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a b s t r a c t 

In this research a machine learning model for predicting the rotating bending fatigue strength and the 

high-throughput design of fatigue resistant steels is proposed. In this transfer prediction framework, ma- 

chine learning models are first trained to estimate tensile properties (yield strength, tensile strength and 

elongation) on the basis of composition and critical process conditions. Then, based on the predicted ten- 

sile properties, transfer models are trained to estimate fatigue strength. The results are compared with 

those of a similar model not having such a transfer layer. The transfer prediction framework shows high 

accuracy for fatigue strength prediction with a remarkably high tolerance to limitations in the amount of 

calibration data available for training. By combining the transfer prediction framework with evolutionary 

algorithms, a robust high-throughput alloy design model is achieved requiring only tens of fatigue data 

points to get a decent reliability. The newly designed steel showed the predicted high fatigue strength. 

The method as presented here might also be applicable to other alloy design challenges in which only a 

limited database for the property to be optimized is available. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Fatigue strength, which is usually defined as the maximum 

tress amplitude without failure for a given high number of stress 

ycles (usually 10 7 ∼10 9 ) under set loading conditions, is commonly 

sed to represent the endurance limit of steels [1–4] . While the 

ctual fatigue strength in use depends on the loading conditions 

R-value, frequency, stress states, loading pattern, etc.) the rotat- 

ng bending stress is a good test to estimate the relative fatigue 

erformance of different engineering steels. While the test is at- 

ractive because it requires only small samples, relatively cheap 

esting machines and can test at high frequencies, measuring the 

atigue strength by experimental testing remains a time consum- 

ng and hence costly operation even when optimal sample loading 

trategies to minimize the number of samples to be tested such as 

he staircase method [5] are used. Due to this high cost the num- 

er of fully worked cases in which fatigue strength is coupled to 

teel composition and heat treatment conditions is relatively small 

nd this greatly complicates the design of new fatigue resistant 
∗ Corresponding author. 

E-mail address: xuwei@ral.neu.edu.cn (W. Xu) . 
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ngineering steels. Recently, with the establishment and develop- 

ent of the Material Genome Initiative (MGI), various studies have 

ried to greatly reduce the time and monetary cost necessary for 

lloy design by replacing experimental trial-and-error approaches 

ith advanced computational and statistical methods, e.g., high- 

hroughput computing. Although high-throughput computing has 

rought about great progress in the efficiency of designing new 

opper alloys with a high ultimate tensile strength and a low elec- 

rical conductivity [6] , for titanium alloys with high strength and 

uctility [7] , ultrahigh-strength stainless steels with high hardness 

8] , and RAFM steels with high yield strength and impact tough- 

ess [9] , few high-throughput alloy design studies have focused on 

atigue strength optimization primarily because of limitation in the 

umber of composition-fatigue strength data available. 

To design new steels with a high fatigue strength via high- 

hroughput computing, a proper model that can accurately repre- 

ent the complex and non-linear relationships between composi- 

ion and processing conditions on the one hand and the fatigue 

trength on the other hand should first be established. Most tradi- 

ional empirical models in the field relate fatigue strength to quasi- 

tatic mechanical properties, such as hardness [10] , tensile proper- 

ies [ 10 , 11 ] or impact toughness [12] . The use of these quasi-static

roperties, which are easier to obtain and hence carry a lower 

https://doi.org/10.1016/j.actamat.2022.118103
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.118103&domain=pdf
mailto:xuwei@ral.neu.edu.cn
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ost penalty, to predict fatigue properties can be a cost-effective 

trategy. In early research [2] , a linear relationship between fatigue 

trength and hardness or tensile strength has been proposed and 

mposed, and this definition has been widely applied to various al- 

oy systems, such as steels, copper and aluminum alloys. However, 

n later studies, this linear relationship was found to be too simple 

nd not to apply to engineering steel grades in which the hard- 

ess or tensile strength exceeded a critical value [13] . For exam- 

le, when the tensile strength exceeded the value of approximately 

800 MPa, the fatigue strength of SAE 4340-like steel even de- 

reased with increasing tensile strength value [14] . To describe this 

onlinear relationship in the high tensile-strength area, a modified 

odel based on hardness data was built by Yukitaka and Masahiro 

15–17] . A more versatile formula that relates fatigue strength to 

ensile strength in the form of a quadratic expression was pro- 

osed by Pang et al. [ 12 , 14 ] and performed well for several materi-

ls, such as alloyed steels and copper alloys. However, the model is 

trictly phenomenological, and only links fatigue strength to tensile 

trength, and offered no explanation for the non-linearity. Wang 

roposed that yield strength is also related to fatigue strength as 

ielding is involved in fatigue crack initiation [11] . It has also been 

rgued that total elongation at break is also relevant for fatigue 

trength optimization as a high ductility can promote fatigue dam- 

ge resistance [ 11 , 18 ], and also the work-hardening ability relates 

o the fatigue strength to some extent [19] . However, no empirical 

ormula has been proposed which quantifies the effect of failure 

train and work-hardening on fatigue strength. 

However, irrespective of the empirical relationship between the 

onventional mechanical properties and the fatigue strength se- 

ected, such relationships do not directly link the fatigue strength 

o the chemical composition of the steel and the processing condi- 

ions (together defining the microstructure). 

Artificial intelligence (AI) strategies may provide a new way 

o directly define the relationships between the combination of 

hemical composition and heat treatment conditions and the fa- 

igue properties without considering mechanical relationships or 

echanisms. From traditional machine learning (ML) methods, e.g., 

eural networks (NNs) and support vector regression (SVR), to 

ore recent methods, e.g., extreme gradient boosting (XGB) and 

onvolutional neural networks (CNNs), these approaches exhibit 

ood predictive ability for various material properties [ 8 , 20–25 ]. 

