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A B S T R A C T

Integrating Automated Vehicles (AVs) into existing traffic systems holds the promise of en-
hanced road safety, reduced congestion, and more sustainable travel. Effective integration of
AVs requires understanding the interactions between AVs and Human-driving Vehicles (HVs),
especially during the transition period in which AVs and HVs coexist in a mixed traffic
environment. Numerous recent empirical studies find reduced headways of human drivers
following an AV compared to following an HV, and attribute this reduction to behavioural
changes of drivers when they follow AVs. However, more factors may be at play due to
the inherent inconsistencies between the comparison conditions of HV-following-AV and HV-
following-HV. This study scrutinises three alternative explanations for the observed reduction
in headways: (1) systematic differences in car-following states during data collection, (2)
systematic differences in driving variability between leading AVs and HVs, and (3) systematic
differences in driving characteristics of leading AVs versus HVs. We use a large-scale dataset
extracted from Lyft AV motion data and examine each of these explanations through data
stratification and simulation. Our results show that all three mechanisms contribute to the
observed reduction in headways of human drivers following AVs. In addition, our findings
highlight the importance of driving homogeneity and stability in achieving reliably shorter
headways. Thereby, this study offers a more comprehensive understanding on the difference
between HV–AV and HV–HV interactions in mixed traffic, and is expected to promote more
effective integration of AVs into human traffic.

1. Introduction

Automated vehicles (AVs) are expected to improve traffic conditions by enhancing road safety, reducing congestion, and allowing
more accessible and sustainable travel (Litman, 2015; Meyer et al., 2017; Duarte and Ratti, 2018; Yao et al., 2020). Before achieving
AV-dominated traffic, there may be a decades-long transition, during which AVs and human driving vehicles (HVs) coexist on the
roads and form a mixed traffic environment (Calvert et al., 2017; Nikitas et al., 2019; Zheng et al., 2020). In this environment, AVs
and HVs are required to interact with and adapt to each other.
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Considerable attention has been paid to enabling AVs to interact with other road users and adapt to human-dominated traffic (Di
nd Shi, 2021; Mozaffari et al., 2022). In developing such socially compatible driving strategies for AVs, various approaches have
een used to model and learn from social interactions between human drivers. In a comprehensive review of these endeavours (Wang
t al., 2022), two key aspects are summarised. On the one hand, AVs need to understand and adapt to the social cues, intentions,
nd expectations of human drivers (Schieben et al., 2018; Liu et al., 2020; Xia et al., 2021). On the other hand, AVs also need
o deliver informative social cues and recognisable interaction intentions so that human drivers can react accordingly to facilitate
mooth and safe negotiations (Schwarting et al., 2019; Siebinga et al., 2022).

The way human drivers react to AVs is comparatively scantly explored. Existing empirical research predominantly focuses on
ar-following scenarios, and reports shorter distance and/or time headway of human drivers following AVs than following HVs.
rom field experiments, Rahmati et al. (2019) find a statistically significant difference in the behaviour of human drivers when
ollowing AVs versus HVs: human drivers tend to follow AVs more closely. Similar research by Mahdinia et al. (2021) and Zhang
nd Talebpour (2023) also notice a closer spacing when human drivers follow AVs compared to HVs. Additionally, the authors reveal
ess variation in speed and acceleration of human drivers following AVs, as well as larger values of minimum Time-to-Collision (TTC).
hese findings are reinforced by analyses based on data collected by Waymo’s AV (Sun et al., 2020). Wen et al. (2022) corroborate
hat human drivers following AVs have shorter time headway, reduced variation in speed and acceleration, and increased TTC
alues. Based on the similar parameters of car-following behavioural modelling, Hu et al. (2023) argue for no significant behaviour
ifference between human drivers following AVs and those following HVs, except for shorter jam spacing. In line with previous
tudies, Wang et al. (2023) find that human drivers maintain smaller distances with AVs than HVs in the deceleration process when
pproaching traffic signals.

Distance headway and time headway are, respectively, spatial and temporal gaps between two consecutive vehicles – a leading
ehicle and a following vehicle – in a traffic stream. For a following vehicle in motion, the distance headway from its leading
ehicle equals the time headway multiplied by the following vehicle’s speed. Although very small headways may imply dangerous
ituations (Vogel, 2003), shorter headways during car following are generally desirable from the perspective of macroscopic traffic
fficiency (Makridis et al., 2020b). Maintaining shorter time headway allows more vehicles on the road, thereby potentially
ncreasing road capacity and reducing traffic congestion (Schakel and van Arem, 2014; Bian et al., 2019).

The most common explanation for the reduced headways is that human drivers may change their behaviour due to different
erceptions of the leading AVs (Hulse et al., 2018; Zhao et al., 2020). For example, human drivers may perceive increased
omfort (Rahmati et al., 2019) or safety (Wang et al., 2023) when approaching AVs compared to HVs. Additionally, curiosity about
Vs may prompt drivers to follow closely for observation or interaction (Hu et al., 2023). One of the primary anticipated advantages
f autonomous driving, for improving traffic efficiency, is that AVs can reduce time headway from their leading vehicles (Aria
t al., 2016; Yu et al., 2021; Aittoniemi, 2022). If human drivers tend to follow AVs at shorter headways, the potential benefits of
ntegrating AVs into existing traffic could be significantly enhanced.

However, beyond the behavioural changes of human drivers following AVs, other factors such as imbalances in data collection
nd the way AVs drive can also play critical roles. Inconsistent conditions inherent in the HV-following-AV and HV-following-HV
ituations complicate an effective comparison of the headways between these two situations. For example, drivers are not asked to
losely follow the vehicles preceding them in real-world road tests. The proportion of free-following states may thus be uneven in
he data collected for human drivers following AVs and HVs. In addition, leading AVs share the same driving algorithms and tend to
enerate less varied contexts for their following vehicles. This contrasts with leading HVs that have a wide range of driving styles and
reate heterogeneous car-following contexts. Furthermore, AVs are operated by algorithms and can be precisely controlled, which
ay produce very different driving circumstances for their following vehicles, compared to HVs which are inevitably influenced by
uman factors. These inconsistencies, as a result, may induce statistical biases in headway observation and comparison.

For a more comprehensive understanding on the phenomenon of reduced headways when human drivers follow AVs, this study
nvestigates alternative explanations other than human behavioural changes. We examine three underinvestigated factors: (1) the
ar-following states during data collection, (2) the driving variability of leading vehicles (i.e., the uniformity of AVs against the
eterogeneity among HVs), and (3) the unique driving characteristics of AVs. Our examinations are based on a large-scale car-
ollowing dataset (Li et al., 2023) extracted from sensor data collected by Lyft AVs between October 2019 and March 2020 (Houston
t al., 2021). For each factor, we isolate the factor by either stratifying the data or conducting controlled simulation experiments.
fter isolation, we evaluate each factor’s impact by comparing the headway distributions of human drivers following AVs and HVs.

The rest of this paper is organised as follows. Section 2 describes the calculation of distance and time headway, and introduces
he hypotheses to test for examining the three factors. Section 3 then explains the methodology for isolating each of the factors to
est the hypotheses. In Section 4, we select the dataset to use and show a baseline headway reduction without isolating any factors.
hen the effect of each factor on headway reduction when human drivers follow AVs is presented in Section 5. Finally, Section 6
oncludes this paper and envisions future research. To improve readability and focus on the main findings, we place most of the
irect experiment results in the appendices.

. Conceptual framework

This section describes the conceptual structure of this study. We first explain the calculation of distance and time headway
ith data collected by automated vehicles (AVs), where we also point out the potential inconsistency in detection between human
riving vehicles (HVs) following and passing by the AVs. Then we present the framework to examine 3 factors that may contribute
o reduced headways when human drivers follow AVs compared to following HVs. Unlike commonly assumed behavioural changes
2

f the following vehicle drivers, these factors are inherent in the data collection process and the attributes of the obtained data.
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Fig. 1. Calculation of gap, distance headway, and time headway with vehicle centroids.

Fig. 2. The analytical model of factors (F) and hypotheses (H) explored in this study.

2.1. Distance and time headway

Distance headway is the distance between the front bumpers of a leading vehicle and a following vehicle at the same time; time
headway can be computed by dividing distance headway by the following vehicle’s current speed. In traditional bird’s eye view
trajectory datasets such as NGSIM (Transportation – FHWA, 2008) and highD (Krajewski et al., 2018), vehicle positions are already
assigned to the front bumpers. However, in the datasets collected by AVs, the positions of vehicles are given as the centroids of the
3D bounding boxes obtained in object detection using computer vision. The accuracy of these centroid positions is affected not only
by the vision algorithms but also by the sensor placement. Especially during deceleration, this inaccuracy can increase significantly.

With centroid positions, the calculation of headways between vehicles requires vehicle length, as illustrated in Fig. 1. The
leading vehicle is denoted by the subscript leader and the following vehicle by follower. Their positions, speeds, and vehicle lengths
are correspondingly denoted as 𝑥, 𝑣, and 𝑙. In AV-collected data, the lengths of HVs are processed based on the AV’s detection
results. According to Qian et al. (2022), 3D object detection from LiDAR and camera data makes errors primarily regarding vehicle
dimensions. This can be caused by occlusion of the AV per se or of other surrounding vehicles, especially for detecting vehicles when
they do not move. Therefore, HVs following HVs and passing by an AV are generally more visible to the AV’s sensors, whereas HVs
that follow directly behind the AV are more probable to be unreliably detected.

The headways to be compared need to be reliable. We assume that the length distributions of HVs following AVs and of HVs
following HVs are similar. If the detected lengths of HVs following AVs align with the detected lengths of HVs following HVs, the
detection of vehicle lengths can be considered reliable. Then we will calculate and compare both distance headway (DHW) and time
headway (THW) in Eq. (1). Otherwise, given that time headway is less biased by vehicle lengths, our comparison will use Eq. (2)
and consider time headway only.

⎧

⎪

⎨

⎪

⎩

DHW = 𝑥leader − 𝑥follower − 𝑙follower∕2 + 𝑙leader∕2

THW = DHW∕𝑣follower
(1)

THW = (𝑥leader − 𝑥follower)∕𝑣follower (2)

2.2. Factors and hypotheses to be examined

Fig. 2 depicts our analytical model to explore alternative factors (abbreviated as F ) beyond human behavioural changes (𝐹0) to
explain the headway reduction when human drivers follow AVs. These factors can affect each other. To isolate each of them and
accurately assess their individual impact, we use different methods, the details of which will be provided in Section 3. Based on
the methods, we make hypotheses (abbreviated as H) to be tested in Section 5. These factors and hypotheses will be detailed in the
3

next paragraphs.
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Fig. 3. An example of car-following regimes in urban traffic.

The first factor we consider is the car-following states during data collection, which can be influenced by traffic conditions,
oad layouts, and the driving characteristics of leading vehicles. Vehicles have varying headways in different car-following states
uch as free-following, accelerating, and decelerating. When car-following states are unevenly distributed in the data collected for
V-following-AV (HA) cases and HV-following-HV (HH) cases, comparing the statistics of headways in both cases will be biased. To
ddress this imbalance, we categorise car-following states, based on which we can stratify the data and compare headways following
Vs and HVs in the same condition. If the average difference in headway between HA and HH cases is less significant when only
teady-state following is considered, we can tell the effect of the first factor.

