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ABSTRACT: Knowledge of the microscopic behavior of CO2 hydrates in
oceanic sediments is crucial to evaluate the efficiency and stability of
hydrate-based CO2 sequestration in oceans. Here, systematic molecular
dynamics simulations are executed to investigate the growth and
dissociation of CO2 hydrates, and the mechanical instability of CO2
hydrate-Illite interface in the brine-urea-Illite system. Simulation results
show that the CO2 hydrate growth is jointly affected by the confined
space, Illite surface properties, and presence of urea. Specifically, the
interfacial H2O and the ion layer on the Illite surface hinder the growth of
CO2 hydrate crystals toward Illite surfaces. Urea molecules can bind salt
ions and increase CO2 concentrations in the water, thus kinetically
promoting CO2 hydrate growth. The dissociation of the CO2 hydrate is affected by Illite surface properties and the CO2 hydrate
structure. CO2 hydrate starts from the regions where hydrate particles are minimally in contact and extends on both sides. The
mechanical tension and compression of the CO2 hydrate-Illite interface exhibit nonlinear characteristics by changing the hydrogen
bonds and the CO2 hydrate structure. The molecular insight into the microscopic behavior of CO2 hydrates in the brine-urea-Illite
system contributes to a broader understanding of hydrate-based CO2 sequestration.

1. INTRODUCTION
Decarbonization emerges as a critical issue for the forthcoming
decades. CO2 gas produced by humans is one of the main
greenhouse gases and worsens global warming. A prospective
method involves the injection of CO2 into seafloor sediments,
where it undergoes a transformative process, manifesting as
CO2 hydrate.1−3 CO2 hydrates are nonstoichiometric crystal-
line compounds wherein CO2 molecules are bound within a
cage-like network formed by water molecules via hydrogen
bonds.4 The seafloor environment, characterized by low
temperatures and high pressures, facilitates the rapid formation
of CO2 hydrates. Evidence from field tests highlights the
efficacy of liquid CO2 injection into seafloor depths ranging
from 2700 to 4500 m, resulting in the rapid reaction with water
and the formation of CO2 hydrates.5 The stable storage of
natural gas hydrates in seafloor sediments for millennia is well-
documented.6,7 The complex nature of sedimentary environ-
ments such as solid surfaces, salt ions, and organic matter,
complicate the formation and growth processes of CO2
hydrates in marine sediments.8,9 A comprehension of the
microscopic mechanisms of CO2 hydrates in complex seafloor
sediments is imperative for advancing hydrate-based CO2
sequestration.

The formation kinetics and sequestration stability of CO2
hydrates are significantly influenced by various marine
environmental factors.9 Clay minerals, a major constituent of
seafloor sediments, exert a crucial role in regulating both
hydrate formation and decomposition processes.10−16 Exper-

imental results indicated that clay minerals can serve as hydrate
nucleation sites to significantly shorten the induction time and
promote hydrate formation.17−22 Recent investigations by Ren
et al. indicate that swelling montmorillonite clay enhances
hydrate nucleation while concurrently retarding the growth
kinetics of gas hydrates.23−25 The salt ions in the ocean
inevitably affect the thermodynamics and dynamics of the
hydrates. Conventionally viewed as hydrate inhibitors due to
their impact on the water molecule activity, recent studies
reveal that specific inorganic salts and low salinity can also
promote hydrate formation by controlling the distribution of
surrounding H2O and guest molecules.26−30 Molecular
dynamics (MD) simulations emerge as valuable tools for
unraveling the microscopic behavior of gas hydrates,
showcasing insights unattainable through experiments.31−38

Our prior MD simulation reported that the interaction of salt
ions with the clay surface can change the local concentration of
guest molecules and the location of hydrate formation.39−41

The vast ocean, serving as a reservoir of organic matter,
introduces additional layers of complexity to the efficiency and

Received: August 12, 2024
Revised: October 4, 2024
Accepted: October 10, 2024
Published: October 21, 2024

