<]
TUDelft

Delft University of Technology

NetQASM—a low-level instruction set architecture for hybrid quantum—classical programs
in a quantum internet

Dahlberg, E.A.; van der Vecht, B.; Delle Donne, C.; Skrzypczyk, M.D.; te Raa, |.; Kozlowski, W.; Wehner,
S.D.C.

DOI
10.1088/2058-9565/ac753f

Publication date
2022

Document Version
Final published version

Published in
Quantum Science and Technology

Citation (APA)

Dahlberg, E. A., van der Vecht, B., Delle Donne, C., Skrzypczyk, M. D., te Raa, I., Kozlowski, W., & Wehner,
S. D. C. (2022). NetQASM—a low-level instruction set architecture for hybrid quantum-—classical programs
in a quantum internet. Quantum Science and Technology, 7(3), Article 035023.
https://doi.org/10.1088/2058-9565/ac753f

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1088/2058-9565/ac753f
https://doi.org/10.1088/2058-9565/ac753f

Quantum Science and Technology

PAPER « OPEN ACCESS You may also like

H . . - Intermittency in the Expanding Solar Wind:
NetQASM—a low-level instruction set architecture " diainioneuie it ™
(0.16 au), Helios 1 (0.3-1 au), an

for hybrid quantum-classical programs in a sed0Oay
q uantum |nte rnet Parashar, Rohit Chhiber et al.

- Industrially microfabricated ion trap with
1 eV trap depth
To cite this article: Axel Dahlberg et al 2022 Quantum Sci. Technol. 7 035023 S Auchter, C Axline, C Decaroli et al.

- Learning quantum data with the quantum
earth mover’s distance

Bobak Toussi Kiani, Giacomo De Palma,
. . . Milad Marvian et al.
View the article online for updates and enhancements.

This content was downloaded from IP address 154.59.124.113 on 15/09/2022 at 14:46

https://doi.org/10.1088/2058-9565/ac753f
/article/10.3847/1538-4365/ac45fa
/article/10.3847/1538-4365/ac45fa
/article/10.3847/1538-4365/ac45fa
/article/10.3847/1538-4365/ac45fa
/article/10.1088/2058-9565/ac7072
/article/10.1088/2058-9565/ac7072
/article/10.1088/2058-9565/ac79c9
/article/10.1088/2058-9565/ac79c9
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjst2QxHdc2XcMzsLGseVB5rD_Qksr0U-JgWAi4xse7o3M0zXgyU3KlDtkEjDBj-xF86YjNmtfi70EawzBfLjH1Nu5iNNUSyLBw5-mP7WGUyiCeDVKCB-9rN29yXJ5pEAk8nBXKOy1-RwzyQgGau3KP0OMlMEddh4EP6lWp9SdFcCASvgdSwuDefL1EMj3vy8n3ZC3jpZOOJZPuGSxldCpPrZlr4i8tf946MfXpKhOYhEO4WjAzHb3zmWYkDK1-PZcrqJnIrVbqNpr5DxBQ3CGPiSU2TJGlF2BxZBP01cJimq9Q&sai=AMfl-YQ6lzFznA5mD70HfTnp_lWEQG8ZM4lVsiKUfMprLlu1vVEUu804cFdawLXErPhLjSgnC4bQQ6lZu2wNALU&sig=Cg0ArKJSzGOEo39coHfD&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books

10P Publishing

® CrossMark

OPEN ACCESS

RECEIVED
17 December 2021

REVISED
5 May 2022

ACCEPTED FOR PUBLICATION
1 June 2022

PUBLISHED
20 June 2022

Original content from
this work may be used
under the terms of the
Creative Commons

Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOL.

Quantum Sci. Technol. 7 (2022) 035023 https://doi.org/10.1088/2058-9565/ac753f

Quantum Science and Technology

PAPER

NetQASM—a low-level instruction set architecture for hybrid
quantum-classical programs in a quantum internet

Axel Dahlberg'-?*(©, Bart van der Vecht'-***(©, Carlo Delle Donne"*®,
Matthew Skrzypczyk' %, Ingmar te Raa'-?@, Wojciech Kozlowski'
and Stephanie Wehner!->>*

' QuTech, Lorentzweg 1, 2628 CJ Delft, The Netherlands

2 Kavli Institute of Nanoscience, Delft, The Netherlands

* Authors to whom any correspondence should be addressed.
3 These authors contributed equally.

