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Unparameterized Optimization of the Spring Characteristic of Parallel

Elastic Actuators

Linda F. van der Spaa1, Wouter J. Wolfslag2, Martijn Wisse1

Abstract— In electrically actuated robots most energy losses
are due to the heating of the actuators. This energy loss
can be greatly reduced with parallel elastic actuators, by
optimizing the elastic element such that it delivers most of the
required torques. Previously used optimization methods relied
on parameterizing the spring characteristic, thereby limiting
the set of spring characteristics optimized over and with that
the loss reduction that can be obtained. This paper shows that
such parametrization is not necessary; a method is presented
to compute the optimal characteristic as an analytic function
of the trajectory. The efficacy of this method is demonstrated
using two examples. The first example considers the optimal
spring characteristic for a parallel elastic actuator supporting
the human ankle during walking. The second example applies
the method in combination with trajectory optimization on a
single degree of freedom robot performing a specific pick-and-
place task. The task at hand has a height difference between
the pick and the place location. With the analytical optimal
spring, it is shown that the robot can recover enough of the
energy released by the package to function without external
electric energy supply.

I. INTRODUCTION

The main source of energy loss in robots is the heating of

their electric actuators [1]. This heating is proportional to the

square of the electric current, which in turn is proportional

to the required motor torque. The torque requirements on the

actuator can be greatly reduced by adding a parallel elastic

element. The decrease in torque requirement allows smaller

gearbox ratios, thereby decreasing gearbox losses and im-

proving torque control [2]. The use of such parallel elastic

actuators is widespread, for examples see the works on robot

manipulators [3], [4], robot legs [5] and exoskeletons [2].

Their most generic use as a way of saving energy is observed

in static balancing mechanisms [4]–[7], which compensate

for gravity such that small actuators are sufficient to power

the robot. If the desired motions of the robot are known

beforehand, the elastic element can take them into account,

thereby providing some of the force required for that motion.

This approach has already led to large reductions in energy

consumption for different repetitive tasks [3], [5], [8]–[10].

These designs all aim to capture kinetic energy from the

robot arm, and release that energy again at appropriate times

in the motion. The springs themselves typically perform

this recapturing and releasing at an efficiency of over 90%,
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Fig. 1: Plugless robot arm. (a) Explains the idea; the robot

performs a pick and place task where the pick position

is higher than the place position. With aid of (nonlinear)

springs, as illustrated on the joints, the gravitational energy

of the package can be recovered to power the robot. (b)

Shows the simulation model, consisting of a single degree

of freedom robot including a motor and transmission model.

much higher than what can be reached via electric storage.

However, spring mechanism designs so far have not reached

the goal of minimum energy consumption. Therefore, this

paper considers optimization of the spring characteristic of

parallel elastic actuators for minimum energy use.

Our motivation is the eventual development of a plugless

robot arm, see Fig. 1. The pick-and-place task this system

performs adds energy to the system by having the pick

position be higher than the place position. The energy

released from the package can be recovered electrically when

allowing the actuator to function as generator. When enough

energy can be recovered, the system will be capable of

powering the return motion carrying the unloaded arm back

to the top position. Then this robot arm will not need an

external electric power supply, hence the name plugless arm.

Even more energy could be recovered and used to power

systems such as on-board microcontrollers and sensors.

This plugless arm is a design challenge aimed at develop-

ing and integrating energy saving technologies for robotics

[11]. Such energy efficiency is particularly important to

increase the uptime of mobile-base robot manipulators. One

of the key technologies used will be parallel elastic actuators.

Due to the limited amount of energy available, finding the
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exact optimal spring characteristic is vital.

The optimization approaches for task specific spring mech-

anisms in literature can be classified into the following three

categories:

1) A linear spring is fit to trajectory data [8], [10]. Peak

power is reduced, but the fit becomes poorer as the

desired characteristic gets more nonlinear.

2) The parameters of a pre-specified (complex), task-specific

mechanism are optimized to fit trajectory data [12], [13].

3) The optimal parameters defining the spring are expressed

as a function of the trajectory, and the trajectory is

optimized [14].