Articlepubs.acs.org/JPCC

© 2024 The Authors. Published by
American Chemical Society

18588
https://doi.org/10.1021/acs.jpcc.4c05413

J. Phys. Chem. C 2024, 128, 18588−18597

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

T
U

 D
E

L
FT

 o
n 

N
ov

em
be

r 
1,

 2
02

4 
at

 0
8:

46
:0

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fengyi+Mi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wei+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiangtao+Pang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Othonas+A.+Moultos"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fulong+Ning"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thijs+J.H.+Vlugt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpcc.4c05413&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c05413?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c05413?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c05413?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c05413?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c05413?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpccck/128/43?ref=pdf
https://pubs.acs.org/toc/jpccck/128/43?ref=pdf
https://pubs.acs.org/toc/jpccck/128/43?ref=pdf
https://pubs.acs.org/toc/jpccck/128/43?ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpcc.4c05413?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCC?ref=pdf
https://pubs.acs.org/JPCC?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


stability of CO2 hydrate sequestration in seafloor sedi-
ments.8,42,43 Several experimental and simulation results
suggested that organic matter molecules inhibit the phase
equilibrium and formation kinetics of hydrates by binding to
water molecules.44−49 Kyung et al. found that the interfacial
interactions between organic matter and clay surfaces promote
CO2 hydrate formation kinetics.50 Zhao et al. reported a 92%
reduction in the induction time of CO2 hydrates from
organoclay solution.9 Urea, as a low-toxic biological metabo-
lite, exhibits a dual influence on CO2 hydrate formation, i.e.,
acting both as a thermodynamic inhibitor and a kinetic
promotor.51−56 Urea can greatly shorten the induction time
and promote hydrate formation.57−59 The interactions of urea,
ions, and clay minerals in the ocean complicate the growth and
dissociation of CO2 hydrates in seafloor sediments. Consider-
ing the significance of hydrate stability in evaluating hydrate-
based CO2 sequestration, concerns arise about the long-term
stability and potential environmental hazards, such as
submarine landslides, CO2 leaks.

60−62 Therefore, it is necessary
to understand the effect of complex marine environments on
the growth and stability of CO2 hydrates in marine sediments.
From a physicochemical perspective, the formation of CO2
hydrates involves complex molecular interactions, including
guest CO2 and water molecules. The interactions with the Illite
surface and the presence of ions such as Na+ and Cl− introduce
additional complexity, which are fundamental to understanding
both the thermodynamics and kinetics of hydrate formation
and dissociation.63−65

In this study, systematic MD simulations were executed to
investigate the growth and dissociation of CO2 hydrates, and
the mechanical instability of the CO2 hydrate-Illite interface in
the brine-urea-Illite system. The microscopic behavior of CO2
hydrates in oceanic sediments was revealed, contributing
valuable insights into the broader understanding of hydrate-
based CO2 sequestration. We feel that this preliminary
investigation is poised to catalyze further original research,
particularly in uncovering novel CO2 hydrate promoters and
identifying potential marine CO2 sequestration sites.

2. SIMULATION MODELS AND METHODS
An Illite layer is created by replicating the unit cell (24 × 8 ×
1) with the chemical formula K1(Si7Al)Al4O20(OH)4. An Illite
nanopore consists of two identical Illite layers, and the size of
the Illite nanopore was determined to be 46 Å. Previous
studies revealed that a too-small nanopore is not conducive to
hydrate formation.66 A CO2 hydrate crystal (2 × 6 × 4) and a
homogeneous solution (containing CO2, H2O, Na+, Cl− and
K+) were inserted into the Illite nanopore. Various numbers of
urea were introduced into the Illite nanopores to represent
different urea concentrations (1.6%, 3%, 4.5%, and 6%), as
shown in Table 1. This allows a precise analysis of the

interaction between urea and geofluid, which has been
frequently employed in previous simulations and experi-
ments.52,56 A system without urea molecules was simulated
as a reference. The urea concentrations provided in Table 1
refer to the initial concentration based on the number of urea
molecules introduced at the beginning of the simulation. Five
simulation systems containing homogeneous solutions and
CO2 hydrate crystals with different urea concentrations were
executed, namely H0%Urea, H1.6%Urea, H3%Urea, H4.5%Urea, and
H6%Urea. The parameters of each simulation are listed in Table
S1 and Table S2. Additionally, two layers of virtual walls were
added to the box in the z-direction to avoid periodic
interactions between the clay layers. Details of the method
and parameters for virtual walls were provided in the
Supporting Information. The dissociation of the CO2 hydrate
was simulated by increasing the temperature to 307 K.67