E-mail: b.vandervecht@tudelft.nl and s.d.c.wehner@tudelft.nl

Keywords: quantum network, quantum internet, instruction set architecture, software stack, remote entanglement, hybrid program

Abstract

We introduce NetQASM, a low-level instruction set architecture for quantum internet
applications. NetQASM is a universal, platform-independent and extendable instruction set with
support for local quantum gates, powerful classical logic and quantum networking operations for
remote entanglement generation. Furthermore, NetQASM allows for close integration of classical
logic and communication at the application layer with quantum operations at the physical layer.
This enables quantum network applications to be programmed in high-level
platform-independent software, which is not possible using any other QASM variants. We
implement NetQASM in a series of tools to write, parse, encode and run NetQASM code, which
are available online. Our tools include a higher-level software development kit (SDK) in Python,
which allows an easy way of programming applications for a quantum internet. Our SDK can be
used at home by making use of our existing quantum simulators, NetSquid and SimulaQron, and
will also provide a public interface to hardware released on a future iteration of Quantum Network
Explorer.

1. Introduction

Quantum mechanics shows that if one is able to communicate quantum information between nodes in a
network, one is able to achieve certain tasks which are impossible using only classical communication.
There are many applications [1] where a quantum network has advantage over a classical (non-quantum)
network, either by (1) enabling something that is theoretically impossible in a classical network, such as the
establishment of an unconditionally secure key [2] and secure blind quantum computing [3] or (2)
allowing something to be done faster or more efficiently such as exponential savings in communication [4]
and extending the baseline of telescopes [5]. In recent years, many experiments have been conducted to
show that a quantum network is not only a theoretical concept, and indeed advancements have been made
to implement such a quantum network on various hardware platforms [6—12]. However, these experiments
alone do not yet make a quantum network programmable, since the program logic was hard-coded into the
experimental hardware ahead of time*.

Before considering how to program quantum network applications, let us first briefly sketch the system
our applications are run on. Abstractly, quantum networks consist of nodes that are connected by channels
(figure 3). Classical channels enable classical communication between nodes, while quantum channels are
used for entanglement generation between nodes. So-called end-nodes may contain quantum processors that
can run arbitrary (quantum) programs. They have access to a quantum memory consisting of qubits, on
which they can perform operations, including quantum computations. Some of these qubits may be used

4 There have been examples of experiments with some simple logic but only with a very limited number of pre-loaded
decision-branches.

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/ac753f
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2479-7424
https://orcid.org/0000-0002-1048-5588
https://orcid.org/0000-0003-2834-4334
https://orcid.org/0000-0002-9504-9370
mailto:b.vandervecht@tudelft.nl
mailto:s.d.c.wehner@tudelft.nl

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

(e RN —)

, Application
.) 5
: Application Application I
: Layer classical Layer
\) messages \) -
: NetQASM NetQASM 5
: Quantum Quantum :
' Processing Processing :
i Unit entanglement Unit '
i R R 5
' Program 1 Program 2 i

\ Node 1 / \ Node 2 /

Figure 1. A quantum network application consists of a program for each of the nodes involved in the application. Each program
is locally executed by the node. Program execution on each node is split into execution in an application layer, which can send
and receive classical messages, and a quantum processor, which can create entanglement with another node. The communication
between nodes can hence be both classical and quantum. Communication instructions need to be matched by corresponding
instructions in the other program. There is no global actor overseeing execution of each of the programs, and the nodes may be
physically far apart.

for establishing an entangled quantum state with a remote node. An end-node also possesses a classical
processor and a classical memory. Furthermore, an end-node can send and receive classical messages to and
from other end-nodes in the network. A network of quantum networks may be a called a quantum internet.

Quantum (network) processors differ from classical processors in a number of ways. Firstly, quantum
memory has limited lifetime, meaning that its quality degrades over time. For example, quantum memories
based on nitrogen-vacancy (NV) centers in diamond have impressively been optimized to achieve lifetimes
in the order of seconds [13]; however, this is still very short compared to classical memories, which
generally do not have a limited lifetime at all. Therefore, the quality of program execution is time-sensitive.
Secondly, physical devices are prone to inaccuracies which lead to decreased quality of (quantum)
computation. For example, applying an operation (like a gate) on a qubit affects that qubit’s quality. We
note that the two challenges mentioned so far are also inherent to non-network quantum processors.
Quantum network processors have additional challenges: (1) the processor may have to act as a local
computation unit and a network interface at the same time; for example, in NV centers, an electron spin
qubit is used for generating entanglement with a remote node but is also needed to do local two-qubit gates,
(2) remote-entanglement operations may not have a fixed time in which they complete, which makes
scheduling and optimization more difficult.

