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Summary

Agricultural businesses in Ghana heavily depend on rain-fed farming, but they are facing increasing
challenges due to climate change and population growth. Accurate weather forecasts providing useful
information on the onset of the rainy season are therefore of utmost importance. Unfortunately, the
country still lacks reliable weather information and precise forecasts.

This study aims to enhance and expand weather forecasting research in Ghana by running the re-
gional Weather Research and Forecasting (WRF) model over Ghana and verifying its performance
in forecasting the local onset of West Africa’s annual rainy season. Three experimental setups were
conducted. The first experimental setup tested four different planetary boundary layer (PBL) schemes.
Results showed that the schemes performed differently across the various agro-ecological zones of
Ghana, highlighting the influence of spatial context on the model’s performance and the choice of PBL
scheme.

Further analysis within a smaller domain in the Forest zone revealed promising insights into accurately
capturing categorized precipitation. In the third and final experiment, the WRF model was compared
to the ECMWF’s operational forecast, demonstrating WRF’s capability of detecting local variations in
rainfall, including heavier precipitation amounts, which the ECMWFmodel was not capable of detecting.
This comparison underscored the added value of the WRF model over global models.

Whether the WRF model can serve as an accurate weather prediction model to forecast the local onset
of the rainy season in Ghana depends not only on its performance but also on the chosen definition of
the onset. However, the results highlighted its qualities and robustness for multiple definitions, indicat-
ing a high potential for this purpose.
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1
Introduction

1.1. Problem Description
Economic growth in West African countries relies heavily on agriculture. According to a study by the
Organization for Economic Co-operation and Development (OECD), the food economy accounts for
66% of total employment, with 78% of this economy rooted in agriculture [1]. Despite its critical role,
agriculture in these countries faces increasing challenges. Population growth demands higher produc-
tion rates, which businesses struggle to meet. Additionally, heavier droughts due to climate change,
declining soil fertility, and over dependence on rain-fed farming—combined with a lack of technology
and weather forecasting information—add significant uncertainty to the sector.

Ghana, one of the countries in West Africa, is facing these same challenges. While its agricultural
employment may be lower than that of neighboring countries like Burkina Faso or Togo, agriculture
remains the largest industry in Ghana. The 2017/18 Ghana Census of Agriculture (National Report)
showed that agriculture contributed more than one-fifth (21.2%) of the GDP in 2017 [2]. Recognizing
agriculture’s importance to national growth, Ghana has included it in its development agenda, aiming
to improve food and nutrition security, drive economic growth, and reduce poverty.

However, many challenges must be addressed to achieve these goals. As previously mentioned, agri-
cultural businesses in West Africa rely heavily on rain-fed farming. In Ghana, only 0.3% of farmland is
irrigated [3], making rainfall a crucial factor. The rainy season, known as the West African Monsoon
(WAM), provides the majority of the region’s total rainfall, typically occurring between late February and
September. The timing of planting must align with this onset to optimize yield. Therefore, information
on the onset of the rainy season (ORS) and weather forecasts is critical.

Unfortunately, African countries still suffer from a lack of reliable weather information, largely due
to the extremely low number of weather stations across the continent. The Trans-African Hydro-
Meteorological Observatory (TAHMO) project [4] aims to address this gap by developing a network
of 20,000 weather stations across Sub-Saharan Africa. Since the project’s inception, over 500 stations
have been installed, including in Ghana. This development opens new opportunities for climate re-
search and numerical weather prediction modeling. The newly available data provide higher-resolution
ground-based measurements, which can be used to train and validate weather models, improving fore-
casting accuracy. These advancements in weather forecasting have the potential to mitigate future
agricultural challenges and enhance businesses in West Africa. This study aims to enhance and ex-
pand weather forecasting research in Ghana, with the goal of providing more accurate predictions for
the rainy season onset.

1
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1.2. Weather Prediction
1.2.1. Numerical Weather Prediction Models
Numerical weather prediction (NWP) models are crucial tools to obtain future atmospheric conditions
and are globally used in operational forecasting [5]. With physical equations, they can predict the
weather based on current weather conditions. Global models like the European Centre for Medium-
Range Weather Forecasts (ECMWF) and the The Global Forecast System of the National Centers for
Environmental Prediction (NCEP-GFS), which are some of the most used resources in weather and
climate forecasting and provide increasingly available data around the world, are also used in West
African countries. Performance assessment on these models has already been done in some previous
research [6, 7, 8], although validation of these regions is still relatively rare compared to other parts of
the world. This is because ground validation sites and access to the data are limited in Africa, which
is needed to make accurate comparisons. The studies showed biases and spatial variability between
the models, but overall good performances on larger timescales. However, on shorter timescales,
the models perform quite poorly in predicting precipitation. This indicates room for improvement or
implementation of more detailed, high-resolution, regional models.

1.2.2. Regional NWP Models in Africa
In contrast to global models that provide forecasts for the entire earth, regional NWP models focus on
a specific region or domain. With their higher resolution grid-spacing they simulate atmospheric condi-
tions on a more local scale and in this way can provide more fine-scale details. Short to medium-range
forecasts for localized weather events can best be executed with them. Unfortunately, the current situ-
ation in West-African countries shows very limited availability in regional numerical weather prediction
models [5, 6, 7] which is a problem that spreads out over the whole continent. A previous study [5]
surveyed 15 Southern African Development Community (SADC) countries to assess their capability
in performing NWP and climate modeling activities. The results showed a great disparity in terms
of numerical weather predictions, with only 60% either testing or operationally running a numerical
weather prediction model. The lack of NWP availability is mostly due to some challenges associated
with good model performance: to obtain accurate results, the models require high-resolution observa-
tional weather data and a lot of computational power for performing the numerical calculations, which
most of the (West)-African countries do not have [4, 5, 6, 7]. Of this deficient quantity of models, the
Weather Research and Forecasting (WRF) model is mostly used throughout Africa and its performance
is already assessed before [9, 10, 11].

1.2.3. Regional NWP Models and the West African Monsoon
Several researchers, by testing various parametrization schemes in WRF, have tried to improve the
performance of simulating the West African Monsoon (WAM) and thus the rainy season [9, 10, 11].
The growing number of scientific and modeling communities that have been trying to adequately un-
derstand the WAM have provided some important new insights and advancements in the optimization
of the regional climate model. However, with the WAM being a complex large-scale system that is
influenced by many multi-scale atmospheric components [9], it makes it very challenging to accurately
simulate its variable spatial and temporal extent. This leaves room for more optimization research in
the WRF model, building on already existing findings on the sensitivity and performance of different
parametrization schemes. In this way, our knowledge of WAM and its underlying processes will be
expanded which in turn gives new insights on the onset of the rainy season; the specific focus of this
study.

1.3. Climatology of Ghana
1.3.1. The West African Monsoon (WAM)
Ghana has a tropical monsoonal climate, characterized by distinct dry and wet seasons associated with
the large-scale system known as theWest African Monsoon (WAM). TheWAM involves the migration of
a zonal rainfall band from the Guinea Coast to the dry northern Sahel region and back [12]. This tropical
rain belt, also known as the Intertropical Convergence Zone (ITCZ), is marked by intense convection
and heavy precipitation.
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The migration of the ITCZ results from the rapid heating of the land surface compared to the adjacent
ocean in early summer. This creates a north-south pressure gradient at low levels, with high pressure
near the coast and low pressure toward the northern Sahara, causing winds to transmit from south to
north (Figure 1.1). At higher levels, the situation is reversed: warm air rises into the atmosphere in the
northern part, creating high pressure there and low pressure near the coast, causing winds to move
away from the land. This results in a circulation cell that brings moist winds from the coast towards the
continent at lower levels and away from the continent at higher levels [12].

At the front where these moisture-laden winds meet the dry ’Harmattan’ winds from the north, an inter-
tropical front (ITF) forms. As the heat low deepens, this front penetrates even further north, and the
ITCZ, located about 400 km south of the ITF, follows its migration [13]. Due to the up and downward
movement of this rain belt, Ghana experiences two distinct rainfall regimes: a bi-modal pattern in the
south (coastal and forest zones), experiencing two distinct rainy seasons within a year, and a uni-modal
pattern in the transition and Savannah zones [14].

Figure 1.1: Visualization of the WAM: average daily precipitation and wind data ERA5 from the years 2000 to 2023.

1.3.2. Onset of the Rainy Season: Definitions
While the driving factors of the WAM and its progression over West Africa are generally understood, 
the factors defining the onset of the monsoon are more complex and open to interpretation. A study 
by Fitzpatrick et al. [13] defined 20 WAM onset definitions. The onset is classified by local or regional 
definitions, depending on different parameters across various spatial and temporal scales. These defi-
nitions are relevant for different types of end users and serve various purposes. The regional onset of 
the rainy season is often marked by a sudden northward shift or jump of the ITCZ from the coastal re-
gion to the Sahel. This definition predominantly focuses on large-scale dynamics over the West African 
region, which is beyond the scope of a single nation. In contrast, local onset definitions are constrained 
to single grid cells or ground-based measurements, making them more usable for local stakeholders, 
such as farmers. Notably, the research showed that the timing of the local rainy season onset and the 
ITCZ shift, or regional onset, are weakly correlated. This underscores the importance of distinguishing 
between the two phenomena and focusing on the appropriate one based on your specific objectives.

The data used to indicate the regional onset varies from precipitation to outgoing longwave radiation, 
zonal winds, and mean sea level pressure, mostly derived from satellite data and weather models. For 
local onset definitions, only local precipitation amounts meeting a specific threshold are used, which 
can be modified depending on the stakeholder’s needs (e.g., different crops). The reliance on rainfall
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at individual locations results in low spatial and temporal consistency of the onset, as convective pre-
cipitation is characterized by localized intense rainfall. Given the agronomic focus of this research, the
localized onset definitions are preferred and most suitable for the associated stakeholders. Therefore,
considering the various local onset definitions proposed by Fitzpatrick et al., which all use thresholds of
precipitation within a certain number of days, accurate prediction of rainfall becomes critically important.

1.4. Research Objective
This research will extend the analyses on the performance of the Weather Research and Forecasting
(WRF) model in Ghana, by assessing the outputs of different parametrization schemes. It aims to
accurately predict the precipitation in Ghana on relatively short timescales, from which the output can
be used to indicate the onset of the rainy season and in this way help agricultural businesses in their
decision-making processes. The following research question is defined:

“What is the performance of the Weather Research and Forecasting (WRF) model in forecasting the
local onset of West Africa’s annual rainy season in Ghana?”

To address this question, a variety of model experiments will be conducted. Initially, design decisions
and filtering will be applied to the model to gain an overall understanding of its performance and de-
termine the appropriate calibration. Ultimately, a comparison with ECMWF IFS data will be made to
demonstrate the potential added value of WRF. The following sub-questions are formulated to guide
the research:

1. How do the selected combinations of physics schemes of the WRF model perform in forecasting
precipitation around the onset of the rainy season in: a. the whole country of Ghana b. the
different agro-ecological zones?

2. Which model configuration is the optimal choice considering the context of this study?
3. How does the selected model configuration perform compared to the precipitation forecasts of

ECMWF IFS?

1.5. Structure of the Study
This study involves three experimental setups designed to test the performance of the WRF model.
Each setup corresponds to a specific research sub-question, with Experimental Setup 1 addressing
Sub-question 1 (SQ1), Experimental Setup 2 addressing Sub-question 2 (SQ2), and Experimental
Setup 3 addressing Sub-question 3 (SQ3). The methodology flowchart, depicted in Figure 1.2a, illus-
trates the overall research process and how each setup contributes to answering the main research
question. As input for the model components, a literature review on WRF will be conducted first. After
that, each experimental setup is detailed in its own chapter, which includes:

• Description of the model configuration, including temporal and spatial domains
• Validation metrics used
• Results obtained
• A summary and conclusion that link the findings to the respective sub-question

General doubts and uncertainties encountered during the research will be highlighted in the ”Discus-
sion” section. Finally, the research will be summarized in the ”Conclusion and Recommendations”
chapter, including an answer to the main research question. It will also provide general suggestions
and ideas for further research, and highlight potential operational applications of the model.
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(a) Flowchart Methodology

(b) Sketches of the Experimental Setups

Figure 1.2: Methodology



2
Parametrization Schemes in WRF

2.1. Overview of WRF Parametrization Schemes
WRF-ARW is built out of multiple physics schemes responsible for different components of the phys-
ical processes in the Earth’s atmosphere, interacting with each other during simulation [15]. These
parametrization schemes are methods used to represent processes that occur on smaller scales than
the model’s grid resolution and therefore cannot be directly resolved. These so-called sub-grid pro-
cesses, including cumulus convection, boundary layer turbulence, land surface interaction, and cloud
microphysics, are represented in the model by empirical or theoretical relationships involving variables
that the model can resolve. In this way, the smaller processes are estimated and provide additional
tendencies for the resolved variables (which are at the grid scale or larger). The interactions between
the schemes are visualized in the figure below, coming from the WRF user guide.

Figure 2.1: Interactions between the different WRF physics schemes, copied from the WRF users guide [15].

Various parametrization techniques have been developed and applied in atmospheric and climate 
modeling, each with its strengths and weaknesses. Sensitivity and performance analyses on these 
parametrization schemes in the WRF model in West or other parts of Africa, have been increasingly 
studied throughout the last couple of years [6, 7, 9, 16, 17, 18, 19] showing high dependency on the 
choice of implemented physics scheme. These studies form the literary basis for this particular study 
which is focused on Ghana only. A brief summary of three of these studies is provided below.

6
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2.2. Previous Studies
Gbode et al. [9] investigated the sensitivity of the WRF model to numerous physical schemes, focusing
on the large-scale simulation of the WAM. The aim was to identify optimal combinations for long-term
regional climate simulation over the monsoon region. The applied domain covered the entire West
African region with a grid resolution of 20 km, and the initial and lateral boundary conditions were taken
from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-
Interim). For the time simulation, a 2-month regime of the WAM from August to September 2007 (a
‘normal’ monsoon year) was used, during which the WAM was fully developed in August. A total of 27
runs were produced, testing 2 Microphysic schemes (MP), 6 Cumulus (CU) Convection schemes, and
3 Planetary Boundary Layer (PBL) schemes (Figure 2.1). These three parametrization schemes play
an important role in atmospheric moisture and heat distribution and thus are critical factors in simulating
and predicting the WAM dynamical system. The results showed noticeable spatial systematic errors in
all simulations. However, combinations with nTDK, BMJ, and nSAS (CU) showed low absolute errors,
and high correlation statistics. Simulations with KF and the old GF (CU) performed rather poorly. This
contradicts the research of Flaounas et al. [17], who concluded that combinations with KF, notably
combined with the PBL scheme MYJ, seemed best to represent the WAM. The results also showed
that, in general, the model simulated the diurnal cycles of surface temperature more adequately than
those of precipitation, suggesting that any form of evaluation is subjective to the variable of interest.

