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Abstract

Transboundary river basins are increasingly subjected to pressures from climate change,
economic expansion, and population growth. These challenges are compounded by
Deep Uncertainties and the complexities of managing water resources that cross
administrative borders. The thesis aims to improve decision support for river basin
management under Deep Uncertainty. Robustness Analysis is leveraged to improve the
adaptive policy design of reservoir operating policies. Open Exploration generates future
states of the world. Using Feature Scoring, PRIM, and Logistic Regression Modeling,
Scenario Discovery pinpoints vulnerabilities that result in Adaptation Tipping Points
described by streamflow patterns. Results identified decreasing precipitation and low
seasonal amplitudes as the most significant uncertainty factors influencing system
performance. In combination with the evaporation rate, they accurately predict policy
failure. A precipitation threshold of 0.965 and a seasonal amplitude threshold of 1.05
effectively describe streamflow patterns that describe the Adaptation Tipping Point
across the Best Hydropower, Best Environment, and Best Tradeoff policy. Specifically,
a resultant streamflow pattern at these thresholds accurately signals imminent policy
inefficiencies that necessitate policy adaptation.
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Executive Summary

The thesis aims to improve decision sup-
port for river basin management under
Deep Uncertainty. A new framework is
introduced and demonstrated using the
transboundary Zambezi River Basin as a
case study. Ultimately, it improves collab-
oration and cooperation in transboundary
river basins, providing a decision-support
tool for river basin management to improve
Decision-making under Deep Uncertainty.

The thesis sets out to leverage Robustness
Analysis to identify critical uncertainties
and performance gaps that inform the def-
inition of Signpost Conditions and Adap-
tation Tipping Points. Hence, this thesis
asks:

How to leverage robustness analysis to im-
prove the adaptive policy design in the con-
text of river basin management under deep
uncertainty?

Case Study Area

The Zambezi River Basin exemplifies a con-
textual situation that many transboundary
river basins face globally. As one of the
most affected by climate change, the basin
is anticipated to struggle. Five water reser-
voirs along the Kafue and Zambezi rivers
are used to generate hydropower and store
and release water based on minimum en-
vironmental flows at three sides and eight
water-demanding irrigation districts. Over-
all, it highlights the necessity for a detailed

Fig. 1 The Zambezi River Basin.

analysis of tradeoffs while acknowledging
Deep Uncertainty.

Methodology

The new methodology integrates the EMODPS
decision support with a Robustness Anal-
ysis to identify system vulnerabilities and
Adaptation Tipping Points. This includes:

• Uncertainty Analysis

• Open Exploration

• Scenario Discovery

First, a non-systematic literature review
identifies the most critical uncertainties for
the Zambezi River Basin.
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Fig. 2 Proposed Methodology.

Second, an Open Exploration experiment
generates plausible future States of the
World. This includes quantifying most crit-
ical uncertainties to explore system vulner-
abilities. It is envisioned to hint at poten-
tial Signpost Conditions characterized by
an interplay of uncertainties.

Third, Scenario Discovery utilizes Feature
Scoring, PRIM and Logistic Regression
Modeling to identify most critical uncer-
tainty combinations. Altogether, this aids
in identifying Signpost Conditions and quan-
tifying Adaptation Tipping Points, both
of which are critical for an adaptive policy
design.

Results

Decreases in precipitation and lower sea-
sonal amplitudes are linked to consistent
policy failures, highlighting the basin’s vul-
nerability to hydroclimatic shifts. A third
condition is necessary to ensure an accu-
rate and reliable definition of failure scenar-
ios. Logistic regression models were able to
accurately predict conditions under which
the system fails to meet its objectives.

Thresholds were used to generate ATP
streamflow conditions. These describe the
contextual character of Adaptation Tip-
ping Points for the Zambezi River Basin.
It is recommended to chose the max ATP-
condition as it describes a cautions ap-
proach that leads to early adaptation sig-
nals. Once the Zambezi River Basin expe-
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Fig. 3 ATP Streamflow Decrease.

riences similar decreases to Figure 3, op-
eration strategies derived from historical
data are not sufficient and will fail.

Implications

The framework enhances Dynamic Plan-
ning by integrating the EMODPS decision-
support tool with Robustness Analysis. It
offers workflow that overcomes the chal-
lenges surrounding the complex policy struc-
ture of Dynamic Adaptive Policy Plans.
The framework allows policymakers to de-
fine contextual Adaptation Tipping Points,
emphasizing the transition from predict-
then act to monitor-and-adapt policy mak-
ing. Stepping away from seeking fixed so-
lutions towards promoting continuous dia-
logue and making responsive adjustments
aligns with the goal of collaboration in
transboundary river basin management, as
policymakers can recognize the Deep Un-
certain nature of river basins and stake-
holder preferences.

Recommendations

To institutionalize the Dynamic Planning
approach, establishing a cooperative moni-
toring system is recommended for the Zam-
bezi River Basin. Given that mean precip-
itation and seasonal amplitudes are iden-
tified as primary drivers of system vulner-
ability, it is crucial to focus monitoring
efforts on these variables.

Monitoring should focus on ATP-streamflow
condition changes according to:

• Significant reductions in streamflow
compared to historic data during the
rainy season; particularly from Jan-
uary to June

• Special attention to the Cahora Bassa
and Bakota Gorge catchments, where
pronounced impacts are observed dur-
ing rainy season streamflow, frequently
exceeding 20 percent.

• Observing the comparatively milder
decreases during the dry season, such
as the 10.72 percent reduction in the
same areas, which, while less severe,
could still indicate adaptation needs.

Further, involved stakeholders including
reservoir operators should be supported
through training, advanced modeling tools,
and demonstration projects to foster the
transition towards monitoring river basins
and adapting operating strategies accord-
ingly.





Chapter 1

Introduction

River basins are under increasing pressure. Climate change, economic expansions,
population growth, and the lack of transboundary management agreements are acceler-
ating their degradation (Eckstein et al., 2021). In 2050, the number of people residing
in water-stressed transboundary basins will double (Munia et al., 2016). Consequently,
increasing water resource depletion and demand will intensify competition and conflicts
(Nations, 2009; Watkins, 2006). With 60 percent of the world’s freshwater resources
flowing across political borders, inter-dependencies tied to transboundary river basins
only grow more complex (Kecskes, 2020).

Effective river basin management is vital for human survival, ecosystem health, and
advancing societies. The 1992 global Water Convention (WHO, 1999), Sustainable
Development Goal 6 (United Nations, 2015), and regional strategies like the 2018-2030
African Ministers’ Council on Water (AMCOW, 2018), and the 2021 EU Council
Conclusions on Water, all actively emphasize this recognition. They promote multi-
actor agreements for equitable water (re)allocation. It aims to resolve conflicts through
cooperation, enhancing financial investments, benefit sharing, and social cohesion. For
instance, Wheeler et al. (2016) state that a transboundary agreement for the Eastern
Nile Basin could significantly minimize the risk of conflict.

Despite its benefits, reaching transboundary agreements takes time and effort. Dis-
tributing water between up- and downstream actors requires balancing diverse interests
(Kedida and Arsano, 2024). Stakeholders’ differing perceptions of a fair distribution of
benefits and risks further complicate consensus (Turton and Ashton, 2008). Moreover,
limited knowledge about hydroclimatic and socio-economic developments increases
complexity (Zeitoun et al., 2013).

Effective river basin management must synthesize multiple timescales, ranging from
short-term water needs to long-term sustainability goals. It requires decision-makers to
make uncertain assumptions about the future (Dewar et al., 1993). These uncertainties
are deep when probabilities are elusive or absent (Walker et al., 2003). Two approaches
are prominent; Robust-and Dynamic Planning
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Decision-makers account for uncertainties post-modeling, following a Robust Planning
approach. Honing the principles of Exploratory Modeling Analysis, decision support
eschews early commitment to a single scenario (Bankes, 1993). Instead, multiple
alternative policies are evaluated across various future states of the world (Savage,
1972). Consequently, decision-makers can ensure policy effectiveness under Deep
Uncertainty by prioritizing the least sensitive policies (Herman et al., 2015). However,
the need to handle all scenarios equally may decrease performance due to their potential
precautionary bias towards extreme scenarios. Moreover, the final policy selection
depends on the chosen metric, raising the question of how robust robustness metrics
are (Kwakkel et al., 2016).

In contrast, rather than prioritizing a robust policy post-modeling, policymakers
emphasize an adaptive policy design. Adopting a proactive stance that anticipates
future changes and necessary policy adaptations, Dynamic Planning embraces flexible
policy plans to manage multiple states of the world (Kwakkel et al., 2010; Walker et al.,
2001). Once changing conditions affect system performance significantly, policies adapt.
Nevertheless, determining which conditions to monitor, called Signposts (Haasnoot
et al., 2013), and when to adapt, called Adaptation Tipping Points (Kwadijk et al.,
2010), is challenging.

To improve river basin management under Deep Uncertainty, policymakers must
account for the multiplicity of future outcomes. While robust and dynamic approaches
have limitations and are often viewed contrary to others, this thesis aims to integrate
them into a comprehensive framework. Groves et al. (2015) argue that exploratory
analysis could highlight conditions under which policies fail. This thesis utilizes
computational modeling, specifically Robustness Analysis within the framework of
Exploratory Modeling Analysis, to identify critical performance gaps. These gaps are
expected to reveal critical combinations of uncertainties, informing the definition of
Signposts and quantifying Adaptation Tipping Points. Understanding what to monitor
and when to adapt will reduce reliance on robust measures and improve the adaptive
policy design. However, while the potential benefits are clear, practical implementation
in river basin management remains largely theoretical and has yet to be realized.

Conclusively, all the above reveal a significant research gap in the practical application
of a modeling framework that utilizes Robustness Analysis to enhance adaptive policy
design for river basin management under deep uncertainties, and hence, this thesis asks:

How to leverage robustness analysis to improve the adaptive policy design in the context
of river basin management under deep uncertainty?

The thesis aims to improve decision support for river basin management under Deep
Uncertainty. A new framework is introduced and demonstrated using the transbound-
ary Zambezi River Basin as a case study. First, a non-systematic literature review
identifies relevant uncertainties. Second, an Open Exploration experiment generates
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plausible future States of the World. The following Scenario Discovery explores critical
combinations of uncertainty factors. This aids in identifying Signpost Conditions and
quantifying Adaptation Tipping Points, both of which are critical for an adaptive
policy design. Ultimately, it improves collaboration and cooperation in transboundary
river basins, providing a decision-support tool for river basin management to improve
Decision-making under Deep Uncertainty.

The thesis is structured as follows: Succeeding the introduction, a background chapter
introduces relevant concepts. It further discusses Robust-and Adaptive planning and
motivates the research gap. Next, the Zambezi River Basin case study area is presented
before the methodology, methods, and experimental setup are outlined. Subsequently,
the proposed workflow is demonstrated in the analysis section. Finally, the thesis
concludes with results, discussion, and recommendations.





Chapter 2

Theoretical Background

This chapter contextualizes river basin management. First, problem context highlights
system complexity. Next, the decision context introduces the fundamentals of river basin
management. Deep uncertainty is introduced before Robust-and Dynamic Planning
is discussed. Afterward, computational models are pictured as decision-support tools.
Subsequently, the basics of modeling river basin management are detailed, followed by
the introduction of Evolutionary Multi-objective Direct Policy Search. The chapter
concludes by specifying the persisting knowledge gap, which informs three sub-research
questions.

2.1 River Basin Management
This section introduces river basin management. First, it details river basin complexities.
Afterward, the decision arena of river basin management is introduced, laying the
foundations for the decision context of river basin management.

2.1.1 Problem Context
River basin management describes a Wicked Problem (Ackoff, 1979). Complexities
become particularly pronounced in the decision arena, where ambiguity about per-
formance metrics leads to problem interpretations. These differences in viewpoints
reflect the diverse values and objectives each actor brings to the table. It complicates
consensus on what constitutes a good solution. For example, industrial stakeholders
may argue from a utilitarian perspective for more significant water allocations based
on economic output. At the same time, environmental groups may adopt a prioritarian
approach, emphasizing the needs of endangered ecosystems. Such ambiguity challenges
the decision-making process and exemplifies its wicked nature. Solutions cannot be
simply categorized as true or false but are evaluated as good or bad based on the
perspectives of each stakeholder (Rittel and Webber, 1973).
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Furthermore, the problem formulation in river basin management is continually evolving.
As new information emerges or environmental conditions change, the understanding of
the problem adjusts, influencing stakeholder preferences and necessitating adjustments
in strategies. Consequently, allocating water within river basins requires extensive
negotiation and ongoing renegotiation to reconcile the shifting interests of diverse
stakeholders. Each implemented decision affects the system and typically spawns new
conditions, illustrating that every wicked problem is unique and often a symptom
of another problem. Consequently, policy levers can not be easily transferred from
one context to another without significant adjustments, as they must be tailored to
the specific external factors of each basin. This situation continuously reshapes the
decision context, making decisions inherently contentious and perpetually unresolved,
emphasizing that no final solution is ever attainable in river basin management.

2.1.2 Decision Context
River basins are socio-technical ecological systems characterized by multi-level interac-
tions among hydrological, ecological, and socio-economic dimensions. These interactions
are inherent to deep uncertainties and create complex and intertwined relationships,
positioning the problem context for river basin management into the domain of wicked
problems, see Section 2.1.

Policy Lever

In general, river basin management employs a control-volume approach, focusing
on the capacity to manage water storage within the basin. Water reservoirs, often
created through damming, serve as crucial storage volumes, where decision-makers
can determine how much water to store and release based on current and anticipated
needs. This control is essential for effectively managing water distribution across the
river basin.

The primary decision challenge is to find the best operating policies (L), also called
control strategies, under varying external factors beyond the decision-maker’s control
(X). Thus, policymakers must find release decisions that achieve superior performance
across multiple objectives and external conditions. Performance is determined by
performance metrics (M).

Deep Uncertainty

River basins are subject to Deep Uncertainty. Building on Knight (1921), who made
a foundational distinction between calculable risks and incalculable uncertainties,
(Walker et al., 2003) defined a spectrum of uncertainty from deterministic systems with
well-defined parameters to total ignorance, known as "unknown unknowns." River basin
management typically encounters uncertainty beyond Level 3. Here, future events
are unpredictable due to the complex interactions and limited understanding of the
processes involved. Despite this, the extensive body of research based on historical
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Fig. 2.1 XLRM Framework Diagram for River Basin Management. Policy levers (L)
describe reservoir release decisions to improve the system (R) under varying external
conditions (X) captured by performance metrics (M).

data provides insights into potential changes in precipitation patterns, water flows,
temperature fluctuations, and hydroclimatic extremes.

This existing knowledge positions river basin management within Level 4a uncertainty,
as described in (Marchau et al., 2019). Unlike Level 4b, which entails total ignorance
about future states, Level 4a acknowledges the presence of many plausible future
states of the world. These futures are still deeply uncertain, but the systematic
study of past trends and variable conditions provides a structured basis for predicting
potential outcomes, allowing for more informed decision-making despite the inherent
uncertainties.

2.2 Deep Uncertain River Basins
This section introduces two key concepts of Decision-making under Deep Uncertainty.
Subsequently, advantages and limitations are discussed. Finally, computational models
are presented as potential decision-support tools to handle deep uncertain river basins.

2.2.1 Decision-making Under Deep Uncertainty
River basin management falls under Decision-making under Deep Uncertainty. Con-
ventional predict-then-act approaches fall short when decision contexts are subject to
deep uncertainty. Methods grounded in expected value utility theory require exact
probabilities, especially. For instance, cost-benefit analysis predicts and evaluates
utility values against a cost function given one specific scenario. However, deeply
uncertain systems challenge these approaches. Popper et al. (2009) points out it is the
"inability to grapple with the long-term’s multiplicity of plausible futures" [p.50] that
demonstrates the inadequacy of traditional approaches (Dessai et al., 2009; Lempert,
2003). Consequentially, new frameworks have emerged. According to Herman et al.
(2020), the main two concepts are Robust Planning, which focuses on identifying
policy alternatives that perform well across a broad spectrum of future conditions, and
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Fig. 2.2 Progressive Transition Table of Levels of Uncertainty from (Marchau et al.,
2019). Levels range from deterministic systems to total ignorance, with four different
levels in between. The main criteria are context, system model, system outcomes, and
weights.

Dynamic Planning, which seeks to develop adaptive policies that adjust in response to
evolving conditions.

2.2.2 Robust Planning
Robust Planning prioritizes a policies’ ability to handle diverse conditions rather than
optimal performance in specific scenarios. Thus, it aims to minimize the policies
sensitivity to changing conditions (Herman et al., 2020).

Decision support for Robust Planning follows a generate-first-choose-later approach
(Hwang and Masud, 2012). In contrast to traditional decision support, which typically
integrates stakeholder preferences from the beginning through a Priori aggregation
of costs and benefits, Robust Planning adopts decision support a Posteriori through
Robustness Analysis (Tsoukiàs, 2008). Identifying and evaluating a broad spectrum
of potential scenarios to pinpoint system vulnerabilities before imposing stakeholder
preferences ensures that policy plans are both satisfactory to stakeholders and robust.
According to Herman et al. (2015), it follows a four-step approach. Their insights are
summarised below.

Identification of Alternative Policies

First, policy alternatives are identified. The identification method depends on the
characterization of the system’s uncertainties. With well-defined scenarios, decision-
makers can pre-specify policy alternatives according to Decision Scaling (Brown and
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Wilby, 2012) or Robust Decision Making (Hine and Hall, 2010; ?). With somewhat
characterized uncertainties 1 frameworks like Many-Objective Robust Decision Making
(Kasprzyk et al., 2013) integrate simulation and optimization approaches to refine
decisions. Conversely, Robust Optimization (Watkins Jr and McKinney, 1997) is
necessary when scenarios are deeply uncertain. This allows decision-makers to select
multiple potential policies to evaluate within the next steps.

Generation of States of the World

Second, a set of uncertain states of the world is generated. While Decision Scaling,
Robust Decision Making, and Multi-objective Robust Decision Making employ global
exploratory sampling (Bryant and Lempert, 2010), Info-Gap frameworks sample out-
ward from an expected initial state until encountering failure (Hipel and Ben-Haim,
1999). This step provides a meaningful representation of the multiplicity of future
states against which policy alternatives can be evaluated.

Quantifying Robustness Metrics

Third, identified policy alternatives are evaluated across previously generated future
states of the world. It quantifies the robustness of decision alternatives against various
states of the world. Robustness metrics fall into two categories: regret and satisficing
measures (Lempert and Collins, 2007). Regret measures focus on the cost of deviating
from optimal or expected outcomes. In contrast, satisficing measures assess the extent to
which solutions meet predefined performance thresholds across uncertain conditions. It
equips decision-makers with metrics to compare solutions, thereby facilitating informed
decision-making under Deep Uncertainty.

Identifying Critical Uncertainties

Finally, critical uncertainty factors are identified. This follows a consequence-oriented
sensitivity analysis to isolate key uncertainty factors. Robust Decision-Making and
Multi-objective Robust Decision-Making approaches utilize methods like the Patient
Rule Induction Method (PRIM) to pinpoint sensitive ranges within the uncertainty
space. This step allows decision-makers to identify specific uncertain factors that
require attention.

2.2.3 Dynamic Planning
Dynamic Planning focuses on flexible and adaptive policy structures. It aims to
promote policies that can adjust in response to changes and new insights (Haasnoot
et al., 2013; Pahl-Wostl, 2007). It does not seek permanent robust policy solutions
but promotes dynamic policy plans that can evolve in response to deep uncertainties

1Deep uncertain relations are assumed to follow an underlying distributions that can be approxi-
mated
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(Herman et al., 2020). Dynamic Planning includes four main components. According to
Herman et al. (2020), these are policy structure, uncertainty characterization, solution
method, and robustness testing. The following outlines each of them based on the
review from Herman et al. (2020) about dynamic water resources planning under deep
uncertainty.

Defining Policy Structures

In Dynamic Planning, overall policy structures include the policy action, Signposts
(Haasnoot et al., 2013), and Adaptation Tipping Points (Kwadijk et al., 2010). Policy
actions can be infrastructure (hard) and operation (soft) policies (Bertoni et al., 2019).
Signposts determine indicator variables that provide information about whether the
foundational assumptions of the current policy remain valid. Monitoring these Signposts
is essential for the adaptive policy design (Kwakkel et al., 2010; Walker et al., 2001). It
ensures that the implementation is on track and that necessary adjustments are timely
and effective. Adaptation Tipping Points represent crucial thresholds within the system
where the existing policy fails to achieve its objectives, signaling that the system’s
conditions are nearing or have reached a point of unacceptable performance(Marchau
et al., 2019).

Characterization of Uncertainties

Once policy structures are established, the system’s uncertainties must be characterized.
This involves utilizing models and scenarios to identify and quantify uncertainties,
often represented by ensembles of synthetic scenarios. These scenarios are typically
developed either through parameterizing a stationary stochastic process with historical
observations (Haasnoot et al., 2015) or by employing General Circulation Models
to establish a non-stationary stochastic process (Fletcher et al., 2019; Hui et al.,
2018). To comprehensively characterize uncertainties, three main approaches are
employed: sampling uncertainty, which deals with natural variability and limited data
(Quinn et al., 2018); exogenous uncertainty, arising from external climatic factors; and
endogenous uncertainty, which focuses on the unpredictable internal dynamics of the
system (Haddeland et al., 2014).

Solution Method

Different methods are used to synthesize policy structure and characterize uncertainties.
Selecting the appropriate solution method is problem-specific. Stochastic Dynamic
Programming (Hui et al., 2018) offers high accuracy with well-defined variables but
faces computational limits; see Section 2.3.3. Open Loop methods (Borgomeo et al.,
2016) provide efficiency but risk overfitting. Policy Search allows flexible adaptation to
changing conditions but demands careful function and parameter selection to avoid
fitting errors (Giuliani et al., 2017).
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Validation

Towards the end, the adaptive policy structure is tested using more realizations from
the same uncertainties characterized and used within the simulation method or by
introducing new variables or distributions. While the first checks for overfitting to
specific scenarios, the second evaluates adaptability to broader uncertainties. The goal
is to confirm the policy’s effectiveness under varying conditions (Lempert and Collins,
2007).

Dynamic Adaptive Policy Pathways

The Dynamic Adaptive Policy Pathway exemplifies the rationale of Dynamic Planning
(Haasnoot et al., 2013). Its adaptation pathway map visually represents the complex
policy structure, including multiple policy actions and adaptation points (derived from
Signposts and Adaptation Tipping Points); see Figure 2.3.

Fig. 2.3 Dynamic Adaptive Policy Pathway Map. It illustrates a metro map commonly
used for Dynamic Adaptive Policy Pathway planning. It depicts various policy actions
over time, starting from the current policy. It outlines potential future paths, each
representing a response to changing conditions captured by the Signpost. Policies
adapt when current policy actions reach adaptation tipping points.

Starting from the current situation, if current policy targets are missed, decision-makers
have several paths to maintain or enhance policy performance. Actions A and D are
viable for achieving long-term goals across all scenarios but could be costly. Thus,
policymakers might first implement Action B or C and monitor performance. If Action
B is chosen, once it reaches an Adaptation Tipping Point, a transition to Action A or C
may be necessary, leading to adaptation points. This flexibility allows adjustments to
be made in response to new data or unexpected conditions and postpone costly policy
implementations into the future. The adaptation pathways map shows the effectiveness
of each action over time.



12 Theoretical Background

2.2.4 Comparing Robust and Dynamic Planning Approaches
Robust and Dynamic Planning excels in Decision-making under Deep Uncertainty
differently. Each approach has specific benefits and challenges, which are discussed
below. A summary is presented in Table 2.1.

Robust Planning results in dependable policy outcomes with strategies that ensure
effectiveness across a wide range of future states of the world. It is particularly
beneficial for deep uncertain river basins, providing a stable framework that withstands
system variability (Herman et al., 2015). However, the inherent rigidity of Robust
Planning hinders timely adaptations to new information. In the continuous context of
river basin management, this may result in operational policies that fail to respond
to environmental or social changes. Consequently, Robust Planning could constrain
flexibility, potentially leading to performance loss if underlying assumptions about the
system change.