Quantum network applications, also called protocols, are multi-partite programs that involve
entanglement generation and classical communication between different end-nodes, as well as local
computation. Examples include quantum key distribution (QKD) [2, 14], leader election protocols [15, 16],
and blind quantum computation (BQC) [1]. Such applications are split into distinct programs each of
which runs on a separate end-node. The programs consist of both local operations (classical and quantum)
and network operations (classical and quantum), see figure 1. That is, the programs communicate either by
passing classical messages, or by establishing quantum entanglement. For example, BQC involves a client
node and a server node, both of which run their own program. Their joint execution looks roughly as
follows: (1) the client and server engage in remote entanglement generation such that the server’s quantum
memory ends up being in a certain state, (2) the client sends instructions to the server in the form of a
classical message, (3) the server performs a measurement-based computation on its own quantum memory
based on the client’s instructions, (4) the server sends measurement results back to the client, (5) the client
sends new instructions based on the measurement results, (6) repeat steps (3) to (5) until the client obtains
its desired result.

The example above illustrates that quantum network programs consist of different types of operations.
Indeed, program code consists of classical code, containing local classical operations and classical
communication with other nodes, and quantum code, which are operations on quantum memory (such as
gates) and remote entanglement generation. Blocks of these types of code may depend on each other in
multiple ways, as depicted in figure 2. Programs with mixed classical and quantum operations have also

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

Program

Classical code

depends on : :

depends on H

.....................

[*~depends : E
on g] '
™~ Classicalcode |—-depends on—»!

Quantum code

i
Classical code ;
on other node !

depends on !

] Quantum code

Figure 2. A program on a single node consists of different blocks of code, which can be quantum (pure quantum instructions
with classical control in between), or classical (no quantum operations at all). These blocks may depend on each other in various
ways. For example, the outcome of a measurement happening in one of the quantum blocks may be used in a calculation
performed in one of the classical blocks. Blocks may also depend on other nodes. For instance, the value of a message coming
from another node can influence the branch taken in one of the classical blocks.

been called dynamic quantum circuits [17, 18], but these do not cover the networking dimension found in
programs we consider here, such as the dependency on remote information and entanglement generation
operations.

Due to the nature of quantum network programs, execution may have to wait for some time. For
example, the program needs to wait until another node sends a classical message, or until remote
entanglement has been established. Therefore, it makes sense to run multiple (independent) quantum
network programs on a node at the same time (interleaved), so that processor idle times can be filled by
execution of other programs. This is something that typically does not happen on local quantum
computers, and therefore introduces new challenges.

Quantum network applications may be programmed by a single actor. For example, a developer may
program a QKD application in the form of a two programs, and distribute these two programs to two
end-nodes in the network. Alternatively, a single-node quantum network program may be developed
separately from other programs, possibly not knowing how these other programs are implemented. For
example, a BQC service provider could have already implemented the server-side program of a specific BQC
protocol. A client may then write the client-side of this protocol, without having control over the server-side
implementation.

The aim of this work is to propose a way to program quantum network programs and execute them on
the end-nodes of a quantum network.

1.1. Contribution

In this work we introduce an abstract model—including a quantum network processing unit (QNPU)—for
end-nodes in a quantum network, which we define in section 2. We then propose Net QASM, an instruction
set architecture that can be used to run arbitrary programs (of the form described in figure 2) on
end-nodes, as long as the end-nodes realize the model including the QNPU.

NetQASM consists of a specification of a low-level assembly-like language to express the quantum parts
of quantum network program code. It also specifies how the application layer should interact with the
ONPU and how the assembly language can be used to execute (network) quantum code. This is not possible
using other QASM languages.

