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ABSTRACT
This studyproposes a general framework to investigate car-following
heterogeneity and its impacts on traffic safety and sustainability. The
framework incorporates rigorous driving style classification using
a semi-supervised learning technique and a micro-simulation pro-
cess that includes 66 fine-grained traffic scenarios exhibiting varying
degrees of heterogeneity. Validated using two distinct real-world
datasets reveals the superiority of S3VM-based classifiers over tradi-
tional SVM classifiers in driving style classification. Simulation results
show that an increase in driving aggressiveness is correlated with
higher safety issues and greater environmental impacts. Further elu-
cidation of these impacts from the mechanism of underlying char-
acteristics of driving behaviour and traffic flow dynamics indicates
that less aggressive drivers can lead to the formation of vehicular
platoons, thereby encouraging more aggressive drivers to adopt a
milder driving style. Importantly, the formation of these platoons is
influenced by both the proportion and spatial distribution of less
aggressive vehicles. The proposed approach promises advantages in
reducing the negative impacts of driving heterogeneity, thus ben-
efiting Intelligent Transportation Systems (ITS) by improving traffic
safety and sustainability.
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1. Introduction

Driving heterogeneity constitutes a vital subject of investigation across various domains,
including human-centred vehicle control systems, intelligent transportation systems, road
safety, and environmental management. Studies have revealed that the variability in driv-
ing behaviours can lead to traffic externalities such asmanifesting traffic hysteresis (D. Chen
et al. 2014), causing more traffic accidents (Y. Chen, Wang, and Lu 2023), fuel consumption
and emissions (Lárusdóttir and Ulfarsson 2015; Makridis et al. 2020; Yao et al. 2024). For
example, reaction time and sensitivity to stimuli are directly associated with rear-end col-
lisions, thus contributing to traffic accidents (J. Zhang, Wang, and Lu 2019; Y. Zhang and
Talebpour 2024). Also, extreme driving actions, such as over-speeding, excessive accelera-
tion, and sudden stops, are more fuel-intensive (Haque and Abas 2018), thereby increasing
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emissions and energy consumption (Lárusdóttir and Ulfarsson 2015; Sun et al. 2024a).
These findings underscore the necessity to investigate the impacts of driving heterogene-
ity on traffic flow performance and to understand them from the underlying mechanisms
of driving behaviour, which can help develop measures to improve traffic safety and
environmental sustainability.

According to Ossen and Hoogendoorn (2011), driving heterogeneity is defined as the
difference between driving behaviours of driver/vehicle combinations under comparable
conditions. In literature, driving heterogeneity is usually identified from observed driving
behaviours and formulated as a classification problem with the output being categorical
(discrete scales vary between two and eight levels) or numerical (score of 0 to 10). Vehicu-
lar variables such as velocity, acceleration, and braking have been widely used to identify
drivers’ different driving styles (Fadhloun and Rakha 2020; Yao, Calvert, and Hoogen-
doorn 2023). Calibration of car-following model parameters is another prevalent way to
characterise different driving behaviours (Makridis et al. 2023; Shang and Stern 2020).
Utilising these trajectory-related variables, computational models such as machine learn-
ing (ML) techniques are applied to characterise driving behaviour into distinct groups
and infer specific driving profiles. Supervised and unsupervised learning are commonly
used ML techniques for this purpose. For example, supervised learning classifiers such
as Support Vector Machine (SVM), Random Forest (RF), K Nearest Neighbours (KNN), and
Multilayer Perceptron (MLP) were employed to differentiate normal and aggressive driv-
ing styles, achieving accuracy as high as 91.7% (Xue et al. 2019). A k-means clustering
algorithmwas implemented to recognise driving profiles into usual, harsh, and eco-driving
based on speed and acceleration data (Adamidis, Mantouka, and Vlahogianni 2020). Note
that manually labelling of data for supervised learning is usually time-intensive and can
introduce bias, and solely relying on unlabelled data in unsupervised learning may lead
to unpredictable outcomes. Semi-supervised learning techniques offer a promising solu-
tion to overcome these challenges. They train classifiers to identify driving heterogeneity
based on both labelled and unlabelled driving data, which can capture more character-
istics of driving data and uncover heterogeneity (Bennett and Demiriz 1998). W. Wang
et al. (2017) classified driving behaviour as aggressive and normal styles using both
SVM and S3VM and revealed the superiority of the S3VM-based models over SVM-based
models.

Based on the identification of driving heterogeneity, many efforts have been made
to investigate the impact of driving styles on traffic performance by reproducing het-
erogeneous driving behaviours in microsimulation. Some studies developed stochastic
car-following models by adding time-varying random noise (e.g. white noise) or distribu-
tions to deterministic models (Kesting, Treiber, and Helbing 2010; Suarez et al. 2022). For
example, Zheng et al. (2023) developed a parsimonious enhanced Newell’s car-following
model incorporating the stochastic reaction time and the fluctuation around the vehi-
cle’s desired speed subject to the mean reversion process. The Rakha-Pasumarthy-Adjerid
(RPA) car-following model has shown its capability to generate realistic VSP distributions
and estimate fuel consumption and emissions (Fadhloun and Rakha 2020; J. Wang, Rakha,
and Fadhloun 2017). Additionally, both variations in driving styles and vehicle characteris-
tics are introduced in the Microsimulation Free-flow aCceleration (MFC) model, which has
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been utilised to simulate heterogeneous driving behaviour and estimate fuel consump-
tions and emissions (Makridis et al. 2020). Based on developed microsimulation meth-
ods, the impacts of car-following heterogeneity on traffic flow performance have been
revealed. A study reported that promoting more stable driving styles during car-following
can potentially mitigate the risk of rear-end collisions (J. Zhang, Wang, and Lu 2019). On
the contrary, aggressive driving styles are associated with higher levels of speed variabil-
ity, elevated engine revolutions, and a greater likelihood of road accidents compared to
other driving styles (Haque and Abas 2018; Sun et al. 2024b). Additionally, aggressive
driving increased fuel costs significantly (Szumska and Jurecki 2020), by more than 20%
(Bakhit, Said, and Radwan 2015) and by 25% in urban areas (Fontaras, Zacharof, and Ciuffo
2017).