Furthermore, Robust Planning often favors static near-term solutions, which can lead
to costly over-design. Moreover, adopting more conservative strategies for robustness
might increase costs (Borgomeo et al., 2018). In contrast, Dynamic Planning solutions
are more fluid, which allows policymakers to postpone costly infrastructure policies,
first applying soft policy actions to avoid lock-ins (Haasnoot et al., 2013).

In contrast to Robust Planning, Dynamic Planning supports precise responses to
emerging information. This could potentially enhance policy performance (Dias et al.,
2020). For instance, the Dutch Delta Program utilizes Dynamic Planning to adjust
flood risk management strategies based on real-time sea level rise monitoring and
socio-economic shifts. Its flexible structure ensures that safety measures are adapted
to changing conditions (Bloemen et al., 2019; Marchau et al., 2019; van Buuren, 2019).

Despite its advantages, Dynamic Planning is not without complexities. Its policy plan
does not only consist of a single policy action but includes identifying critical Signposts
and quantifying Adaptation Tipping Points, both particularly challenging tasks (Adger
et al., 2009; Kwakkel and Pruyt, 2013; Schipper and Burton, 2009). Additionally,
once Signposts are established, monitoring systems must be put in place and regularly
assessed, which adds complexity and costs. Therefore, implementing a single robust
policy appears more straightforward than managing a complex policy structure.

The more straightforward policy structure allows for multi-objective optimization
approaches in Robust Planning. It provides clear decision paths that allow the balance
between cost, reliability, and environmental impact. However, it requires initial
consensus on objectives, which is challenging to achieve and may lead to over-designed
solutions, adding to the inflexibility of Robust Planning. Conversely, dynamic Planning
engages stakeholders continuously, which enhances adaptability but requires more
complex management and coordination efforts (Cohen and Herman, 2021). It further
complicates multi-objective optimization attempts.
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Table 2.1 Comparison of Robust and Dynamic Planning

Robust Planning Dynamic Planning

Advantages:
• Results in dependable outcomes,

effective across various future
states.

• Simple policy structure that pro-
vides clear decision paths.

• Provides a stable framework for
decision-making.

Advantages:
• Supports precise responses to

emerging information.
• Allows postponing costly policies,

prioritizing smaller policy actions
first.

• Engages stakeholders continu-
ously, enhancing adaptability.

Limitations:
• Rigidity hinders adaptations to

new information.
• May result in policies that fail to

respond to changes.
• Often favors static solutions, lead-

ing to costly over-design.
• Requires initial consensus on ob-

jectives, which is difficult to
achieve.

• Depends on methodological
choices that lead to inconsistent
applications.

Limitations:
• Complexity in managing dynamic

policy structures.
• Requires identifying critical Sign-

posts and quantifying Adaptation
Tipping Points.

• Regular assessment of monitor-
ing systems adds complexity and
costs.

• Complicates multi-objective op-
timization due to timing and se-
quencing of actions.

The ambiguity in defining robustness through a wide array of metrics can lead to
inconsistent applications across projects (Herman et al., 2015). The reliance on a
detailed Robustness Analysis involves multiple methodological choices, from how
decision alternatives are generated to how uncertainties are quantified. Consequentially,
these choices influence outcomes and the overall robustness of the planning process,
ultimately raising questions about the robustness of these methodological choices
themselves (Kwakkel et al., 2016).

In summary, while providing stable and dependable outcomes, Robust Planning often
suffers from rigidity, leading to over-design and inflexibility in the face of changing
assumptions. Dynamic Planning, conversely, offers adaptability and responsiveness,
yet it is complicated by the need to identify clear Signposts and quantify Adaptation
Tipping Points accurately.
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2.2.5 Decision Support Tools for Deep Uncertainty
In Robust-and Dynamic Planning, computational models have become indispens-
able decision-support tools for policymakers. They help them better understand the
relationships between river basin systems, external factors, and policy levers.

Furthermore, computational models are leveraged for optimization in Robust Planning
(Kasprzyk et al., 2013). It aims to find the best operating policies by systematically
exploring the decision space to maximize or minimize specific objectives. However, the
process often relies on predefined input assumptions about external conditions.

Simulation models help test and evaluate the optimized policy levers under different
conditions to reduce input dependency. They help assess how well policies perform
when subjected to change. Here, simulation often follows an Exploratory Modeling
Analysis approach. It assesses a fixed set of policies to gain insights into their robustness
under changing external factors.

Essentially, computational optimization-and simulation models support decision-makers
in developing and validating policies that achieve optimal objectives and remain effective
under varying and uncertain future conditions. Three key areas are presented.

Rival Framing

Computational modeling is used to explore different problem formulations. This
approach directly confronts the wicked nature of decision-making, where the intricacies
of physical water management intertwine with conflicting socio-economic interests and
ethical considerations of equity and justice. For instance, Quinn et al. (2017) discuss how
these models can be used to uncover how problem formulation uncertainties influence
environmental management decisions. Here, simulation models helped to visualize how
differing assumptions and starting points affect policy outcomes. This not only aids in
reconciling conflicting views but also enhances transparency, fostering a more profound
understanding among stakeholders and guiding them toward a consensus.

Multi-tradeoff Analysis

Computational models are used to analyze and optimize various objectives. For
instance, the Many-Objective Robust Decision-Making approach (Kasprzyk et al.,
2013) allows for the dis-aggregation, optimization, and analysis of policies across
diverse objectives. It helps policymakers identify solutions that maintain efficacy across
various possible futures, circumventing the common multi-objective challenge where
no single policy optimally satisfies every criterion. In another study, Owusu et al.
(2022) used computational models to highlight tradeoffs between anthropogenic water
demands for hydropower, irrigation, and recreation and the needs of river ecosystems
and services in the Volta River.
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Exploratory Modeling

Deep uncertainty necessitates exploratory policy analysis to ensure policies remain
effective across various future conditions Kwakkel and Pruyt (2013). Computational
models are integral to this process, as they allow the testing of policy performance under
multiple scenarios. For instance, Zatarain Salazar et al. (2022) illustrate the application
of Robust Decision-making in environments characterized by Deep Uncertainty. Their
analysis focuses on developing policies that maintain effectiveness across various future
scenarios.

2.3 Modeling River Basin Management
The previous sections emphasized decision challenges in river basin management, partic-
ularly under conditions of Deep Uncertainty. This section introduces the fundamental
approaches and methods for modeling river basin management.

2.3.1 Mass-Balance Approach
The mass balance approach is fundamental in modeling river basin systems. Grounded
in the principle of continuity, it ensures that all water entering, exiting, and being
stored within the system is accounted for. This provides a clear picture of water
availability and distribution. Key components of the mass balance equation are inflow,
outflow, and changes in storage.

The most basic representation of the mass balance for a water reservoir is:

St+1 = St + It+1 − Qt+1 (2.1)

where St is the storage at time t, It+1 is the inflow, and Qt+1 is the outflow at the next
time step t + 1.

The equation sums overall inflows and outflows for systems with multiple inflows and
outflows. ∑ It+1 represents the total inflows and includes factors like precipitation,
upstream releases, and runoff, while ∑Qt+1 represents the total outflows, including
water releases, or evaporation.

St+1 = St +
∑

It+1 −
∑

Qt+1 (2.2)

Utilizing the mass balance approach, policy analysts can model the current state of
a river basin comprising multiple water reservoirs. This provides a comprehensive
understanding of the water distribution and storage dynamics within the basin. Each
reservoir’s state is defined by its storage levels, which are continually updated based
on the balance of incoming and outgoing water.
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2.3.2 Decision Problem
The aim is to find the optimal operating policies for each reservoir. This involves
specifying the appropriate amount of water to release at any given time to meet current
demands. This can be illustrated using a single reservoir example with three water
demanding downstream actors at time step t.

To account for the demands of Actors A, B, and C, we can define the release Rt

to meet the demands of all three actors. Let DA,t, DB,t, and DC,t represent the
demand values for Actor A, B, and C, respectively. The total demand at time t is
Dt = DA,t + DB,t + DC,t. The release Rt can then be defined as:

Rt =

Dt, if St + It > Dt

St + It, if St + It ≤ Dt

(2.3)

If the total available water exceeds the demand Dt, then the release Rt equals the
demand Dt. This ensures that the demand is fully met. If the total available water
is less than or equal to the demand, then the release Rt equals the total available
water. However, in practice, conflicting interests among different actors mean it is
often impossible to fully satisfy all demands simultaneously.

In addition, given the background of Arrow’s paradox, premature aggregation of
objectives is problematic. It implies that any aggregation of preferences results in a
subset of preferences dominating the aggregate preference. This essentially leads to a
form of dictatorship where one preference set dominates.

Therefore, it is crucial to disaggregate the objectives early in the modeling process
and frame the optimization problem as a multi-objective problem to optimize multiple
objectives simultaneously. The general formulation is expressed as:

fm(ut), m = 1, 2, . . . , M ;
subject to

gj(ut) ≥ 0, j = 1, 2, . . . , J ;
hk(ut) = 0, k = 1, 2, . . . , K;
ut

(L)
i ≤ uti ≤ ut

(U)
i , i = 1, 2, . . . , n;

(2.4)

Where:

• fm(ut) is the vector function of M objective functions. Each objective function
represents a different goal, such as maximizing water supply for hydropower
generation, irrigation demand, or drinking water. These objectives often conflict,
necessitating solutions that balance tradeoffs.
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• ut is the vector of n decision variables. These are the controllable levers for
the system, namely an operation strategy that consists of a sequence of release
decisions.

• gj(ut) and hk(ut) represent J inequality and K equality constraints, respectively.
They ensure conditions are met without exceeding limits, such as maximum
pollutant levels or minimum environmental flow requirements.

• ut
(L)
i and ut

(U)
i are the lower and upper bounds of the decision variables. It ensures

that solutions remain feasible and practical, respecting physical constraints and
regulatory requirements.

With increasing reservoirs and longer time horizons, finding optimal operation strategies
becomes a complex problem. This complexity arises because each release decision im-
pacts subsequent decisions, necessitating a strategy that addresses immediate demands
and anticipates future conditions and requirements across multiple reservoirs.

2.3.3 The Three Curses of Modeling
Giuliani et al. (2016) identified three curses for optimizing river basin management.
They argued that traditional approaches are severely limited because they frame the
decision problem as a sequential decision-making process and rely on value functions
over a discrete state-decision space. They framed it as the three curses of modeling,
which are explained below.

Curse of Dimensionality

Computational cost increases exponentially with the dimensionality of the state space.
As the number of reservoirs and other system components grows, the number of
potential states and decisions increases significantly. This makes it challenging to
explore all possible states and identify optimal solutions within a reasonable time frame
and computational effort.

Curse of Multi-Objectives

River basin management involves multiple conflicting objectives. Balancing these
objectives requires sophisticated multi-objective optimization techniques. In a sequen-
tial decision-making context, these tradeoffs must be evaluated and balanced at each
decision point, complicating the optimization process.

Curse of Modeling

River basin management requires detailed modeling of various socio-technical ecological
dimensions. In sequential decision problems, precise modeling is even more critical, as
inaccuracies can propagate through the decision-making process, leading to suboptimal
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outcomes. However, the more detailed the model, the more computationally intensive
it becomes to simulate and optimize.

2.4 Evolutionary Multi-Objective Direct Policy Search
Previous sections positioned computational modeling as a decision-support tool for
river basin management; see Section 2.2.5). However, the modeling process faces
significant challenges outlined by Giuliani et al. (2016); see Section 2.3.3.

This section presents Evolutionary Multi-Objective Direct Policy Search (EMODPS)
as today’s gold standard decision-support tool. Its main components, Direct Policy
Search and Multi-Objective Evolutionary Algorithms, are introduced. Afterward, the
approach is discussed in the context of Decision-making under Deep Uncertainty.

2.4.1 Direct Policy Search
The Direct Policy Search framework addresses the challenges of high-dimensional state
spaces and deep uncertainty in water reservoir management. Instead of discretizing
release decisions, Direct Policy Search uses global approximators to describe an un-
derlying optimal state-to-action relationship. This reduces the number of decision
variables, making it more computationally efficient by focusing on parameters that
describe a policy function. To ensure flexibility, two nonlinear approximating networks,
namely Artificial Neural Networks and Radial Basis Functions, are commonly used
(Giuliani et al., 2014).

Between global approximators, Radial Basis Functions have the upper hand. Giuliani
et al. (2014) found that they demonstrated superior performance in approximating the
Pareto front, achieving better coverage and dominance compared to Artificial Neural
Networks. Between Radial Basis Functions, Zatarain Salazar et al. (2024) demonstrated
that the choice of its activation functions, such as Gaussian, inverse quadratic, and
exponential, significantly impacts the quality of Pareto optimal solutions and overall
model performance. It showed that the modified squared exponential and squared
exponential Radial Basis Functions often provide superior results, enhancing solution
quality and diversity.

2.4.2 Multi-Objective Evolutionary Algorithms
EMODPS leverages Multi-Objective Evolutionary Algorithms to tackle the curse of
multi-objectives. It is a class of heuristic search algorithms based on the principles of
natural selection and genetics (Coello, 2007). They play a crucial role in addressing the
curse of multi-objectives through their ability to navigate complex objective functions
and circumvent local optima. This allows the efficient exploration of tradeoffs between
conflicting goals (Giuliani et al., 2014).
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Algorithms such as NSGAII (Deb et al., 2002), ϵ-MOEA (Deb et al., 2003), ϵ-NSGAII
(Kollat, 2005), and Borg MOEA (Hadka and Reed, 2013) have demonstrated superior
performance in estimating Pareto fronts. ϵ-MOEA, Borg MOEA, and ϵ-NSGAII
are particularly notable for their advanced features like epsilon-dominance archiving,
adaptive population sizing, and time continuation, which enhance search diversity and
convergence (Zatarain Salazar et al., 2016).

2.4.3 EMODPS and Deep Uncertainty
In synthesizing Direct Direct Policy Search and Multi-Objective Evolutionary Algo-
rithms, EMODPS enables policymakers to handle complex, high-dimensional data.
Therefore, unlike traditional methods, EMODPS can seamlessly integrate exogenous
variables into the policy search process, allowing for the consideration of scenarios
(Giuliani et al., 2016). It allows policymakers to find and assess policy alternatives over
a wide range of plausible futures, thereby excelling the principles of Robust Planning.

However, the closed simulation-optimization loop of EMODPS introduces data de-
pendencies that might decrease the robustness of optimized policy functions. Global
approximators tend to overfit policy parameters to data inputs. Conclusively, policy
robustness may solely depend on the quality and range of input data. In addition to
previously discussed limitations in Section 2.2.4, this is problematic when models rely
on historical data or specifically defined scenarios.

2.5 Research Questions
Ultimately, the issue of overfitting policy functions to input patterns could compromise
robust performance when actual conditions deviate from those assumed. Consequently,
the robustness of EMODPS outputs is tied to the specific assumptions fed into the
framework. Once these assumptions change, policies will lose performance, a prominent
limitation of Robust Planning; see Section 2.2.4.

Therefore, to improve Decision-making under Deep Uncertainty for river basin man-
agement, this thesis does not follow a Robust Planning approach but instead explores
opportunities to improve the Dynamic Planning Principle. EMODPS’s ability to
integrate exogenous variables into the simulation-optimization loop is consequently
utilized to improve the adaptive policy design. In particular, the thesis sets out to
leverage Robustness Analysis to improve the definition of the dynamic policy structure
for river basin management. This addresses challenges related to the definition of
Signposts and the quantification of Adaptation Tipping Points.

Conclusively, the thesis explores a new methodology for applying Robustness Analysis
to identify critical uncertainties and performance gaps that inform the definition of
Signpost conditions and Adaptation Tipping Points. Hence, this thesis asks:
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RQ1)How to leverage robustness analysis to improve the adaptive policy design in
the context of river basin management under deep uncertainty?

To answer the main research question, a new methodology is proposed in Section 4.1
and demonstrated using the Zambezi River Basin as a case study in Section 5.1. This
methodology includes three main parts.

First, the characterization of critical uncertainties within the Zambezi River Basin
aims to understand the external system factors providing the basis for the generation
of states of the world. Hence, it is asked:

SRQ1) What are the most prominent uncertainties of the Zambezi River Basin?

Second, the Robustness Analysis focuses on the generation of states of the world. This
includes quantifying uncertainties to explore system vulnerabilities. It is envisioned
to hint at potential signpost conditions characterized by an interplay of uncertainties.
Thus, this thesis asks:

SRQ2) What are the most critical uncertainty combinations the system is vulner-
able to?

Third, the most critical uncertainty combinations are further explored and used to
define Adaptation Tipping Points. Therefore, this thesis asks:

SRQ3) What are the adaptation tipping points within the Zambezi River Basin?

Summary
River basin management utilizes a control-volume approach. The goal is to find optimal
operating policies for water reservoirs to manage water distribution within the basin
effectively. This describes an entwined decision matrix in which complexities are
amplified by deep uncertainty about values and external conditions, thus leading to
a decision space categorized under Level 4a uncertainty. Here, the future presents
multiple plausible states, demanding Robust-and Dynamic Planning beyond traditional
predict-then-act models.

Robust Planning, while providing stable and dependable outcomes, often suffers from
rigidity, leading to over-design and inflexibility in the face of changing assumptions.
Dynamic Planning, conversely, offers adaptability and responsiveness yet is complicated
by the need to identify clear Signposts and quantify Adaptation Tipping Points.
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Computational models have proven to play a pivotal role in the decision process. As
decision-support tools, they allow to simulate and optimize river basin management
policies across different problem formulations, multiple objectives, and various external
conditions. However, modeling river basin management is challenging due to the three
curses of dimensionality, multi-objectives, and modeling.

EMODPS, addressing all three, has emerged as today’s golden standard for modeling
river basin management. Leveraging Direct Policy Search and its reliance on global
approximators decreased dimensionality and allowed for flexible input data handling.
In addition, Multi-objective Evolutionary Algorithms offer a more detailed analysis of
multi-objective tradeoffs.

Currently, EMODPS allows policymakers to include and test diverse scenarios, enabling
robustness analysis post-modeling. Furthermore, by approximating a policy function
rather than determining static release decisions, EMODPS provides an overarching
strategy that describes the state-to-action relationship.

However, the policy function depends on the input data. This dependency decreases the
robustness, leading to lower performance once system conditions change. Thus, rather
than following a Robust Planning approach, this thesis aims to utilize Robustness
Analysis to improve Dynamic Planning for river basin management through:

• The identification of Signposts.

• The quantification of Adaptation Tipping Points.
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Case Study Area

This Section introduces the Zambezi River Basin as this thesis case study. First, the
study area is introduced, and its main characteristics are described. Afterward, the
focus shifts to the computational model. The main conceptual components, structure,
and objectives are highlighted, underlining why the Zambezi River Basin is a suitable
case study for this thesis.

3.1 Zambezi River System
The Zambezi River Basin illustrates the intricate complexities many transboundary
river basins face. It is Africa’s fourth largest river basin, spanning over 1.37 million
km2 across eight countries. The basin provides for around 40 million people and is
pivotal for regional survival, economic growth, and poverty reduction (Lautze et al.,
2017; O’Leary et al., 1998; World Bank, 2010). At the same time, its pluvial character
makes the basin vulnerable to climate variability, causing it to be one of the most
affected river basins by climate change (Kling et al., 2015). Establishing the Zambezi
Watercourse Commission and its ratification in 2014 have been critical steps towards
fostering collaborative management. The commission exemplifies an effort in strategic
planning and policy development necessary for accommodating the multifaceted needs
of eight sovereign nations sharing the basin’s resources.

Two rivers dominate the study area: the Zambezi and Kafue River (Figure 3.1). The
Zambezi River originates in the uplands of northwestern Zambia. It passes through
Angola and re-enters Zambia, flowing southeast. In south Zambia, the Zambezi turns
eastward, forming the border with Namibia. It passes by Botswana and traverses the
border between Zambia and Zimbabwe before cutting across Mozambique to the Indian
Ocean. The Kafue River, entirely within Zambia, originates from the Copperbelt and
joins the Zambezi downstream of Lake Kariba.

The rivers supply water to three main sectors. Hydropower is a dominant water
use with a capacity estimated at 20,000 megawatts (MW) (Tumbare and Authority,
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Fig. 3.1 Map of the Zambezi River Basin. The map highlights eight irrigation districts,
three main ecological sides, and five water reservoirs. The basin spans across eight
riparian countries - Angola, Botswana, Malawi, Mozambique, Namibia, Tanzania,
Zambia, and Zimbabwe.

2004). Today, the Cahora Bassa (2,075 MW) and Kariba (1,320 MW) reservoirs at the
Zambezi River, and the Itezhi-Tezhi (150 MW) and Upper and Lower Kafue Gorge
(900 MW, 750 MW) dams at the Kafue River generate most of it (World Bank, 2010).
Agriculture is another important economic sector in the Zambezi River Basin, with
an annual irrigated area of around 260,000 hectars (World Bank, 2010). Additionally,
the basin comprises ecological attractions protected by minimal environmental flow
requirements. Victoria Falls, Kafue Flats, and its river Delta are the three most critical
ecological sites.

3.2 Zambezi Model
The thesis focuses on developing a methodology that improves the adaptive policy design
within the EMODPS framework. Thus, no new model is implemented; instead, an
existing EMODPS decision-support tool is utilized. The Zambezi model was developed
by Arnold et al. (2023) to inform the optimal sequencing strategy for planning and
operation policies and later transferred from C++ to Python by Yasin Sari.
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The Zambezi River Basin follows the control volume approach and describes the
dynamic interaction between water reservoirs, catchment areas, and irrigation districts.
The main model components follow the structure of Figure 3.2. Comprehensive UMLs
of the model classes can be found in Appendix A.

Central to the model are five reservoirs. Its release strategies determine the amount
allocated to hydropower generation, agricultural irrigation, and the maintenance of
environmental flows. Each reservoir is represented by a Reservoir class. It provides
critical functions that transform storage levels to water surface levels, compute storage
volumes from water heights, and calculate surface areas, which are essential for evapo-
ration. Furthermore, the class simulates the release decisions via the integration and
daily integration functions at time-step t to compute the reservoir states at time-step
t + 1.

The Catchment class represents the seven main inflow points of the Zambezi River
Basin. They are essential to managing hydrological data within the river basin model,
which focuses mainly on inflow dynamics. The class handles monthly streamflow data
to simulate water movements throughout the river system. Data is exogenous based
on inflow vectors from 1986 to 2005, with a monthly resolution for each catchment.
The spatial character and flow patterns are implemented via flow delays. For instance,
water released from the Itezhi-Thezhi Reservoir takes two months to reach the Kafue
Gorge Upper Reservoir.

Irrigation areas are aggregated into eight central districts and are defined by a 12-
month demand vector repeating the same demand pattern every year, again defined as
exogenous. The amount of water allocated to each irrigation district is determined by
an irrigation policy function following a logic similar to that of the reservoir release
decisions.

Fig. 3.2 Conceptual Diagram of the Zambezi River Basin Model. The model has three
main components: five water reservoirs, three ecological sides, and eight irrigation
districts. The main rivers are the Kafue and Zambezi Rivers, with additional inflows
from seven catchment areas.
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3.2.1 Model Structure
Building on the conceptual model, the implementation follows the traditional EMODPS
architecture utilizing a closed simulation-optimization loop, explained in Section 2.4.
With a 20-year time horizon and daily resolution, it simulates the current policy
functions, evaluates their performance, and optimizes promising solutions described
by policy parameters in a continuous cycle. Table 3.1 summarizes the main model
settings.

The governing equation for each reservoir k in the basin follows the fundamental laws
of mass balance:

Sk,t+1 = Sk,t + Ik,t − Rk,t − Ek,t (3.1)

In this equation, Sk,t and Sk,t+1 represent the storage volumes at the start and end of
each day, respectively. Ik,t is the total inflow, encompassing both direct tributary inputs
from catchments and delayed contributions from upstream reservoirs, Rk,t denotes the
water released, and Ek,t accounts for evaporation losses. The Kariba reservoir can be
represented as:

IKariba,t = qKaLat + qBg + qCuando +
∑

j

qj,t (3.2)

It captures inflows from key tributaries such as qKaLat, qBg, and qCuando, as well as
from additional tributaries ∑j qj,t feeding into the Kariba reservoir.

