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A B S T R A C T

Recycling coarse aggregates from construction and demolition waste is essential for sustainable construction
practices. However, the quality of recycled coarse aggregates (RCA) often fluctuates significantly, in contrast to
the more stable quality of natural aggregates. Contaminants in RCA notably compromise its quality and usability.
Therefore, automating the quality control of RCA is necessary for the recycling industry. This study introduces an
industry-focused, innovative, and rapid quality control system that combines Laser-Induced Breakdown Spec-
troscopy (LIBS) with 3D scanning technologies to enhance the detection of contaminants in RCA streams. The
system involves a synchronized application of LIBS for spectral analysis and 3D scanning for the physical
characterization of different materials. Results reveal that the dependability of single-shot LIBS analysis has been
enhanced, thus elevating the precision of contaminant detection. This improvement is achieved by accounting for
the laser shot’s angle of incidence and focal length adjustments. The introduced technology holds potential for
application in the real-time examination of substantial volumes of RCA, facilitating a rapid and reliable quality
control method. This rapid assessment technique delivers online data about the concentration of contaminants in
RCA, including recycled fine aggregates, cement paste, bricks, foam, glass, gypsum, mineral fibers, plastics, and
wood. This data is both essential and sufficient for choosing a cost-effective mortar recipe and guaranteeing the
performance of the final concrete product in terms of strength and durability in construction projects. The system
can monitor the quality of RCA flows at throughputs of 50 tons per hour per conveyor, characterizing approx-
imately 4000 particles in every ton of RCA, in this way signaling the most critical contaminants at levels of less
than 50 parts per million. With these characteristics, the system could also become relevant for other applica-
tions, such as characterizing mining waste or solid biofuels for power plants.

1. Introduction

The global shift towards sustainable construction practices has
increasingly emphasized the importance of recycling materials, partic-
ularly in the context of construction and demolition waste. Among these
materials, recycled coarse aggregates (RCA) are of significant interest
due to their potential to reduce environmental impact and contribute to
resource conservation (de Andrade Salgado and de Andrade Silva, 2022;
Silva et al., 2017). The quality of the aggregate improves with more
thorough waste treatment (Martín-Morales et al., 2011). Despite its
potential, the effective recycling of RCA is hampered by significant
challenges in accurately detecting contaminants, a crucial step to ensure

the quality and safety of recycled materials.
The challenge primarily arises from the frequent and significant

fluctuations in RCA quality (Lux et al., 2023). While RCA offer signifi-
cant environmental benefits by reducing the demand for natural re-
sources and minimizing construction waste, they exhibit distinct
properties that differentiate them from natural aggregates. These dif-
ferences, which include variations in porosity, absorption, and surface
texture, can influence the mechanical properties and durability of con-
crete made with RCA (He et al., 2024). Natural aggregates originate
from relatively uniform geological sources, maintaining stable quality
over long periods. In contrast, RCA quality can exhibit considerable
fluctuations over relatively short intervals due to the diverse nature of

* Corresponding author.
E-mail addresses: C.Chang-1@tudelft.nl, chang-cheng@outlook.com (C. Chang).

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.sciencedirect.com/journal/computers-in-industry

https://doi.org/10.1016/j.compind.2024.104196
Received 5 August 2024; Received in revised form 9 September 2024; Accepted 30 September 2024

Computers in Industry 164 (2025) 104196 

0166-3615/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:C.Chang-1@tudelft.nl
mailto:chang-cheng@outlook.com
www.sciencedirect.com/science/journal/01663615
https://www.sciencedirect.com/journal/computers-in-industry
https://doi.org/10.1016/j.compind.2024.104196
https://doi.org/10.1016/j.compind.2024.104196
https://doi.org/10.1016/j.compind.2024.104196
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2024.104196&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


demolition waste. Such waste includes materials from different sections
of various demolition sites and is processed with differences in recycling
methods. Therefore, the non-uniform composition and properties of the
input demolition waste directly influences the uniformity of the result-
ing RCA.

Research on RCA has predominantly examined how contaminants
affect concrete quality (Abid et al., 2018; Ahmad et al., 2023; Bai et al.,
2020). However, precise detection and classification of these contami-
nants in RCA have received less attention. Vegas et al. analyzed mixed
recycled aggregates from various European countries, revealing that
near-infrared sorting effectively reduces, if not eliminates, problematic
fractions (Vegas et al., 2015). Serranti and Bonifazi developed strategies
to detect asbestos-containing materials and other contaminants in con-
crete aggregates derived from demolition waste (Serranti and Bonifazi,
2020). Xia and Bakker examined different material particle samples,
concluding that the success of practical testing depends on the training
set’s quality and the management of potential false positives (Xia and
Bakker, 2014). Despite these advancements, a significant gap remains in
methods for in-situ evaluation of contaminants in RCA, particularly their
application in industrial scenarios (Bonifazi et al., 2018; Serranti et al.,
2023).

A primary challenge in the field of recycling RCA remains the ac-
curate detection of contaminants that might evade initial sorting pro-
cesses. This is particularly crucial in quality control, where even a small
percentage of undetected contaminants can compromise the final
product’s integrity. False positives in sorting are less critical, as they
result in acceptable losses of non-contaminated material. However, the
accurate detection and minimization of false positives in quality control
are essential to ensure the reliability and high quality of the recycled
aggregates. A high rate of false positives can lead to RCA being
mistakenly identified as contaminated, which can diminish the quality
and value of what was originally high-quality and valuable material.
Currently, the field lacks a rapid and precise method for detecting a wide
range of contaminants in RCA. This gap is largely due to the inconsistent
and unpredictable nature of these contaminants. These inconsistencies
hinder the accurate detection of contaminants, complicating the devel-
opment of a universal, straightforward method for detecting all con-
taminants. Consequently, this leads to considerable discrepancies in the
quality assessments of RCA. In various engineering fields, quality control
systems have been extensively employed to ensure precision and reli-
ability (Caiazzo et al., 2022; Güvenç et al., 2023; Suthar et al., 2023).
However, the challenges associated with RCA differ significantly from
those in conventional engineering processes. Addressing these chal-
lenges requires the adoption of efficient, reliable, non-destructive, and
cost-effective sensor technologies. Such technologies would enable
automatic contaminant detection, addressing the diverse nature of
recycled materials. Implementing this approach will enhance quality
control in the use of RCA, ensuring a more consistent and reliable end
product.