Despite the extensive research on heterogeneous driving behaviour modelling and
the investigation of the impacts on traffic safety and sustainability, there are still some
aspects that need to be explored. Usually, driving behaviours are diverse, and the corre-
sponding driving heterogeneity identification and classified driving behaviour modelling
require rigorous analyses, serving as an important preparation for traffic simulation. Fur-
thermore, heterogeneous traffic flow needs more fine-grained traffic scenarios to demon-
strate its diversity rather than a small number of representative fixed driving style ratios.
Meanwhile, there is a need for nuanced investigation into how these influences hap-
pen from the mechanism of underlying characteristics of driving behaviour and traffic
flow.

To bridge these research gaps, we propose a generalmicro-simulation approach to eval-
uate the impacts of car-following heterogeneity on traffic safety and sustainability. The
novel contributions of this study are threefold: (i) A semi-supervised learning method, i.e.
multi-classification S3VM, is developed to facilitate rigorous driving style classification and
classified car-following behaviour modelling. (ii) Heterogeneous traffic flow is refined by
66 distinct traffic scenarios with varying degrees of heterogeneity, which allows a more
nuanced examination of the impact of different driving styles and their proportion changes
on traffic safety, fuel consumption and emissions. (iii) The impacts caused by car-following
heterogeneity are elucidated from the mechanism of underlying characteristics of driving
behaviour and traffic flow dynamics.

The remainder of the paper is organised as follows. Section 2 introduces the method-
ology for assessing the impacts of car-following heterogeneity on traffic flow. Section 3
presents experimental settings, including driving style classification and micro-simulation
setup. Results anddiscussions areprovided in Section 4, and conclusionswithmain findings
and future research are finally presented in Section 5.

2. Methodology

This section outlines the methodology for assessing the impacts of car-following hetero-
geneity on traffic performanceusing amicro-simulation approach. Theprocess is illustrated
in Figure 1. Data plays an important role in ML-based driving heterogeneity identifica-
tion, thus being prepared as the first step of this methodology. Utilising extracted data of
car-following pairs, a multi-class semi-supervised Support Vector Machine (S3VM) is devel-
oped to classify drivers into different driving styles. Based on the classification results, 66
refined traffic flow scenarios representing varying degrees of heterogeneity are established
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Figure 1. Overview of the proposed methodology.

inmicro-simulation,where various indicators are adopted to estimate traffic safety, and fuel
consumption and emissions.

2.1. Data preparation

The HighD and NGSIM datasets are key and commonly used datasets for highway driv-
ing behaviour analysis and are utilised to evaluate the proposed methodology in this
study. The HighD dataset captures vehicle trajectories at 25 fps (one frame per 0.04 sec-
onds) through a high-resolution drone-mounted camera, which is notable for its ability
to capture a wide range of behaviours and interactions among vehicles from a bird’s-eye
view (Krajewski et al. 2018). Compared to the NGSIM dataset, HighD has higher granular-
ity with longer recorded duration, driven distance and driven time. Therefore, we adopt
HighD as the primary dataset for evaluation and NGSIM for transferability analysis of
findings.

It is acknowledged the presence of errors and noise in original trajectory datasets could
potentially impact the accuracy of microscopic studies (Aghabayk, Sarvi, and Young 2016).
Thus, we conduct data smoothing and filtering according to reference Sun et al. (2021)
before the extraction of car-following segments. This car-following pairs extraction process
applies several criteria aimed at excluding congestion and free flow conditions, filtering
minimum driving during, etc (Sun et al. 2021). Finally, 2744 and 1097 car-following trajec-
tory pairs are extracted from HighD and NGSIM datasets, respectively, with each lasting a
minimum of 30 seconds.

2.2. Driving style classification

2.2.1. Car-followingmodel calibration
Car-following models capture the dynamics of longitudinal interactions between two
adjacent vehicles navigating in the same lane without overtaking, aiming to simulate
and understand driving behaviours in diverse traffic conditions. From a physics point of
view, a car-following model used for microscopic traffic simulation should be as simple
as possible (Treiber, Hennecke, and Helbing 2000b). According to Treiber, Hennecke, and
Helbing (2000b), several criteria should be checked when choosing a microscopic traffic
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model. First, the parameters of traffic models should be intuitive and easy to calibrate, and
the corresponding values should be realistic, facilitating the replication of realistic driv-
ing behaviour in simulation. Additionally, the model should be capable of representing a
variety of traffic conditions, including congestion and hysteresis effects, to ensure simula-
tions accurately mirror real-world traffic dynamics. It’s also crucial that the model prevents
vehicle collisions and supports efficient numerical simulation.

The time-continuous Intelligent Driver Model (IDM) model is highlighted for its simplic-
ity and effectiveness in simulating realistic acceleration profiles and behaviours in nearly all
single-lane traffic scenarios (Treiber and Kesting 2013), without leading to accidents. This
physical model has interpretable parameters, promising advantages compared tomachine
learning-based models. To this end, IDM is widely used for traffic stability analysis and
oscillationanalysis in the literature and is capableof satisfactorily reproducingmanycharac-
teristics of traffic flow (Ngoduy2013, 2015; ShangandStern2021; Treiber andKesting2017).
The acceleration assumed in the IDM is a continuous function of the velocity v, the gap s,
and the velocity difference �v between the following vehicle and its leading vehicle, as
illustrated in Equation (1).

a(ti+1) = a0

[
1 −

(
v(ti)

v0

)δ
]

−
(
s∗(v(ti),�v)

s(ti)

)2

(1)

s∗ (v(ti),�v) = s0 + max
(
0, v(ti+1) T + v(ti)�v

2
√
a0 b0

)
(2)

where a0 is the maximum acceleration/deceleration of the follower, δ is the acceleration
index, which is set the value of 4 to reduce additional safety issues (Treiber, Hennecke, and
Helbing 2000a), v0 is the desired speed and s0 is the minimum distance gap. s∗(v(ti),�v)
means thedesiredgap,which is a function of v(ti) and�v as shown in Equation (2), inwhich
T is the safety time gap and b0 is the comfortable deceleration.