Control over water releases Rk,t is executed through a policy function, which dynamically
adjusts the volume of water released based on the reservoir’s current storage Sk,t,
downstream demand Dk,t, and operational constraints encoded within the policy:

Rk,t = f(Policyk, Sk,t, Dk,t) (3.3)

3.2.2 Policy Functions
The Zambezi model encompasses operating policies for five water reservoirs and water
allocation to eight irrigation districts. Operating strategies are derived using global
approximators. Specifically, the model employs non-convex Gaussian Radial Basis
Function networks to approximate the state-to-action relationship. Table 3.2 provides
a more detailed summary of the model’s policy function setting.

The k-th release decision within the policy-vector ut is defined as:
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Table 3.1 Summary of Model Parameters

Parameter Value Type Description

Simulation 1 int The number of consecutive simulation runs
performed.

Neurons 1 int Number of neurons (or nodes) in a neural
network.

T 12 int Period of seasonality (per year), referring to
monthly data.

H 240 int Total simulation duration in months.
Objectives 3 int Number of objective variables to be optimized

during the simulation.
Variables 230 int Number of variables in the model, encompass-

ing state, input, and control variables.

uk = δk +
N∑

i=1
wi,kϕi(It) (3.4)

where N is the number of Radial Basis Functions, δk is a constant parameter, and
wi,k is the weight of the i-th Radial Basis Fnction. This implementation varies from a
general Radial Basis Function by adding the constant δk, which allows for a specific
target release.

Each Radial Basis Function ϕi(It) is defined as:

ϕi(It) = exp
−

M∑
j=1

(
(It)j − cj,i

bj,i

)2
 (3.5)

where M is the number of inputs, and c and b are the center and radius vectors. The
centers c must lie within [−1, 1] and the radii b within (0, 1].

In addition to the reservoir operating policy parameters, an irrigation policy θω(κ)
defines the amount of water for the i-th irrigation district (ωi), according to this
non-linear hedging rule (Celeste and Billib, 2009):

ωid
t+1 =

min
(

qt+1, νid
t ·

(
qt+1
hid

)mid)
if qt+1 ≤ hid

min(qt+1, νid
t ) else

(3.6)

Here, qt+1 represents the volume of water available in the river channel at the diversion
point, νid,t denotes the monthly water demand, and hid and mid are parameters that
regulate the diversion channel.



28 Case Study Area

The policy functions within this model are parameterized with 230 parameters and
described through eleven Radial Basis Functions.

Table 3.2 Summary of Model Policy Parameters

Attribute Value Type Description

Function 4 int Type of the general function approxima-
tor: 1-RBF, 2-ANN, 3-Piecewise linear,
4- Non-convex RBF

Input 7 int Number of inputs to the policy function.
Output 5 int Number of outputs of the policy func-

tion.
RBFs 11 int Number of structures in an RBF net-

work, specific to RBF.
Irr-Districts 8 int Number of irrigation districts required

for the irrigation policy.

3.2.3 Objectives
Following EMODPS, parameterized policy levers are described by global approximators,
here non-convex Gaussian Radial Basis Functions. Parameters are optimized using the
Generational Borg MOEA. Optimization seeks to minimize the three objectives via
the release and irrigation policies.

Objectives are implemented using deficits across the domains of hydropower, irrigation,
and environmental flow requirements. It allows policymakers to evaluate how well the
system meets the needs of different sectors and highlights any shortfalls 1. Environ-
mental minimum flows are set as monthly constraints, while irrigation targets are also
defined on a monthly demand basis. Hydropower targets are calculated daily to reflect
the continuous nature of energy production needs.

Hydropower

Hydropower deficits are calculated based on the difference between the five water
hydropower dams’ targets and actual electricity generation. This is crucial for energy
security and economic development in the region. The model calculates hydropower
production daily, with the actual production being defined as:

Pactual = ηgγh̄q (3.7)

where η describes turbine efficiency, g gravitational acceleration (9.81 m/s2), γ water
density (1000kg/m3), h̄ net hydraulic head, and q turbinated flow.

1For this study, target values are taken from the base model and assumed to be agreed upon by all
stakeholders.
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The annual average hydropower production deficit is then measured to evaluate per-
formance where Thydro is the target hydropower production, and Pactual is the actual
production. It is defined as:

JHP P = 1
N

H∑
t=0

|Thydro − Pactual| (3.8)

Environmental Minimal Flows

Environmental flow deficits assess the failure to meet minimum flow requirements
across the three ecological sides. Minimal flows are vital for biodiversity, fisheries, and
providing ecosystem services that local communities depend on. The model evaluates
environmental flow requirements every month, using the sum of squared flow deficits
where Ttarget is the target flow, and ractual is the actual flow from reservoir releases and
irrigation diversions. Specifically, the deficit for the delta environment is calculated by
comparing the actual flow with the target flow for the delta. It is defined as:

JEF T = 1
H

H∑
t=0

(max(Ttarget − ractual, 0))2 (3.9)

Irrigation

Irrigation deficits measure the shortfalls in water supply for agriculture across the eight
central irrigation districts. It is essential for food security and sustaining livelihoods.
The model normalizes irrigation deficits to ensure equal weighting across different
irrigation districts. Irrigation targets are defined monthly to reflect the seasonal nature
of water needs. The deficits are calculated as the squared differences where Tirrigation

is the water demand and ωactual is the actual abstraction for the i-th irrigation district.
This formulation ensures equal weighting of irrigation deficits across districts. It is
described as:

JID = 1
H

H∑
t=0

(
max (Tirrigation − ωactual, 0)

Tirrigation

)2

(3.10)

Summary
In conclusion, the Zambezi River Basin exemplifies a contextual situation that many
transboundary river basins face globally. As one of the most affected by climate change,
the basin is anticipated to struggle. Five water reservoirs along the Kafue and Zambezi
rivers are used to generate hydropower and store and release water based on minimum
environmental flows at three sides and eight water-demanding irrigation districts.
Further, the basin’s transboundary character and the establishment of the Zambezi
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Watercourse Commission underline the importance of cooperative management. It
highlights the necessity for a detailed analysis of tradeoffs and deep uncertainties.

The EMODPS model is used as a decision-support tool to navigate the competing
objectives of hydropower, agriculture, and environmental conservation. It allows
the optimization of the operation strategies for the basin’s five significant reservoirs,
facilitating an analysis of trade-offs.
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Method

This section introduces the proposed methodology for leveraging Robustness Analysis
to enhance the adaptive policy design in river basin management. Subsequently, the
methods are illustrated, with a focus on the assessment methods and experimental
settings.

4.1 Methodology
Figure 4.1 shows the framework’s three main components. It builds upon an ex-
isting EMODPS model, thus omitting steps related to problem framing and model
implementation. First, the conventional EMODPS framework is leveraged to identify
policy alternatives. This results in a reference set. Subsequently, the generation of
future states of the world follows a bottom-up Exploratory Modeling Analysis principle.
Finally, identifying critical uncertainties follows a detailed Scenario Discovery that
informs the dynamic policy structure.

4.1.1 Identification of Policy Alternatives
The base case Zambezi model is utilized to generate a range of policy alternatives.
For a detailed model discussion; see Section 3.2. The output delivers Pareto-optimal
solutions, forming a Pareto front across three objectives. Post-processing leads to a
reference set that serves as a baseline for subsequent analyses. Pareto sets are explored
using established quality metrics alongside visual analysis; see Section 4.3. The whole
application is demonstrated in Section 5.1.

4.1.2 Robustness Analysis
Robustness Analysis, subsequent to the generation of policy alternatives, begins with
characterizing critical uncertainties. A non-systematic literature review is employed.
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Fig. 4.1 Conceptualized Methodology Workflow. The workflow is structured into
three main components. a) Conventional EMODPS describes the Zambezi model,
resulting in Pareto-optimal policies. b) Robustness Analysis includes the identification
of key uncertainties through Open Exploration and Scenario Discovery. c) Improving
the Adaptive Policy Design focuses on the identification of Signpost and Adaptation
Tipping Points

The results will answer the first sub-research question about key uncertainties. After-
ward, the results are translated into quantifiable uncertainty factors and integrated
into the Zambezi model.

Subsequently, the generation of future states of the world follows an Exploratory
Modeling approach sampling over the quantified uncertainty factors and four selected
policy functions. The definition of performance thresholds determines failure states,
which are analyzed using a Scenario Discovery approach.

4.1.3 Improvement of Adaptive Policy Design
Results from the Scenario Discovery will identify single and combinations of uncer-
tainties regarding which policies are most vulnerable. These will inform the definition
of Signpost Conditions. The thesis introduces a Signpost Condition as a critical
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uncertainty factor that is necessary to reliably and accurately describe system failure
states. This way system performance can be understood as the systems Signpost
which is described through a set of Signpost Conditions. Performance gaps determine
the contextual character of Adaptation Tipping Points. The specific values defining
the boundaries of the uncertainty space under which the system fails inform Adapta-
tion Tipping Point Thresholds. In the final step, these thresholds translate into new
streamflow patterns that describe the quantified Adaptation Tipping Points.

4.2 Method
The following Section introduces methods for uncertainty characterization, Open
Exploration, and Scenario Discovery.

4.2.1 Uncertainty Characterization
Uncertainty characterization describes a critical step within the Dynamic Planning
approach; see Section 2.2.3. It is context-dependent and much relies on the modeler’s
ability to:

• Identify key Uncertainty Drivers.

• Translate Uncertainty Drivers into Uncertainty Factors.

• Integrate Uncertainty Factors into the model structure.

Identification of Uncertainties

A non-systematic search strategy across the Scopus online library is employed1. The
analysis focuses primarily on synthesizing scientific literature to establish a comprehen-
sive list of Uncertainty Drivers.

The search is limited to English-language peer-reviewed articles that contribute to
modeling river basin management under consideration of Deep Uncertainty. Search
criteria tailor a query string to extract articles on the Zambezi River Basin. Urban
issues and short-term studies are deliberately excluded only to identify trends that
align with the spatial and temporal scale of the model.

The following query is used: "Zambezi River Basin" AND (uncertainty OR "critical
uncertainties" OR "drivers of uncertainty" OR "deep uncertainty") AND (modeling OR
modelling OR "scenario analysis" OR "water management") AND NOT (urban OR
"Short term" OR "water quality") AND (LIMIT-TO (LANGUAGE, "English")).

1Future studies could benefit from expert interviews to deepen insights into regional trends and
projections.
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Quantifying Uncertainty Drivers

Uncertainty Drivers are quantified using a statistical rescaling method introduced by
(Quinn et al., 2018). Lower and upper bounds are defined to set the stage for the
Exploratory Modeling Analysis. The specific range parameter builds upon the insights
gained from the initial uncertainty analysis. It involves careful consideration of a
conservative safety margin for each factor to ensure a meaningful representation of
deep uncertainties2.

4.2.2 Open Exploration
Open Exploration is employed to understand and identify system vulnerabilities across
many futures. The ema_workbench, a python library for Exploratory Modeling Analysis,
is leveraged to generate a wide range of plausible futures following the methodology of
Bryant and Lempert (2010).

Running simulations with the Zambezi model over four different Pareto-optimal solu-
tions across a broad spectrum of plausible future scenarios generates many scenarios.
Scenarios y are defined through policy levers s and combinations of uncertainty factors
Uxi

as:

y = f(s, Uxi
) (4.1)

A performance threshold is defined to identify outcomes of interest. With this thesis
focusing on policy vulnerabilities, scenarios of interest aim to capture conditions that
display policy failure. Thus, a performance threshold Y I is set to focus on the worst
25 percent of outcomes. This leads to the final set of interesting scenarios Is, being
defined as:

Is =
{
xI | f(s, xI) ≤ Y I

}
(4.2)

The uncertainty space is sampled, using Latin Hypercube Sampling (Saltelli and Chan,
2000). The uncertainty space is spanned by lower and upper boundaries of uncertainty
factors previously defined.

Four policy levers are selected from the Zambezi model reference set: three optimal
policies, one for each objective, and a tradeoff policy. The Best Tradeoff policy was
selected based on the variability between objective values. Selecting the policy with
the lowest variability between normalized objective values ensured a balanced policy
approach.

2It should be noted that this step depends on the case area. Thus, rather than prescribing a
specific method for representing deep uncertainties, the thesis’s approach is specific to the charac-
teristic uncertainties of the Zambezi River Basin. Results are assumed to characterize a meaningful
representation of the future states of the world.
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4.2.3 Scenario Discovery
Building upon the Open Exploration, exploratory modeling results are first analyzed
using Feature Scoring and PRIM. Feature scoring ranks uncertainty factors by their
impact on outcomes. Thus, it provides a first overview of critical Signpost Conditions.
Its main advantage to PRIM is that it does not depend on threshold settings or peeling
factors. Afterward, PRIM is utilized to better understand the combinatorial effects
of Signpost Conditions. Together, their ability to analyze the impact of uncertainty
factors on policy failure is leveraged to inform the definition of multiple sets of Signpost
Conditions.

Identified sets of Signpost Conditions provide input for the following Logistic Regression
Modeling. Different sets are evaluated on their ability to predict policy failure. Results
describe the boundaries delineating failure from success states and inform Adaptation
Tipping Point Thresholds.

Feature Scoring

The main objective is to determine which uncertainty factors have the most significant
impact on the likelihood of policy failure. Factors with the highest importance score
are used to inform the definition of Signpost Conditions. The importance score for
each feature can be mathematically represented as follows:

Score(Xj) = ∆Loss(Xj)∑p
k=1 ∆Loss(Xk) (4.3)

Where:

• Score(Xj) is the importance score of the j-th feature,

• ∆Loss(Xj) is the change in the loss function when the j-th feature is removed
from the model.

• p is the total number of features.

Patient Rule Induction Algorithm

PRIM is leveraged to identify scenario boxes based on the binary indicator of policy
failure or success. The goal is to detect combinations of Signpost Conditions that best
describe policy failure outcomes.

It works by iteratively peeling and pasting operations to find the scenario boxes. The
peeling operation removes the portion of the data with the worst outcomes, while the
pasting operation refines the subgroup to maximize the outcome of interest.

The following steps characterize the algorithm:

1. Peeling Away
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• Identify a box in the covariate space that includes all observations.

• Sequentially remove the regions with the worst outcomes from this box.

2. Pasting In

• Refine the box by adding back some observations that were removed during
peeling to improve the homogeneity of the box.

3. Stopping Criterion

• Continue peeling and pasting until the improvement in the outcome is
marginal or a predefined stopping criterion is met.

Logistic Regression Modeling

The logistic regression modeling approach is based on Quinn et al. (2018), which
applied a regression model for Scenario Discovery. In particular, it was applied to
identify factors that most significantly affect the ability of reservoir operation policies
to provide protection against 100-year floods.

The regression model is defined as:

ln
(

pi

1 − pi

)
= X⊺

i β (4.4)

Where pi is the probability of failure in the ith scenario, Xi represents the vector of
covariates, including previously identified signpost conditions, and β are the coefficients
estimated through Maximum Likelihood Estimation.

In particular, different sets of Signpost Conditions as model predictors are evaluated
using McFadden pseudo-R squared values. It is a metric used to evaluate the goodness-
of-fit for logistic regression models. It is defined as:

R2
McFadden = 1 − ln L̂(MFull)

ln L̂(MIntercept)
(4.5)

Where:

• ln L̂(MFull) is the log-likelihood of the full model, including all covariates,

• ln L̂(MIntercept) is the log-likelihood of the intercept-only model, which predicts
the mean probability of success across all scenarios.

This metric measures the improvement of the entire model over the intercept model,
with higher values indicating better model performance. In practice, covariates are
added incrementally to the model, prioritizing those that significantly increase R2

McFadden.
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This iterative process continues until the addition of new covariates yields minimal
improvement. The Python library statsmodels is used for implementation.

Afterward, the most accurate regression model is leveraged to differentiate system
outcomes into areas of failure and success. Results provide the means to identify
boundary conditions that differentiate system outcomes into areas of failure and
success. This informs the quantification of Adaptation Tipping Point Thresholds,
which are translated into Adaptation Tipping Points using the methods defined when
quantifying uncertainty drivers. Results present the quantified Adaptation Tipping
Points as new streamflow patterns of the seven Zambezi River Basin’s catchment areas.

4.3 Assessment Metrics
A combination of established quality indicators and visual analysis techniques is utilized
to evaluate EMODPS optimization results. Quality indicators provide a comprehensive
assessment of solution convergence. In parallel, visual analysis is utilized to interpret the
shapes of Pareto fronts, explore multi-objective tradeoffs, and analyze the distribution
of failure and success spaces within the uncertainty space.

4.3.1 Quality Indicators
Established quality indicators in multi-objective optimization are Generational Distance,
Hypervolume, Additive-Epsilon Indicator, and Epsilon Progress.

Generational Distance

Generational Distance measures how close solutions from an approximation set are
to the reference set (Van Veldhuizen and Lamont, 1998). It calculates the average
Euclidean distance between each solution in the approximation set and the nearest
solution in the reference set. The formula for Generational Distance is:

GD =
(

1
n

n∑
i=1

d2
i

) 1
2

(4.6)

Where n is the number of solutions in the approximation set, and di is the Euclidean
distance between the i-th solution in the approximation set and the nearest solution in
the reference set. A smaller Generational Distance indicates improved convergence.

Hypervolumne

The Hypervolume indicator assesses both the diversity and proximity of the solutions
by quantifying the volume of the objective space dominated by the approximation set.
The hypervolume is normalized against the reference set, with values closer to one
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indicating that the approximation set covers the same volume as the reference set, thus
reflecting good diversity and convergence (Zitzler and Thiele, 1999).

Additive Epsilon Indicator

The Additive-Epsilon Indicator evaluates the consistency of the solutions. It determines
the maximum distance an approximation set needs to be shifted to dominate the
reference set. Thus, it is defined as:

ϵ = min{ϵ′ | ∀y ∈ R, ∃x ∈ A : f(x) + ϵ′ ≥ f(y)} (4.7)

where R is the reference set, A is the approximation set, f(x) and f(y) are the objective
vectors of solutions x and y, respectively, and ϵ′ is the additive epsilon value.

Epsilon Progress

Epsilon Progress tracks the progress of the optimization process. It measures the
solution set’s incremental improvement compared to the previous iteration. Specifically,
the Epsilon Progress calculates the additive epsilon value. This value represents the
minimum amount that needs to be added to each objective in the current approximation
set to make it weakly dominated by the reference set (Zitzler et al., 2003). Decreasing
Epsilon Progress values indicate better convergence and tradeoff coverage.

4.3.2 Visual Analysis
The visual analysis focuses on three main plotting types: pair plots, parallel coordinate
plots, and contour plots.

Pair Plots

Pair plots facilitate understanding of the shape of Pareto fronts. They can visualize
both the distribution of individual objectives and their pairwise relationships. The
diagonal of the matrix displays density distribution plots for each objective. It allows
to investigate their distributions and variability. The off-diagonal matrix is envisioned
to display scatter plots and kernel density estimates. This provides insights into the
tradeoffs between pairs of objectives and to discern the shape of the Pareto fronts.

Parallel Coordinate Plots

Parallel coordinate plots display Pareto-policy interactions and visualize the tradeoffs
among specific policies within the multi-objective context. By aligning the objectives
on parallel axes and plotting their values, these plots provide a comprehensive view of
how various policies perform across objectives.
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Contour Plots

Contour plots visualize the uncertainty space between pairwise uncertainty factors
segmented into policy success and failure areas. Contourlines illustrate the boundaries
between successful and unsuccessful policy outcomes.

Other Visualizations Approaches

In addition, the following graphs are used to communicate insights:

• Flow Duration Curves summarize streamflow data against its exceedance
probability. They are leveraged to illustrate insights about the frequency and
magnitude of different streamflow ensembles that describe different states of the
world.

• Yearly Streamflow Averages display the average streamflow for each year,
providing a clear view of long-term trends and annual variations.

• Heatmaps are used to visualize insights into Feature Scoring and Adaptation
Tipping Point streamflow differences.

• Density-Coverage Tradeoff Plots for PRIM show the balance between the
density of policy failures and the coverage of the identified subgroups. They are
leveraged to highlight insights into the effectiveness of the PRIM in isolating
scenarios of interest, helping to identify Signpost Conditions.

4.4 Experimental Settings
The base case optimization utilizes the Zambezi model, introduced in Section 3.2,
and optimizes the policy functions over 200,000 function evaluations. Five different
seeds are used to manage variability. Epsilon values of 0.2, 0.5, and 0.3 are selected
to balance convergence speed and solution diversity. Computations are performed on
Delft Blue, the high-performance computing environment from TU Delft (Delft High
Performance Computing Centre , DHPC). The optimization is set up for multi-node
processing. In total, it utilizes 64 nodes. Each node has access to 48 CPUs and 1GB
of memory per CPU.

The main experiment describes an Open Exploration simulation. The Zambezi model
is used for simulation. The Zambezi model simulates four policies, each against 25,000
uncertainty conditions, creating a total of 100,000 scenarios. Results detailing scenario
settings and objective values are stored in two files for subsequent analysis. Again, the
simulation utilizes Delft Blue with the same settings.
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Summary
This section detailed the proposed methodology for enhancing adaptive policy design in
river basin management through a Robustness Analysis. It includes identifying policy
alternatives using the EMODPS framework. Robustness Analysis follows, characterizing
uncertainties, Open Exploration, and Scenario Discovery.

This approach is expected to improve the adaptive policy design by identifying sce-
narios that reveal critical system performances. It includes the definition of Signpost
Conditions, different sets of Signpost Conditions, Adaptation Tipping Point Thresh-
olds, and the quantification of Adaptation Tipping Points. Tools such as the EMA
Workbench facilitate Exploratory Modeling Analysis, while Logistic Regression aids in
evaluating accurate sets of Signpost Conditions and identifying Adaptation Tipping
Point Thresholds.

Assessment metrics, including Generational Distance and Hypervolume and visual
analysis like pair plots, evaluate the effectiveness of the optimization process. The
experimental settings are defined, utilizing Delft Blue’s high-performance computing
capabilities.
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Analysis

This Section demonstrates the practical application of the proposed methodology. First,
it exemplifies how to establish the reference set. Next, the uncertainty characterization
is outlined, detailing how to convert Uncertainty Drivers into Uncertainty Factors.
Afterward, it illustrates the Exploratory Modeling Analysis. Finally, Scenario Discovery
is performed to identify Signpost Conditions and Adaptation Tipping Point Thresholds
to quantify Adaptation Tipping Points1.

5.1 Zambezi Base Case Run
The results of the base case run produced five distinct Pareto sets. Each reveals a
different set of solutions, as displayed in Appendix B. Outcomes vary slightly across
different seeds: the first run yielded 185 Pareto optimal solutions, while the fourth
produced 190 solutions. The total number of solutions ranged from 185 in the first run
to 279 in the third, illustrating some variability in optimization performance.

5.1.1 Reference Set
Results from the five different Pareto sets are post-processed to build a reference set.
It leverages an epsilon-non-dominated sorting algorithm, using the pareto.py script
based on the method from Woodruff and Herman (2013). This approach involves
ranking solutions with an epsilon threshold set to 0.05. Therefore, solutions with lower
differences are treated as equivalent. It filters out minor variations and thus only
includes distinctly non-dominated solutions.

The outcome is an epsilon-non-dominated Pareto solution set comprising 364 distinct
solutions. Each solution in Figure 5.1 represents an optimal Pareto epsilon non-
dominated policy function across the three objectives.

1The respective notebooks for each analysis steps can be found in the open GitHub repository
here: Visit GitHub Repository

https://github.com/dragonhunter123/Thesis.git
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Pair plots and density plots illustrate the complex interactions and tradeoffs between
objectives. Density plots on the diagonal show the distribution of each objective,
indicating where policy outcomes are concentrated. For instance, hydropower displays
a bimodal distribution, suggesting two primary modes of operation among optimal
solutions. In contrast, the environmental objective is leaning towards higher values,
indicating higher deficits and lower prioritization of environmental considerations in
many of the optimal solutions.

The off-diagonal scatter plots reveal the tradeoffs between pairs of objectives. In
particular, the plot between hydropower and the environment shows a clear negative
correlation, highlighting the typical tradeoff between energy production and environ-
mental preservation. The denser regions of these plots indicate areas where compromises
between objectives are most common.