The study of Agyeman et al. [16] also focused on long-term seasonal precipitation simulation by WRF,
but on Ghana specifically. The goal was to determine a suitable combination of physics schemes for
simulating seasonal precipitation over Ghana, taking into consideration timing, location, and evolution.
The study used ERA-interim as forcing data and simulated 8 months (from April to November) for one
wet year (2008) and one dry year (2001). Using double-nesting, the outer domain covered the whole
of West Africa with a resolution of 50km, while the inner domain covered Ghana with a resolution of
10km. Again the Microphysics, Cumulus and Planetary Boundary Layer schemes were tested, contain-
ing: WSM6 & WSM5 (MP), BMJ & GD (CU), YSU & ACM2 (PBL) . The performance was evaluated
looking at spatial and temporal evaluation statistics over Ghana and its four agro-ecological zones. The
study showed clear differences in the performance of the parametrization combinations between the
different zones (some for instance performing very well in the north, but bad in the south), highlighting
their sensitivity for different geographical and atmospheric settings. As an example, combinations with
ACM2 provided good estimates for the western part of the transitional zone and parts of the forest zone
(unlike YSU), while some of these same configurations underestimated rain for the northern zone. As
a whole, the schemes overestimated precipitation for the coastal zone and underestimated in the north-
ern zones. The combination of WSM6 (MP), GD (CU) and ACM2 (PBL) simulated the best temporal
and spatial patterns with the least bias for both years and thus was recommended for Ghana.

Meroni et al. [19] studied the sensitivity of the Weather Research and Forecasting (WRF) model on
a more localized scale by simulating three heavy rainfall events in Sub-Saharan Africa. The research
focused on the influence of the Microphysical (MP) and Planetary Boundary Layer (PBL) schemes. It
was found that in terms of forecasting heavy rainfall location and rainfall structure, the PBL scheme has
a greater impact than the MP scheme, which is in line with earlier findings by Flaounas et al. (2011).
For the initial conditions and 3-hourly boundary conditions, the Integrated Forecast System (IFS) of
ECMWF at a 0.125° grid spacing was used. Three two-way nested domains were established for
each case study, with grid spacings of 13.5, 4.5, and 1.5 km. These case studies were conducted in
Kenya, Uganda, and South Africa. Validation was performed using ground-based sensors and satellite
estimates, specifically IMERG and CMORPH, which are considered reliable satellite products for Sub-
Saharan Africa [20]. The PBL schemes tested were YSU, MYJ, and ACM2, while the MP schemes
tested were WSM6 and THOM. The choices were based on the results of previous studies, as well as
theWRF tropical suite, which is a combination of schemes recommended in theWRFmodel community
to use properly in tropical environments. The WRF tropical suite includes the WSM6 for the MP, NTD
for CU, RRTMG for longwave and shortwave radiation (RAD), YSU for PBL, RMM5 for the Surface
Layer (SL), and Unified-NOAH as the Land Surface Model (LSM).

The results showed equally well performances between the WSM6 and THOM scheme, with slightly



2.3. Parametrization Schemes in this Study 8

better results from WSM6, as THOM was found to systematically overestimate. However, there were
notable differences in the performance outcomes of the PBL schemes. The MYJ scheme showed poor
capabilities in simulating rainfall compared to YSU and ACM2. Meroni explained that MYJ is the only lo-
cal PBL scheme tested, meaning that it does not explicitly include the vertical transport by large eddies
which is an important factor in convective rainfall dynamics, thus resulted in large biases in the simu-
lations. Instead, YSU and ACM2 are non-local schemes that do implement vertical transport by large
eddies, and therefore produce more qualified simulation outcomes. The recommendation of ACM2 is
in line with the suggestion made by Agyeman et al. [16].

Most of the former research kept their radiation and surface physics correspondingly constant. Meroni
[19], Flaounas [17], and Gbode [9] et al. all kept their long wave radiation scheme on the Rapid Ra-
diative Transfer Model or newer version (RRTGM), also confirmed by Noble et al. [18]. As for the land
surface model, the unified Noah model is most commonly used [9, 16, 19, 18] in combination with the
MM5 surface physics scheme [19, 16]. Supported by previous research and because of their lower
impact, these schemes will also be held constant in this study.

2.3. Parametrization Schemes in this Study
The selection of parametrization schemes for this study is based on the literature review presented
above. It was chosen to focus only on the PBL schemes and keep the other parametrizations constant.
This decision is informed by previous studies indicating that some CU and MP schemes consistently
outperform others, while the performance of PBL schemes varies significantly, especially between dif-
ferent landscapes. The New Tiedtke (CU) and WSM6 (MP) schemes have consistently demonstrated
good performance in many reviewed studies [9, 16, 21]. Tiedtke is also used in other globally recog-
nized weather models, such as the Integrated Forecasting System (IFS), developed by ECMWF, and
the Icosahedral Nonhydrostatic (ICON) model, developed by the Max Planck Institute for Meteorology
and the German Weather Service [7].

The four PBL schemes analyzed in this study are ACM2, MYNN2, YSU and MYJ. A more detailed
description of these schemes, along with an indication of which PBL is applied in each experimental
setup, is provided in the following sections.
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Experimental Setup 1

Figure 3.1: Sketch Experimental Setup 1

This chapter addresses sub-question 1 of this research: ”How do the selected combinations of physics
schemes of the WRF model perform in forecasting precipitation around the onset of the rainy season
in: a. the whole country of Ghana b. the different agro-ecological zones?” This will be done by testing
various WRF model configurations across the entire country of Ghana. By evaluating the different
outputs using the provided validation metrics, both for the specific zones as for the country as a whole,
we can obtain an initial indication of the model’s performance.

9
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3.1. Model Configuration
3.1.1. Parametrization Schemes
As mentioned previously, this study focuses on four distinct PBL schemes: ACM2, MYNN2, YSU and
MYJ. These were selected based on a thorough analysis of literature, filtering out poorly performing
schemes and focusing on those that presented good but varying results. Table 3.1 provides an overview
of all the parametrization schemes used in this study. All PBL schemes are tested with the other
parametrization schemes held constant, except for the Surface Layer scheme in combination with MYJ
as the PBL scheme, since MYJ is not a possible combination with MM5.

Table 3.1: Model Configuration Scheme

Microphysics Cumulus Radiation Land Surface Surface Layer Planetary
(MP) Convection (CU) (RD) (LS) (SL) B.Layer (PBL)

1 WSM6 nTDK RRTMG UN old MM5 ACM2
2 WSM6 nTDK RRTMG UN old MM5 MYNN2
3 WSM6 nTDK RRTMG UN old MM5 YSU
4 WSM6 nTDK RRTMG UN ES MYJ

WSM6 = WSM6; nTDK= new Tiedtke; RRTMG = Rapid Radiative Transfer Model; UN = Unified Noah; old MM5 = old MM5
Monin-Obukhov; ES = Eta Similarity; ACM2 = ACM2; MYNN2 = Mellor-Yamada-Nakanishi and Niino Level 2.5; YSU = YSU;

MYJ = Mellor-Yamada-Janjic

All PBL schemes are briefly described below. A more advanced description of the schemes and its
interaction with the WRF model can be found in the technical note of Skamarock et al. [22].

The ACM2 scheme [23] is a first-order hybrid scheme that combines non-local upward mixing with
local downward mixing, allowing it to represent both supergrid-scale and subgrid-scale components of
turbulent transport. This scheme is an enhancement of the explicit non-local ACM1 scheme. Using a
first-order eddy-diffusion component enhances its effectiveness in modeling local mixing processes.

The MYNN2 scheme [24] is an improved version of the Mellor-Yamada 1.5-order local parameterization
scheme (described below), meaning it also makes use of the turbulent kinetic energy (TKE) equation to
parameterize turbulence. It enhances numerical stability and accurately represents turbulence dynam-
ics. The scheme predicts subgrid TKE terms, which are essential for capturing the effects of unresolved
turbulence on larger-scale atmospheric processes.

The YSU scheme [25], which is one of the most widely used PBL schemes in the WRF community, is
a non-local first-order scheme. It uses a counter-gradient term in the eddy-diffusion equation, which
accounts for the transport of heat and momentum by large eddies. The top of the boundary layer is
defined using a critical bulk Richardson number.

The MYJ scheme [26] is an 1.5-order scheme with local vertical mixing and is particularly notable for
its use of turbulent kinetic energy (TKE) to represent turbulent processes. As a local scheme MYJ only
takes local gradients into account and does not account for the influence of larger eddies, making it
particularly effective in stable and weakly unstable boundary layers.

3.1.2. Time and Spatial Domain
The model domain is focused on Ghana and spans 4.21°W to 1.86°E longitude and 3.53°N to 11.87°N
latitude with a resolution of 9 x 9 km. The initial and boundary conditions are derived from ECMWF
IFS operational analysis data with a grid sizing of 0.125 degrees. The boundary conditions are applied
every 6 hours. While WRF is designed for high-resolution weather forecasting, the reduced resolution
of 9km is applied uniformly across the entire domain. To account for potential large gradients, a re-
laxation zone is utilized. By running the model for a larger domain than the validation domain, with
boundaries at 3.4°W to 1.3°E longitude and 4.5°N to 11.3°N latitude, and nudging the boundary con-
ditions gradually, the relaxation zone helps to mitigate these gradients (Figure 3.2b). This zone is on
average 10 grid cells wide. As shown in the map, the decision was made to expand the buffer zone
in the southwest. In other words, the validation domain is positioned downstream with respect to the
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(a) Ghana in the context of Africa and it’s agro-economical zones. (b) Model domain and validation domain for the first set of
experiments displayed on a Digital Elevation Model (DEM) map,

downloaded from [27].

Figure 3.2: Spatial domain Experimental Setup 1

lower-level climatological wind, originating from south-west direction during the monsoon period [17].
Since the weather systems are propagating from south-west to northeast, extending the buffer zone
upstream allows the systems to develop sufficiently before reaching the area of interest.

The validation domain focuses on Ghana as a whole and its different agro-ecological zones defined
by the Ghana Meteorological Agency (GMet) classification: the North, Transition, Forest, and Coastal
zone (Figure 3.2a) [14]. These zones are specified by their distinct meteorological factors and climatic
conditions. Their divergent characteristics can have great effect on the model’s performance, so the
decision was made to validate them separately. The model’s time domain was chosen based on the
regional onset analyses coming from L.Occelli’s study [28]. The model will be run for the onset dates
of two specific years, 2018 and 2020. One of these years, 2020, has an average onset date that aligns
with the region’s climatological onset date, while the other year, 2018, deviates from this norm. To
minimize the amount of runs, the onset date of the northern area was considered, as this ensures that
the entire country experiences rainfall. As mentioned in the introduction, local onset definitions are
primarily based on a few consecutive days of rainfall (at least 6 days). Given the objective to generate
practical tools for local onset prediction, and the need for the model to eventually run operationally, it
was decided to incorporate a 10-day forecast for this first set of experiments. This range is restricted
by the use of the ECMWF 10-day operational forecast data, which cannot be extended. Taking these
considerations into account, the model is run for the periods of April 26, 2018, to May 6, 2018, and April
11, 2020, to April 21, 2020. Throughout the rest of the report, these two simulations will be referred to
simply as Simulations 2018 and 2020.

3.2. Validation Method
3.2.1. Validation Data
Concerning the validation dataset, the ground-based Trans-African Hydro-Meteorological Observatory
[4] network is used. Figure 3.3a shows all TAHMO stations located throughout the whole country, and
their associated amount of available hourly precipitation data for the associated time domain specified
above. To ensure high-quality of validation data, a threshold of 95% of available data was chosen to
select useful stations for the verification process (Figure 3.3b). Looking at the map it becomes clear that
the northern part of Ghana has a very low density of weather stations, thus a sparse amount of validation
opportunities. This needs to be taken into account when looking at the statistical outcomes. To validate
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(a) Data amount of the TAHMO stations with a maximum possibility of 480
data counts for the time period of 2018-04-26 to 2018-05-06 and

2020-04-11 to 2020-04-21.

(b) Selected stations after using a threshold of 95% of available
data within the time domain.

Figure 3.3: Validation data Experimental Setup 1

the agro-ecological zones separately, the stations are divided into the four zones accordingly.

3.2.2. Metrics
Both the temporal and spatial performance of the WRF model are evaluated. Since most local onset
definitions rely on specific rainfall thresholds, precipitation amounts are initially assessed using contin-
uous verification indices. To evaluate the model on a small scale, each model grid cell overlapping with
the weather stations is extracted for point validation by comparing their values.

The following metrics are defined: the Mean Bias Error (MBE), the Mean Absolute Error (MAE), the
Normalized MAE, the Root Mean Squared Error (RMSE) and the Pearson Correlation coefficient (r).
The equations are shown below.

MBEs =

∑n
i=1(Mi,s −Oi,s)

n
(3.1)

MAEs =

∑n
i=1 |Mi,s −Oi,s|

n
(3.2)

MAEnorm =
MAE
Omean

(3.3)

rs =
cov(M,O)

σOσM
(3.4)

RMSEs =

√∑n
i=1(Mi,s −Oi,s)2

n
(3.5)

In the temporal domain:

• Mi,s = Model value at station s, at time step i
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• Oi,s = Observation value at station s, at time step i

• n = Number of time steps
• σO = Standard deviation of observation in the time domain
• σM = Standard deviation of model in the time domain
• cov(M,O) = Covariance of model and observations
• Statistics = Statistic at station s

In the spatial domain:

• Mi,s = Model value at station i, at time step s

• Oi,s = Observation value at station i, at time step s

• n = Number of stations
• σO = Standard deviation of observation in the space domain
• σM = Standard deviation of model in the space domain
• cov(M,O) = Covariance of model and observations
• Statistics = Statistic at time step s

At each station location, the difference between the model grid value and observation will be calculated
first. This error value is then used to calculate the statistical metrics in the spatial and temporal do-
mains. Once the temporal statistics for each station location and the spatial statistics for each day are
known, the aggregated regional values will be calculated by taking the average statistical value of all
the associated stations in that region.

