 Solving approaches

In general, there are three main approaches to solve networked sys-

temdesign problems. The first one uses heuristics and algorithms from

graph theory and geometry17,25,26,28,39,40,42, like the Gilbert-Melzak

method46–48 to find the optimal topology and the optimal location of

Steiner points (added nodes tominimize path length).

The second approach formulates the problem as an Mixed Inte-

ger (Non-)Linear Program (MI(N)LP).15,20–22,30,32,41,45,49 They find

(sub)optimal networks using existing solver tools like modeling sys-

tem for mathematical programming and optimization.20,30,45 Thapalia

et al45 focus on the allocation of total supply to each demand node

without being able to design the network in terms of locating Steiner

points in the network topology. Mostly demand nodes are connected

directly to one or multiple supply nodes.

A third approach uses agent-based models, more specifically ant

colony optimization (ACO) or particle swarm optimization (PSO), to

find (sub)optimal network layouts. For example, Maier et al27 pre-

sented an ACO algorithm for the design of water distribution systems

andArnaout50 further generalizes theACOalgorithm to deal with net-

work infrastructures with an unknown number of elements. Heijnen

et al10 developed an ACO for the one-source multisink problem and

Nguyen51 extended this model to the multisource multisink case. Liu

et al33 use PSO to find an SMT.

In this paper, we will formulate the multisource multisink network

design question as

How to find aminimum-cost network topology that connects

sources and sinks with sufficient network capacity while

guaranteeing that all demand of the sinks can be delivered

by the supply of the sources?

Our algorithmwill follow the geometric graph theoretical approach,

as this is computationally fast, and is comprehensible for actors and

systems engineers in infrastructure design settings. After we have

explained our approach in more detail in the next chapter, we discuss

a few related approaches from the literature in Section 3.4.4.

3 NETWORK DESIGN ALGORITHMS

For the design of an energy network with uncertain sources and sinks,

in line with the literature explored above, we need to develop a cost-

efficient network of connecting sources and sinks, and allowing the

introduction of new splitting of connecting nodes.

3.1 General approach

We describe our general approach on the basis of an example for the

development of a biogas infrastructure. In many rural areas, farmers

operatemanure andorganicwaste digesters to turn thewaste into bio-

gas. This biogas is partly reused on the farm, but the overproduction

can be fed back into the main gas grid. However, in order to reach this

main gas grid, the farmers need to cooperate and build a cost-efficient

network that connects their multiple sources (the digesters) to one
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(A) (B) (C)

(E)(D)

F IGURE 1 Example with two sources (red, supply per source: 11) and 11 sinks (blue, demand per sink: 2), respectively, (A) with no pipelines, (B)
minimum spanning tree, (C) 𝛽 = 0, (D) 𝛽 = 0.5, and (E) 𝛽 = 0.99

sink (the main gas network). In recent real-world cases, the designer

of such network would make an inventory of the sources and their

locations, and would then develop a topology for a shared network or

grid, based upon expert estimations of themost efficient layouts. How-

ever, adding additional collection points for the biogas, before trans-

porting the gas further downstream to the main gas pipeline is often

disregarded. When the topology is constructed by such qualitative

approaches and negotiations among farmers, adding such additional

collection points would make the design space of the design prob-

lem too large to handle manually. However, such additional collection

points would ultimately lead to a more cost-effective network as the

total length of the pipelines would typically decrease.

In our approach, we use graph theory to construct a GN:40 this

will be the shortest length network (pipelines to be laid out by farm-

ers), by allowing the introduction of new nodes (new biogas collection

points). The following elements are taken into account in our algorithm

to developminimum-cost networks:

• AGN is a networkG that connects a given set of terminals, satisfying

given flowdemands q[i,j] fromnode i to node j andhas a cost function.

• We include 𝛽 as a design variable, which represents the capacity cost

exponent, a proxy for economies of scale in the investment cost of a

pipeline.

• GN or trees can contain Steiner points, these are the “split-

ting/collection points” that would be added to create a more cost-

effective network.

• The size of the flows among the different nodes is included in the

design space.

This is a very challenging set of design variables and constraints for

minimizing the cost of the network, for which we developed an effec-

tive and efficient solving algorithm in the remainder of this section.

Figure 1 shows how such networks may look, given this algorithm.

Figure 1A shows an example with two sources that can both supply 11

m3/s and11 sinks that all need2m3/s. Figure1B shows theMST to con-

nect both sourceswith all sinks. The thickness of the network pipelines

is relative to the required capacity of the pipelines in order to satisfy

all demand, although extra cost for capacity is not taken into account

in determining this tree (𝛽 = 0). Figure 1C shows the network when

extra points can be included to reduce the total length of the network.

Capacity costs are still not incorporated by setting 𝛽 = 0. It is clear that

the network length and by that the investment costs can significantly

be reduced by adding these extra splitting points. Figure 1D shows

the result for a medium influence of the capacity on the investment

costs (𝛽 = 0.5). The effect of incorporating these costs is that higher

capacity, ie, more expensive, pipelines are now shorter in favor of
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lower capacity, ie, cheaper, ones. This effect is evenmore evidentwhen

𝛽 is increased to 0.99 in Figure 1E. In that case, it is hardly profitable

to combine pipelines going to different sinks and most pipes connect

a source with a sink in the shortest way. The following sections explain

how the algorithm combines our design variables to span up our trade

space and how it then finds the cost minimum solution in this space.

3.2 Objective: finding aminimum-cost Gilbert tree

Crucial for this design problem is that we include the volume of the

flows among the different nodes in the design space, and this becomes

part of our design variables; as we explained in the previous section,

this is crucial, but has not been done yet in the literature. Because we

include this design variable into our problem, our problem translates

mathematically to finding a so-calledminimum-costGilbert tree (MCGT).

Our algorithm intends to find this particular tree. We first explain this

challenge.

AGN40 is a networkG, not necessarily a tree,which connects a given

set of terminals, satisfying given flow demands q[i,j] fromnode i to node

j andwith a cost function

C (G) =
∑

e∈E(G)
lef

(
qe
)
, (1)

in which E(G) is the set of all edges in G, le is the length of edge e, qe is
the capacity of e, and f(q) is a nonnegative, nondecreasing, triangular
function on the capacity q. The network can contain Steiner points. If

the network has a tree (or forest) topology, we will call it a Gilbert tree

(GT). Theminimum-cost GN (MCGN) is the network among all possible

GNswith total minimum costs.

Our problem is a generalization of theMCGNproblemdescribed by

Thomas and Weng.40 We use the continuous concave function f(q) =
q𝛽 , 0 ≤ 𝛽 ≤ 1; however, where they set in advance the required flows

between each pair of nodes, we only set the demand and supply of the

nodes, but leave thedecision aboutwhich sourcewill deliverwhich sink

as part of the decision problem. If we make this decision upfront, our

problem directly transforms into theirs, see Figure 2.