These methods all rely on some form of parameterization

of the spring characteristic, thereby limiting the set of possi-

ble spring characteristics. This effect is exacerbated when the

parameters of the spring are optimized numerically. To speed

up this optimization, the number of parameters is typically

chosen as small as possible, further limiting the set of spring

characteristics over which is optimized.

The contribution of this paper is twofold:

1) A method is presented to compute the exact optimal

spring characteristic analytically as a function of the tra-

jectory (and dynamics) of systems performing repetitive

tasks. This includes rephrasing the trajectory as function

of position rather than time. With the analytical optimal

spring, the energy consumption of the system reaches its

global minimum. The resulting characteristic can be used

to fit a mechanical design, or as a benchmark.

2) Two use cases demonstrate the potential value of the

method in different applications: a) parallel elastic ele-

ment design for and active ankle prosthesis, b) design of

an extremely energy efficient plugless robot arm.

The example of the ankle prosthesis shows the benefit

of the method as an analysis tool. An analytical optimal

spring is fitted to data of the human ankle during normal

gait. The spring found this way could aid the motor in an

active ankle prosthesis. When a parameterization is required

to realize the spring characteristic, the shape of the optimal

spring characteristic is a useful basis on which to choose

an effective parameterization. Comparing different parallel

springs, it is shown that a relatively low order piecewise

polynomial spring fit to the optimal nonlinear characteris-

tic, outperforms much higher order continuous polynomial

springs which were optimized without knowledge of the

optimal torque characteristic. Also the manufacturability of

nonlinear springs is discussed.

The example of the plugless arm considers the simplified

single degree of freedom model shown in Fig. 1b. The

method is applied to obtain extreme energy frugality so

that the arm can indeed be powered fully by the pick-and-

place task it performs. Because the optimal trajectories of

the robot depend on the spring characteristic, the spring and

trajectories should be optimized simultaneously. In earlier

work, both the spring characteristic and the trajectory were

parametrized and then optimized numerically [15]. The re-

sulting, non-convex optimization problem proved too large

to solve reliably. In this work, we successfully optimize the

trajectory by relying on our novel method to optimize the

spring characteristic. Comparison with a linear spring shows

the optimal spring reduces the energy consumption by 60%,

showing the potential benefit of our method. The plugless

arm example also shows that the method can be adjusted to

more realistic, and hence more complex, loss models.

The remainder of this paper is structured as follows.

Our approach is explained in Section II. Subsequently the

effectiveness of the method is demonstrated in two different

examples of application in Sections III and IV. Sections V

and VI provide discussion and conclusion respectively.

II. METHOD

In this section, we derive the optimal characteristic for

a spring used in a parallel elastic actuator that tracks a

predefined cyclical trajectory with known external forces.

Trajectories are typically described as functions of time,

because time always progresses monotonically. However

the spring characteristic is naturally a function of position.

Therefore we propose to describe the trajectory also as

function of position. We show that with position as inde-

pendent variable, the optimal spring characteristic no longer

needs parameterization and can be described as an analytical

function of the trajectory.

The aim is to find the spring characteristic Ts(φ) optimiz-

ing the electric energy consumption of the actuator, E, given

a prescribed trajectory as specified by its velocity φ̇(φ) and

joint torques Tj(φ) as a function of the position φ:

T ∗

s = argmin
Ts

E . (1)

The energy consumption is often computed as the integral

of power, P , over time. Now we rewrite it as an integral over

position, substituting dt = φ̇−1dφ. This requires that the po-

sition is an invertible function of time, i.e., the velocity must

not become zero. To allow for more complex cycles, e.g.,

the ankle prosthesis case, the integral is split in N phases,

for which the position over time function is invertible:

E =

N
∑

i=1

∫ φi,e

φi,o

Pi

φ̇i

dφi , (2)

where the subscripts i indicate the phases of the motion and

o and e indicate the origin and end positions of the phase.

At the end of this section, we discuss how a small minimum

velocity ǫ is used to avoid the singularity when φ̇ = 0.