The NetQASM language is extendible using the concept of flavors. The core language definition consists
of a common set of instructions that are shared by all flavors. This common set contains classical
instructions for control-flow and classical memory operations. This allows the realization of low-level
control logic close to the quantum hardware; for example, to perform branching based on a measurement
outcome. Quantum-specific instructions are bundled in flavors. We introduce a vanilla flavor containing
universal platform-independent quantum gates. Using this flavor of the Net QASM language enables the
platform-independent description of quantum network programs. Platform-specific flavors may be created

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

to have quantum operations that are native and optimized for a specific hardware platform. As an example,
we show a flavor tailored to the NV hardware, a promising platform for quantum network end-nodes
[19, 20].

In our model, application-specific classical communication only happens at the application layer
(figure 1). In particular, this means that Net QASM contains no provision for classical communication with
the remote node. We remark that of course, classical control communication may be used by the QNPU to
realize the services of the quantum network stack accessed through Net QASM.

We note that NetQASM is used for representing and running code that runs on a single node in a
quantum network. Synchronization between the (NetQASM) programs of multiple nodes is the
responsibility of the programmer. For example, in a client-server application, if the client code contains a
‘receive classical message’ operation, it is the responsibility of the server node that its program code contains
a ‘send classical message’ operation at the right moment. The same holds for instructions for creating
remote entanglement. In terms of precise timing, which is needed for entanglement generation, it is the
QNPU that is responsible to communicate and synchronize with the QNPU of the other node to make sure
entanglement attempts are synchronized.

With Net QASM we solve various problems that are unique to quantum internet programming: (1) for
remote entanglement generation, we introduce new instruction types for making use of an underlying
quantum network stack [21, 22], (2) for the close interaction between classical and quantum operations, we
use a shared-memory model for sharing classical data between the application layer and the QNPU, (3) in
order to run multiple applications on the same quantum node—which may be beneficial for overall
resource usage (see section 4)—we make use of virtualized quantum memory, similar to virtual memory in
classical computing [23], (4) since on some platforms, not all qubits may be used to generate remote
entanglement, we introduce the concept of unit-modules describing qubit topologies with additional
information per (virtual) qubit about which operations are possible.

Since Net QASM is meant to be low-level, similar in nature to classical assembly languages, we have also
developed a higher-level software development kit (SDK), in Python, to make it easier to write applications.
This SDK and related tools are open-source and freely available at [24], as part of our Quantum Network
Explorer [25]. Through the SDK we have also enabled the quantum network simulators Net Squid [26]
and SimulaQron [27] to run any application programmed in Net QASM.

We have evaluated Net QASM by simulating the execution of a teleportation application and a BQC
using Net QASM. Hereby we have shown that interesting quantum internet applications can indeed be
programmed using Net QASM. Furthermore, the evaluations argue certain design choices of Net QASM,
namely the use of so-called unit-modules, as well as platform-specific flavors.

We remark that Net QASM has already been used on a real hardware setup in the lab, in a highly
simplified test case that only produces entanglement [28].

1.2. Related work

In the field of quantum computing, a substantial amount of progress has been made related to developing
architectures (e.g. [29-36]), instruction sets (e.g. [37—45]) and compilers [46—59]. One example is QASM,
an instruction set framework, borrowing ideas from classical assembly languages, which has gained a lot of
popularity over the years and has been successfully integrated in software stacks for quantum computers.
There are in fact many variants of QASM such as OpenQASM [37], cQASM [38], eQASM [39], £ -QASM
[40]. Some of these variants are at a level closer to the physical implementation, such as eQASM, allowing
for specifying low-level timing of quantum operations, while others, such as £ -QASM, are at a higher level.
Together with the definition of these QASM-variants, progress has also been made in compilation of
applications programmed in QASM to hardware implementations. More abstract languages and
programming frameworks for quantum programs include Quil [41], Qiskit [42], Cirqg [43], Q# [44],
QuEST [45].

None of these instruction sets or languages contain elements for remote entanglement generation (i.e.
between different nodes), which NetQASM does provide. A Net QASM program that uses the vanilla flavor
and only contains local operations would look similar to an OpenQASM program. However, the instruction
set is not quite the same, since Net QASM uses a different memory model than OpenQASM. This is due to
the hybrid nature of quantum network programs, which has more interaction between classical data and
quantum data than non-networking programs (for which OpenQASM might be used). So, Net QASM is not
just a superset of the OpenQASM instruction set (in the sense of adding entanglement instructions).