The second factor is the driving variability of leading vehicles, more specifically, the uniformity of AV driving versus the
eterogeneity of human driving. Different human drivers may behave differently in identical car-following states, while AVs tend to
aintain consistent reactions due to programmed behaviours. Consequently, leading HVs can generate heterogeneous car-following

ontexts, while leading AVs maintain more uniform patterns. This difference is then further transmitted to the variability difference
f the following HVs, of which higher heterogeneity leads to a broader distribution of headways (Li and Chen, 2017; Makridis et al.,
020a). To examine the impact of leading vehicle driving variability, we first calibrate car-following models and then conduct
ontrolled simulation experiments using the calibrated models. Both the calibration and simulation are performed with HH cases
nly to control for the driving characteristics of leading vehicles. If the average headway during steady-state following is larger
hen the same HVs follow heterogeneous HVs than following a single HV, we can validate the impact of the second factor.

The third factor we consider is the driving characteristics of leading vehicles, which is distinct of AVs from HVs. AV driving
s controlled by precise, prescriptive, and fast-responding algorithms, whereas human driving is often uncertain, unpredictable,
nd has varying reaction time (Shi and Li, 2021). This distinction may result in different headways of drivers following AVs and
Vs. To distinguish between the driving characteristics of leading AVs and HVs, we first train a neural network using half of the

rajectories in HA and HH cases. Then we apply the trained network to the other half of the trajectories to identify HV-like and
V-like driving dynamics of AVs. Assessing the third factor’s impact while controlling for the driving variability of leading vehicles

hen can be achieved by answering the question: will human drivers have longer headways when following an AV that resembles
uman driving than following an AV that drives less like HV? If so, the effect of the driving characteristics of AVs on headway
eduction can be validated.

. Methodology

To rigorously isolate the factors and assess their impacts, we utilise a variety of methods. As presented in Section 3.1, we
istinguish different car-following states using a car-following regime categorisation algorithm. This enables comparing headways in
imilar conditions across following automated vehicles (AVs) and human driving vehicles (HVs). Section 3.2 deals with the driving
ariability of leading vehicles. We calibrate car-following models to simulate the behaviour of human drivers, and then have the
ame set of models follow two separate groups of leading vehicles with higher and lower driving variability. Finally, we train a
eural network to classify whether a leading vehicle’s driving behaviour is more characteristic of an AV or an HV, as detailed in
ection 3.3. This allows for evaluating the influence of AVs’ driving characteristics.

.1. Isolation of car-following states — car-following regime categorisation

Car-following consists of longitudinal interactions between leading vehicles (leaders) and following vehicles (followers) under
arious traffic conditions. In this context, a car-following regime refers to a driving situation experienced by the follower (usually
onstrained by the leader). In highway traffic, Treiber and Kesting (2013b) categorise 5 car-following regimes as cruising at a
esired speed (C), accelerating following a leader (A), decelerating following a leader (D), constant speed following (F), and
taying stationary (S). Decelerating and temporary stopping in free-flow are excluded because the traffic flow on highways is highly
ontinuous. However, car-following faces more interruptions in urban environments, such as vulnerable road agents (e.g., cyclists
nd pedestrians) and traffic signals. Therefore, in this study, we consider two additional regimes: free accelerating less constrained
y a leader (Fa), and free decelerating less constrained by a leader (Fd).

For a more intuitive understanding, we present a real example of these car-following regimes in Fig. 3. In the regimes of C, Fa,
nd Fd, the time series of speed and acceleration of the follower are more independent of the leader’s, as the follower’s behaviour
s less constrained by the leader. In contrast, in the regimes of F, A, and D, the follower is more constrained by the leader, and the
ollower’s behaviour resembles the leader’s after a certain delay of reaction. The regime S can happen after the regime Fd or D.

We adapt the algorithm proposed by Sharma et al. (2018) to categorise the car-following regimes in each case based on the
rajectories of the leader and the follower. The algorithm consists of three steps:
4
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(1) dividing the follower’s speed profile into various segments,
(2) distinguishing the divided segments between car-following and free-following, and
(3) determining the regime for each divided segment based on the acceleration within it.

In the second step, the distinguishing thresholds in HA cases and HH cases are respectively selected based on the mean value and
standard deviation of the time gap distribution of each, where the time gap for every case is calibrated from Newell’s car-following
model (Newell, 2002). Appendix A.1 shows these steps in more algorithmic detail. For further investigation, we refer the reader to
Sharma et al. (2018).

3.2. Isolation of driving variability — car-following modelling and simulation

Car-following models describe the dynamics of a following vehicle adapting the speed and maintaining a safe distance from
ts leading vehicle, ranging from theory-based kinematic models, psycho-physical models, to data-driven models (a detailed
urvey is referred to Zhang et al., 2023). These models, to various degrees, may not capture the complete complexity of human
riving behaviour (Hamdar, 2012). Here our focus is on evaluating the contribution of driving variability to headway distribution
ifferences. This requires different combinations of model parameters to simulate the heterogeneous car-following behaviour of
rivers. For this purpose, we select the widely used Intelligent Driver Model (Treiber et al., 2000) here, and we also provide the
ption of using Gipps’ model (Gipps, 1981) in the Appendix A.4.

.2.1. Intelligent driver model and its calibration
As defined in Eq. (3), the Intelligent Driver Model (IDM) uses a continuous nonlinear function 𝑓 ∶ R2

>0 × R ↦ R to produce the
acceleration profile of a follower based on its own speed (𝑣), the relative speed of the follower and the leader (𝛥𝑣), and the distance
etween them (𝑠). The 𝑠 is typically interpreted as the net distance, i.e., the gap, between the leading and following vehicles on
ighways. Whereas in urban traffic, vehicle gaps can be considerably small and lead to acceleration fluctuations and negative speeds
n simulating standstills. To mitigate this issue, we consider 𝑠 as the distance headway between vehicles, so that the minimum value
f 𝑠 must be greater than the length of the leading vehicle.

�̇� = 𝑓 (𝑣, 𝛥𝑣, 𝑠) ≜ 𝛼

[

1 −
(

𝑣
𝑣0

)𝛿
−
(

𝑠∗(𝑣, 𝛥𝑣)
𝑠

)2
]

𝑠∗(𝑣, 𝛥𝑣) = 𝑠0 + max

(

0, 𝑣𝑇 + 𝑣𝛥𝑣
2
√

𝛼𝛽

) (3)

The IDM parameters correspond to different behaviours during car following. 𝑣0 is the desired speed when the follower is freely
running without reaction to the leader; 𝑠0 is the minimum distance headway and indicates the desired distance from the leader when
both the follower and the leader are stationary; 𝑇 , in parallel, indicates the desired time interval between them. Therefore, 𝑠0 + 𝑣𝑇
is a safe distance for followers at a speed of 𝑣 to keep from their leaders. When the follower approaches a slower or stopped leading
vehicle, the IDM assumes that the deceleration usually does not exceed a comfortable deceleration 𝛽. A maximum acceleration 𝛼 is
reached when the follower freely accelerates from a standstill. With increasing speed, the vehicle’s acceleration decreases, and goes
to zero when the speed approaches 𝑣0. This reduction is controlled by the exponent 𝛿.

Eq. (3) may still result in negative speeds when the following vehicle stops or slowly approaches its leading vehicle in a distance
smaller than 𝑠0. Such negative speeds can jeopardise model calibration1 and may cause further problems in simulation. This effect
is particularly notable in urban traffic, where red lights at signalised intersections and pedestrians frequently stop vehicles. We thus
use Eq. (4) to remedy Eq. (3).

�̇� =

{

0, if 𝑣 ≤ 0 ∧ 𝑠 < 𝑠0
𝑓 (𝑣, 𝛥𝑣, 𝑠), otherwise

(4)

Eq. (4) defines discontinuous acceleration and requires the input data to satisfy that (1) the speed of the leading vehicle is non-
negative at any time; (2) the speed of the leading vehicle is zero only at a finite number of time steps; (3) the initial speed of the
following vehicle should be non-negative; (4) the initial gap between the leading and following vehicles should be larger than zero.
As proved by Albeaik et al. (2022), these requirements ensure that a unique set of IDM parameters exists for any car-following
horizon within finite time.

For the purpose of simulation, we calibrate IDMs based on evolving predictions of the follower’s trajectories. Given the leader’s
trajectories and the follower’s initial state, the accelerations, speeds, and positions of the follower are iteratively predicted at each
time step based on the prediction at the previous time step. Under this approach, a suitable objective function for calibration is set
according to Treiber and Kesting (2013a) as shown in Eq. (5), where 𝑣 = 0 is not counted in.

argmin
𝑣0 ,𝑠0 ,𝑇 ,𝛼,𝛽

∑

(�̂� − 𝑣)2∕|𝑣|
∑

|𝑣|
+

∑

(�̂� − 𝑥)2∕|𝑥|
∑

|𝑥|
(5)

1 Negative speeds can prevent model calibration when 𝛿 is not an even number; when 𝛿 is an even number, negative speeds can lead to larger deceleration
5

and reinforce the negative speeds, making the modelled dynamics deviated.
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Table 1
Design of simulation experiments for examining the effect of leading vehicle variability on headways.

Variability Number of leader(s) Number of followers Note

Uniform 1 𝑁HH− 1 Conducted 4 times with 4 different leaders,
Heterogeneous 𝑁HH− 1 𝑁HH− 1 and no followers follow their factual leaders

To obtain valid parameters and representative IDMs, the input trajectories for calibration should include sufficient driving
egimes (Treiber and Kesting, 2013b; Sharma et al., 2019). According to Sharma et al. (2019), a minimum inclusion of 3 key regimes
A, D, and F – is essential; additional inclusion of regimes C, Fa, and/or S can further enhance the calibration robustness. Due to

requent disruptions in urban traffic, the regime C identified by the method in Section 3.1 is not necessarily at a desired speed,
ut simply signifies cruising at a certain speed. Therefore, the eligible car-following cases for calibration should have a maximum
ollower speed larger than 10 m/s (rather than the cruising regime C) and contain at least 0.5 s of each of the regimes of A, D, F,
nd either Fa or S.

.2.2. Controlled simulation experiments
With the calibrated car-following models, we can simulate a variety of car-following cases under designed conditions. In each

imulated car-following case, the follower’s behaviour is described by a set of model parameters; the leader’s behaviour and the
nitial state of its follower inherit the original trajectories of a factual case; then we simulate how the follower maintains speed
nd spacing from the leader. At each time step, we compute the current acceleration for the follower as �̇� by using Eqs. (3) and

(4). Denoting the computed acceleration �̇� as �̂�, the speed derived from �̂� as �̂�, and the reproduced position as �̂�, we update the
follower’s speed and position profiles as follows:

⎧

⎪

⎨

⎪

⎩

�̂�(𝑡+𝛥𝑡) = max{0, 𝑣(𝑡) + �̂�(𝑡)𝛥𝑡},

�̂�(𝑡+𝛥𝑡) = 𝑥(𝑡) + 𝑣(𝑡)+�̂�(𝑡+𝛥𝑡)
2 𝛥𝑡.