I strategies were also used for various fatigue property predic- 

ions in previous studies, such as the prediction of fatigue live 

 26 , 27 ], fatigue crack-driving forces [28] , fatigue strengths [29–37] ,

tc. However, with limited time and funding for fatigue testing, 

ost previous studies mentioned above were based on small sam- 

le databases with only hundreds of samples and hence the pre- 

ictions lacked reliability and accuracy. To overcome the problem 

f limited accuracy due to the calibration database being too small 

i.e., less than 100 cases), models suitable for sparse data have 

een used, e.g., the adaptive neuro-fuzzy inference system, which 

as used to predict the high cycle fatigue life of laser powder 

ed fusion stainless steel 316 L based on a dataset consisting of 

39 experimental fatigue data points [26] . In addition, data pre- 

rocessing methods such as feature engineering were considered 

n Agrawal’s work [36] . Although the number of samples nearly 

eached the minimum amount of data required for traditional ML 

ethods, nevertheless hundreds of samples were required, mean- 

ng that the data accumulation still took decades, which is an un- 

cceptable long-term cycle for alloy design. Usually, for most rel- 

tively new alloy systems, only tens of existing data points might 

e available, an amount that is far from sufficient for training a 

table or reliable ML model. Therefore, although the traditional AI 

trategy provides promising prospects for fatigue strength-oriented 

lloy design by directly building the relationship between com- 

osition/processing and fatigue strength, the lack of a sufficient 
2 
mount of complete datasets and the high cost for additional data 

ccumulation significantly inhibited its further application in effi- 

ient and reliable alloy design. 

In the present work, a fatigue strength prediction and high- 

hroughput alloy design framework based on the transfer learn- 

ng (TR) concept [38–45] is proposed. The first layer of the trans- 

er model predicts the quasi-static mechanical properties (yield 

trength, tensile strength and elongation) using either a convo- 

utional neural network (CNN) framework based on deep learn- 

ng concepts or a simplified machine learning (SML) framework 

ased on traditional machine learning algorithms. The inputs for 

oth models are the steel composition and the processing param- 

ters (in particular critical heat treatment parameters) for which 

 large database is available. The second layer links the predicted 

uasi-static properties to the high cycle fatigue strength for which 

nly a small validation set is available. The predictive power of the 

ransfer model is compared to that of models in which chemical 

omposition and heat treatment parameters are directly linked to 

he fatigue strength, i.e., a non-transfer model. For the subsequent 

igh-throughput alloy design, a genetic algorithm (GA), which used 

he transfer prediction model as the objective function, was ap- 

lied to search for the new composition and processing solutions 

eading to high fatigue strength values while taking into account as 

any as twenty dimensional features. This TR framework enabled 

igh-efficiency alloy designs exploring an extremely large range of 

otential combinations but does rely on only a small dataset of fa- 

igue strength values for training. 

. Methods 

.1. Dataset and data preprocessing 

In the present study the publicly available Matnavi fatigue 

ataset published by the National Institute of Material Science 

NIMS) of Japan was used [46] . In this database actual steel com- 

ositions, heat treatment conditions and final quasi-static and dy- 

amic mechanical properties are recorded. The complete database 

onsists of datasets for carbon steels (113), low-alloy steels (258), 

pring steels (18) and stainless steels (22). Fatigue data for carbur- 

zed steels were not used in the present study since their process- 

ng involves additional processing parameters and leads to inten- 

ional compositional gradients not to be encountered in the other 

teel grades. In the end a dataset containing 411 samples was com- 

iled where each datapoint has twenty features (composition and 

rocessing details), three tensile properties (yield strength, tensile 

trength and elongation), hardness, Charpy impact toughness and 

he target property (rotating bending fatigue strength at 10 7 cy- 

les). The Matnavi dataset as published by NIMS is a high-quality 

ataset with the advantage of small scattering within the data be- 

ause all fatigue tests were performed at a single institution known 

or its accuracy [47] . The global overview of the dataset ranges is 

eported in Table 1 , and histograms of the composition ranges and 

echanical properties are shown in Fig. S1 and Fig. S2, respec- 

ively. 

For the tensile properties, 83, 262 and 66 samples were se- 

ected randomly as the validation set, training set and testing set, 

espectively. To avoid the ‘lucky split’ problems caused by random 

artitions, the data partitioning procedure using this fixed splitting 

atio was carried out 100 times to obtain an insight into the un- 

ertainty of the model. For the fatigue strength, from the initial 

ataset with 411 samples, 83 samples were selected randomly as 

he validation set, and the remaining 328 samples were used for 

odel training and testing. From the remaining 328 samples, vari- 

us subsets containing ranging from 32 to 328 samples were ran- 

omly selected for fatigue strength prediction. In all cases, a ratio 

f 4:1 was used to create training and testing sets. Two types of 
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Table 1 

Input and output ranges of the various parameters in the total database. 

Inputs and outputs Minimum Maximum Mean Standard deviation 

Inputs Carbon (wt.%) 0.09 0.63 0.396 0.098 

Silicon (wt.%) 0.16 2.05 0.306 0.254 

Manganese (wt.%) 0.32 1.6 0.825 0.289 

Phosphorus (wt.%) 0.004 0.031 0.017 0.005 

Sulfur (wt.%) 0.002 0.03 0.014 0.006 

Nickel (wt.%) 0.01 2.78 0.493 0.853 

Chromium (wt.%) 0.01 12.7 1.154 2.61 

Copper (wt.%) 0 0.26 0.061 0.049 

Molybdenum (wt.%) 0 0.24 0.061 0.085 

Normalizing Temperature ( °C) 30 900 820.47 188.76 

Through Hardening Temperature ( °C) 30 975 833 136.5 

Through Hardening Time (min) 0 30 29.2 4.84 

Cooling Rate for Through Hardening ( °C/s) 0 24 11.76 7.15 

Tempering Temperature ( °C) 30 750 589.76 109.29 

Tempering Time (min) 0 60 58.39 9.68 

Cooling Rate for Tempering ( °C/s) 0 24 23.36 3.87 

Reduction Ratio (Ingot to Bar) 289 5530 964.1 576.77 

Area Proportion of the Inclusions Deformed by Plastic Work (dA) 0 0.13 0.047 0.032 

Area Proportion of the Inclusions Occurring in Discontinuous Array (dB) 0 0.05 0.004 0.009 

Area Proportion of the Isolated Inclusions (dC) 0 0.06 0.009 0.012 

Outputs Yield Strength (MPa) 290 1636 789.41 219.81 

Tensile Strength (MPa) 455 1756 911.14 198.65 

Elongation (%) 9 40 21.31 4.75 

Fatigue Strength (MPa) 225 906 492.42 98.71 
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odels were created: (i) a TR (Transfer) model in which the rel- 

vant dataset of composition and processing parameters was used 

o predict the quasi-static mechanical parameters and then a sec- 

nd model to predict the fatigue strength on the basis of the pre- 

icted (quasi-static) mechanical properties and (ii) a NonTR (non- 

ransfer) model in which the composition and processing parame- 

ers were directly coupled to the fatigue strength data during train- 

ng. As for the predictions of the tensile properties, the above fa- 

igue data partitioning procedure was carried out 100 times. 