Prior researchhas identified some limitationsof the IDM, suchas its inability to reproduce
high-dimensional oscillations (Treiber and Kesting 2017). Huang et al. (2018) proposed a
stochastic IDM that can qualitatively replicate the concave oscillatory growth pattern. The
model adopts white noise to represent driver uncertainty, as shown in Equation (3). We
utilise this stochastic IDMmodel to investigate the impacts of car-following heterogeneity
on traffic flow performance.

v (ti+1) = max
[
min (v (ti) + a(ti+1)�t + noise, v0) , 0

]
(3)

where noise = norm(0,
√
Q�t), Q denotes the noise strength.

Model calibration was conducted at the individual vehicle level in this study, which
enables the assignment of specific parameters to each driver indicative of his/her driving
behaviour. The calibration of the car-following model involved identifying the most suit-
able parameter set to minimise the error between simulated and measured trajectories.
Thereafter, traffic flow will be simulated using a mixture of drivers with their personalised
parameters for car-following behaviour rather than using group average value. Recognis-
ingobserved limitationsof commonlyoptimisedalgorithms suchasgenetic algorithmsand
random parameter algorithms, Maximum Likelihood Estimation (MLE) is applied for model
calibration in this study. Details about theMLE-based calibration procedurewere described
in Hoogendoorn and Hoogendoorn (2010).
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2.2.2. Feature selection
Most car-following models usually have more than five parameters. High-dimensional fea-
tures easily lead to feature redundancy, and irrelevant features usually negatively affect
training efficiency and accuracy. We adopt the Laplacian Score (LS) for dimensional-
ity reduction due to its ability to identify features that represent the data’s underlying
structure. The idea of LS is to evaluate features according to their locality-preserving power,
e.g. two data points are more likely the same type if they are close to each other. In clas-
sification problems, the local geometric structure of the data space is more important
than the global structure. The Laplacian Score for each feature is calculated based on how
much the feature values change within local neighbourhoods. Features that have small
variations within neighbourhoods but significant variations between different neighbour-
hoods are considered more important. For more information about LS, please refer to He,
Cai, and Niyogi (2005). Additionally, other commonly used unsupervised feature selection
methods, i.e. Principal Component analysis (PCA) and t-distributed stochastic neighbour-
hood embedding (t-SNE) are employed for the same feature selection task to verify the
effectiveness of LS.

2.2.3. Semi-supervised driving style classification
Based on the selected features, we develop a semi-supervised approach, i.e. a multi-
class semi-supervised support vector machine (S3VM), to classify driving style during car-
following. S3VM is constructed using a mixture of labelled data (the training set) and
unlabelled data (theworking set), inwhich class labels in the training set are assigned to the
working set to construct the ‘best’ SVM (He, Cai, andNiyogi 2005). The process ofmulti-class
S3VMcanbedivided intomultiple binary classification problems and solved using the ‘one-
vs.-one’ or ‘one-vs.-rest’ strategy (Sun and Ban 2018). For the three-class problem in this
paper, the ‘one-vs.-one’ approach canuse a smaller size of classifiers and less computational
time to get similar results as the ‘one-vs.-rest’ approach. Thus, the ‘one-vs.-one’ approach
is adopted in this study. The dataset S of S3VM consists of labelled and unlabelled data
points: {S(l),S(u)} = {(x1, yd1), . . . , (xn, ydn), xn+1, . . . , xn+m}. where S(l) and S(u) denote the
sets of labelled and unlabelled data, respectively. ydi ∈ {−1, 0, 1} indicates whether xi ∈ S(l)

belongs to the dth class, where d ∈ D. D is the total number of classes. Here, the−1, 0, and
1 represent Aggressive, Normal, and Mild driving styles, respectively.

With labelled and unlabelled data, the goal of our classification task is to train a K
binary-class classifier: f d(x|wd , bd) = 〈wd , x〉 + b, wherewd ∈ Rn is the desired hyperplane
parameter vector for class d and bd , is the bias term. To facilitate better performance, we
apply a linear kernel and a nonlinear kernel function (i.e. Gaussian radial basis function ker-
nel) separately for S3VMs. According toGieseke et al. (2014), for class d, the optimal solution
for f d can be found with parameter vector αd ∈ Rn+m,

f d(x|αd) =
n∑
i=1

αd
i k(xi, x) (4)

2.3. Assessment of traffic flow performance

In micro-simulation, several indicators are employed to estimate traffic safety, fuel con-
sumption and emissions. Specifically, traffic safety is assessed by Time to Collision (TTC) and
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Time Exposed Modified Time to Collision (TEMTTC). Fuel consumption is evaluated by the
Virginia Tech Comprehensive Power-Based Fuel Consumption Model (VT-CPFM) and Vehi-
cle Specific Power (VSP), and emissions of heterogeneous traffic flow are Int Panis, Broekx,
and Liu (2006).

2.3.1. Measures of traffic safety
Time-to-collision (TTC) is defined as the time when the speed of the objective vehicle is
greater than its leading vehicle, the objective vehicle keeps the original driving state and
does not take the corresponding deceleration behaviour until the two vehicles collide. It
has been widely used in traffic safety evaluations. The formula is shown as follows:

TTCi(t) =

⎧⎪⎨
⎪⎩
xi−1(t) − xi(t) − li−1

vi(t) − vi−1(t)
, if ∀vi(t) > vi−1(t)

∞, if ∀vi(t) ≤ vi−1(t)
(5)

where xi(t) and vi(t) are the location and speedof vehicle i at time t, respectively. xi−1(t) and
vi−1(t) denote the location and speed for vehicle i−1; li−1 represents the length of vehicle
i−1.

A threshold value is selected to distinguish between safe and dangerous traffic con-
ditions in the literature. According to Minderhoud and Bovy (2001), the time-exposed
time-to-collision (TET) was proposed based on the TTC, which can be determined by
Equation (6).

TET∗ =
N∑
i=2

T∑
t=0

δi(t)·�t, δi(t) =
{
0, Otherwise
1, 0 ≤ TTCi(t) ≤ TTC∗ (6)

where T is the total observation time (denotes simulation time here) and �t is the interval
time. TTC∗ represents the safety threshold whose value varies from 1 to 3 s (Li et al. 2014);
δi(t) is a 0–1 variable. When TTCi(t) is less than TTC∗, δi(t) is equal to 1; otherwise, it is 0. For
N(i = 2 . . .N) drivers in the observation section, the total TET∗ is calculated by Equation (6).
The smaller the value of the TET∗, the higher level the of traffic safety. TTC∗ is set as 2s in
this paper.