Laser-induced breakdown spectroscopy (LIBS) is emerging as a
highly promising technology for real-time, on-site elemental analysis,
particularly within the expansive market of concrete production in-
dustries (Mansoori et al., 2011; Yin et al., 2016). LIBS offers numerous
advantages for practical operations, including minimal or no sample
preparation, real-time analysis, and comprehensive element measure-
ment capabilities (Wang et al., 2021). In the concrete sector, LIBS is
commonly employed for both identifying and quantifying chemical el-
ements (qualitative and quantitative) (Cabral et al., 2023). However, its
application in classifying, recognizing, and recycling various construc-
tion materials remains underexplored (Chang et al., 2022; Elfaham and
Eldemerdash, 2019; Xia and Bakker, 2014). Gottlieb et al. introduced an
algorithm for heterogeneous concrete to isolate spectral data of
non-relevant aggregates and cement matrix (Gottlieb et al., 2017).
Völker et al. investigated cement paste prisms to distinguish cement
types and noted that additional moisture changes the laser material
interaction and the composition of vaporized material volume, affecting

classification (Völker et al., 2020). Živković et al. used LIBS with
microscopic-scale spatial resolution to map elemental distribution in
archaeological samples from the Smederevo Fortress, Serbia (Živković
et al., 2021). JIA et al. noted that in the cement industry, the matrix of
the cement raw meal varies due to different sources, possibly extending
beyond the calibration sample concentration range (Jia et al., 2019).
Most studies are confined to laboratory environments, emphasizing the
need for environmental considerations during measurements (Dietz
et al., 2019; Mansoori et al., 2011). Hence, practical application in
concrete industrial production is limited.

A significant challenge for LIBS in quantitative measurements is its
relatively high uncertainty or low repeatability (Wang et al., 2021). This
uncertainty in collected spectral data significantly impacts classification
accuracy. This is due to various factors, but most research work was
concentrated superficially on the impact of different system parameters
on the emission signals (Kim et al., 2013; Wang et al., 2020), tempera-
tures (Palanco et al., 1999) and ambient gas (Yu et al., 2020) on LIBS
performance. While many algorithms have been developed to classify
materials using LIBS, less attention has been given to surface informa-
tion analysis to enhance spectral signals. Zhang et al. found that
adjusting lens-to-sample distances improves LIBS’s analytical perfor-
mance, enhancing precision and detection limits (Zhang et al., 2012).
Wang et al. investigated the effect of surface roughness on solid samples,
concluding that preparing smooth surfaces leads to more consistent
laser-sample interactions and fewer plasma fluctuations (Wang et al.,
2021). However, in practical scenarios, the uneven surfaces of materials
like RCA pose challenges for LIBS to obtain high-quality spectral
information.

This study presents an innovative and rapid quality control system
that enhances contaminant detection precision in RCA streams by
employing surface-condition-adaptive LIBS. This advancement results
frommerging LIBS with 3D scanning technology, providing vital data on
surface conditions at each laser shooting point. Consequently, this
integration substantially enhances the reliability of analytical results
obtained from each single LIBS laser shot. For effective operation, pre-
cise synchronization and calibration of the two sensors are essential. The
technique involves a detailed analysis of the LIBS laser focal length and
angle of incidence at the shooting point. The process continues by
filtering the collected spectral data, omitting laser shots that do not meet
the required standards. Then, both the angles of incidence and corre-
sponding spectral values are incorporated into the cluster-based classi-
fication algorithm. This approach allows the LIBS system to dynamically
adjust its analysis according to the real-time surface conditions
encountered during each laser shot. This adjustment process enhances
the quality of the laser shot and reduces the false-positive rates in ma-
terial misclassification. By adopting this adaptive strategy, the accuracy
of detecting various contaminants in RCA is improved. Key performance
metrics, such as precision, recall, and F1-score (all weighted averages),
reach 0.99. This high level of accuracy in turn supports rapid and reli-
able quality control of RCA streams on the conveyor belt. The research
thoroughly assesses this surface-condition-adaptive LIBS method, high-
lighting its proficiency in precisely identifying a variety of materials
commonly encountered in construction waste. Fig. 1 illustrates the
procedural flowchart, offering a visual summary of the methodological
sequence employed in this study.

2. Materials and methods

2.1. Materials

Demolition waste samples (Fig. 2) were gathered from sites in the
Netherlands for analysis. Distinct materials (bricks, foam, glass, gypsum,
mineral fibers, plastics, and wood) were separated either by hand or
with the help of inline sorters available at the recycling facility. The End-
of-Life (EoL) concrete was obtained relatively clean through selective
demolition. This EoL concrete was then processed using the Concrete to
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Cement and Aggregate (C2CA) technology (Gebremariam et al., 2020).
The output was divided into three categories: RCA ranging from 4.0 to
16.0 mm, recycled fine aggregates (RFA) between 0.25 and 4.0 mm, and
cement paste-rich powder sized 0 to 0.25 mm. This is accomplished
using the Advanced Dry Recovery (ADR) and Heating Air classification
System (HAS) technologies (Gebremariam et al., 2020). These technol-
ogies are specifically to segregate EoL concrete into well-defined particle
size distributions based on mechanical and thermal processing methods.

2.2. Equipment

2.2.1. Sensor-based quality control system
The sensor-based quality control system depicted in Fig. 3 begins

with the process of transporting the to-be-inspected objects via a feeder
to the conveyor belt, which then conveys them under the sensor system
for analysis. This system encompasses two principal sensors: the 3D
scanner Gocator and the LIBS. Both sensors are mounted on a fixed
frame directly above the conveyor belt. The LIBS is aligned perpendic-
ularly to the direction of the conveyor belt’s movement, while the

Fig. 1. Schematic of quality control process.