Fig. 5.1 Pair Plot and Density Distribution of Reference Set. A comprehensive
visualization of MinMax normalized Pareto-optimal solutions across three objectives
derived from five seeds. Diagonal panels display density plots for each objective, with
lower values indicating better performance. Off-diagonal scatter plots illustrate pairwise
tradeoffs between the objectives.

5.1.2 Convergence
To evaluate the optimization performance, quality metrics from the ema_workbench
library are utilized; see Section 4.3.
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Fig. 5.2 Quality Indicators for Basecase Run. The figure illustrates four key performance
metrics across five seeds over 200,000 NFEs. a) Generational Distance measures
convergence towards the Pareto front. b) Hypervolume highlights the quality and
diversity of solution space. c) Additive Epsilon Indicator reflects solution accuracy. d)
Epsilon Progress displays epsilon improvements, indicating convergence.

Generational Distance

Using GenerationalDistance, the distances between population iterations and the
reference set are computed. Data is retrieved from the optimization archives that
store data at 1000 function evaluation intervals. Results show that all seeds initially
exhibit a high generational distance, indicating a significant gap between the initial
populations and the reference set. There is a rapid decline in generational distance
across all seeds, stabilizing after approximately 50,000 evaluations, suggesting effective
convergence near the Pareto front.

Hypervolume

The volume covered by the Pareto sets is measured using the Hypervolume method.
It highlights an initial increase in Hypervolume across all seeds. This indicates an
expansion in the volume covered by the Pareto sets. Following this initial surge, a
slower yet steady improvement continues until around 150,000 function evaluations.
At this point, the Hypervolume stabilizes, indicating that solutions are approaching
maximum coverage of the objective space in relation to the reference set.

Additive Epsilon Indicator:

The AdditiveEpsilonIndicator function is utilized to monitor convergence rates.
The decrease in this metric across all seeds suggested swift convergence, which stabilized
after about 100,000 function evaluations.
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Fig. 5.3 Parallel Coordinate Plot. It displays Tradeoffs among Hydropower, Environ-
ment, and Irrigation. Each line represents a different solution from the reference set,
with the vertical position on each axis indicating the MinMax normalized performance
score. Lower values are preferred. The color gradient from light purple to dark blue
represents the hydropower objective value; the darker, the better.

Epsilon Progress

The optimization progress during the optimization is tracked with the help of the
MultiprocessingEvaluator class from the ema_workbench. The EpsilonProgress
function allows consistent recording of the algorithm’s convergence during the opti-
mization phase. Post-optimization, data is retrieved from a CSV file for a detailed
analysis. Results show an upward trend in Epsilon Progress across all seeds. The rate
of increase began to slow around 150,000 evaluations. It suggests that the algorithm is
near convergence.

Results indicate that the algorithm performs well for the base case across different
seeds. All metrics indicate a consistent convergence towards the reference set. The
rapid initial improvements in the Generational Distance and Additive-Epsilon Indicator
suggest that the model quickly narrows the search space and identifies promising regions.
Furthermore, the continued improvement in Hypervolume and Epsilon Progress reflects
the algorithm’s ability to maintain diversity and enhance solution quality over time.

5.1.3 Multi-objective Tradeoffs
For the multi-objective tradeoff analysis, a Parallel Coordinate Plot visualizes the
objective values extracted from the reference set. The policy lines’ shades are based on
the hydropower deficit, with darker shades indicating superior performance.
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Figure C.3 indicates that policies that excel in one objective tend to perform poorly
in others. This hints at tradeoffs among the objectives. For instance, purple shading
suggests that most policies with a high Hydropower deficit yield better results across
the Environment and Irrigation objective. Similarly, policies that prefer hydropower
perform worse, especially regarding the environmental objective.

5.2 Uncertainty Characterization
First, deep uncertainties within the system are identified. A non-systematic literature
review is leveraged to identify the main Uncertainty Drivers within the Zambezi
River Basin. It should be noted that critical uncertainties differ and are case-specific.
Hydroclimatic uncertainties of mean precipitation, inter-annual variability, and seasonal
shifts are critical for the Zambezi River Basin. Socio-economically, irrigation demand is
considered the most relevant. Results are presented in Section 6.1 with greater detail.

An aspect that determines the translation of identified trends into factors is the model
structure. The Zambezi model sets most of them as exogenous; see Section ??. To allow
for Open Exploration, the model structure is edited to account for crucial Uncertainty
Drivers within the simulation process. The following Section details the approach.

5.2.1 Manipulation of Streamflow Data
A statistical rescaling method developed by Quinn et al. (2018) is applied for streamflow
manipulation. It informs the implementation of a StreamflowRescaler class, which,
during the model initialization, takes the historical streamflow data and manipulates
it according to the approach outlined below. Conclusively, it allows the adjustment
of monthly streamflow data in regard to inter-annual variability, mean precipitation
change, and seasonal shifts using just six parameters. This is beneficial given the
computational demands of exploring multiple uncertain factors.

Synthetic Streamflow Generation

First, synthetic streamflow ensembles are generated by leveraging the synthetic stream-
flow generator from (Kirsch et al., 2013; Nowak et al., 2010). It is based on historical
data from 1986 to 2005. Every step is performed across all catchment areas2.

Second, ensembles: historical YH and synthetic YS are log-transformed. It ensures
that subsequent analyses are based on data approximating normal distributions. This
facilitates better statistical treatment. Appendix C.2 displays the resulting flow
duration curves.

2Data vector for the Cuando catchment is omitted because it is empty and only considered with
infinite small inflow values for the base case model
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Mean Precipitation and Variability

The synthetic streamflow ensembles Ys are standardized to generate synthetic standard
normal monthly flows Zs given the monthly mean µj and standard deviation σj of the
log normal historical monthly flows with:

Zs,ij = Ys,ij − µj

σj

(5.1)

For illustration, Figure 5.4 illustrates rescaled inflow data using a constant mean
precipitation Mµ and inter-annual variability Mσ multiplier to backtransform Zs,ij

into new inflow data sets Q′
S,ij. The backtransformation is outlined in Equation 5.4.

Appendix 5.4 displays more comprehensive figures across all catchment areas.

Fig. 5.4 Kariba Catchment Exceedance Probability Under Different Scenarios. The left
panel displays the effect of different mean precipitation multiplier values (m_µ). The
right panel shows the effect of different interannual variability multiplier values (m_σ).

Seasonal Shift

Changes in the seasonal distribution of flows utilize a second-order Fourier series
fitted to the historical log-space monthly means. This process captures the essential
characteristics of the wet and dry seasons with minimal parameters. The Fourier series
is described as:

ŷ1(i) = y + C1 cos
(2πi

12 − ϕ1

)
+ C2 cos

(4πi

12 − ϕ2

)
(5.2)
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Where i the month index, y the mean of the historical series, C1 and C2 the amplitudes,
as well as ϕ1 and ϕ2 the phase shifts are fitted based on the historical log-space monthly
means. Appendix C.4 displays the Fourier series for each catchment.

Afterward, seasonal patterns can be adjusted to simulate potential shifts in the timing
and amplitude of the wet and dry seasons. Amplitude multipliers (mC1 for the primary,
mC2 for the secondary seasonal pattern) and phase shift deltas (dϕ1 and dϕ2) are used
to manipulate the fitted Fourier series parameters as follows:

y2(i) = ŷ + mC1C1 cos
(2πi

12 − (ϕ1 + dϕ1)
)

+ mC2C2 cos
(4πi

12 − (ϕ2 + dϕ2)
)

(5.3)

These adjustments allow the generation of scenarios that vary in the onset and intensity
of the wet and dry seasons. Figure 5.5 illustrates these adjustments. Appendix C.5
and Appendix C.6 provide comprehensive information about other catchments.

Fig. 5.5 Kariba Catchment Seasonal Variability. The left panel displays different
seasonal amplitude values of mC1 and mC2. The right panel shows the effect of different
seasonal phase shift values of dϕ1 and dϕ2.

Adjusted Streamflow Scenarios

Following the definition of ŷ1(i) and y2(i), the synthetic inflow ensembles Ys are
standardized as described in Equation 5.1. Afterward, these standardized synthetic
streamflows are back-transformed into new adjusted streamflow ensembles as follows:

Q′
S,ij = exp(Mµµ̂j + Mσσ̂jZS,ij) (5.4)
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Here, Mµ is a monthly varying multiplier while Mσ is a constant multiplier. This again
follows Quinn et al. (2018). The monthly varying mean multiplier Mµ,j is defined
through:

Mi,j =
[
mj

y2(i)
y1(i)

]
, (5.5)

This method enables the manipulation of monthly streamflow data with six factors.
Preliminary analysis shows that second order amplitudes mC2 and phase shifts dϕ2)
exhibit minimal changes; see Figure 5.5. Thus, they are set to a constant multiplier of
one, reducing the number of uncertainty factors that must be sampled. It increases
computational efficiency within the Open Exploration.

In conclusion, hydroclimatic uncertainty trends of mean precipitation changes, inter-
annual variability and seasonal shifts are represented through factors of a Log-space
mean multiplier mµ, log-space standard deviation multiplier mσ, log-space multipliers
m1, as well as log-space delta shifts dϕ1.

5.2.2 Temperature
Deep uncertainties surrounding temperature increase are represented through an
adjustment of the evaporation rate. In contrast to streamflow data, temperature is
not directly part of the model. However, associated evaporation rates, influenced by
temperature, are considered and significantly affect the storage volumes of reservoirs.
The Zambezi model sets evaporation rates in an exogenous manner. They vary by
reservoir and exhibit a repeating 12-month pattern.

Rising temperatures during the simulation period of 20 years are captured by imple-
menting a delta shift for each reservoir. This shift is calculated in relation to the
base evaporation rate. While Quinn et al. (2018) used an absolute value, here, a
shift in relation to the base case evaporation is leveraged. It allows the change of all
evaporation rates equally with only one parameter.

The Reservoir class of the Zambezi model, which manages the evaporation rates, is
adjusted according to the sampled evaporation rate.

5.2.3 Irrigation Demand
Initially, three demand multipliers were used to adjust the monthly demand values of
all irrigation districts annually. The base case model defines eight exogenous demand
vectors, one for each district. While monthly differences in demand recognize seasonality,
the values are static for 20 years and do not account for changing demand patterns.

Population growth is assumed to be the primary driver of irrigation demand. Thus,
population growth data from the United Nations World Population Prospect Report
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from 2022 (United Nations, Department of Economic and Social Affairs, Population
Division, 2022) was analyzed. Here, the country’s population growth projections are
based on ten scenarios. They differ due to different considerations of variables like
fertility rates or migration patterns. The highest projection from these scenarios is
selected to align with the principles of Deep Uncertainty. In addition, a conservative
margin of ten percent is added to the multiplier. The original base case values are set
as the lower bound.

The demand multipliers are collapsed into one. It assumes that the population growth
of one country and its irrigation districts affect the demand of the others. Hence,
the demand multiplier with the highest upper range is taken as the general demand
multiplier.

5.3 Exploratory Modeling
This Section demonstrates how Open exploration builds the foundation for identify-
ing Signpost Conditions and Adaptation Tipping Point Thresholds. It follows the
Exploratory Modeling Analysis paradigm and systematically explores the impacts of
four policy decisions across 25,000 uncertainty conditions, leading to a total of 100,000
states of the world.

5.3.1 Selection of Policy Levers
Numerous scenarios define plausible futures, each described by a combination of policy
levers and uncertainty factors.

Four optimal policies from the reference set are selected. The early commitment to
specific policies contradicts the conventional Robustness Analysis approach. However,
this thesis argues that this is valid for the following reasons. Robustness Analysis
aims to identify policy alternatives that are least sensitive to changing conditions.
In contrast, an adaptive policy plan can deviate from this approach by focusing on
the ability to adapt once conditions change. However, the adaptive policy design
is primarily not based on choosing a robust policy but addresses Deep Uncertainty
through continuous policy adjustment. Hence, selecting any Pareot optimal policy,
identifying its signposts, and quantifying Adaptation Tipping Points aligns with the
Dynamic Planning principle. Therefore, the thesis focuses only on improving the
adaptive policy design for four policies, according to the policy selection described in
Section 4.2.2.

5.3.2 Sampling the Uncertainty Space
The uncertainty space is defined through ranges of identified uncertainty factors. Lower
and upper bounds span the entire space. Table 5.1 comprehensively summarizes
relevant uncertainty factors and their ranges.
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The following uncertainty boundaries were chosen for the streamflow multipliers based
on iterative adjustments. Decreasing evaporation seems unrealistic. However, the lower
bound is set to -10 percent to account for Deep Uncertainty. The upper bound is
defined with an evaporation increase of 40 percent.

For the subsequent analysis, these factors are assumed to capture the identified
uncertainty trends effectively.

Table 5.1 Summary of Uncertainty Factors

Uncertainty
Factor

Range Description

mµ 0.9 to 1.05 Mean Precipitation Changes
mσ 0.95 to 1.2 Inter-annual Variability
mC1 0.8 to 1.2 Seasonal Amplitude (Main coefficient)
dϕ1 −π

6 to π
6 Seasonal Phase shift (Main shift)

m_demand 1.0 to 1.031 Irrigation Demand Multiplier
δevap -10 to 40 Change in evaporation rate

5.3.3 Open Exploration
The Zambezi model is utilized to simulate the four specific policies selected from
the reference set under a range of uncertainty conditions. In Section 5.1.1, a total
of 364 Pareto-optimal policy alternatives is generated. This is scoped down to four
policy levers in Section 5.3.1. Furthermore, the uncertainty space is defined through
uncertainty factors determined in Section 5.3.2, and established ranges are summarized
in Table 5.1.

The ema_workbench is leveraged to generate the broad spectrum of plausible future
states of the world. It allows multiple instances of the Zambezi model to be run and
retrieves outcomes across different policies and uncertainty settings. The experimental
settings are detailed in Section 4.4. Results are displayed in Figure 5.6.
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Fig. 5.6 Open Exploration Scenario Outcomes. The figure illustrates the distribution
and tradeoffs of objective values for hydropower, environment, and irrigation under
25,000 uncertainty conditions. Diagonal panels show frequency distributions of objective
deficits, with color intensity indicating occurrence frequency: darker shades for more
common outcomes and lighter for rarer ones. The upper panels depict scatter plots
comparing two objectives. The color coding differentiates four policies.

Distribution plots on the diagonal display the frequency of objective values across
the generated states of the world. Narrow distributions suggest that policies often
yield similar outcomes despite uncertainties. Conversely, broader distributions hint at
condition-dependent policies. The consistency of policy outcomes also relates to the
tightness or spread of the scatter plot clusters. Tight clusters indicate similar policy
outcomes across various scenarios, suggesting robustness against varying conditions.
Conversely, wider spreads highlight more significant variability.

The location of clusters along the axes indicates policy tradeoffs. Clusters positioned
towards the lower regions suggest scenarios where objective deficits are low and, hence,
system performance is high. In contrast, clusters towards the upper regions indicate
higher deficits, reflecting compromised performance.

Hydropower:

• The Best Environment and Irrigation policies frequently result in higher hy-
dropower deficits. Aligns with previously identified tradeoffs.

• Best Hydropower policy, despite its focus, exhibits significant deficits under chal-
lenging conditions, indicating its vulnerability to certain uncertainty conditions.

• Both Best Hydropower and Best Tradeoff policies display similar distribution
tails in high deficit scenarios.
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Environment:

• Best Environment policy features a sharp peak at lower deficit values, suggesting
it effectively minimizes environmental deficits across scenarios.

• Best Irrigation policy shows similar characteristics but displays a broad tail that
extends into higher deficit outcomes.

• Both Best Hydropower and Best Tradeoff policies demonstrate broader distribu-
tions with tendencies toward higher deficits, indicating inconsistent environmental
conservation across many scenarios.

• Best Tradeoff occasionally reaches moderate outcomes, though it generally shows
suboptimal results.

• Overall shape of Best Tradeoff policy scenario clusters is similar to Best Environ-
ment and Irrigation, but high deficit scenarios are prominent. It also reflects the
challenges of managing hydropower deficits.

Irrigation:

• objective distributions for Irrigation are narrow, emphasizing that system perfor-
mance is tightly linked to the policy implemented.

• Best Irrigation policy exhibits robust performance, consistently achieving low
irrigation deficits across all scenarios.

• Best Tradeoff policy results in higher deficit scenario outcomes. No overlaps in
scenario outcomes suggest that worst-case scenarios under the Best Irrigation
policy still outperform the best scenarios under the other policy options.

• Best Hydropower policy also has a narrow distribution but generally shows higher
deficits.

• The Best Environment policy presents a broader range of outcomes with no
distinct peak, generally leaning towards higher deficits, indicating a focus on
optimizing environmental flows that may adversely affect irrigation efficiency.

A preliminary analysis of Open Exploration indicates that no single policy consistently
excels across all generated states of the world. This aligns with the initial selection
criteria of optimal performance in the base case rather than their robustness. This
distinction is crucial, as this thesis focuses not on excelling robustness analysis to select
inherently robust policies but on enhancing adaptive planning capabilities. Therefore,
instead of identifying policy alternatives, this thesis demonstrates how to leverage
Robustness Analysis to identify Signpost Conditions and Adaptation Tipping Point
Thresholds to quantify Adaptation Tipping Points. It is demonstrated in the subsequent
Section.
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5.4 Scenario Discovery
Scenario Discovery investigates high deficit scenarios retrieved from the Open Explo-
ration simulation. For demonstration purposes, the best hydropower policy is analyzed
across the 25,000 different plausible future scenarios.

Identification of Scenarios of Interest

A performance threshold differentiates between scenarios of interest and those of lesser
importance. For the Zambezi River Basin, defining the threshold at the 75th percentile
is assumed to capture the most critical scenarios in terms of performance for each
objective value. Additionally, scenarios that cause the system to fail across all three
objectives are defined as overall failure scenarios.

The focus on system failure is imagined to uncover conditions under which the system
exhibits suboptimal performance, thereby identifying potential system vulnerabilities
and conditions that require adaptation. For instance, under the Best Hydropower
policy, a clear difference in performance outcomes between scenarios deemed successes
and failures is observed. Specifically, the mean sum of annual hydropower deficit in
terawatt hours for failed scenarios is approximately 21.80 TWh, compared to 14.37
TWh for successful ones. Moreover, environmental and irrigation objectives similarly
reflect differential impacts. In terms of environmental flow, failed scenarios show a
squared flow deficit between target and actual flows of about 4.56 million m3/s, which
reduces to approximately 3.18 million m3/s in successful scenarios. For irrigation, the
squared differences between targeted and actual values are 2.16 in failures versus 2.02
in successes. Scenarios of interest are visualized in Appendix D.1.

5.4.1 Defining Signpost Conditions
System vulnerabilities are identified using Feature Scoring and PRIM. Feature Scoring
is used to identify the most critical uncertainty factors. Afterward, PRIM is used to
assess which uncertainty combinations the system is most vulnerable to. Together, this
hints at Signpost Conditions that cause system performance gaps.

Feature Scoring

Feature scoring allows us to determine the influence of uncertainty factors on model
outcomes. High-importance values highlight factors that significantly impact outcomes
of interest. Scores were determined for each objective across all four selected policies.

Results are captured in Figure 5.7. Preliminary analysis for the Best Hydropower
policy suggests:

• The mean precipitation multiplier displays high influence across all objectives. It
indicates a critical role for hydropower, environmental, and irrigation objectives.
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Fig. 5.7 Feature Scoring Heatmap for Best Hydropower Policy. The heatmap displays
the importance of uncertainty factors in relation to the objective outcomes, with lighter
colors indicating higher importance.

• The Second most influential uncertainty factors are objective dependent, with
seasonal amplitudes significant for hydropower generation, shifting seasonality
for environmental minimum flows, and uncertainties capturing irrigation demand
for irrigation.

Overall, changes in precipitation is consistently the most important factor across all
objectives. It indicates its critical role in the pluvial Zambezi River Basin. Other
uncertainties, like demand multipliers, seasonal amplitudes, and phase shifts, exhibit
variability in their importance depending on the specific objective.

PRIM

The PRIM analysis serves as a critical subsequent step to feature scoring, which
identified changes in precipitation as the most dominant factor. The PRIM analysis
dives deeper into the system’s complexities, exploring how combinations of uncertainty
factors contribute to defining critical scenarios. This allows for identifying more
accurate and reliable conditions that describe scenarios where single factors alone do
not fully capture the dynamics leading to system failure.

PRIM is employed to identify precise combinations of signpost conditions for each
policy across the different sets of interest. Several scenario boxes are highlighted in
Figure 5.8. Each box, represented by a scatter dot, can be understood as a narrative
that describes scenarios characterized by certain uncertainty factors that lead to high
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Fig. 5.8 PRIM Density - Coverage Tradeoff Plot. Each scatter dot represents a scenario
box described by uncertainty factors. The color coding indicates the total number.
Density displays how accurate the box is in identifying failure scenarios. Coverage
indicates how reliable the scenario box is in covering all failure scenarios.

hydropower deficits. A box with high coverage and high density should be selected to
infer appropriate signpost conditions. This ensures that signpost conditions effectively
describe a wide range of scenarios of interest while being mainly exclusive to those
scenarios.

For instance, Figure 5.8 shows that as the plot progresses from Box 50 toward Box 30,
there is an increase in coverage but a decrease in density. This suggests a broader but
less accurate scenario identification. Factors that describe these boxes are analyzed
according to their density coverage tradeoff.

The focus is placed on high-coverage, high-density boxes to identify sets of Signpost
Conditions. These represent scenarios where specific, narrowly defined conditions
influence a wide range of outcomes of interest. This is valuable since it highlights
critical conditions, pinpoints general vulnerabilities within the system, and thus informs
accurate and reliable signpost conditions.

Scenario boxes are analyzed for their density-coverage tradeoff to identify Signpost
Conditions that can describe system failure accurately and reliably. Table 5.2 sum-
marizes information about several scenario boxes. The tradeoff is depicted by the
Coverage and Density column. The subsequent three columns display combinations of
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Table 5.2 Best Hydropower Policy Analysis for Hydropower Deficit Scenario

Box ID Coverage Density Uncertainty
Factor

Min Max

1 1.00 0.05 mC1 0.80 1.18
5 1.00 0.07 mC1 0.80 1.14

mµ 0.90 1.04
10 1.00 0.09 mC1 0.90 1.00

mµ 0.80 1.14
20 1.00 0.15 mC1 0.90 0.96

mµ 0.80 1.14
40 1.00 0.40 mC1 0.90 0.93

mµ 0.80 1.10
58 0.75 0.77 mC1 0.90 0.92

mµ 0.80 1.01
δevap -5.09 40.00

critical uncertainties and their value ranges. Min and Max’s values are not considered
but included for completness3 but displayed for completeness.

• The seasonal amplitude is, as a baseline signpost condition, necessary to achieve
high coverage values. This adds more insights into the critical influence of the
mean precipitation; see Section 5.4.1.

• However, seasonal amplitude alone is not sufficient to accurately identify scenarios
of high hydropower deficit.

• Only in addition to mean precipitation and evaporation rate, higher density
values are achieved; see box 58 in Table 5.2.

Seasonal amplitude, mean precipitation, and evaporation rates should be considered
signpost conditions. Together, these uncertainty factors are sufficient to describe 75
percent of scenarios where hydropower generation results in high deficits with an
accuracy of 77 percent.

5.4.2 Quantification of Adaptation Tipping Points
Adaptation Tipping Point Thresholds are quantified using a logistic regression model.
This model predicts system failure or success based on the previously defined set of
Signpost Conditions. The critical boundary condition established by this model defines
the policy’s Adaptation Tipping Point Thresholds, delineating the uncertain conditions

3PRIM focus is to identify combinations of signpost conditions. These combinations do not include
parameter ranges. Those are determined in the subsequent step using a logistic regression model
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under which the system will likely fail or succeed. Finally, thresholds are quantified into
an Adaptation Tipping Point, which results in new streamflow patterns that describe
conditions necessitating the policy to change.

Logistic Regression

The logistic regression model takes the three Signpost Conditions of the mean precipita-
tion change, seasonal amplitude, and evaporation as predictors. It allows policymakers
to pinpoint boundary conditions at which the probability of system failure changes
promptly. This boundary is interpreted as an Adaptation Tipping Point Threshold. It
signifies areas in the uncertainty space where minor variations could disproportionately
affect system performance.