The source code of these metrics can be found in Appendix A.1.
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3.3. Results
3.3.1. WRF Output
10-day Accumulated Precipitation

Figure 3.4: Accumulated precipitation at leading time D+10 for the model time period of 2018-04-26 to 2018-05-06

Figure 3.5: Accumulated precipitation at leading time D+10 for the model time period of 2020-04-11 to 2020-04-21

Figures 3.4 and 3.5 depict the accumulated precipitation up to the 10th forecast day (D+10) from the
2018 and 2020 WRF simulations. A notable observation is the significant variation in precipitation mag-
nitude among different schemes. For example, ACM2 shows maximum values of 100 mm, whereas
MYJ and MYNN2 reach a maximum of 280 mm. Another noticeable aspect is the rainfall pattern of
each scheme: ACM2 generates more widespread rainfall, while other schemes produce localized pre-
cipitation clouds with heavy rainfall peaks.

The maps also illustrate that Ghana experienced considerably more rainfall in late April and early May
2018 compared to April 2020. Additionally, rainfall is already prevalent in the north, whereas in 2020 it
remains relatively low.

A consistent finding across all eight simulations is the minimal rainfall over Lake Volta. Since Lake Volta
is a large water body, it has different thermal properties compared to the surrounding land. The lake’s
surface may remain cooler during the day, potentially inhibiting convective processes.
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Boxplot of Daily Rainfall

(a) Boxplot and mean values of daily rainfall of all 8 simulations and observations,
containing: The interquartile range (the box itself); The lower quartile (low edge) and
upper quartile (upper edge); The median (line splitting the box); The whiskers (1.5*

IQR); The mean (diamonds) and the outliers (black dots).
(b) Percentage of zero values in the total

datasets of daily precipitation.

Figure 3.6: General statistics of all ten datasets.

To gain a general understanding of the characteristics of all model configurations and observational
data, a boxplot of the daily precipitation aggregated over the whole country is utilized (Figure 3.6a). This
involves all grid points within the country’s borders for the model simulations and all weather stations
for the observations. The decision to include all grid points, rather than subtracting only those at the
station location, is aimed at preserving all valuable information. The boxes represent the interquartile
range (IQR), which contains the middle 50% of the data. The lower edge of the box corresponds to the
25th percentile (lower quartile), while the upper edge represents the 75th percentile (upper quartile).
The line splitting the box indicates the median. The whiskers extend to a maximum of 1.5 times the
IQR from the bottom and top of the box. The diamonds represent the mean of the complete datasets,
and the black dots indicate all outliers.

Given that the dataset contains a high concentration of low precipitation values as well as some very
high rainfall amounts, a logarithmic scale is applied to account for this log-normal distribution. Zero
values are masked from the boxplot but included in the mean calculation. Consequently, the diamonds
reflect the true mean of the entire dataset, while the boxplot represents only the active data. The
percentage of zero values is plotted separately in the graph next to it (Figure 3.6b).

The skewed nature of the datasets becomes apparent, with the mean significantly higher than the
median due to the influence of high precipitation outliers. This difference would have been even bigger
if the boxplot had included the zero values, further lowering the median. Additionally, the presence of
numerous high precipitation outliers, and no low precipitation outliers, further underscores this skewed
distribution. Moreover, the whiskers of the TAHMO datasets do not reach as low as those of the model
outputs, likely due to the limited capability of the weather stations to capture low precipitation amounts.

The boxplots of 2020 are centered around lower precipitation amounts compared to 2018, suggesting
less precipitation, which supports previous observations. ACM2 exhibits the lowest median and mean
values for both years (except for the median of TAHMO in 2018), reinforcing earlier findings and indicat-
ing a potential underestimation of rainfall. The IQR of TAHMO is much wider compared to the model
outputs, suggesting a broader distribution of the observed rainfall. Lastly, YSU, MYJ, and MYNN2
schemes exhibit more outliers compared to ACM2 and TAHMO, particularly in 2018.

Figure 3.6b shows that TAHMO has a significantly higher percentage of zero values than the model
outputs. This is partly due to the previously mentioned limited capability of TAHMO to capture low
precipitation amounts, whereas the models can easily produce small amounts (which are not zero).
The ACM2 model has the second highest number of zero values in 2020, while for 2018 the amount of
zero values are relatively similar across all models.
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Accumulated Precipitation over Time

(a) Accumulated precipitation (mm) over time, averaged over each zone for model time period of 2018-04-26 to 2018-05-06

(b) Accumulated precipitation (mm) over time, averaged over each zone for model time period of 2020-04-11 to 2020-04-21

Figure 3.7: Accumulated precipitation (mm) over time, averaged over each zone, for all 8 simulations and observations.

Figure 3.7 visualizes the accumulated precipitation (mm) over time, averaged over each zone, for all
8 simulations and observations. There are some clear agreements between model and observations,
along with some discrepancies. In 2018, all schemes show high overestimation, especially in the North
and the Transition zone. However, all schemes perform relatively well in the Forest zone. In the coastal
region, there is a minimal steady increase in rainfall, with TAHMO being the only one experiencing an
abrupt increase at the end. Interestingly, the timing of the increase in rainfall is reasonably consistent
across all datasets, all exhibiting a stepped curve. A closer examination of the datasets reveals that
rainfall typically occurs in the late afternoon or early evening, while it remains relatively dry at night and
in the morning, particularly in the Forest and Transition zones.

For 2020, TAHMO’s daily mean precipitation is the second highest among the datasets, just below MYJ
(Figure 3.6a). However, as shown in Figure 3.7b, TAHMOdoes not consistently show high accumulated
values over time. In particular, in the Forest zone, YSU, MYNN2, and MYJ report significantly higher
values than TAHMO. Additionally, in the Coastal zone, all model simulations show higher precipitation
levels than those observed (even though these values are relatively low).

This discrepancy can be attributed to the distribution patterns observed in the accumulated rainfall
maps (Figure 3.5) and the high number of outliers in the model simulations. The model simulations
produce more sporadic, very high precipitation values at specific grid cells, which skews the total ac-
cumulated precipitation upwards. In contrast, TAHMO provides more consistent and evenly distributed
precipitation events over time, leading to fewer extreme values and outliers. As a result, this consis-
tency produces higher daily means but lower accumulated precipitation levels.

3.3.2. Point Validation
Mean Absolute Error: Daily Precipitation
To better visualize the discrepancies between observations and model simulations, the normalized
Mean Absolute Error (MAE) is plotted at each station location (Figure 3.8 and Figure 3.9). The MAE
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Figure 3.8: Normalized Mean Absolute Error (MAE) of daily precipitation (mm/d) for the 2018 simulations at the selected
TAHMO locations.

represents the average of the absolute errors between observed and modeled daily precipitation and
is normalized by dividing it by the average daily precipitation value from the TAHMO data at the cor-
responding station. The stations depicted in red are stations with MAE values above 3, meaning the
model error is three times as high as the average daily precipitation value, measured over those ten
days. Stations where the observed 10-day average daily precipitation value is zero, making it not
possible to normalize the error values, are masked and not shown in the map.

The outliers (red dots) are spread out over the whole country and not specifically characteristic of one
region. The year of 2020 shows more outliers and worse results than the year 2018. Besides that,
in both years, MYNN2 and MYJ show more outliers and higher normalized MAE values than ACM2
who is performing relatively well. What is also noticeable is that all PBL schemes perform well at some
specific station locations and bad at others. For instance at stations TA00011 (lat: 6.98, lon:-2.39) WRF
is constantly performing poorly, while at station location TA00617 (lat: 6.69, lon:-1.52) it is performing
well in each run.

A closer examination of station TA00011 reveals an interesting discrepancy when compared to the
nearby station TA00012. Despite their proximity, TA00012 consistently performs well in the 2018 simu-
lations, while TA00011 performs poorly. Plotting the time series for both stations (Figure 3.10) reveals
that TA00011 does not show any precipitation peaks, whereas TA00012 records significant rainfall. This
abnormal discrepancy suggests potential measurement failures or other external factors negatively im-
pacting the data from station TA00011.
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Figure 3.9: Normalized Mean Absolute Error (MAE) of daily precipitation (mm/d) for the 2020 simulations at the selected
TAHMO locations.

Figure 3.10: TA00011 and TA00012 precipitation time series from 2018-04-27 to 2018-05-05
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Figure 3.11: Mean absolute error [mm/d] of daily rainfall against Time and Space Correlation [-] for the 2018 simulations. Blue
= YSU, Green= MYJ, Red = ACM2, Purple = MYNN2.

Figure 3.12: Mean absolute error [mm/d] of daily rainfall against Time and Space Correlation [-] for the 2020 simulations. Blue
= YSU, Green= MYJ, Red = ACM2, Purple = MYNN2.

Temporal and Spatial Correlation: Daily Precipitation
Now that the relative bias of the various simulations at each station location is indicated, the scale
can be aggregated to regional and national scale. Figures 3.11 and Figure 3.12 plot the regionalized
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mean absolute errors of daily precipitation against their corresponding temporal and spatial correlation
coefficients. These coefficients represent the linear relationship between modeled and observed daily
precipitation values in both the temporal and spatial domains. In the temporal domain, this involves
calculating the correlation of simulated daily precipitation over a 10-day period for each station location,
and then averaging these correlations across the stations within each zone to obtain a zonal time cor-
relation. In the spatial domain, the correlation of the spatial distribution of rainfall across the associated
zones is calculated for each day, and the average of these daily correlations over the 10-day period is
used to produce a single spatial correlation value for each zone.

Starting with an examination of the results from the 2018 simulations, one observation is the negative
correlations in the northern and coastal regions. The negative correlation in the Coast is likely directly
linked to the previously identified underestimation in Figure 3.7a, where TAHMO shows a sudden in-
crease in rainfall towards the end of the simulation period, which is not captured by the model outputs.
The northern zone performs very well in terms of space correlations with values between 0.6 and 0.8.

The transition zone is showing the highest MAE values compared to the other regions, ranging from
12 mm/d with MYNN2 and 8 mm/d with ACM2. ACM2 outperforms the other schemes in terms of
absolute error values and is also showing the best results in terms of time correlation. However, for
spatial correlation, the other schemes perform slightly better. Overall, ACM2 appears to be the best-
performing scheme in the 2018 simulations.

Upon reviewing the scatter plot data from 2020, the PBL schemes exhibit both similarities and differ-
ences. In terms of similarities, all PBL schemes show weak spatial correlation coefficients, mostly
positive, ranging between 0 and 0.2. However, some schemes, MYNN and MYJ, exhibit negative cor-
relations for the Northern region. This contrasts with ACM2, which shows a perfect spatial correlation
of 1 for the same region. The accuracy of these correlations is questionable due to the small amount of
stations in this region, making it statistically difficult to verify. The temporal correlation is slightly better,
varying from 0 to 0.6. However, most schemes still fall between 0.1 and 0.3.

Regarding the MAE, there seems to be a clear division between the Transition and Forest zones, with
errors between 4.5 and 7 mm/d, and the Coastal and Northern zones, with errors below 1 mm/day.
The low error values can be explained by the very low precipitation amounts in these regions, making
discrepancies less noticeable.

Examining the regions and PBL schemes individually, ACM2 again outperforms all the other PBL
schemes in terms of MAE but performs the poorest in spatial and temporal correlation in the rainy
zones (Forest and Transition). In contrast, the MYJ scheme exhibits the highest errors but shows rel-
atively good correlations compared to other schemes. MYJ performs particularly well in the Coastal
region. For the Northern zone, ACM2 performs exceptionally well, with correlation coefficients of 1
and 0.4 and low absolute errors. For the zones that are experiencing more rain, namely the Transition
and Forest zone, YSU and MYNN2 seem to be the best-performing schemes in terms of correlation
coefficients, respectively. On average, considering both correlations and error values, YSU performs
the best for Ghana as a whole.
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3.3.3. Summary
Table 3.2: 2018 Simulations, Statistical Summary

PBL Zone MBE [mm/d] RMSE [mm/d] MAE [mm/d] r_temporal [-] r_spatial [-]
YSU North 1.079 10.955 4.192 −0.06 0.64

Transition 4.030 13.924 9.505 0.20 −0.01
Forest 0.390 10.565 6.330 0.14 0.05
Coast −1.331 6.306 2.313 −0.09 0.06
Ghana 0.870 10.845 6.202 0.10 0.12

MYJ North 1.102 7.998 4.510 −0.15 0.60
Transition 4.037 14.601 9.733 0.12 0.02
Forest 0.358 10.854 6.188 0.19 0.06
Coast −1.572 6.293 2.164 −0.01 −0.04
Ghana 0.822 10.968 6.162 0.13 0.16

ACM2 North −1.429 5.825 2.124 0.09 0.76
Transition 2.003 12.064 7.686 0.23 −0.08
Forest −0.375 9.451 5.596 0.22 0.00
Coast −1.389 6.232 2.213 −0.10 0.09
Ghana −0.169 9.398 5.250 0.18 0.10

MYNN2 North 0.045 7.286 3.428 −0.04 0.61
Transition 6.928 18.030 12.048 0.09 −0.04
Forest 1.912 12.672 7.094 0.17 0.08
Coast −1.481 6.269 2.186 −0.10 −0.02
Ghana 2.213 12.863 7.044 0.11 0.11

Table 3.3: 2020 Simulations, Statistical Summary

PBL Zone MBE [mm/d] RMSE [mm/d] MAE [mm/d] r_temporal [-] r_spatial [-]
YSU North −0.213 1.927 0.522 0.11 0.09

Transition 0.253 7.262 4.023 0.26 0.13
Forest 1.746 11.522 5.856 0.15 0.08
Coast 0.312 1.832 0.756 0.19 0.12
Ghana 1.138 9.563 4.443 0.17 0.11

MYJ North −0.113 1.854 0.565 0.16 −0.06
Transition 1.576 12.253 5.151 0.28 −0.06
Forest 3.349 14.056 7.028 0.15 0.01
Coast 0.609 3.387 1.005 0.56 0.17
Ghana 2.402 12.226 5.397 0.21 0.05

ACM2 North −0.370 1.856 0.383 0.59 0.99
Transition −0.417 8.108 4.078 0.14 −0.04
Forest −0.349 9.915 4.462 0.09 0.01
Coast 0.129 1.684 0.564 0.32 0.05
Ghana −0.301 8.518 3.562 0.15 0.07

MYNN2 North −0.041 2.407 0.670 0.42 −0.18
Transition 1.354 8.947 5.323 0.19 −0.02
Forest 2.985 12.880 6.652 0.25 0.07
Coast 0.214 1.671 0.627 0.19 0.05
Ghana 2.094 10.803 5.156 0.25 0.11

From this initial set of experiments, it is immediately apparent that the parametrization schemes cannot
be evaluated through a singular, straightforward assessment. However, some general observations
can be drawn: When examining the magnitude of the different simulations, along with their correspond-
ing statistical features and accumulated rainfall maps, it is evident that the MYJ and MYNN2 schemes
produce more localized intense rainfall patterns with high maximum values. In contrast, the ACM2
scheme exhibits a more homogeneous, widespread rainfall distribution without localized extremes, and
the YSU scheme represents a combination of both characteristics. The boxplot of the observed rain-
fall data revealed a significantly broader distribution compared to all model outputs. The error and
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correlation calculations, summarized in Tables 3.2 and 3.3, reveal the following insights:

• The ACM2 scheme generally underestimates rainfall, as previously observed, resulting in nega-
tive MBE values (Tables 3.2 and 3.3). However, this also leads to the lowest error values (RMSE
and MAE), thus the best-performing scheme in terms of error metrics.