Fig. 2. Demolition waste samples.
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Gocator is oriented parallel to it. The Gocator specializes in detecting the
surface conditions of target objects, generating high-resolution (x-di-
rection: 0.378 mm, y-direction: 0.393 mm, z-direction: 0.083 mm),
three-dimensional point cloud data that effectively captures the detailed
surface topography. On the other hand, LIBS plays a pivotal role in the
recognition and classification of various objects.

A distinctive feature of the system’s design is the integration of
multiple reflective mirrors. The laser beam is divided and directed using
a series of beam splitters and mirrors (as shown by the red arrows in
Fig. 3) onto two separate conveyor belts. To further fine-tune the posi-
tion of the laser beam, a dual-stage system is employed, with each stage
directing a laser beam to one of the conveyor belts. The laser’s position
can be adjusted based on the specific characteristics of the objects being
inspected. The laser beams’ positioning can be adjusted according to the
specific attributes of the objects being inspected. This design enables the
simultaneous monitoring of objects on two distinct conveyor belts using
just a single Nd: TAG laser.

2.2.2. Synchronization
To enhance spectral analysis through surface information, it is

crucial to synchronize the two sensors. This approach enables
enhancement of the analysis of spectra obtained from LIBS by incorpo-
rating surface conditions of the target points captured by the Gocator.
An integrated encoder is employed for the control and logging of the
conveyor belt, Gocator, and LIBS systems. The integrated encoder’s
resolution is set at 4098 pulses per revolution. Given the conveyor belt’s
wheel perimeter of 402.116 mm, the belt advances 0.098 mm with each
pulse of the integrated encoder. Considering the maximum scanning
frequency of the Gocator, its internal encoder resolution is configured at
1024 pulses per revolution. This implies that for every four pulses
emitted by the integrated encoder, the Gocator executes one scan.
Consequently, the calculated resolution of the Gocator along the
conveyor belt’s direction of travel is 0.393 mm.

Experimental data indicates a horizontal distance of 6025 integrated
encoder pulses, equivalent to 591.203 mm, between the linear scans of
the Gocator and the LIBS laser shooting point. Based on this, synchro-
nization of the Gocator and LIBS signals is achieved through the pulse
values recorded by the integrated encoder. When the LIBS emits a laser

shot, the corresponding pulse value of LIBS recorded by the integrated
encoder at that moment is pv. Therefore, the surface targeted at that
instant corresponds to the (pv-6025)/4 scan in the Gocator’s dataset.

2.2.3. Calibration
Within this setup, two sensors have been securely mounted on the

same frame. The LIBS is oriented vertically, while the Gocator sensor
maintains a horizontal position and is perpendicular to the plane of the
LIBS (as shown in Fig. 4). The relative positioning of the sensors has been
precisely pre-calibrated, ensuring no displacement occurs between
them. The conveyor belt, however, is distinct and separate from this
frame. In practice, the conveyor belt is inserted beneath the frame to
align with the operation of the sensors. Should the positioning be
incorrect, recalibration is required to ensure accuracy.

To enhance clarity, a spatial coordinate system, as illustrated in
Fig. 3, is established. The x-axis is defined as the direction perpendicular
to the Gocator body, pointing towards the direction of the conveyor
belt’s movement. The y-axis runs parallel to the Gocator body, and the z-
axis is oriented vertically upwards from the Gocator body.

To address misalignments between the sensor system and the
conveyor belt, which can introduce measurement inaccuracies, a cali-
bration methodology is necessary. Specifically, in practical operations,
the conveyor belt does not maintain a perfect horizontal position and
deviates from the ideal alignment along the z-axis, as well as exhibits
variations along the x and y-axes. The correction approach involves the
use of a flat calibration plate placed on the conveyor belt. Two arbitrary
points labeled A and B, are selected on the plate, ensuring that their y-
axis coordinates are not identical. The differences along the x-axis (Δx)
and the y-axis (Δy) between points A and B are recorded.

As the conveyor belt operates, the calibration plate undergoes
scanning by the Gocator. Initially, the Gocator captures the coordinates
of point A (xa, ya, za). After a span of number t pulses, the Gocator re-
cords the coordinates of point B (xb, yb, zb). The respective differences in
the coordinates of points A and B are then calculated as follows:
⎧
⎨

⎩

Δx́ = xb − xa
Δý = yb − ya
Δź = zb − za

(1)

Fig. 3. Sensor-based quality control system.
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If the conveyor belt is positioned correctly, it should satisfy the
following relationships:
⎧
⎨

⎩

Δx́ = Δx
Δý = Δy
Δź = 0

(2)

If the relationships are not satisfied, this indicates a misalignment in
the placement of the conveyor belt, necessitating an adjustment.
Referring to Equation Set (3), the values for the offset in each pulse along
the x, y, and z axes (εx, εy, εz) can be accurately calculated. These
values are then employed to implement the required corrective
measures.
⎧
⎨

⎩

xb = xa + Δx+ εx • t
yb = ya + Δy+ εy • t

zb = za + εz • t
(3)

The LIBS and the Gocator are both affixed to the same framework,
with their relative positions meticulously pre-calibrated. This ensures
that the spatial relationship between the LIBS and the Gocator remains
invariant. The fixed distance between the two sensors can be used to
quickly calculate and trace the correspondence between the data from
each sensor. This ensures that every laser shot is accurately mapped to
its corresponding surface condition data captured by the Gocator. This
alignment allows for a direct and synchronized correlation between the
LIBS laser shooting point and the Gocator’s scanning data, which is
crucial for enhancing the precision of contaminant detection in RCA
streams. As illustrated in Fig. 5, a point G captured by the Gocator
travels along the conveyor belt. When the LIBS is set to emit the laser
after 6025 pulses, the target point G shifts to a new position, denoted as
L′, due to certain deviations. At this precise moment, the actual shooting

point of the LIBS laser is at L, corresponding to the point G′ previously
scanned by the Gocator. The spatial correlation of points L and G′ are
related as follows:
⎧
⎨

⎩

xl = xi
yl = yi + 591.203

zl = zi
(4)

After correction, it can be calculated that the actual corresponding
point G′ for the LIBS laser shooting point L is located at the coordinates
(xi-6025εx, yi-6025εy, zi-6025εz). This representation effectively maps
the corrected laser shooting point to the scanner’s coordinate system,
ensuring precise spatial alignment and data integration.