TheModified time to collision (MTTC) is another metric that calculates the time required
for the following vehicle to collide with a leading vehicle maintaining constant move-
ment characteristics. Generally, an MTTC below 1.5 s is deemed unsafe. TEMTTC represents
the accumulated time of unsafe MTTC experienced by each vehicle in the traffic flow (Yu
et al. 2023). The calculation is expressed as follows:

MTTCi(t) =
�vi(t) ±

√
�vi(t)2 + 2�ai(t)

[
xi−1(t) − xi(t) − li−1

]
�ai(t)

(7)

TEMTTC =
N∑
i=2

T∑
t=0

ςi(t)·�t, ςi(t) =
{
0, Otherwise
1, MTTCi(t) < 1.5 s

(8)

where MTTCi(t) is determined by (i) if both of MTTC terms are positive, the minimum of
them is considered the final value of MTTC; and (ii) if one is positive while the other is nega-
tive, the positive one is considered the final value of MTTC; the Boolean variable ςi(t) takes
a value of 1 if the condition is unsafe and 0 otherwise.
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2.3.2. Measures of traffic sustainability
The Virginia Tech Comprehensive Power-based Fuel Consumption Model (VT-CPFM) is a
well-regarded model designed to estimate the fuel consumption of vehicles based on
powertrain dynamics and vehicle-specific characteristics. It can be easily implemented in
systems that require the use of amicroscopic-level fuel consumptionmodel (Hu et al. 2022),
thus being employed to calculate fuel consumption in this study. The fuel consumption rate
FC,i (g/s) is modelled in the form of a quadratic polynomial as:

FC,i =
{
θ0,i + θ1,iPd,i + θ2,iP2d,i, if Pd,i ≥ 0,
θ0,i, if Pd,i < 0,

(9)

where θ(·),i are constant coefficients, and θ0,i = 0.54, θ1,i = 0.06, θ2,i = 0.00017; Pd,i (kW)
is the power output of the vehicle driveline and it calculated based on the vehicle velocity
and acceleration:

Pd,i =
(
mai(t) + CA,ivi(t)2 + mgfr,i

)
vi(t)

ηT ,i
(10)

wherem is the vehiclemass (1500 kg);CA,i is the coefficients of aerodynamicdrag (0.4 kg/m);
g is the gravitational acceleration (9.8m/s2); fr,i is the rolling resistance (0.015 kg/m); ηT ,i is
the mechanical efficiency of the drivenline (0.8).

Vehicle specific power model (VSP) refers to the instantaneous power of a vehicle per
unit mass and combines the driving characteristics of vehicles such as speed and accel-
eration, and road characteristics such as the road gradient (Song and Yu 2009). It has
been widely used for fuel consumption modelling, because both the power for overcom-
ing aerodynamic drag and rolling resistance and for the kinetic and potential energy of
the vehicle are taken into account in VSP, by doing this the relationship between VSP
and fuel consumption can be explained physically. The calculation of the VSP is shown in
Equation (11).

VSP = 0.132 · v + 1.1 · v · a + 0.0003202 · v3 (11)

Vehicle Specific Power (VSP) is usually clustered into bins at certain intervals, and traffic
emissions are estimated by average-speed-based VSP distribution within each bin (Frey,
Rouphail, and Zhai 2006). The categorisation of VSP into 1KW/t intervals is detailed in
Equation (12).

VSP bin = n, ∀ : VSP ∈ [n − 0.5, n + 0.5) (12)

where n is the VSP number.
Then, a nonlinearmultivariate regressionmodel is utilised tomodel instantaneous traffic

emission by considering both average speed and other aspects of vehicle operation such
as acceleration and deceleration (Int Panis, Broekx, and Liu 2006), which is expressed by:

Ei =
∑T

t=1 max
{
0, f1 + f2vi(t) + f3vi(t)2 + f4ai(t) + f5ai(t)2 + f6vi(t)ai(t)

}
T

. (13)

E =
∑N

i=1 Ei
N

. (14)

where Ei is the traffic emission (g/s) of vehicle i; E is the average traffic emission of the
entire traffic flow; the calibrated values of model parameters f1, f2, f3, f4, f5, f6 for petrol
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cars, as outlined in Int Panis, Broekx, and Liu (2006), are employed in this study. Specifically,
for CO2 emissions f1 = 5.54e−1, f2 = 1.61e−1, f3 = −2.89e−3, f4 = 2.66e−1, f5 = 5.11e−1,
f6 = 1.83e−1; for NOx emissions, model parameters associated with vehicle acceleration.
when ai(t) ≥ −0.5m/s2, f1 = 6.19e−4, f2 = 8.00e−5, f3 = −4.03e−6, f4 = −4.13e−4, f5 =
3.80e−4, f6 = 1.77e−4; otherwise, f1 = 2.17e−4, f2 = f3 = f4 = f5 = f6 = 0.

3. Experiments

In this section, classified-car-followingmodels are first establishedaccording todriving style
classification. Then the micro-simulation setup for estimating heterogeneous traffic per-
formance is introduced. A preliminary experiment is conducted to justify the CCF models’
capability to reproduce spatiotemporal traffic flowpatterns before formal simulations start.

3.1. Classified car-followingmodels establishment

Table 1 gives an overview of the bounds of the stochastic IDM model calibration. Follow-
ing the methodology introduced in Section 2, the calibrated behavioural parameters are
prepared for the subsequent driving style identification.