(6)

o facilitate model calibration and based on the fact that people’s reaction time to visual-acoustic stimuli has an average of
.3 s (Teramoto et al., 2017; Carlsen et al., 2020), we set 𝛥𝑡 = 0.3 s as the decision interval in simulation.

We design two groups of simulations to examine the variability of leader driving. In order to control for the potential impact of
Vs’ driving characteristics, the simulations use car-following trajectories and calibrated IDMs only of HH cases where both leading
nd following vehicles are human-driven. Table 1 shows our design with 𝑁HH eligible HH cases.

These simulations are designed to contrast between following a single leader and many heterogeneous leaders. The single leader
represents uniform leader driving; while the other 𝑁HH− 1 leaders represent heterogeneous leader driving. Then we let the same
𝑁HH− 1 HV followers follow the two sets of leaders. The single leader is selected from eligible HH cases with the largest time
proportion of regimes F and S, to ensure that steady-state headways are observed. We also make sure that no followers follow
their factual leaders in the randomly paired simulations, to avoid introducing or enhancing the headway patterns obtained from
IDM calibrations. In addition, we conduct the experiments for 4 times, each with a different uniform leader, to have a more robust
comparison.

3.3. Isolation of driving characteristics — leading vehicle driving classification

In order to differentiate whether a leading vehicle drives more like an AV or HV, we design a neural network classifier. The
classifier is composed of a recurrent neural network (RNN) encoder and a linear decoder followed by a function that normalises the
output to (0,1). The encoder is a two-layer long short-term memory (LSTM) RNN (Hochreiter and Schmidhuber, 1997; Sak et al.,
2014) for receiving and processing the input trajectories. LSTM is particularly well-suited to time series data, designed to handle
the information evolving over time. Then the decoder is simply a layer of fully-connected network, which compresses the hidden
states of the last layer of LSTM into a single number. Finally, we use the sigmoid function to convert that number into a probability
between 0 and 1.

We use the binary cross-entropy (BCE) as the loss function between the ground truth labels and the predictions made by the
classifier. As shown in Eq. (7), 𝑦𝑖 is the ground truth label, 𝑝𝑖 is the model’s predicted probability for the 𝑖th sample, and 𝑁 is the
number of samples being evaluated. We emphasise that the accuracy of this classifier should not be extremely high, since some
situations are in fact fuzzy to determine whether they are obtained from AV driving or HV driving. More importantly, in order to
assess the effect of AV’s driving characteristics on headways, our objective is to utilise the classifier to identify driving situations
that are operated by AVs but are classified as by HVs.

BCE loss = − 1
𝑁

𝑁
∑

𝑖=1

[

𝑦𝑖 ⋅ log(𝑝𝑖) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑝𝑖)
]

(7)

We frame the training material as a 148 × 2 tensor consisting of two movement variables over 14.8 s. These two variables
are speed and acceleration, in order to reflect the driving dynamics of a leading vehicle. Although speed and acceleration are
6

interrelated to each other, neither of them can be used alone because they each bear unique information that evolves over time.
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In the original data, the duration of each car-following case varies from less than 15 s to more than 5 min. For the convenience
of applying the model, we extract continuous segments for 14.8 s as sub-cases (since the shortest duration in HA cases is 14.8 s).
Thus the cases shorter than 14.8 s are excluded, and each case that is longer than 14.8 s is separated into multiple (at least two)
sub-cases. We also exclude the cases with a standstill period longer than 14.8 s, to avoid any sub-cases being completely stationary
and indistinguishable.

Three data sets for model training, model validation, and model performance test, are then prepared. Considering that the average
uration of HA cases is longer than that of HH cases, we first divide the HA cases into two groups of equal number, and then randomly
elect HH cases with a number 1.094 times the number of HA cases (HA cases are generally longer than HH cases, this is to ensure
similar number of sub-cases), also in two groups. The leaders in the first divided HA group and HH group are combined and used

s the training set. The leaders in the combination of the other HA group and HH group form the validation set. Then we use the
eaders in all AV-following-HV cases as an out-of-distribution test set of leading HVs. We label HV leaders as 0 and AV leaders as
. Therefore, both the training set and validation set contain half HV leaders (labelled 0) and half AV leaders (labelled 1), and the
est set consists of all HV leaders (labelled 0).

After the training, we apply the classifier to the segmented sub-cases in the validation set. To counteract the previous
egmentation of car-following, we need to aggregate the obtained predictions corresponding to their original time steps and cases.
n this way, our analysis can still be based on the complete car-following cases. Therefore, we define two types of aggregation as
hown in Eq. (8), where 𝑝𝑖 is the prediction of a sub-case 𝑖. The sub-case 𝑖 belongs to case 𝑐𝑖 and the time steps covered by 𝑖 are

denoted by 𝒕𝑖.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝑐 =
1
𝑁𝑐

∑

{𝑖|𝑐𝑖=𝑐}
𝑝𝑖, for each case 𝑐

𝑝(𝑡)𝑐 = 1
𝑁𝑡

∑

{𝑖|𝑡∈𝒕𝑖 and 𝑐𝑖=𝑐}
𝑝𝑖, for each time step 𝑡 in a case 𝑐

(8)

If 𝑝𝑐 < 0.5, the case 𝑐 is classified to be more probable to have an HV leader; if 𝑝𝑐 > 0.5, an AV leader is classified to be more
probable. Similarly, if 𝑝(𝑡)𝑐 < 0.5, the driving dynamics at time 𝑡 in case 𝑐 is more probable to be operated by an HV; if 𝑝(𝑡)𝑐 > 0.5,
the operation is classified to be more characteristic of an AV.

4. Data

This study investigates potential explanations for the reduced headways when human drivers follow automated vehicles (AVs)
compared to human driving vehicles (HVs). For a comprehensive view, large-scale and real-world data recording the behaviour
of both AVs and HVs is necessary. In recent years, numerous AV companies have released motion datasets collected through
LiDARs and cameras equipped on their AVs (e.g., Chang et al., 2019; Caesar et al., 2020; Sun et al., 2020; Houston et al., 2021;
Malinin et al., 2022; Wilson et al., 2023). These datasets provide valuable opportunities for studying human adaption of AVs, but
also pose unique challenges for behaviour analysis due to the way the data are collected. Data collection by AVs takes a similar
perspective to that by instrumented probe vehicles, as moving observers. It makes high-quality data available for microscopic traffic
analyses (Coifman et al., 2016; van Erp et al., 2018); however, different from drone-collected data such as highD (Krajewski et al.,
2018) and pNEUMA (Barmpounakis and Geroliminis, 2020), may have inconsistent detection errors for road users in different
surroundings.

With these challenges in consideration, Section 4.1 first selects a suitable dataset for the current study and Section 4.2 gives an
overview of the vehicle dynamics in the selected dataset. Next, based on the strategy described in Section 2.1, we show in Section 4.3
that the detection of HV lengths by AVs is biased. Therefore, we compare time headway only hereafter, and present a baseline of
time headway reduction in Section 4.4.

4.1. Dataset selection

Among the AV-collected datasets, there are two specifically processed and open-sourced for studying car-following behaviour.
One (Hu et al., 2022) is extracted from Waymo open data (Sun et al., 2020), and the other (Li et al., 2023) is extracted from Lyft
open data (Houston et al., 2021). In the extracted datasets, movement dynamics of the vehicles are recorded at a frequency of 10
per second and are carefully filtered and denoised. Further, large vehicles such as buses and heavy trucks are excluded for a focus
on the comparable behaviours of passenger cars.

Table 2 compares the two car-following datasets extracted from Waymo and Lyft open data. The collection of Waymo data was in
multiple cities in the U.S. (i.e., San Francisco, Phoenix, and Mountain View) prior to its initial release in August 2019. In contrast,
the Lyft data was collected between October 2019 and March 2020 by 20 automated vehicles along a fixed route in Palo Alto,
California. Both datasets organise data as vehicle trajectories in various car-following cases. Each case is composed of two vehicles,
where one continuously runs directly behind the other. There are hence three categories of car-following cases: AV-following-HV
(AH), HV-following-AV (HA), and HV-following-HV (HH).

For investigating the reduced headways of human drivers following AVs, our analyses are majorly on HA and HH cases.
Particularly, in order to evaluate the impact of driving variability as described in Section 3.2, two requirements need to be fulfilled.
7

First, the follower in each case should have stationary moments for estimating a minimum acceptable gap. Second, the follower in
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Table 2
Comparison of Waymo and Lyft car-following datasets.

Data source Collection time Category Number of cases Number of valid cases Average duration
of valid cases (s)

Waymo Before
Aug. 2019

AH 210 27 19.75
HA 286 33 19.76
HH 1117 135 19.54

Lyft Oct. 2019–
Mar. 2020

AH 9,172 1,886 24.86
HA 29,449 5,542 38.92
HH 42,892 9,243 21.65

Fig. 4. Distributions of vehicle dynamics in HH and HA cases.

ach case should reach a high enough speed to be considered as the desired speed. Accordingly, we select valid cases where the
inimum speeds of both the leader and follower are smaller than 0.1 m/s, and the maximum speeds of the follower exceed 10 m/s.
larger average duration of these valid cases then implies a wider range of driving dynamics. As shown in Table 2, the dataset

xtracted from Lyft data has notably more valid cases and longer average duration across all three categories of car-following cases.
s such, the Lyft car-following dataset can provide better support for our analyses, and is thus used in this study.

.2. Vehicle dynamics overview

The Lyft open data was collected during daytime hours between 8 a.m. and 4 p.m. in urban and suburban environments, where
typical speed limit is 65 mph (approximately 29 m/s). Fig. 4 presents a preliminary overview of the leading and following

ehicle dynamics. The distributions of maximum speed, deceleration, and acceleration of vehicles are compared between HH and
A car-following cases.

Fig. 4 shows clear differences in movement between AV and HV leaders, as well as between HVs following AVs (HV followers in
A) and those following other HVs (HV followers in HH). The Lyft AVs tend to maintain a restrained maximum speed, predominantly
t 12 m/s and 14 m/s. This restraint appears to have influenced the HVs following them in HA cases, resulting in a ‘‘compressed’’
istribution in maximum speed with a peak around 14 m/s. In terms of maximum acceleration, HVs in both HA and HH cases have
imilar distributions. However, compared with HV leaders and followers in HH cases, AV leaders and HV followers in HA cases
xperience larger maximum deceleration (around −2 m/s2) more frequently and have fewer cases with a maximum deceleration
ear zero.