2.3. Analysis methods

2.3.1. Calculation of 3D point cloud normal vector
Analyzing the surface condition of objects at laser shooting points

requires the determination of the object’s surface normal. This step aids
in calculating the laser shot’s angle of incidence relative to the object’s
surface. In this study, a hybrid approach is used to estimate normal
vectors within 3D point clouds. This method synergistically combines
fixed-radius and K-Nearest neighbors (KNN) algorithms (Corral and
Almendros-Jiménez, 2007) to calculate within the smallest possible
range around a target point, enabling efficient and precise identification
of each point’s geometric characteristics in the cloud.

2.3.1.1. Neighborhood definition. The initial step involves defining each
point’s neighborhood using a set radius. Given a point Pu with co-
ordinates (xu, yu, zu) in the 3D point cloud, the neighborhood N(Pu) of Pu
within a starting radius r is defined as:

N(Pu) =
{

Pv|
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xu − xv)2 + (yu − yv)2 + (zu − zv)2
√

≤ r, ∀u ∕= v
}

(5)

where Pv are the points in the point clouds. Considering resolutions
along the x, y, and z axes of 0.378 mm, 0.393 mm, and 0.083 mm,
respectively, the starting radius r of 1 mm is set to guarantee a uniform
search area, regardless of point density variations. This radius-based
search encompasses all points within the specified boundary,
providing a comprehensive dataset for further analysis.

Fig. 4. Pre-calibrated sensors.

Fig. 5. Correlation between the LIBS laser shooting point and the Gocator’s
scanning data.
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2.3.1.2. Refinement to K-nearest neighbors. From the initial neighbor-
hood N(Pu), the set is refined to the k-nearest neighbors, constrained to a
maximum count based on the Euclidean distance - in this case, k = 9.
This refined neighborhood is denoted as Nk(Pu).

2.3.1.3. Covariance matrix computation. Upon identifying the relevant
neighborhood points, for each point Pu and its neighborhood Nk(Pu),
calculate the covariance matrix CMPu as:

CMPu =
1
k

∑

Pv∈Nk(Pu)

(Pv − Pu)(Pv − Pu)T (6)

where Pu is the centroid of the neighborhood points and is given by:

Pu =
1
k

∑

Pv∈Nk(Pu)

Pv (7)

This covariance matrix captures the spatial distribution of the points,
forming the basis for the next steps.

2.3.1.4. Eigenvalue decomposition. The core of the normal vector esti-
mation process involves the eigenvalue decomposition of the covariance
matrix CMPu . Through this decomposition, eigenvalues φ1, φ2, φ3 and
their corresponding eigenvectors τ1→, τ2→, τ3→ are obtained. Eigenvectors
signify the predominant axes of the point distribution. The eigenvalues
are ordered as φ1 ≥ φ2 ≥ φ3.

2.3.1.5. Normal vector estimation. The normal vector Nu
̅→ at point Pu is

the eigenvector τ3→ corresponding to the smallest eigenvalue φ3, thus:

Nu
̅→

= τ3→ (8)

This choice is grounded in the principle that the smallest eigen-
value’s direction exhibits the least variance, aligning with the surface
normal.

2.3.1.6. Preprocessing for noise and outliers. It is imperative to recognize
that irregularities in point cloud density, along with noise and outliers,
can significantly affect the accuracy of normal vector estimation. When
the scanning laser of the Gocator encounters gaps between particles,
particularly in areas that are deeper and darker than the surrounding
particle surface, the scanning laser’s reflectivity may decrease. This
reduction in reflectivity results in abnormal elevation data, often pro-
ducing negative values. Such anomalies can introduce substantial errors
in normal vector estimation, especially when calculating the boundary
points of particles based on adjacent data. To enhance the reliability of
the results, preprocessing steps such as noise filtering and smoothing are
essential.

It is important to emphasize that these preprocessing steps are spe-
cifically designed for the normal vector estimation process. When pro-
cessing LIBS spectral data later, the original Gocator scanning data,
including any negative elevation values, should still be used. The pres-
ence of these negative elevation data indicates the areas where gaps
between particles exist, and accurately identifying these areas is critical
for subsequent corrections in LIBS spectral data analysis.

2.3.2. Surface-condition-adaptive classification algorithm
The quality of the detected spectrum is highly influenced by two

factors: the distance of the focal point of the laser to the object’s surface
and the laser shot’s angle of incidence relative to the object’s surface
normal during laser shooting. To ensure optimal analysis, it is essential
to exclude spectral data obtained outside the focal length. Moreover,
incorporating the angle values into the spectral data analysis improves
accuracy. By integrating these angle values as parameters, the

performance of the classification algorithm is refined and enhanced.
The surface-condition-adaptive classification algorithm for

analyzing single-shot spectral data utilizes chemometric methods that
integrate principal component analysis with the chi-square distribution
(Chang et al., 2022). To effectively perform principal component anal-
ysis (PCA), distinct preprocessing methods are required for angle values
and spectral values. This ensures comparability in magnitude and
optimal representation of each data set’s characteristics. For angle
values, normalization is applied. Given their range of 0 to 90 degrees,
they are normalized to a scale of 0 to 1. This is achieved by employing
Min-Max Normalization for each angle value. This transformation
maintains the proportional relationships while making the values more
manageable. In contrast, spectral values are processed through stan-
dardization. The key information in spectral data, the distribution pat-
terns of peaks and troughs, is best captured by z-score standardization.
This approach maintains the data’s overall distribution but adjusts the
mean and standard deviation to a zero mean and unit standard devia-
tion. By doing so, spectral values are effectively scaled, ensuring a
standardized framework for further analysis.