Feature selection is then conducted based on the calibrated car-followingmodel param-
eters and the results of the score array are [a0 : −0.0831, b0 : −0.0638, s0 : −0.0573, T :
−0.0768, v0 : −0.1237]. Considering that features with lower Laplacian scores are more
important, v0 emerged as the most important feature, followed by a0 and others, indicat-
ing the greater importance of v0 and a0 in describing driving behaviour. Thus, wemanually
label driving styles for semi-supervised classification according to v0 and a0. Usually, drivers
exhibiting higher desired speeds and greater acceleration are considered as amore aggres-
sive driving style (W.Wang et al. 2017). This empirical knowledge enables the identification
of drivers with distinct characteristics, forming the foundation for our redefining three driv-
ing styles: Aggressive, Normal, and Mild. Specifically, drivers with high designed speeds
and accelerations (e.g. above the 75th percentile) were categorised as an Aggressive driv-
ing style. Conversely, drivers with lower values in these parameters (e.g. below the 25th
percentile) were classified as a Mild driving style. Those with median values are labelled
as a Normal driving style. Based on these criteria, a total of 295 driving samples were pre-
labelled, which comprise 99, 99, and 97 samples for Aggressive, Normal, and Mild styles,
respectively.

A linear and a Gaussian radial basis function (RBF) kernel and obtain satisfactory results
and reduce computational complexity when using SVMs. All the calibratedmodel parame-
ters were divided into three disjoint parts: labelled dataset S(l) = {xi}ni=1, unlabelled dataset
S(u) = {xj}mj=1, and test dataset S(t) = {xi}ri=1, where n = 295,m = 2449, r ≤ n. Insufficient

Table 1. Summary of model parameters and their estimates.

Model Parameter (unit) Short description Bounds Mean Median Std

IDM a0 (m/s2) Max desired acceleration of follower [0.1,5] 1.18 1.04 0.81
v0 (m/s) Desired speed of follower [10,40] 29.76 30.04 4.99
s0 (m) Gap at standstill [0.1,6] 2.22 2.17 0.97
T (s) Desired time headway of follower [0.1,5] 1.72 1.67 0.94

b0 (m/s2) Comfortable deceleration of follower [0.1,5] 1.45 1.33 0.92
Q Noise strength [0.01,1] 0.50 0.51 0.28
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Figure 2. Classification accuracy of S3VM and SVM for multi-classification. (a) using a Linear kernel and
(b) using an RBF kernel.

Figure 3. Comparison of fitted distributions of CF model parameters.

labelled data for trainingmay not take full advantage of unlabelled data to properly reflect
the reality of various driving styles. Hence, to further demonstrate and evaluate the S3VM’s
capability of exploiting the available data, comparative experiments were conducted using
different amounts of labelled datasets S(l)

P , where P ∈ {150, 180, 210, 240, 270}. Classifica-
tion results of SVM and S3VM are illustrated in Figure 2 where the vertical axis represents
the multi-classification accuracy and the horizontal axis denotes the varied amount of
labelled training data. In both Figure 2(a,b), the blue dotted lines with triangles consis-
tently exceed the yellow dotted lines with squares, indicating S3VM generally outperforms
SVM across both kernel types. The overall advantage of S3VM ranges from 1.74%-8.00%
when employing a linear kernel, and from 1.82% to 8.60%with an RBF kernel. For instance,
with 210 labelled data points, SVM achieved accuracies of 76.47% with a linear kernel
and 78.82% with an RBF kernel. In contrast, S3VM attained accuracies of 77.65% and 80%
with the respective kernels. Notably, the advantage of S3VM is more pronounced with a
larger dataset. For example, with 150 labelled samples using an RBF kernel, the accuracy
improvementof S3VMover SVM increases from77.24% to77.93%. This advantagebecomes
more significant with 270 labelled samples, which is with S3VM achieving 92% accuracy
compared to 88% for SVM. Classification results with the highest accuracy are used for
subsequent analyses.

TheClassifiedCar-following (CCF)model hasbeenproposed topersonalise car-following
models for heterogeneous drivers (Sun et al. 2021). We follow their methodology to estab-
lish CCF models for drivers in our micro-simulation. Four widely used parametric distribu-
tions, namely Normal, Lognormal, Gamma, and Logistic, are employed to determine the
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Table 2. Classified IDMmodel parameters.

Driving styles a0 v0 s0 T b0 Q

Aggressive 1.93 33.55 1.91 1.35 1.14 0.373
Normal 1.04 29.45 2.02 1.48 1.04 0.370
Mild 0.44 27.21 2.00 1.36 1.08 0.376

probabilistic distributions of car-following model parameters for each driving style. The
best-fitting distribution was chosen by comparing the goodness of fit of all parametric
distributions. As shown in Figure 3, the Lognormal distribution outperforms the other dis-
tributions. Thus, the mean value (μ) of the Lognormal distribution is utilised to determine
IDMmodel parameters for each driving style, as outlined in Table 2.

3.2. Micro-simulation setup

The micro-simulation is developed by MATLAB R2021b, which was executed on an Apple
M1 Pro MacBook. The traffic volume is set as 1600 veh/h, and the vehicles are generated
based on the negative exponential distribution e−λt . 30 vehicles were counted on the
simulated road section.

The proportions of drivers with Aggressive, Mild, and Normal driving styles in the simu-
lated traffic flow are denoted by pa, pm, and pn = 1 − pa − pm, respectively. To thoroughly
assess the effects of various driving styles and their proportional changes on traffic safety
and sustainability, 66 fine-grained traffic scenarios are considered. The shares of each driv-
ing style (pa, pm and pn) range from 0% to 100% in 10% increments. Acknowledging that
drivers with identical driving styles may still exhibit individual differences, we introduce
variability in the Car-Following (CF) model parameters in alignment with the values given
in Table 2. To avoid extreme values resulting from generating parameters directly from
distributions, we use Equation (15) to vary car-following parameters. By doing this, each
driver has their personalised IDMmodel parameters meanwhile following a particular driv-
ing style. It is assumed that drivers maintain a consistent driving style throughout the
simulation period (Mohammadnazar, Arvin, and Khattak 2021). Each traffic scenario is sim-
ulatedwith 100 seeds to enhance the reliability of the results. The final result for each traffic
flow scenario is determined by calculating the mean of all repeated simulations under this
setting.

PMsim
ij = 0.9PMij + 0.1 × 1

PMijσij
√
2π

e
− 1

2

(
ln(PMij)−μij

σij

)2

(15)

where PMsim
ij denotes the CCF model parameter used in simulation, i = {a0, v0, s0, T , b0,Q},

j = {Aggressive, Normal, Mild}. PMij follows the values shown in Table 2.