In the both routes some data cleaning was imposed to han- 

le non-reported values for process parameters. Following a pub- 

ished protocol for dealing with non-reported input process param- 

ters [34] the values for austenitization and tempering tempera- 

ures were set to room temperature unless properly documented, 

nd related also-not-reported features, such as holding time and 

ooling rate, were set to zero. For data normalization, the inputs 

nd outputs were normalized with z-score, a standard method for 

liminating dimensional differences between feature ranges [48] . 

he normalization expression is given by Eq. (1) : 

 = 

x − μ

σ
(1) 

here z denotes the normalized value, x is the original value from 

he dataset, and μ and σ represent the mean and standard devi- 

tion of the original values for a certain dimensional feature, re- 

pectively. 

Feature relevance for the parameters in the dataset was evalu- 

ted to better understand the influence of the compositions and 

rocess parameters on the fatigue strength. This evaluation was 

arried out using the mean decrease accuracy (MDA) values for a 

andom forest (RF) model with 10 0 0 random partitions. The results 

rove conclusively that all features have positive, though not equal, 

ontributions to the fatigue strength as shown in Fig. S3. Therefore, 

urther feature selection was considered not to be required. 

.2. Construction of TR framework 

In the transfer model approach, which treats the tensile prop- 

rties as intermediate steps towards obtaining an estimate of the 

atigue strength, we constructed two transfer frameworks named 

he CNN TR model and SML TR model. Their implementation pro- 

ess is shown schematically in Fig. 1 (a). At first, the source mod- 
3

ls for tensile properties prediction were constructed via the CNN 

nd SML methods using a relatively big dataset. Then, based on the 

igh correlation between tensile properties and fatigue strength, 

he TR models for fatigue strength prediction were constructed 

ased on smaller datasets containing the fatigue data, again using 

he CNN and SML methods. 

The arguments for the construction of the unconventional CNN 

rather than NN) TR framework are as follows. CNN methods can 

e applied to the prediction of steel properties because of the 

trong correlation between physical metallurgical features, which 

an be regarded as spatial information. The applicability of CNN 

as been demonstrated in other works, such as the martensite 

tart temperature prediction by numerical input features [49] , 

herein CNN shows better performance than traditional NN. We 

lso compared the performance of CNN and common neural net- 

ork (NN) for the fatigue strength prediction, confirming the ef- 

ectiveness of CNN, and the results are shown in Fig. S5. For the 

onstruction of the CNN TR, we followed the transfer learning ap- 

roach mentioned by Yosinski et al. [50] . First, a source CNN ten- 

ile property model was trained, as shown in Fig. 1 (b). For this 

odel, 20 dimensional features reshaped into a matrix of size 5 

ere used as inputs (the 20 dimensional input values are filled 

nto a 5 × 5 matrix in turn, and the value of the last 5 elements

n the matrix is set to zero), and the properties of yield strength 

YS), ultimate tensile strength (UTS), and elongation (EL) formed 

he 3-dimensional output. For the reshape method for inputs, dif- 

erent input matrix shapes were compared and the model with in- 

ut of 5 × 5 performed best compared to models with input ma- 

rix shapes of 5 × 4 and 4 × 5. Meanwhile, a square input of 

 × 5 leads to more convenient data processing in the present 

ork. To adapt to the characteristics of the small data (sub-)set 

f fatigue strength valued used in this research, the complexity of 

he CNN model was reduced by removing the pool layer and sim- 

lifying the architecture. The CNN parameter settings were as fol- 

ows: convolutional layer 1 was 5 × 5 × 8, convolutional layer 2 

as 5 × 5 × 16, the fully connected layer was 1 × 1 × 128, and 

he filter size was 2 × 2. Then, the related target CNN TR model 

or fatigue strength was trained as follows: (1) Convolutional layers 

nd fully connected layers of the source CNN model were copied 

o the corresponding layers of the target CNN TR model, and were 

alled transferred feature layers. Once created the transferred fea- 



X. Wei, S. van der Zwaag, Z. Jia et al. Acta Materialia 235 (2022) 118103 

Fig. 1. Schematic diagram of (a) the transfer prediction framework for fatigue strength utilizing tensile properties and (b) the architectures of CNN and SML frameworks. 
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ure layers remained frozen and did not participate in further 

raining. (2) The remaining layer of the target CNN TR model was 

hen randomly initialized and trained for fatigue strength predic- 

ion. For the above CNN training, the model was obtained after 

500 iterations, during which the loss function of mean square er- 

or (MSE), a learning rate of 0.005, and the Adam optimizer were 

dopted. 

For the creation of the SML transfer framework, five traditional 

lgorithms were employed to model the tensile properties, includ- 

ng gradient boosting regression (GBR), extreme gradient boost- 

ng (XGB), random forest (RF), multilayer perceptron (MLP) and 

upport vector regression with a radial basis function kernel (rbf- 

VR). To model the fatigue properties, two algorithms namely rbf- 

VR and support vector regression with a linear kernel (linear-SVR) 

ere employed. Three source SML models for YS, UTS and EL, re- 

pectively were trained first. The outputs of the three models were 

sed as the three-dimensional input for the SML TR model, which 

as the fatigue strength as its final output. An internal evaluation 

f the above models showed that the GBR and linear-SVR were the 

ptimal algorithms for tensile properties and fatigue strength pre- 

iction, respectively. The results are shown in Fig. 6 . Model param- 

ters for all algorithms in the SML framework were optimized by 

rid search. 

For comparison, corresponding NonTR models were trained 

s reference models in a similar manner, also taking the 20- 

imensional features as inputs and fatigue strength as the (only) 

utput. For both NonTR and TR, the fatigue strength error was 

sed as the loss to train the models. Besides, different loss func- 

ions were used for the NonTR models, and results are shown in 

ection 4.3 . 