When shooting material X, each laser shot yields an angle of inci-
dence value d, and a corresponding spectrum x = (x1, x2,…, xN), where
xs denotes the plasma emission intensity at wavelength λs(s = 1, 2,…,

N), with N representing the total number of recorded spectral wave-
lengths. By assessing the angle of incidence and the actual focal length,
spectra that do not meet the criteria are filtered out. Subsequently, by
combining the normalized angle value d́ with the spectrum x, a com-
posite value C = (d́ , x1, x2,…, xN) is created. Consequently, each laser
shot can be considered as a point in an N+1 dimensional space. In this
space, laser shots from the same material form a unique group of point
clouds. Different materials are represented by distinct groups of point
clouds. Each new laser shot creates a new point, which is either assigned
to an existing point cloud group or labeled as unrecognizable if it
significantly deviates from known groups.

After PCA processing, the database for material X records a selected
principal component number n. This corresponds to a new, rotated
orthonormal coordinate system with axes aligned along n unit vectors
(e1, e2,…, en). The database also includes a set of vectors of principal
components (ξ1, ξ2,…, ξn), and a center point (ξ1, ξ2,…, ξn) along with
variances

(
Δξ12,Δξ22,…,Δξn2

)
to describe the multi-dimensional

normal distribution of the spectra for material X.
Following the process of z-score normalization, for each principal

component value Zm (m = 1, 2, …, n), calculated from the obtained
principal components (ξ1, ξ2,…, ξn), it’s presumed to align with chi-
square distributions for categorization purposes. Specifically, each Zm
is calculated by the equation:

Zm =
ξm − ξm̅̅̅̅̅̅̅̅̅̅̅

Δξm2
√ (9)

showing that it conforms to a standard normal distribution, character-
ized by a zero mean and unit variance. Leveraging the chi-square dis-
tribution framework, the statistic:

χ2 =
∑n

1
Zm2 =

∑n

1

(ξm − ξm)
2

Δξm2
(10)

is scrutinized to verify its alignment with the expected χn2-distribution
by checking if it is adequately small. This χ2 metric is then converted
into a probability p-value reflective of the χn2-distribution, with an in-
verse relationship between χ2 and the p-value indicating an increased
confidence level. A p-value below a selected significance level suggests
significant statistical relevance. This significance level for material X is
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set based on its associated p-value, categorizing spectra with p-values
exceeding this significance level as attributable to material X.

2.3.3. Quality control method

Algorithm 1. Quality control module

Initially, the RCA is thoroughly mixed to ensure a uniform distri-
bution. This homogeneity is achieved through the utilization of the
feeder mechanism, which evenly disperses the RCA onto the conveyor
belt, preparing it for further analysis. Subsequently, the Gocator
continuously scans the surface of the RCA streams, calculating and
detecting vital parameters such as the actual focal length (corresponding
z-values z) and the angle of incidence d in real time. These measure-
ments are crucial for the accurate classification of material types.

Parallel to the scanning process, LIBS targets fixed points on the RCA
streams, shooting continuously. It integrates the obtained spectral data x
with the previously calculated focal length and angle of incidence to
identify the material accurately. This classification process is enhanced

by periodically summarizing the frequency of occurrence FCmd for each
material type Xmd within fixed intervals FI, thereby estimating the
content CEmd of various materials in the RCA streams rapidly and effi-
ciently. The specific quality control process is outlined in Algorithm 1.

The quantified material content data is then synchronized to the
cloud in real time, allowing for immediate access and analysis. This
capability is instrumental in maintaining quality control, as it facilitates

the quick classification of any material content that exceeds predefined
limits. Once an anomaly is detected, the system enables swift marking
and manual intervention, ensuring that only materials meeting the
desired specifications are utilized.

3. Results and discussion

3.1. Effects of focal length

To determine the effective focal length of the LIBS system, it is
essential first to calculate the diameter w0 of the focal spot. This is
achieved using Formula (11):

C. Chang et al. Computers in Industry 164 (2025) 104196 

7 



w0 =
2M2λf

πD (11)

Formula (11) is employed to determine the 1/e2 spot diameter for a
collimated Gaussian beam (Dickey, 2018). This beam is characterized by
a wavelength λ and a diameter D at the lens when it is focused using a
lens with a focal length f . If the beam deviates from an ideal Gaussian,
the beam quality parameterM2 is introduced to adjust the calculation. In
this LIBS system, the parameters are λ = 1064 nm, D = 2.5 mm, f =

300 mm, and M2 = 1.2. With these parameters, the calculated diameter
w0 of the focal spot is 195.1 µm.

The effective focal length range is defined by the depth of field (DOF)
of the focused beam, calculated as twice the Rayleigh range ZR:

DOF = 2ZR (12)

The Rayleigh range (Herman and Wiggins, 1998), a pivotal concept
in optics and laser physics, describes the characteristics of a Gaussian
beam. It is the distance from the beam’s narrowest point (the beam
waist) to the point where the beam’s diameter increases by a factor of
̅̅̅
2

√
. Within this distance, the beam is considered to be approximately

collimated, meaning that the spread of the beam is very minimal. The
mathematical expression for the Rayleigh range is typically:

ZR =
πw20
M2λ

(13)

where the parameter M2 is included to accommodate for the increased
divergence in non-ideal beams. In this study, ZR is calculated to be
23.4 mm. It is noteworthy that within the Rayleigh range, the beam’s
expansion is negligible, indicating that the beam maintains almost the
same intensity. Beyond this range, however, the beam starts to diverge
more significantly.

Experimental results from various materials reveal that optimal
spectra can be successfully obtained within a 30.0 mm distance from the
focal point. Thus, a focal length range of 23.4 mm is identified as the
optimal limit for effective spectral acquisition. This conclusion draws
upon both empirical evidence and theoretical analysis, which shows that
this specific focal distance consistently produces the most accurate and
reliable spectral data across different material types, enhancing the
precision of the spectroscopic analysis.