Thomas and Weng40 make no difference between sources and

sinks, but they only require a network with sufficient capacity to sup-

ply the flow requirements between each pair of nodes. In that case,

for higher capacity cost exponents 𝛽 (near 1), it might be profitable to

build a complete network with a connection between each node pair.

Moreover, their MCGNmight contain cycles. In our problem, however,

capacity is only needed from sources to sinks. Given that, a network

that minimizes the investment costs (1) will always have a tree topol-

ogy, as stated in Theorem 1.

Theorem 1. For every feasible network topology G satisfying the con-

straints (B.2)-(B.4) from B.1, there exists a GT(or forest) topology T with

less than or equal costs of G, where the costs are defined by the cost func-

tion (B.1) in 0.1.

A proof of this Theorem can be found in 0.3.

WithTheorem1, our problem translates to finding anMCGT (or for-

est) given theedgeweights leq
𝛽
e . Thomas andWeng40 indicate that they

F IGURE 2 Two possible configurations to connect sources [A,B]
(with given supply [1,2]) to sinks [C,D] (with given demand [1,2])

do not know about any efficient algorithm for solving this problem.

They suggest to use the Gilbert-Melzak method36 for finding a subop-

timal solution together with a global optimization technique.

3.3 Improving networks: the adapted

Gilbert-Melzakmethod

Our approach will scan the solution space by using different promising

STs as a starting point. We apply our method, the adapted Gilbert-

Melzak method, to each of the starting points. Because the adapted

Gilbert-Melzak method is a deterministic method, for a single starting

tree, we get to the same (suboptimal) MCGT. In this section, we

describe this method. Afterward, in Section 3.4, we describe the

different starting points we use.

InHeijnenet al,52 wegave a short explanationof theGilbert-Melzak

method, as we used it for one-sourcemultisink networks. In this paper,

we will adapt the method to use it for the multisource multisink case.

For the illustration here, we start from an initial noncrossing ST that

connects all terminals and had the required capacities as weights on

the edges. This initial tree was then used to search for improvements.

The same approach is used for multisource multisink networks as long

as the initial ST satisfies the constraints (B.2)-(B.4) defined in B.1. Each

change in the tree needs to preserve these constraints.

In each step, the current tree (or forest) is locally changed as long

as a network with lower total cost is found. The improvements are

basedon the observation that it is profitable to partly join twoadjacent

connections if their interior angle is small, ie, smaller than the angle

constraint.40 This angle constraint depends on the value of 𝛽 . See, for

example, the MST in Figure 1B. Almost all angles are small, indicat-

ing that when extra costs for capacity are not so high, ie, 𝛽 is near 0

(Figure 1C), investment costs can be reduced by combining pipelines.

Which will not be the case if 𝛽 is high (Figure 1E).

If the angle satisfies this constraint, adding a splitting point, ie,

Steiner point, S will lower the total costs of the network. Using a

geometric approach, the optimal location (see Figure 3) of these new

Steiner points can exactly be determined (see Heijnen et al52 for more

details). The procedure guarantees that finally, a local minimum is

found, since the total investment costs decrease after each network

change. The angle with the largest deviation from the constraint value

is solved first.

After each local network change, the required capacities of the

edges are set again to calculate the overall investment costs for the

new network.
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F IGURE 3 Angle between one source (1), two sinks (2,3), and the optimal location of Steiner point (4) when 𝛽 = 0, 0.5, 0.8, respectively

(A)

(B)

(C)

(D) (F)

(E)

F IGURE 4 Capacity assignment procedure for spanning tree with four sources (nodes: 1-4) and three sinks (nodes: 5-7)

The original procedure of the one-source multisink network needs

some adaptations to be applicable on amultisourcemultisink network.

The main one is the fact that the direction of an edge can change if

a sink, after a local network change, is supplied by a different source.

If capacity needs in the same edge have opposite directions, they are

subtracted and only the net capacity will be assigned. The mathemat-

ical specification of the adapted procedure to assign capacity to the

edges is explained in 0.4. Figure 4 shows the working of this procedure

with a small example of four sources and three sinks. The supply of the

sources and the demand of the sinks are denoted at the upper left of

the nodes. To start off the procedure, the supply is defined as a nega-

tive value (Figure 4A). Theprocedure starts by selecting the leafs of the

tree and add the required capacity to the incident leaf edge (Figure4B).

These edges are removed and the supply and demand of the new leaf

nodes are updatedwith the capacity of the removed edges (Figure 4C).

The procedure is repeated until all edge capacities are set (Figure 4F).

3.4 Initial starting points: various spanning trees

The method in §3.3 describes how to improve the network from a par-

ticular starting point. To improve the performance of the method as a

whole, we scan the solution space by using different promising STs as
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starting point. The importance of developing a good starting point is

shown first:

Theorem 2. Every GT topology S on n terminals can be found by apply-

ing the adapted Gilbert-Melzak procedure on a specific ST T on these n

terminals.

The proof of Theorem 2 can be found in B.5. The theorem proves

that when the algorithm does not find theMCGT, this is not the fault of

the adapted Gilbert-Melzak method, but because the algorithm uses

an incorrect ST as starting point.

The selection of initial spanning trees is therefore key to

obtain optimal results in the end.

The total costs of the final network are determined by the edges in

the final GT (or forest), the location of the terminals and (eventually)

Steiner points, the capacity of the edges, and the capacity cost expo-

nent. Under the assumption that lower cost spanning trees will in general

lead to lower cost Gilbert trees, it might be profitable to start from lower

cost STs. This assumption is verified in 0.6 by generating all possible STs

and their corresponding GTs for small instances ofN, the total number

of terminals.

The results reveal that while the costs of different STs show a high

variation, this variation is significantly reduced in the costs of the

resulting GTs. For these relatively small-scale examples, we draw the

conclusion that many different STs in general result in a much smaller

set of GTs after the adapted Gilbert-Melzak procedure is applied and

that most STs result in an MCGT (see the peak at 1 on the x-axis in

Figure B.2B). Moreover, the results show that lower cost STs have a

higher probability to end up in a low-cost GT (correlation coefficient:

𝜌 = 0.652, p = 0.000).

Given the previous observation, our goal is now to find low-cost STs

as an input for the adapted Gilbert-Melzakmethod.

Although simple algorithms can find aminimumweight span-

ning tree if all weights of the possible edges are known, in our

case the weights are only known when the full spanning tree

is generated since required capacities depend on the struc-

ture of the tree.

There are, however, some special STs that might have low invest-

ment costs in special cases.

3.4.1 Minimum spanning tree

When the capacity cost exponent 𝛽 = 0, ie, when only the edge length

influences the investment cost, theMST is the lowest cost ST. Figure 5A

gives an example of this tree.