CO2 molecules, H2O molecules, Illite, and urea molecules
are described by the TraPPE,68 the TIP4P/Ice,69 the
CLAYFF,70 and the OPLS-AA force field,71 respectively. All
growth simulations were performed using the molecular
dynamics GROMACS package (version 2022)72 in the
isothermal−isobaric NPT ensemble at a fixed pressure of 500
bar and temperature of 250 K. The system was equilibrated
with a Nose−́Hoover73 thermostat and a Parrinello−Rahman74

barostat with time constants of 1 and 4 ps, respectively. The
pressure coupling utilized a semi-isotropic barostat, and the
pressure scaling only works in the z direction. The cutoff radius
for computing the van der Waals forces was set to 10 Å. For
electrostatic energy computation, the particle-mesh Ewald75

algorithm was used with the cutoff as 10 Å and Fourier grid
spacing of 1.2 Å. The periodic boundary conditions were
applied in xy directions, and the z direction was restricted by
the virtual wall (Figure 1).

3. RESULTS AND DISCUSSION
3.1. The Interface Behavior between Geofluid and

Illite Clay during CO2 Hydrate Growth. Understanding the
interface behavior between geofluids (e.g., H2O, CO2, ions,
and urea) and clay surfaces is of great significance to hydrate-
based CO2 sequestration. During the growth process of the
CO2 hydrates, the Illite surface exhibits different affinities
toward geofluids. The density curves of geofluids are illustrated
in Figure 2(a) and S1(a−e). It is found that CO2, ions, H2O,
and urea molecules all form the interfacial layer on the Illite
surface (Figure 2(a) and S1(a−e)). Specifically, cations swiftly
adsorb on the Illite surface in a short time to compensate for
the negative charge of the Illite surface. The number of ions in
the Illite interface region first increases rapidly and then slowly
increases (Figure 2(b) and S2(a−e)). Most of the ions are
distributed in the Illite interface region (Figure S3(a−e)).
Although CO2 molecules form an interfacial layer on the Illite
surface (Figure 2(a) and S1(a−e)), the number of CO2
molecules within the Illite interface region decreases gradually
(Figure 2(b) and S2(a−e)). This may be due to the adsorption
of H2O, ions, and urea molecules on the Illite surfaces, which
hinders the adsorption of CO2 molecules. As CO2 hydrate
grows, CO2 hydrate solids gradually extend toward the Illite
interface region (Figure S4(a−e)), consequently increasing the
number of CO2 molecules therein (Figure 2(b) and S2(a−e)).
The Illite surface can adsorb H2O molecules due to the
hydrogen bonds between the abundant siloxanes on the Illite
surface and H2O molecules (Figure 2(c) and S5(a−e)). The
hydrogen bonds formed by H2O molecules and Illite surfaces

Table 1. Parameters for Each System of CO2 Hydrate in
Oceanic Sediments

growth + dissociation + instability

system Nurea urea concentration simulation time

H0%Urea 0 0 wt % 2 μs + 10 ns + 1 ns
H1.6%Urea 64 1.6 wt % 2 μs + 10 ns + 1 ns
H3%Urea 127 3 wt % 2 μs + 10 ns + 1 ns
H4.5%Urea 191 4.5 wt % 2 μs + 10 ns + 1 ns
H6%Urea 254 6 wt % 2 μs + 10 ns + 1 ns
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decrease, indicating that more H2O molecules will form CO2
hydrates (Figure 2(c) and S6(a−e)). In contrast, the hydrogen
bonds between urea molecules and the Illite surface gradually
increase (Figure 2(c) and S7(a−e)). At 2.0 μs of the growth
simulation, most of the urea is distributed in the Illite interface
region (Figure S8(a−e)).