Considering the size of the measured particles, which are all smaller

than 23.4 mm, it is reasonable to assume that laser shooting points are
typically within the effective focal length. However, there is a possibility
that the laser shoots may pass through the gap between two surface
particles, penetrating below the surface layer, which is the outermost
layer of the particle pile, as illustrated in Fig. 6. Laser shots in such
scenarios, potentially beyond the Rayleigh range, are challenging to
evaluate. This is also reflected in the Gocator scanning data, where the

Fig. 6. Laser shoots the gap between two particles.

Table 1
Classification report of the validation set without consideration of surface
information.

Precision Recall F1-score Support

Brick 0.98 0.97 0.98 100
Cement Paste 0.98 0.94 0.96 100
Foam 1.00 0.94 0.97 100
Glass 0.98 0.98 0.98 100
Gypsum 1.00 0.97 0.99 100
Mineral Fiber 1.00 0.97 0.99 100
Plastic 0.94 0.98 0.96 100
RCA 0.91 0.93 0.92 100
RFA 0.94 0.96 0.95 100
Wood 1.00 0.96 0.98 100
Unrecognized 0.00 0.00 0.00 0
weighted avg 0.97 0.96 0.96 1000

Table 2
Classification report of the validation set with consideration of surface
information.

Precision Recall F1-score Support

Brick 1.00 1.00 1.00 100
Cement Paste 0.99 0.97 0.98 98
Foam 1.00 0.98 0.99 99
Glass 0.99 0.99 0.99 99
Gypsum 1.00 0.99 1.00 99
Mineral Fiber 1.00 0.99 0.99 99
Plastic 0.97 1.00 0.99 99
RCA 0.96 0.97 0.96 97
RFA 0.96 0.98 0.97 99
Wood 1.00 0.99 1.00 98
Unrecognized 0.00 0.00 0.00 0
weighted avg 0.99 0.99 0.99 987
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Fig. 7. Confusion matrix of the validation set.
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corresponding z-values are negative. Consequently, this laser shot’s
incidence angle on the material’s surface cannot be precisely deter-
mined. Based on this unique characteristic, these laser shot data can be
excluded.

3.2. Effects of the angle of incidence

Experiments conducted on various materials revealed that optimal
spectral data is obtained when the laser shot’s angle of incidence is
between 0 and 60 degrees relative to the object’s surface normal. At
angles beyond 60 degrees, spectral values tend to be significantly lower.
This reduction is primarily attributed to the increased surface area
impacted by the laser shots at steeper angles, leading to diminished
reflected energy and consequently lower spectral values detected.

RCA tend to be more angular compared to natural aggregates. This
characteristic results in highly variable surface conditions, which must
be considered in their analysis. To compensate for the effect of the laser
shot’s incidence angle on spectral data, the angle parameter has been
normalized and incorporated into the cluster-based classification algo-
rithm. This integration allows for a more accurate analysis of the spec-
tral data by considering the variable impact of different angles of
incidence. This adjustment is crucial for improving the reliability and
clarity of spectral analysis, especially in scenarios where controlling the
angle of incidence is challenging.

3.3. Quality control test results

In this study, we meticulously collected data for a variety of mate-
rials, each characterized by specific angle and spectral values. To
rigorously evaluate our classification methodology, we partitioned this
dataset into two subsets: a training set and a validation set. The parti-
tioning adhered to a 9:1 ratio, ensuring a balanced distribution for
effective model training and validation. Specifically, for the purpose of
validation, we randomly selected 100 entries for each material, resulting
in a comprehensive validation set encompassing a total of 1000 entries.
Conversely, the training set comprised the remaining 900 entries per
material. This extensive dataset facilitated the development of a robust
standard library, pivotal for the accurate classification of materials
based on their spectral signatures and surface conditions.

Fig. 6 delineates the classification outcomes, offering a comparative
analysis of the results obtained without considering surface conditions
against those that are factored in these conditions. Further, the valida-
tion set’s classification efficacy is documented in Table 1 and Table 2.
These tables provide an insightful examination of the classification
performance, highlighting the precision, recall, and F1 score among
other metrics, thereby offering a transparent overview of our method-
ological accuracy and efficacy. Fig. 7

Subsequently, the constructed standard library was employed in a
real-world scenario to continuously monitor the quality of RCA streams
transported on the conveyor belt, following its processing through the
C2CA treatment. The monitoring experiments were specifically designed
to assess the content of various contaminants within the RCA streams.
The experimental findings reveal that the concentration of contaminants
in the RCA streams was within the permissible limits set forth by the EN
12620 standard (Standard, 2002), which delineates the requirements for
aggregates to be used in concrete.

3.4. Accuracy and efficiency in quality control

Significant enhancements in the algorithm are noted when incor-
porating surface conditions. The algorithm with consideration of surface
conditions demonstrates improvements in precision (weighted average),
recall (weighted average), and F1-score (weighted average), all reaching
0.99. This is a significant advancement over the algorithm that did not
account for surface conditions, which achieves a precision (weighted
average) of 0.97, recall (weighted average) of 0.96, and F1-score

(weighted average) of 0.96. It is important to acknowledge that the
test set was approximately 40 times too small to ensure that materials,
such as wood and plastics with stringent maximum concentration
specifications, can be detected at the highest quality limit levels
(0.1 cm3 per kg, or about 1 in 4000 particles).

Nevertheless, the system has demonstrated high efficiency, accuracy,
and significant market potential. It can monitor the quality of RCA flows
at a throughput of 50 tons per hour per conveyor, analyzing approxi-
mately 4000 particles per ton of RCA. This allows the system to detect
critical contaminants at concentrations below 50 parts per million. For
materials with stringent content regulations, such as wood, the system
canmeet the required limit of 0.2 cm3/kg, equivalent to about 0.08 g/kg
or a mass concentration of 80 ppm, further demonstrating its reliability.

Notably, the most significant improvements include the complete
elimination of the unrecognized category and a reduction in confusion
primarily to materials with similar chemical compositions. These im-
provements are highlighted by the disappearance of previously unrec-
ognized classifications and the significant reduction in misclassifications
involving materials with similar chemistry, particularly where RCA was
previously misclassified as other materials.