The analysis used the statsmodels library in Python for model building. It added an
intercept to the Open Exploration dataset, selected Signpost Conditions, and fitted the
logistic regression model. The model fitness is examined using McFadden’s pseudo-R2.
Results display an unusually high Pseudo R-squared value for logistic regression of
0.8711. This indicates that chosen Signpost Conditions perfectly or nearly perfectly
predict the outcomes of hydropower failure or success.

• Mean precipitation multiplier has the strongest negative coefficient. It suggests
that a decrease in precipitation increases the probability of hydropower outcomes
displaying high deficits. The substantial magnitude of the coefficient points to
its critical impact.

• Similarly, an increase in seasonal amplitude leads to a higher risk of high hy-
dropower deficit values. Its impact is less pronounced than that of mean precipi-
tation.

• Increase in delta evaporation correlates with a higher likelihood of high hy-
dropower deficit outcomes.

• The model can perfectly predict 0.86 of observations. This might indicate
complete quasi-separation, indicating the model being overfitted to the Best
Hydropower policy.

Identification of Adaptation Tipping Point Thresholds

The regression model identifies boundary conditions within the uncertainty space that
differentiate success and failure scenarios. Figure 5.9 focuses on the three primary
Signpost Conditions, displaying the relationship between two, with the third held at
its mean value as a base condition. Plotted scenario data is scoped down to mean
precipitation scenarios ranging from 0.9 to 0.95, deliberately focusing on critical regions
where hydropower deficits become increasingly likely. It allows a more thorough analysis
of the boundary conditions. A contour plot across the whole uncertainty space can be
found the in Appendix E.1.
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Fig. 5.9 Logistic Regression Contour Plot for Best Hydropower Policy. The probability
of policy failure is shown across three signpost conditions. The contour line color
indicates failure probability, with lighter shades representing higher risks. Dark dots
describe policy failure.

The contour plots in Figure 5.9 display the scenario outcomes as dots, with colors
indicating success or failure states. The logistic regression model defines the probability
of success across varying levels of Mean Precipitation Change and Seasonal Amplitude
in a) and of Mean Precipitation Change and Evaporation rate in subplot b). The
following points detail the analysis:

• Most significant transitions from lower to higher probabilities of failure occur
as the mean precipitation factor decreases below 0.92. Specifically, the region
between values of 0.90 to 0.92 marks a critical decrease in hydropower reliability.

Adaptation Tipping Point Thresholds:

• For mµ values above 0.925, failure probability remains below 20 percent.

• When mµ falls below 0.925, failure probability sharply increases to over 60
percent, especially when Seasonal Amplitude is low (mC1 < 0.90).

• Higher Seasonal Amplitudes (mC1 > 1.05) significantly mitigate risks, reduc-
ing failure probabilities to below 40 percent even at the lowest precipitation
levels.

• Lower Evaporation Rates below 0 decrease the failure probability to about
60 percent with mµ at 0.9, showing less impact than Seasonal Amplitude.

• Evaporation Rates above zero show a clear gradient of increased failure
probability, highlighting heightened sensitivity to these conditions.
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Quantification of Adaptation Tipping Points

Visual analysis has delineated Adaptation Tipping Point Thresholds likely to result
in high performance deficits. These thresholds are translated into actionable system
variables. Using the statistical manipulation of streamflow data, introduced in Section
5.2.1, thresholds are converted into actual streamflow patterns 4.

Fig. 5.10 Comparison of Monthly Average Streamflow and Adaptation Tipping Point
for the Kafue Flats catchment. The monthly streamflow Adaptation Tipping Point
indicates the upper limit of the generated streamflow patterns. Once actual streamflow
data falls below this graph, the Best Hydropower policy should adapt.

For illustrating purposes, the generated streamflow patterns for the Kafue Flats are
analyzed to understand the system’s Adaptation Tipping Point. As shown in Figure
5.10, the identified Adaptation Tipping Point manifests a decrease, averaging an annual
decrease of 199 m3/s from historical levels. It translates to an overall reduction of 24,2
percent annually. These reductions are particularly severe during the wet season. For
instance, March, a month with historically high flows, records an absolute decrease of
67.11 m3/s or 36.24 percent. Table 5.3 provides detailed changes per month.

Key observations include:

• Pronounced streamflow reductions from February to April, exceeding 35 percent,
signal crucial months that traditionally contribute to reservoir replenishment and
peak power generation.

4Changes in evaporation rate are not considered, as translating these into direct temperature
changes is challenging and extends the scope of this thesis. Thus, while recognized as a Signpost
Condition, evaporation is not leveraged to describe an Adaptation Tipping Point
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• The identified streamflow pattern indicates a critical flow reduction, which, if
realized, would necessitate policy adaptation measures.

Table 5.3 Monthly average streamflows for the KafueFlats catchment comparing
historical data with monthly streamflow values that describe the Adaptation Tipping
Point for Best Hydropower policy in regard to hydropower generation.

Month Historical ATP Condition Abs. Decrease Pct. Decrease

January 74.03 56.67 17.35 23.44
February 148.84 95.47 53.37 35.86
March 185.19 118.08 67.11 36.24
April 159.36 103.41 55.95 35.11
May 94.61 64.71 29.91 31.61
June 46.43 34.74 11.68 25.17
July 30.37 24.59 5.78 19.02
August 23.10 21.33 1.77 7.65
September 16.11 16.35 -0.24 -1.47
October 10.59 10.89 -0.30 -2.83
November 10.23 9.40 0.82 8.06
December 22.05 20.03 2.02 9.17

Once Signpost Conditions are identified and Adaptation Tipping Points quantified,
resulting streamflow patterns provide a clear metric for policymakers to effectively
communicate policy vulnerabilities and critical thresholds to stakeholders, facilitating
informed decision-making under deep uncertainty.

Additionally, resulting streamflow patterns could enhance the development of new
adaptive policies. By incorporating these patterns as input data, a subsequent EMODPS
run could uncover optimal operational strategies tailored to adaptation tipping points.
This process hinges on the global approximators’ tendency to overfit, which, in this
context, ensures that the derived policy functions are closely aligned with the newly
identified streamflow scenarios.

Summary
The Section demonstrated Robustness Analysis to enhance adaptive policy design for
the Zambezi River Basin.

Initially, the Zambezi EMODPS model identified epsilon non-dominated Pareto-optimal
operation strategies. Quality assessments confirmed optimization’s convergence, ensur-
ing optimal results. Subsequent analyses highlighted tradeoffs, particularly between
hydropower and environmental goals. Furthermore, clustered policy outcomes indicate
preferences for either hydropower or irrigation objectives.
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Afterward, key uncertainties were characterized, including the identification of Uncer-
tainty Drivers. Those were effectively translated into quantifiable model factors of
mean precipitation change, interannual variability, seasonal amplitudes, seasonal shifts,
evaporation rates, and irrigation demand.

Next, multiple states of the world were generated. Based on their optimal performance
and tradeoff capabilities in the base case, four policies were simulated across 25,000
uncertainty conditions, resulting in 100,000 scenarios. Results showcased substantial
tradeoffs with policies showing varying degrees of robustness and vulnerability. Notably,
no single policy excelled across all scenarios and objectives.

The following Scenario Discovery identified Signpost Conditions under which the
Best Hydropower policy fails. Critical conditions were isolated using a combination
of performance thresholds, Feature Scoring, and PRIM. A logistic regression model
was established. The regression model helped identify Adaptation Tipping Point
Thresholds by highlighting the probabilities of system failure, thereby defining the
system’s boundary conditions. Thresholds were translated into streamflow patterns
that describe the Adaptation Tipping Point for the Best Hydropower policy in the
Zambezi River Basin. Ultimately, this allows for better communication and subsequent
development of new better suited policies.

Key insights concerning the Best Hydropower policy are:

Signpost Conditions:

• Mean precipitation change (mµ)

• Seasonal amplitude (mC1)

• Evaporation rate (δevap)

Adaptation Tipping Point Thresholds:

• Mean Precipitation mµ < 0.925.

• Seasonal Amplitude mC1 < 1.05.

• Evaporation Rate δevap > 15.

Adaptation Tipping Point:

• Annual streamflow reduction of 24.2 percent.

• Absolute streamflow decrease of 199 m3/s.

• February, March, and April are critical months with over 35 percent of
streamflow decrease.





Chapter 6

Results

This Section presents results according to the sub-research questions. First, the main
uncertainties in the Zambezi River Basin are presented. Second, critical system vulner-
abilities across four policies are analyzed to identify Signpost Conditions. Subsequently,
the results linked to the identified Adaptation Tipping Points are displayed.

6.1 Key Uncertainties in the Zambezi River Basin
The non-systematic literature review concluded with 263 papers. Additional keywords
filtered these, focusing on papers that directly relate to the spatial and temporal scope
of the Zambezi region. Afterward, the total number was distilled to a manageable
amount, assessing relevance. With a subsequent forward and backward citation search,
26 key peer-reviewed articles formed the foundation of the qualitative uncertainty
characterization.

The reviewed literature consistently highlights river basins as complex systems marked
by Deep Uncertainty. Mainly, hydroclimatic and socio-economic factors emerged as
pivotal due to their profound impact on system performance.

6.1.1 Hydroclimatic Uncertainties
Climate change introduces significant uncertainties into hydrological assumptions criti-
cal for river basin management. The impacts on Africa’s hydrology create unpredictable
effects for river basins. Studies by Maharjan and Issahaku (2014) and Kusangaya et al.
(2014) highlight challenges posed by climate change. They emphasize altered ecological
and hydrological dynamics across river basins. The work of Beilfuss et al. (2012) and
Kling et al. (2015) further validate these concerns, highlighting the vulnerability of the
Zambezi River Basin as one of the hardest hit by climate change.

Further, Desanker and Justice (2001) projects a temperature rise of 1.5-3°C by mid-
century, with precipitation patterns potentially decreasing by 10-30 percent (Desanker
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and Justice, 2001; Kling et al., 2015; Kusangaya et al., 2014). Hulme et al. (2001)
and Shongwe et al. (2009) report increased inter-annual variability, with precipitation
during the wet season decreasing by 31-35 percent and the dry season by one percent.
Beilfuss et al. (2012) anticipates a 15-25 percent increase in extreme flooding events.

Conclusively, the most critical hydroclimatic uncertainties are altered precipitation
patterns, interannual variability, seasonal shifts, and temperature increases.

6.1.2 Socio-economic Uncertainties
Socio-economic uncertainties in the Zambezi River Basin primarily stem from un-
predictable water demand factors. Fluctuating development trajectories, population
growth, and macroeconomic policies are key drivers. Hughes and Farinosi (2020) and
Hughes et al. (2020) have observed that these factors significantly complicate strategic
planning. For instance, they expect the population to increase by up to 50 percent
by 2050. Additionally, they estimated that irrigation water demand could increase by
30-50 percent because of enhanced food security.

Furthermore, the literature highlights the increasing conflict between surging demand
and decreasing supply. Hulme et al. (2001) project the Zambezi River Basin to face
decreasing water availability by up to 15 percent. For instance, Beilfuss et al. (2012)
and Kling et al. (2015) project 10-25 percent reductions in hydropower generation
due to decreased river flows and increased evaporation rates. Additionally, Maharjan
and Issahaku (2014) anticipates irrigation declines despite the projected increase in
demand.

Given these dynamics, uncertainties surrounding the development of irrigation water
demand in the Zambezi River Basin are seen as the most relevant socio-economic
uncertainty.

It is concluded that the most prominent uncertainties within the Zambezi River
Basin are precipitation changes that might decrease by up to 30 percent. Interannual
variability is expected to affect the wet season mainly. Additionally, seasons are
expected to shift up to a month. Moreover, temperature increase and irrigation
demand are additional uncertainties relevant to the Zambezi River Basin. Table 6.1
summarizes the six identified Uncertainty Drivers.
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6.2 Critical Signpost Conditions for the Zambezi
River Basin

To improve the adaptive policy structure, it is critical to identify system vulnerabilities
and define adaptation tipping points the policy under consideration. It necessitates
a thorough understanding of how various uncertainty factors impact the operational
viability of specific policies. Robustness analysis is applied to analyze these influences.
Critical uncertainty factors that describe conditions under which policymakers should
consider adapting to new operational strategies to optimize performance are identified
as signpost conditions. Results evaluate four distinct policies: Best Hydropower, Best
Environment, Best Irrigation, and Best Tradeoff. It begins with the outcomes from
feature scoring, followed by the findings from the PRIM analysis.

6.2.1 Feature Scoring
Feature Scoring results are summarized in a comprehensive heatmap in Figure 6.1.
It categorizes the impact of various uncertainty factors across the specific policies,
each aimed at optimizing system performance. Heatmap’s color gradient—dark to
light—illustrates the importance of uncertainty factors, with lighter colors indicating
higher importance.

Uncertainty Factor Influence Across Policies

A comparative analysis of how each uncertainty factor impacts the different policy
objectives across all policies shows that the mean precipitation multiplier is the most
influential and dominant uncertainty factor. Other factors, such as phase shifts, demand
multipliers, and seasonal amplitude, show a minor influence on objectives.

• Mean Precipitation is dominant across all policies, with importance scores typ-
ically above 0.65, highlighting its critical role in managing hydropower generation,
environmental flows, and irrigation needs. It shows slightly more consistent influ-
ence in the Best Environment and Best Tradeoff policies than Best Hydropower
and Best Irrigation, suggesting its pivotal role across varying policy focuses.

• Seasonal Phase Shift shows variable influence, with relatively high impacts
on irrigation objectives (up to 0.15 in Best Irrigation). It suggests that current
irrigation practices are highly dependent on seasonal patterns—lesser but notable
effects in environmental management, suggesting impacts on ecological processes
and flow timings.

• Seasonal Amplitude: Moderately influential, especially in Hydropower and
Irrigation, with scores indicating its role in managing seasonal water availability,
which seems crucial for power generation and agricultural cycles. Less pronounced
in Environmental policies, indicating a more minor role in affecting ecosystem-
dependent water levels.
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Fig. 6.1 Feature Scoring Summary across Four Policies. The heatmap displays the
importance of uncertainty factors in relation to the objective outcomes, with lighter
colors indicating higher importance.

• Evaporation Rate has lower influence across all policies. Notably, it mostly
affects the irrigation outcomes, with scores up to 0.049 under the Best Hydropower
policy. Given the Best Environment policy, evaporation rates also indicate a
higher influence on environmental minimum flows.

• Demand Multiplier shows the highest impact in irrigation (up to 0.041), where
changes in water demand directly influence agricultural water use. Minimal influ-
ence on hydropower and environmental objectives, indicating that fluctuations in
water demand do not heavily alter outcomes in these areas.

• Interannual Variability: Consistently low influence across all policies, with
scores typically below 0.01, suggesting that year-to-year variability has a minimal
direct impact on the immediate operational decisions in hydropower, environment,
and irrigation.

Uncertainty Factor Influence Under Specific Policy

The adaptive policy structure depends on the chosen policy. Thus, the following
presents a more specific analysis of the four policies.

Best Hydropower Policy: The mean precipitation multiplier seems to be the most
influential and dominant uncertainty factor. While other factors such as phase shifts,
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demand multiplier, and seasonal amplitude show minor influence on objectives, the
change in mean precipitation emerges as the critical Signpost Condition.

Fig. 6.2 Feature Scoring Heatmap for Best Hydropower policy. The heatmap displays
the importance of uncertainty factors in relation to the objective outcomes, with lighter
colors indicating higher importance.

• Predominance of mean precipitation

– Mean precipitation shows dominant influence across all objectives, scoring
0.92 for Hydropower, 0.84 for Environment, and 0.73 for irrigation.

– It indicates that changes in precipitation significantly affect the policy
outcome, making it a critical Signpost Condition for policy adaptation.

• Small influence of seasonal phase-shift and demand multipliers

– Seasonal phase shifts show the highest importance for the environmental
objective, with a score of 0.098. It emphasizes the challenges of meeting
current minimum flow requirements under shifting seasonality.

– The demand multiplier notably affects the Irrigation objective with a score
of 0.12, indicating its influence in adjusting to changes in water demand for
agricultural use.

• Minor impact of other uncertainty factors

– Seasonal amplitudes exhibit a slightly more pronounced impact on hy-
dropower (0.057) and Irrigation (0.059) objectives compared to the environ-
ment (0.047).

– Despite some impact, most factors like evaporation and interannual vari-
ability play minimal roles compared to mean precipitation changes, with
low influence scores across the board.
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Best Environment Policy: The mean precipitation continues to be of the highest
influence across all objectives. In particular, its influence is more consistent across
the three objectives. In contrast, other factors like seasonal phase shifts and demand
multipliers show reduced influence, highlighting their lesser importance in shaping
environmental outcomes than hydropower or irrigation policies.

Fig. 6.3 Feature Scoring Heatmap for Best Environment policy. The heatmap displays
the importance of uncertainty factors in relation to the objective outcomes, with lighter
colors indicating higher importance.

• Mean precipitation consistently dominant

– Mean precipitation shows more consistent influence across all objectives,
scoring 0.89 for Hydropower, 0.87 for Environment, and 0.91 for irrigation.

– It indicates that under the Best Environment policy, objectives depend even
more on changes in precipitation compared to Best Hydropower.

• Increased influence of the seasonal amplitude

– While not as dominant as precipitation, seasonal amplitude changes show
increased significance with relatively high scores of 0.084 for hydropower
and 0.077 for environment.

– This factor’s heightened relevance in the environmental policy suggests its
effect on seasonal water availability and flow.

• Other factors have low influence

– Despite their roles, other factors such as demand multipliers and delta
evaporation score lower, indicating a lesser impact on the policy’s outcomes.

– In particular, seasonal phase shift and demand increase loss influence re-
spective to environmental and irrigation objectives.



70 Results

Best Irrigation Policy: The feature scoring for the Best Irrigation policy shows a
pattern where mean precipitation remains a dominant factor, much like in the Best
Hydropower policy, but with an increased influence from seasonal amplitudes and
phase shifts.

Fig. 6.4 Feature Scoring Heatmap for Best Irrigation policy. The heatmap displays the
importance of uncertainty factors in relation to the objective outcomes, with lighter
colors indicating higher importance.

• Mean precipitation dominant but variable

– Similar to the Best Hydropower policy, mean precipitation is crucial, with
scores of 0.90 for hydropower, slightly higher at 0.91 for environment, and
lower at 0.67 for irrigation.

– While still highly influential, variability across these scores indicates a less
consistent impact compared to its role in the Best Environment policy. It
suggests that other factors play an important role in irrigation management.

• More diverse influence on irrigation deficits

– Seasonal amplitudes show a more pronounced effect in irrigation, with a
relatively high score of 0.11 compared to 0.07 in hydropower and 0.054 in
environment.

– Seasonal phase shift also emerges as more important for irrigation objectives,
scoring 0.15, compared to its influence under the Best Hydropower (0.033)
and Environment (0.0058) policies.

Best Tradeoff Policy: The mean precipitation is the most influential factor, indicating
a consistently high influence across all objectives, similar to the Best Environment
policy. Other factors have more objective specific influence.
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Fig. 6.5 Feature Scoring Heatmap for Best Tradeoff policy. The heatmap displays the
importance of uncertainty factors in relation to the objective outcomes, with lighter
colors indicating higher importance.

• Mean precipitation consistently dominant

– Mean precipitation shows similar influence under the Best Environment pol-
icy across all objectives, scoring 0.92 for Hydropower, 0.89 for Environment,
and 0.88 for irrigation.

– It indicates that under the Best Tradeoff and Best Environment policy,
objectives depend even more on changes in precipitation compared to the
Best Hydropower and Best Irrigation policies.

• Seasonal amplitudes and phase shifts with targeted impacts.

– Seasonal amplitude impacts are moderate across all sectors, with its effects
slightly more pronounced in Hydropower (0.062) and Environment (0.042).

– Seasonal phase shift shows the impact on the environment objective with a
score of 0.055. It is lower than the Best Hydropower policy but much higher
compared to the Best Environment and Best Irrigation policy, indicating that
a seasonal phase shift is more critical for ensuring environmental minimum
flows, especially under the influence of meeting hydropower demands.

Mean precipitation is the most dominant factor, and thus is considered a baseline
Signpost Condition. In contrast, other factors like seasonal phase shifts and seasonal
amplitudes show a relative variable moderate influence. Interannual variability consis-
tently shows minimal impact across all policies, similar to the evaporation rate with
minor influence under the Best Hydropower policy.
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Table 6.2 Summary of Uncertainty Factors’ Influence Across Policies

Uncertainty
Factor

Best
Hydropower

Best
Environment

Best
Irrigation

Best
Tradeoff

Mean
Precipitation

Variable
High

Constant
High

Variable
High

Constant
High

Seasonal
Phase Shift

Moderate Low Moderate Minor

Seasonal
Amplitude

Minor Minor Moderate Minor

Demand
Increase

Moderate Very Low Low Minor

Interannual
Variability

Low Very Low Low Very Low

Delta
Evaporation

Minor Low Low Low

6.2.2 PRIM
This Section presents the results of the PRIM analysis conducted for the Zambezi
River Basin, focusing on four key policies. The analysis aimed to identify critical
combinations of Signpost Conditions under different scenarios of interest as outlined
in Section 5.4. By employing PRIM, the study complements previous insights from
feature scoring by focusing on critical combinations of uncertainty factors that render
the basin vulnerable within these specific policy contexts.

Critical Signpost Conditions are defined based on their density-coverage tradeoff.
Detailed tables can be found in the Appendix D.6. Conditions that describe high
density-high coverage scenario boxes are taken as critical Signpost Conditions because:

High Density Box

• Ensures accurate identification of scenarios of interest.

• Scenarios within a box predominantly lead to system failures.

• Reduce the risk of false positives, guaranteeing that identified Signpost Conditions
are precise and specifically target the failure scenarios.

• High-density Signpost Conditions prompt adaptation responses that are highly
specific to system failures, crucial to avoid unnecessary adaptations.
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High Coverage Box

• Ensures reliable identification of scenarios of interest.

• Signpost Conditions manage to capture all relevant combinations of uncertainty
factors that lead to system failure.

• Reduce the risk of being unprepared for scenario conditions the system cannot
handle without adaptation.

• High-coverage Signpost Conditions guarantee reliable insights important for
effective adaptation.

Best Hydropower Policy

Under the Best Hydropower policy, performance gaps across all three objectives are
apparent. Thus, critical uncertainty combinations are assessed across four scenarios:
Hydropower, Environmental, Irrigation, and Overall deficit. Figure 6.8 displays the
identified scenario boxes and reveals distinct density-coverage tradeoffs across the four
scenario sets of interest. They differ in shape and the number of factors required to
define these scenarios.

• Hydropower Deficit: As coverage increases from low to high, there is a
noticeable and gradual decrease in density. This trend suggests that while
broader Signpost Conditions can capture a larger array of scenarios, they also
tend to include many that do not lead to system failure, diluting the accuracy of
predictions.

– Combinations of seasonal amplitude and precipitation changes are important
to cover scenarios under which the Zambezi River Basin exhibits high
hydropower deficits. They offer a good balance, with Box 50 covering 89
percent of scenarios and a density of 60 percent.

– A More precise description is required, including evaporation rates. This
leads to a coverage value of 0.75 with a density of 77 percent.

– The combination of seasonal amplitude, precipitation changes, and evapora-
tion rates is identified as the critical set of Signpost Conditions.

• Environmental Deficit: The density remains high and stable across a wide
range of coverage until sharply dropping near full coverage. This pattern suggests
that environmental deficit scenarios can be effectively captured with a simple
set of uncertainty factors without significant loss of specificity until very broad
conditions are considered.

– Mean precipitation plays a single important role in defining scenarios of
interest, identifying high-density, high-coverage scenario boxes with 92
percent coverage and 93 percent density.
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Fig. 6.6 Summary of PRIM Density - Coverage Tradeoff Plots for Best Hydropower
Policy. Subplots describe the scenario of interest, which PRIM tries to describe under
the Best Hydropower policy.

– It suggests that mean precipitation changes predominantly influence envi-
ronmental deficits. Thus, it is identified as a Signpost Condition.