The interactions between urea molecules and surrounding
ions/molecules inevitably affect the growth kinetics of the CO2
hydrate. Urea molecules exhibit varying affinities for geofluids
and are beneficial to the growth of CO2 hydrate growth. CO2
molecules near the urea gradually decrease as a function of
time (Figure 2(d) and S9(a−d)). The residence time of
geofluids (H2O, CO2, and ion) near urea molecules is
calculated to characterize the influence of urea molecules on
surrounding geofluids. During the 0−0.5 μs of the growth
simulation, the value of residence time for CO2 molecules near
urea molecules decreases, indicating that urea molecules

exhibit weak interactions with CO2 molecules (Figure 2(e)
and S10(a−d)). In later stages of the growth simulation (0.5−
2.0 μs), the value of residence time for CO2 molecules near
urea molecules increases (Figure 2(e) and S10(a−d)), which is
attributed to the growth of CO2 hydrates to the vicinity of urea
molecules. In contrast, the number of H2O molecules
surrounding the urea molecules gradually decreases (Figure
2(d) and S9(a−d)). A few hydrogen bonds between urea
molecules and H2O molecules are observed in all systems
(Figure S11(a−d) and S12(a−d)). This shows that urea
molecules exhibit weak binding to H2O molecules. The
number of ions surrounding the urea molecules gradually
increases (Figure 2(d) and S9(a−d)). The value of the
residence time for ions is high and continues to increase
(Figure 2(e) and S10(a−d)). These observations indicate that
urea molecules exhibit strong binding to ions and weak binding

Figure 1. A schematic representation of the initial simulation model. Illite is displayed as polyhedral, i.e., yellow (Si atom), and pink (Al atom).
Pink, blue, magenta, orange, and violet represent CO2, Cl−, Na+, K+, and urea, respectively.

Figure 2. (a) Density distribution curves of geofluids (H2O, CO2, ions, and urea molecules) along the z-axis direction in the H3%Urea system for
1.95−2.0 μs. Evolution of (b) the ratio (near the Illite/total number) and (c) the number of h-bonds between the Illite surface and urea/H2O.
Evolution of (d) the ratio (near the urea/total number), and (e) the average residence time for H2O, ions, and CO2 near urea molecules in the
H3%Urea system.
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to H2O and CO2 molecules, which is beneficial to CO2 hydrate
growth.
3.2. Growth Kinetics of CO2 Hydrates in Oceanic

Sediments. The results revealed that the growth of CO2
hydrates in oceanic sediments is affected by the confined space,
clay surface properties, and presence of organic matter. During
the 0−1.0 μs of the growth simulation, the CO2 hydrate
exhibits rapid growth primarily in the xy direction (Figures
3(a−c), 4(a), S13(a−e), and Video S1). The interfacial H2O
layer and ion layer on the Illite surface hinder the growth of
CO2 hydrate crystals toward the Illite surface, i.e., the confined
space restricts CO2 hydrate growth. In the homogeneous
solution, the CO2 molecules in the solution form large CO2
nanobubbles far away from the CO2 hydrate crystal (Figure
4(b) and S14(a−e)). As the simulation processes, the CO2
nanobubbles become small, and a lot of CO2 molecules detach
from the nanobubbles to form CO2 hydrates (Figures 3(d−f)
and S15(a−e)). CO2 hydrate crystals gradually grow and then
occupy the entire Illite nanopores (Figure S16(a−e)). The
CO2 hydrate growth rate (RHG), the volume of the hydrate,
and the number of H2O molecules in the CO2 hydrate crystal
are shown in Figure 4(c−e), S17(a−e), and S18(a−e). It is