3.4.2 Hub network

On the other hand, when the capacity cost exponent 𝛽 = 1, ie, paral-

lel edges of capacity 1 are just as expensive as one edge of capacity 2,

direct edges between sources and sinks result into the lowest costs.

In a one-source multisink network, this will lead to a star topology

with the source functioning as hub. In amultisourcemultisink network,

there are multiple stars when all sources are directly connected to all

sinks. To reduce costs, priority is given to the shortest length edges

between sources and sinks. If the capacity of a source is not sufficient

to supply the nearest sinks, connections to the next nearest sink are

alsoneeded.Wecall this network thehubnetwork (HN). Figure5Bgives

an example of the HN.

3.4.3 Minimum-cost spanning tree

If 𝛽 is low, a minimum-cost ST (MCST) will probably resemble a mini-

mum length STand if 𝛽 is high, itwill probably havemoredirect connec-

tionsbetween sources and sinks.Weuse this assumption topropose an

intermediate variant, starting from the minimum length ST and using

only simple edge turns defined as:

1. remove an edge e from the tree;

2. connect the two cuts of the tree by a new edge that has one end

point with edge e in common;

3. adapt capacities of the edgeswhereneeded (using the capacity pro-

cedure in B.4);

4. calculate the total costs of the new tree; and

5. remember the costs and the tree if the costs are lower than before.

Repeat the steps 1- 5 for all edges in the tree and select the best

tree so far. The procedure is repeated as long as trees with lower costs

can be found.We call this tree theminimumcost spanning tree (MCST)

MCST. Figure 6 gives an example of this procedure.

Note that even in case 𝛽 = 0, theMCST does not have to be equal to

the MST, since the MCST can also be a forest instead of a tree, which

theMST cannot.

3.4.4 Benchmarking system designs

From the literature overview in Section 2, we found some papers dis-

cussing similar problems to the one in this paper. We shortly dis-

cuss these and describe to what extent our approach presented above

wouldorwouldnotbeable touse the results of thosepapers for bench-

marking against our system design outcomes.

Stauffer et al19 use SimCCS to design a CO2-network for the Ordos

Basin in China. The discussed case has 38 CO2 sources and nine sinks.

Detailed information is available of the sinks, but unfortunately not

of the sources. They also use predefined potential routing taking into

account geographical possibilities and restrictions for the network.

The optimization considers emission penalties. Pipelines are only built

when they can earn themselves back. The results can therefore not

directly be used to evaluate the system design that would result from

ourmethod.

Boavida16 describes a CO2 network for Spain, Portugal, and

Morocco. This network connects 288 sources to 163 sinks. Detailed

information is, however, not available. The same holds for theCO2 net-

work described in Ref. 15.

We found two papers forwhich the casesmight not directly be used

with our method, but that describes the proposed algorithms clearly,
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(A) (B)

F IGURE 5 Minimum spanning tree (A) andHub network (B) of a random example with four sources (nodes: 1-4) and three sinks (nodes: 5-7)

(A) (B)

F IGURE 6 Example of a profitable edge turn inMST (A) to findMCST (B) with three sources (nodes: 1-3) and four sinks (nodes: 4-7)

so we can easily implement and use them on our own case studies (see

the next section).

• Kazmierczak et al17 describe a heuristic to determine the optimal

layoutof aCO2 network. They consider all possible pipelines andadd

them one-by-one to the network on the basis of minimal additional

costs. They also add splitting nodes to make use of existing paths.

This method can be used to benchmark our results.

• André et al25 develop a Delta change algorithm that, starting

from an MST, changes edges searching for a cheaper network.

This procedure does not make use of extra splitting nodes, like

Steiner points. This method might lead to a good initial ST for our

approach.

The comparablemethods from the literaturediscussCO2 networks.

However, the methods are not restricted to these types of networks.

We did not find useful equivalent methods applied on other type of

networks. None of the available literature allowed us to benchmark

the outcomes of our algorithm against theoretical or other cases. We

therefore set out to test the performance (efficiency, efficacy, and

usability) of our algorithm on our hypothetical and real-world cases.

The results are reported in the next section.
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4 METHOD PERFORMANCE RESULTS

This section shows the performance results from our method. First,

we will test the efficiency of our method in Sections 4.1-4.3. Since

the MCGT-Problem is NP-hard, no optimal solutions can be deter-

mined within polynomial time. To analyze our method, we will

compare our results with computable optimal layouts for very small

problems.Wewill also apply ourmethodondifferent initial STs to com-

pare the results. Moreover, we will use the two alternative optimiza-

tion techniques from literature.17,25 In Section 4.4, wewill test the effi-

cacy of our method for an empirical systems engineering problem: the

development of the biogas network in a real-world setting. Finally, in

Section 4.5, we illustrate the usability of our method by describing

the outcomes of a number of systems engineering student groups that

used the method in various systems design problems. These students

were relatively unfamiliar with the underlying math but were reason-

ably experienced in working with different systems engineering mod-

els and approaches in multiactor decision-making processes.

4.1 Method performance for small problems

For small problems, the optimal solution can be found by generating all

possible Steiner tree topologies, adding the minimum required capac-

ities to the edges, locating the Steiner points to their optimal loca-

tionusing the adaptedGilbert-Melzakmethodand calculating the total

costs.

We use again Prüfer sequences (see B.6) to efficiently generate all

possible Steiner tree topologies using the following characteristics:

• All Steiner points have a degree equal to 3.

• ASteiner treewithN terminals can have atmostN−2 Steiner points.

To obtain all possible Steiner tree topologies, we generate all Prüfer

sequences Lwith the following characteristics:

• L = [L1, L2,… , LN−2]with Li ∈ {1,2,… , N} for all topologies without
extra Steiner points.

• L = [L1, L2,… , LN+S−2] with Li ∈ {1,2,… , N, N + 1,… , N + S} and|{i|Li = N + j, Li ∈ L}| = 2, j,1 ≤ j ≤ S for all topologies with

S,1 ≤ S ≤ N − 2, Steiner points.

The last characteristic guarantees that no more than N−2 extra

points are added to the STs and that these extra points have a degree

equal to 3.

We randomly generated 25 examples with four nodes of which two

are sources and 25 examples with five nodes of which two or three are

sources.

Conclusion: For all these examples, our algorithm starting from the

different initial STs found the optimal solution in less than 1 s, which

is, on average, 1% of the time needed to check all possible Steiner

topologies.

TABLE 1 Characteristics of the 100 random examples

Characteristic Notation Range

Total number of nodes N [7,..,15]

Total number of sources S [2,3,4]

Capacity cost exponent 𝛽 [0,..,0.9]

Total demand D [8,..,138]

4.2 Method performance formany larger examples

To obtain statistically significant differences (if any), we generated 100

examples randomlywith the characteristics as described in Table 1 and

applied both methods from literature17,25 and our method on these

examples. For a fair comparison, we used our cost function, as defined

in (B.1) in B.1, in all threemethods.