As the cyclical trajectory and resulting torques are known,

the energy consumed as mechanical work is fixed. Therefore

we only need to consider electric losses. The electrical power

(heat) loss is given as: Pheat = I2R where I is the current

through the actuator, and R is the resistance of the motor.

Furthermore, the motor torque, Tm = kmI , with km the

motor torque constant. Combining the two equations, we

obtain: Pheat = Rk−2
m T 2

m = 1
2cT

2
m, with the constant c a

shorthand, as defined in the equation.

Because the (known) joint torque is provided by the motor

and the spring, the motor torque is the difference: Tm = Tj−



Ts(φ). With the joint torques Tj also a function of position,

the electric energy loss is quadratic in the spring torque:

E =
∑

i

∫ φi,e

φi,o

1

2
c
(Tj,i(φi)− Ts(φi))

2

φ̇i(φi)
dφi . (3)

In the remainder of this paper the function dependence on

position φi is dropped in equations for readability.

Now, to optimize the spring characteristic, we use a classic

result from the calculus of variations: the Lagrange equation,

see [16] for a derivation. Consider the functional J :

J =

∫ α1

α0

F(α,x(α),x′(α))dα

for a given integrand F , functions x to optimize, and inde-

pendent variable α. The Lagrange equation is a necessary

condition for x to be an optimum of J . It says:

∂F

∂x
−

d

dα

∂F

∂x′
= 0 . (4)

When applying (4) to the problem of optimizing springs,

the angle φ is the independent variable, Ts is the function to

be optimized and the electric energy loss takes the role of

the functional J . Care must be taken to combine the phases

of the motion to obtain the integrand F . Since cyclic motion

is considered, for every distance [φi,a, φi,b] traveled one way

by trajectory i there is a trajectory j traveling in the opposite

direction. Denoting all trajectories from φi,ak
to φi,bk by odd

i and all trajectories from φi,bk back to φi,ak
by even i, the

sum in (3) can be taken into the integral, even when not all

i are defined for the full domain [φi,o, φi,e]:

F(φ, Ts(φ)) =
∑

iodd

1

2
c
(Tj,i − Ts)

2

φ̇i

−
∑

ieven

1

2
c
(Tj,i − Ts)

2

φ̇i

.

The minus sign for the second term reflects the opposite sign

of the direction of integration in the odd phases. To allow for

phases that do not visit the complete domain of the motion,

the integrand is taken to be 0 at unvisited positions.

The integrand F does not depend on T ′
s(φ), which is the

derivative of Ts(φ) with respect to φ. Therefore (4) says

that the optimal spring characteristic function is obtained by

solving dF
dTs

= 0:

Ts

(

Tj,1, φ̇1, . . . , Tj,N , φ̇N

)

=

∑

i

(

(−1)iTj,iφ̇
−1
i

)

∑

i

(

(−1)iφ̇−1
i

) , (5)

where the effects of the even and odd phases are summarized

using powers of −1. Since φ̇iodd are per definition of opposite

sign with respect to φ̇ieven , the optimal spring profile is

the average of the different torque profiles weighted by

the inverse of the velocity profiles. Intuitively this can be

understood as: the longer an angle is maintained, the more

important it is for the spring to match the torque and relieve

the motor. In the special case that the torque demands for

a given position are the same for all phases, this equation

would set the spring torque to this (inverse dynamics) torque.

The result is independent of the actuator constants in c.

The solution is singular when φ̇i(φ) = 0. This singularity

is caused by the indeterminate amount of time spent in

a position with zero velocity. The optimum in a singular

position would be the joint torque as required by the singu-

lar phase, which would cause discontinuities in the spring

characteristic. In practice these discontinuities are avoided

by introducing a small minimum absolute velocity, φ̇ =
sign(φ̇)max(|φ̇|, ǫ). This ǫ should be chosen small enough

that it only gets triggered at the singularities, where it will

make the spring characteristic computable. For such a small

ǫ the computed spring torque at those points will still heavily

weigh towards the torque of the trajectory that is singular at

that point, as is the case for the optimal spring torque.