Specifically, the improvements include both the removal of previ-
ously unrecognized laser shots and a reduction in misclassifications. The
elimination of these previously unrecognized laser shots arises from two
factors. Firstly, it is evident that some ineffective data have been
removed from various materials (except for brick). This is attributed to
the probability of laser shooting the gaps between particles during
consecutive laser shots. These laser shots are highly beyond the focal
point, resulting in the exclusion of previously unrecognized laser shots.
Secondly, the incorporation of the angle parameter aids in identifying
and correcting these unrecognized laser shots. A notable instance of this
improvement is observed in the case of brick. Analysis of prior literature
(Chang et al., 2022) reveals that misclassified laser shots typically
display smaller scales than normal and are obscured by typical values.
The diminished spectral values of these laser shots, possibly caused by
the angle of incidence issues, make classification challenging. By
incorporating the angle of incidence of laser shots into the algorithm,
these small-scale shots can be accurately identified and classified,
leading to a decrease in misclassifications.

However, RCA, RFA, and cement paste remain susceptible to clas-
sification errors. Challenges arise from multiple factors. One major issue
is the difficulty of ensuring the complete removal of residues during the
material processing stage. In particular, the adhesion of cement paste to
RCA surfaces complicates differentiation. Additionally, the size overlap
between RCA and RFA, both sharing a boundary at 4.0 mm, further
complicates their distinction, especially in this marginal size range
where they exhibit greater similarity. The inherent heterogeneity of the
materials adds another layer of complexity to the classification task.
Moreover, the chemical compositional similarities among RCA, RFA,
and cement paste amplify the presence of misclassifications. RCA, ob-
tained by crushing concrete from demolished structures, generally
consists of larger fragments of original aggregates, such as gravel or
crushed stone, along with adhered mortar. Its chemical composition is
primarily characterized by calcium oxide (CaO), silicon dioxide (SiO₂),
aluminum oxide (Al₂O₃), iron oxide (Fe₂O₃), and magnesium oxide
(MgO). The presence of residual mortar in RCA introduces additional
variability in its chemical profile, distinguishing it from natural aggre-
gates. In contrast, RFA, which comes from the finer fractions of the same
source as RCA, consists of sand-sized material and finer residues from
the original concrete. Although the chemical composition of RFA is
similar to that of RCA, it contains higher proportions of calcium hy-
droxide [Ca(OH)₂] and other hydrated compounds due to its finer par-
ticle size and greater surface area. Cement paste, which acts as the
binding phase in concrete, mainly consists of calcium silicate hydrate (C-
S-H), calcium hydroxide, and unhydrated cement particles, with a
notable presence of calcium carbonate (CaCO₃) due to carbonation. The
similar yet heterogeneous chemical compositions of RCA and RFA lead
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Fig. 8. LIBS data.
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to minimal differences in their spectral signatures (as shown in Fig. 8)
when analyzed using LIBS. These inconsistencies in data acquisition
complicate the development of a reliable database, as the collected
spectra may not accurately represent the material’s true characteristics.
Consequently, this leads to reduced recognition accuracy when these
databases are used for material classification. To overcome these chal-
lenges, more precise analysis and algorithms are necessary to improve
accuracy.

Several strategies can enhance classification effectiveness. Exploring
alternative methods, such as the integration of additional sensors (e.g.,
moisture sensors) and considering scale differences in classification,
could lead to improved outcomes. The integration of machine vision
(Buchner et al., 2023; Guirguis et al., 2024; Kong, 2023) could further
improve the adaptability of the system by enabling real-time adjust-
ments based on visual data, thereby enhancing the accuracy of
contaminant detection in RCA streams. Alternatively, increasing the
ratio of training and validation and using a greater number of spectral
data for database construction can align data distribution more closely
with a normal distribution. This alignment is beneficial for PCA,
resulting in more accurate predictions. Therefore, extensive future
experimentation is recommended to develop a robust database and
improve overall accuracy.

3.5. Economic feasibility

This quality control system is designed for a plant that processes
approximately 150 tons per hour of EoL concrete. Similar plants in
Europe typically operate around 4000 h per year, with downtime
ranging from 10 % to 20 %. To justify the investment, the system needs
to process 500,000 tons annually. The facility cost is approximately
€300,000, which equates to an additional 0.60 euro/ton of input ma-
terial or around 1.00 euro/ton for RCA and RFA if the facility is to break
even within one year. Given that typical aggregate prices in the EU range
from 10.00 to 15.00 euro/ton, investing in a quality control system that
not only ensures product quality but also supports a digital concrete
recycling process and reduces labor costs is economically feasible.

3.6. Control model

To effectively manage the sensor-based quality control system inte-
grating the 3D scanner Gocator and LIBS, a comprehensive control
model is essential, especially in future real-world production scenarios.
This model will facilitate real-time monitoring, support decision-
making, and allow for process adjustments, ensuring consistent prod-
uct quality. Below is a brief overview of the relevant aspects of the
control model.

3.6.1. Control objectives
The primary objectives of the control model are:
Real-time monitoring: Continuously monitor the quality parameters

as measured by the Gocator and LIBS.
Process adjustment: Automatically adjust production parameters

based on the quality data to maintain product specifications.
Feedback loop: Implement a feedback mechanism to refine the

control model based on performance data and operational changes.

3.6.2. Control model components

3.6.2.1. Data acquisition and integration. Sensors: The Gocator and LIBS
are used to acquire dimensional and compositional data, respectively.
The data is collected in real time and integrated into the control system.

Data fusion: Combine data from both sensors to provide a compre-
hensive view of product quality. This involves aligning and synchro-
nizing data streams from the Gocator and LIBS.

3.6.2.2. Control algorithms. Algorithm selection: Employ control algo-
rithms such as Proportional-Integral-Derivative (PID) control and Model
Predictive Control (MPC) based on the complexity and requirements of
the control system.