• All other schemes are generally overestimating, especially in the Transition and Forest zones.
This constant overestimation of the model corresponds with the findings of Agyeman’s study [16].

• TheMYJ scheme shows the highest errors in 2020, while the MYNN2 scheme exhibits the highest
errors in 2018.

• The YSU scheme performs moderately, with its error metrics falling between the other evaluated
schemes.

• All PBL schemes underestimate the precipitation in the North in the 2020 simulation and in the
Coast in the 2018 simulation (Tables 3.2 and 3.3).

The overall higher magnitudes and resulting higher errors of the MYJ and MYNN2 schemes, contrasted
with the lower precipitation amounts and errors of the ACM2 scheme, are further supported by the
findings of Moya-Alvarez et al. [29]. Their study, which evaluated the sensitivity of 12 PBL schemes in
precipitation forecasts in the Andes of Peru, highlighted clear differences in boundary layer stabilities
among the schemes and their impact on precipitation amounts. ACM2 was identified as one of the most
stable schemes, resulting in lower rainfall amounts, whereas MYJ, one of the most unstable schemes,
led to significantly higher precipitation. The non-local nature of ACM2, which includes large eddies
and not only local grid-point interactions, allows for efficient mixing, resulting in smoother temperature
and moisture gradients and a more stable environment. Increased stability reduces the likelihood of
convective activity, thereby decreasing precipitation. This contrasts with local schemes like MYJ and
MYNN2, where the localized nature leads to larger gradients and more unstable conditions.

Regarding spatial and temporal correlation coefficients, the following conclusions can be drawn:

• With some exceptions, most schemes perform suboptimally, fluctuating between 0 and 0.3. The
ACM2 scheme performs the worst in both time and space correlations, except for the time corre-
lation in the 2018 simulation, where it performs the best.

• No single PBL scheme consistently outperforms the others in terms of correlation. The perfor-
mance fluctuates significantly between the years and the zones.

• The northern region shows positive and negative outliers in terms of correlation, but the reliability
of these results is questionable due to the low number of stations in this region.

Taking all results and statistical findings into account, a general usage recommendation is provided for
the different zones and parametrization schemes. In this scoring matrix, the PBLs are rated relative to
each other, indicating which scheme performs better or worse in comparison to the others. However,
this rating is rather subjectively done by considering all the statistical scores provided in Tables 3.2 and
3.3 and the Figures shown in section 3.3. On average, ACM2 is demonstrating the best performance
in simulating rainfall for the whole country, followed by YSU. This is in line with with the suggestions of
Agyeman et al. and Meroni et al. [16, 19]. The lower rainfall produced by the ACM2 scheme appears
to be particularly suitable for the Northern and Coastal regions, which, during the analyzed time frame,
also experience less rainfall compared to other regions. For the Transition zone, YSU is the most
suitable PBL scheme, while for the Forest zone, it is still unclear which PBL scheme is most suitable
to use.

North Transition Forest Coast Ghana
YSU Average Best Average Average Good
MYJ Average Average Average Average Average
ACM2 Best Average Average Best Best
MYNN2 Average Worst Average Average Average

Table 3.4: Experimental Setup 1: Recommended usage of each PBL scheme per zone.
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3.4. Conclusion
This chapter aimed to address sub-question 1: ”How do the selected combinations of physics schemes
of the WRFmodel perform in forecasting precipitation around onset of the rainy season in: a. the whole
country of Ghana b. the different agro-ecological zones?”

The findings indicate that the performance of the model configurations varies across the different zones
and the validation metrics used. The model shows higher errors in the Transition and Forest zone,
compared to the Northern and Coastal zone and relatively weak correlations in general. On average,
the YSU and ACM2 schemes perform the best, while MYNN2 and MYJ show higher errors despite their
temporal and spatial correlation outperforming that of ACM2.

Some general questions arises after these first set of results. At first, the uncertainty in the applied
validationmethod. Themetrics use point data which limits our ability to capture the complete distribution
of rainfall, thereby omitting a significant portion of the WRF model output. This raises concerns about
the spatial distribution accuracy of the models, given that only a few grid points are considered. It
is possible that the rain clouds are slightly misaligned with the selected grid points, which might not
necessarily indicate poor model performance, but is shown that way with these metrics.

Besides this, the high error values warrant further investigation. Are these errors for instance due
to a consistent overestimation that could be corrected with a simple adjustment factor? Alternatively,
do the MYNN2 and MYJ schemes predominantly overestimate heavier rainfall peaks, and would their
performance improve if we only considered daily rainfall up to a certain maximum?

To address these questions and issues a new set of experiments is defined, focusing on a smaller
domain where stations are closely spaced, allowing for interpolation to theWRF grid scale. Additionally,
employing categorical evaluations can mitigate the magnitudinal errors mentioned earlier.

Reflecting on the initial results, there is still much to learn about the Forest zone. Different schemes
yield varying statistical performances, and no single simulation consistently outperforms the others.
Given that this area is densely filled with agricultural land [30] further investigation is warranted.

Furthermore, the current reliance on only two simulations per schememay not provide a comprehensive
understanding. Initial conditions could have a significant impact, or this specific time period might be
an outlier. To enhance the robustness of the findings, automating WRF to conduct more simulations
for each PBL scheme would be beneficial.
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Experimental Setup 2

Figure 4.1: Sketch Experimental Setup 2

This chapter delves into the second experimental setup of this research. The focus here is on a smaller
area within the Forest zone, selected for its denser observational data. This experimental setup aims
to address the second sub-question of this research: ”Which model configuration is the optimal choice
considering the context of this study?”

24
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4.1. Model Configuration
4.1.1. Time and Spatial Domain
In light of the findings and uncertainties from the initial experiments, the decision has been made to
concentrate the second phase of experiments on a small area within the Forest zone. Further inves-
tigation in this zone is warranted due to its high density of weather stations, offering the most reliable
observational data, and extensive coverage of agricultural grounds. The selected model domain ex-
hibited the highest density of reliable stations within the zone. In the initial experiments, all planetary
boundary layer (PBL) schemes performed similarly in this zone, with no clear standout. Therefore, a
re-evaluation of the sensitivity of all PBL schemes is planned, starting from scratch.

The time focus of this set of experiments is the period surrounding the onset date of 2018, which for
the southern and middle parts of Ghana was around February 19th.

The chosen domain takes into account the proximity of the weather stations to one another, allowing
for data interpolation to the WRF grid. Moreover, the stations have provided reliable data within the
selected timeframe.

Additionally, all simulations are conducted at a convective-resolving scale of 3km resolution, rather than
the 9km scale, allowing for the Cumulus Convection scheme (CU) to be switched off [15]. Convective
processes typically occur at scales of a few kilometers. When the resolution is smaller or compara-
ble to the convective scale, the model is able to resolve the physical processes without the need for
parametrization schemes. Switching off the CU scheme, despite controversy and uncertainty within the
climate modeling community regarding the resolution threshold at which convective processes are fully
resolved without an added-value of parametrization [15, 31], can potentially lead to improved model
performance in terms of the magnitude, spatial, and temporal distribution of the rainfall [32, 33, 34].

Running a 5-day simulation over this domain only takes a few hours, allowing for the possibility of
automating the model to perform multiple simulations in immediate succession. The automating bash
script can be found in the Appendix A.3. This change allows for the validation of a PBL scheme to
be based on multiple simulations, rather than just one. Specifically, 10 simulations of a 5-day forecast
were run for each PBL, covering the period from 12-02-2018 to 26-02-2018. The lead times from the
initial conditions (IC) are denoted as D+1 (up to 24 hours after IC) to D+5 (up to 120 hours after IC).
The individual forecast days are referred to as forecast-day (FD) 1 to 5.

4.2. Validation Method
4.2.1. SEEPS
For the validation method, both continuous and categorical verification indices are utilized. The contin-
uous indices include the Mean Bias Error (MBE) and the Mean Absolute Error (MAE), as written out
earlier in this research. In the categorical verification field, there are various statistical methods avail-
able. Commonly used metrics in weather prediction, like the false alarm ratio (FAR) or the probability
of detection (POD), are all based on contingency table practices and involve true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN) [6, 21].

Rodwell et al. (2010) introduced the Stable Equitable Error in Probability Space (SEEPS) score, which
utilizes different thresholds depending on the precipitation climatology of the region of interest [35, 36].
This refined method may be considered advantageous compared to the traditional metrics mentioned
above. It is designed to be equitable, equally rewarding all forecast improvements, and aims to be as
insensitive as possible to sampling uncertainty.

The error metric is based on three categories: dry, light, and heavy precipitation. The first threshold
(t1) is set to a value of 0.25 mm/day, as described in [36], while the second threshold, distinguishing
light from heavy rain, is based on the cumulative distribution of 24-hour precipitation at a given location.
The observed probability of dry weather (p1), associated with threshold t1, divides the distribution into
dry and wet days. The division of wet days is based on the assumption that light precipitation occurs
twice as often as heavy precipitation, resulting in a ratio of 2:1 between p2 (light) and p3 (heavy).

For this particular research, the cumulative distribution is based on 5 years of TAHMO data for station
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Figure 4.2: Model domain and validation domain for the second set of experiments displayed on a Digital Elevation Model
(DEM) map, downloaded from [27]

TA00047, located within the validation domain as shown in Figure 4.2. This station was chosen as it
appeared to have the least amount of data gaps for the longest possible time period (Figure B.2b in
Appendix B.2).

The cumulative distribution together with the associating thresholds and probabilities are shown in
Figure 4.3

The scoring matrix of SEEPS, rewritten only in terms of p1, is derived from the study by Haiden et al.
(2012) [36] and is depicted below.
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The observed precipitation categories run from left to right, while the forecast categories run from top
to bottom. For example, if light precipitation is observed but heavy rain is forecasted, the error value
will be calculated as 3/(2 + p1). Additionally, if dry weather is observed but heavy rain is forecasted,
the error will be calculated as 1/p1 + 3/(2 + p1), which is even bigger. This indicates that SEEPS is an
error-oriented score. To convert it to a skill score, the term 1 - SEEPS is used. Considering a sufficient
amount of comparative values, the values are expected to be between 0 (bad) and 1 (good).

Since this study has an agricultural purpose, the choice of the initial threshold (t1) was reconsidered.
In the agricultural sector, it is customary to use a threshold value of 1 mm instead of 0.25 mm to
differentiate between dry and rainy conditions. The CDF and associated probability and threshold
values can be found in Appendix B.2 Figure B.3.

All simulation days will be evaluated and no distinction between the different leading times (D+1 to D+5)
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Figure 4.3: Cumulative distribution for 24-h precipitation at station TA00047 for the period of 2018-2023.

will be made yet. The SEEPS score at each grid point will then be the average of all the simulation
days. The calculation of SEEPS can be found in Appendix A.4.

4.2.2. Interpolation of TAHMO Data
To ensure accurate comparison, the TAHMOdata is interpolated to theWRF grid to expand its scale and
increase the utility of the stations’ data by filling in gaps and providing a more comprehensive dataset.
The inverse distance weighting (IDW) method is used for this interpolation, which is a broadly applied
application in spatial interpolation and a recommended technique within modelling and validation of
precipitation data [37]. The basic idea behind the method is that the interpolated points are the most
affected by the nearest observational point and least by the points with the most distance. The Inverse
Distance Weighting (IDW) interpolation method is defined by the following equation:

Z(x0) =

N∑
i=1

Z(xi)
d(x0,xi)p

N∑
i=1

1
d(x0,xi)p

(4.2)

where:

• Z(x0) is the interpolated value at the location x0,
• N is the total number of known data points,
• Z(xi) is the known value at the i-th data point,
• d(x0,xi) is the distance between the interpolation point x0 and the i-th known data point xi,
• p is the power parameter that controls the influence of the distances.

The interpolation technique is applied both for observed 5-day accumulated rainfall (Figure 4.4) as
for the daily rainfall (Appendix B.1, Figure B.1). The source code with additional explanation can be
found in Appendix A.2. The code introduces an additional feature to the equation that accounts for
a potential maximum distance. However, this maximum distance is not utilized because the stations
are sufficiently close to one another. The accuracy of the results heavily depends on the selection of
the power parameter p. Since the optimal value for p can vary depending on the specific context, and
given that the four stations are situated close to each other, allowing for a lower power parameter, the
default value of 2 has been selected for this implementation.
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Figure 4.4: Interpolated TAHMO data for 5-day Accumulated Precipitation (mm), using the IDW method.
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4.3. Results
4.3.1. Accumulated Precipitation
Firstly, the 5-day accumulated rainfall is analyzed, which represents the total precipitation generated in
each 5-day simulation. The accumulated rainfall on the last forecast day (leading timeD+5) is compared
with the corresponding 5-day accumulated rainfall of the interpolated TAHMO data.

Figure 4.5: The spatial distribution of the Mean Bias Error (MBE) of the 10 simulations for each PBL scheme, along with the
accumulated precipitation timeseries averaged over the whole validation domain.

Figure 4.5 shows theMean Bias Error (MBE) of 5-day accumulated rainfall for the 10 simulations of each
PBL scheme. Additionally, it displays the 5-day accumulated precipitation time series averaged across
the entire validation domain. The time series indicate that all schemes perform rather poorly, with the
start of the increase being too early and themagnitude of the increase being too large. This corresponds
to the high MBE values displayed in the spatial maps. Notably, the YSU, MYJ, and MYNN2 schemes
tend to overestimate significantly, while the ACM2 scheme performs better, though it underestimates
around the borders of the domain.

Upon examining the locations of the four stations, all schemes appear to perform better around station
TA00312 compared to the other locations. The highest overestimations are observed between the
other three TAHMO stations. However, these overestimations are not distributed in a manner that
would clearly question the accuracy of the interpolation technique.