Table 2 shows the results on both the average relative costs and

the average computational time. To give an idea about the spread, also

the standard deviations are given. To make the results of the different

examples comparable, we use the minimum-cost tree of each example

as a reference tree with costs C0,j for case j, 1 ≤ j ≤ 100. The relative

difference 𝛿i,j of the costsCi,j of one of the other trees is then calculated

by

𝛿i,j =
Ci,j − C0,j

C0,j
. (2)

We generated the lowest cost GT on the three initial STs: MST, HN

(HN), and MCST. Intermediate and final results are given in the first

three rows. The overall results of our method are given in row 4.

The delta change algorithm25 found in 8 of the 100 cases a net-

work layoutwith lower investment costs than theminimumcostsof the

three GTs found by our algorithm. The trees resulting from the algo-

rithm in Ref. 17 found seven times the lowest cost tree. From our three

initial STs, theMCST led 57 times to the best tree. TheMST and theHN

gave, on average, comparable results.

If it comes to the relative cost deviations, the network layout from

thedelta change algorithmwas found tobeonaverage4%moreexpen-

sive than the best tree found in our method. The network layout from

Kzamierczak’s algorithmwasonaverage5.9%moreexpensive than the

best tree from ourmethod.

For the three initial STs in our method, the minimum-cost ST is on

average only 4.2% more expensive than the best tree found. The GT

resulting from this initial tree has an average cost deviation to the best

tree of 1.5%.

The computational time results show clearly that Kzamierczak’s

algorithm17 is themost time-consuming one on average. Secondworst

is the procedure to determine the MCST. Although its cost results are

very good, we pay a price for these results in computational time.

Given the fact that the results of the delta change algorithm25 are

comparable to the MCST and much faster, we will also use this tree

(denoted by Δ-tree) as initial ST for our GT method to see if that leads

to further improvements. To do so, the results on the 100 examples are

recalculated and shown in Table 3.
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TABLE 2 Results of 100 random examples. Relative costs compared tominimum-cost found in example

Average relative
costs St.dev. relative costs Average time (s) St.dev. time (s)

Trees
Best tree
(out of 100) ST GT ST GT ST GT ST GT

Gilbert tree fromMST 34 0.120 0.055 0.132 0.089 0.015 0.359 0.006 0.317

Gilbert tree fromHN 33 0.427 0.056 0.363 0.078 0.005 0.553 0.007 0.356

Gilbert tree fromMCST 57 0.042 0.015 0.038 0.026 1.269 0.279 0.954 0.249

Gilbert tree (Total) 87 0.003 0.010 2.479 1.437

Δ-tree25 8 0.040 0.058 0.564 0.346

Kzamierczak’s method17 7 0.059 0.047 7.198 6.024

TABLE 3 Recalculated results with Δ-tree25 as extra initial spanning tree

Average relative
costs St.dev. relative costs Average time (s) St.dev. time (s)

Trees
Best tree found
(out of 100) ST GT ST GT ST GT ST GT

Gilbert fromMST 33 0.123 0.058 0.141 0.095 0.015 0.354 0.006 0.316

Gilbert fromHN 27 0.429 0.058 0.362 0.078 0.005 0.547 0.007 0.354

Gilbert fromMCST 50 0.044 0.017 0.041 0.030 1.270 0.280 0.954 0.248

Gilbert fromΔ-tree 60 0.042 0.061 0.057 0.049 0.564 0.311 0.346 0.260

TABLE 4 Parameter values for three different sets of 40 examples

SET 1 SET 2 SET 3

# Examples 40 40 40

Nodes 5-44 5-44 5-44

𝛽 0.4 0.6 0.8

Total demand 300 300 300

Sources 3 3 3

The results reveal that the use of the Δ-tree as an additional initial
ST gives very good results, both in finding the best minimum-cost tree

as in computational time.

In case of time restrictions, onemight use only a selection of the ini-

tial trees to obtain final results. We analyzed the cost and time results

for all different combinations of initial STs. The results (in C) show that

a good selection would be to combine the HNwith theΔ-tree.

4.3 Method performance for large networks

Realistic networks might contain a multiple of the number of nodes

that we used in the 100 random examples of §4.2. To investigate the

scalability of the proposedmethod,we generated 40 randomexamples

with an increasing number of nodes ranging from 4 to 44 for three dif-

ferent settings of the parameter 𝛽 (see Table 4).

In the following analyses, we left out Kzamierczak’s method17

because of the lagging performance in the smaller examples and we

applied our method on the four initial STs (MST, HN, MCST, Δ-tree) as
defined before.

Figure 7 shows the number of times out of the 40 examples per set

that the lowest cost GT was found from a specific initial ST. Clearly,

F IGURE 7 Bar chart of the number of times (out of 40) the best
tree was found in sets 1-3, respectively

also, for the larger networks, the Δ-tree as initial tree gives the best

results. As could be expected, for lower values of 𝛽 , theMST gives bet-

ter results than for higher values of 𝛽 , which is the opposite for theHN.

To show a possible relation between the results and the network

size, Figure 8 shows a bar chart of the average relative costs com-

pared to the best GT found where the results of the networks with

4-14 nodes, 15-24 nodes, 25-34 nodes, and 35-44 nodes are taken

together. In this bar chart, lower bars reveal better results. Since the

randomly generated examples might show a large variation based

on the spread of the demand over the sinks and the location of the

nodes, the results do not give an unambiguous interpretation on all

aspects. However, wemight draw the following conclusions with some

caution:
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F IGURE 8 Bar chart of the average relative costs divided over different network sizes for sets 1-3, respectively

• For high values of 𝛽 , the GT from the HN gives good results, specifi-

cally for smaller networks.

• The GT from the Δ-tree or from the MCST gives in general good

results. No clear relation is found with the value of 𝛽 or the network

size.

• The GT from theMST gives in general not so good results compared

to the others, although possibly a bit better for lower values of 𝛽 .

Figure 9 shows the computational time for the different examples

in the three sets. The time to generate the MCST grows exponentially

with the size of the network and becomes worse for higher values of 𝛽 .

The computation time for themethod applied on the other three initial

STs does also exponentially growwith the size of the network but with

much lower growth constants.

4.4 Method efficacy for finding a biogas network

We will also apply all methods on the following real-world case

(adapted fromHeijnen et al52).

The region of Salland, the Netherlands, has the ambition to become

fully CO2-neutral by the year 2030. To achieve this goal, a biogas net-

work has been proposed as one of the spearhead projects. The first

question in this explorative phase of the project is the financial feasi-

bility. Thirty-six farmers with a large manure supply might be willing

to connect to the network if the proposal is profitable. The construc-

tion of the network encompasses roughly 50% of the cost component

for this project. To progress toward the next phase, the project group

requires an indication of the path of the pipelines and the associated

costs. To apply our method, we assume that there will be two biogas

plants part of the new network.