3.3. Preliminary simulation

Preliminary experiments were conducted to examine the traffic flow patterns generated
by the CCF models. The spatiotemporal patterns of traffic flow with 20% aggressive and
80% normal drivers are shown in Figure 4. Stripes structures are observed, illustrating the
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Figure 4. Spatiotemporal patterns of traffic flow under different speed settings. (a) Under lower speed
driving conditions (10m/s) and (b) Under higher speed driving conditions (30m/s).

propagation, growth, dissipation, andmerging of disturbances. In high-speed driving con-
ditions (30m/s) such as theHighDdataset, see Figure 4(b), fewer disturbances are observed
compared to low-speed driving conditions such as the NGSIM dataset (see Figure 4(a)).
This is due to the diminished influence of white noise on oscillation evolution on higher-
speed traffic flow (Treiber and Kesting 2017). These results demonstrate that the stochastic
car-following model can effectively replicate typical spatiotemporal traffic flow patterns.

4. Results and discussion

Based on the identification of car-following heterogeneity and experimental settings,
micro-simulation results are presented in this section. The impacts of variations in driving
styles on traffic safety, fuel consumption and emissions are analysed from the mecha-
nism of underlying driving behaviours in heterogeneous traffic flow. And the proposed
methodology is then verified by transferability analysis using a different dataset.

4.1. Impacts of CF heterogeneity

Statistics of the aforementioned traffic estimation indicators for 66 simulated traffic scenar-
ios are presented in Figures 5–6. Indicators representing traffic safety, fuel consumption,
and emissions are represented by blue, green and red colour sets, respectively. Within each
colour set, a darker hue signifies a lower indicator value, such as fewer hazardous incidents
or reduced emissions. Figure 5(a,b) present the results of TTC and TEMTTC, the scenario
located in the upper right corner displays the lightest shade of blue, indicating that a traf-
fic flow with 100% aggressive drivers displays a very low level of traffic safety among all
heterogeneous traffic scenarios. The shift from light blue towards dark blue is observed
from the top right to the bottom left, indicating that a decrease in the number of Aggres-
sive drivers and an increase in the number of Mild drivers improves traffic safety. The safest
traffic conditions are achievedwith a composition of 100%Mild drivers. Results of fuel con-
sumption andemissions across all simulated traffic scenarios arepresented in Figure 6(a–d).
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Figure 5. Statistics of traffic safety indicators in 66 traffic scenarios. (a) Average TTC and (b) Average
TEMTTC.

Figure 6. Statistics of traffic sustainability indicators in 66 traffic scenarios. (a) Average VT-CPFM. (b)
Total VSP. (c) Average CE and (d) Average NE.

The colour gradient from thedarkest in the bottom left corner to the lightest in the top right
corner signifies a reduction in traffic sustainability. These results indicate that an increase in
the share of Aggressive drivers and a decrease in Mild drivers in traffic flow leads to higher
fuel consumption and emissions.

Overall, this analysis indicates a general trend that traffic safety and sustainability
improve as the proportion of milder drivers rises and more aggressive drivers decrease,
while the trend does not follow a strictly linear pattern. Take Figure 5(b) as an example,
the traffic scenario with 80% Aggressive drivers and 20% Normal drivers is associated with
fewer safety issues than one with 80% Aggressive drivers, 10% Normal drivers. and 10%
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Figure 7. Vehicle trajectories of traffic flowwith 100%Aggressive drivers. (a) Location. (b) Speed and (c)
Acceleration.

Mild drivers. This observation suggests the complexity of traffic dynamics and a need for
a nuanced understanding of how various driving styles and their mixed proportions affect
traffic safety and sustainability.

4.2. Trajectory-based analysis

To further understand the diversity of safety and sustainability levels caused by CF hetero-
geneity, we examined individual driving trajectories by diving into two-mixed (with two
different driving styles) and three-mixed (with three different driving styles) heterogeneous
traffic flows.

4.2.1. Analysis on two-mixed heterogeneous flow
Figures 7–13 shows the vehicle trajectories when different proportions of Normal drivers
are introduced into an Aggressive style traffic flow. Trajectories of Normal and Aggressive
drivers are represented by solid red lines and blue dotted lines, respectively. In Figure 7(a),
despite the stochastic nature of the vehicles, theymaintain stable and uniform spacing due
to their consistent driving style within homogeneous traffic flow, leading to a smoother
traffic flow pattern with little disruption. Similar observations are demonstrated in speed
and acceleration diagrams shown in Figure 7(b,c). The introduction of Normal drivers dis-
rupts this uniformity and leads to the formation of platoons, and these platoons are formed
in traffic flow with Normal-style vehicles as the leader. In a traffic flow with 80% aggressive
drivers shown in Figure 8(a), several platoons are observed which are led by the Normal
vehicles, as red lines show. Figure 8(b) shows speed diagrams where light red and light
blue represent the vehicle platoons of Normal and Aggressive, respectively. The dark blue
line represents the lead vehicle in the Aggressive platoon, which is the first follower of
a Normal vehicle. Notice that the speed of the Aggressive follower decreases over time,
eventually aligning with the speed of the Normal platoon. This occurs because the Normal
leader inhibits the Aggressive follower from maintaining a higher speed. Consequently,
other Aggressive vehicles in the platoon, led by this impeded Aggressive vehicle, also
reduce their speeds, resulting in the entire platoon adopting a Normal driving style. A sim-
ilar trend is evident in Figure 8(c) where all platoons ultimately exhibit similar acceleration,
despite Aggressive vehicles displaying significant fluctuations in acceleration. This variabil-
ity of accelerations potentially leads to increased fuel emissions and higher traffic risks,
elucidating the lower safety and sustainability caused by aggressive drivers.
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Figure 8. Vehicle trajectories of traffic flow with 80% Aggressive drivers and 20% Normal drivers. (a)
Location. (b) Speed and (c) Acceleration.

Figure 9. Quantitative analysis of vehicle trajectories (80% Aggressive and 20% Normal drivers). (a)
Location. (b) Speed and (c) Acceleration.