4.3.2. Daily Precipitation
SEEPS
To evaluate daily rainfall, the Skill score of SEEPS (Stable Equitable Error in Probability Space) is
calculated alongside its associated error counts for each rain category. Figure 4.6 illustrates this Skill
score for each PBL scheme when a t1 threshold value of 0.25 is applied. The numbers inside each grid
cell represent, roughly speaking, the rainfall amount: 0 indicates no rainfall across all simulation days,
and 100 signifies heavy rainfall on all simulation days. These numbers are the sum of the observed
categories (dry: 0, light: 1, heavy: 2) in the cell across all simulation days.
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Figure 4.6: SEEPS, with a t1 value of 0.25 mm. The numbers inside each grid cell depict the rainfall amount, ranging from 0
(no rainfall on all simulation days) to 100 (heavy rainfall on all simulation days). The spatial average is the mean SEEPS skill

score for the entire validation domain.

Several key points emerge from this analysis. Firstly, all four configurations demonstrate relatively good
Skill scores, with most grid cells showing a Skill score of 0.6 or higher, resulting in a spatial average also
above 0.6. Interestingly, all configurations perform better in the southern part of the domain compared
to the northern part. This spatial distribution correlates with the rainfall amounts: grid cells with high
SEEPS Skill scores exhibit the lowest rainfall amounts, whereas grid cells with lower SEEPS scores
experience higher rainfall amounts. This indicates that all schemes are relatively better at predicting
dry weather or small amounts of rainfall. Notably, the ACM2 scheme performs the worst in the north
among all PBL schemes. One exception is the four green grid cells around 6.5N and 1.4W, which
show consistently high scores across all PBL schemes. These grid points are in close proximity to
the TA00312 station, but do not overlap its exact location. A closer look at the land surface reveals
that these grid points are located above Lake Bosomtwe. The differing surface conditions, compared
to the surrounding area, provide a steady and consistent moisture source, which could lead to more
predictable atmospheric conditions that are easier for WRF to capture. This, in turn, results in better
SEEPS scores.

However, when observing the t1=1 result maps (Appendix B.2 Figure B.4) the green cross largely dis-
appears, suggesting that many rainfall observations at these grid points are near the threshold values.
When the threshold is set to t1=0.25, more rainfall is classified as light/heavy, whereas with a threshold
of t1=1, more rainfall is classified as dry/light. This shift results in lower SEEPS scores at these four
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points, indicating a sensitivity of SEEPS scores to the chosen threshold.

This tendency to perform worse with more rainfall is further evidenced by the error counts of the three
rain categories in Table 4.1. The total counts reflect the frequency of each category across the entire
domain (i.e., all simulation days and all grid cells combined). Below that, the error counts represent
how many times the configuration incorrectly predicted each category. For both t1 threshold values, all
PBL schemes exhibit a lower error fraction in the dry category than in the light and heavy categories.
ACM2, in particular, excels at predicting dry weather but performs the worst in the light and heavy rain
categories. This is why ACM2’s average score improves significantly when t1 is set to 1, as there are
substantially more ”dry” counts (8442) compared to light (2584) and heavy counts (224), giving the dry
category more weight.

Table 4.1: SEEPS Error Fractions for Different Configurations and Precipitation Categories

(a) t1 value of 0.25mm

YSU MYJ ACM2 MYNN2
Dry Light Heavy Dry Light Heavy Dry Light Heavy Dry Light Heavy

Total counts 6417 4511 322 6417 4511 322 6417 4511 322 6417 4511 322
Error counts 3008 2885 224 3407 2786 231 1606 3548 246 2965 2890 197
Error fraction 0.469 0.640 0.696 0.531 0.618 0.717 0.250 0.787 0.764 0.462 0.641 0.612

Mean (1-SEEPS) 0.63 0.64 0.61 0.65

(b) t1 value of 1mm

YSU MYJ ACM2 MYNN2
Dry Light Heavy Dry Light Heavy Dry Light Heavy Dry Light Heavy

Total counts 8442 2584 224 8442 2584 224 8442 2584 224 8442 2584 224
Error counts 3296 1697 177 3683 1638 179 1726 2075 198 3242 1716 171
Error fraction 0.39 0.66 0.79 0.44 0.63 0.80 0.20 0.80 0.88 0.38 0.66 0.76

Mean (1-SEEPS) 0.71 0.72 0.73 0.73

The MYJ scheme appears to be the least effective for forecasting dry weather but performs better in
the light rainfall category. YSU generally shows the lowest performance but maintains a fair distribution
across different categories. MYNN2 also demonstrates a balanced performance distribution and has
the highest average score overall.

Considering the agricultural context of this study, it can be argued that mainly Table b (with related
Figure B.4 in Appendix B.2) is of particular interest. In this table, ACM2 improves from being the worst-
scoring PBL scheme to being among the best, alongside MYNN2. However, considering all categories
as equally important in this study— since the identification of the transition from no rain to rain is of most
importance and not only the prediction of dry weather — MYNN2 appears to be the best-performing
scheme for this particular metric.

MAE with Moving Threshold
To better understand how the error values evolve, a moving threshold is applied to the model output. All
rainfall values, both observed and modeled, above the threshold are masked, so the error metrics are
only applied to rainfall values below the threshold. This is done for thresholds ranging from 0 up to 35
mm/day (and infinity, with no threshold applied). Figure 4.7 depicts this evolution of the absolute error
of daily rainfall for the YSU simulations. The lower rainfall amounts, reflected in the maps associated
with the initial threshold values, especially give rise to errors at the borders and northern part of the
simulations. After a threshold of 15 mm, the absolute error rises more significantly in the lower center
of the domain.
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Figure 4.7: The MAE of YSU over the whole validation domain, where all observed and modeled daily rainfall above threshold
’T’ is masked.

Figure 4.8: The MAE with all observed and modeled daily rainfall above 9 mm/d masked for PBL schemes ACM2, MYNN2 and
MYJ.

Figure 4.9: The mean absolute error (MAE) and mean bias error (MBE) of all four PBL schemes, averaged across the
validation domain, and plotted against the threshold values ’T’ where daily rainfall above is masked.
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Examining the MAE map specifically for rainfall up to 9 mm. This value is close to the second threshold
value of the SEEPSmethod, so you would expect to see similar patterns in the map, which is indeed the
case: In the northern part of the domain, where SEEPS scored lower values for all PBL schemes, the
9 mm MAE map actually shows higher errors, which support each other’s results (since higher errors
would mean lower SEEPS skill scores). The same holds for the other PBL schemes (Figure 4.8).

Interestingly, this method reveals that the average MAE values of all PBL schemes do not differ signifi-
cantly from each other when rainfall above 9 mm is masked. ACM2 still shows the lowest values, but
the other schemes are only 0.1 mm higher, which is minimal. They diverge more significantly when
heavy rainfall is included.

This trend is further highlighted when both errors are plotted against the thresholds, as shown in Figure
4.9 (up to a 35mm threshold). Several points stand out: first, the MAE values start to deviate from each
other from the 9 mm threshold onwards, as previously described. More interestingly, the error values
for these lower precipitation values are primarily due to underestimation, as indicated by the MBE error
bars below zero. This suggests that the absolute error values at T=9 mm, visualized in Figures 4.7 and
4.8, and the lower SEEPS scores shown in Figure 4.6 in the northern part of the domain, are mostly
due to underestimation. This is probably as a results of the higher precipitation amounts in this part of
the domain.

The transition from underestimation to overestimation occurs between the 9 to 11 mm threshold for
MYNN2, YSU, and MYJ, which again corresponds closely to the second SEEPS threshold, encom-
passing all three categories but excluding heavy rain events. In other words, for rainfall up to a value
of 9/11 mm, the MBE is lowest for these PBL schemes, indicating the most balanced output. This
outcome differs for ACM2, where the switch only happens after the 15 mm threshold, meaning ACM2
underestimates a larger portion of the total rainfall.

4.3.3. Summary
Summarizing the results, it can be stated that the models still perform quite poorly in terms of Mean Bias
Error (MBE) and Mean Absolute Error (MAE) if no threshold is applied to mask certain rainfall amounts.
Among the PBL schemes, ACM2 consistently showed the lowest biases, while MYJ performed the
worst.

However, the categorical metric SEEPS provided very promising results, indicating that all schemes
are effective in distinguishing between dry, light, and heavy precipitation. Using a threshold (t1) of 0.25,
the MYNN2 scheme outperformed all others. When this threshold was adjusted to 1mm, both MYNN2
and ACM2 showed the highest scores, with MYNN2 being the most balanced in its error counts.

Considering these performance differences, deeper analyses were conducted to understand the source
of these discrepancies. By implementing a moving threshold on the rainfall values, it became clear
that as heavier rainfall amounts were excluded from the data, the error values rapidly decreased and
converged. The divergence in performance primarily began after a threshold of 9mm. At this threshold,
all PBL schemes except ACM2 generally transitioned from underestimation to overestimation. For
ACM2 simulations, this transition occurred after a threshold value of 15mm.

4.4. Conclusion
This chapter aims to answer the second sub-question of this research: ”Which model configuration is
the optimal choice considering the context of this study?” By focusing on a smaller domain within the
Forest area, which contains a substantial amount of agricultural land, and by increasing the number
of simulations to enhance the robustness of the validation, the objective is to select the most suitable
PBL scheme for furthering this research.

Considering these new set of results, it can be stated that the MYJ scheme generally performs the
worst. The choice of which PBL scheme to use for the final set of simulations lies between ACM2
and MYNN2. ACM2 consistently shows the lowest error values, as observed in the first set of exper-
iments, while MYNN2 performs best in terms of SEEPS score. Both PBL schemes appear adequate
for implementation in the final simulations.
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The decision hinges on whether to prioritize the lowest quantitative errors and accurate prediction of
dry weather, albeit with the risk of underestimating rainfall amounts, or to focus on accurately predicting
light to heavy rainfall amounts and the triggering of ’rain’, with a potential risk of overestimating (for no-
rain cases), which could result in some false alarms. Each scheme has its own benefits and drawbacks,
offering different advantages in predicting the onset of the rainy season.

Given the agricultural context and the previously defined local onset definitions, which use various
thresholds to define the onset, the model’s performance heavily depends on the specific definition
used. What is certain is that the transition from dry weather to rain is of utmost importance. Therefore,
the decision was made to conduct the final set of experiments using the MYNN2 scheme. This scheme
appeared to be the best at predicting multiple rainfall types (both light and heavy), making it more robust
towards multiple definitions, despite resulting in some higher quantitative errors. It is important to note
that this choice is somewhat subjective and not the only suitable option.

One aspect not yet captured in these validations, but worth examining, is the model’s performance
across separate forecast days (FD) and lead times (D+). Currently, all forecast days are combined
and rated equally. However, analyzing each day individually can illuminate the evolution of the model’s
performance over its lead times, providing valuable insights into the model’s strengths and weaknesses.
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Figure 5.1: Sketch Experimental Setup 3

This chapter presents the final experimental setup of this research, addressing research sub-question 3:
”How does the selected model configuration perform compared to the precipitation forecasts of ECMWF
IFS?” This comparison will be made by validating both WRF and ECMWF across a large domain in the
Forest zone.

35
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5.1. Model Configuration
5.1.1. Time and Spatial Domain
The last model configuration focuses on a large domain over the agricultural sites in the forest zone,
covering an area of 300 by 306 km, with a grid spacing of 3 km. The Forest domain was selected again
due to its higher density of TAHMO stations and its extensive agricultural land coverage [30]. This
larger area allows for more validation points, resulting in more accurate final validation. The model’s
boundary conditions, updated every six hours, and initial conditions are again forced by the ECMWF
Integrated Forecast System with a resolution of 0.125 degrees. For the PBL scheme, the MYNN2
scheme was chosen as it showed the most promising results in the previous model experiments. Given
the convection-solving resolution of 3 km, the cumulus convection scheme is again turned off.

Five simulations of 10 days each were executed, covering the period from February 10, 00:00h to
March 8, 00:00h, 2018, with the onset occurring around February 19, according to L. Occelli [28]. This
means the initial conditions (IC) of each simulation were shifted four days forward compared to the
previous simulation:

• Simulation 1: February 10 - February 20
• Simulation 2: February 14 - February 24
• Simulation 3: February 18 - February 28
• Simulation 4: February 22 - March 4
• Simulation 5: February 26 - March 8

The longer time period allows us to capture more rainfall events, resulting in a more robust final valida-
tion. This validation will be conducted in only a part of the model domain, visualized in Figure 5.2, to
account for enough relaxation zone.

Figure 5.2: Model domain and validation domain for the final set of experiments displayed on a Digital Elevation Model (DEM)
map, downloaded from [27].
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5.2. Validation Method
5.2.1. Validation Data
This time, the research will validate both the WRF model output and the ECMWF IFS precipitation data
against the TAHMO data, allowing for a direct comparison between the models. It is to note that the
WRF model is not entirely independent of ECMWF, as it uses ECMWF data to force the model, also
known as dynamicaL downscaling. In this context, this phase of the research investigates whether the
dynamical downscaling of WRF adds value to precipitation forecasts or not.

The TAHMO data consists of interpolated data from 22 stations, which were selected based on the
amount of available data during the simulation period, applying a threshold of 95%. The stations were
interpolated using the Inverse Distance Weighting method, as in experimental setup 2, but this time
with a power coefficient of 3. This adjustment was made because the validation domain covers a larger
area, resulting in greater distances between stations. Using a higher power value ensures that the
interpolation gives more weight to the nearest known points, providing more accurate estimations. A
lower power parameter might produce a surface that is too smooth and not representative of the actual
conditions.

5.2.2. Metrics
Only daily precipitation is validated this time. This will include some general analyses, such as the
probability density function of all three datasets to compare their distributional shape, and a statistical
heatmap that distinguishes between the various forecast days (FD) from the first day (FD1) to the
tenth day (FD10). This approach reveals how the performance of both models evolves as the forecast
time period increases, with the hypothesis that performance will be better for shorter lead times. This
distinction will also be applied in a SEEPS validation. This time, only the t1 threshold value of 1mm will
be considered, with the associated t2 value of 12.59mm.

The 0.125° grid data from ECMWF is downscaled to the WRF resolution of 3 km. The reason for
downscaling ECMWF rather than upscaling WRF is to preserve the high-resolution qualities of the data.
Upscaling WRF would aggregate the data, potentially resulting in the loss of important information.

Design Final Metric
A concluding metric has been designed, aligned with the primary objective of this research. Referring
to the onset definitions by Fitzpatrick et al. [13], all local onset definitions utilize daily precipitation as
input. The study investigated three local onset definitions:

• Yamada et al. (2013) [38]: Date when 6-day average rainfall exceeds 2 mm/day.
• Marteau et al. (2009) [39]: First rainy day (> 1 mm) of two consecutive rainy days with total rainfall
> 20 mm and no 7-day period with total rainfall less than 5 mm in the following 20 days.

• Omotosho et al. (2000) [40]: The first 3 or 4 rainy days (> 10 mm) with no more than 7 days
between them.