Figure 10A-C shows the best result found by ourmethod and by the

algorithms from Refs. 25 and 17, respectively. The red and blue nodes

give the location of the biogas plants and the farmers, respectively. The

green nodes show the location of the added Steiner points. The thick-

ness of the pipelines is relative to their capacity.

From Table 5, the advantages of our method are clear. The best

network is found by applying our method on the Δ-tree (Figure 10F).
André et al25 (Figure 10A) find a comparable network layout in short

time, but since the method only makes use of STs and does not add

profitable splitting points, the final costs can be expected to be higher.

TABLE 5 Different methods applied on a biogas network with 36
farmers and two biogas plants. Relative costs compared to lowest cost
found

Method Relative costs Computational time (s)

Δ-tree25 6.1% 19

Kzamierczak’s method17 4.9% 4821

Gilbert fromMST 16.4% 3

Gilbert fromHN 6.9% 3

Gilbert fromMCST 0.7% 233

Gilbert fromΔ-tree 0% 21

Kazmierczak et al17 (Figure 10B) build the network step-by-step and

allows the addition of splitting points. However, because they fix the

pipelines from earlier steps, these splitting points will almost never

be on an optimal position. Moreover, shorter, and by that, cheaper

pipelines will be added first, forcing the network into a certain layout

that cannot be changed afterward. Besides, the computational time for

thismethod is relativelyhigh, since in each step, it compares all possible

new connections of our method, starting from three different starting

trees (Figure 10C-E), which are locally optimized by adding profitable

Steiner points, gives a high probability to find the low-cost network

in a reasonable time. The differences in computation time are mainly

caused by the time needed to generate the starting trees. TheMST and

the HN can be found in a very short time since the potential connec-

tions need to be sorted on their length only once. The MCST needs

several iterative steps to reduce total costs and by that is more time-

consuming. The best results are found when our GT method is com-

binedwith themethod fromAndré et al25 (Figure 10F).

4.5 Method usability

During 2017-2018, eight systems engineering student groups (of four

students each) have used our method to explore and design an energy

network (new or revamp), and emulate the multistakeholder setting

of such systems engineering problem. This was done in the context of

the design course in the master program of Complex Systems Engi-

neering and Management of Delft University of Technology (course

code: SEN1531). In this course, students were assigned with a sys-

tems engineering task in a complex multiactor environment, and they

need to solve this problemby usingmultiplemethods from the systems
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F IGURE 9 Bar chart of the average computational time divided over different network sizes for sets 1-3, respectively

(A) (B) (C)

(D) (F)(E)

F IGURE 10 Best network layout from themethods: the delta change algorithm25 (A), the heuristic algorithm17 (B), our Gilbert treemethod
onminimum spanning tree (C), hub network (D), minimum-cost spanning tree (E), andΔ-tree (F)

engineering domain. The student groups who selected our method

explored the following system design problems, showcasing that our

method is widely usable for various network design problems:

• expansion of gas networks to accommodate shale gas exploration in

the Netherlands,

• creation of power grids in rural India,

• hydrogen refueling infrastructure,

• district heating network,

• international electricity grid interconnections, and

• alternative urban heating systems (nomore natural gas).

The specific network outcomes of these projects are not rele-

vant for discussion in this paper, but the general observations from

the application of the method by students confirm our claim that

the method is easy to use and produces relevant results. In many

cases, students realized more cost-effective (cheaper) networks than

the ones they would develop by manually exploring the (vast) design

space. Especially in “green-field” cases, students were unable to intro-

duce new nodes for reducing system cost, without the support of our

method. We also observed that students used the method as a trans-

parent approach to find a theoretical minimum-cost target, before

delving into other operational, institutional, or other stakeholder-

related issues with colleagues in their group. Issues that would surface
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in those social processes, and to which the network topology would

need to be adapted in an iterative fashion, included, for example,

• operational constraints, eg, downtime issues due to (lack of)

maintenance;

• power play of actors in the network, eg, blocking optimal location of

splitting nodes;

• need for coordination and public acceptance, eg, the acceptance of

shale gas networks;

• speed of infrastructure rollout in relation to required related devel-

opments, eg, hydrogen vehicle adoption;

• speed of innovation of competing technology, eg, heat pump tech-

nology; and

• market design, eg, transmission fees.

A very interesting findingwas that studentswould not revert to try-

ing to adapt or refine the algorithm in order to include these issues

in solving the design problem, but rather would use the optimal net-

works as a starting point for the ensuing discussions. This intuitive

approach kept the model and the solutions transparent, and helped to

identify clearly the difference between rational cost-optimal solutions

and modified solutions that would actually work and be accepted in

practice. These observations strengthen our assumption, supported by

complex decision-making literature, that many stakeholder and social

issues should not be modeled endogenously into a model, but should

rather be kept out in the open discussions with the stakeholders.

Although our observations concerning our method were done for stu-

dents in a learning situation, there is no reason to assume that this

would not translate to actual real-world situations.

5 CONCLUSIONS

The purpose of this paper is to develop amethod to support infrastruc-

ture system design processes in multiactor contexts. In these multiac-

tor settingswith diverging stakes and interests, actors need to develop

large complex sociotechnical systems of systems, scanning vast trade

spaces under a plethora, or diverging assumptions. The systems engi-

neering toolbox and theories point to the need to estimate the value of

different design options, while problematizing such value determina-

tion in amultiactor complex setting.We showed that quite somedevel-

opments point into the direction ofmore complicatedmodels, trying to

collapse social and engineering design variables andprocesses into one

big model or framework. This paper begs to differ.

Our paper has shown that complex systems engineering processes

do not necessarily require more complicated tools or methods to

include all stakeholder values in one overarching model from the out-

set. On the contrary, we posit that when a fast and reliable straightfor-

ward method is used, this creates so much time and room for actors

to explore the system on their own terms that the discussions will

focus on the assumptions andparameters insteadof the contestedout-

comes. Such discussions have shown to increase trust in the design

process and may therefore yield (more) acceptable outcomes within

acceptable times. This effect is confirmed in the complex decision-

making literature.

From several contemporary examples in the infrastructure design

field,CO2, biogas, andoffshoregrids,wederived theneed forquick, yet

accurate, algorithms to find low-cost orminimum-cost network topolo-

gies. We also concluded that such algorithm should empower the dif-

ferent actors to bring in their assumptions and uncertainties indepen-

dently as to explore the individual stakes and sensitivities in a shared

network development project.