• Irrigation Deficit: The plot shows a consistent, linear decline in density as cov-
erage increases. This suggests a more straightforward tradeoff between accuracy
and comprehensiveness, indicating that expanding the Signpost Conditions to
include more scenarios inevitably dilutes their specificity.

– Mean precipitation, demand increase, and evaporation rates are critical for
understanding irrigation deficits under the Best Hydropower Policy.

– Unlike the simpler Environmental Deficit, the Irrigation Deficit involves
multiple factors, indicating complex hydrological and socio-economic dy-
namics.

– Box 50, with high density (0.87) and low coverage (0.25), offers precise but
limited scenario coverage; Box 10, with the widest coverage (0.98) and lower
density (0.43), is suitable for broad surveillance; Box 20, providing a balance
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Table 6.3 Best Environment Policy Analysis for Hydropower and Irrigation Deficit
Scenarios

Hydropower Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

1 1.00 0.60 m_mu 0.90 1.04
5 1.00 0.73 m_mu 0.90 1.02
10 0.96 0.91 m_mu 0.90 0.99
15 0.81 0.99 m_mu 0.90 0.97
20 0.63 1.00 m_mu 0.90 0.95

Irrigation Deficit Scenario

1 1.00 0.78 m_mu 0.90 1.04
5 0.97 0.92 m_mu 0.90 1.02
10 0.81 0.99 m_mu 0.90 0.99
11 0.77 0.99 m_mu 0.90 0.96

with moderate coverage (0.79) and density (0.58), is optimal for reliable
scenario identification, but lacks accuracy in describing system failure.

– Box 20, employing mean precipitation and increased irrigation demand,
establishes critical Signpost Conditions for effective policy formulation.

• Overall Deficit: Panel d) in Figure 6.8 shows a pattern similar to the hydropower
deficit, with density decreasing more noticeably as coverage increases. However,
the decline starts sooner and is more gradual. Similar to hydropower deficit
scenarios, the highest density values are around 80 percent. It suggests that
around 20 percent of the overall failure scenarios cannot be explained.

– The primary factor is a change in seasonal amplitudes that is sufficient to
cover all failure scenarios.

– To ensure better accuracy, mean precipitation and evaporation rates must
be considered.

– Scenario box 58 offers high density and coverage. It suggests that seasonal
amplitudes, mean precipitation, and evaporation rates are good Signpost
Conditions.

Best Environment Policy

The focus is solely on the hydropower and irrigation deficit scenarios. It is informed by
the absence of severe environmental deficits within the worst 25 percent of outcomes
under this policy, demonstrating its robustness in mitigating environmental challenges
across all states of the world. Thus, there is no necessity to adapt the policy specifically
for environmental outcomes and overall failure scenarios.
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• Both scenarios of interest demonstrate nearly identical scenario conditions. It
highlights the consistent impact of mean precipitation. This suggests a major
vulnerability for the Best Environment policy. Policy preference for robust
environmental objective outcomes and its underlying water allocation preference
probably lead to the policy’s single sensitivity of mean precipitation changes.

– Precipitation is the single most important factor that appears consistently
across all scenario boxes.

– All scenario boxes achieve high density and coverage values, with relatively
similar patterns between both scenarios of interest. Irrigation deficit scenar-
ios, with higher density values from the onset, could be even more reliable
and accurate.

– Mean precipitation is the critical Signpost Condition for the Best Environ-
ment policy.

Best Irrigation Policy

Results concentrate on Signpost Conditions for the hydropower and environmental
deficit scenarios due to the lack of significant irrigation deficit scenarios under the Best
Irrigation policy. Like the Best Environment and Best Tradeoff policies, they showcase
the policy’s robustness in coping with a broad spectrum of potential future scenarios
specific to the irrigation objective.

Fig. 6.7 Summary of PRIM Density - Coverage Tradeoff Plots for Best Irrigation Policy.
Subplots describe the scenario of interest, which PRIM tries to describe under the Best
Irrigation policy.

• Hydropower Deficit: The density-coverage tradeoff shows that high-density
values are maintained until coverage reaches 60 percent. Beyond this point, there
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is a drop in density as coverage increases to 100 percent. It indicates a more
complex definition of scenarios of interest. Thus, while covering more scenarios
with a broader set of Signpost Conditions is possible, the accuracy in identifying
true deficit scenarios diminishes.

– Mean precipitation is the baseline Signpost Condition that is apparent in
all scenario boxes.

– A combination of mean precipitation and seasonal amplitude is necessary to
achieve better accuracy. For instance, while box 20 (coverage 0.96, density
0.79) is only described by the mean precipitation, box 25 provides better
accuracy with a density value of 0.9, while coverage decreases to 0.85 when
including seasonal amplitude.

– Mean precipitation and seasonal amplitude are critical Signpost Conditions.

• Environmental Deficit: Similar to the hydropower deficit, this plot shows a
decrease in density with increased coverage. However, density begins to decrease
almost immediately and continues steadily before it drops significantly at a
coverage value of 0.9. The drop and higher number of uncertainty factors required
for more accurate identifications suggest a more complex Signpost Condition for
environmental deficit values.

– Again, mean precipitation is a baseline condition that is necessary for
high coverage. However, alone, it cannot provide an accurate definition of
environmental deficit scenarios.

– The same holds for the combination of mean precipitation and seasonal
amplitude, only leading to density values around 0.43 for scenario box 30.
It suggests a more complex Signpost Condition.

– Adding the factor of seasonal phase shift allows for better accuracy, allowing
an accuracy value of 0.72 and coverage of 0.76 in box 45.

– Critical Signpost Conditions are described by the three factors of mean
precipitation, seasonal amplitude, and seasonal phase shift.

Best Tradeoff Policy

The Best Tradeoff policy shows robust behavior in regard to irrigation deficit scenarios.
Therefore, the adaptive policy structure has to be improved only when hydropower and
environmental objectives are focused on. Both deficit scenarios show clear tradeoffs:

• Highest densities at lower coverage levels with hydropower deficit displaying
a density of 0.95 at 55 percent coverage (Box 58), and environmental deficits
showing a density of 1.00 at 43 percent coverage (Box 40). It indicates that
specific Signpost Conditions might be too accurate to cover scenarios of interest,
though too narrow to provide reliable scenario identification.
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Fig. 6.8 Summary of PRIM Density - Coverage Tradeoff Plots for Best Tradeoff Policy.
Subplots describe the scenario of interest, which PRIM tries to describe under the Best
Tradeoff policy.

• As coverage increases, density declines. It suggests that scenarios of interest are
vulnerable to more diverse conditions, making it challenging to identify suitable
Signpost Conditions.

• The rate of decline differs, with the hydropower deficit experiencing a steady
decrease, whereas the environmental deficit maintains a higher density (around
0.9) until about 0.8 coverage. This hints at more specific Signpost Conditions
that maintain predictive accuracy over a broader range.

• For hydropower deficits, scenario boxes between 45 and 50 display a good tradeoff
of accurate and reliable scenario definition. Thus, Signpost Conditions are mean
precipitation and seasonal amplitude.

• Environment deficit scenarios can be defined by the single Signpost Condition of
mean precipitation with accuracy and reliability above 80 percent (box 25).

In summary, each policy was analyzed according to its performance gaps across multiple
scenarios of interest. Identified Signpost Conditions are summarized in Table 6.4.
Precipitation is a consistent factor across all policies. This underscores its pivotal role
in meeting diverse policy objectives. It further aligns with feature scoring results that
emphasize its significance. However, unlike the Best Environment Policy, which depends
solely on precipitation, other policies require additional factors for a comprehensive
understanding of potential failures. This suggests that while precipitation is critical, it
is often insufficient alone to describe all potential deficits precisely.

Multiple factors are generally necessary to accurately predict policy failures. Seasonal
amplitudes frequently complement precipitation in policies like Best Irrigation and Best
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Table 6.4 Summary of Signpost Conditions for Each Policy Scenario

Policy Scenario of Interest Set of Signpost Conditions

Best Hydropower

Hydropower Deficit Precipitation, Seasonal Amplitude,
Evaporation Rates

Environmental Deficit Precipitation

Irrigation Deficit Precipitation,
Irrigation Demand

Overall Deficit Precipitation, Seasonal Amplitudes,
Irrigation Demand

Best Environment
Hydropower Deficit Precipitation

Irrigation Deficit Precipitation

Best Irrigation
Hydropower Deficit Precipitation, Seasonal Amplitude

Environmental Deficit Precipitation, Seasonal Amplitude,
Phase Shift

Best Tradeoff
Hydropower Deficit Precipitation,

Seasonal Amplitude

Environmental Deficit Precipitation

Tradeoff. This combination enhances the precision of Signpost Conditions, addressing
the complex interplay of variables that affect policy outcomes.

Ultimately, the system’s vulnerabilities vary by policy. The Best Hydropower policy
integrates diverse conditions: precipitation, seasonal amplitudes, evaporation rates,
and irrigation demand, indicating a multifaceted approach to managing the Zambezi
River Basin’s challenges. Conversely, the Best Environment policy is primarily sensitive
to variations in precipitation, while the Best Irrigation and Tradeoff policies rely more
heavily on the combination of precipitation and seasonal amplitudes to address their
specific vulnerabilities.

6.3 Adaptation Tipping Points for the Zambezi
River Basin

This Section presents results on the quantified Adaptation Tipping Points. Three
distinct sets of Signpost Conditions are analyzed to identify final Adaptation Tipping
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Point Thresholds. Each set contains the identified primary and secondary factors of
precipitation and seasonal amplitude as a baseline condition. The third factor varies
between evaporation rate, irrigation increase, and seasonal phase shift. Results indicate
how well Signpost Conditions can identify policy-specific vulnerabilities.

• Signpost Condition Set 1: Precipitation, Seasonal Amplitude, Evaporation
Rate

• Signpost Condition Set 2: Precipitation, Seasonal Amplitude, Irrigation
Increase

• Signpost Condition Set 3: Precipitation, Seasonal Amplitude, Seasonal Phase
Shift

All three sets of Signpost Conditions could accurately predict policy failure, except for
the Irrigation Policy, see Table 6.5. For a comprehensive overview, see Appendix E.2.

Table 6.5 Summary of Model Accuracy Across Policy Sets

Policy Set 1 Set 2 Set 3
Best Hydropower 0.6819 0.7060 0.6600
Best Environment 0.7055 0.6934 0.6913
Best Irrigation 0.01554 0.01580 0.01580
Best Tradeoff 0.8643 0.8602 0.8529

Under the Best Hydropower policy, Signpost Condition Set 2 demonstrated the highest
model effectiveness with a Pseudo R-squared value of 0.7060. It indicates a strong
correlation between the model’s predictions and the observed outcomes. This reflects
the model’s ability to capture policy failure. Despite the relatively minor performance
differences, Set 1 and Set 3 also showed strong results with values of 0.6819 and 0.6600,
respectively. Across these models, both primary and secondary Signpost Conditions
consistently exerted a significant negative influence on the failure probability.

In the Best Environment and Tradeoff Policies, each logistic regression model consis-
tently reached high McFadden Pseudo R-squared values, underlining their ability to
predict policy outcomes across varied settings accurately. Notably, Set 1 was identified
as the most precise in these policies, achieving the highest Pseudo R-squared values.
This observation implies that Set 1 models are particularly adept at accounting for the
factors that influence policy success or failure in these areas.

In contrast, the logistic regression model for the Best Irrigation Policy did not accurately
predict policy failure. This result is particularly striking given the insights from previous
analyses suggesting that policy failure is associated with mean precipitation values
around 0.9 to 0.93. Due to its inconsistent performance, the best irrigation policy has
been excluded from further consideration in this analysis.
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6.3.1 Identification of Adaptation Tipping Point Thresholds
The results are based on the regression models from Signpost Condition Set 1, which has
slightly superior predictive accuracy. They focus on precipitation, seasonal amplitude,
and evaporation rate. Contour plots offer insights into how interactions between
Signpost Conditions influence the probability of policy failure.

Best Hydropower Policy

Contour plots for the Best Hydropower policy in Figure 6.9 show that mean precipitation
change is critical for policy performance. As it decreases, there is a marked increase
in the probability of policy failure. Seasonal amplitude and delta vaporation rate
modulate the impact of precipitation decrease.

Fig. 6.9 Logistic Regression Contour Plots for Best Hydropower Policy. The contour
line color indicates failure probability, with lighter shades representing higher risks.
Dark dots describe policy failure.

• For the mean precipitation factor values above 0.975, failure probability remains
relatively low, generally below 20 percent, indicating more stable conditions for
hydropower operation.

• As the factor decreases below 0.965, there is an increase in failure probability,
particularly when the seasonal amplitude factor is lower than 1.00, where the
failure probability can exceed 60 percent. This suggests that reduced precipitation
coupled with low seasonal amplitude significantly compromises system stability.

• Higher Seasonal Amplitudes (above 1.05) appear to mitigate risks effectively,
reducing failure probabilities to around 40 percent even at the lower precipitation
levels.
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• Delta evaporation rates show varied impacts. Rates below 10 have a moderate
influence on failure probability. As evaporation increases beyond 20, the system’s
vulnerability becomes more pronounced, with failure probabilities escalating
above 60 percent, underscoring the system’s sensitivity to higher evaporation
rates under low precipitation conditions.

Best Environment Policy

Figure 6.10 displays a similar trend compared to the Best Hydropower policy vul-
nerabilities. A strong gradient of increasing failure probability as mean precipitation
decreases is visible. Again, this pattern seems to be modulated by the levels of seasonal
amplitudes and evaporation rate.

Fig. 6.10 Logistic Regression Contour Plots for Best Environment Policy. The contour
line color indicates failure probability, with lighter shades representing higher risks.
Dark dots describe policy failure.

• Similar to the Hydropower Policy, a decrease in precipitation correlates with
higher failure probabilities in the Environment Policy. For values above 0.965,
the Environment Policy maintains a low failure probability, generally below 20
percent.

• Sensitivity to changes in precipitation appears more pronounced in the En-
vironment Policy. This suggests higher policy vulnerability to variations in
precipitation.

• Higher Seasonal Amplitudes (above 1.05) buffer the probability of failure against
lower precipitation levels with failure probabilities below 40 percent. However,
it displays a decreased moderating effect of higher values compared to the Best
Hydropower policy.
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• An evaporate factor below 10 have a moderate impact on failure probability,
which intensifies as the mean precipitation change decreases. When the delta
evaporation rate exceeds 20, the system becomes highly vulnerable, with a
significant spike in failure probabilities.

• While both policies (Best Hydro and Environment) show increased vulnerability
with higher evaporation, the Environment Policy exhibits a steeper increase
in failure probabilities at lower values. It could suggest a reduced moderating
influence.

Best Tradeoff Policy

Figure 6.11 reveals similar patterns to the previous two policies. Policy failure displays
a strong dependency on mean precipitation changes. This trend is influenced by
the levels of seasonal amplitude and evaporation rates, which can either mitigate or
intensify the effects of decreasing precipitation.

Fig. 6.11 Logistic Regression Contour Plots for Best Tradeoff Policy. The contour line
color indicates failure probability, with lighter shades representing higher risks. Dark
dots describe policy failure.

• Failure probability significantly increases as the mean precipitation factor de-
creases below 0.945.

• Compared to the other policies, boundary conditions are narrowly defined. It
hints at a heightened policy sensitivity.

• Values above 1.05 serve as a buffer. Its ability to moderate the variability in
precipitation makes it a stabilizing factor. Thus, higher seasonal amplitudes
protect significantly against failure.
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• Vulnerability to failure increases substantially when delta evaporation values
exceed 10, especially at lower precipitation levels. This highlights the policy’s
vulnerability to both decreased precipitation and increased evaporation rates.

• Delta evaporation rates below 10 have a moderate impact on failure probability,
which intensifies as mean precipitation Change decreases. When evaporation
increases but 20 percent, the system becomes highly vulnerable, with a significant
spike in failure probabilities.

• While both policies (Best Hydro and Environment) show increased vulnerability
with higher evaporation, the Environment Policy exhibits a steeper increase
in failure probabilities at lower values. It could suggest a reduced moderating
influence.

Overall, the combination of Signpost Conditions demonstrated similar interactions
across different policies, with varying degrees of sensitivity to each factor. Results
conclude with the identification of Adaptation Tipping Point Thresholds. These are
sufficient to describe vulnerabilities across all policies and thus hint at underlying
systemic vulnerabilities. They reflect the system boundary condition that, when
exceeded, significantly increases the likelihood of policy failure.

Adaptation Tipping Point Thresholds:

• Mean Precipitation Change: A threshold of 0.965 is identified across all
policies, below which there is a marked increase in failure probability.

• Seasonal Amplitude: A threshold value of 1.05 serves as a mitigating factor,
effectively reducing failure probabilities even under lower precipitation levels.

• Delta Evaporation Rate: A critical threshold of 20 percent increase, beyond
which the vulnerability of policies increases.

6.3.2 Streamflow Patterns of Adaptation Tipping Points
Based on the scenarios of interest and critical Signpost Conditions, the analysis
supports a focus on streamflow patterns as a sufficient metric for defining policy
Adaptation Tipping Points. Regression model results present Adaptation Tipping
Points Thresholds that inform the generation of new streamflow patterns understood
as Zambezi’s Adaptation Tipping Point.

Under the identified Adaptation Tipping Point Thresholds, Adaptation Tipping Point
streamflow patterns exhibit a wide variety. The wide range can be explained by the
interaction effects between mean precipitation changes and the seasonal amplitudes.
Figure 6.12 illustrates it for the Kafue Flats catchment area; the other catchment
figures can be found in Appendix E.9. Notably, there is a great streamflow decrease
across all catchments during the wet season. Seasons vary from catchment to catchment.
Results focus on the Max Adaptation Tipping Points streamflow conditions. Choosing
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Fig. 6.12 Comparison of Monthly Average Streamflow and adaptation tipping point
patterns for the Kafue Flats catchment.

this scenario displays a cautious approach that indicates adaptation once policy failure
becomes more probable.

Maximum Streamflow Adaptation Tipping Point

The Maximum ATP-streamflow conditions represent streamflow patterns that, under
the Adaptation Tipping Point Thresholds, exhibit the fewest differences from the
current streamflow pattern. Thus, they are more likely to be reached than the mean or
min ATP-streamflow conditions.

The absolute and percentage differences between average historical and Max ATP-
streamflow conditions for each catchment area are depicted in Figure 6.13.

• Seasonal Impact is pronounced across all catchment areas with differing vari-
ability. Rainy season suffers significantly larger decreases in streamflow across all
catchments, with specific months showing extreme reductions.

– Across all catchments, the rainy season experiences the largest decreases
in streamflow. Months between January and June experience a greater
difference in available water. For instance, Cahora Bassa’s wet season
decreases by 26.59 percent, while its dry season decreases by 10.72 percent.

– On average, the rainy season shows a decrease of 17 percent, with the
Kafue Flats experiencing the lowest decrease of 16.23 percent. In contrast,
the Cahora Bassa, Shire, and Bakota Gorge catchments all experience an
average decrease above 20 percent, with the Cahora Bassa experiencing the
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Fig. 6.13 Streamflow Pattern of the Chosen Adaptation Tipping Point Scenario with
Absolute Decrease Values. The heatmap indicates the monthly decrease in streamflow
across all relevant catchments compared to historical averages. The color intensity
represents the absolute difference, with darker shades indicating higher values.

Bakota Gorge averaging a total decrease of 2008 m/s3 compared to the
historical data.

– Highest absolute reduction occurs in May, with a decrease of 593 m3/s from
the Bakota Gorge catchment area.

– The dry season shows varying changes, with some catchments experiencing
increases1 and other decreases in streamflow.

1This is most likely due to an artifact in how the streamflow data is generated. Especially low
seasonal amplitude has a decreasing effect during wet seasons but also an increasing effect during the
dry season; see Appendix C.5
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– Streamflow increases are minor and cannot compensate for the great decrease
during the rainy season. Overall, each catchment describes total absolute
streamflow decreases.

• Catchments have a different impact on the overall water balance within the
system. Differences could indicate more critical catchment areas.

– Cahora Bassa and Bakota Gorge catchments experience the most substantial
impacts. It emphasizes their importance to the Zambezi River Basin’s water
balance.

– Kafue Flats, Kariba, and Itthezi-Thezi catchments exhibit less extreme
changes in both absolute and percentage decreases compared to Cahora
Bassa and Bakota George.

– Shire catchment displays the least variability among the studied catchments,
with percentage decreases ranging from 12.9 percent in September to 23.7
percent in January. This could be attributed to Lake Malawi, which provides
a consistent inflow, buffering against seasonal influence.





Chapter 7

Discussion

This thesis establishes a framework that enhances adaptive policy design for river
basin management under deep uncertainty, with a specific application to the Zambezi
River Basin. Integrating a Robustness Analysis with EMODPS advances a new
decision-support tool that transcends Robust Planning approaches.

Integration of Robustness Analysis and EMODPS
Alternative policies were identified through a conventional EMODPS model. Epsilon
non-dominated Pareto-optimal operation strategies revealed significant tradeoffs be-
tween hydropower, environmental, and irrigation goals. This was followed by a detailed
characterization of key uncertainty drivers, which were then translated into quantifiable
uncertainty factors and integrated into the EMODPS model. This integration laid
the groundwork for an Open Exploration, which generated future States of the World
across four distinct policies under varied conditions. Using Feature Scoring, PRIM,
and Logistic Regression modeling, Scenario Discovery pinpointed vulnerabilities. These
efforts culminated in identifying Signpost Conditions and the definition of Adaptation
Tipping Point Thresholds through quantifiable streamflow patterns.

The new methodological integration in this research addresses the limitations inherent
in Robust Planning while contributing to overcoming challenges in Dynamic Planning.
Traditional Robust Planning is often criticized for its rigidity and inability to adapt
to new information, which can lead to suboptimal policy outcomes when underlying
assumptions change. The proposed approach mitigates these issues by employing
Robustness Analysis not to select optimal policy alternatives but to pinpoint and
respond to specific system vulnerabilities in relation to Deep Uncertainties.

Dynamic and Responsive Policy Design

The thesis enriches discussions in the realm of dynamic river basin management by
identifying Signpost Conditions and quantifying Adaptation Tipping Points for the
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Zambezi River Basin. It offers a nuanced perspective that prioritizes adaptability
and continuous policy evolution. The thesis delineates how dynamic policies can
be constructed and adjusted in response to an evolving future by characterizing key
uncertainty drivers and translating these into quantifiable factors. The generation of
diverse future States of the World through Open Exploration further illustrates the
adaptive policy framework, enabling the identification of vulnerabilities that shape the
development of Signposts and Adaptation Tipping Points.

Characterization of Signpost Conditions and Adaptation Tip-
ping Points
Findings from the Zambezi River Basin are relevant locally and hold broader implica-
tions for global river basin management under Deep Uncertainty. Identifying mean
precipitation changes and seasonal amplitude variations as primary Signpost Conditions
provides a template that can be adapted to other contexts.

Critical Uncertainties

In this context, the response to the first sub-research question lays the foundational
groundwork for integrating Robustness Analysis and Dynamic Planning. The explo-
ration of the most prominent uncertainties in the Zambezi River Basin underpins the
analysis. By identifying these uncertainties, the thesis delineates the critical external
system factors necessary for Exploratory Modeling Analysis and enhances the capacity
for anticipatory management.

Findings reveal hydroclimatic uncertainties, such as changes in precipitation patterns,
potential decreases by up to 30 percent, increased inter-annual variability, and shifting
seasons, are exacerbated by projected temperature rises of 1.5-3°C by mid-century.
Socio-economic uncertainties, including rapid population growth expected to result
in a 50 percent increase by 2050, could lead to rising irrigation demands projected
to increase by 30-50 percent, which pose additional challenges. These complexities
necessitate a detailed understanding of how such factors affect the basin’s operating
strategies.

Critical Combinations of Uncertainties

The findings related to the second sub-research question, focusing on critical vul-
nerability combinations, improve the dynamic policy design by identifying Signpost
Conditions. The analysis reveals precipitation as a primary factor influencing all policy
objectives within the Zambezi River Basin. Serving as a baseline Signpost Condition,
precipitation’s critical role underscores its importance in the hydrological dynamics of
the Zambezi River Basin.
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Seasonal changes, particularly seasonal amplitudes, complement precipitation influences
on policy effectiveness. These factors notably affect the Best Irrigation and Best Tradeoff
policies, highlighting their critical impact on managing seasonal water availability.

