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Probabilistic Recursive Reasoning for Multi-agent Reinforcement Learning

Ying Wen*, Yaodong Yang®, Rui Luo, Jun Wang and Wel Pan

University College London, TU Delft

Motivations

Similar to the way of thinking adopted by humans, Recursive Reasoning represents the
belief reasoning process where each agent considers the reasoning process of other agents,
based on which it expects to make better decisions. Importantly, it allows an opponent to
reason about the modeling agent rather than being a fixed type; the process can therefore be
nested in a form as:
"l believe that you believe that | believe ...".

there has been little work that tries to adopt this idea into the multi-agent deep reinforcement
learning (DRL) setting.

Multi-agent Learning Objective
Each agent is presumed to pursue the maximal cumulative reward expressed as:
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Non-correlated Joint Policy Factorization

One common approach is to decouple the joint policy assuming conditional independence of
actions from different agents: - S

mg(a',a”"|s) = my:(a'|s)m L (a"]s). (2)
But impacts of one agent's action on other agents, and the subsequent reactions from other
agents are not molded. It gives non-correlated multi-agent learning objective:
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Probabilistic Recursive Reasoning Framework

PR2 decouples the connections between agents. Step 1: agent i takes the best response
after considering all the potential consequences of opponents’ actions given its own action
a'. Step 2: how agent i behaves in the environment serves as the prior for the opponents to

learn how their actions would affect a'. Step 3: similar to Step 1, opponents take the best
response to agent i. Step 4: similar to Step 2, opponents’ actions are the prior knowledge to
agent i on estimating how a' will affect the opponents. Looping from Step 1 to 4 forms
recursive reasoning.
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Diagram of multi-agent PR2 learning algorithms. 1t conducts decentralized training with decentralized execution. The light grey panels
on two sides indicate decentralized execution for each agent whereas the white counterpart shows the decentralized learning procedure. All
agents share the interaction experiences in the environment inside the dark rectangle in the middle.

Probabilistic Recursive Reasoning Policy
Gradient

By considering the level-1 recursion, we re-formulate the joint
policy:

no(a',a”'ls) = my(a'|s)m, i (a”"|s,a') = m, " (a” | s)myi (a|s,a™") . (3)

Agent i’s perspective The opponents’ perspective
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Given the opponent policy m,-;, and that each agent tries to

maximize its objective defined in Eq. 1, we establish the policy
gradient theorem by accounting for the PR2 joint policy
decomposition in Eq. 3:

Proposition 1. In a stochastic game, under the recursive reasoning framework defined by Eq. 3, the
update for the multi-agent recursive reasoning policy gradient method can be derived as follows:

Voill' = Egpaimni [Vgi log 7}, (ails)/ .ﬂ;_ii(a_i\s, a')Q'(s,a',a ") da™"| .
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Variational Inference on Opponent

Conditional Policy
Op_timization-based approximation to infer the unobservable
p;_i(a“'| s, a") via variational inference with soft RL formulation:

Theorem 1. The optimal Q-function for agent i that satisfies minimizing K L-divergence in soft RL is
formulated as:
exp(Qy, (s,a',a™"))da™".

0%, (s,a') = log /

a

And the corresponding optimal opponent conditional policy reads:
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Experiments

 |terated Matrix Game

|GA fails to converge to the equilibrium but rotate
around the equilibrium point. On the contrary, PR2-
Q can find precisely the central equilibrium with a
fully distributed fashion.
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PR2-Q) learning dynamics on matrix game IGA learning dynamics on matrix game

* Differential Game

PR2-AC model finds the peak point in joint action
space, the agents can quickly go through the
shortcut out of the local basin in a clever way, while
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other algorithms just converge to the local
equilibrium.
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Learning Curve on Quadratic Game
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Learning Dynamics on Qnadratic Game, Left: PR2-AC, Right: MADDPG.