We presented an effective and robust method to find a minimum-

cost layout for new infrastructures of multiple sources and multiple

sinks following a geometric graph-theoretical approach. The location

of these sources and sinks and their demand or supply are known.

The approach determines the topology of the network, and the length

and capacity of the pipelines to be constructed. This paper proves that

a minimum-cost multisource multisink network will never contain a

cycle and is therefore a MCGT (or forest), not a network. This MCGT

can best be found by applying the adapted Gilbert-Melzak method

starting from awell-chosen initial ST.

A core finding of this paper is that finding a very good candidate for

the initial ST is crucial because the process is deterministic and hav-

ing the best starting topology matters for the final results. We found

several good candidates for this purpose. The MCST, found by mak-

ing profitable edge turns improving the MST, gives good results but

becomes computationally challenging for very large networks. The Δ-
tree25 also gives very good results as initial tree and can, in general, be

found in less time. It is crucial, however, to use a set of starting trees

to increase the probability to find the lowest cost network layout. A

combination of the definedHNand theΔ-tree has shown to be Pareto-
optimal with respect tominimal costs andminimum computation time.

Our approach outperforms existingmethods on averagewith 4% to

6% of the costs of the final network. Even though this seems insignifi-

cant, the actual real-world money value can be significant since infras-

tructure development involves large budgets. More importantly, how-

ever, is that our approach is in general fast and finds a minimum-cost

network at lower cost than conventional methods. This makes our

method substantially more suitable to support a multiactor systems

engineering process than any conventional method, as it can scan vast

trade spaces in a fraction of the time.

Our proposed method is fast and gives good results, and in our

future research endeavors,wewill apply themethod in real-worldmul-

tistakeholder systems engineering setting. Our MCGT would be the

target topology for a set of stakeholders to work with. Stakeholders

could use this MCGT as an outlook for the minimum-cost network

would give them an indication onwhat land additional hubs or splitting

points would preferably be built and wheremost of the cost would go.

Using such relatively straightforward mathematical optimal design

in a highly stakeholder-driven systems engineering process will lead

to rationalization of the process, and could move negotiators and

systems engineers away from “estimates” of experts who typically do

not include additional hubs (Steiner points) in their informal designs.

Our method therefore illustrates that multiactor complex design
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challenges do not, as a matter of course, require complex, all-

encompassing methods into which all values of different actors are

collapsed. Instead, we have shown and underpinned that simple,

straightforward methods may even be more useful in some of such

cases. Our findings thus call for a serious discussion in the systems

engineering discipline regarding the extent to which we should math-

ematically try to include all social phenomena into our models. Instead

of the observed trend in the systems engineering community toward

including and endogenously modeling all of these social science

aspects and turning them, erroneously, into one-dimensional perfor-

mance criteria, we should find a proper balance betweenmathematical

modeling and actual stakeholder interaction.
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APPENDIX A: LITERATURE OVERVIEW

Appendix A shows a short summary in Table A2 of the optimization

problems discussed in the literature as described in Section 2 and the

methods used to solve these problems. Table A1 gives the abbrevia-

tions used in Table A2.

TABLE A1 Abbreviations used in Table A2

Topic Abbreviation Explanation

System HD Hydrogen

CO CO2

HT Heating

AW AnimalWaste

WT Water

OI Oil

Nodes 1N 1 source, multiple sinks

N1 multiple sources, 1 sink

NN multiple sources, multiple
sinks

Objective IC Investment Costs

OC Operational Costs

LN Length

Constraints SC Spatial Constraints, like
crossings or corridors

PC Physical Constraints, eg, on
pressure or velocity

PR Potential Routing restricting
the layout of the pipelines

Decision LY Layout of the pipelines

SZ Size, ie, diameter or capacity
of the pipelines

PP Physical Properties, like
elevation or slope

Extra nodes SN Steiner nodes

TN Other transmission nodes

Topology TR Tree

NW Network

Method GA Genetic algorithm

SA Simulated annealing

ACO Ant colony optimization

PSO Particle swarm optimization

GS General solver, like GAMS

DS Dedicated software, like
SimCCS,MARKAL

HA Heuristic algorithm

APPENDIX B: MATHEMATICAL BACKGROUND

This appendix gives some mathematical background for the discus-

sion in Section 3.

B.1 Mathematical formulation

Mathematically, we translate the problem as follows, comparable to

the formulation used by Xue et al.39

Let A = [a1, a2, .., an] be a list of sources on known locations

in 2D Euclidean plane and with given supply [s1, s2, .., sn]. Let B =
[b1, b2, .., bm] be a list of sinks on known locations in 2DEuclidean plane

andwith givendemand [d1, d2, .., dm]. In this paper,weassume that each

node is or a sinkor a source. In case thenode is both sink and source,we

only use the net demand or supply to determine the network capacity.

Let G be a network connecting the sources with the sinks. Wewant

to find the network G that minimizes the total investment costs, given

by

C (G) =
∑

∀e∈E(G)
leq

𝛽
e , (B.1)

in which E(G) is the set of all pipelines, called edges, in G, le is the length
of an edge e, qe is the capacity of an edge e, and 𝛽 , 0≤ 𝛽 ≤1, is the capac-

ity cost exponent. Thenetwork should satisfy the following constraints.

In the final supplynetworkG, eachedgewill havea certaindirection,

denoted by e = [i, j], ie, the flowwill go from node i to node j.

Let V(G) be the set of all nodes in G, then for all nodes, v ∈
V(G)∖(A ∪ B), which are the Steiner nodes,

∑
∀[v,j]∈E(G)

q[v,j] =
∑

∀[i,v]∈E(G)
q[i,v]. (B.2)

This constraint guarantees that the Steiner nodes areonly transmis-

sion nodes and do not consume or supply.

The sinks and sources (together called the terminals) can be both

transmission nodes and supply or demand nodes, respectively, which

lead to the following constraints for all source nodes v∈A

∑
∀[v,j]∈E(G)

q[v,j] −
∑

∀[j,v]∈E(G)
q[j,v] ≤ sv. (B.3)

Moreover, for all sink nodes v∈B

∑
∀[j,v]∈E(G)

q[j,v] −
∑

∀[v,j]∈E(G)
q[v,j] = dv. (B.4)

Without loss of generality, we assume that the total supply of the

sources covers at least the total demand of the sinks.

The formulated problem is NP-hard.39

B.2 Formal optimization

The optimization problem formulated above can be rewritten in a for-

mal optimization NLP form.