For all the above modeling of CNN and SML, data pre- 

rocessing and model training were implemented using Tensorflow 

nd Scikit-learn in Python. The metrics used to evaluate the pre- 

ictive performance of TR and NonTR models in the present work 

nclude the squared correlation coefficient (R 

2 ) and mean absolute 

rror (MAE). The formulas for these metrics are as follows: 

 

2 = 

(
n 

∑ n 
i =1 f ( x i ) y i −

∑ n 
i =1 f ( x i ) 

∑ n 
i =1 y i 

)2 

(
n 

∑ n 
i =1 f ( x i ) 

2 −
(∑ n 

i =1 f ( x i ) 
)2 

)
−

(
n 

∑ n 
i =1 y 

2 
i 

−
(∑ n 

i =1 y i 
)2 

)

(2) 

AE = 

1 

n 

n ∑ | f ( x i ) − y i | (3) 
i =1 u

4 
.3. High-throughput optimization algorithm for alloy design 

With the TR and NonTR models for fatigue strength established, 

n elitist reservation genetic algorithm (GA) was used to redesign 

teels in order to obtain a high fatigue strength. Considering the 

arge differences in compositions and heat treatment processes be- 

ween different steel grades in the Matnavi dataset, the search 

pace was limited to low-carbon steel and low-alloy steel systems. 

or the GA, there are multiple settings to be considered. Reason- 

ble GA parameters need to be set to ensure that it can converge 

nd obtain the optimal design solution. For example, the determi- 

ation of mutation rate requires careful handling as an excessive 

alue may lead to problems for GA to find a good solution, while 

 small value may cause GA to easily get stuck in a local optimal 

olution. Therefore, the value is usually set between 0.001 and 0.1. 

n addition, the selection of operators such as mutation operator 

s also critical. In the present work, various GA parameters were 

ompared and a suitable set of GA parameters was applied to alloy 

esign for all models. The design results demonstrated the reliabil- 

ty of GA under this set of parameters, as shown in Supplementary 

. The more details of GA parameters used are shown in Table S4. 

he GA was run ten times to ensure that for the parameters used 

ocal optima were not dictating the final outcome. 

To ensure the reliability and effectiveness of the design pro- 

uced by the TR an NonTR framework, the models with MAE 

 20 MPa for both the training and testing sets were used as the 

bjective functions of GA. 

Finally, the combination of the GA model and the TR model 

ith MAE < 10 MPa and R 2 > 90% for both training and testing sets

as used to design a new steel with a fatigue strength > 643 MPa 

nd this steel was fabricated and properly processed samples were 

otating-bending fatigue tested. 

It should be mentioned that the influence of factors related to 

nclusions needs to be considered during the continued design pro- 

ess, and it is well known that inclusions have a significant impact 

n fatigue performance. The importance of inclusions for fatigue 

trength prediction was evaluated via RF, and the results show 

heir negligible impact due to low content (S, P) and proportion 

dA, dB, dC) levels, as shown in Fig. S4. Hence, solutions leading 

o steels with a higher amount of inclusions were removed during 

esign processes. 

.4. Validation methods 

The ultimately designed alloy was produced as a 50 kg ingot 

sing smelting in and casting from a vacuum induction furnace. 
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Fig. 2. Experimental values vs. values predicted by the CNN tensile model of (a) YS, (b) UTS and (c) EL (including the mean results for 100 different partitions of training, 

testing and validation sets). 

Table 2 

Mean results of the CNN and SML tensile models from 100 partitions of training, testing and validation sets. 

Algorithm 

Yield Strength Ultimate tensile strength Elongation 

R 2 /% MAE/MPa R 2 /% MAE/MPa R 2 /% MAE/MPa 

CNN Training 99.5 ± 0.1 13.1 ± 1.6 99.5 ± 0.1 10.7 ± 1.2 98.7 ± 0.2 0.43 ± 0.04 

Testing 97.2 ± 1.3 27.3 ± 3.6 97.5 ± 1.3 22.5 ± 3.3 94.0 ± 1.9 0.89 ± 0.09 

Validation 97.3 ± 1.0 27.1 ± 3.8 97.6 ± 1.0 22.4 ± 3.4 94.1 ± 1.8 0.88 ± 0.09 

SML Training 99.8 ± 0.1 6.8 ± 2.3 99.8 ± 0.11 6.2 ± 1.9 98.8 ± 0.4 0.39 ± 0.08 

Testing 96.8 ± 2.0 26.3 ± 4.9 97.5 ± 1.5 21.7 ± 4.0 94.3 ± 1.9 0.88 ± 0.09 

Validation 96.9 ± 1.7 26 ± 4.6 97.5 ± 1.3 21.6 ± 3.7 94.3 ± 1.8 0.87 ± 0.08 
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f

he ingot was forged at 1100 °C into a billet with cross-sectional 

imensions of 200 × 135 mm 

2 . Then, the billet was reheated to 

200 °C for 3 h and hot rolled to a thickness of 20 mm, with

ubsequent laminar cooling. Subsequent heat treatments, including 

ormalization, hardening and tempering, were conducted at the 

emperatures and times suggested by the designed solution. Rotat- 

ng bending fatigue tests were carried out using the same sample 

imensions and test conditions as reported for Matnavi dataset. 

. Results 

.1. Prediction of tensile properties 

As mentioned in Section 2.2 , firstly 100 CNN models to predict 

he quasi-static tensile properties based on the chemical composi- 

ion and the processing conditions were built. Fig. 2 presents scat- 

er plots of the mean predictive values for YS, UTS and EL, includ- 

ng error bars. The prediction results in training set for YS, UTS and 

L are highly consistent with the experimental values both having 

mall error bars, indicating the excellent performance of all 100 

NN tensile models yielding high R 

2 values with extremely low 

rror bars, 99.5% ( ±0.1%), 99.5% ( ±0.1%) and 98.7% ( ±0.2%) for YS, 

TS and EL, respectively. For the validation sets the R 

2 values are 

7.3% ( ±1%), 97.6% ( ±1%) and 94.1% ( ±1.8%) for YS, UTS and EL,

espectively. Therefore, because all the R 

2 values are higher than 

0% with error bars < 2%, the CNN models trained in this research 

ere proven to be suitable and stable for tensile property predic- 

ion within the composition range of the original database. The er- 

or analysis further indicated the model might be slightly overfit- 

ed if an unjustified partitioning of training and testing sets was 

oincidentally made in the random splitting, Therefore, to avoid 

he overfitting caused by unjustified partitioning, the most accu- 

ate CNN model from the 100 models trained has been selected 

nd was used for building the CNN TR model. 