III. APPLICATION I: ANKLE PROSTHESIS

In this section, we compute the optimal spring character-

istic for a human ankle joint when walking, based on the

data by [13]. The complexity of the ankle movement allows

us to demonstrate the power of Eq. (5).

The use of elastic elements in ankle orthoses and prosthe-

ses has been extensively studied, both for passive [13], [17]

and active [18]–[20] devices. These devices aim at improving

the walking performance, such as metabolic cost or mechani-

cal power, of the wearer. For such devices, minimizing motor

energy can be a factor in the design, as it would lead to

smaller motors and longer battery life.

Note that the current method does not consider the use of

clutches and dampers, which have been shown to increase

the effectiveness of parallel springs in prosthetics [17]. In

the future the method may be extended to include these.

Prosthetic and orthotic devices need to account for many

factors, including the variability of walking between persons

and the extend to which people adapt to the device [21], as

well as the reflected inertia induced by the device [22]. The

results presented here do not consider those factors, as they

solely focus on minimizing the energy losses of an electric

motor that replicates the ankle trajectory and torques found

in average human walking. Consideration of reflected inertia

will shift the exact outcome as presented in this section,

yet the results remain illustrative to the problem. As such,

these results might be an inspiration for the design of elastic

elements of active prostheses.

The data provide average angles, angular velocities and

torques of the ankle joint observed during human gait [13].

Time is normalized and the data is provided at a 2% gait

cycle-time interval. The data is interpolated by a cubic spline

to obtain intermediate values at specific angles, such that the

data can be used as a function of position. The data points

and the interpolated target trajectory are shown in Fig. 2.

Whenever the direction of movement is reversed, i.e., the

angular velocity is zero, the trajectory is split. Four phases

are obtained, as shown in Fig. 2. Subsequently the optimal

torque characteristic is obtained using (5).

To compare the efficacy of our method to optimizing a

parameterized spring, we also compute optimal coefficients,

ai, for a spring characteristic parametrized as polynomial:

Ts = akφ
k + ak−1φ

k−1 + . . . + a1φ + a0. The optimal
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Fig. 2: Ankle angle and torque data interpolated and divided

in four phases, “TF”, “HS” denoting toe-off and heel-strike.
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Fig. 3: Torque characteristics of the parallel springs opti-

mized for the ankle data. Also shown is the joint torque

required during each phase of the motion. The color coding

for these phases is the same as in Fig. 2. “TF” and “HS”

denote toe-off and heel-strike respectively.

coefficients can be computed analytically because the cost

is quadratic in the coefficients.

A. Results

Figure 3 shows the four phases with torque as a function

of position. In the figure, the optimal spring characteristic is

shown for the unparameterized optimization and for a low

(1st) and a high (20th) order polynomial parameterization.

The characteristic of the higher order polynomial approaches

the analytical optimal characteristic.

For the unparameterized spring, large jumps in the torque

are observed at the angles where a pair of phases starts or

ends. Towards the turn of a phase the velocity approaches

zero, meaning the weight factor of that phase approaches

infinity at those positions. As a result, the spring character-

istic is forced towards the torque of that phase. Immediately

outside the domain of that phase, the optimal spring torque

drops back to the weighted average of the remaining phases,

which leads to the large discontinuities observed.

At angles between approximately 0 and 0.1 rad, there is an

additional phase at zero torque, representing the relaxation of
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Fig. 4: Electric energy loss for parallel springs parametrized

as polynomials, expressed as a fraction compared to actuation

without a parallel elastic element. The energy loss of the

analytically optimal spring is shown as comparison.

the ankle between mid-swing and heel-strike. This additional

zero torque phase causes the optimal spring torque to be

lower within that range. The effect is amplified by the fact

that this phase has the lowest velocity during that interval.

The normalized electric energy loss for the different paral-

lel springs is shown in Fig. 4. The low energy consumption of

the analytical spring is approached by the polynomial spring

as the order increases.

Even if the unparameterized spring characteristic is too

complicated to design, it does provide valuable insights into

the desired characteristic. For instance, the characteristic

in Fig. 3 is intuitively well approximated by a piecewise

polynomial function. The figure also shows the characteristic

of a spring obtained by fitting a piecewise function, with two

affine parts and one (middle) quadratic part, to the optimal

characteristic. Fig. 4 shows the energy cost of this piecewise

polynomial spring, compared to a continuous polynomial

with the same number of parameters.