Given the following input:

- 𝛽 ,0 ≤ 𝛽 ≤ 1 the capacity cost exponent,

- N the total number of nodes to be connected,

https://doi.org/10.1002/sys.21492
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TABLE A2 Overview of recent literature on the design of network layouts

Reference System Nodes Objective Constraints Decision Extra nodes Topology Method

25 HD 1N IC PC LY, SZ TR HA

26 AW N1 LN LY SN TR HA

16 CO NN IC SC LY, SZ TR DS

32 OI N1 IC SC, PR LY, SZ TR HA

15 CO NN IC SC LY, SZ ON TR DS

29 WT N1 IC PC, PR LY, SZ, PP TR GA

24 HT 1N IC SC, PC LY, SZ SN TR GS

18 CO NN IC, OC PC LY, SZ TR GA, HA

31 WT 1N LN PC, PR LY, SZ ON TR ACO

23 HT 1N IC, OC PC, PR LY TR DS

17 CO NN IC, OC LY, SZ ON TR HA

33 OI N1 LN LY SN TR PSO

27 WT 1N IC PC LY, SZ NW ACO

28 WT 1N IC, OC PC, PR LY, SZ, PP ON TR HA

22 HT 1N IC, OC SC, PC LY, SZ TR GS

21 CO NN IC, OC SC, PR LY, SZ ON TR DS

19 CO NN IC SC, PR LY, SZ TR DS

30 WT N1 LN PC, PR LY, SZ, PP TR GS, SA

20 CO NN IC, OC PC, PR LY TR GS

- n the total number of sources,

- si, 1 ≤ i ≤ n the supply of sources,

- di,1 ≤ i ≤ N − n the demand of sinks,

- [p1i , p2i], 1 ≤ i ≤ N the coordinates of all nodes in 2D Euclidean

plane,

- Qv =
⎧⎪⎨⎪⎩
−si 1 ≤ i ≤ n

di−n n + 1 ≤ i ≤ N

0 N + 1 ≤ i ≤ 2(N − 1)
the capacity demand of nodes.

Find the decision variables:

- q[i,j], 1 ≤ i, j ≤ 2N − 2 the capacity of an edge from node i to node j,

- [p1i , p2i], N + 1 ≤ i ≤ 2N − 2 the coordinates of possible Steiner

nodes.

For which

2N−2∑
i=1

2N−2∑
j=1

F (i, j) ∗ q𝛽[i,j] (B.5)

is minimizedwith

F (i, j) =
√(

p1i − p1j
)2 + (

p2i − p2j
)2
. (B.6)

Under the constraints:

2N−2∑
j=1

q[j,v] = Qv +
2N−2∑
j=1

q[v,j],1 ≤ v ≤ 2N − 2, (B.7)

q[i,j] ≥ 0,1 ≤ i, j ≤ 2N − 2. (B.8)

This optimization problem has many local minima. Each local

minimum represents a graph connecting the terminals and with

theminimum needed capacity assigned to the edges. From such a local

minimum, it is hard to find a better solution since decreasing an edge

capacity with a small amount makes the solution infeasible. Only by

deleting one edge [i1, j1], ie, capacity q[i1 ,j1] becomes 0, and by adding

a new edge [i2, j2], ie, capacity q[i2 ,j2] becomes larger than 0, can lead

to a new feasible solution. This whimsical nature of the solution space

makes it very hard to find the global optimumwith a common solver.

B.3 Proof of Theorem 1

Theorem 1. For every feasible network topology G satisfying the con-

straints (B.2)-(B.4), there exists a Gilbert tree (or forest) topology T with

costs less thanor equal to the costs ofG,where the costs are definedby (B.1).

Proof. Theorem 3.139 proves this theorem for one-source multisink

networks.We extend their proof for multisourcemultisink networks.

A non-tree multisource multisink network contains at least one

cycle. Like all edges in the network, also the cycle edges will

have a unique direction. Let Cyc = [e1, e2, e3,… , ek] be a cycle

in the network G. Let CW = {e|e ∈ Cyc, e in clockwise direction} be

the subset of all clockwise edges in the cycle and let CCW =
{e|e ∈ Cyc, e in counterclockwise direction} be the subset of all coun-
terclockwise edges in the cycle. So, each edge is either in CW or in

CCW.

Just as before, let qe be the capacity of all edges ewith qe ≥ 0, ∀e ∈
Cyc.
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(A)

(B) (C) (D)

F IGURE B .1 FromGilbert tree topology (A) to spanning tree (D)

We define r = min(qe|e ∈ Cyc), as theminimum capacity of all edges

in the cycle and for each edge, we define ae = qe − r, ∀e ∈ CW and be =
qe − r, ∀e ∈ CCW, so all ae and be are nonnegative.

Let f(q) be a concave function. Comparable to Xue et al,39 we define

a new function F by

F (z) =
∑

∀e∈CW
lef

(
ae + r − z

)
+

∑
∀e∈CCW

lef
(
be + r + z

)
(B.10)

for all z ∈ [−r, r].
Since F is a linear combination of concave functions with coeffi-

cients le > 0, F itself will also be concave. Then,

F (0) = F
(
1
2
(−r) + 1

2
r
)

≥
1
2
(F (−r) + F (r)) ≥ min {F (−r) , F (r)} .

(B.11)

For all z ∈ [−r, r], then F(z) − F(0) is the increase in network cost

caused by adding capacity z to the capacity of the counterclockwise

cycle edges and subtracting capacity z from the clockwise cycle edges.

Now, if F(r) = min(F(−r), F(r)), then F(r) − F(0) ≤ 0 . Otherwise, if

F(−r) = min(F(−r), F(r)), then F(−r) − F(0) ≤ 0.

Therefore, either adding capacity r to e ∈ CW and subtract capac-

ity r to e ∈ CCW will reduce the network costs, or adding capacity r to

e ∈ CCW and subtract capacity r to e ∈ CW will reduce the network

costs.

However, if we add capacity r (or –r) to the cycle edges, the network

costs will be reduced, but the cycle will not per se be broken.Whenwe

repeat the procedure, each cycle in the network will finally terminate

and the network will have a tree or forest topology with lower costs

than the original network. ■

B.4 Capacity assignment procedure

Before an initial ST can be used to find local changes, sufficient, but

not toomuch, capacity needs to be assigned to the edges in such a way

that the constraints (B.2)-(B.4) defined in B.1 are satisfied and the total

costs areminimal. This canonly bedone in oneuniqueway, givenby the

following general procedure.

Given a treeT connecting all sourceswith sinks by a set of edgesE(T)

and some possible Steiner nodes (only when T is not an ST).

Let V(T) be the set of all nodes in T. Let the demand Q =
[−s1,−s2, ..,−sn, d1, d2,… , dm,0,0, ..,0], ie, the demand is the negative

supply of the sources, the positive demand of the sinks, and 0 for

Steiner points.
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(A) (B)

F IGURE B .2 Relative costs of spanning trees (A) and resulting Steiner trees (B)

Assigning capacity procedure

(Comparable to the procedure in Ref. 39 for the one-source multisink

case)

1. Let T1 be a copy of the tree Twith only bidirectional edges.

2. Set all capacities qi,j = qj,i = 0 for all edges {i, j} in E(T).

3. Find set L of all leafs of tree T1 (A leaf is a node of degree 1).

4. For all i L, find the unique edge {i, j} ∈ E(T1) Set qi,j → −Qi ifQi < 0

Set qi,j → Qi if Qi > 0 Update Qj → Qj + Qi Delete edge {i, j} from
T1.