.3. Inconsistent vehicle lengths

Using centroid-position data, accurate vehicle lengths are necessary for fine-grained analysis of spacing between vehicles. The
ata collected by AVs may be inconsistent in detecting the lengths of HVs directly behind the AVs and of HVs passing by the AVs.
ig. 5(a) presents the relationships between minimum gaps and detected vehicle lengths in the Lyft dataset (see Appendix A.2 for
counterpart in Waymo data). This figure shows that the HV lengths detected by AVs are independent of the proximity to AVs.
owever, the lengths of HA followers (HVs behind the AVs) deviate from the normally distributed lengths of HH followers and HH

eaders (HVs passing by the AVs), and tend to be concentrated around 4.0 m and 5.0 m.
This inconsistency between HV lengths can influence the computed headways, particularly when the vehicles are at a slow

peed or standing still. To roughly estimate this influence, we select stationary cases where both the leading and following vehicle
peeds are smaller than 0.1 m/s, and plot the distributions of length sum 𝑙follower + 𝑙leader as shown in Fig. 5(b). The average sum
f leader and follower lengths for HH stationary cases is 8.79 m, while the average sum for HA stationary cases is 9.25 m. This
ifference can directly result in 0.23 m less average gap in HA cases than in HH cases, if assuming identical distributions of centroid-
osition distance. A specific magnitude of this influence on calculating distance headway, however, cannot be determined without
8

round-truth references. Therefore, we will compare time headway only in the rest of this study.
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Fig. 5. Inconsistency in length detection of human driving vehicles in HH and HA cases in Lyft data.

Fig. 6. Baseline comparison of time headway without isolating any factors.

4.4. Time headway reduction

An initial comparison of time headways between all HH cases and HA cases without isolating factors that may have effects,
is displayed in Fig. 6. Here and throughout the next section, we use a uniform illustration to visually and quantitatively compare
the time headways of HA and HH cases. This illustration is based on two considerations. First, time headway is infinite when the
follower’s speed is near zero. To dismiss those infinite values, we compare the distributions of minimum time headway (abbreviated
as min. THW) of each car-following case, using histograms and their estimated probability densities. The mean values and standard
deviations are also annotated in figures. Second, time headway depends on the current follower speed. We thus use a scatter plot
showing the min. THW at various follower speeds, to offer a more comprehensive view.

Fig. 6, as a baseline, shows a tighter distribution of min. THW in HA cases than in HH cases. Observing the scatter plot of
min. THW at different follower speeds, in most HA situations, the min. THW are within 4 s; while in many HH situations, the min
THW are larger than 4 s and even exceed 6 s. Accordingly, the mean value and standard deviation of min. THW have a significant
reduction in HA cases compared with HH cases. More specifically, the average min. THW is reduced by 0.61 s, and the standard
deviation is 0.48 s smaller in HA cases than in HH cases. This reduction is consistent with the observations in existing literature. In
the next section, we will detail the factors contributing to this reduction.

5. Results and discussion

This section presents and discusses the impacts of different factors on the reduction in time headway of human drivers
following automated vehicles (AVs) compared to human driving vehicles (HVs). Sections 5.1, 5.2, and 5.3 are each about a factor
among car-following states, leading driving variability, and AV driving characteristics. In Sections 5.2 and 5.3, we performed
the Kolmogorov–Smirnov test in addition to the uniform illustration, to see whether the distributions under different settings are
statistically different. The p-values and test results are annotated in figures based on a confidence level of 0.05. Finally, in Section 5.4,
we make a summary of the findings for better reading.

5.1. Impact of car-following states

The composition of car-following states (regimes) is different in HH cases and HA cases. Using the method described in
Section 3.1, we categorised the regimes at every time step in each car-following case of HA and HH. In Fig. 7, we present the time
proportions of the regimes, including C: cruising at a desired speed, A: accelerating following a leader, D: decelerating following a
leader, F: constant speed following, Fa: free accelerating less constrained by the leader, Fd: free decelerating less constrained by the
leader, and S: staying stationary.
9
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Fig. 7. Time proportion of different car-following regimes in HH cases and HA cases.

Table 3
Time proportion and average minimum time headway in different car-following regimes in HH and HA cases.

CF regime Fa C Fd D A F S

HH Time proportion (%) 8.99 11.01 7.42 23.22 11.09 38.27 0.00
Average min. THW (s) 3.12 2.91 2.71 1.89 2.18 1.79 –

HA Time proportion (%) 2.37 6.83 8.40 39.70 1.29 41.41 0.00
Average min. THW (s) 2.06 2.10 2.06 1.40 1.77 1.46 –

THW Reduction (s) 1.06 0.81 0.65 0.49 0.41 0.33 –

Fig. 8. Time headway comparison with car-following states isolated.

Fig. 7 reveals distinct regime compositions between HH and HA cases. There is a similar proportion of time spent in cruising (C)
but a significant difference in the constant speed following (F) regime. Given that time headway is smaller during constant-speed
car-following than free-following, a reduction in time headway in HA cases is already reasonable. Interestingly, there is a higher
occurrence of stationary moments (S) in HH cases compared to HA cases, which corresponds to an increased time proportion of free
acceleration (Fa) or acceleration (A) after stopping. However, there is unexpectedly less time spent on deceleration (D) and free
deceleration (Fd) in HH cases. This implies that the deceleration process in HH cases may be shorter than in HA cases.

According to the categorised car-following regimes, we can compare time headways in HH and HA cases under different car-
following states. Table 3 compares the time proportion of each car-following regime as well as the corresponding average min. THW.
These time proportions are accounted for the time steps when the minimum time headway is reached in a car-following case.

Most of the min. THW are reached in the regime F of constant-speed car-following, which accounts for 38.27% in HH cases
and 41.41% in HA cases. Under the regime F, the average min. THW reduces by 0.33 s in HA cases compared to in HH cases. This
constructs a fundamental part of the overall reduction in min. THW in HA cases. Generally in both HH and HA cases, the average
values of min. THW are smaller in the car-following regimes of A, D, and F than in the free-following regimes of Fa, Fd, and C,
where the leaders are less constrained by their followers. The reduction of min. THW is significantly larger in the regimes Fa (free
acceleration) and C (cruising), accounting for 20.00% in HH cases but only 9.20% in HA cases. This is equivalent to averaging the
min. THW with greater weights placed on the regimes that yield larger reductions, which exaggerates the extent of time headway
reduction.

The reduction in time headway attracts attention majorly because it implies potential improvements in traffic efficiency. With
this consideration, comparing time headways in HH and HA cases needs to be focused on steady-state car-following conditions. The
leading and following vehicles do not interact with each other in free-following regimes (Fa, Fd, and C), i.e., the follower’s time
headways are not bounded by the leader and do not involve traffic. In the regimes of acceleration A and deceleration D, the followers
are indeed affected by their leaders. However, followers in such situations need to make a trade-off between avoiding collision and
chasing up, which makes the resulted time headways unrepresentative. Therefore, in Fig. 8 and the subsequent comparisons, we
consider min. THW in the regime F only. The focus on steady-state time headways relates more directly to potential traffic benefits.

In Fig. 8, the average min. THW is 1.46 s in HA cases and 1.79 s in HH cases, and the distribution of min. THW remains tighter
in HA cases than in HH cases. The differences become significantly less when compared with that in Fig. 6. More specifically, the
10
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Fig. 9. Time headway comparisons with driving variability isolated. Four different single leading vehicles are simulated as the uniform leader driving in subfigures
(a), (b), (c) and (d). The simulations use Intelligent Driver Models.

reduction of average min. THW decreases from 0.61 s to 0.33 s after excluding non-steady regimes. The standard deviations in both
the HA and HH cases are also considerably smaller. These are also reflected in the scatter plot, where the min. THW in both HA
and HH cases are more concentrated within 3 s.

5.2. Impact of driving variability

Analysing AV-involved data can face a problem that does not exist in traditional HV-only datasets: the driving variability of
leading vehicles is highly unbalanced. In the Lyft dataset, there are 20 Lyft leading AVs in HA cases, while 42,982 different leading
HVs in HH cases. The 20 AV leaders share the same Lyft’s autonomous driving algorithms, which implies a substantially lower
variability of leader driving behaviour in HA cases than in HH cases. This imbalance may significantly influence the statistical
comparison of time headways between HH and HA cases. Following the methods in Section 3.2.1, we calibrated two sets of Intelligent
Driver Models (IDMs) for HH cases and HA cases. For details about the calibration results, see Appendix A.3.

We obtained 1228 eligible HH cases and calibrated their corresponding IDMs, based on which we then conducted controlled
simulation experiments. Fig. 9 shows the comparisons of minimum time headways in the simulation experiments, where the same
1227 HV followers follow a single HV leader or 1227 heterogeneous HV leaders, respectively. For a more robust assessment of the
leader variability effect, 4 different single leaders are involved in parallel simulations.

Fig. 9 shows that following a single leader can result in a significantly smaller mean value (0.275 s on average) and standard
deviation (0.27 s on average) of min. THW. This is also clearly seen in the scatter plots, where the minimum time headways
concentrate at certain follower speeds when following a single leader but disperse over various follower speeds when following many
different leaders. In Appendix A.4, the counterpart simulations using Gipps’ model show similar results, with average reductions in
mean value by 0.31 s and in standard deviation by 0.21 s. These comparisons suggest that uniform AV driving plays an important role
in the reduced time headways in HA cases, against heterogeneous HV driving in HH cases. Additionally, as revealed by comparing
across the 4 simulations of following different single leaders, the leader’s driving characteristics also contribute remarkably to time
headway distributions. The next subsection will investigate this further.

5.3. Impact of AV driving characteristics

AVs drive differently from HVs. This difference in driving dynamics may create different car-following contexts for human drivers
following AVs versus HVs. To distinguish AV driving and HV driving characteristics, we trained a neural network classifier as
described in Section 3.3. The classifier can correctly classify 95.95% of AV driving segments and 92.66% of HV driving segments
in the training data, reaching an overall accuracy of 94.24%; while on the validation set, it can correctly classify 94.12% and
90.59% of AV and HV driving segments, respectively. For more details about the training evolution and performance evaluation,
see Appendix A.5.

The classifier captures the difference in stability between AV driving and HV driving, i.e., more stable driving is more probable
to be classified as of an AV. As mentioned in Section 3.3, constantly stationary trajectory segments were excluded during model
training and validation. Here we create multiple stationary zero-speed trajectory segments, as out-of-distribution inputs, to test the
classifier. Each of the created segments consists of 148 × 2 random numbers from a zero-mean normal distribution, where the
11
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Fig. 10. Classifications of stationary trajectory segments with randomly added noises.

Fig. 11. Comparison of time headway with driving characteristics isolated. HV-like refers to an AV leader case/operation being classified as HV; AV-like refers
to an AV leader case/operation being classified as AV.

standard deviation increases from 0 to 0.1 as added noise. Fig. 10 shows the classification of these stationary segments in different
stages of model training. With the training progresses, the classifier gradually learns to distinguish AV driving and HV driving by
stability. As shown in Epochs 145 and 200, When the added noise is smaller than around 0.015, the stationary trajectory tends to
be classified as AV driving; however, when the added noise is larger, the stationary trajectory tends to be classified as HV driving.

We postulated that the unique driving characteristics of Lyft AVs impact the headway reduction in HA cases if human drivers
have longer headways when following AVs resembling human driving. By applying the trained classifier to the 13,814 HA cases2

in the validation set, we have 1104 cases where the AV leaders are ‘‘incorrectly’’ classified as driving more like an HV (𝑝𝑐 < 0.5,
abbreviated as HV-like); in the other 12,710 cases, the AV leaders are classified as driving more like an AV (𝑝𝑐 > 0.5, abbreviated as
AV-like). These HV-like and AV-like driving operations of AVs allow us to isolate the factor of driving characteristics, control for the
factor of driving variability, and effectively observe the impact. The distributions of min. THW in these cases are displayed in Fig. 11.
In Fig. 11(a), the classification between HV-like and AV-like time headways is case-based according to 𝑝𝑐 ; while in Fig. 11(b), the
classification is operation-based according to 𝑝(𝑡)𝑐 .