B. Notes towards realization

This section discusses the use of the computed optimal

spring characteristics for mechanical design. In general, the

optimal characteristic will serve as inspiration or benchmark

for designing mechanisms with simple components, such as

the pulley system in [3]. It is also possible to approximate

the optimal characteristic with a cam mechanism, as we will

explore for the spring characteristic computed in Sec. III-A.

To realize a non-linear spring characteristic, we adapt

the cam mechanism used in [23]. The shape of the cam is

computed using the method in [24]. To smoothen the cam

design, the spring characteristic is divided between two parts

of the cam surfaces, each followed by a different follower.

Figs. 5b-c show a cam design with the same relative sizes

as in the original mechanism and a transmission ratio of 4:1.

The design can be scaled without changing the shape of the

spring characteristic.

A realizable cam shape cannot follow the desired char-

acteristic exactly. Fig. 5a highlights an impossibility due to

largest jump in the characteristic. The exact cam shape would

require the cam follower to jump between positions, which is

not possible in practice. Therefore, the cam is smoothened,

using a moving average filter. The corresponding spring

characteristic is shown in Fig. 3.
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Outside the jumps, the cam characteristic matches the

optimal characteristic closely. With this smoothened cam

form, the electric energy loss rises from 20.0 % to 21.8 %

of the energy that would be lost without parallel spring.

There are two main issues that would reduce the energy

gain of the mechanism in practice. First are the losses due

to friction, which can only be minimized, not avoided, by

using low-friction bearings. Second are the imperfections in

the manufactured cam shape, which cause a deviation from

the expected spring characteristic. The spring stiffness, trans-

mission ratio and size of the cam must be tuned emperically

to minimize these two losses and ensure realisability.

The challenges involved in realizing the optimal spring

characteristic for this case study are general to most ap-

plications. The optimal spring torque will be piecewise

continuous, except when all phases cover the full domain

of the motion and the desired joint torque is continuous.

Section V contains a discussion on how to deal with the

discontinuities in the characteristic.

IV. APPLICATION II: PICK-AND-PLACE ROBOT ARM

This section considers a simplified model of the plugless

pick-and-place robot, see Fig. 1b. The gripper, mounted on

a spindle, receives packages of 1 kg at a height of 1 m,

deposits them at ground level and returns without package.

This example demonstrates the power of (5) as part of an

optimization problem, and shows how that equation can

be adjusted to a more complex model. With the analytical

optimal spring, the small difference in potential energy

is sufficient to power the entire arm, including overhead

processes. No additional external energy source is required.

A. System model

This section describes the model for the robot, with the

parameter values listed in Table I. The model assumes

that the centers of mass of the package, the gripper and

the slider coincide. The slider is the spindle nut, which is

centered around the spindle shaft through which the motion

is actuated. So the acceleration of the combined mass, ÿ is

TABLE I: Model parameters

Gravitational acceleration g 9.81 m/s2

Mass of package mpackage 1.0 kg
Mass of gripper mgripper 0.20 kg
Mass of spindle nut mslider 0.65 kg
Spindle reduction ratio ns 157 rad/m

Spindle inertia Js 519 kgmm2

Forward efficiency ηp 0.89
Backward efficiency η′p 0.87

Coulomb friction coefficient µC 0.2 Nm
Viscous friction coefficient µv 0.05 Nms/rad

Rotor inertia Jm 306 kgmm2

No load current InoLoad 0.538 A
Torque constant kt 71.1 mNm/A
Terminal resistance R 0.343 Ω

(

m+ (Jm + Js)n
2
s

)

ÿ = −mg + Fs + CnsTm − Ff ,

m =

{

mslider +mgripper +mpackage when going down

mslider +mgripper when going up
.