In [27], we introduced the CQC interface, which was a first step towards a universal instruction set.
However, CQC had a number of drawbacks, in particular: (1) CQOC does not have a notion of virtualized
memory (see section 4), which meant that applications needed to use qubit IDs that were explicitly
provided by the underlying hardware. This introduced more communication overhead and fewer

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

optimization opportunities for the compiler. (2) CQC does not provide as much information about
hardware details. Therefore, platform-specific compilation and optimization is not possible. (3)
Furthermore, CQC does not match entirely with the later definition of our quantum network stack [21, 22].
For example, it was not clearly defined how CQC relates to the definition of a network layer.

Many of the ideas from e.g. QASM for how to handle and compile local gates can be reused also for
quantum network applications. For example, version 3 of OpenQASM [17] which is under development,
proposes close integration between local classical logic and quantum operations, which is something we also
propose in this work. However, there are two key differences that we need to address:

(a) Instructions for generating entanglement between remote nodes in the network need to be handled and
integrated with the rest of the application, see section 2.2 below.

(b) The local operations performed by a node might depend on information communicated by another
node and only known at runtime. Note that this is different from the conditionals on local classical
information, proposed in for example OpenQASM version 3, which does not require communication
between remote nodes in a network. This brings new constraints in how to handle memory allocation,
scheduling and addressing. We discuss this point in further detail in the coming sections.

NetQASM solves the above two points and improves upon CQC.

1.3. Outline

In section 2 we define relevant concepts and introduce the model of end-nodes that we use, including the
QONPU. In section 3 we discuss use-cases of a quantum network which NetQASM should support. In
section 4 we consider requirements and considerations any instruction set architecture for quantum
networks should fulfill which then lay the basis for the decisions that went into developing Ne t QASM, see
section 5. In sections 6 and 7 we describe details about the Net QASM language and associated SDK. In
section 8 we quantitatively evaluate some of the design decision of Net QASM by benchmarking quality of
execution using the quantum network simulator Net Squid [26, 60]. We conclude in section 9.

2. Preliminaries and definitions

2.1. Quantum networks

A schematic overview of quantum networks is given in figure 3. A quantum network consists of end-nodes
(hereafter also: nodes), which contain quantum network processors as well as classical processors. Nodes are
connected by quantum channels or links that can be used to generate entangled quantum states across nodes.
End-nodes possess quantum memory in the form of qubits, which can be manipulated by performing
operations such as initialization, readout, and single- or multi-qubit gates. Each quantum memory has a
certain topology that describes which operations can be applied on which (pair of) qubits. Some of the
qubits in a quantum memory may be used to generate an entangled state with another node. These qubits
are called communication qubits [21], in contrast to storage qubits which can only directly interact with other
qubits part of the same local node®.

Some platforms only have a single communication qubit and multiple storage qubits [61], whereas
others can have multiple communication qubits [11]. Qubits are sensitive to decoherence and have limited
lifetimes. Therefore, the timing and duration of operations (such as local gates or entanglement generation
with another node) have an impact on the quality of quantum memory. Classical processors control the
quantum hardware, and also perform classical computation. Finally, classical links exist between nodes for
sending classical messages.

Since end-nodes can control their memory and entanglement generation, they can run arbitrary user
programs. End-nodes can both communicate classically and generate entanglement between each other,
either directly or through repeaters and routers, (figure 3). Nodes in the network other than end-nodes,
such as repeaters and routers, do not execute user programs; rather these run protocols that are part of
some level in the network stack [21, 22]. These internal nodes in the network perform elementary link
generation and entanglement swapping in order to generate long-distance remote entanglement between
end-nodes [21].

5 A storage qubit may however hold a state that is entangled with a qubit in another node: after remote entanglement generation
using a communication qubit, the state in that local qubit could be transferred to one of the storage qubits, preserving the remote
entanglement.

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

—— Quantum channel

.= = = s Classical channel

End-node

. Quantum router

Quantum repeater

Communication qubi .
Classical router

Storage qubit

Figure 3. Abstract model of a quantum network and its components. Quantum network applications run on the end-nodes
(blue). Their communication via classical message passing and quantum entanglement (figure 1) is abstracted away by a network
stack. That is, it is not visible at the application layer how entanglement generation or classical message passing is realized. This
may be via direct physical connections, or intermediary repeaters and/or routers. End-nodes hold two types of qubits: (1)
communication qubits which can be used to generate entanglement with remote nodes and (2) storage qubits which can be used to
store quantum states and apply operations. A communication qubit may also be used as a storage qubit. The qubits within an
end-node can interact through quantum gates and their state can be measured.