Both Figs. 11(a) and 11(b) have HVs following AVs. Despite the leading vehicle driving are both performed by AVs, the
distributions and scatter plots clearly show that the min. THW is generally larger for HV-like driving than AV-like driving. More
specifically, the average min. THW in HV-like driving cases is 0.13 s larger than in AV-like driving cases; the average min. THW
under HV-like driving operations is 0.10 s larger than AV-like driving operations. This suggests a considerable impact of driving
characteristics on the reduced headways of human drivers following AVs. However, except for stability, it remains to be investigated
what characteristics lead to the reduction.

5.4. Summary of main findings

This section explored potential explanations for the reduction in headways of human drivers following AVs than following HVs.
Due to the inconsistent detection of vehicle lengths between HVs passing by and directly following AVs, only time headway was
considered in our examinations. For the examined 3 factors alternative to behavioural changes of following vehicle drivers, we
utilised a variety of methods to isolate each of them and assess their impacts, and now summarise the main findings.

• Systematic differences in car-following states during data collection. The data collected of HV-following-AV and HV-
following-HV have different percentages of car-following states such as cruising, decelerating, steady-state following, staying
stationary, etc. Time headways are generally larger in non-steady car-following states. Therefore, the smaller proportion of
non-steady states in HV-following-AV data than in HV-following-HV data directly results in a shorter average time headway. To
better relate with potential traffic benefits that AVs can bring, we focus on time headways under steady-state car-following. In
doing so, the reduction in average time headway of HVs following AVs shrinks to 0.33 s from 0.61 s that is calculated without
isolating any factors.

2 Among the 29,449 HA cases, 1822 cases are excluded because of a stationary process exceeding 14.8 s. Of the remaining 27,627 cases, half are assigned
to the training set and the other half to the validation set.
12
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• Systematic differences in driving variability between leading AVs and HVs. The leading Lyft AVs in HV-following-AV
cases share the same driving algorithms, while the leading HVs in HV-following-HV cases have heterogeneous driving styles.
The homogeneity of leading vehicles’ driving can be transmitted to their following vehicles’ driving, and thus decreases the
variance of time headway distribution and shortens the average. In our experiments, letting various HVs follow the same HV
resulted in an average reduction in steady-state time headway by 0.275 s (simulated with the Intelligent Driver Model) and
0.31 s (simulated with Gipps’ model) compared to following different HVs with heterogeneous driving styles.

• Systematic differences in driving characteristics of leading AVs versus HVs. The specific driving characteristics of AVs,
such as stability, also have a remarkable impact. When human drivers follow AVs that drive like HVs, the average time headway
is approximately 0.10 s larger than following AVs that drive more stably like AVs. Interestingly, Soni et al. (2022) observed
no reduction in headway when human drivers follow a ‘‘Wizard of Oz’’ AV (i.e., the leading vehicle was operated in reality
by a human, but the participants were informed that they were following an AV) compared with following an HV. Therefore,
human drivers may not consciously maintain a shorter distance when following AVs, but they can be unconsciously influenced
if the leading AVs drive differently than HVs.

Other than behavioural changes of followers, these findings provide quantitative assessments of three alternative explanations
or the reduced time headways behind AVs. However, these assessment results cannot be simply added together. The effects of
hese factors interplay with each other in practice, and disentangling the interplay necessitates further investigation. In addition,
t is important to note that these findings do not exclude behavioural changes due to factors such as the following vehicle drivers’
erceived reliability of AVs or desire to interact with AVs. Behavioural factors remain intangible in the absence of direct evidence
n driver perception and preference, and require future research.

. Conclusion and outlook

This study advances a more comprehensive understanding of the interactions between human driving vehicles and automated
ehicles compared to the interactions between human drivers, and the contribution is twofold. First, we provide an approach to
xamining the impacts of integrating automated vehicles on average time headway with empirical data, particularly in the mixed
raffic environment. We point out inherent observation biases when using data collected by automated vehicles to compare human
rivers’ interactions with automated vehicles and the interactions between human drivers. The biases are induced by factors such
s various car-following states during data collection, uniformity of autonomous driving algorithm against heterogeneity of human
riving, and the distinct characteristics of autonomous driving. Employing different methods, we isolated these factors and examined
heir impacts. Second, through careful examination, this study offers more in-depth insights explaining the consistently observed
horter headways when human drivers follow automated vehicles compared to following human driving vehicles. Beyond the
peculation of human drivers’ behavioural changes, the observation biases rooted in such a comparison play remarkable (probably
rimary) roles. This study thus serves as a reminder for researchers to be cautious when drawing behavioural insights from ‘‘non-
ehavioural’’ data, and to be sceptical about the efficiency benefits of integrating automated vehicles. Furthermore, we suggest that
areful experimental design is needed to control the comparison conditions for investigating behavioural changes of human drivers
n the presence of automated vehicles.

From a lens of human drivers’ adaption to automated vehicles, this study proceeds towards more effective integration of
utomated vehicles into human traffic for enhancing traffic efficiency. In pursuit of this end, more research is needed in the
uture. Except for time headway, the potential reduction in the minimum gap or distance headway when human drivers follow
Vs necessitates more reliable measurement and further research on the decelerating process, which also includes safety concerns.
his study is based on the data collected in an urban environment, where the traffic is not continuous and is disrupted by red lights
nd interactions with other road users such as pedestrians. These disruptions may exacerbate the reduction in time headway, and
t is unclear whether such reduction is smaller on highways. Our findings suggest that homogeneous and stable driving can lead to
reduction in steady-state time headway, regardless of human-driven or machine-driven. However, traffic performance is not only

bout shorter time headway, but also relates to string stability and demand control. Figuring out all these factors’ influences will
elp to integrate automated vehicles into existing transportation systems. This then, as expected, will reduce traffic congestion and
nergy consumption, and ultimately promote a more efficient and sustainable traffic environment.
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ppendix

.1. Algorithm to identify car-following regimes

Here we present more details about the algorithm to identify car-following (CF) regimes. Our code for implementing this
lgorithm is also open-sourced. The algorithm takes 7 inputs as shown in Algorithm A1. Using the same notation as in Eq. (1),
he positions and speeds along time 𝒕 of a leader are respectively 𝒙leader and 𝒗leader. In parallel, the follower’s positions and speeds
re 𝒙follower and 𝒗follower. In addition, 𝜇all and 𝜎all are the mean value and standard deviation of time gaps calibrated from all cases
f HA or HH using Newell’s car-following model. Algorithms A2 and A3 are called in Algorithm A1 as preliminaries.

Algorithm A1: Car-following regime determination
Input: 𝒕,𝒙leader,𝒙follower, 𝒗leader, 𝒗follower, 𝜇all, 𝜎all
Output: Car-following regimes 𝒓 corresponding each time step in 𝒕

1 𝒔𝑣 ← SpeedSegmentation(𝒕,𝒗follower)
2 𝒇 ← DistinguishCForFF(𝒕, 𝒙leader, 𝒙follower, 𝒗leader, 𝒗follower, 𝜇all, 𝜎all)
3 foreach 𝑠 in 𝒔𝑣 do
4 𝒕𝑠, 𝒗𝑠,𝒇 𝑠 ← segments of 𝒕, 𝒗follower, 𝒇 corresponding to 𝑠
5 �̂� ← 𝛥𝒗𝑠∕𝛥𝒕𝑠 // Calculate the change rate of follower speed within the segment, 𝑚∕𝑠2

6 �̄� ← average of 𝒗𝑠
7 if there are more free-following than car-following in 𝒇 𝑠 then
8 if |�̂�| ≤ 0.5 then
9 if �̄� < 0.1 then
10 regime ← S
11 else
12 regime ← C
13 end
14 else if �̂� > 0.5 then
15 regime ← Fa
16 else
17 regime ← Fd
18 end
19 else
20 if |�̂�| ≤ 0.5 then
21 if �̄� < 0.1 then
22 regime ← S
23 else
24 regime ← F
25 end
26 else if �̂� > 0.5 then
27 regime ← A
28 else
29 regime ← D
30 end
31 end
32 𝒓𝑠 ← regime // 𝒓𝑠 has the same shape as 𝒕𝑠
33 end
34 Combine 𝒓𝑠 for each 𝑠 in 𝒔𝑣 into 𝒓
35 return 𝒓
14
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Algorithm A2: Speed profile segmentation
1 Function SpeedSegmentation(𝒕, 𝒗):

Input: time series 𝒕, speed series 𝒗
Output: divided segments of speed 𝒔𝑣

2 𝒔𝑣 ← 𝒗 // Each speed point starts as a segment
3 𝑛 ← len(𝒕) // Set number of segments
4 𝑛max = (max(𝒕) − min(𝒕))∕0.5 // Set max. number of segments based on time duration
5 while 𝑛 > 𝑛max do
6 foreach 𝑠 in 𝒔𝑣 do
7 Calculate the cost of merging 𝑠 and its adjacent segments
8 end
9 Merge adjacent segments with the minimum cost
10 Merge any consecutive segments if they have similar slopes
11 Update 𝒔𝑣 and calculate 𝑛
12 end
13 return 𝒔𝑣

Algorithm A3: Car-following and Free-following distinguishment
1 Function DistinguishCForFF(𝒕, 𝒙leader, 𝒙follower, 𝒗leader, 𝒗follower, 𝜇all, 𝜎all):

Input: time series 𝒕, positions 𝒙leader,𝒙follower, speeds 𝒗leader, 𝒗follower, thresholds 𝜇all, 𝜎all
Output: series of following regimes 𝒇

2 𝑊 ← a warping path by applying Dynamic Time Warping (DTW) to 𝒙leader and 𝒙follower
3 𝝉 ← time differences between the aligned elements in 𝑊
4 if half of 𝝉 are less than 0.1 second then
5 𝑊 ← a warping path by applying Dynamic Time Warping (DTW) to 𝒗leader and 𝒗follower
6 𝝉 ← time differences between the aligned elements in 𝑊
7 end
8 Replace 𝜏 < 0.1 in 𝝉 with its neighbouring 𝜏 that are larger than 0.1 second
9 Compress 𝝉 to match the length of 𝒕
10 𝜇𝜏 , 𝜎𝜏 ← mean value and standard deviation of 𝝉
11 if 𝜇𝜏 > 𝜇all or 𝜎𝜏 > 𝜎all then
12 𝜏threshold ← 𝜇𝜏
13 else
14 𝜏threshold ← 𝜇𝜏 + 2𝜎𝜏
15 end
16 𝒇 ← car-following if the corresponding 𝜏 < 𝜏threshold, otherwise free-following
17 return 𝒇

A.2. Vehicle length detection bias in Waymo data

Fig. A1(a) shows the relationships between minimum gaps and detected vehicle lengths in the Waymo dataset. Due to relatively
ess data than the Lyft data, here we directly plot scatters rather than histograms. This figure conveys the same message as Fig. 5(a):
he lengths of HVs following the AV (in HA cases) are generally larger than the lengths of HV leaders and followers in HH cases
HVs passing by the AV). This inconsistency further affects the computed headways. The histograms in Fig. A1(b) show the rough
mpacts estimated in the same way as in Fig. 5. As a result, the average sum of leader and follower lengths for HH stationary cases
s 9.64 m, while in HA stationary cases this value is 10.32 m. In Waymo data, this bias in vehicle length detection can lead to a
eduction of 0.34 m in the minimum gap in HA cases than in HH cases.