The research further identifies policy-specific vulnerabilities that suggest a policy-
tailored approach. For instance, the Best Hydropower policy is influenced by diverse
conditions, including Evaporation and Irrigation Demand. In contrast, the Best
Environment policy responds primarily to variations in precipitation changes. In
contrast, the Best Irrigation and Best Tradeoff policies require management strategies
addressing precipitation and seasonal amplitude changes.

The implications of these findings shape the response frameworks necessary for dy-
namic river basin management. Understanding the interplay between these critical
uncertainties aids in developing policy structures, including Adaptation Tipping Points.
Additionally, anticipating vulnerabilities and potential policy failures is vital for proac-
tive river basin management. This anticipatory approach is essential in mitigating
adverse outcomes before they escalate into more severe challenges. A detailed under-
standing of uncertainty interactions also lays the foundation for quantifying Adaptation
Tipping Points, which will contribute directly to answering the third sub-research
question.

Quantifying Adaptation Tipping Points

The third sub-research question identifies Adaptation Tipping Points. Its focus on
delineating Adaptation Tipping Points and provides actionable thresholds that signal
when existing policies may become ineffective. Recognizing these thresholds allows for
policy adaptation. The ability to define and respond to these tipping points ensures
that adaptations are contextually relevant, preventing potential system failures.

The research identifies specific Adaptation Tipping Point Thresholds that signal policy
failures. These include a mean precipitation factor threshold of 0.965, below which
there is a marked increase in the likelihood of policy failure across all strategies.
Additionally, a seasonal amplitude threshold of 1.05 shows that higher amplitudes can
mitigate failure probabilities even under low precipitation scenarios. Furthermore, a
Delta Evaporation Rate of 20 signifies a boundary beyond which policy vulnerabilities
significantly increase.

Translating these thresholds into streamflow patterns enables policymakers to under-
stand and anticipate points at which current strategies may no longer suffice. It provides
a clear visual representation of when policy adjustments should be enacted. The results
reveal a pronounced seasonal impact, with the rainy season experiencing significantly
more significant decreases in streamflow. Notably, the wet season’s streamflow across
all catchments shows a substantial reduction, with an average decrease of 17 percent,
highlighting critical periods of vulnerability. Specifically, the Cahora Bassa and Bakota
Gorge catchments emerge as particularly sensitive, experiencing average decreases
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exceeding 20 percent, with the Bakota Gorge recording an absolute reduction as high
as 593 m3/s in May.

Implications for Local and Global River Basin Management
These findings gain significance in light of earlier discussions regarding projected
changes in the Zambezi River Basin’s precipitation patterns, anticipating up to 30
percent decreases. Such substantial alterations make the occurrence of the identified
Adaptation Tipping Points not only plausible but increasingly probable.

The looming possibility of reaching Adaptation Tipping Points underscores the urgent
need to explore alternative policies to which the system can adapt effectively. By
characterizing Adaptation Tipping Points as specific streamflow patterns, an intriguing
avenue for future research emerges. This approach could involve using these streamflow
patterns as input data for subsequent EMODPS runs. This utilization would capitalize
on the tendency of global approximators to overfit, which, in this context, ensures that
the derived policy functions closely align with the Adaptation Tipping Point streamflow
scenarios. As a result, this approach prompts a comprehensive reevaluation of existing
policies, optimizing strategies that are better equipped to manage the expected hydro-
logical changes. Therefore, using streamflow patterns to reflect Adaptation Tipping
Points helps simplify complex hydrological data into actionable insights and may also
enrich subsequent modeling processes that provide optimally adapted policy functions.

Conclusion and the Role of a Policy Broker
Conclusively, insights from each sub-research question provide a framework to improve
the adaptive policy design that advances the management of the Zambezi River
Basin. It informs proactive monitoring and dynamic adjustment of policies, addressing
traditional challenges associated with Dynamic Planning, such as the complexity of
continuous management and the high costs of monitoring a wide array of system
variables. By clearly defining Signposts and quantifying Adaptation Tipping Points,
the management process becomes more effective in addressing Deep Uncertainties.

It should be noted that choosing a diverse array of streamflow patterns to describe
Adaptation Tipping Points also introduces considerable ambiguity in the decision-
making process. For instance, opting for the upper boundaries of these Adaptation
Tipping Point streamflow patterns suggests a more cautious approach. However,
selecting lower boundaries increases the risk of policy performance falling short. This
underscores that managing river basins transcends technical challenges and enters the
realm of socio-technical complexities.

The process of agreeing on performance thresholds, which is critical for this framework,
and agreeing on problem formulations, including setting objective constraints, necessi-
tates extensive stakeholder involvement. While this adds complexity to decision-making,
especially in a multi-objective context, it is not an unfamiliar scenario in river basin
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management. The role of policy analysts as brokers between stakeholder preferences
and scientific insights is critical, highlighting the dynamic interplay between knowledge
and preferences in shaping policy.

This complexity should be viewed not as a limitation but as an enhancement to
Dynamic Planning. Transboundary water management, often framed as a problem
space fraught with competing demands and escalating conflicts, should be viewed as a
solution space for continuous cooperation. Acknowledging the deeply uncertain nature
of river basins like the Zambezi ensures ongoing dialogue and adaptation. Instead of
striving for permanent solutions, policymakers are encouraged to foster a dynamic
understanding of uncertainties. This approach is vital as it recognizes the evolving
nature of challenges and promotes flexibility and responsiveness in policy frameworks.

In conclusion, adaptive policy frameworks can transform transboundary water issues
from complex challenges through continuous and informed decision-making into col-
laborative opportunities. By embracing river basins’ dynamic and uncertain waters,
policymakers can address current management issues and lay a foundation for future
cooperation and policy adaptation. This thesis contributes to this process by providing
a decision-support tool that enhances Dynamic Planning for river basin management,
which aligns with global initiatives like the 1992 Water Convention and Sustainable
Development Goal 6.





Chapter 8

Conclusion and Recommendations

8.1 Conclusion
This thesis introduces a framework to enhance decision support for river basin manage-
ment under Deep Uncertainty, using the transboundary Zambezi River Basin as a case
study. By identifying Signpost Conditions and quantifying Adaptation Tipping Points,
the research advances the dynamic policy design essential for Dynamic Planning in
river basin systems.

The thesis pinpoints key uncertainties that critically impact the management of the
Zambezi River Basin. The analysis revealed that a decrease in precipitation significantly
influences policy outcomes, a risk that higher seasonal amplitudes can moderate. Specif-
ically, combinations of low seasonal amplitudes and reduced precipitation consistently
lead to policy failure. It enabled the identification of three sets of Signpost Conditions,
which include precipitation and seasonal amplitudes as primary and secondary factors,
complemented by evaporation, irrigation demand, or seasonal shifts. These conditions
accurately predict policy success or failure, offering reliable and precise descriptions
of the system’s boundary conditions. Focusing on the combination of precipitation,
seasonal amplitudes, and evaporation, the research successfully defined Adaptation
Tipping Point Thresholds, such as a critical precipitation threshold of 0.965, a seasonal
amplitude threshold of 1.05, and increased evaporation amounts of 20 percent. These
thresholds were then translated into streamflow patterns, providing a tangible and
visual means for policymakers to understand and anticipate the impacts of crossing
these critical points, facilitating more informed and proactive decision-making. For the
analyzed polices a common Adaptation Tipping is reached at an overall streamflow
reduction of 24.2 percent, with the rainy season experiencing the most significant
decreases.

The research contributes theoretically and practically to the field of river basin man-
agement under Deep Uncertainty. Theoretically, it enhances understanding of how
Robustness Analysis can be applied to identify system vulnerabilities that inform
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Signpost Conditions and Adaptation Tipping Points. This represents a significant
advancement in addressing the complexities of Dynamic Planning and overcomes
limitations inherent in traditional Robust Planning approaches. Practically, the study
demonstrated the framework application. Although the Zambezi River Basin was the
primary case study, the framework developed is adaptable and can be applied to other
river basins.

The methodologies used throughout this study can be adapted to other river basins,
each characterized by unique uncertainties that must be integrated into the modeling
process. A key challenge in applying this framework elsewhere lies in accurately
characterizing these uncertainties and their translation into computable factors for
simulation models. This highlights the necessity of a computational model capable of
conducting Open Exploration experiments. EMODPS models are a perfect fit for this
task, allowing for the flexible addition of new input data, performing Open Exploration,
and finding new policies optimized on quantified Adaptation Tipping Point streamflow
patterns.

In conclusion, the necessity of ongoing adaptation and proactive management in river
basin governance cannot be overstated. As uncertainties are profound, policy flexibility
and responsiveness are crucial. This approach mitigates the risks associated with deep
uncertainties and provides opportunities for enhanced cooperation and collaboration.

8.2 Recommendation
This research has substantiated the critical need for dynamic, adaptive policies tailored
to the specific vulnerabilities and conditions of the Zambezi River Basin. The identifi-
cation of Signposts and Adaptation Tipping Points are designed to guide the transition
from traditional static models to a Dynamic Planning framework, emphasizing the
importance of continuous monitoring and adaptation.

Target Monitoring of Precipitation and Seasonal Amplitudes

Given that mean precipitation and seasonal amplitudes are identified as primary drivers
of system vulnerability, it is recommended that monitoring efforts be concentrated
on these elements. Streamflow patterns generated during this study have pinpointed
critical catchment areas like Cahora Bassa and Batoka Gorge, where streamflow
changes significantly impact reservoir water balances. Monitoring should be intensified
in these areas, especially during the wet season when streamflow decreases are more
pronounced in absolute terms. This targeted monitoring will provide data to inform
trends, suggesting when adaptation is necessary.

The Zambezi Watercourse Commission should lead the coordination of these enhanced
monitoring efforts. As the transboundary river organization overseeing the Zambezi
River Basin, the organization is ideally positioned to facilitate collaboration among
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member states, ensuring that monitoring data is shared and used to inform decision-
making across the basin. This collaborative approach will help to synchronize policies
and practices.

Transboundary Stakeholder Participation

The transition to dynamic policy structures necessitates the involvement of a broad
spectrum of stakeholders, extending beyond policymakers who must recognize the
complex, ever-evolving challenges of river basin management, which preclude simple
solutions. Instead, a continuous policy process that excels in Dynamic Planning is
essential, encompassing stakeholders like reservoir operators, who traditionally rely on
outdated models.

These stakeholders, particularly reservoir operators, are crucial in implementing this
change and must be convinced of its benefits. These included enhanced system
performance and reduced risk of system failures. Support for these stakeholders can
be facilitated through training, demonstration projects, stakeholder engagement, and
participatory modeling projects. It is essential to integrate the Dynamic Planning
perspective into the operating minds of the Zambezi River Basin. Thus, governmental
support should include the development of infrastructure and capacities that support
adaptive management, such as advanced hydrological modeling tools and decision
support systems.

Implementing these recommendations will require strong political will, coordinated
action, and sustained investment. This might be challenging, especially in the trans-
boundary context. However, the long-term benefits of a dynamic and collaborative
river basin management framework will far outweigh the costs. By embracing Dynamic
Planning with a focus on continuous adaptation, stakeholders in the Zambezi River
Basin can ensure sustainable and equitable water management capable of meeting the
challenges of today and tomorrow.

8.3 Limitations
While this research contributes to the improved management of the Zambezi River
Basin under Deep Uncertainty, it acknowledges several limitations that may affect the
generalizability and application of its findings.

The thesis focuses on the Zambezi River Basin as a case study, which limits the direct
applicability of its findings to other contexts. The uncertainty characterization is
specifically tailored to the Zambezi model. Consequently, the insights on Adaptation
Tipping Point Thresholds derived from this study are context-specific and not universal.
Additionally, the uncertainty generation process, including the scenario development,
lacks validation against General Circulation Models, instead relying on the assumption
that the approach meaningfully represents uncertainties at hand.
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Additionally, the insights heavily depend on the accuracy with which the modeler
defines the uncertainty space. This includes identifying drivers, their translation into
quantifiable uncertainty factors, and their integration into the existing model, leading
to potential biases if these elements are not accurately captured. Uncertainty factors
were sampled using Latin hypercube sampling, which, while effective in representing
the uncertainty space, fails to capture the likely interdependencies between factors.
This study also considers primarily hydroclimatic uncertainties, with a limited focus
on socio-economic factors, skewing the analysis towards hydrological aspects.

Moreover, using a pre-existing complex EMODPS model assumes the validity of
its underlying assumptions. Additionally, the spatial dimension of the river basin
management is underexplored, limiting the ability to apply findings across different
geographic scales or within varied spatial contexts of the basin.

The resolution of streamflow manipulation in this model is based on monthly data,
which could overlook finer temporal variations that daily data reveal, leading to less
precise hydrological modeling outcomes. Furthermore, the identification of Adaptation
Tipping Points is based on hydrological patterns without fully integrating socio-
economic variables, which, although not deemed critical, might influence the broader
context of policy adaptation.

Additionally, Adaptation Tipping Point Thresholds are defined as absolute values
without considering temporal trends over moving windows, which omits the temporal
dynamics of adaptation needs.

Despite these limitations, the thesis advances the field of Dynamic Planning in river
basin management under deep uncertainty by providing a structured approach to
leveraging Robustness Analysis to improve adaptive policy design.

8.4 Future Work
Extending the proposed framework to other river basins is essential. While this research
has provided valuable insights into the Zambezi River Basin, applying and validating
the adaptive policy design approach in different geographical and hydrological contexts
would help strengthen the generalizability and applicability of the findings.

Further analysis within the Zambezi River Basin itself is also needed. Current re-
search has begun to utilize data from the quantification of Adaptation Tipping Point
Thresholds, but considerable scope exists to deepen this analysis. Future efforts should
explore how these thresholds can directly inform and transform policy-making, mainly
through the development of strategies that respond dynamically to identified streamflow
patterns at critical tipping points.

Expanding the range of policies analyzed is another crucial area for future research.
This thesis focused on four specific policies; however, exploring a more comprehensive
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array of policy options could uncover additional robust and adaptive strategies suitable
for various objectives and challenges within the river basin.

The next step is developing a comprehensive, Dynamic Adaptive Policy Plan. While
the current project laid the groundwork by defining the complex policy structure, future
work should identify new adaptive policies that the system can adopt as conditions
evolve.
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Zambezi Model

A.1 Zambezi Model Model Structure

Fig. A.1 UML Overview of the Zambezi Base Case Model.



A.2 Reservoir Class Structure 111

A.2 Reservoir Class Structure

Fig. A.2 UML Overview of the Reservoir Class.



112 Zambezi Model

A.3 Catchment Class Structure

Fig. A.3 UML Overview of the Catchment Class.

A.4 Policy Class Structure

Fig. A.4 UML Overview of the Policy Class.

A.5 Utils Class Structure

Fig. A.5 UML Overview of the Utils Class.
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A.6 Smash Class Structure

Fig. A.6 UML Overview of the Smash Class.
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Base Case Reference Set

B.1 Base Case Pareto-Sets

Fig. B.1 Pareto optimal solutions over five seeds across three objectives. Lower objective
values indicate better performance. Values are normalized using MinMaxScaler.

B.2 Pareto-Sets across five different seeds
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Fig. B.2 Pair plots of the five seeds using scatter plots. Pareto optimal solutions
for five seeds from a) Seed 0 to e) Seed 4. The three objectives are hydropower,
environment, and irrigation. Lower objective values indicate better performance.
Values are normalized using MinMaxScaler.
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Fig. B.3 Pair plots of the five seeds using kernel density estimates. Pareto optimal
solutions for five seeds from a) Seed 0 to e) Seed 4. The three objectives are hydropower,
environment, and irrigation. Lower objective values indicate better performance. Values
are normalized using MinMaxScaler.
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Appendix C

Uncertainty Characterization

C.1 Flow Duration Curves: Historical vs. Synthetic

Fig. C.1 Flow Duration Curves of Historic and Synthetic Inflow Data of seven Catch-
ments within the Zambezi River Basin. Panels (a) to (f) display the FDCs for each
catchment respectively. Synthetic and historic streamflow data is log-transformed.
Each curve represents an FDC over one year. In total, data consists of 20 years.
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C.2 Rescaled Mean Precipitation Catchment Inflows

Fig. C.2 Flow Duration Curves of Historic and Rescaled Mean Precipitation Inflow
Data of seven Catchments within the Zambezi River Basin. The areas between lower
and upper bounds are shaded with their respective color and indicate areas of possible
streamflow.
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C.3 Rescaled Inter-annual Variability Catchment Inflows

Fig. C.3 Flow Duration Curves of Historic and Rescaled Seasonal Variability Inflow
Data of seven Catchments within the Zambezi River Basin. The areas between lower
and upper bounds are shaded with their respective color and indicate areas of possible
streamflow.
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C.4 Fitted Fourier Series over Monthly Average Historical Catchment Inflows

Fig. C.4 Monthly Averages of Historical Streamflow Data with Fitted Fourier Series.
Each Dot represents a monthly average value, one for each year (total of 20 years).
The fitted Fourier series is displayed as a line.
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C.5 Rescaled Seasonal Amplitudes Catchment Inflows

Fig. C.5 Rescaled Seasonal Amplitude Catchment Inflows of seven Catchments within
the Zambezi River Basin. Different line types indicate different applied factors. Dash-
Dot line representing a lower seasonal amplitude factor. Dashed Lines higher seasonal
amplitude factor and solid lines original synthetic seasonal average data. Panels (a)
to (f) display the catchment areas of: Kariba, Kariba Lateral, Itthezi-Thezi, Cahora
Bassa, Shire, Kafue Flats, and Bakota George.
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C.6 Rescaled Seasonal Shift Catchment Inflows

Fig. C.6 Rescaled Seasonal Phase Shift Catchment Inflows of seven Catchments within
the Zambezi River Basin. Different line types indicate different applied factors. Dash-
Dot line representing a lower seasonal phase-shift factor. Dashed Lines higher seasonal
phase-shift factor and solid lines original synthetic seasonal average data. Panels (a)
to (f) display the catchment areas of: Kariba, Kariba Lateral, Itthezi-Thezi, Cahora
Bassa, Shire, Kafue Flats, and Bakota George.
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Scenario Discovery

D.1 Scenarios of Interest

The thesis defines scenarios of interest based on their deviation from desired perfor-
mance. Performance thresholds are set at the 75th percentile for each key objective:
Hydropower, Environment, and Irrigation. This percentile threshold is assumed to
capture the most critical scenarios. Each scenario is evaluated against the defined
performance thresholds and categorized accordingly.

The distribution of scenarios of interest align with previous insights from Section 5.3.3.
No performance gaps are observed for the environmental minimum flow under the Best
Environment policy. Similarly, the Best Irrigation and Best Tradeoff policies effectively
meet the irrigation objective, as indicated by narrow frequency distributions with peaks
near low deficit values in Figure ??. Consequently, these policies are deemed robust
with respect to their specific objectives and are excluded from subsequent analysis.
Table D.1 summarizes policy distribution according to scenarios of interest.

Table D.1 Policy Distribution Across Different Scenarios of Interest

Policy Hydropower
Failure

Environment
Failure

Irrigation
Failure

Overall
Failure

Best
Hydropower

1301 15173 6559 1134

Best
Environment

14206 - 18441 -

Best
Irrigation

7310 2348 - -

Best
Tradeoff

2183 7479 - -
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Fig. D.1 Scenarios of Interest (Hydropower Performance Failure). Dots represent objec-
tive values across 100,000 states of the world. Colors indicate policy specific scenario
outcomes (25,000). Scenarios of interest describe worst 20 percent of hydropower
outcomes highlighted in dark purple.

Fig. D.2 Scenarios of Interest based on Environmental Performance Failure. Dots
represent objective values across 100,000 states of the world. Colors indicate policy
specific scenario outcomes (25,000). Scenarios of interest describe worst 20 percent of
environmental outcomes highlighted in dark purple.
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Fig. D.3 Scenarios of Interest based on Irrigation Performance Failure. Dots represent
objective values across 100,000 states of the world. Colors indicate policy specific
scenario outcomes (25,000). Scenarios of interest describe worst 20 percent of irrigation
outcome highlighted in dark purple.

Fig. D.4 Scenarios of Interest based on Overall Performance Failure. Dots represent
objective values across 100,000 states of the world. Colors indicate policy specific
scenario outcomes (25,000). Scenarios of interest describe the scenarios that are in the
worst 20 percent across all three objective (total number of 1134 scenarios) highlighted
in dark purple.
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D.2 PRIM Density-Coverage Tradeoff Plots (Best Hydropower Policy)

Fig. D.5 PRIM Density - Coverage Tradeoff Plot for the Best Hydropower Policy
identifying hydropower deficit scenarios. Each scatter dot represents a scenario box.
The color coding indicates the total number of uncertainty factors that are needed to
describe the box.

Fig. D.6 PRIM Density - Coverage Tradeoff Plot for the Best Hydropower Policy
identifying environmental deficit scenarios. Each scatter dot represents a scenario box.
The color coding indicates the total number of uncertainty factors that are needed to
describe the box.
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Fig. D.7 PRIM Density - Coverage Tradeoff Plot for the Best Hydropower Policy
identifying irrigation deficit scenarios. Each scatter dot represents a scenario box.
The color coding indicates the total number of uncertainty factors that are needed to
describe the box.

Fig. D.8 PRIM Density - Coverage Tradeoff Plot for the Best Hydropower Policy
identifying overall deficit scenarios. Each scatter dot represents a scenario box. The
color coding indicates the total number of uncertainty factors that are needed to
describe the box.
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D.3 PRIM Density-Coverage Tradeoff Plots (Best Environment Policy)

Fig. D.9 PRIM Density - Coverage Tradeoff Plot for the Best Hydropower Policy
identifying hydropower deficit scenarios. Each scatter dot represents a scenario box.
The color coding indicates the total number of uncertainty factors that are needed to
describe the box.

Fig. D.10 PRIM Density - Coverage Tradeoff Plot for the Best Hydropower Policy
identifying irrigation deficit scenarios. Each scatter dot represents a scenario box.
The color coding indicates the total number of uncertainty factors that are needed to
describe the box.
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D.4 PRIM Density-Coverage Tradeoff Plots (Best Irrigation Policy)

Fig. D.11 PRIM Density - Coverage Tradeoff Plot for the Best Hydropower Policy
identifying hydropower deficit scenarios. Each scatter dot represents a scenario box.
The color coding indicates the total number of uncertainty factors that are needed to
describe the box.

Fig. D.12 PRIM Density - Coverage Tradeoff Plot for the Best Hydropower Policy
identifying environemental deficit scenarios. Each scatter dot represents a scenario box.
The color coding indicates the total number of uncertainty factors that are needed to
describe the box.
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D.5 PRIM Density-Coverage Tradeoff Plots (Best Tradeoff Policy)

Fig. D.13 PRIM Density - Coverage Tradeoff Plot for the Best Hydropower Policy
identifying hydropower deficit scenarios. Each scatter dot represents a scenario box.
The color coding indicates the total number of uncertainty factors that are needed to
describe the box.