observed that there are two stages during CO2 hydrate growth,
i.e., a rapid growth stage (0−1.0 μs) and a slow growth stage
(1.0−2.0 μs). During the 0−1.0 μs of the growth simulation,
although the value of RHG is declining, it maintains a relatively
high RHG > 0.1 (Figure 4(c)). The volume of the CO2 hydrates
and the number of H2O molecules in the CO2 hydrate crystal
also increase rapidly (Figures 4(d−e), S17(a−e), and S18(a−
e)). Subsequently (1.0−2.0 μs), the hydrate growth rate (RHG)
of the five systems decreases to near-zero levels (Figure 4(c)).
The RHG is even less than 0, indicating that some CO2 hydrate
dissociates in the later stages of the simulation (Figure 4(c)).
The volume of the CO2 hydrate and the number of H2O
molecules in the CO2 hydrate crystal slowly increase (Figure
4(d−e), S17(a−e), and S18(a−e)). During the slow growth
stage, the CO2 hydrate solids occupy the middle region of the
Illite nanopores. Two regions are not yet completely occupied,
and the occupation rate is very slow, i.e., the crystal contact
region and the Illite interface region. Grain boundaries will
form between CO2 hydrate crystals as shown in the red circle
in Figure 3(f). The formation of grain boundaries is slower
than that of the hydrate crystal growth. At the 2.0 μs of the
growth simulation, the grain boundary region is also not fully

Figure 3. Growth processes of CO2 hydrate in oceanic sediments for the (a−f) H3%Urea system. Illite layers are displayed as polyhedral, i.e., yellow
(Si atom), and pink (Al atom). Pink, blue, magenta, orange, and violet represent CO2, Cl−, Na+, K+, and urea, respectively. The red circle in (f)
highlights the grain boundaries between the CO2 hydrate crystals. Hydrate cages are shown as sticks in various colors (green for 5,12 blue for 51262,
red for 51263, orange for 51264, cyan for 4151062, purple for 4151063 and pink for 4151064).

Figure 4. Evolution of (a) the F4 order parameters and (b) the number of CO2 in the nanobubbles (NCOd2
) along the x-axis direction. Evolution of

(c) the CO2 hydrate growth rate (RHG), (d) the volume of CO2 hydrate crystals, and (e) the number of H2O molecules in the CO2 hydrate and
solution in the H3%Urea system.
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occupied and contains a large number of nonstandard SI-type
hydrate cages (Figure S16(a−e) and S19(a−e)). The growth
of the CO2 hydrate to the Illite interface region is also slow due
to the presence of geofluids and surface properties of the Illite.

The F4 order parameters serve as an effective discriminator
for distinguishing the water phase. The values of RHG and F4 in
the system without urea molecules are the lowest (Figure 4(c)
and S20), indicating that urea molecules can serve as kinetic
promoters for the growth of CO2 hydrate in the Illite
nanopores. Previous MD studies have revealed that the higher
concentration of guest molecules in water and the lower ion
concentration, the more conducive to hydrate formation.39

Most of the urea molecules are dispersed in the Illite interface
region, binding the salt ions and increasing the concentration
of CO2 molecules in the water, thus kinetically promoting CO2
hydrate growth (Figure S21(a−c)). These findings suggest
strategies for incorporating urea into marine sediments and
identifying urea-rich marine sediment regions to optimize
hydrate-based CO2 sequestration.
3.3. The Dissociation of CO2 Hydrates in Oceanic

Sediments. The dissociation of CO2 hydrates in oceanic
sediments is affected by the surface properties of the Illite and
the crystal structure of the CO2 hydrates. The dissociation
processes of CO2 hydrate in Illite nanopores are shown in
Figure 5(a−c) and Video S2. During the 0−1 ns of the
dissociation simulation, CO2 molecules form a small nano-
bubble and adhere to the Illite surface (Figure 5(a)). During
the period of 0−3 ns, both the volume and surface area of CO2
hydrate decrease sharply (Figure 5(d) and S22(a−e)).
Numerous H2O molecules transform from the hydrate state
to the liquid state (Figure 5(e) and S23(a−e)). Meanwhile,
CO2 nanobubbles adsorbed on the Illite surface become large
(Figure 5(b, c, and h)). The dissociation of CO2 hydrates
starts from the regions where hydrate particles are minimally in