PID control: Adjusts production parameters based on the difference
between the measured values and target values. It is suitable for systems
with stable and predictable dynamics.

MPC: Uses a model of the system to predict future behavior and
optimize control actions. It is useful for handling constraints and man-
aging more complex systems.

3.6.2.3. Feedback mechanism. Real-time feedback: Implement a feed-
back loop that uses data from the Gocator and LIBS to adjust process
parameters. For example, if the Gocator detects dimensional deviations,
the system can adjust machine settings to correct these deviations.

Error correction: Apply corrective actions when deviations from
quality standards are detected. This involves updating control parame-
ters and re-calibrating processes as needed.

3.6.2.4. Control Model Implementation. Software integration: Develop
or integrate control software that processes sensor data and executes
control algorithms. The software should interface with both the Gocator
and LIBS systems.

User interface: Provide an intuitive user interface for operators to
monitor system performance, review data, and manually adjust pa-
rameters if necessary.

3.6.3. Model validation and testing

3.6.3.1. Simulation. Simulation setup: Before implementing the control
model in a live environment, simulate the model using historical data to
validate its performance and accuracy.

Scenario testing: Test the control model under various scenarios,
including different levels of input quality and varying production con-
ditions, to ensure robustness.

3.6.3.2. Experimental validation. Pilot testing: Implement the control
model in a pilot production run to observe its performance in a real-
world setting.

Performance metrics: Evaluate the control model based on key per-
formance indicators (KPIs) such as response time, accuracy of adjust-
ments, and overall impact on product quality.

3.6.3.3. Continuous improvement. Performance monitoring: Continu-
ously monitor the performance of the control model during production.
Collect feedback on its effectiveness and identify areas for improvement.

Model refinement: Use performance data to refine and enhance the
control model. This may involve adjusting control algorithms, recali-
brating sensors, or improving data integration methods.

4. Conclusion

This study introduces a novel rapid quality control system for
contaminant detection in RCA streams via surface-condition-adaptive
LIBS. A key advancement is the integration of a synchronized system
that merges spatial data from a 3D scanner with the spectral data from
LIBS. This novel approach effectively tackles the issue of variable surface
conditions on objects, which affect the laser shot’s focal length and angle
of incidence. These factors have previously impeded the precision of
traditional LIBS applications. By adapting the spectra based on the
surface position and orientation, as determined by 3D scanning, this
method significantly reduces unrecognizable classifications and
misclassification rates, enhancing the reliability of material classifica-
tion. The surface-condition-adaptive LIBS method demonstrates im-
provements in precision (weighted average), recall (weighted average),
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and F1-score (weighted average), all reaching 0.99. This level of accu-
racy is pivotal for the rapid quality control of RCA streams on the
conveyor belt, underpinning its utility in ensuring the quality of RCA
utilized in construction projects.

The advancements of this study enhance the reliability of single-shot
analyses of LIBS, thereby reducing the occurrence of false positives
during the material classification process. In situations where the con-
centration of contaminants is extremely low, false positives can signif-
icantly influence the results of theoretical simulations. For example,
with a 1 % wood content that is uniformly distributed, the likelihood of
detecting wood is only once in every 100 samples. However, false pos-
itives in other materials could falsely inflate the estimated wood content,
greatly impacting the quality assessment of RCA. By precisely adjusting
the angle of incidence and eliminating spectra outside the focal range,
the quality of the spectra has been improved, and the incidence of false
positives has been substantially lowered. This enhancement is essential
for preserving the integrity and reliability of recycling processes.

This study highlights the potential of surface characterizing in the
recognition of different materials. The diversity in surface properties of
different materials presents a unique opportunity for precision in ma-
terial classification. Detailed analysis of these surface characteristics,
combined with existing technologies, enables more accurate recognition
of various materials. The integration of 3D scanning with LIBS allows for
a detailed understanding of surface conditions, which plays a pivotal
role in enhancing the accuracy of material classification. This research
underscores the significance of surface properties in the classification
process and paves the way for further advancements in material
recognition technology. Moreover, future research should investigate
automated analysis techniques for discerning particle size distributions
in different materials. The use of advanced sensors allows for the swift
collection of particle size data of a specific material in mixed material
streams, augmenting the efficiency and precision of recycling processes.

Beyond waste management and recycling, this research has broader
implications across various industries where material classification and
detection of particle flows are pivotal. However, the study also ac-
knowledges the complexities in distinguishing materials with similar
spectral signatures. The challenge remains in fine-tuning the LIBS
methodology to distinguish between such materials with greater speci-
ficity. Future research could focus on enhancing the algorithmic aspect
of LIBS data interpretation, potentially incorporating machine learning
techniques to refine the classification process. Moreover, exploring the
synergy of LIBS with other analytical techniques, such as Micro-
electromechanical Systems (MEMS)-based sensors (Grosse et al., 2006;
He, 2024; He et al., 2024), could offer a more comprehensive under-
standing of material classification and detection.

While our research provides a comprehensive solution for quality
control, we acknowledge that there are additional areas that warrant
further investigation. One such area is the optimization of scheduling for
RCA streams. Developing an optimal scheduling model for RCA involves
complex considerations including inventory management, production
requirements, and material quality control. Given the importance of
efficient resource utilization and the potential benefits of improved
scheduling, this is a promising area for future research. An optimal
scheduling approach could leverage advanced algorithms and optimi-
zation techniques to balance RCA usage with production needs effec-
tively. Such a model could enhance overall efficiency and reduce waste,
addressing a critical aspect of resource management in civil engineering
materials.

Importantly, this study has broader implications for environmental
sustainability. It exemplifies the potential of combining advanced
scanning and spectroscopy technologies with real-time data analysis and
cloud synchronization to enhance construction material recycling pro-
cesses. Through the rapid quality control of RCA streams, it promotes
more efficient recycling of construction waste, thereby reducing the
environmental impact of building materials and prompting their use in
the building sector. This approach aligns with global efforts towards

circular economies, where maximizing the reuse and recycling of ma-
terials is paramount.
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