Although all definitions use daily rainfall as input, they differ in their onset criteria. Marteau’s definition
focuses on the continuation of rainfall, Omotosho’s depends on heavy rainfall, and Yamada’s uses the
start of local rainfall as the identifier. The study found Marteau’s and Yamada’s definitions to be the
most useful for local farmers and likely correlated.

However, these are just three of the many existing definitions. Amekudzi et al. [14] used the cumulative
percentages of mean annual rainfall and rainy days to define the onset and cessation dates of the rainy
season by identifying points of maximum positive and negative curvature, respectively. Gbangou et al.
[41] tested two different definitions: one using a given percentage of cumulative seasonal rainfall and
an agronomic onset definition based on absolute rainfall values, defined as the date when the average
4-day rainfall exceeds 10 mm, starting from March 1.

One common aspect of these definitions is that they all use rainfall amounts over a certain number of
consecutive days. The threshold and density of the rain vary, aligning with different purposes.

The final metric of this paper utilizes the definition of Yamada et al., which is based on a 6-day average
rainfall, but now with a moving threshold ranging from 2 mm/day to 12 mm/day instead of a fixed 2 mm/-
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day. This approach allows for greater flexibility and adaptability to other possible definitions, rather than
relying solely on this specific one, which is also depended on quite a low rainfall amount. Additionally,
using a moving threshold demonstrates the model’s robustness to different indicators. Besides that,
this method was selected because it can be applied to 10-day forecasts. To be clear, the definition is
not used to determine the onset of 2018, but rather as a threshold value at each grid cell of the models
and observations. The binary output (threshold met: yes or no) is then validated using a confusion
matrix, which shows true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). True positives are considered the most important metric, as they indicate how often the model
accurately crosses the threshold, which could hypothetically represent an onset threshold.
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5.3. Results
5.3.1. Probability Density Function
Figure 5.3 illustrates the probability density function of daily precipitation (mm/day) on a logarithmic
scale for five simulations of ECMWF and WRF, along with observed values from TAHMO over the
same period. Due to the application of the logarithmic scale, all values below 0.1 mm/day are set to
0.1 mm/day, as it is not possible to take the log of zero.

Several key observations can be made. First, ECMWF consistently exhibits the highest peaks at very
low precipitation amounts across all simulations, indicating a high frequency of days with minimal rain-
fall. In contrast, WRF shows lower densities at the low precipitation amounts, with a broader distribu-
tion extending towards higher precipitations amounts, suggesting more variability in rainfall. TAHMO
presents the lowest and broadest peaks, indicating the most even distribution of daily precipitation val-
ues among the three datasets. This comparison highlights that ECMWF’s rainfall distribution is not
well-aligned with observed values, while WRF more closely resembles the observations, albeit not per-
fectly. ECMWF predicts more frequent occurrences of very low precipitation compared to TAHMO and
WRF.

Additionally, the tails of the distributions differ significantly among the three datasets. The WRF model
exhibits a tail that extends above 102 mm/day, indicating that it occasionally predicts more extreme
precipitation values. In contrast, ECMWF’s tail only extends slightly above 101 mm/day, suggesting no
prediction of extreme precipitation. TAHMO’s tail reaches values between the two, approaching but not
surpassing the 102 mm/day mark.

Furthermore, all three datasets show the highest peaks in simulations 1 and 2, compared to other
simulations, indicating that the initial part of the temporal coverage experiences less rainfall than the
later days.

Figure 5.3: Logarithmic-scale Probability Density Function (PDF) of daily precipitation (mm/day) for all five ECMWF and WRF
simulations, with observed data over the same time periods.

5.3.2. Heatmap of Daily Precipitation
The low precipitation amounts predicted by ECMWF are further evidenced by Figure 5.4. This heatmap
displays the aggregated daily precipitation values across the entire domain for each date (y-axis) and
forecast day (FD) (x-axis). Specifically, the upper diagonal line corresponds to simulation 1, covering
the period from February 10th (FD1) to February 19th (FD10) (ending at 00:00 on February 20th, with
FD10 representing the daily precipitation for February 19th from midnight to midnight). Similarly, the
lower diagonal line represents simulation 5, which spans from February 26th to March 7th.

Not yet looking in detail, what stands out are the different color palettes. WRF shows a variation of color
ranging from light yellow (very low precipitation) to dark blue (heavy precipitation), while ECMWF only
displays light yellow to light green colors, indicating low to moderate precipitation. The observational
column, however, also shows a more diverse color palette with low to heavy rainfall, which is more
aligned with WRF. Examining the rows representing different days allows for a detailed analysis of the
timing and accuracy of the forecasts, particularly on days with more rainfall.

• 2018-02-10 to 2018-02-17: Low precipitation amounts are measured and similarly predicted by
both models. However, WRF FD4 and FD5 slightly overestimated around February 13th and
14th, while ECMWF showed less overestimation.
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(a) Averaged daily precipitation over the entire model domain for the
five ECMWF simulations, plotted separately for each forecast day.

(b) Averaged daily precipitation over the entire model domain for the
five WRF simulations, plotted separately for each forecast day.

Figure 5.4: Heatmap of the aggregated daily precipitation of ECMWF and WRF compared to the observed daily rainfall.

• 2018-02-18: Both models made accurate predictions at FD5 and FD9, with WRF performing
slightly better. Interestingly, FD1 from both models was less accurate.

• 2018-02-20: WRF FD3 accurately captured the high precipitation amounts, whereas ECMWF
FD3 did not. Both model’s FD7 did not capture the peak.

• 2018-02-21 to 2018-02-23: WRF’s earlier forecast days (FD1 to FD3) captured lower precipitation
amounts well, but later forecast days tended to overestimate. ECMWF showed similar trends but
with less overestimation.

• 2018-02-25: The precipitation peak was captured by WRF but not by ECMWF. However, WRF
also showed significant overestimation the day before and after this date, suggesting timing issues
or an inability to capture a sudden decrease. ECMWF showed moderate rainfall around this date.
The biggest overestimation by both models occurred at FD1 on February 26th, just after the
rainfall peak.

• 2018-02-27 to 2018-02-28: Heavy to moderate rainfall was captured well by WRF for all forecast
days, but not by ECMWF. WRF slightly overestimated on February 28th, while ECMWF underes-
timated.

• 2018-03-01 to 2018-03-07: Low to moderate rainfall was measured, with one peak around March
5th. However, both models (from FD5 onward) mostly showed low precipitation amounts, indicat-
ing underestimation.

5.3.3. SEEPS
To further extend the lead time analysis, the SEEPS skill score of daily precipitation for all different lead
times (D+) is calculated. Specifically, the SEEPS skill score for D+1 uses 5 days as comparable input,
while D+10 uses 50 days (5 forecasts of 10 days each) as comparable input. Figure 5.5 depicts three
of the ten spatial distributions of the 1-SEEPS score over the validation domain, specifically for lead
times 1, 5, and 10. The total counts of the different categories are shown beneath the maps, along with
the error fractions for ECMWF and WRF. To clearly illustrate the evolution of the skill for both models,
the spatial average 1-SEEPS score is plotted against the lead times.
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Figure 5.5: SEEPS skill score for different leading times (D+), with associated error fractions and spatial averages of both
models.

As shown, the skill score decreases as the lead time increases, which is expected. Both models start
with a skill score between 0.82 and 0.85 for D+1, decreasing to around 0.5 by forecast day D+10. This
trend is also visible in the spatial maps, with D+1 showing much more green areas compared to later
days. The graph also shows that ECMWF is on average performing better up to leading time D+2 while
after that WRF shows higher performance values.

The maps reveal that the spatial pattern of ECMWF quickly aligns with the interpolation patterns. This
is particularly evident in the top left corner, where a distinct dividing line emerges between stations
TA00276 and TA00123 on the left and a group of other stations on the right. This pattern is not observed
for WRF at D+5 but starts to appear at D+10. However, this is not the only spatial border exhibiting the
interpolation pattern. At D+10 for ECMWF, almost all borders seem to result from data interpolation.

This occurs because ECMWF operates at a lower resolution and is interpolated to fit the grid. Con-
sequently, large parts of the domain reflect average values from ECMWF output, leading to minimal
variation between grid cells. Therefore, the spatial patterns quickly resemble those of TAHMO. In con-
trast, WRF provides output for each grid cell with more detail, resulting in unique spatial patterns.
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What becomes clear from the error fraction depicted in the tables, is that WRF outperforms ECMWF in
categorizing dry and heavy rain, but ECMWF outperforms WRF in classifying light precipitation.

5.3.4. Final Metric
The final graph (Figure 5.6) illustrates the changes in the normalized confusion matrix variables - True
Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) - with respect to
the 6-day average rainfall threshold. The normalization involves dividing the TP and FN counts by the
total observed positive counts, and the TN and FP by the total observed negative counts. This means
that the sum of TP and FN, and TN and FP, always add up to one. A normalized score of 1 indicates
that all observations are correctly forecasted (a perfect score), while a score of 0 means none of the
observations are modeled correctly.

Figure 5.6: Final Metric: All normalized confusion matrix variables plotted against 6-day average rainfall (mm/d) threshold
values.

The most notable observation is the consistent performance of WRF in predicting positive outcomes
across various thresholds, as indicated by the relatively constant true positive (TP) rate. In contrast,
ECMWF experiences a rapid decline as the threshold increases. Both models start with similar scores,
WRF at 0.69 and ECMWF at 0.67. However, as the threshold increases, ECMWF’s TP score drops to 0
at around an 8mm threshold, indicating its inability to predict a 6-day average rainfall of 8 mm/day. On
the other hand, WRF consistently forecasts correctly across all thresholds, even up to a 6-day average
of 12 mm/day with a TP score of 0.53. This suggests that ECMWF struggles to predict heavier rainfall,
reinforcing earlier indications.

Looking at true negative (TN) predictions—instanceswhere themodels correctly identified non-threshold
events—ECMWF consistently outperforms WRF across all thresholds. From a threshold of 7mm/day,
ECMWF achieves a perfect score, while WRF’s scores increase but never reach 1. This indicates that
WRF produces some false positives, indicating a constant overestimation.

5.3.5. Summary
To summarize all notable validation metrics. Firstly, it is evident that ECMWF struggles to accurately
predict variations in rainfall, particularly heavier precipitation amounts. The probability density function
(pdf) and daily precipitation heatmap display a skewed distribution with a high frequency of low rainfall
amounts for ECMWF, whereas WRF and TAHMO exhibit a more diverse and broader distribution.
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Additionally, the spatial analyses indicated by the SEEPS maps showed that ECMWF results in less
detailed spatial variability, potentially masking local variations and specific details. However, this could
also be an advantage for ECMWF in certain scenarios, considering that station data is interpolated
and may not accurately represent local phenomena. In contrast, WRF captures these local details,
potentially leading to higher errors. Furthermore, the SEEPS score decreases for both models as the
leading times increase. However, the differences in sample sizes between leading times may also
influence these results.

In the final metric, it is evident that ECMWF is less robust when it comes to different thresholds for
6-day average rainfall. It performs well in correctly predicting lower amounts, but it quickly drops to a
True Positive score of 0 when thresholds are increased. On the other hand, WRF consistently performs
well across all thresholds.

5.4. Conclusion
This final experimental setup aims to address the last sub-question of this research: ”How does the
selected model configuration perform compared to the precipitation forecasts of ECMWF IFS?” This
comparison involves examining both models’ outputs against the interpolated TAHMO data over a wide
area within the Forest zone.

The validation process revealed strengths and weaknesses in both models. ECMWF’s performance
was weak in capturing spatial and temporal variability in rainfall, with a skewed distribution towards low
rainfall amounts, making it unable to predict heavier precipitation. On the other hand, it demonstrated
excellent performance in predicting light precipitation amounts and showed relatively good SEEPS
scores. Meanwhile, WRF consistently overestimated, leading to more false positive values in the final
validation metric. Nevertheless, WRF displayed promising results in almost all metrics, accurately
capturing different types of rainfall at a finer scale, a quality that ECMWF lacked. This highlights the
added value of WRF as a downscaling model.
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Discussion

Several uncertainties appeared during this research, which will be discussed in this chapter. At first,
the uncertainty in the reliability of the observational data. Despite applying a selection procedure to
eliminate stations with low data amounts, some station locations consistently performed poorly, as
was indicated in Chapter 3 in Figure 3.8. This suggests potential errors in the data itself, such as
recording zero values when there is actually precipitation. However, this is a problem that is hard to
verify. Comparing stations that are very close to each other or by visualizing precipitation time series
in more detail, can provide helpful insights in the correctness of the data but still does not give a 100%
guarantee.

One other common challenge in meteorology is the difficulty of accurately verifying local rainfall events.
High-resolution models such as WRF provide detailed rainfall information on a very small scale (in
this research 3km). However, this level of detail requires a dense network of observational data to
accurately capture these phenomena. As mentioned in Chapter 2, it is possible that rain clouds may not
align perfectly with the observation stations, leading to inaccuracies even after interpolation. Since the
stations only represent a small portion of the actual conditions, the interpolated data may not accurately
reflect what is happening between the stations. This can result in instances where intense localized
rainfall occurs between stations, leading to artificially high errors in the interpolated data.

Additionally to these common uncertainties, some doubts on the implemented metrics are described
below:

• Concluding table experimental setup 1 (Table 3.4): The concluding table of experimental setup
1, where the PBL schemes are rated in comparison to each other for each zone and the entire
country, is somewhat subjective. The rating was based on considering all metrics equally. How-
ever, it could be questioned whether some metrics should be weighted more heavily than others.
Additionally, since the rating was done in relation to each other, the overall performance was not
clearly demonstrated, and its general usefulness was not highlighted.

• Model domain in experimental setup 2 (Figure 4.2): The model domain implemented in experi-
mental setup 2 was relatively small, consisting of around 30x40 grid points. Although this allowed
for multiple simulations to be conducted without requiring extensive computational time, there was
a concern regarding the potential impact of the forcing data on the model output. It is necessary
for the model domain to be sufficiently large to develop its own dynamics. A domain that is too
small could potentially disrupt this process, leading to biased results. However, the outputs exhib-
ited considerable variances among different configurations, indicating that the model generated
its own dynamics and (partly) mitigated this issue.