There are various quantum hardware implementations for quantum network processors, such as NV
centers in diamond [61], ion traps [8], and neutral atoms [9, 62], which all have different capabilities and
gates that can be performed.

In contrast to classical networks, we consider the end-nodes in a quantum network to not have a
network interface component that is separated from the main processing unit. Having local and networking
operations combined in a single interface reflects the physical constraint on current and near-term
hardware. Current state-of-the-art hardware for quantum networking devices can make use of up to the
order of 10 qubits [63]. Furthermore, certain hardware implementations, such as NV centers in diamond
[61], only have a single communication qubit, which also acts as a mediator for any local gate on the storage
qubits. This prevents dedicating some qubits for purely local operations and some for purely networking
operations. Rather, to make maximal use of near-term quantum hardware, a multi-purpose approach needs
to be supported.

2.2. Application layer and QNPU

In this work we will assume an abstract model of the hardware and software architecture of end-nodes in a
quantum network. Specifically, we assume each end-node to consist of an application layer and a QNPU.
The application layer can be also be seen as a the user space of a classical computer, and the QNPU as a
COProcessor.

This model takes into account both physical- and application-level constraints found in quantum
network programming. The QNPU can be accessed by the application layer, at the same node, to execute
quantum and classical instructions. We define the capabilities of the QNPU, and roughly their internal
components, but do not assume how exactly this is implemented. In the rest of this work, we simply use the
QNPU as a black box.

The QNPU can do both classical and quantum operations, including (1) local operations such as classical
arithmetic and quantum gates and (2) networking operations, i.e. remote entanglement generation. The
application layer cannot do any quantum operations. It can only do local computation and classical
communication with other nodes. In terms of classical processing power, the difference between the
application layer and the QNPU is that the application layer can do heavy and elaborate computation, while
we assume the QNPU to be limited in processing power.

The application layer can interact with the QNPU by for example sending instructions to do certain
operations. The application layer and the QNPU are logical components and may or may not be the same

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

Application layer }(— - =>

3 [

Shared memory NetQASM
- Classical communciation
r L < > channel
/ QNPU \ <> Quantum communication
channel
Classical
[processor
Classical Quantum -
memory network stack ‘“ >
Quantum g, . ideaeas
processor < >

o

Figure4. Overview of QNPU components and interfaces. The application layer talks to the QNPU using Ne t QASM. The
processor inside the QNPU can interact with all other components. Channels are connecting components with corresponding
components in adjacent nodes in the network.

physical device. It is assumed that there is low latency in the communication between these components,
and in particular that they are physically part of the same node in the network.

One crucial difference between the application layer and the QNPU is that the application layer can do
application-level classical communication with other end-nodes, while the QNPU cannot. The QNPU can
communicate classically to synchronize remote entanglement generation, but it does not allow arbitrary
user-code classical communication. We use this restriction in order for the QNPU to have relatively few
resource requirements.

The QNPU consists of the following components, see figure 4:

e Processor. The processor controls the other components of the QNPU and understands how to execute
the operations specified by the application layer. It can read and write data to the classical memory
and use this data to make decisions on what operations to do next. It can apply quantum gates to the
qubits in the quantum memory and measure them as well. Measurement outcomes can be stored in
the classical memory.

e Classical memory. Random-access memory storing data produced during the execution of
operations, such as counters, qubit measurement outcomes, information about generated entangled
pairs, etc.

e Quantum memory. Consists of communication and storage qubits, see section 2.1, on which
quantum gates can be applied. The qubits can be measured and the resulting outcome stored in the
classical memory by the processor. The communication qubits are connected through a quantum
channel to adjacent nodes in the quantum network, through which they can be entangled. This
quantum channel may also include classical communication needed for synchronization, phase
stabilization or other mechanisms needed in the specific realization.

e Quantum network stack. Communicates classically with other nodes and quantum repeaters in the
network to synchronize the generation of remote entanglement, and issues low-level instructions to
execute the entanglement generation procedures, see [21, 22].

We stress that the internals of the QNPU are not relevant to the design of Net QASM. We do assume that

the QNPU only has limited classical processing power, and can therefore be implemented on for example a
simple hardware board.

2.3. Applications and programs

As mentioned in section 1, quantum network applications (or protocols) are multi-partite and distributed
over multiple end-nodes. The unit of code that is executed on each of the end-nodes that are part of the
application, is called a program. We will use this terminology throughout the rest of the paper.