Fig. D.14 PRIM Density - Coverage Tradeoff Plot for the Best Hydropower Policy
identifying environmental deficit scenarios. Each scatter dot represents a scenario box.
The color coding indicates the total number of uncertainty factors that are needed to
describe the box.
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D.6 PRIM Scenario Box Tables

Table D.2 Best Hydropower Policy Analysis for Hydropower Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

1 1.00 0.05 mC1 0.80 1.18
5 1.00 0.07 mC1 0.80 1.14

m_mu 0.90 1.04
10 1.00 0.09 m_mu 0.90 1.00

mC1 0.80 1.14
15 1.00 0.11 m_mu 0.90 0.98

mC1 0.80 1.14
20 1.00 0.15 m_mu 0.90 0.96

mC1 0.80 1.14
25 1.00 0.19 m_mu 0.90 0.95

mC1 0.80 1.14
30 1.00 0.24 m_mu 0.90 0.94

mC1 0.80 1.14
35 1.00 0.31 m_mu 0.90 0.93

mC1 0.80 1.14
40 1.00 0.40 m_mu 0.90 0.93

mC1 0.80 1.10
45 0.95 0.50 m_mu 0.90 0.92

mC1 0.80 1.07
50 0.89 0.60 m_mu 0.90 0.92

mC1 0.80 1.01
55 0.81 0.72 m_mu 0.90 0.92

mC1 0.80 1.01
58 0.75 0.77 m_mu 0.90 0.92

mC1 0.80 1.01
delta_evaporation -5.09 40.00
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Table D.3 Best Hydropower Policy Analysis for Environment Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

1 1.00 0.64 m_mu 0.90 1.04
5 1.00 0.78 m_mu 0.90 1.02
10 0.92 0.93 m_mu 0.90 0.99
15 0.76 0.99 m_mu 0.90 0.97
20 0.59 1.00 m_mu 0.90 0.95
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Table D.4 Best Hydropower Policy Analysis for Irrigation Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

1 1.00 0.28 m_mu 0.90 1.04
5 1.00 0.34 m_mu 0.90 1.02
10 0.98 0.43 m_mu 0.90 0.99
15 0.89 0.51 m_mu 0.90 0.98

demand_multiplier 1.00 1.03
20 0.79 0.58 m_mu 0.90 0.98

demand_multiplier 1.00 1.02
25 0.68 0.65 m_mu 0.90 0.98

demand_multiplier 1.00 1.02
30 0.58 0.71 m_mu 0.90 0.98

demand_multiplier 1.00 1.01
35 0.48 0.76 m_mu 0.90 0.98

demand_multiplier 1.00 1.01
delta_evaporation -0.31 40.00

40 0.39 0.80 m_mu 0.90 0.98
demand_multiplier 1.00 1.01
delta_evaporation 3.61 40.00

45 0.32 0.84 m_mu 0.90 0.98
demand_multiplier 1.00 1.01
delta_evaporation 3.61 40.00
mC1 0.87 1.20
m_sigma 0.96 1.20

50 0.25 0.87 m_mu 0.90 0.98
demand_multiplier 1.00 1.01
delta_evaporation 10.22 40.00
mC1 0.87 1.20
m_sigma 0.96 1.20

55 0.20 0.89 m_mu 0.90 0.97
demand_multiplier 1.00 1.01
delta_evaporation 14.97 40.00
mC1 0.87 1.20
m_sigma 0.96 1.20

58 0.17 0.90 m_mu 0.90 0.97
demand_multiplier 1.00 1.01
delta_evaporation 17.38 40.00
mC1 0.87 1.20
m_sigma 0.96 1.20
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Table D.5 Best Hydropower Policy Analysis for Overall Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

1 1.00 0.05 mC1 0.80 1.18
5 1.00 0.06 mC1 0.80 1.14

m_mu 0.90 1.04
10 1.00 0.08 m_mu 0.90 1.00

mC1 0.80 1.14
15 1.00 0.10 m_mu 0.90 0.98

mC1 0.80 1.14
20 1.00 0.13 m_mu 0.90 0.96

mC1 0.80 1.14
25 1.00 0.16 m_mu 0.90 0.95

mC1 0.80 1.14
30 1.00 0.21 m_mu 0.90 0.94

mC1 0.80 1.14
35 1.00 0.27 m_mu 0.90 0.93

mC1 0.80 1.14
40 0.99 0.35 m_mu 0.90 0.93

mC1 0.80 1.10
45 0.95 0.43 m_mu 0.90 0.92

mC1 0.80 1.07
50 0.89 0.53 m_mu 0.90 0.92

mC1 0.80 1.02
delta_evaporation -7.41 40.00

55 0.82 0.63 m_mu 0.90 0.92
mC1 0.80 1.01
delta_evaporation 1.26 40.00

58 0.78 0.70 m_mu 0.90 0.92
mC1 0.80 1.01
delta_evaporation 1.26 40.00
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Table D.6 Best Environment Policy Analysis for Hydropower Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

0 1.00 0.57 m_mu 0.90 1.04
1 1.00 0.60 m_mu 0.90 1.04
5 1.00 0.73 m_mu 0.90 1.02
10 0.96 0.91 m_mu 0.90 0.99
15 0.81 0.99 m_mu 0.90 0.97
20 0.63 1.00 m_mu 0.90 0.95

Table D.7 Best Environment Policy Analysis for Irrigation Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

0 1.00 0.74 m_mu 0.90 1.04
1 1.00 0.78 m_mu 0.90 1.04
5 0.97 0.92 m_mu 0.90 1.02
10 0.81 0.99 m_mu 0.90 0.99
11 0.77 0.99 m_mu 0.90 0.96
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Table D.8 Best Irrigation Policy Analysis for Hydropower Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

1 1.00 0.31 m_mu 0.90 1.04
5 1.00 0.38 m_mu 0.90 1.02
10 1.00 0.49 m_mu 0.90 0.99
15 1.00 0.63 m_mu 0.90 0.97
20 0.96 0.79 m_mu 0.90 0.95
25 0.85 0.90 m_mu 0.90 0.94

mC1 0.80 1.18
30 0.71 0.97 m_mu 0.90 0.94

mC1 0.80 1.14
35 0.56 0.99 m_mu 0.90 0.94

mC1 0.80 1.08
39 0.46 1.00 m_mu 0.90 0.93

mC1 0.80 1.04
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Table D.9 Best Irrigation Policy Analysis for Environmental Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

1 1.00 0.10 m_mu 0.90 1.04
5 1.00 0.12 m_mu 0.90 1.02
10 1.00 0.16 m_mu 0.90 0.99
15 1.00 0.20 m_mu 0.90 0.97
20 1.00 0.26 m_mu 0.90 0.95
25 1.00 0.34 m_mu 0.90 0.94
30 0.98 0.43 m_mu 0.90 0.93

mC1 0.80 1.18
35 0.91 0.52 m_mu 0.90 0.93

mC1 0.80 1.16
dphi1 -0.52 0.47

40 0.84 0.61 m_mu 0.90 0.93
mC1 0.80 1.14
dphi1 -0.52 0.38

45 0.76 0.72 m_mu 0.90 0.93
mC1 0.80 1.09
dphi1 -0.52 0.33

50 0.66 0.81 m_mu 0.90 0.92
mC1 0.80 1.08
dphi1 -0.52 0.29

55 0.56 0.88 m_mu 0.90 0.92
mC1 0.80 1.03
dphi1 -0.52 0.24

58 0.50 0.93 m_mu 0.90 0.92
mC1 0.80 1.00
dphi1 -0.52 0.24
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Table D.10 Best Tradeoff Policy Analysis for Hydropower Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

1 1.00 0.09 m_mu 0.90 1.04
5 1.00 0.11 m_mu 0.90 1.02
10 1.00 0.15 m_mu 0.90 0.99
15 1.00 0.19 m_mu 0.90 0.97
20 1.00 0.24 m_mu 0.90 0.95
25 1.00 0.32 m_mu 0.90 0.94
30 0.99 0.41 m_mu 0.90 0.93

mC1 0.80 1.18
35 0.96 0.51 m_mu 0.90 0.93

mC1 0.80 1.14
40 0.92 0.63 m_mu 0.90 0.93

mC1 0.80 1.09
45 0.84 0.74 m_mu 0.90 0.92

mC1 0.80 1.05
50 0.74 0.84 m_mu 0.90 0.92

mC1 0.80 1.02
55 0.62 0.92 m_mu 0.90 0.92

mC1 0.80 1.00
58 0.55 0.95 m_mu 0.90 0.92

mC1 0.80 1.00
m_sigma 0.95 1.19
delta_evaporation -7.44 40.00
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Table D.11 Best Tradeoff Policy Analysis for Environmental Deficit Scenario

Box ID Coverage Density Uncertainty Factor Min Max

1 1.00 0.31 m_mu 0.90 1.04
5 1.00 0.39 m_mu 0.90 1.02
10 1.00 0.50 m_mu 0.90 0.99
15 1.00 0.64 m_mu 0.90 0.97
20 0.93 0.78 m_mu 0.90 0.95
25 0.81 0.88 m_mu 0.90 0.94
30 0.67 0.94 m_mu 0.90 0.94

dphi1 -0.52 0.47
35 0.54 0.98 m_mu 0.90 0.94

dphi1 -0.52 0.33
mC1 0.80 1.18

40 0.43 1.00 m_mu 0.90 0.93
dphi1 -0.52 0.17
mC1 0.80 1.18

44 0.35 1.00 m_mu 0.90 0.93
dphi1 -0.52 0.14
mC1 0.80 1.18
demand_multiplier 1.00 1.03





Appendix E

Adaptation Tipping Points

E.1 Logistic Regression Contour Plot Best Hydropower
(Hydropower Deficit)

Fig. E.1 Logistic Regression Contour Plots based on Signpost Condition Set 1. The
plot displays the probability for the Best Hydropower policy to fail (Scenario of Interest
is Hydropower Deficit).
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E.2 Logistic Regression Model Parameters (Best Hydropower Policy)

Table E.1 Logistic Regression Model Parameters of Policy Failure for Best Hydropower
Policy

Predictor Coefficient Standard Error Z-Value P-Value 95% CI

Set 1 (Pseudo R-squ.: 0.6819)
Intercept 100.0384 1.401 71.404 <0.001 (97.292, 102.784)
mµ -101.1370 1.401 -72.176 <0.001 (-103.883, -98.391)
mC1 -3.5107 0.218 -16.089 <0.001 (-3.938, -3.083)
δevap 0.0478 0.002 26.017 <0.001 (0.044, 0.051)

Set 2 (Pseudo R-squ.: 0.7060)
Intercept 228.2662 4.369 52.244 <0.001 (219.703, 236.830)
mµ -109.5019 1.574 -69.571 <0.001 (-112.587, -106.417)
mC1 -3.7232 0.228 -16.357 <0.001 (-4.169, -3.277)
demandmulti -117.4432 3.308 -35.503 <0.001 (-123.927, -110.960)

Set 3 (Pseudo R-squ.: 0.6600)
Intercept 93.9826 1.279 73.480 <0.001 (91.476, 96.489)
mµ -94.3562 1.269 -74.341 <0.001 (-96.844, -91.869)
mC1 -3.2580 0.210 -15.516 <0.001 (-3.670, -2.846)
dphi1 -0.2230 0.079 -2.807 0.005 (-0.379, -0.067)
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E.3 Logistic Regression Model Parameters (Best Environment Policy)

Table E.2 Logistic Regression Model Parameters of Policy Failure for Best Environ-
mental Policy

Predictor Coefficient Standard Error Z-Value P-Value 95% CI

Set 1 (Pseudo R-squ.: 0.7055)
Intercept 124.4312 1.971 63.120 <0.001 (120.567, 128.295)
mµ -123.8792 1.952 -63.465 <0.001 (-127.705, -120.053)
mC1 -8.3789 0.269 -31.168 <0.001 (-8.906, -7.852)
δevap 0.0404 0.002 20.235 <0.001 (0.036, 0.044)

Set 2 (Pseudo R-squ.: 0.6934)
Intercept 147.2735 3.773 39.035 <0.001 (139.879, 154.668)
mµ -118.5529 1.833 -64.687 <0.001 (-122.145, -114.961)
mC1 -7.9722 0.261 -30.556 <0.001 (-8.484, -7.461)
demandmulti -27.2446 3.004 -9.068 <0.001 (-33.133, -21.356)

Set 3 (Pseudo R-squ.: 0.6913)
Intercept 118.7568 1.844 64.411 <0.001 (115.143, 122.371)
mµ -117.6906 1.817 -64.780 <0.001 (-121.251, -114.130)
mC1 -7.9318 0.259 -30.570 <0.001 (-8.440, -7.423)
dphi1 -0.3860 0.089 -4.357 <0.001 (-0.560, -0.212)
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E.4 Logistic Regression Model Parameters (Best Irrigation Policy)

Table E.3 Logistic Regression Model Parameters of Policy Failure for Best Irrigation
Policy

Predictor Coefficient Standard Error Z-Value P-Value 95% CI

Set 1 (Pseudo R-squ.: 0.01554)
Intercept 5.8957 0.311 18.928 <0.001 (5.285, 6.506)
mµ -6.7310 0.299 -22.500 <0.001 (-7.317, -6.145)
mC1 0.4475 0.111 4.023 <0.001 (0.229, 0.666)
δevap 0.0018 0.001 1.976 0.048 (0.00001, 0.004)

Set 2 (Pseudo R-squ.: 0.01580)
Intercept 11.1727 1.494 7.479 <0.001 (8.245, 14.101)
mµ -6.7376 0.299 -22.517 <0.001 (-7.324, -6.151)
mC1 0.4479 0.111 4.025 <0.001 (0.230, 0.666)
demandmulti -5.1646 1.436 -3.598 <0.001 (-7.978, -2.351)

Set 3 (Pseudo R-squ.: 0.01580)
Intercept 11.1727 1.494 7.479 <0.001 (8.245, 14.101)
mµ -6.7376 0.299 -22.517 <0.001 (-7.324, -6.151)
mC1 0.4479 0.111 4.025 <0.001 (0.230, 0.666)
demandmulti -5.1646 1.436 -3.598 <0.001 (-7.978, -2.351)
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E.5 Logistic Regression Model Parameters (Best Tradeoff Policy)

Table E.4 Logistic Regression Model Parameters of Policy Failure for Best Tradeoff
Policy

Predictor Coefficient Standard Error Z-Value P-Value 95% CI

Set 1 (Pseudo R-squ.: 0.8643)
Intercept 263.9196 5.784 45.628 <0.001 (252.583, 275.256)
mµ -259.3704 5.672 -45.725 <0.001 (-270.488, -248.253)
mC1 -19.0543 0.539 -35.376 <0.001 (-20.110, -17.999)
δevap 0.0753 0.003 23.699 <0.001 (0.069, 0.082)

Set 2 (Pseudo R-squ.: 0.8602)
Intercept 360.9413 8.789 41.066 <0.001 (343.714, 378.168)
mµ -248.1382 5.290 -46.911 <0.001 (-258.505, -237.771)
mC1 -18.0626 0.510 -35.383 <0.001 (-19.063, -17.062)
demandmulti -105.9003 4.821 -21.964 <0.001 (-115.350, -96.450)

Set 3 (Pseudo R-squ.: 0.8529)
Intercept 241.8064 5.047 47.908 <0.001 (231.914, 251.699)
mµ -236.8117 4.935 -47.984 <0.001 (-246.485, -227.139)
mC1 -17.2115 0.482 -35.685 <0.001 (-18.157, -16.266)
dphi1 -2.3623 0.134 -17.632 <0.001 (-2.625, -2.100)
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E.6 Logistic Regression Contour Plots (Signpost Condition Set 1)

Fig. E.2 Logistic Regression Contour Plots based on Signpost Condition Set 1 (Best
Hydropower Policy). The contour line color indicates failure probability, with lighter
shades representing higher risks. Dark dots describe policy failure.

Fig. E.3 Logistic Regression Contour Plots based on Signpost Condition Set 1 (Best
Environment Policy). The contour line color indicates failure probability, with lighter
shades representing higher risks. Dark dots describe policy failure.
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Fig. E.4 Logistic Regression Contour Plots based on Signpost Condition Set 1 (Best
Irrigation Policy). The contour line color indicates failure probability, with lighter
shades representing higher risks. Dark dots describe policy failure.

Fig. E.5 Logistic Regression Contour Plots based on Signpost Condition Set 1 (Best
Tradeoff Policy). The contour line color indicates failure probability, with lighter shades
representing higher risks. Dark dots describe policy failure.
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E.7 Logistic Regression Contour Plots (Signpost Condition Set 2)

Fig. E.6 Logistic Regression Contour Plots based on Signpost Condition Set 2 (Best
Hydropower Policy). The contour line color indicates failure probability, with lighter
shades representing higher risks. Dark dots describe policy failure.

Fig. E.7 Logistic Regression Contour Plots based on Signpost Condition Set 2 (Best
Environment Policy). The contour line color indicates failure probability, with lighter
shades representing higher risks. Dark dots describe policy failure.
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Fig. E.8 Logistic Regression Contour Plots based on Signpost Condition Set 2 (Best
Irrigation Policy). The contour line color indicates failure probability, with lighter
shades representing higher risks. Dark dots describe policy failure.

Fig. E.9 Logistic Regression Contour Plots based on Signpost Condition Set 2 (Best
Tradeoff Policy). The contour line color indicates failure probability, with lighter shades
representing higher risks. Dark dots describe policy failure.
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E.8 Logistic Regression Contour Plots (Signpost Condition Set 3)

Fig. E.10 Logistic Regression Contour Plots based on Signpost Condition Set 3 (Best
Hydropower Policy). The contour line color indicates failure probability, with lighter
shades representing higher risks. Dark dots describe policy failure.

Fig. E.11 Logistic Regression Contour Plots based on Signpost Condition Set 3 (Best
Environment Policy). The contour line color indicates failure probability, with lighter
shades representing higher risks. Dark dots describe policy failure.
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Fig. E.12 Logistic Regression Contour Plots based on Signpost Condition Set 3 (Best
Irrigation Policy). The contour line color indicates failure probability, with lighter
shades representing higher risks. Dark dots describe policy failure.

Fig. E.13 Logistic Regression Contour Plots based on Signpost Condition Set 3 (Best
Tradeoff Policy). The contour line color indicates failure probability, with lighter shades
representing higher risks. Dark dots describe policy failure.
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E.9 Adaptation Tipping Point Streamflow Plot for ATP-Conditions

Fig. E.14 Streamflow Pattern of the Max ATP-Streamflow Condition. Comparison of
historical monthly average streamflow data and Adaptation Tipping Point patterns
based on the Adaptation Tipping Point Thresholds of a mean precipitation factor
0.965, and seasonal amplitudes of 1.05.

E.10 Adaptation Tipping Point Streamflow Tables for Max ATP-Condition
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Table E.5 Monthly streamflow patterns for the Itt catchment comparing historical data
with ATP streamflow values.

Month Historical ATP Mean ATP Max ATP Min Mean Diff Max Diff Min Diff
January 246.8 175.5 213.9 143.4 71.3 32.9 103.4
February 496.1 306.3 405.5 230.5 189.8 90.6 265.6
March 617.3 410.2 566.3 295.9 207.1 51.0 321.4
April 531.2 320.2 443.1 230.5 211.0 88.1 300.7
May 315.4 190.5 250.7 144.5 124.9 64.7 170.9
June 154.8 101.6 122.8 83.9 53.2 32.0 70.9
July 101.2 71.1 85.0 59.8 30.1 16.2 41.4
August 77.0 58.4 74.7 46.4 18.6 2.3 30.6
September 53.7 42.4 56.2 32.6 11.3 -2.5 21.1
October 35.3 28.8 37.6 22.5 6.5 -2.3 12.8
November 34.1 23.7 29.5 19.4 10.4 4.6 14.7
December 73.5 60.7 72.7 51.2 12.8 0.8 22.3

Table E.6 Monthly streamflow patterns for the Kafue Flats catchment comparing
historical data with ATP streamflow values.

Month Historical ATP Mean ATP Max ATP Min Mean Diff Max Diff Min Diff
January 74.0 60.5 71.3 51.4 13.5 2.7 22.6
February 148.8 102.1 130.5 79.9 46.7 18.3 68.9
March 185.2 126.1 167.9 94.6 59.1 17.3 90.6
April 159.4 110.0 147.0 82.3 49.4 12.4 77.1
May 94.6 68.5 87.1 54.0 26.1 7.5 40.6
June 46.4 36.7 42.9 31.5 9.7 3.5 14.9
July 30.4 24.9 28.7 21.8 5.5 1.7 8.6
August 23.1 20.2 24.9 16.7 2.9 -1.8 6.4
September 16.1 14.8 18.9 11.8 1.3 -2.8 4.3
October 10.6 9.8 12.3 7.9 0.8 -1.7 2.7
November 10.2 8.8 10.5 7.5 1.4 -0.3 2.7
December 22.1 20.0 23.1 17.5 2.1 -1.0 4.6
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Table E.7 Monthly streamflow patterns for the Kariba catchment comparing historical
data with ATP streamflow values.

Month Historical ATP Mean ATP Max ATP Min Mean Diff Max Diff Min Diff
January 49.1 40.7 47.1 35.3 8.4 2.0 13.8
February 74.2 57.0 67.4 48.2 17.2 6.8 26.0
March 133.2 94.9 119.5 75.4 38.3 13.7 57.8
April 201.1 133.0 174.0 101.6 68.1 27.1 99.5
May 213.6 138.6 181.1 106.1 75.0 32.5 107.5
June 137.4 92.9 115.8 74.6 44.5 21.6 62.8
July 66.2 53.8 62.2 46.4 12.4 4.0 19.8
August 38.8 33.2 38.8 28.6 5.6 0.0 10.2
September 27.6 25.2 31.0 20.9 2.4 -3.4 6.7
October 20.6 20.1 25.1 16.5 0.5 -4.5 4.1
November 20.5 20.3 25.1 16.7 0.2 -4.6 3.8
December 31.0 29.2 35.5 24.4 1.8 -4.5 6.6

Table E.8 Monthly streamflow patterns for the Cahora Bassa catchment comparing
historical data with ATP streamflow values.

Month Historical ATP Mean ATP Max ATP Min Mean Diff Max Diff Min Diff
January 1183.8 598.7 800.4 444.9 585.1 383.4 738.9
February 1640.4 872.7 1241.3 608.9 767.7 399.1 1031.5
March 1627.7 971.3 1414.2 661.5 656.4 213.5 966.2
April 1050.1 548.97 776.7 385.6 501.1 273.4 664.5
May 317.97 208.8 268.0 162.4 109.2 50.0 155.6
June 230.7 138.9 164.4 116.3 91.8 66.3 114.4
July 163.6 102.7 131.5 81.3 60.9 32.1 82.3
August 122.5 86.5 117.2 65.1 36.0 5.3 57.4
September 111.7 135.8 190.8 98.8 -24.1 -79.1 12.9
October 48.1 50.9 66.4 39.9 -2.8 -18.3 8.2
November 64.6 36.0 44.4 29.5 28.6 20.2 35.1
December 384.5 175.7 208.5 146.5 208.8 176.0 238.0
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Table E.9 Monthly streamflow patterns for the Shire catchment comparing historical
data with ATP streamflow values.

Month Historical ATP Mean ATP Max ATP Min Mean Diff Max Diff Min Diff
January 699.7 435.1 534.0 349.6 264.6 165.7 350.1
February 783.8 480.6 599.0 382.2 303.2 184.8 401.6
March 767.0 489.3 613.1 387.2 277.7 153.9 379.8
April 697.0 444.3 554.2 353.3 252.7 142.8 343.7
May 643.0 418.0 515.8 335.7 225.0 127.2 307.3
June 616.8 400.2 487.3 324.0 216.6 129.5 292.8
July 562.4 386.2 474.0 311.5 176.2 88.4 250.9
August 523.5 361.3 448.6 290.2 162.2 74.9 233.3
September 478.8 334.6 417.2 268.6 144.2 61.6 210.2
October 441.4 308.1 382.7 248.3 133.3 58.7 193.1
November 451.8 316.0 388.8 255.7 135.8 63.0 196.1
December 544.4 366.0 446.3 296.4 178.4 98.1 248.0

Table E.10 Monthly streamflow patterns for the Bakota George catchment comparing
historical data with ATP streamflow values.

Month Historical ATP Mean ATP Max ATP Min Mean Diff Max Diff Min Diff
January 491.3 346.3 430.0 278.3 145.0 61.3 213.0
February 742.1 468.1 591.8 367.5 274.0 150.3 374.6
March 1331.8 763.3 1027.6 562.7 568.5 304.2 769.1
April 2010.6 1128.9 1578.3 800.5 881.7 432.3 1210.1
May 2135.5 1105.5 1542.7 785.2 1030.0 592.8 1350.3
June 1374.5 765.2 1019.3 569.9 609.3 355.2 804.6
July 661.8 443.4 548.9 355.3 218.4 112.9 306.5
August 387.9 275.3 345.3 220.7 112.6 42.6 167.2
September 275.8 207.5 272.9 159.9 68.3 2.9 115.9
October 206.1 162.7 217.8 123.5 43.4 -11.7 82.6
November 204.8 167.4 222.5 127.9 37.4 -17.7 76.9
December 310.2 240.3 312.7 186.9 69.9 -2.5 123.3
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