In addition to CNN models, also an SML framework for tensile 

roperty prediction was built, as mentioned in Section 2.2 . For this 

ML framework, three predictive models for YS, UTS and EL, re- 

pectively were built using the GBR algorithm. Table 2 includes the 
5

ean R 

2 and MAE results, including error bars, for YS, UTS and 

L generated from 100 partitions of training, testing and validation 

ets. The mean results of the CNN model are also listed for com- 

arison. Similar to the CNN model, all SML tensile models exhibit 

xcellent performance but show minor differences : (i) compared 

ith CNN models, SML models show relatively low MAE values for 

alidation sets, indicating that SML models probably have stronger 

redictive abilities within the composition ranges of small sample 

atabases; (ii) compared with SML models, CNN models show rel- 

tively small R 

2 error bars for validation sets, indicating that the 

NN models used in this research are more tolerant to unjustified 

artitioning and are therefore less inclined to result in overfitting. 

.2. Prediction of fatigue strength 

The CNN and SML TR models were further trained to predict 

he fatigue strength initially utilizing an extremely small dataset 

32 datapoints), as mentioned in Section 2.2 . In addition, NonTR 

odels were trained similarly to show how TR models advance the 

rediction of fatigue strength. Fig. 3 presents the comparison be- 

ween the mean predictive values of the validation sets from 100 

R and NonTR models, including error bars. The mean R 

2 and MAE 

re also given in this figure. The figure shows clearly that the TR 

odel yields far more accurate predictions than the NonTR model, 

n particular in the low and the high fatigue strength domain. For 

he TR models there is not much difference in accuracy between 

he CNN and the SML models. The limited accuracy for the NonTR 

odel in the low and high strength region is obviously due to the 

mall dataset used for training. The use of the TR model greatly ex- 

ends the range in which accurate predictions can be made on the 

asis of the same small database. The influence of the number of 

amples in the fatigue database on the accuracy will be analyzed 

n more detail in the Discussion. 

.3. High-throughput alloy design and experimental validation 

With the help of GA, three alloys likely to have the desired high 

atigue strength were selected from solutions evaluated by the TR 
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Fig. 3. Experimental values vs. predicted values in a validation set generated by (a) a CNN framework and (b) an SML framework (including the mean results for 100 

different dataset partitions). 

Table 3 

Composition and processing parameters of three potential new alloys designed by TR models and existing alloys. 

Alloy R is the new steel produced on the basis of the specifications for target steel D1. Elemental compositions are 

given in weight percentages. Temperatures are in Celsius. Predicted (Actual) fatigue strength is in MPa. 

C Si Mn Ni Cr Cu Mo NT THT TT Predicted (Actual) 

Fatigue Strength 

Alloy D1 0.48 0.30 0.75 2.76 1.08 0.19 0.18 876 852 556 692 

Alloy D2 0.49 0.25 0.80 1.79 1.07 0.12 0.23 891 850 554 715 

Alloy D3 0.49 0.26 0.76 0.05 1.07 0.14 0.24 888 852 560 682 

Alloy E1 0.37 0.29 0.76 1.88 0.90 0.03 0.24 870 845 580 (643) 

Alloy E2 0.39 0.28 0.77 0.09 1.08 0.15 0.19 870 855 550 (638) 

Alloy E3 0.41 0.24 0.8 0.03 1.02 0.1 0.18 870 855 550 (635) 

Alloy E4 0.42 0.28 0.75 0.07 1.04 0.12 0.17 870 855 550 (634) 

Alloy E5 0.4 0.25 0.74 0.24 0.96 0.1 0.18 870 855 550 (631) 

Alloy E6 0.43 0.26 0.74 0.02 1.07 0.02 0.22 870 855 550 (625) 

Alloy R 0.47 0.32 0.74 2.80 1.06 0.20 0.19 875 850 555 –

Fig. 4. Compositional comparison results between the designed alloys and original alloys in the dataset. (a) Spearman correlation coefficient. (b) Elemental content changes 

in Alloy D1 compared to the optimal alloy in the original dataset. 
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odel, predicted upon only 10 0 0 iteration cycles, a process which 

s considered efficient and high-throughput. Table 3 shows the de- 

igned composition and treatment parameters, named Alloy D1, D2 

nd D3, where the prefix D stands for Designed. The uniqueness 

f the compositions of the three newly designed alloys with re- 

pect to those of six existing steels with a comparably high fatigue 

trength (Alloys E1-E6, wherein Alloy E1 exhibits the highest fa- 

igue strength and the prefix E stands for Existing) was assessed 

y calculating the Spearman correlation coefficient, and the results 

re shown in Fig. 4 (a). Alloy D3 was found to have a composition

and processing route) comparable to an existing steel, but alloys 

1 and D2 showed a relatively low correlation with existing steels, 

ndicating the novelty of the design results. Alloy D1 presents the 

idest difference from closest existing steel grade (alloy E1) with 
6 
eal changes in the C, Ni and Mo contents, as shown in Fig. 4 (b).

n addition, it is interesting to note that more Cu was introduced 

n Alloy D1 compared to the nearest existing steel grade Alloy E1. 

ence, Alloy D1 was chosen for experimental validation. The re- 

ulting experimental steel grade is called Alloy R, where the prefix 

 refers to Realization. 

Fig. 5 shows the S-N curves for Alloy R as well as the reported 

ata for the closest reference steel Alloy E1. It can be clearly ob- 

erved that most S-N points for Alloy 1 are located above those of 

he original optimal alloy, indicating the excellent fatigue perfor- 

ance of the newly designed alloy. The fatigue property is highly 

ensitive to the sample and testing conditions. Therefore, the fa- 

igue strength of Alloy R is 645 ∼690 MPa according to the results 

f five run-out specimens. The upper limit of the experimental 
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Fig. 5. Rotating bending S-N data for Alloy R and the corresponding closest ref- 

erence streel Alloy E1. The fatigue data for Alloy E1 were taken from the NIMS 

database. 
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esults (690 MPa) is consistent with the predicted results, which 

roves the high accuracy of the model. The lower limit of the ex- 

erimental results (645 MPa) is still slightly higher than the best 

erformance of the alloys from the original dataset (643 MPa for 

lloy E1). This validation result robustly indicates that the SML 

R&GA model has the ability to efficiently and accurately design 

ew steel compositions and treatment conditions leading to high 

otating bending fatigue strength values. 