• SEEPS experimental setup 3 (Figure 5.5): In the last experimental setup, the Stable Equitable Er-
ror in Probability Space (SEEPS) was calculated for various lead times, leading to significant vari-
ations in sample sizes between D+1 and D+10. This disparity could have significantly impacted
the results. For example, the D+1 sample might not encompass the same range of weather
predictions as the D+10 sample with 50 validation pairs, potentially affecting the stability of the
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SEEPS scores. This uncertainty prompted a consideration to solely focus on individual forecast
days (FD). This approach revealed consistently high scores (ranging from 0.89 to 0.59, ending at
F10 with scores of 0.77 for WRF and 0.88 for ECMWF). However, since all scores were based
on only 5 days, this method was not preferred as it could question the representativeness of the
score. It also raises doubts about the statistical accuracy of the scores for the initial lead times
presented in this paper (e.g., D+1, and D+2). Additionally, in experimental setups 2 and 3, there
was an overlap in simulation time periods, resulting in the use of the same dates for verification
multiple times. However, since these dates belonged to different simulations, they can still be
considered independent from each other.

Furthermore, all experimental setups were limited by a relatively low number of simulations, due to
time constraints and limited computational power. This limitation led to less statistically robust results.
If there had been the opportunity to increase the number of simulations, encompassing a wider time
range and capturing more weather phenomena, the results would have beenmore reliable. Additionally,
a larger dataset would have made the aggregated and average values more meaningful.

As a concluding point, it must be emphasized that this entire research is based on numerous design
decisions, which have steered the results in a specific direction, making them highly reliant on these
decisions. While these choices were well-reasoned and aligned with the research’s ultimate goal, their
subjectivity cannot be overlooked. This underscores the importance of increasing the amounts of tests
and research on the model, to obtain a complete indications of its capabilities.

Despite these limitations, the research outputs still provided valuable insights. The findings shed light
on certain aspects and capabilities of WRF that enhance existing research and reveal new potential
applications of the model. The final conclusion on the main research question, along with suggestions
for further research and potential operational use of the model, are presented in the next and final
chapter.
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Conclusion and Recommendations

7.0.1. Conclusion
Coming to the end, this research aimed to answer the main research question: ”What is the perfor-
mance of the Weather Research and Forecasting (WRF) model in forecasting the local onset of West
Africa’s annual rainy season in Ghana?” To address this question, three experimental setups were de-
signed, each focusing on one of the three sub-questions formulated to guide the research. All three
experiments centered on precipitation amounts, the most commonly used indicator for local onset def-
initions, and on a time period around the timing of the associated regional onset, which is crucial for
predicting the transition from dry to rainy conditions.

As the research progressed, it became evident that there is no straightforward answer to this question
as it depends on a lot of factors. Previous literature suggested that the predictability of the rainy season
onset depends not only on the model’s performance but also on the onset definition used [41]. Different
definitions require different model performance qualities, which can vary significantly. The choice of
definition depends on the final purpose or which definition works best in a specific context.

However, the results revealed promising insights into WRF’s precipitation forecasting performance.
Four different model configurations based on four Planetary Boundary Layer (PBL) schemes—ACM2,
YSU, MYJ, and MYNN2—were tested, showing varying results across different zones of Ghana. This
highlighted the importance of the spatial context in selecting a PBL scheme. On average, ACM2
showed the lowest quantitative errors, followed by YSU, making it the most recommended and ’safe’
PBL schemes for Ghana in general. However, the experiment also showed that for the Forest zone,
where a lot of agricultural grounds and weather stations are present, making it one of the most important
zones, there was no PBL scheme clearly outperforming others. This suggested further research for
this zone. Detailed analysis focusing on smaller domains within the Forest zone, provided additional
insights. It was found that MYNN2 was the best and most balanced in predicting classified rainfall
within this zone, even though its quantitative errors were again higher than those of ACM2.

Additionally, the added value and advantages of WRF as a downscaling model over global models like
ECMWF were clearly demonstrated in the final chapter. Generally, ECMWF was unable to capture
local variations in rainfall, showing aggregated values that failed to capture heavy rainfall amounts. In
contrast, WRF could capture detailed temporal and spatial variations, although the exact placement
could be off. WRF consistently performed well in predicting true positives of 6-day average rainfall over
multiple threshold values, whereas ECMWF only managed to predict low rainfall amounts.

Based on these findings, it can be concluded WRF shows significant potential for general weather
prediction modeling and, more specifically, for predicting the onset of rainfall in Ghana. Its adaptability
to different locations within the country, leading to more accurate forecasts, is a valuable feature that
can be further refined. Furthermore, the research indicated that the model offers more detailed and
localized weather information, capturing a wide range of rainfall patterns that the widely used ECMWF
global model failed to capture.
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7.0.2. Recommendations
For further research the following ideas are suggested:

• As mentioned in the Discussion, increasing the number of simulations would yield more statisti-
cally robust and meaningful outcomes. Extending the simulation period to cover three months of
weather data, from the onset dates in the south of Ghana in February/March to the north in May,
would add significant value. This extension addresses the limitation of this study and is highly
recommended for future research.

• Direct comparison of resolution effects: Another potential research objective which is more in
parallel to this study and not so much an expansion, is to study the direct effects of implementing a
convection-solving resolution (e.g., 3 km or smaller) compared to a non-resolving resolution (e.g.,
10 km). This study assumed that the higher resolution, where the cumulus (CU) scheme could
shut off, would yield better results. However, whether this was indeed the case by implementing
a direct comparison to verify this assumption was not conducted.

• Verification based on local onset definitions: Choosing specific local onset definitions at the start
of the research and basing all verification metrics on these definitions could provide a clearer
indication of the model’s performance for each definition. This approach would allow for recom-
mendations on which configuration works best for each definition.

• Comparing other PBL schemes with ECMWF: In the last experimental setup, only the model
output of the MYNN2 scheme was compared with ECMWF’s forecast. However, it would be
valuable to also compare ACM2 and YSU, two PBL schemes that showed promising results,
especially in experimental setup 1, with the global model.

Regarding the potential operational usage of the WRF model, several key points have emerged. Re-
sults indicated that WRF’s primary advantage over the global model ECMWF is its ability to achieve
very high resolution and to capture heavier rainfall amounts. Although the research focused on fore-
casting rain at the onset of the rainy season, it has demonstrated WRF’s high potential for predicting
extreme weather events on a local scale—a notable deficiency in ECMWF’s operational forecast.

The implementation of WRF to predict the onset of the rainy season depends on the context and the
preferred onset definition. For definitions based on relatively low rainfall amounts, ECMWF’s data may
be sufficient, as it has shown comparable, if not superior, performance compared to WRF. Additionally,
higher resolutions than 9 km is most of the time not necessary for onset prediction. However, if defi-
nitions based on various types and amounts of rainfall are required, WRF is recommended due to its
robust capabilities in predicting multiple rainfall types.

One important consideration is the computational time required by WRF. This depends heavily on the
desired simulation time, resolution, and spatial domain. If longer predictions are needed for a relatively
large domain at high resolution, the computation time can increase significantly, potentially posing
challenges for operational model runs. For instance, in the last experimental setup of this research,
which involved 5 simulations on a 100 x 100 gridpoint domain at a 3km resolution for 10 forecast days,
the computation time was approximately 9 days (using 4 parallel processes). In the initial experimental
setup, a single simulation took an average of 17 hours to complete. This emphasizes the importance
of designing the model with careful considerations.

In conclusion, it should be mentioned that the research and implementation possibilities of WRF are
endless. This study has only scratched the surface of WRF’s capabilities and serves as one of many
informative reports on the model’s performance and qualities. As such, this contribution may have shed
light on new aspects and hopefully inspired further research endeavors.
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A
Source Code

A.1. Point Validation
The following code includes verification functions for point comparison, focusing on temporal and spatial
biases.

Temporal Analysis
Listing A.1: Temporal Analysis Script

1

2 # TEMPORAL ANALYSIS
3 def temp_stats_points(WRF, stations_data):
4 # Import WRF and stations dataframes
5 error_df = pd.DataFrame(data=None, index=WRF.index, columns=stations_data.columns)
6 error_squared = pd.DataFrame(data=None, index=WRF.index, columns=stations_data.columns)
7 error_absolute = pd.DataFrame(data=None, index=WRF.index, columns=stations_data.columns)
8

9 for time in WRF.index:
10 cal_error = WRF.loc[time] - stations_data.loc[time]
11 error_df.loc[time] = cal_error
12 error_squared.loc[time] = cal_error**2
13 error_absolute.loc[time] = abs(cal_error)
14

15 # Max, Min, Mean WRF
16 maximum = WRF.max()
17 minimum = WRF.min()
18 mean = WRF.mean()
19

20 # Mean Bias Error
21 MBE = error_df.mean(axis=0)
22

23 # Mean Squared Error
24 MSE = error_squared.mean(axis=0)
25

26 # Mean Absolute Error
27 MAE = error_absolute.mean(axis=0)
28

29 # Normalized MAE
30 relative = stations_data.mean()
31 MAE_norm = MAE / relative
32 inf_index = np.isinf(MAE_norm)
33 MAE_norm[inf_index] = np.NaN
34

35 return MBE, MSE, MAE, MAE_norm, error_df, mean, maximum, minimum
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Temporal Standard Deviation (SD) and Correlation
Listing A.2: Temporal SD and Correlation Script

1 def SD_temp(WRF, stations_data):
2 SD_model = WRF.std(0)
3 SD_obs = stations_data.std(0)
4

5 covariances = pd.DataFrame(data=None, index=['cov', 'r'], columns=WRF.columns)
6 for column in WRF.columns:
7 cov = WRF[column].cov(stations_data[column])
8 covariances.loc['cov', column] = cov
9 covariances.loc['r', column] = cov / (SD_model.loc[column] * SD_obs.loc[column])
10

11 return SD_model, SD_obs, covariances.iloc[1,:]

Temporal Bias Summary
Listing A.3: Temporal Bias Summary Script

1 def temporal_biases(zones, names, stats):
2 temporal_bias_df = pd.DataFrame(data=None, index=names, columns=['Mean␣[mm/d]', 'MBE␣[mm/

d]', 'MSE␣[mm/d]²', 'MAE␣[mm/d]', 'r_temporal'])
3 for i in range(len(zones)):
4 temporal_bias_df.iloc[i, 0] = stats[0][zones[i].index].mean()
5 temporal_bias_df.iloc[i, 1] = stats[1][zones[i].index].mean()
6 temporal_bias_df.iloc[i, 2] = stats[2][zones[i].index].mean()
7 temporal_bias_df.iloc[i, 3] = stats[3][zones[i].index].mean()
8 temporal_bias_df.iloc[i, 4] = stats[4][zones[i].index].mean()
9

10 return temporal_bias_df

Spatial Analysis
Listing A.4: Spatial Analysis Script

1 # SPATIAL ANALYSIS
2 def stats_points(WRF, stations_data):
3 error_df = pd.DataFrame(data=None, index=WRF.index, columns=stations_data.columns)
4 error_squared = pd.DataFrame(data=None, index=WRF.index, columns=stations_data.columns)
5 error_absolute = pd.DataFrame(data=None, index=WRF.index, columns=stations_data.columns)
6

7 for time in WRF.index:
8 cal_error = WRF.loc[time] - stations_data.loc[time]
9 error_df.loc[time] = cal_error
10 error_squared.loc[time] = cal_error**2
11 error_absolute.loc[time] = abs(cal_error)
12

13 MBE = error_df.mean(axis=1)
14 MSE = error_squared.mean(axis=1)
15 MAE = error_absolute.mean(axis=1)
16

17 return MBE, MSE, MAE

Spatial Standard Deviation (SD) and Correlation
Listing A.5: Spatial SD Script

1 def SD(WRF, stations_data):
2 SD_model = WRF.std(1)
3 SD_obs = stations_data.std(1)
4

5 covariances = pd.DataFrame(data=None, index=WRF.index, columns=['cov', 'r'])
6 for index in WRF.index:
7 cov = WRF.loc[index].cov(stations_data.loc[index])
8 covariances.loc[index, 'cov'] = cov
9 covariances.loc[index, 'r'] = cov / (SD_model.loc[index] * SD_obs.loc[index])
10

11 return SD_model, SD_obs, covariances.iloc[:, 1]
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Spatial Bias Summary
The averaged spatial MBE, MSE, and MAE are the same values as the averaged temporal MBE, MSE,
and MAE since they are aggregated over both dimensions. However, the spatial and temporal correla-
tions differ due to the different covariances.

Listing A.6: Spatial Bias Summary Script
1 def spatial_biases(zones, names, stats):
2 spatial_bias_df = pd.DataFrame(data=None, index=names, columns=['MBE␣[mm/d]', 'MSE␣[mm/d]

²', 'MAE␣[mm/d]', 'r_spatial'])
3

4 spatial_bias_df.iloc[:, 0] = stats[0].mean(0)
5 spatial_bias_df.iloc[:, 1] = stats[1].mean(0)
6 spatial_bias_df.iloc[:, 2] = stats[2].mean(0)
7 spatial_bias_df.iloc[:, 3] = stats[3].mean(0)
8

9 return spatial_bias_df

A.2. IDW Interpolation Function
The following code defines the Inverse Distance Weighting (IDW) interpolation function. This function
includes a maximum distance threshold to limit the influence of distant points.

Listing A.7: IDW Interpolation Function
1 from scipy.spatial import cKDTree
2 import numpy as np
3

4 def IDW(points, data, grid, power, max_dist):
5 tree = cKDTree(points)
6 dist, idx = tree.query(grid, k=len(points))
7

8 # Apply maximum distance threshold
9 mask = dist > max_dist
10 dist[mask] = np.inf
11

12 #Calculates the weight
13 weight = 1 / (dist**power)
14

15 # Apply weights and calculate interpolated values
16 weighted_vals = weight * data[idx]
17 interpolated = np.sum(weighted_vals, axis=1) / np.sum(weight, axis=1)
18

19 # Handle cases where sum of weights is 0 (no nearby points)
20 interpolated[np.sum(weight, axis=1) == 0] = np.nan
21

22 return interpolated

A.3. Automating WRF
A.3.1. Bash script
This bash script is specifically designed for this research, but can easily be adapted for other research
experiments.