The dependencies on y have been suppressed for readability,

they are stated below. The motor and spindle have inertia Jm
and Js respectively and the spindle has a transmission ratio

ns, resulting in a reflected inertia term (Jm + Js)n
2
s . The

combined mass m is acted upon by gravity g, spring force

Fs(y) as function of position y, and the actuator, of which the

torque Tm is transformed to a force by the spindle. The main

friction acting on the spindle is a nonlinear efficiency C,

expressing the torque dependent losses in the transmission:

C =

{

ηp when σ(Tm) = σ(ẏ) i.e. accelerating

1/η′p when σ(Tm) 6= σ(ẏ) i.e. decelerating
, (6)

where σ(·) denotes the sign function. Additional friction

Ff = µCσ(ẏ)+µv ẏ is modeled as a sum of Coulomb friction

and viscous friction. The coefficients are estimated based on

[25]. Further details about the modeling can be found in [26].

The system equations as function of position are:

d

dy

[

ẏ
t

]

=
dt

dy

[

ÿ
1

]

= ẏ−1

[

−mg−Ff+Fj

m̃

1

]

,

with an effective mass m̃ = m+(Jm+Js)n
2
s , and a combined

joint force Fj = Fs + CnsTm.

The electric motor model specifies the current, I , and

voltage U provided. It relates these to the motor torque Tm,

the motor torque constant kt, a lost current due to Coulomb

friction (InoLoad), and a terminal resistance R:

I = InoLoadσ(Tm) +
Tm

kt
, U = IR+ ktnsẏ .

B. Optimal spring torque

This section applies the method described in Sec. II to the

model presented in Sec. IV-A. Here, the energy cost is

E =

∫
[

Tmns +
I2R

ẏ

]

dy + Pohtend (7)

where in integral term is the equivalent of (2) with the electric

power Pel = UI divided by velocity ẏ integrated over



position y. This first term contains the recovered mechanical

energy and the actuator heating. The constant power term

outside the integral represents overhead power consumption,

a simple model for the energy consumed by the processor,

sensors and end-effector [27]. The overhead, estimated to be

4 W [26], affects the duration of the optimized trajectory.

In order to compute the optimal spring force, Fs, following

the method presented in Sec. II, the rotational quantities

(such as torque) are substituted by their translational counter-

parts (force). Furthermore, in contrast to the model presented

in Sec. II, this model contains terms that depend nonlinearly

on Tm and therefore requires (5) to be adjusted.

In our model there are two such terms: the spindle

efficiency and the no-load current. Both terms are piecewise

continuous, which makes finding the optimal value of the

spring force a two step approach. The first step is to find

the optimal value within the differentiable domains, using

an adjusted version of (5). The second step is to check if the

minimum is at any of the points of non-differentiability.

Minimizing (7), the optimal spring force becomes:

Fs =

∑

i(−1)i
(

Fj,i

C2
i
ẏi

+ βInoLoad
σ(Tm,i)
Ciẏi

− 1
αCi

)

∑

i(−1)i (C2
i ẏi)

−1 , (8)

with α = −2R
k2
tn

2
s

and β = ktns. In the numerator, the first

term originates from the electrical energy loss as before, the

second term is due to the no-load current and the final term is

a mechanical energy loss term due to C not being constant.

The right hand side of (8) is still a function of Fs due

to the sign term σ(Tm,i), which is present in Ci (6) as

well. Because the cycle consists of only two phases, we

can remove these dependencies as follows. Based on (5),

we assume that the optimal spring torque lies between the

required joint torques of the two phases. The sign of the mo-

tor torque follows from the difference between the required

joint torques. Furthermore, because σ(ẏ1) = −σ(ẏ2), we

know C1 = C2 = C at every position. Implementing this

knowledge reduces (8) to

Fs =

∑

i(−1)i
(

Fj,iẏ
−1
i + βInoLoadCσ(Tm,i)ẏ

−1
i

)

∑

i(−1)iẏ−1
i

,

which is similar to (5) except for the second term in the

numerator, which biases the weighted average of the joint

forces. This no-load current term has the same sign in both

phases, due to the power of −1 compensating for the sign

change of the motor torque.