As mentioned in the previous section, the end-nodes are modeled such that there is an application layer
and a QNPU. We assume that execution of quantum network programs is handled by the application layer.
How exactly the program is executed, and how the QNPU is involved herein, is part of the Net QASM
proposal.

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

3. Use-cases

In the next section we will discuss the design considerations taken when developing Net QASM. These
design considerations are based on a set of use-cases listed in this section which we intend for Net QASM to
support. Applications intended to run on a quantum network will often depend on a combination of these
use-cases.

e Local quantum operations. Applications running on a network node need to perform quantum
operations on local qubits, including initialization, measurement, and single- or multi-qubit gates.
Such local qubit manipulation is well known in the field of quantum computing. For example,
OpenQASM [37] describes quantum operations. Quantum network applications should be able to do
these local operations as well.

e Local quantum operations depending on local events or data. The next use-case stems from
applications consisting of programs in which limited classical computation or decision making is
needed in-between performing quantum operations. Here we consider only dependencies in a
program between quantum operations and information that is produced locally, that is, on the node
that this program is being executed. For instance, a program might only apply a quantum gate on a
qubit depending on the measurement outcome of another qubit, or choose between execution
branches based on evaluation of a classical function of earlier measurement outcomes. An example is
for the server-side of BQC, which performs a form of measurement-based quantum computation
(MBQCQ). In each step of the MBQC, the server performs certain gates on a qubit, depending on
results of measuring previous qubits [64]. These applications need classical operations to not take too
much time, so that qubit states stay coherent during these operations. This implies that switching
between classical and quantum operations should have little overhead.

e Entanglement generation. Crucial to quantum networks is the ability to generate remote
entanglement. Applications should be able to specify requests for entanglement generation between
remote nodes. In some cases, a measure-directly [21] type generation is required, where entangled
state is measured directly, without storing in memory, to obtain correlated classical bits, such as in
QKD. However, in many cases a create-keep [21] type is needed, where the entanglement needs to be
stored in memory and further operations applied involving other qubits. We want applications to be
able to initiate or receive (await) entanglement of both forms with nodes in the network.

e Local quantum operations depending on remote events or data. We already mentioned the use-case
of having conditionals based on local information. We also envision applications that need to store
qubits and subsequently perform local quantum operations on them and other local qubits, based on
classical information coming from another node. An example is teleportation in which the
receiver—after successful entanglement generation—needs to apply local quantum corrections based
on the measurement outcomes of the sender. Another application is BQC, where the server waits for
classical instructions from the client about which quantum operations to perform. Hence, there need
to be integration of classical communication (sending the measurement results or further
instructions) and the local quantum operations. Furthermore, since classical communication has a
non-zero latency (and is in general even non-deterministic), it should be possible to suspend doing
quantum operations while waiting for communication or performing classical processing, while
quantum states stay coherent.

e Waiting time. We consider the scenario where an application requires two nodes to communicate
with each other, and where communication takes a long time, for example since they are physically far
apart. It should be possible for a program to suspend doing quantum operations while waiting for
communication or performing classical processing, while quantum states stay coherent. Furthermore,
in order to maximize the usage of the QNPU we want to have a way to fill this waiting time in a useful
way.

4. Design considerations

In this section we review the most important design considerations and requirements that were applied
when developing NetQASM. Our proposed solutions to these design considerations are presented in the
next section, with more details about Net QASM as a language in the subsequent sections.

e Remote entanglement generation. One of the main differences compared to the design
considerations of a quantum computing architecture is that of remote entanglement generation
(see the use-case in section 3). Nodes need to be able to generate entanglement with a remote node,

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

which requires the collaboration and synchronization of both nodes, and possibly intermediate nodes,
which is handled by the network stack (section 2).

Further requirements arise in platforms with a limited number of communication qubits. The
extreme case is NV centers in diamond which have a single communication qubit that additionally is
required for performing local operations. For this reason it is not possible to decouple local gates on
qubits from entanglement generation. We note the contrast with classical processors, where
networking operations are typically intrinsically separate kinds of operations. For example, operations
such as sending a message may simply involve moving data to a certain memory (e.g. that of a
physically separate network interface), which is often abstracted as a system call.