5. Repeat from step 3 until all capacities are set.

B.5 Importance of initial spanning trees

The Gilbert-Melzak method is a deterministic method. Starting from

one specific initial ST, it will always result in the sameGT.

Theorem 2. Every GT topology S on n terminals can be found by apply-

ing the adapted Gilbert-Melzak procedure on a specific ST T on these n

terminals.

Proof. The adapted Gilbert-Melzak procedure used here to find an

MCGT topology from a specific initial ST improves the tree locally in

an iterative process starting by the worst angle in the current tree

and continuing as long as improvements on the total costs can be

made.

In return, starting by a GT, one can degenerate a Steiner point, by

contracting one of its incident edges and adapting the capacity of the

remaining edges accordingly. Just like Steiner Trees, each GT topology

consists of several full Steiner subtrees. A full Steiner tree is a tree with

k terminals and exactly k−2 Steiner points. These subtrees are con-

nected in a terminal. Degenerating a Steiner point in one of the full

Steiner subtrees has no influence on the capacity of the edges in the

other subtrees.

By degenerating the Steiner points in the opposite order of which

they would have been added guarantees that the GT topology will be

found back when applying the adapted Gilbert-Melzak method on the

resulting ST, see Figure B.1. ■

For15 randomly generatedexperimentswith total numberof nodes

N = 4, 5, or 6 and total number of sources is 1, 2, or 3, we generate

all spanning trees using Prüfer sequences53 and assign the required

capacities to the edges using the procedure from B.4. We applied the

adapted Gilbert-Melzakmethod on all STs to determine a (suboptimal)

MCGT. To study the relation between the costs of the original ST and

the resulting Gilbert tree over different examples, the relative costs

CRk,i (example k, run i) are considered, defined by

CRk,i =
Ck,i − Cmin,k

Cmin,k
, (B.12)

withCk,i the costs of the ST (respectively, resultingGT) of run i in exam-

ple k, and Cmin,k are the minimum costs over all runs in example k of

all STs and Gilbert trees together. The costs of a tree are defined as

in Equation (1) and are only used to compare the results, not to give

a realistic measure for the network investment costs.

The histograms in Figure B.1 reveal that while the costs of differ-

ent STs show a high variation, this variation is significantly reduced in

the costs of the resulting GTs. For these relatively small-scale exam-

ples, we draw the conclusion that many different STs in general result

in amuch smaller set of Gilbert trees after the adaptedGilbert-Melzak

procedure is applied and thatmost STs result in anMCGT (see the peak

at 1on the x-axis in FigureB.1B).Moreover, the results show that lower

cost STs have a higher probability to end up in a low-cost GT (correla-

tion coefficient: 𝜌 = 0.652, p = 0.000).

B.6 Spanning trees fromPrüfer sequences

Prüfer sequences of length N − 2 have a one-to-one relation with all

STs on N nodes.53 Using Prüfer sequences, all possible STs can easily
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be generated. There areN(N−2) different STs onN nodes, both crossing

and noncrossing. We will check them all, although crossing trees will

always bemore costly than noncrossing trees.47

For15 randomly generatedexperimentswith total numberof nodes

N = 4, 5, or 6 and total number of sources is 1, 2, or 3, we generate all

STs and assign the required capacities to the edges using the procedure

from §B.4. We applied the adapted Gilbert-Melzak method on all STs

to determine a (suboptimal) MCGT. To study the relation between the

costs of the original ST and the resulting GT over different examples,

the relative costs CRk,i (example k, run i) are considered, defined by

CRk,i =
Ck,i − Cmin,k

Cmin,k
, (B.13)

withCk,i the costs of the ST (respectively, resultingGT) of run i in exam-

ple k, and Cmin,k are the minimum costs over all runs in example k of all

STs and GTs together.

APPENDIX C: RESULTS OF SELECTION OF SPANNING

TREES

Table C.1 shows the results of the GTmethodwhen only a selection

of the four initial STs (MST = minimum spanning tree, HN = hub net-

work,MCST=minimum-cost spanning tree,Δ-tree=Resulting tree25)

was used. The “Best tree” column tells howmany times the lowest cost

tree was found by the selection of the initial STs out of the 100 exam-

ples. The “Average relative costs if not” column shows the average cost

deviation from the best tree when the initial ST selection did not find

thebest tree. It is an indicationofhowbad the results arewhen thebest

tree is not found. Remember that the best tree is not always the global

minimum-cost tree. The “Average time (s)” column gives the average

time in seconds that was needed to find the end results for this com-

bination of initial STs.

Figure C.1 shows a scatter plot of the results from Table C.1. To

obtain low relative costs and low computation time, the selections 1,

4, 9, and 15 are Pareto-optimal, as highlighted in Table C.1.

Figure C.2 shows for the 1000 random examples the box plot of

the relative costs compared to the best tree. The box plots show that

F IGURE C .1 Scatter plot of relative costs and time for different spanning tree selections

F IGURE C .2 Box plot of the relative costs compared to best tree for Gilbert tree from four different spanning trees
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F IGURE C .3 Computational time needed to find Gilbert tree from four different spanning trees, including the time for generating the
spanning tree

TABLE C .1 Results of the 100 random examples for selections of initial spanning trees

Selection spanning trees Best tree Average relative costs if not Average time (s)

1 MST 33 0.086 0.369

2 HN 27 0.080 0.552

3 MCST 50 0.034 1.550

4 Δ-tree 60 0.040 0.875

5 MST, HN 56 0.041 0.921

6 MST,MCST 55 0.033 1.919

7 MST,Δ-tree 65 0.042 1.244

8 HN,MCST 69 0.022 2.102

9 HN,Δ-tree 79 0.019 1.427

10 MCST,Δ-tree 81 0.024 2.425

11 MST, HN,MCST 74 0.019 2.471

12 MST,MCST,Δ-tree 83 0.023 2.794

13 MST, HN,Δ-tree 84 0.019 1.796

14 HN,MCST,Δ-tree 98 0.033 2.997

15 MST, HN,MCST,Δ-tree 100 - 3.346

the end results of the GTs resulting from the MCST have the lowest

spread. However, the interquartile range of the GTs resulting from the

Δ-tree is smaller, but the Δ-tree leads in some cases to more extreme

results.

Figure C.3 shows box plots for the computational time to find the

initial ST and the GT from this ST for the 100 random examples. It is

clear that the generating the MCST and the resulting GT needs most

time in general.