. Discussion 

.1. Different prediction models for the SML framework 

Selecting the optimal algorithm that adapts to the characteris- 

ics of the database used in this research is an important aspect 

f building high-performance AI models. Before GBR was used for 

ensile property prediction, several algorithms were tested, includ- 

ng GBR, rbf-SVR, XGB, RF and MLP. Most of these models per- 

orm very well for tensile property prediction and can be further 

sed to build TR models. The mean results from 100 partitions in 

hese five models are shown in Table S3. Given three-dimensional 

mall data, two algorithms were employed for building TR models, 

ncluding rbf-SVR and linear-SVR. The rbf-SVR shows a relatively 

ow R 

2 (86.5% ( ±11.3%)) for the validation set, which probably rep- 

esents model overfitting to some extent. Although the relation- 

hip between fatigue strength and the combination of three ten- 

ile properties is difficult to quantify with a general equation, it 

s probably not as complicated as quantifying its internal mecha- 

ism, so a complex algorithm may not be an appropriate choice. 

he linear-SVR shows a high R 

2 (92.9% ( ±1.6%)) for the validation 

et. Therefore, it was used to map the relationship between tensile 

roperties and fatigue strength for small datasets. It is evident that 

inear-SVR is an optimal algorithm that presents little tendency of 

verfitting. 

Fig. 6 (a) and (b) show the mean R 

2 and MAE of the validation

et for different TR models. Given the linear SVR for the TR model, 

ll five algorithms accurately predicted fatigue strength, and their 

 

2 values exceeded 92% with low standard deviations, wherein 

BR performed best. Therefore, based on quantitative analysis, GBR 

nd linear SVR were selected as the optimal algorithms for the ten- 

ile and TR models in the present work, respectively. Fig. 6 (c) and 

d) show the results of different NonTR models accordingly. It is 
7 
pparent that all algorithms show extremely low R 

2 and high MAE 

alues for the validation set, especially MLP, which represents a se- 

ious overfitting problem. XGB has a better relative performance 

han the other four algorithms and was selected as the optimal al- 

orithm for the NonTR models. 

.2. Effect of the amount of fatigue training data on fatigue strength 

rediction 

As shown in the Results section, the predictive power of the TR 

odel, even when trained with only 32 fatigue data sets, is already 

emarkable. To further analyze the tolerance of the model predic- 

ions to the number of fatigue data available for training, this de- 

endence is examined in more detail for both the TR and NonTR 

odels. 

Fig. 7 (a) and (b) show the effects of the number of fatigue 

ata sets for the validation set on the mean R 

2 and MAE of the 

onTR and TR models. For the NonTR models, the CNN and SML 

odel results demonstrate an evident sensitivity to the amount 

f fatigue data. The mean accuracy of the NonTR models increases 

apidly with increasing the amounts of training data sets from 32 

o 98 samples. As already pointed out in Section 3.2 , for 32 fa-

igue strength training data sets, the CNN and SML models have 

xtremely low R 

2 and high MAE values with large standard de- 

iations, especially in the CNN model, which is clearly unstable 

nd has a higher requirement for the amount of data. Doubling 

he number of datasets for training to 66 leads to a strong in- 

rease in R 

2 of to approximately 75% and a decrease in the MAE 

o approximately 30 MPa, but error bars remain large. When the 

mount of fatigue data is in the range from 147 ∼328 samples, 

he SML NonTR model shows increasing advantages compared to 

he CNN model, as shown in Fig. 7 (a) and (b). Based on the re-

ults of Fig. 7 is can be concluded that in case of direct model- 

ng of the fatigue strength from the chemical composition and key 

hermal treatment conditions, i.e., the NonTR models, regardless of 

hether the model is based on deep learning or machine learn- 

ng, a large number of data sets (in this study > 148 datasets) is 

eeded. In case of high costs per dataset such a large number of 

atasets may not be available. From this we may conclude that an 

nsufficient number of fatigue up to now formed the critical issue 

or fatigue strength-oriented alloy design based on traditional AI 

ethods. 

The situation is rather different in case of the TR models for 

hich, R 

2 and MAE remain almost constant with relatively small 

rror bars over the entire range of 32 ∼328 fatigue data sets. It 

hould be noted that there is a significant difference between the 

ML and CNN TR models due to different transf er mechanisms. 

irst, the CNN framework has slightly lower stability in the range 

f 32 ∼66 data points. This means that although the CNN TR model 

as higher tolerance for extremely small sample databases com- 

ared to traditional AI models, 50 sample or less are still insuf- 

cient for training a highly stable CNN TR model built on ran- 

om partitioning of training and testing sets. Even so, the opti- 

al CNN TR model can still adapt to extremely small datasets 

ith 32 fatigue data points, as shown in Fig. 7 (c). However, the 

nalysis shows that the TR network is always better than that 

f the CNN NonTR model for all numbers of training sets used, 

ut in particular for smaller training data sets, which is consis- 

ent with a previous study [51] . Clearly the presence of an in- 

ermediate model fed by a larger number of (cheaply to acquire) 

uasi-static mechanical data (i.e., YS, UTS and EL) can make a 

arge and positive contribution to linking the chemical composi- 

ion and processing conditions to the target rotating bending fa- 

igue strength even trained on a small number of validation data 

ets. 
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Fig. 6. Mean R 2 and MAE results for (a, b) TR and (c, d) NonTR models using different algorithms. 