contact and extends on both sides (xy direction) (Figure 5(g)
and S24(a−e)). These interparticle contact zones likely exhibit
weaker stability due to incomplete crystal lattice connections,
leading to preferential dissociation in these areas. As the
simulation processes, several small CO2 nanobubbles form in
regions far away from the large CO2 nanobubbles (Figure 5(a−
b)). This is explained by the fact that the CO2 molecules
produced by the CO2 hydrate dissociation are far away from
the large CO2 nanobubbles. These CO2 molecules cannot
diffuse into the large nanobubbles immediately, but instead
spontaneously form several small nanobubbles. Subsequently,
these small nanobubbles will also gradually merge (Figure 5(h)
and S25(a−e)). At 10 ns of the dissociation simulation, the
CO2 hydrates have completely dissociated in the five systems
(Figure S26 and S27(a−e)). Most of the CO2 molecules are
distributed in spherical CO2 nanobubbles rather than being
dissolved in water (Figure S28(a−c) and S29(a−e)).

During the dissociation of CO2 hydrate, the Illite surface
also exhibits different affinities toward geofluids (H2O, CO2,
ions, and urea molecules) (Figure 5(f)). At 10 ns of the
dissociation simulation, large spherical CO2 nanobubbles are
observed in the Illite nanopores and can contact the Illite
surfaces (Figure 5(c) and S30(a−d)). CO2 molecules form the
interfacial layer on the Illite surfaces (Figure 5(f), S31(a−e),
and S32(a−e)). The majority of ions and urea molecules also
accumulate in the Illite interface region rather than diffusing to
the center region of the Illite nanopores (Figure S33(a−e) and
S34(a−e)). Ions and urea molecules can also form an
interfacial layer at the Illite surfaces (Figure 5(f) and S32(a−
e)). The distribution of H2O molecules during CO2 hydrate
dissociation is consistent with that during CO2 hydrate growth
(Figure S5(a−e) and S35(a−e)).
3.4. Mechanical Instability of CO2 Hydrate-Illite

Interface in Oceanic Sediments. The mechanical tension

Figure 5. Dissociation processes of CO2 hydrates in (a−c) the H3%Urea system. Green and pink balls represent CO2 molecules in the nanobubble
and in solution, respectively. Evolution of (d) volume/surface area of CO2 hydrate solid, and (e) the number of H2O molecules in hydrate and
solution. (f) Density distribution curves of H2O, CO2, ions, and urea molecules along the z-axis direction in the H3%Urea system over the 9−10 ns.
Evolution of (g) the F4 order parameter and (h) the number of CO2 in the nanobubbles (NCOd2

) along the x-axis direction in the H3%Urea system.
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of the CO2 hydrate-Illite interface exhibits nonlinear character-
istics by changing the hydrogen bonds. The tension snapshots
of the CO2 hydrate-Illite interface are shown in Figure 6(a−b).
During the tensile deformation processes, the upper Illite
surface is gradually stretched (Video S3). The CO2 hydrate
crystals adhere to the lower Illite surface and are separated
from the upper Illite interface (Figure 6(a−b) and S36(a−h)).
The total number of CO2 hydrate cages decreases slightly in all
of the tension systems (Figure S37(a)). Three tensile
deformation stages can be distinguished from the mechanical
tensile stress−strain curves (Figure 6(c)). The first tension
deformation stage (ε = 0−0.06) is the decrease of tensile
stress. The increments of the number of hydrogen bonds per
square nanometer (ΔH bonds) gradually decrease, attributable
to the mechanical tensile stress impeding the formation of
hydrogen bonds on the Illite surface (Figure 6(d) and S38(a)).
The number of hydrogen bonds at different distances from the
upper Illite surface exhibits a small variation (Figure 6(e) and
S39(a−e)), indicating that there is little effect on the CO2
hydrate-Illite interface during this tensile deformation stage.