For more detailed analysis, trajectories of four exemplified vehicles in a traffic scenario
with 80% Aggressive drivers and 20% Normal drivers are visualised in Figure 9. The red
line with circles denotes a Normal vehicle, and lines with other colours and signs repre-
sent Aggressive vehicles. Initially, three vehicles with Aggressive styles exhibitedmaximum
accelerations of 1.92m/s2, 1.81m/s2, and 1.85m/s2, respectively, as the cyan line with
asterisks (Aggressive-1), the blue line with plus (Aggressive-2), and the orange line with
squares (Aggressive-3), as depicted in Figure 9(c). The Normal vehicle, denoted by the red
line with circles, has the maximum acceleration of 0.98m/s2. Based on originally preset
accelerations, speeds of all vehicles increase as the simulation progresses, see Figure 9(b).
During the initial 0–10 s, the speeds of Aggressive vehicles surpass that of the Normal
vehicle. After 10 s, the speeds of Aggressive-1 continue to increase, stabilising at 33.6m/s,
whereas Aggressive-2 and Aggressive-3 flatten out and show a similar increase trend to
that of Normal vehicle, reaching speeds of 27.6m/s and 27.1m/s, respectively. To this end,
Aggressive-1 can behave as a real Aggressive driving style and distance itself from the fol-
lowing Normal vehicle. In contrast, Aggressive-2 and Aggressive-3 exhibit a Normal driving
style due to the blocking of their Normal leader. Here, vehicles that are original with an
Aggressive and Normal style are denoted as A_A and N_N, respectively, while Aggressive
vehicles that exhibit as Normal due to the block of their leaders are represented as A_N.

In traffic scenarios with a decreasing proportion of Aggressive drivers and an increasing
share of Normal drivers, the platoon formation dynamically shifts. In Figures 11(a)–12(a)
where there are more Normal drivers than Aggressive drivers, these Aggressive vehi-
cles appear at the end of each platoon. This occurs as Normal vehicles, with their lower
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Figure 10. Vehicle trajectories of traffic flow with 60% Aggressive drivers and 40% Normal drivers. (a)
Location. (b) Speed and (c) Acceleration.

Figure 11. Vehicle trajectories of traffic flow with 40% Aggressive drivers and 60% Normal drivers. (a)
Location. (b) Speed and (c) Acceleration.

Figure 12. Vehicle trajectories of traffic flow with 20% Aggressive drivers and 80% Normal drivers. (a)
Location. (b) Speed and (c) Acceleration.

acceleration and speed, naturally fall behind their Aggressive leaders and eventually form
platoons leading by themselves. Since these traffic flows have a high proportion of Nor-
mal drivers, most vehicles in platoons are with an N_N style rather than A_N. Moreover,
a homogeneous traffic flow with 100% Normal drivers demonstrates a consistent and
smooth pattern, mirroring the uniform behaviour seen in a pure Aggressive traffic flow,
see Figure 13. Similar findings are observed through analyses of two-mixed traffic flow
scenarios comprising Mild and Normal driving styles, which are presented in Appendix.

In summary, in a two-mixed traffic flow scenario, vehicles with lower aggressiveness
(Mild in comparison to Normal, or Normal in contrast to Aggressive) tend to lead the forma-
tion of vehicular platoons. This occurs as they naturally fall behind their more aggressive
leaders. Meanwhile, vehicles with higher aggressiveness are observed to adopt a driving
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Figure 13. Vehicle trajectories of traffic flow with 100% Normal drivers. (a) Location. (b) Speed and (c)
Acceleration.

Figure 14. Traffic flowwith 30% Aggressive, 30%Mild drivers, and 40%Normal drivers. (a) Location. (b)
Speed and (c) Acceleration.

style associated with lower aggressiveness due to being impeded by their less aggressive
leaders. Importantly, the formation of these vehicular platoons is influenced not just by the
proportion of less aggressive vehicles within the traffic, but also by their spatial position-
ing within the traffic flow. These findings explain observations that the negative effects of
an aggressive driving style – or conversely, the beneficial impacts of a mild driving style
– on traffic safety and sustainability do not escalate strictly linearly with their proportion
changes.

4.2.2. Analysis on three-mixed traffic flow
In traffic flows comprising three-mixed driving styles, the dynamics of driving behaviour
become increasingly complex. Figure 14 shows a heterogeneous traffic flow with 30%
Aggressive, 30% Mild drivers, and 40% Normal drivers, in which Normal drivers are rep-
resented by red solid lines, and blue and green dash lines denote Aggressive drivers and
Mild drivers, respectively. The Normal vehicle falls behind its Aggressive leader and cre-
ates a large spacing with its Mild follower. The three vehicles shown as blue, red, and
green lines in Figure 14(b) exhibit their original driving styles (Aggressive, Normal, and
Mild), largely because they are not impeded by vehicles of lesser aggressiveness ahead
of them, enabling them to achieve the desired speed typical of their respective driving
styles. This is similarly reflected in their acceleration profiles, as seen in Figure 14(c), where
fluctuations remain minimal due to the lack of hindrance. Beyond these three initial vehi-
cles, drivers with less aggressive styles tend to obstruct those who are more aggressive,
compelling them to adopt similar, less aggressive behaviours in terms of acceleration and
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Figure 15. Statistics of traffic safety and sustainability indicators in 66 traffic scenarios (using NGSIM
dataset). (a) Average TTC. (b) Average VT-CPFM. (c) Average CE. (d) Average TEMTTC. (e) Total VSP and (f )
Average NE.

Table 3. Impact of heterogeneous driving style on traffic flow with the NGSIM dataset.

speed. This results in the formationof vehicleplatoons that arepredominantly ledbydrivers
of lower aggressiveness, either Mild or Normal. These platoons have similar acceleration
but with different fluctuations, as shown in Figure 14(c). The original Aggressive platoons
exhibit larger acceleration variations, which aligns with the observations of two-mixed
traffic flow.

4.3. Transferability analysis

To validate the proposed approach and corresponding findings, we conducted a transfer-
ability analysis using the NGSIM-I80 dataset. The simulation outcomes are presented in
Figure 15. The colour shifting in all indicators of traffic safety and sustainability suggests
that an increase in the proportion of Aggressive drivers correlates with a reduction in traffic
safety, as well as an increase in fuel consumption and emissions. Conversely, the presence
ofMild drivers results in adiminishing effect onboth traffic safety andenvironmental issues.
Such findings are aligned with the outcomes obtained from the HighD dataset.