Fig. 7. Comparisons between the TR and NonTR models given different amounts of fatigue data. (a) Mean R 2 . (b) Mean MAE. (c) Optimal R 2 and MAE. 
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.3. Different loss functions for NonTR models 

Changing the loss function may benefit model training and ob- 

ain better predictive ability, which approach has been attempted 

n several studies, such as the work about physics-informed neural 

etworks (PINN) by Zhang et al. [52] . In this section, the perfor- 

ance of NonTR models using different loss functions in SML and 

NN framework was investigated. The max-error of 4 output val- 

es (YS, UTS, EL and Fatigue strength) was set as the loss, named 

ensile + FS. In the SML framework, the NonTR models with differ- 

nt data amount were constructed using the random forest (RF) al- 
8 
orithm. Their performance in the validation set were further com- 

ared with the models only using the fatigue strength error (FS) 

s the loss. Very close performance was found in two cases, as 

hown in Fig. 8 (a) and (b). Besides, the corresponding NonTR mod- 

ls were also constructed using CNN, and the results are shown 

n Fig. 8 (c) and (d). The model parameters and training details of 

onTR models using 4 output values error are the same with that 

f using the fatigue strength error as the loss. Similar with the re- 

ults of NonTR models using RF, the accuracy of both two types of 

odels is also basically the same when using different loss func- 

ions. Meanwhile, a strong dependence of model performance on 
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Fig. 8. Comparisons between NonTR models in SML and CNN framework given different amounts of fatigue data using FS and Tensile + FS errors as the loss. (a, b) R 2 and 

MAE results in SML. (c, d) R 2 and MAE results in CNN. 
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he amount of data is found for SML and CNN NonTR. NonTR mod- 

ls using modified loss functions are also greatly sensitive to the 

ata amount. Although changing the loss function is a promising 

pproach, the NonTR models performed unsatisfactory as a result 

f an insufficient amount of data. 

.4. The function of TR on fatigue strength prediction 

It should be noted that the architecture of the TR model plays 

n important but not easily discernable role in establishing a re- 

iable and robust TR model. Therefore, the performance of the TR 

ayer is analyzed in more detail. Fig. 9 (a) shows the pair plot cor-

esponding to YS, UTS, EL and fatigue strength for the dataset. For 

his high quality of the input data, a strong correlation between 

hree quasi-static tensile properties and bending fatigue strength 

xists. This correlation ultimately forms the basis for accurately 

redicting the fatigue strength. 

The importance of the three tensile properties was further eval- 

ated in the SML TR model by an RF algorithm, and the results are

hown in Fig. 9 (b). The YS property has the highest contribution 

o the prediction of fatigue strength in the SML TR model. This 

S contribution exceeds 50%, followed by UTS (46.6%) and is only 

arginally affected by the EL (3.1%). 

In order to further clarify the advantages of TR layer, which can 

onsider the comprehensive relationship between tensile proper- 

ies and fatigue strength, a conventional empirical equation linking 

atigue strength to UTS only was used for comparison. The tradi- 

ional empirical equation used in this research was proposed by 

ang [ 12 , 14 ] and named PM-TR in Fig. 9 (c) and is given below: 

f = ( C − P · UT S ) · UT S (4) 

here C and P are two fitting constants, σ f is fatigue strength 

nd UTS is the ultimate tensile strength. The comparison of the 
9 
redictive power of the best fitting PM-TR model linking the fa- 

igue properties and the UTS and that of the TR model is shown in 

ig. 9 (c) as a function of the number of data sets available. Clearly 

he TR model taking three quasi-static properties into account per- 

orms better than the PM-TR model, which considered only UTS 

nd had a mathematically simple expression. Also, Fig. 9 (c) shows 

n increasing gap for MAE and R 

2 between the TR and PM-TR with 

n increasing amount of data. It indicates the increasing advan- 

ages of the TR layer in proposed framework with amount of data 

ncreased. 

In addition, it should be mentioned that the TR model differs 

rom the above traditional empirical equations. It is a more com- 

lex translator from the composition and process parameters to 

he fatigue strength. The mechanical properties (YS, UTS and EL) 

re only intermediate information, which can help the models to 

nd the correct relationship from the composition and process to 

atigue properties with less data demand. Taken together, the func- 

ionality and applicable characteristics of the TR layer are clearly 

efined. The TR layer in the framework results in better flexibility 

nd robustness for data amount than traditional methods. 

.5. The function of TR on alloy design 

The importance of input features on fatigue strength predic- 

ion was further investigated by the calculation of MDA, as shown 

n Fig. 10 (a). The MDA results show that the composition/process 

arameters have similar relevance for the tensile properties and 

he fatigue strength. Tempering temperature (TT), C and Cr are the 

hree most important features. The importance of TT and C on ten- 

ile and fatigue strength was to be expected since the tempering 

emperature significantly influences both the matrix and precipi- 

ates, and C is also the most important strengthening element. The 
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Fig. 9. (a) Distribution of UTS, EL and fatigue strength of the dataset. (b) Importance of three tensile properties to fatigue strength prediction. (c) R 2 and MAE comparisons 

between the TR and PM-TR models given different amounts of fatigue data. 
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mportance of Cr may have been a little magnified in this analy- 

is because of the inclusion of high-Cr stainless steel data sets in 

his dataset. The observation confirms the earlier and statistically 

ogical conclusion that dataset should not be used for designing 

lloys that are extremely different from the composition range of 

he training dataset. 

To further clarify the efficiency of TR models for the alloy 

esign, alloy design was also conducted using NonTR models, 

hich were also trained based on the same small data set with 

he TR models. In addition, alloys were also designed using ML 

odels trained with the whole original dataset. Based on the 

elevance analysis results presented in Fig. 10 (a), the tempering 

emperature and C content for the alloys designed by both the 
10 
onTR and the TR models are compared in Fig. 10 (b) and 10 (c),

espectively. 

As shown in Fig. 10 (b), the TT of alloys designed on TR mod- 

ls with extremely small datasets are concentrated in the range 

f 550 ∼560 MPa, which is basically consistent with the design 

esults of NonTR models with whole data. Additionally, similar C 

ontent results are shown for the comparison between the alloys 

esigned via NonTR models with all data and TR models with ex- 

remely small datasets, as shown in Fig. 10 (c). The results indi- 

ate that with the help of TR layer, an effective alloy could be de- 

igned based on only tens of fatigue data, and the design results 

re basically equivalent to the results of traditional AI models with 

undreds of fatigue data for training. However, for NonTR models 
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Fig. 10. (a) Effects of input features on fatigue strength and tensile properties prediction. (b-d) Comparisons of the distributions of alloys designed based on NonTR, TR 

models and models using the whole dataset: (b) tempering temperature. (c) carbon content. (d) Predicted tensile properties. 
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ased on extremely small datasets, the design results show a dif- 

erent distribution of both C content and TT compared to TR mod- 

ls. A much wider variation in C content (0.34 ∼0.49 wt.%) was ob- 

ained in the design results from NonTR models, indicating that a 

imited amount of data could significantly decrease the reliability 

nd efficiency of the designs generated by traditional AI models 

 Fig. 10 (c)). In summary, this comparison fully proved that the TR 

odel used in this research is a more effective method for alloy 

esign with much less data amount requirement than traditional 

I methods. 