This observation may be attributed to temperature fluctua-
tions, where an increase from 250 to 273.15 K, potentially
affects the stability of geofluids and CO2 hydrate crystals in the
Illite nanopores.

The second tensile deformation stage (ε = 0.06−0.18) is
characterized as the linear elastic response (Figure 6(c)). The
value of the ΔH bond on the upper Illite surface decreases
(Figure 6(d)). The number of hydrogen bonds within 1.0 nm
of the upper Illite surface also decreased drastically (Figure
6(e) and S39(a−e)). These observations indicate that
mechanical tensile stress greatly disrupts hydrogen bonds at
the CO2 hydrate-Illite interface. The tensile Young’s modulus
is approximately 21.71 GPa, which is slightly larger than the
value reported by Cao et al.60 (16.0 GPa) for the CH4 hydrate-
montmorillonite interface. This may be attributed to the
presence of urea and salt ions increasing the number of
hydrogen bonds on the Illite surface, thereby strengthening the
stability of the CO2 hydrate-Illite interface. As the tensile stress
approaches its maximum value, a gradual decrease in the slope
of the curses shows strain-softening behavior (Figure 6(c)).

Figure 6. Tension snapshots of the CO2 hydrate-Illite interface in (a−b) the H3%Urea system. (c) Mechanical tensile stress−strain curves of the CO2
hydrate-Illite interface. (d) Increments of the number of hydrogen bonds per square nanometer (ΔH bonds) as a function of mechanical tensile
strains (ε). (e) Number of hydrogen bonds at different distances from the upper Illite surface in the H3%Urea system under tensile strain. The ΔH
bonds are the number of hydrogen bonds between urea/H2O molecules and the upper Illite surface.

Figure 7. Compression snapshots of CO2 hydrate-Illite interface in (a−b) the H3%Urea system. (c) Mechanical compressive stress−strain curves of
CO2 hydrate-Illite interface. (d) Increments of the number of hydrogen bonds (ΔH bonds) per square nanometer as a function of mechanical
compressive strains (ε). (e) Number of hydrogen bonds at different distances from the upper Illite surface in the H3%Urea system under compressive
strain.
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The third tensile deformation stage (ε = 0.18−0.21) is
characterized as the brittle fracture behavior (Figure 6(c)).
The tensile stress drops sharply from the maximum value to 0
(Figure 6(c)). There is also no change in the number of
hydrogen bonds at the distance from the upper Illite surface
(Figure 6(e) and S39(a−e)). The CO2 hydrate is completely
separated from the upper Illite interface. It is worth noting that
when ε = 0.13, the ΔH bonds value gradually increases (Figure
6(d)), indicating that more H2O or urea molecules form
hydrogen bonds with the upper Illite surface (Figure S38(a)).
This phenomenon may be attributed to the formation of a
vacuum area at the CO2 hydrate-Illite interface (Figure 6(b)
and Video S3), which prevents the diffusion of H2O and urea
molecules near the upper Illite interface toward the CO2
hydrate crystal and instead stays on the upper Illite surface.

The mechanical compression of the CO2 hydrate-Illite
interface also exhibits nonlinear characteristics by changing the
hydrogen bonds and the CO2 hydrate structure. Snapshots of
the compression and mechanical compressive stress−strain
curve of the CO2 hydrate-Illite interface are shown in Figure
7(a−c). During the compressive deformation processes, the
upper Illite surface moves toward the lower Illite surface
(Video S4), resulting in the gradual disappearance of CO2
hydrate (Figure 7(a−b) and S40(a−h)). Four compressive
deformation stages can be distinguished from the mechanical
compressive stress−strain curve (Figure 7(c)). The first
compressive deformation stage (ε = 0−0.02) is the increase
of compressive stress (Figure 7(c)). In this compressive
deformation stage, small changes in the ΔH bonds and the
number of hydrogen bonds at different distances from the
upper Illite surface are observed (Figure 7(d−e), S38(b), and
S41(a−e)), indicating that the initial compressive stress
exhibits little effect on the hydrogen bonds in the Illite
nanopores. This deformation may also be influenced by
temperature variations. The second compressive deformation
stage (ε = 0.02−0.10) is the decrease of compressive stress
(Figure 7(c)). In this compressive deformation stage, the CO2
hydrate crystal in the middle region of the Illite nanopores
dissociates (Figure S37(b)). Although the ΔH bonds value
increases, the number of hydrogen bonds at different distances
from the upper Illite surface exhibits little change (Figure 7(d−
e), S38(b), and S41(a−e)). The presence of the CO2 hydrate
cage creates a large hydrogen bond network, which alleviates
compressive stress.