Several representative traffic scenarios with different driving style proportions are
further examined, with results shown in Tables 3–4. The three proportions represent
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Table 4. Impact of heterogeneous driving style on traffic flow with the HighD dataset.

Aggressive, Normal and Mild driving styles in a certain traffic flow scenario. The traffic
scenario with 100% Normal drivers serves as a baseline, with its indicators presented in
absolute values. Relative changes in traffic safety, fuel consumption, andemissions for other
traffic scenarios are calculated against this baseline, with positive and negative changes
indicated in shades of red and blue, respectively; and darker shades signify larger mag-
nitude changes. For example, the traffic scenario with 100% Aggressive drivers showed a
notable increase in fuel consumption – specifically, a 31.35% rise according to VT-CPFM
compared to the 100%Normal driver traffic scenario. Conversely, scenarios involving 100%
Mild drivers demonstrated notable improvements in reducing safety issues, fuel consump-
tion, and emissions. Even though in a three-mixed traffic flow, such as with proportions
of 20% Aggressive, 20% Normal, and 60% Mild driving styles, scenarios incorporating Mild
drivers consistently led to decreased safety risks, fuel consumption, and emissions when
compared to a purely Normal driving scenario, despite the inclusion of Aggressive drivers.

Comparing the results in Tables 3–4 reveals that changes in the proportions of driv-
ing styles have a more pronounced effect on traffic performance in the NGSIM dataset.
For example, a 100% Mild traffic flow in the NGSIM dataset improved emission by 11.86%
and reduced fuel consumption by 52.02%, whereas in the HighD dataset, the improve-
ments were only 7.89% and 34.56% HighD dataset, respectively. Similar findings can be
observed from other driving style combinations such as 20%, 20%, and 60%. This discrep-
ancy is attributed to the NGSIM dataset being collected under relatively congested traffic
conditions, which increase the observable variations in driving behaviours compared to the
HighD dataset.

5. Concluding remarks

This paper proposes a general framework to investigate car-following heterogeneity and
its impacts on traffic safety, fuel consumption and emissions. The framework incorpo-
rates a rigorous driving style classification using a multi-class S3VM classifier and a micro-
simulation process with 66 fine-grained heterogeneous traffic scenarios. The impacts of
car-following heterogeneity on traffic flow performance are further elucidated from the
mechanism of underlying characteristics of driving behaviour. The key findings of this
research are summarised below:

(i) S3VM vs. SVM performance: Driving styles classification reveals that S3VM-
based classifiers notably outperform traditional SVM classifiers in driving style
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classification, with accuracy improvements up to 8.60%. This enhancement is par-
ticularly significant when utilising an RBF kernel over a Linear kernel.

(ii) Aggressiveness impacts: Less aggressive drivers can lead to the formation of vehicu-
lar platoons, thereby encouragingmore aggressive drivers to adopt amilder driving
style. Importantly, the formation of these platoons is influenced by both the propor-
tion and spatial distribution of less aggressive vehicles, whichmakes the correlation
between less aggressive driving and improvements in safety, fuel consumption, and
emissions more complex.

(iii) Diversity under traffic conditions: The impact of driving style diversity on traffic
performance is more pronounced in congested traffic conditions.

This study promises potential benefits for Intelligent Transportation Systems (ITS) by
improving traffic safety and sustainability. The limitation of this study is that only inter-
driving heterogeneity is considered, where each driver maintains a consistent driving style
throughout the simulation. Future studies can improve the simulation by considering both
inter- and intra-driving style heterogeneity. For instance, identifying driving heterogeneity
through the underlying mechanisms of driving behaviour using primitive driving patterns
(W. Wang et al. 2017) or Action patterns (Yao, Calvert, and Hoogendoorn 2024), thereby
allowing for varied driving styles over time in micro-simulations. Additionally, external
factors such as driving environment and internal factors at driver psychology level are
promisingly considered to improve driving style classification.
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Figure A1. Vehicle trajectories of trafficflowwith 20%Milddrivers and80%Normal drivers. (a) Location.
(b) Speed and (c) Acceleration.

Figure A2. Vehicle trajectories of trafficflowwith 40%Milddrivers and60%Normal drivers. (a) Location.
(b) Speed and (c) Acceleration.

Figure A3. Vehicle trajectories of trafficflowwith 60%Milddrivers and40%Normal drivers. (a) Location.
(b) Speed and (c) Acceleration.

followerMild vehicle fall behind its Normal leaders.Meanwhile, theseMild vehicles block their Normal
followers and force them to behave in aMild driving stylewith smaller acceleration and speed aswell,
see Figure A1(b,c). Specifically, the Mild leader notably slows down the Normal followers, eventually
causing the Normal vehicles to adopt a mild driving style, as seen in the red region of Figure A1(b).
The overall acceleration of Normal vehicles aligns with a mild driving style, whereas it still exhibits
larger fluctuations compared to those in mild platoons, as shown in Figure A1(c).

When the proportions of Normal drivers decrease and Mild drivers increase, as shown in Fig-
ures A2–A4, the formation of platoons in traffic flow changes. In Figure A4(a) where there are more
Mild drivers than Normal drivers, these Normal vehicles appear at the end of each platoon. This is
because a Mild vehicle which has small acceleration and speed falls behind its Normal leader, form-
ing a platoon leading by itself. Since these traffic flows have a high proportion of Mild drivers, most
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Figure A4. Vehicle trajectories of trafficflowwith 80%Milddrivers and20%Normal drivers. (a) Location.
(b) Speed and (c) Acceleration.

Figure A5. Vehicle trajectories of traffic flow with 100% Mild drivers. (a) Location. (b) Speed and (c)
Acceleration.

vehicles in platoons are with anM_M style rather than N_M.Moreover, vehicle trajectories in a homo-
geneous traffic flow with 100% Mild drivers show a consistent and smooth trend, which is similar to
a pure Normal traffic flow, see Figure A5.
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