.3. IDM calibration results

We used evolutionary algorithm to solve the optimisation in Eq. (5). According to Zhang and Sun (2024), 𝑣0 and 𝛿 would converge
to their priors if calibrated simultaneously. In order to keep the calibration stable, we fix 𝛿 = 4 following typical settings. The other
parameters are then optimised within corresponding bounds. 𝑣0 is set to be between 12 and 29 m/s. We also dynamically set other
bounds based on the meaning of the parameters. This includes min(DHW) − 0.2 ≤ 𝑠0 ≤ 20 m, max(0.5,min(THW) − 0.2) ≤ 𝑇 ≤ 10 s,
.3 ≤ 𝛼 ≤ max(𝑎follower) + 1.5 m∕s2, and min(𝑎follower) − 0.2 ≤ 𝛽 ≤ 6 m∕s2, where DHW, THW, and 𝑎follower are distance headway, time
eadway, and acceleration series in a car-following case.

As presented in Table A.1, the calibrations with human-following-human (HH) cases have mean absolute errors of 0.38 ± 0.14
/s2 in acceleration and of 0.46 ± 0.20 m/s in speed; the calibrations with human-following-AV (HA) cases has slightly smaller
ean absolute errors of 0.31 ± 0.11 m/s2 in acceleration and of 0.44 ± 0.43 m/s in speed.
15
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Fig. A1. Inconsistency in length detection of human driving vehicles in HH and HA cases in Waymo data.

Table A.1
Accuracy evaluation of calibrating Intelligent Driver Models for HH cases and HA cases.

Acceleration (m/s2) Speed (m/s) Position (m)

HH (1,228)
Mean±Std.

MAE 0.38 ± 0.14 0.46 ± 0.20 3.49 ± 1.74
RMSE 0.56 ± 0.26 0.61 ± 0.25 4.45 ± 2.16

HA (1,323)
Mean±Std.

MAE 0.31 ± 0.11 0.44 ± 0.43 3.32 ± 4.98
RMSE 0.45 ± 0.22 0.56 ± 0.45 4.00 ± 5.58

MAE: mean absolute error; RMSE: root mean squared error.

Fig. A2. Comparison of the calibrated Intelligent Driver Model parameters for HH cases and HA cases.

Fig. A2 then compares the calibrated IDM parameter distributions of the HH cases and the HA cases. In addition to the histograms,
he averages and standard deviations of each parameter are listed in the tables beneath the plots. On average, HH cases have larger
esired speeds 𝑣0, longer minimum distance headway 𝑠0, and longer desired time headway 𝑇 . These tendencies make no surprise

as they are bound to the corresponding empirical estimations in our calibration. Meanwhile, evidently smaller variances of the
parameters 𝑣0, 𝑠0, and 𝑇 are seen in HA cases. This indicates a lower driving variability of HV followers in HA cases. Interestingly,
he maximum acceleration 𝛼 in many HA cases is smaller than in HH cases, while the comfortable deceleration 𝛽 is significantly
arger than in HH cases. This is aligned with Fig. 4 in Section 4.1, suggesting that there are more brakings and potentially less safe
riving situations when HVs follow AVs.

.4. Simulation experiments based on Gipps’ model

To offer corroborating evidence for the impact of leading vehicles’ driving variability, we conducted the simulation experiments
n Section 3.2.2 using Gipps’ car-following model in addition to the Intelligent Driver Model (IDM). Except for the car-following
odel, we used the same experiment settings as when using IDM, including the calibration method and objective function, simulation

xperiment design, and results evaluation.
As defined in Eq. (A.1), Gipps’ model assumes that a driver adapts the speed after a time delay (𝜏) to either smoothly reach the

esired speed or to safely proceed behind the leader (Ciuffo et al., 2012; Vieira da Rocha et al., 2015). Here 𝑣𝑎𝑐𝑐 is the speed for the
irst purpose, and 𝑣𝑑𝑒𝑐 is for the second purpose. Different from IDM which maps the stimuli to acceleration, Gipps’ model produces
peed profiles. Correspondingly, we update the following vehicle’s positions as shown in Eq. (A.2).

𝑣(𝑡 + 𝜏) = min{𝑣𝑎𝑐𝑐 (𝑡 + 𝜏), 𝑣𝑑𝑒𝑐 (𝑡 + 𝜏)} (A.1)

�̂�(𝑡 + 𝜏) = 𝑥(𝑡) +
𝑣(𝑡) + 𝑣(𝑡 + 𝜏)

𝜏 (A.2)
16
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Table A.2
Accuracy evaluation of calibrating Gipps’ models for HH cases and HA cases.

Speed (m/s) Position (m)

HH (1,228)
Mean±Std.

MAE 0.63 ± 0.29 2.94 ± 1.58
RMSE 0.83 ± 0.38 3.74 ± 2.05

HA (1,323)
Mean±Std.

MAE 0.45 ± 0.56 2.81 ± 5.70
RMSE 0.59 ± 0.64 3.43 ± 6.29

MAE: mean absolute error; RMSE: root mean squared error.

Fig. A3. Comparison of the calibrated Gipps’ model parameters for HH cases and HA cases.

Eqs. (A.3) show more details of the speed adjustment in Gipps’ model. For comparison convenience, we use the same notation as
n IDM to explain the parameters. The movement states of a vehicle (follower) and its preceding vehicle (leader) during car-following
re described with three variables: 𝑣(𝑡) is the follower speed at the time 𝑡, 𝑠(𝑡) is the distance between the leader and the follower,
nd 𝛥𝑣(𝑡) is their relative speed.

⎧

⎪

⎨

⎪

⎩

𝑣𝑎𝑐𝑐 (𝑡 + 𝜏) = 𝑣(𝑡) + 2.5𝛼𝜏
(

1 − 𝑣(𝑡)
𝑣0

)√

0.025 + 𝑣(𝑡)
𝑣0

𝑣𝑑𝑒𝑐 (𝑡 + 𝜏) = −𝜏𝑏 +
√

𝜏2𝑏2 + 𝑏
[

2
(

𝑠(𝑡) − 𝑠0
)

− 𝜏𝑣(𝑡) + (𝑣(𝑡)−𝛥𝑣(𝑡))2

𝑏leader

]
(A.3)

There are 6 parameters to be calibrated in the Gipps’ model. Each of the parameters corresponds to a practical meaning: 𝑣0
s the desired speed of the follower, 𝑠0 is the minimum distance headway, 𝜏 is the delay integrating both time headway and
eaction time, 𝛼 and 𝑏 are respectively the maximum acceleration and deceleration of the follower, and 𝑏leader is the maximum
eceleration of the leader expected by the follower. In the use of this model, to make sure 𝑣𝑑𝑒𝑐 ≥ 0, we take 0 for 𝑣𝑑𝑒𝑐 if
(

𝑠(𝑡) − 𝑠0
)

− 𝜏𝑣(𝑡) + (𝑣(𝑡) − 𝛥𝑣(𝑡))2 ∕𝑏leader < 0.
The accuracy evaluation of Gipps’ model calibration is presented in Table A.2, where the mean absolute error of speed is

.63 ± 0.29 m/s with HH cases and 0.45 ± 0.56 m/s with HA cases. This is slightly larger than the calibration error of using
DM. In Fig. A3, the distributions of parameters calibrated with HH and HA cases are shown in the same format as in Fig. A2.
ompared with the calibrated parameters of IDM in Fig. A2, 𝑠0, 𝜏 and 𝛼 have similar distributions, while 𝑣0 is more concentrated
o smaller speeds when using Gipps’ model.

Fig. A4 shows the comparisons of minimum time headways (min. THW) in the controlled simulation experiments using Gipps’
odel. Although the scatters of min. THW along follower speed are differently distributed from those in the simulations using IDM

n Fig. 9, the conclusion is the same. In these simulation experiments applying Gipps’ model, the min. THW in steady states when
ollowing a single HV leader has an average reduction in mean value by 0.31 s and in standard deviation by 0.21 s, compared to
ollowing heterogeneous HV leaders.

.5. Classifier evaluation

We trained the model for 200 epochs (i.e. iterations) and recorded the training performance per every 5 epochs. The evolution
f average loss, accuracy and F1 score (defined as the harmonic mean of precision and recall) is shown in Fig. A5. The model
as well-trained as indicated by the decreasing average loss. The overfitting starts after around 150 epochs, as indicated by the

ncreasing training accuracy while the validation accuracy remains constant and test accuracy becomes a bit lower. Therefore, we
elect the one after 145 epochs of training as the model to use.

Applying the trained classifier to the AV leaders in the validation set gives 1104 AV leaders driving like HVs. Figs. A6 display
he captured differences in driving dynamics of AV leaders between HV-like and AV-like. For a more comparable analysis, the
aximum speed is counted for each car-following case if in the regime C (cruising) or F (constant speed car-following), the maximum

cceleration is counted if in the regime A (acceleration) or Fa (free acceleration), and the maximum deceleration is counted if in
17

he regime D (deceleration) or Fd (free deceleration).
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Fig. A4. Time headway comparisons with driving variability isolated. Four different single leading vehicles are simulated as the uniform leader driving in
sub-figures (a), (b), (c), and (d). The simulations use Gipps’ car-following model.

Fig. A5. Evaluation and selection of the classifier neural networks.

Fig. A6. Comparison of maximum speeds, accelerations, and decelerations between AV-like, HV-like, and real HV driving.

Due to the speed restriction on Lyft AVs, The classified HV-like driving does not exactly match the characteristics of real HV
driving in Fig. A6. Nevertheless, the classifier distinguishes two evidently different patterns in terms of speed and ac/deceleration.
More specifically, AV-like driving has more discrete maximum speeds, smaller maximum acceleration, but larger maximum
deceleration, than HV-like driving. These characteristics are aligned with the comparison between real AV driving and HV driving
in Fig. 4.

References

Aittoniemi, E., 2022. Evidence on impacts of automated vehicles on traffic flow efficiency and emissions: Systematic review. IET Intell. Transp. Syst. 16 (10),
1306–1327. http://dx.doi.org/10.1049/itr2.12219.

Albeaik, S., Bayen, A., Chiri, M.T., Gong, X., Hayat, A., Kardous, N., Keimer, A., McQuade, S.T., Piccoli, B., You, Y., 2022. Limitations and improvements of the
intelligent driver model (IDM). SIAM J. Appl. Dyn. Syst. 21 (3), 1862–1892. http://dx.doi.org/10.1137/21m1406477.