The third compressive deformation stage (ε = 0.10−0.15) is
characterized as the strain-hardening behavior. In this
compressive deformation stage, the compressive stress
increases, and the slope of the curves increases slowly (Figure
7(c)). This is attributed to the fact that the number of residual
CO2 hydrate cages gradually decreases until complete
disappearance (Figure S37(b)). These residual hydrate cages
are unable to alleviate compressive stress. The fourth
compressive deformation stage (ε = 0.15−0.21) is charac-
terized as the linear elastic response (Figure 7(c)). The value
of ΔH bonds and the number of hydrogen bonds within 1.0
nm from the upper surface increase (Figures 7(d−e), S38(b),
and S41(a−e)). In this compressive deformation stage, the
CO2 hydrate crystals completely dissociated. The compressive
Young’s modulus is approximately 26.07 GPa, which is also
slightly larger than the value reported by Cao et al.60 (20.0
GPa) for the CH4 hydrate-montmorillonite interface. This
difference may be related to the presence of CO2 hydrate
crystals. At this stage of the study, the standard CO2 hydrate

cages have completely disappeared, leaving only the hydrogen
bonding network.

4. CONCLUSIONS
Systematic molecular dynamics simulations are executed to
investigate the growth and dissociation of CO2 hydrates, and
the mechanical instability of the CO2 hydrate-Illite interface in
the brine-urea-Illite system. The simulations reveal that the
growth of the CO2 hydrate in oceanic sediments is affected by
the confined space, clay surface properties, and presence of
urea. Specifically, the interfacial H2O and ion layers on the
Illite surface hinder the growth of CO2 hydrate crystals toward
the Illite surfaces. Urea molecules are dispersed in the Illite
interface region, binding the salt ions and increasing the
concentration of CO2 molecules in the water, thus kinetically
promoting CO2 hydrate growth. The dissociation of CO2
hydrates in oceanic sediments is affected by the Illite surface
properties and the crystal structure of the CO2 hydrates. CO2
hydrate dissociation starts from the regions where hydrate
particles are minimally in contact and extends on both sides.
Then, large spherical CO2 nanobubbles are formed that can
contact the Illite surfaces. The mechanical tension of the CO2
hydrate-Illite interface exhibits nonlinear characteristics by
changing the hydrogen bonds on the Illite surfaces and in the
Illite nanopores. There are three tensile deformation stages at
the CO2 hydrate-Illite interface at tensile strains, i.e., (1) the
decrease of tensile stress, (2) the linear elastic response, and
(3) the brittle fracture behavior. The mechanical compression
of the CO2 hydrate-Illite interface also exhibits nonlinear
characteristics by changing the hydrogen bonds and the CO2
hydrate structure. There are four compressive deformation
stages at the CO2 hydrate-Illite interface at compressive strains,
i.e., (1) the increase of compressive stress, (2) the decrease of
compressive stress, (3) the strain-hardening behavior, and (4)
the linear elastic response. The molecular insight into the
growth and dissociation of CO2 hydrates, and the mechanical
instability of CO2 hydrate-Illite interface in oceanic sediments
contributes to a broader understanding of hydrate-based CO2
sequestration. We feel that this preliminary investigation is
poised to catalyze further original research, particularly in
uncovering novel CO2 hydrate promoters and identifying
potential marine CO2 sequestration sites.
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