Due to the non-differentiability of the no-load current,

there are now two alternative values for Fs which may lead

to minimal electric power consumption. Each of the choices

Fs = Fj,1, Fs = Fj,2 causes one of the no load current terms

to drop out. The electric energy consumption is checked for

the three options of Fs and the optimal spring force is the

one resulting in the minimum energy consumption.

C. Trajectory optimization

Now that the optimal spring force is known as a function

of the trajectory, only the trajectory of the robot, defining the

joint forces Fj required for the task, remains to be optimized.
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Fig. 6: The 20 springs corresponding to trajectories from

the multi-start optimization with the least system energy

consumption. The optimal spring of the set is shown bold.

If the path would have been one way, this would have

been an inverse dynamics problem parameterized as function

of position. However, within a cycle each position is visited

multiple times (twice in this case) with different acceleration

and friction forces. Therefore we cannot consider it as such.

To allow optimization, the trajectory is parameterized

as two piecewise linear functions that set the acceleration

divided by the velocity, ẏ−1ÿ, in the upward and down-

ward motions. For each motion, 16 segments are used.

The remaining variables of interest in the optimization are

then computed either by direct solution, interpolation, or

integration using the 4th order Runge-Kutta algorithm with

step size ∆y = 1 mm. At the final positions, ydown,N = 0 m

and yup,N = 1 m, both acceleration and velocity are con-

strained to zero. When integrating the motion, the velocity

is constrained to a minimal magnitude of ǫ = 1 mm/s, by

clipping both velocity and acceleration.

The optimization is performed using the general pur-

pose interior point method, as implemented by MATLAB

fmincon. Due to the non-convexity of the problem, we

optimize with a multi-start, with 25000 randomly initialized

iterations yielding 1347 feasible solutions.

D. Results

Figure 6 shows 20 spring characteristics, corresponding

to the 20 different seeds in the optimization that were found

to recover most energy. Of the set, the spring characteristic

recovering most energy is shown in black. The other, near

optimal spring characteristics are all similar to this found

optimum, supporting that the found optimum is likely to be

very close to the global optimum for the Plugless arm case.

Figure 7 shows the trajectory information corresponding to

the optimal spring characteristic. Note that the middle and

right plots have double y axes. The joint forces of the up

and down motion lie very close together, thereby effectively

approaching an inverse dynamics solution to the optimization

problem. As the joint forces are the bounds on the optimal

spring force (see Sec. IV-B), they nearly overlap it.

Table II compares the robot with optimized spring to

actuation with a linear spring and without spring. The linear

spring is chosen such that the loaded arm is balanced in

the bottom position and the unloaded arm is balanced in
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TABLE II: Energy measures of the optimal trajectories

units per cycle net
energy

cycle
time

mech.
loss

I2R
loss

recovered
energy

with optimal spring -0.06 J 1.80 s 1.90 J 0.65 J 7.26 J
with linear spring 14.78 J 4.17 s 2.60 J 5.31 J 1.90 J
without spring 20.36 J 4.00 s 4.44 J 9.71 J -4.34 J

the top position. This minimizes the power consumption at

the standstill positions, as suggested by (5). The supplied

potential energy minus the total required energy, E from

(7), is denoted as the net energy. The mechanical loss is

the difference between the mechanical energy,
∫

Tmnsds,

and the supplied potential energy (9.81 J/cycle). This is

the energy lost due to transmission inefficiency. Finally, the

recovered energy is the total energy loss without the overhead

energy consumption. The number here is the maximum

energy available to power on-board systems for a plugless

arm. It is seen that without a parallel spring it is not possible

to recover energy, even without overheads. With the optimal

parallel spring the net energy is negative, meaning that more

energy is recovered than required to keep the system running

and the arm can function pluglessly.

With the optimal parallel spring, larger overall joint

torques are achieved with a fraction of the mechanical and

actuator losses. By reducing actuator torques, the spring has

reduced the mechanical loss by almost a factor 3 and the

I2R loss by a factor 14. The linear spring shows signifi-

cantly smaller loss reductions, especially for the I2R loss.

The optimal spring characteristic reduces the total energy

consumption of the system by 60% compared to the linear

spring. Mechanical heating dominates actuator loss with the

optimal spring; the reverse is true for the two other cases.