Aria, E., Olstam, J., Schwietering, C., 2016. Investigation of automated vehicle effects on driver’s behavior and traffic performance. Transp. Res. Procedia 15,
761–770. http://dx.doi.org/10.1016/j.trpro.2016.06.063.

Barmpounakis, E., Geroliminis, N., 2020. On the new era of urban traffic monitoring with massive drone data: The pNEUMA large-scale field experiment. Transp.
Res. C 111, 50–71. http://dx.doi.org/10.1016/j.trc.2019.11.023.
18

http://dx.doi.org/10.1049/itr2.12219
http://dx.doi.org/10.1137/21m1406477
http://dx.doi.org/10.1016/j.trpro.2016.06.063
http://dx.doi.org/10.1016/j.trc.2019.11.023


Transportation Research Part C 164 (2024) 104673Y. Jiao et al.

C

C

C

C

C

C

D

D

G
H

H
H

H

H

H

K

L

L

L

L

M

M

M

M

M

M

N
N

Q

R

V

S

S

S

S

S

Bian, Y., Zheng, Y., Ren, W., Li, S.E., Wang, J., Li, K., 2019. Reducing time headway for platooning of connected vehicles via V2V communication. Transp. Res.
C 102, 87–105. http://dx.doi.org/10.1016/j.trc.2019.03.002.

aesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom, O., 2020. nuScenes: A multimodal dataset for
autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR.

alvert, S.C., Schakel, W.J., van Lint, J.W.C., 2017. Will automated vehicles negatively impact traffic flow? J. Adv. Transp. 2017, 1–17. http://dx.doi.org/10.
1155/2017/3082781.

arlsen, A.N., Maslovat, D., Kaga, K., 2020. An unperceived acoustic stimulus decreases reaction time to visual information in a patient with cortical deafness.
Sci. Rep. 10 (1), http://dx.doi.org/10.1038/s41598-020-62450-9.

hang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr, P., Lucey, S., Ramanan, D., Hays, J., 2019. Argoverse: 3D tracking and
forecasting with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, Carlifornia, United States.

iuffo, B., Punzo, V., Montanino, M., 2012. Thirty years of gipps’ car-following model: Applications, developments, and new features. Transp. Res. Rec.: J. Transp.
Res. Board 2315 (1), 89–99. http://dx.doi.org/10.3141/2315-10.

oifman, B., Wu, M., Redmill, K., Thornton, D.A., 2016. Collecting ambient vehicle trajectories from an instrumented probe vehicle. Transp. Res. C 72, 254–271.
http://dx.doi.org/10.1016/j.trc.2016.09.001.

i, X., Shi, R., 2021. A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving policy learning. Transp.
Res. C 125, 103008. http://dx.doi.org/10.1016/j.trc.2021.103008.

uarte, F., Ratti, C., 2018. The impact of autonomous vehicles on cities: A review. J. Urban Technol. 25 (4), 3–18. http://dx.doi.org/10.1080/10630732.2018.
1493883.

ipps, P., 1981. A behavioural car-following model for computer simulation. Transp. Res. B 15 (2), 105–111. http://dx.doi.org/10.1016/0191-2615(81)90037-0.
amdar, S., 2012. Driver behavior modeling. In: Eskandarian, A. (Ed.), Handbook of Intelligent Vehicles. Springer, London, pp. 537–558. http://dx.doi.org/10.

1007/978-0-85729-085-4_20.
ochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8), 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.
ouston, J., Zuidhof, G., Bergamini, L., Ye, Y., Chen, L., Jain, A., Omari, S., Iglovikov, V., Ondruska, P., 2021. One thousand and one hours: Self-driving motion

prediction dataset. In: Kober, J., Ramos, F., Tomlin, C. (Eds.), In: Proceedings of the 2020 Conference on Robot Learning, vol. 155, pp. 409–418.
u, X., Zheng, Z., Chen, D., Sun, J., 2023. Autonomous vehicle’s impact on traffic: Empirical evidence from Waymo open dataset and implications from modelling.

IEEE Trans. Intell. Transp. Syst. 1–14. http://dx.doi.org/10.1109/tits.2023.3258145.
u, X., Zheng, Z., Chen, D., Zhang, X., Sun, J., 2022. Processing, assessing, and enhancing the waymo autonomous vehicle open dataset for driving behavior

research. Transp. Res. C 134, 103490. http://dx.doi.org/10.1016/j.trc.2021.103490.
ulse, L.M., Xie, H., Galea, E.R., 2018. Perceptions of autonomous vehicles: Relationships with road users, risk, gender and age. Saf. Sci. 102, 1–13.

http://dx.doi.org/10.1016/j.ssci.2017.10.001.
rajewski, R., Bock, J., Kloeker, L., Eckstein, L., 2018. The highd dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of

highly automated driving systems. In: IEEE 21st International Conference on Intelligent Transportation Systems. ITSC, Maui, HI, United States, pp. 2118–2125.
http://dx.doi.org/10.1109/itsc.2018.8569552.

i, L., Chen, X., 2017. Vehicle headway modeling and its inferences in macroscopic/microscopic traffic flow theory: A survey. Transp. Res. C 76, 170–188.
http://dx.doi.org/10.1016/j.trc.2017.01.007.

i, G., Jiao, Y., Knoop, V.L., Calvert, S.C., van Lint, J.W.C., 2023. Large car-following data based on lyft level-5 open dataset: Following autonomous
vehicles vs. Human-driven vehicles. In: IEEE 26th International Conference on Intelligent Transportation Systems. ITSC, Bilbao, Spain, pp. 5818–5823.
http://dx.doi.org/10.1109/ITSC57777.2023.10422574.

itman, T., 2015. Autonomous vehicle implementation predictions: Implications for transport planning. In: Transportation Research Board 94th Annual Meeting.
Washington D.C., United States.

iu, S., Zheng, K., Zhao, L., Fan, P., 2020. A driving intention prediction method based on hidden Markov model for autonomous driving. Comput. Commun.
157, 143–149. http://dx.doi.org/10.1016/j.comcom.2020.04.021.

ahdinia, I., Mohammadnazar, A., Arvin, R., Khattak, A.J., 2021. Integration of automated vehicles in mixed traffic: Evaluating changes in performance of
following human-driven vehicles. Accid. Anal. Prev. 152, 106006. http://dx.doi.org/10.1016/j.aap.2021.106006.

akridis, M., Leclercq, L., Mattas, K., Ciuffo, B., 2020a. The impact of driving homogeneity due to automation and cooperation of vehicles on uphill freeway
sections. Eur. Transp. Res. Rev. 12 (1), http://dx.doi.org/10.1186/s12544-020-00407-9.

akridis, M., Mattas, K., Ciuffo, B., 2020b. Response time and time headway of an adaptive cruise control. An empirical characterization and potential impacts
on road capacity. IEEE Trans. Intell. Transp. Syst. 21 (4), 1677–1686. http://dx.doi.org/10.1109/tits.2019.2948646.

alinin, A., Band, N., Ganshin, Alexander, Chesnokov, G., Gal, Y., Gales, M.J.F., Noskov, A., Ploskonosov, A., Prokhorenkova, L., Provilkov, I., Raina, V.,
Raina, V., Roginskiy, Denis, Shmatova, M., Tigas, P., Yangel, B., 2022. Shifts: A dataset of real distributional shift across multiple large-scale tasks.
http://dx.doi.org/10.48550/arxiv.2107.07455, arXiv.

eyer, J., Becker, H., Bösch, P.M., Axhausen, K.W., 2017. Autonomous vehicles: The next jump in accessibilities? Res. Transp. Econ. 62, 80–91. http:
//dx.doi.org/10.1016/j.retrec.2017.03.005.

ozaffari, S., Al-Jarrah, O.Y., Dianati, M., Jennings, P., Mouzakitis, A., 2022. Deep learning-based vehicle behavior prediction for autonomous driving applications:
A review. IEEE Trans. Intell. Transp. Syst. 23 (1), 33–47. http://dx.doi.org/10.1109/tits.2020.3012034.

ewell, G., 2002. A simplified car-following theory: A lower order model. Transp. Res. B 36 (3), 195–205. http://dx.doi.org/10.1016/s0191-2615(00)00044-8.
ikitas, A., Njoya, E.T., Dani, S., 2019. Examining the myths of connected and autonomous vehicles: Analysing the pathway to a driverless mobility paradigm.

Int. J. Automot. Technol. Manag. 19, 10–30. http://dx.doi.org/10.1504/ijatm.2019.098513.
ian, R., Lai, X., Li, X., 2022. 3D object detection for autonomous driving: A survey. Pattern Recognit. 130, 108796. http://dx.doi.org/10.1016/j.patcog.2022.

108796.
ahmati, Y., Hosseini, M.K., Talebpour, A., Swain, B., Nelson, C., 2019. Influence of autonomous vehicles on car-following behavior of human drivers. Transp.

Res. Rec. 2673 (12), 367–379. http://dx.doi.org/10.1177/0361198119862628.
ieira da Rocha, T., Leclercq, L., Montanino, M., Parzani, C., Punzo, V., Ciuffo, B., Villegas, D., 2015. Does traffic-related calibration of car-following models

provide accurate estimations of vehicle emissions? Transp. Res. Part D: Transp. Environ. 34, 267–280. http://dx.doi.org/10.1016/j.trd.2014.11.006.
ak, H., Senior, A., Beaufays, F., 2014. Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition.

http://dx.doi.org/10.48550/arXiv.1402.1128, arXiv.
chakel, W.J., van Arem, B., 2014. Improving traffic flow efficiency by in-car advice on lane, speed, and headway. IEEE Trans. Intell. Transp. Syst. 15 (4),

1597–1606. http://dx.doi.org/10.1109/tits.2014.2303577.
chieben, A., Wilbrink, M., Kettwich, C., Madigan, R., Louw, T., Merat, N., 2018. Designing the interaction of automated vehicles with other traffic participants:

Design considerations based on human needs and expectations. Cogn., Technol. Work 21 (1), 69–85. http://dx.doi.org/10.1007/s10111-018-0521-z.
chwarting, W., Pierson, A., Alonso-Mora, J., Karaman, S., Rus, D., 2019. Social behavior for autonomous vehicles. Proc. Natl. Acad. Sci. USA 116 (50),

2492–24978. http://dx.doi.org/10.1073/pnas.1820676116.
harma, A., Zheng, Z., Bhaskar, A., 2018. A pattern recognition algorithm for assessing trajectory completeness. Transp. Res. C 96, 432–457. http://dx.doi.org/