Listing A.8: WRF Model Automation Script
1 # Set the base directory for WRF and WPS
2 WRF_DIR=/home/weatherimpact/WRFmodel/WRF/run/
3 WPS_DIR=/home/weatherimpact/WRFmodel/WPS/
4 DATA_DIR=/home/weatherimpact/WRFmodel/Build_WRF/ECMWFdata/2018_02_forecast_lastexp/
5 BASE_RUN_DIR=/home/weatherimpact/WRFmodel/runs
6 PBL_SCHEME='MYNN2' #Change for each experiment!
7

8 # Set the maximum number of executions
9 MAX_RUNS=10 #subject to change
10 echo "Maximum␣number␣of␣executions␣set␣to:␣$MAX_RUNS"
11
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12 # Get the last run date from the file and calculate the new start date
13 if [ ! -f last_run_date.txt ]; then
14 echo "Please␣create␣last_run_date.txt␣with␣the␣initial␣start␣date␣in␣the␣format␣YYYY-MM-

DD"
15 exit 1
16 fi
17

18 LAST_RUN_DATE=$(cat last_run_date.txt)
19

20 # Add one day to the last run date
21 START_DATE=$(date -d"${LAST_RUN_DATE}␣+1␣day" +"%Y-%m-%d_00:00:00")
22 START_DATE_FORMATTED=$(date -d"${LAST_RUN_DATE}␣+1␣day" +"%Y-%m-%d")
23 END_DATE=$(date -d"${LAST_RUN_DATE}␣+10␣day" +"%Y-%m-%d_00:00:00")
24 END_DATE_FORMATTED=$(date -d"${LAST_RUN_DATE}␣+10␣day" +"%Y-%m-%d")
25

26 # Read the current run count from a file, default to 0 if the file doesn't exist
27 if [ ! -f run_count.txt ]; then
28 echo "0" > run_count.txt
29 fi
30 RUN_COUNT=$(cat run_count.txt)
31

32 # Check if the run count has reached the maximum number of executions
33 if [ "$RUN_COUNT" -ge "$MAX_RUNS" ]; then
34 echo "Maximum␣number␣of␣executions␣reached.␣Exiting."
35 exit 0
36 fi
37

38 # Increment the run count
39 RUN_COUNT=$((RUN_COUNT + 1))
40 echo "Incremented␣run␣count:␣$RUN_COUNT"
41

42 # Extract the year, month, day, and hour for downloading ECMWF data
43 YEAR=$(date -d "$START_DATE_FORMATTED" +"%Y")
44 MONTH=$(date -d "$START_DATE_FORMATTED" +"%m")
45 DAY=$(date -d "$START_DATE_FORMATTED" +"%d")
46 HOUR=$(date -d "$START_DATE_FORMATTED" +"%H")
47

48 YEAR_END=$(date -d "$END_DATE_FORMATTED" +"%Y")
49 MONTH_END=$(date -d "$END_DATE_FORMATTED" +"%m")
50 DAY_END=$(date -d "$END_DATE_FORMATTED" +"%d")
51 HOUR_END=$(date -d "$END_DATE_FORMATTED" +"%H")
52

53 # Create directory for new run
54 RUN_DIR=${BASE_RUN_DIR}/RUN_IFSforecast_${START_DATE_FORMATTED}_$PBL_SCHEME
55 mkdir -p $RUN_DIR
56

57 # Link the new ECMWF data to WPS
58 cd $WPS_DIR
59 ln -sf ${DATA_DIR}ecmwf_sfc_data_${YEAR}${MONTH}${DAY}.grib .
60 ln -sf ${DATA_DIR}ecmwf_pl_data_${YEAR}${MONTH}${DAY}.grib .
61

62 # WPS
63 cd $WPS_DIR
64 # Set new date in namelist.wps
65 sed -i "s/start_date.*/start_date␣=␣'$START_DATE',/" $WPS_DIR/namelist.wps
66 sed -i "s/end_date.*/end_date␣=␣'$END_DATE',/" $WPS_DIR/namelist.wps
67 sed -i "s|opt_output_from_metgrid_path.*|opt_output_from_metgrid_path␣=␣'${RUN_DIR}',|"

$WPS_DIR/namelist.wps
68 # Run geogrid
69 ./geogrid.exe
70 # Ungrib surface data
71 ./link_grib.csh ecmwf_sfc_data_${YEAR}${MONTH}${DAY}.grib
72 sed -i "s/prefix.*/prefix␣=␣'SFC',/" $WPS_DIR/namelist.wps
73 ./ungrib.exe
74 # Ungrib pressure data
75 ./link_grib.csh ecmwf_pl_data_${YEAR}${MONTH}${DAY}.grib
76 sed -i "s/prefix.*/prefix␣=␣'PL',/" $WPS_DIR/namelist.wps
77 ./ungrib.exe
78 # Run metgrid
79 ./metgrid.exe
80
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81 # WRF
82 cd $WRF_DIR
83 ln -sf $RUN_DIR/met_em* $WRF_DIR
84 # Set namelist.input dates
85 sed -i "s/run_days.*/run_days␣=␣5,/" $WRF_DIR/namelist.input # BE CAREFUL WITH THIS! Run

hours are unchanged
86 sed -i "s/start_year.*/start_year␣=␣$YEAR,/" $WRF_DIR/namelist.input
87 sed -i "s/start_month.*/start_month␣=␣$MONTH,/" $WRF_DIR/namelist.input
88 sed -i "s/start_day.*/start_day␣=␣$DAY,/" $WRF_DIR/namelist.input
89 sed -i "s/start_hour.*/start_hour␣=␣$HOUR,/" $WRF_DIR/namelist.input
90

91 sed -i "s/end_year.*/end_year␣=␣$YEAR_END ,/" $WRF_DIR/namelist.input
92 sed -i "s/end_month.*/end_month␣=␣$MONTH_END ,/" $WRF_DIR/namelist.input
93 sed -i "s/end_day.*/end_day␣=␣$DAY_END,/" $WRF_DIR/namelist.input
94 sed -i "s/end_hour.*/end_hour␣=␣$HOUR_END ,/" $WRF_DIR/namelist.input
95

96 # Run executables
97 ./real.exe
98 mpirun -np 4 ./wrf.exe
99 mv wrfout* $RUN_DIR
100 mv wrfrst* $RUN_DIR
101

102 # Save the current run date and run count for the next iteration
103 cd /home/weatherimpact/WRFmodel/
104 echo "$START_DATE_FORMATTED" > last_run_date.txt
105 echo "$RUN_COUNT" > run_count.txt
106

107 at now <<ENDMARKER
108 /home/weatherimpact/WRFmodel/automating.sh
109 ENDMARKER

A.4. SEEPS
The code below provides the calculation of the SEEPS skill score at each grid-point, together with the
associated error fractions.

Listing A.9: SEEPS Calculation Script
1 "TA00047␣seems␣to␣be␣the␣best␣from␣2018-2023"
2 plt.plot(stations4_data['TA00047'])
3

4 selected_station = stations4_data['TA00047']
5 mask = (selected_station.index <= '2023-01-01␣00:00')
6 selected_station = selected_station[mask]
7

8 # Make it daily
9 h24_prec = selected_station.rolling(window=24).sum()
10 h24_prec = h24_prec.dropna()
11 # Sort values and calculate CDF
12 sorted_rain = h24_prec.sort_values()
13 cdf = sorted_rain.rank(method='max') / len(sorted_rain)
14

15 # Dry threshold
16 t1 = 1
17 p1 = cdf[sorted_rain >= t1].min()
18

19 # Calculate p2 and p3 and find thresholds
20 remain = 1 - p1
21 p2 = remain * (2 / 3)
22 p2_added = p1 + p2
23

24 t2 = np.interp(p2_added, cdf, sorted_rain)
25 t3 = sorted_rain.max()
26

27 "Make␣the␣scoring␣matrix"
28 Smatrix = [
29 [0, 1 / (1 - p1), 4 / (1 - p1)],
30 [1 / p1, 0, 3 / (1 - p1)],
31 [1 / p1 + 3 / (2 + p1), 3 / (2 + p1), 0]
32 ]
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33 Smatrix = np.array(Smatrix)
34

35 "Import␣and␣process␣data"
36 # Importing interpolated TAHMO datasets
37 path_tahmo = "C:\\Users\\Sophie.Verheugd\\Documents\\export_2506\\TAHMO_modified\\"
38 file_daily = "interpolated_daily.nc"
39 tahmo = xr.open_dataset(path_tahmo + file_daily)
40

41 # Import WRF daily
42 base_path = "C:\\Users\\Sophie.Verheugd\\Documents\\export_2506\\3km_MYNN2\\daily\\"
43 file = "5daily_prec_{date}.nc"
44 start_date = "2018-02-12"
45 end_date = "2018-02-21"
46 PBL = 'MYNN2'
47 date_range = pd.date_range(start_date, end_date)
48

49 def import_datasets(date_str):
50 file_path = base_path + file.format(date=date_str)
51 data = xr.open_dataset(file_path)
52 return data
53

54 wrf = []
55 for date in date_range:
56 date_str = date.strftime("%Y-%m-%d")
57 data = import_datasets(date_str)
58 wrf.append(data)
59

60 tahmo.sel(Time=wrf[0].Time)
61

62 counts = pd.DataFrame(data=None, index=['Total', 'errors'], columns=['dry', 'light', 'heavy'
])

63 "Calculate␣SEEPS"
64 def categorize(value, t1, t2):
65 if value < t1:
66 cat = 0
67 elif t1 <= value < t2:
68 cat = 1
69 elif value >= t2:
70 cat = 2
71 return cat
72

73 def SEEPS(tahmo, wrf, t1, t2, matrix):
74 categorized_grid = xr.DataArray(np.zeros_like(wrf, dtype=int),
75 dims=['Time', 'latitude', 'longitude'],
76 coords={'Time': wrf.Time,
77 'latitude': wrf.latitude,
78 'longitude': wrf.longitude})
79 categorized_grid_obs = xr.DataArray(np.zeros_like(wrf, dtype=int),
80 dims=['Time', 'latitude', 'longitude'],
81 coords={'Time': wrf.Time,
82 'latitude': wrf.latitude,
83 'longitude': wrf.longitude})
84 counts = pd.DataFrame(data=0, index=['Total', 'errors'], columns=['dry', 'light', 'heavy'

])
85 tahmo = tahmo.sel(Time=wrf.Time)
86 for t_idx, time in enumerate(wrf.Time):
87 for lat_idx, lat in enumerate(wrf.latitude):
88 for lon_idx, lon in enumerate(wrf.longitude):
89 value_tahmo = tahmo.sel(Time=time, latitude=lat, longitude=lon).item()
90 value_wrf = wrf.sel(Time=time, latitude=lat, longitude=lon).item()
91

92 # Determine categories
93 position_tahmo = categorize(value_tahmo, t1, t2)
94 position_wrf = categorize(value_wrf, t1, t2)
95

96 # Calculate SEEPS
97 S = (1 / 2) * matrix[int(position_wrf), int(position_tahmo)]
98

99 # Count errors
100 if position_tahmo == 0:
101 counts.iloc[0, 0] += 1
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102 if S != 0:
103 counts.iloc[1, 0] += 1
104 if position_tahmo == 1:
105 counts.iloc[0, 1] += 1
106 if S != 0:
107 counts.iloc[1, 1] += 1
108 if position_tahmo == 2:
109 counts.iloc[0, 2] += 1
110 if S != 0:
111 counts.iloc[1, 2] += 1
112

113 # Store in grid
114 categorized_grid[t_idx, lat_idx, lon_idx] = S
115 categorized_grid_obs[t_idx, lat_idx, lon_idx] = position_tahmo
116

117 # Take mean over time
118 categorized_grid_mean = categorized_grid.mean(dim='Time')
119 categorized_grid_obs_sum = categorized_grid_obs.sum(dim='Time')
120 # Rewrite to skill score
121 categorized_skillscore = 1 - categorized_grid_mean
122 categorized_skillscore = categorized_skillscore.where(categorized_skillscore >= 0, other

=0)
123 return categorized_skillscore , counts, categorized_grid_obs_sum
124

125 seeps = []
126 counts = []
127 categories = []
128 for count in range(len(wrf)):
129 seeps_element, counts_element, categorie = SEEPS(tahmo.Daily, wrf[count].

__xarray_dataarray_variable__ , t1, t2, Smatrix)
130 seeps.append(seeps_element)
131 counts.append(counts_element)
132 categories.append(categorie)
133 seeps_concat = xr.concat(seeps, dim='stack')
134 seeps_average = seeps_concat.mean(dim='stack')
135 counts_sum = sum(counts[1:], counts[0])
136 counts_sum.loc['error␣fraction'] = counts_sum.iloc[1, :] / counts_sum.iloc[0, :]
137 path_modified = 'C:\\Users\\Sophie.Verheugd\\Documents\\export_2506\\Experiments_part2\\

Modidified_data\\'
138 # counts_sum.to_csv(path_modified + f'{PBL}_count_errors_t1is{t1}.csv')
139 categories_concat = xr.concat(categories, dim='stack')
140 categories_sum = categories_concat.sum(dim='stack')
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Figures

B.1. IDW Interpolation Experimental Setup 2
Beneath you can find the IDW-interpolation output of the daily precipitation data of TAHMO, associated
to experimental setup 2.

Figure B.1: IDW-interpolation output of daily precipitation (mm/d) of TAHMO for experimental setup 2

58
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B.2. SEEPS Experimental Setup 2
Extra figures concerning the calculation of SEEPS of experimental setup 2 are depicted in this section.

(a)

(b)

(c)

(d)

Figure B.2: Precipitation time series at the four selected TAHMO stations.The gray band shows periods with no data values.
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Figure B.3: Cumulative distribution for 24-h precipitation at station TA00047 for the period of 2018-2023 with t1=1mm

Figure B.4: SEEPS, with a t1 value of 1 mm. The numbers inside each grid cell depict the rainfall amount, ranging from 0 (no
rainfall on all simulation days) to 100 (heavy rainfall on all simulation days). The spatial average is the mean SEEPS skill score

for the entire validation domain.
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B.3. Extra Results Experimental Setup 2
Evolution of the MBE and MAE

Table B.1: Evolution of the MBE and MAE against threshold values, with all daily rainfall above the threshold masked.

Threshold YSU MYJ ACM2 MYNN2
MAE MBE MAE MBE MAE MBE MAE MBE

1 0.148 −0.117 0.180 −0.099 0.136 −0.119 0.144 −0.114
3 0.382 −0.266 0.433 −0.216 0.361 −0.279 0.379 −0.261
5 0.593 −0.311 0.637 −0.259 0.566 −0.367 0.588 −0.312
7 0.742 −0.257 0.790 −0.199 0.700 −0.381 0.744 −0.235
9 1.083 −0.110 1.057 −0.036 0.939 −0.349 1.077 −0.096
11 1.316 0.078 1.315 0.168 1.088 −0.306 1.325 0.077
13 1.515 0.273 1.529 0.381 1.202 −0.209 1.527 0.271
15 1.740 0.513 1.725 0.585 1.340 −0.079 1.721 0.455
20 2.304 1.051 2.407 1.268 1.737 0.230 2.275 1.022
25 2.967 1.562 3.099 1.798 2.141 0.411 2.775 1.412
30 3.706 1.825 3.846 2.070 2.689 0.476 3.437 1.654
35 4.134 2.245 4.299 2.533 3.000 0.810 3.789 2.005
NaN 5.841 3.988 6.215 4.430 3.993 1.775 5.748 3.977
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