The remaining mechanical losses originate partially from

the transmission efficiency, including Coulomb and viscous

friction terms. A less direct mechanical loss factor is the drive

train reflected inertia, which increases the effective mass to

be accelerated. For the spindle drive used in this model, the

reflected inertia is much larger than it will be in an arm with

rotational joints, due to adding the significant inertia of the

spindle shaft to that of the motor, and due to the relatively

large reduction ratio applied to that combined inertia.

V. DISCUSSION

The first part of this discussion covers the method for

computing the optimal spring, focussing on extensions in

future work; the second part treats the plugless arm use case.

A. Optimal spring characteristic

In this paper we have shown that the nonlinear spring

characteristic for a parallel elastic actuator can be opti-

mized analytically if the trajectory and force requirements

are known. The resulting spring characteristic is useful as

inspiration and benchmark for designing and optimizing

mechanisms for parallel elastic actuators.

The main challenge is found in motions in which the

direction of movement is reversed multiple times and at

different positions, causing the optimal spring characteristic

to contain jumps. These jumps occur for the ankle spring in

Sec. III. In Sec. III-B, the optimal spring characteristic was

smoothened to obtain a realizable characteristic. Future work

could investigate how to add smoothness, and other traits of

realizable springs, directly in the cost function. This likely

requires the optimal spring to be computed numerically.

Alternatively, future research could investigate clutches to

either realize or avoid jumps. In particular, concepts like the

series-parallel elastic actuator [28] could be used to realize

discontinuities. To avoid the discontinuities, clutches could

be used to create different spring torques at the same position

of the joint, thereby removing the jumps in the optimal

characteristic(s). This has proven to be useful if the torque

requirements vary between the back and the forth motion, for

instance in the case for the ankle motion in human walking

[17], [29]. This can also be seen in Fig. 2, which shows

a difference in joint torques between the swing and stance

phases. Disconnecting the parallel spring during swing will

allow the spring to contribute more during stance.

B. Plugless arm

By combining the spring characteristic optimization with

a trajectory optimization, we show simulations of a plugless

robot performing the pick-and-place task in Fig. 1b. In order

to turn this simulation into a robot design, further research

into the following issues is necessary.

First, in this paper we optimize for net energy per cycle.

For the plugless-arm task, it is sensible to also consider other



goals, such as energy recovery per time (power) and stability.

If the motion is quicker, the energy of new packages is

injected in the system at a faster rate, hence more power

is available for recovery. This can allow for higher overhead

or control costs. The power can be optimized within our

framework by computing the optimal spring and trajectory

for various values of the overhead cost, Poh, and computing

the resulting recovered power. In a real world setting, distur-

bances necessitate control actions to stabilize the robot. By

optimizing the spring characteristic to provide a stabilizing

effect, the required control torques would be reduced.

Second, the paper discusses a single degree of freedom

robot. In order to apply these techniques in an industrial

setting, they should handle multi-degree of freedom robots

and multiple pick-and-place positions. As the results in this

paper rely on integration over a single position, incorporating

the positions of multiple joints is an important theoretical

challenge. The ideas behind transverse coordinates, as used

for control for a walking motion in [30], could possibly be

used to accomplish this.

VI. CONCLUSION

In this paper we have shown that the spring torque that

minimizes the motor losses of an electric parallel elastic

actuator can be found analytically. The optimal spring torque

at a given position is the weighted average of the joint torques

required over the occasions when that position is passed, with

the inverses of the velocities as weights.

As an illustrating example, the optimal spring character-

istic for a human ankle joint during walking was computed.

The resulting characteristic and the method used to compute

it can be adapted for future prosthetic and orthotic devices.

Finally, we have computed an optimal parallel elastic

actuator for a linear robot performing a pick-and-place task.

The results show that the optimal characteristic allows the

robot to be built pluglessly, i.e., it can restore the energy

released by a height drop of the package such that it

could function without external electric energy supply. The

principles behind this parallel elastic actuator will be used

in a future multi-degree of freedom plugless robot arm.
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