10.1016/j.trc.2018.09.027.
19

http://dx.doi.org/10.1016/j.trc.2019.03.002
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb6
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb6
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb6
http://dx.doi.org/10.1155/2017/3082781
http://dx.doi.org/10.1155/2017/3082781
http://dx.doi.org/10.1155/2017/3082781
http://dx.doi.org/10.1038/s41598-020-62450-9
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb9
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb9
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb9
http://dx.doi.org/10.3141/2315-10
http://dx.doi.org/10.1016/j.trc.2016.09.001
http://dx.doi.org/10.1016/j.trc.2021.103008
http://dx.doi.org/10.1080/10630732.2018.1493883
http://dx.doi.org/10.1080/10630732.2018.1493883
http://dx.doi.org/10.1080/10630732.2018.1493883
http://dx.doi.org/10.1016/0191-2615(81)90037-0
http://dx.doi.org/10.1007/978-0-85729-085-4_20
http://dx.doi.org/10.1007/978-0-85729-085-4_20
http://dx.doi.org/10.1007/978-0-85729-085-4_20
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb17
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb17
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb17
http://dx.doi.org/10.1109/tits.2023.3258145
http://dx.doi.org/10.1016/j.trc.2021.103490
http://dx.doi.org/10.1016/j.ssci.2017.10.001
http://dx.doi.org/10.1109/itsc.2018.8569552
http://dx.doi.org/10.1016/j.trc.2017.01.007
http://dx.doi.org/10.1109/ITSC57777.2023.10422574
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb24
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb24
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb24
http://dx.doi.org/10.1016/j.comcom.2020.04.021
http://dx.doi.org/10.1016/j.aap.2021.106006
http://dx.doi.org/10.1186/s12544-020-00407-9
http://dx.doi.org/10.1109/tits.2019.2948646
http://dx.doi.org/10.48550/arxiv.2107.07455
http://dx.doi.org/10.1016/j.retrec.2017.03.005
http://dx.doi.org/10.1016/j.retrec.2017.03.005
http://dx.doi.org/10.1016/j.retrec.2017.03.005
http://dx.doi.org/10.1109/tits.2020.3012034
http://dx.doi.org/10.1016/s0191-2615(00)00044-8
http://dx.doi.org/10.1504/ijatm.2019.098513
http://dx.doi.org/10.1016/j.patcog.2022.108796
http://dx.doi.org/10.1016/j.patcog.2022.108796
http://dx.doi.org/10.1016/j.patcog.2022.108796
http://dx.doi.org/10.1177/0361198119862628
http://dx.doi.org/10.1016/j.trd.2014.11.006
http://dx.doi.org/10.48550/arXiv.1402.1128
http://dx.doi.org/10.1109/tits.2014.2303577
http://dx.doi.org/10.1007/s10111-018-0521-z
http://dx.doi.org/10.1073/pnas.1820676116
http://dx.doi.org/10.1016/j.trc.2018.09.027
http://dx.doi.org/10.1016/j.trc.2018.09.027
http://dx.doi.org/10.1016/j.trc.2018.09.027


Transportation Research Part C 164 (2024) 104673Y. Jiao et al.

S

S

S

S

T

T

T

T

U
v

V

W

W

W

W

X

Y

Y

Z
Z
Z

Z

Z

Sharma, A., Zheng, Z., Bhaskar, A., 2019. Is more always better? The impact of vehicular trajectory completeness on car-following model calibration and
validation. Transp. Res. B 120, 49–75. http://dx.doi.org/10.1016/j.trb.2018.12.016.

hi, X., Li, X., 2021. Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration. Transp. Res. B 150, 279–292.
http://dx.doi.org/10.1016/j.trb.2021.06.011.

iebinga, O., Zgonnikov, A., Abbink, D., 2022. A human factors approach to validating driver models for interaction-aware automated vehicles. ACM Trans.
Human-Robot Interact. 11 (4), 1–21. http://dx.doi.org/10.1145/3538705.

oni, S., Reddy, N., Tsapi, A., van Arem, B., Farah, H., 2022. Behavioral adaptations of human drivers interacting with automated vehicles. Transp. Res. Part F:
Traffic Psychol. Behav. 86, 48–64. http://dx.doi.org/10.1016/j.trf.2022.02.002.

un, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H.,
Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang, Y., Shlens, J., Chen, Z., Anguelov, D., 2020. Scalability in perception for autonomous
driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR.

eramoto, W., Honda, K., Furuta, K., Sekiyama, K., 2017. Visuotactile interaction even in far sagittal space in older adults with decreased gait and balance
functions. Exp. Brain Res. 235 (8), 2391–2405. http://dx.doi.org/10.1007/s00221-017-4975-7.

reiber, M., Hennecke, A., Helbing, D., 2000. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62 (2), 1805–1824.
http://dx.doi.org/10.1103/physreve.62.1805.

reiber, M., Kesting, A., 2013a. Traffic Flow Dynamics. Springer Berlin Heidelberg, pp. 303–338. http://dx.doi.org/10.1007/978-3-642-32460-4_16, Chap.
Calibration and Validation.

reiber, M., Kesting, A., 2013b. Microscopic calibration and validation of car-following models – A systematic approach. Procedia - Soc. Behav. Sci. 80, 922–939.
http://dx.doi.org/10.1016/j.sbspro.2013.05.050.

.S. Department of Transportation – FHWA, 2008. NGSIM – Next generation simulation. http://www.ngsim.fhwa.dot.gov/. (Accessed: 2023-11-07).
an Erp, P.B., Knoop, V.L., Hoogendoorn, S.P., 2018. Macroscopic traffic state estimation using relative flows from stationary and moving observers. Transp. Res.

B 114, 281–299. http://dx.doi.org/10.1016/j.trb.2018.06.005.
ogel, K., 2003. A comparison of headway and time to collision as safety indicators. Accid. Anal. Prev. 35 (3), 427–433. http://dx.doi.org/10.1016/s0001-

4575(02)00022-2.
ang, Y., Farah, H., Yu, R., Qiu, S., van Arem, B., 2023. Characterizing behavioral differences of autonomous vehicles and human-driven vehicles at signalized

intersections based on Waymo open dataset. Transp. Res. Rec. 036119812311657. http://dx.doi.org/10.1177/03611981231165783.
ang, W., Wang, L., Zhang, C., Liu, C., Sun, L., 2022. Social interactions for autonomous driving: A review and perspectives. Found. Trends Robot. 10 (3–4),

198–376. http://dx.doi.org/10.1561/2300000078.
en, X., Cui, Z., Jian, S., 2022. Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset. Accid.

Anal. Prev. 172, 106689. http://dx.doi.org/10.1016/j.aap.2022.106689.
ilson, B., Qi, W., Agarwal, T., Lambert, J., Singh, J., Khandelwal, S., Pan, B., Kumar, R., Hartnett, A., Pontes, J.K., Ramanan, D., Carr, P., Hays, J., 2023.

Argoverse 2: Next generation datasets for self-driving perception and forecasting. http://dx.doi.org/10.48550/arxiv.2301.00493, arXiv.
ia, Y., Qu, Z., Sun, Z., Li, Z., 2021. A human-like model to understand surrounding vehicles’ lane changing intentions for autonomous driving. IEEE Trans. Veh.

Technol. 70 (5), 4178–4189. http://dx.doi.org/10.1109/tvt.2021.3073407.
ao, Z., Hu, R., Jiang, Y., Xu, T., 2020. Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways. J. Saf. Res. 75,

262–274. http://dx.doi.org/10.1016/j.jsr.2020.09.012.
u, H., Jiang, R., He, Z., Zheng, Z., Li, L., Liu, R., Chen, X., 2021. Automated vehicle-involved traffic flow studies: A survey of assumptions, models, speculations,

and perspectives. Transp. Res. C 127, 103101. http://dx.doi.org/10.1016/j.trc.2021.103101.
hang, T., Jin, P.J., McQuade, S.T., Piccoli, B., 2023. Car-following models: A multidisciplinary review. http://dx.doi.org/10.48550/arxiv.2304.07143, arXiv.
hang, C., Sun, L., 2024. Bayesian calibration of the intelligent driver model. IEEE Trans. Intell. Transp. Syst. 1–13. http://dx.doi.org/10.1109/TITS.2024.3354102.
hang, Y., Talebpour, A., 2023. Characterizing human–automated vehicle interactions: An investigation into car-following behavior. Transp. Res. Rec. http:

//dx.doi.org/10.1177/03611981231192999.
hao, X., Wang, Z., Xu, Z., Wang, Y., Li, X., Qu, X., 2020. Field experiments on longitudinal characteristics of human driver behavior following an autonomous

vehicle. Transp. Res. C 114, 205–224. http://dx.doi.org/10.1016/j.trc.2020.02.018.
heng, F., Liu, C., Liu, X., Jabari, S.E., Lu, L., 2020. Analyzing the impact of automated vehicles on uncertainty and stability of the mixed traffic flow. Transp.

Res. C 112, 203–219. http://dx.doi.org/10.1016/j.trc.2020.01.017.
20

http://dx.doi.org/10.1016/j.trb.2018.12.016
http://dx.doi.org/10.1016/j.trb.2021.06.011
http://dx.doi.org/10.1145/3538705
http://dx.doi.org/10.1016/j.trf.2022.02.002
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb46
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb46
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb46
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb46
http://refhub.elsevier.com/S0968-090X(24)00194-3/sb46
http://dx.doi.org/10.1007/s00221-017-4975-7
http://dx.doi.org/10.1103/physreve.62.1805
http://dx.doi.org/10.1007/978-3-642-32460-4_16
http://dx.doi.org/10.1016/j.sbspro.2013.05.050
http://www.ngsim.fhwa.dot.gov/
http://dx.doi.org/10.1016/j.trb.2018.06.005
http://dx.doi.org/10.1016/s0001-4575(02)00022-2
http://dx.doi.org/10.1016/s0001-4575(02)00022-2
http://dx.doi.org/10.1016/s0001-4575(02)00022-2
http://dx.doi.org/10.1177/03611981231165783
http://dx.doi.org/10.1561/2300000078
http://dx.doi.org/10.1016/j.aap.2022.106689
http://dx.doi.org/10.48550/arxiv.2301.00493
http://dx.doi.org/10.1109/tvt.2021.3073407
http://dx.doi.org/10.1016/j.jsr.2020.09.012
http://dx.doi.org/10.1016/j.trc.2021.103101
http://dx.doi.org/10.48550/arxiv.2304.07143
http://dx.doi.org/10.1109/TITS.2024.3354102
http://dx.doi.org/10.1177/03611981231192999
http://dx.doi.org/10.1177/03611981231192999
http://dx.doi.org/10.1177/03611981231192999
http://dx.doi.org/10.1016/j.trc.2020.02.018
http://dx.doi.org/10.1016/j.trc.2020.01.017

	Beyond behavioural change: Investigating alternative explanations for shorter time headways when human drivers follow automated vehicles
	Introduction
	Conceptual framework
	Distance and time headway
	Factors and hypotheses to be examined

	Methodology
	Isolation of car-following states — car-following regime categorisation
	Isolation of driving variability — car-following modelling and simulation
	Intelligent Driver Model and its calibration
	Controlled simulation experiments

	Isolation of driving characteristics — leading vehicle driving classification

	Data
	Dataset selection
	Vehicle dynamics overview
	Inconsistent vehicle lengths
	Time headway reduction

	Results and discussion
	Impact of car-following states
	Impact of driving variability
	Impact of AV driving characteristics
	Summary of main findings

	Conclusion and outlook
	CRediT authorship contribution statement
	Data availability
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Acknowledgements
	Appendix
	Algorithm to identify car-following regimes
	Vehicle length detection bias in Waymo data
	IDM calibration results
	Simulation experiments based on Gipps' model
	Classifier evaluation

	References