To further analyze the mechanism of TR layer leading to more 

ffective design, distributions of designed alloys by TR/NonTR mod- 

ls are plotted in YS-UTS space in Fig. 10 (d). It can be observed

hat the predicted YS and UTS of alloys designed by TR models 

re concentrated in the region of high levels, which are similar 

ith that designed by models trained using the whole dataset. Ac- 

ording to the general relationship between tensile strength and 

atigue strength summarized by previous studies [12] , high level of 

S and UTS could lead to high fatigue strength. However, the de- 

igned results by NonTR models exhibit relatively low predicted YS 

nd UTS. They may not be valuable and reliable for optimal fatigue 

trength. Additionally, Alloy D1, Alloy R and existing alloys (Alloys 

1 to E6) are also plotted in Fig. 10 (d). Most of alloys designed

y TR models are superior to existing alloys, while the results by 

onTR models are generally inferior. Alloy D1 exhibits high predic- 

ions for YS (1149 MPa) and UTS (1253 MPa), being confirmed by 

he experimental validation results of Alloy R (YS: 1155 MPa; UTS: 

289 MPa). 

In a word, the discussion above indicates that the TR layer do 

lay an important role in alloy design and lead to more effective 

lloy design based on only tens of samples. 
11 
.6. The portability analysis for the two transfer learning framework 

In fact, lack of data is not a special example only for fatigue. It 

s a generic problem for various cases, which greatly limited the 

evelopment of AI strategies in the field of materials science. Al- 

hough this research only focused on the fatigue strength predic- 

ion and related alloy design, the TR framework proposed in this 

esearch is expected to be used for other properties with long test- 

ng time or high cost, such as creeping, hydrogen embrittlement, 

tc. For fatigue, the traditional theory provided a clear guidance 

hat fatigue strength has strong relation with tensile properties. So, 

he TR layers could be directly established between tensile prop- 

rties and fatigue strength. However, when the TR framework is 

ransfer to other cases with unclear mechanism, it would be hard 

o find the appropriate traditional properties to transfer from. E.g., 

t is difficult to decide using YS, fracture toughness or both of them 

s the transfer source of hydrogen embrittlement. So, in order to 

larify the portability of the two TR framework proposed in this 

esearch, more analysis was made in this section to evaluate the 

obustness of the TR models on wrong transfer sources. 

Firstly, in addition to YS, UTS and EL, two more mechanical 

roperties, i.e., the hardness and the impact toughness, were fur- 

her added as the optional transfer source. Compared to the basic 

odel with only YS, UTS and EL as transfer source, Fig. 11 shows 

he R 

2 and MAE changes in the validation set for the TR models 

sing different transfer sources. 

It is generally believed that impact toughness (IT) exhibits a rel- 

tively lower correlation with fatigue strength compared to other 

uasi-static mechanical properties used in present work. Mean- 

hile, the EL contributes the least to the prediction in the basic 

odel. Hence, when the EL and IT were used as the intermedi- 
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Fig. 11. Comparisons of the changes in (a) R 2 and (b) MAE using different source properties compared to the basic model. 
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te properties for the TR models, the accuracy of the TR models 

arkedly decreased, as shown in Fig. 11 . Interestingly, there are 

ignificant differences between the two TR frameworks. The CNN 

R model shows a lower degree of accuracy decline compared to 

he SML TR, which indicates it is more robust and has a greater 

elative tolerance when faced to an ambiguous mechanism such as 

sing less relevant intermediate properties. 

Based on the basic model, when adding the hardness param- 

ter (intermediate property highly related to fatigue strength) to 

he transfer layer, the accuracy of two TR frameworks slightly im- 

roved. And when IT was further added into the transfer layer, the 

erformance of CNN TR model was further improved significantly, 

hile the SML TR model basically maintained the same perfor- 

ance level as the basic model (or the TR model adding the hard- 

ess). The result further demonstrates the robustness of CNN TR. 

Summarizing when transferring the TR model for other prop- 

rty predictions or steel designs, the SML TR framework is ex- 

ected to be more suitable for applications with a relatively clear 

hysical connection between the target and source properties, as it 

hen has a superb strong robustness for the number of datasets 

vailable for the model training and validation. In contrast, the 

NN TR framework has a stronger tolerance for the unclear con- 

ection with the source properties, but it needs relatively more 

ata than SML TR framework to come to accurate predictions. 

onclusion 

To provide an efficient and portable method for fatigue strength 

rediction and fatigue strength oriented alloy design of metal ma- 

erials, in the present work, a transfer (TR) framework including 

onventional Neural Network (CNN) TRs and Simplified Machine 

earning (SML) TRs has been proposed which utilizes the correla- 

ions between quasi-static tensile properties and fatigue strength. 

1) A comparative study of the TR framework and NonTR models 

shows that given the high-dimensional features of the com- 

positions and processing parameters of steels, transfer learn- 

ing requires fewer (expensive) data points than traditional AI 

strategies for training a reliable model to predicted the fa- 

tigue strength, provided that a large yet cheap data base linking 

the quasi-static mechanical properties to steel composition and 

processing parameters is available. Guided by the strong corre- 

lations between tensile properties and fatigue strength, the TR 

framework accurately predicted fatigue strength upon training 

with only tens of fatigue data points. Using easily and cheaply 

to acquire tensile property data to greatly decrease the demand 

for expensive fatigue data, the TR framework can greatly reduce 

both the time and monetary costs of data accumulation that 
12 
are required for building an accurate fatigue property predic- 

tion model. 

2) Combined with the evolutionary algorithm, the SML TR frame- 

work was further used for fatigue strength oriented alloy de- 

sign. Experimental validation shows the high reliability of this 

TR framework for alloy design, especially for the carbon content 

and tempering temperature, which is proved to have strength 

relation with fatigue strength. The designed alloy by TR models 

was validated for improved fatigue strength. 

3) Although this research only focused on the fatigue strength pre- 

diction and related alloy design, the TR framework proposed in 

this research is expected to be used for other properties with 

long testing time or high cost. The SML TR framework is more 

suitable for the application with a relatively clear mechanism 

between the target and source properties, but it has extremely 

strong robustness for extremely small data amount. In contrary, 

the CNN-TR framework has stronger tolerance for the unclear 

mechanism or source properties, but it needs relatively more 

data than the SML TR framework. 
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