A quantum network stack has already been proposed in [21, 22], and we expect the QNPU of the
end-node to implement such a stack, including a network layer that exposes an interface for
establishing entanglement with remote nodes. The way in which a program creates remote
entanglement should therefore be compatible with this network layer.

e Conditionals. In section 3 we mentioned the need to do local quantum operations conditioned on
classical data that may be generated locally or by remote nodes. Such classical data include for
example measurement results or information communicated to or from other nodes in the network.
We distinguish between real-time and near-time conditionals [17]. Real-time conditionals are
time-sensitive, such as applying a certain quantum operation on a qubit depending on a measurement
outcome. For such conditionals, we would like to have fast feedback, in order for quantum memory
not to wait too long (which would decrease their quality). Near-time conditionals are not as sensitive
to timing. For example, a program may have to wait for a classical message of a remote node, while no
quantum memory is currently being used. Although it is preferably minimized, the actual waiting
time does not affect the overall execution quality.

e Shared memory. As described in section 2, we expect end-nodes to consist of an application layer and
a QNPU. These two components have different capabilities. For example, only the application layer has
the ability to do arbitrary classical communication with other nodes. Only the QNPU can do quantum
operations. These restrictions lead the design in a certain way. The two components hence need to
work together somehow. There needs to be model for interaction between the two, and also for shared
memory.

Executing programs on an end-node is shared by the application layer and the QNPU (see section 2.2).
Indeed, only the QNPU can do quantum-related operations, whereas the application layer needs to do
classical communication. In order to make these work together, the two components have to share data
somehow. This includes the application layer requesting operations on the QNPU, and sending the
following from the QNPU to the application layer: (1) measurement outcomes of qubits, (2)
information about entanglement generation, in particular a way to identify entangled pairs. This
communication between application layer and QNPU needs to be done during runtime of the program.
This is in contrast to local quantum computation, where one might wait until execution on the QNPU
is finished before returning all data. The challenge for quantum network programs is to have a way to
return data while quantum memory stays in memory.

e Processing delay. Since we assume that the application layer and the QNPU have to share execution of
a single program, the interaction between the two layers should be efficient. Unnecessary delays lead
to reduced quality (see section 1). The challenge is therefore to come up with an architecture for the
interaction between the application layer and the QNPU, as well as a way to let QNPU execution not
take too long.

e Platform-independence. As explained in section 1, hardware can have many different capabilities and
gates that can be performed. However, application programmers should not need to know the details
of the underlying hardware. For this reason, there needs to be a framework through which a
programmer can develop an application in a platform-independent way which compiles to operations
the QNPU can execute.

e Potential for optimization. Since near-term quantum hardware has a limited number of qubits and
qubits have a relatively short lifetime, the hardware should be utilized in an effective way. There is
therefore a need to optimize the quantum gates to be applied to the qubits. This includes for example
choosing how to decompose a generic gate into native gates, rearranging the order of gates and
measurements and choosing what gates to run in parallel. Since different platforms have vastly
different topologies and gates that they can perform, this optimization needs to take the underlying
platform into account. The challenge is to have a uniform way to express both platform-independent
and platform-specific instructions.

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

e Multitasking. The ‘waiting time’ use-case in section 3 describes that a node’s QNPU may have to wait
a long time. We consider the solution that the QNPU may do multitasking, that is, run multiple
(unrelated) programs at the same time. Then, when one program is waiting, another program can
execute (partly) and fill the gap. To make our design compatible with such multitasking, we need to
provide a way such that programs can run at the same time as other programs, but without having to
know about them.

e Ease of programming. Even though Net QASM provides an abstraction over the interaction with the
QNPU, it is still low-level and hence not intended to be used directly by application developers.
Furthermore, applications also contain classical code that is not intended to run on the QNPU.
Therefore it should be possible to write programs consisting of both classical and quantum (network)
operations in a high-level language like Python, and compile them to a hybrid quantum-—classical
program that uses Net QASM.

5. Design decisions

Based on the use-cases, design considerations and requirements, we have designed the low-level language
NetQASM as an API to the QNPU. In this section we present concepts and design decisions we have taken.
Details on the mode of execution and the Net QASM-language are presented in section 6.

5.1. Interface between application layer and QNPU

5.1.1. Execution model

As described in section 2, and also in section 6 program execution is split across the application layer and
the QNPU. Since the QNPU is assumed to have limited processing power (section 2), our design lets the
application layer do most of the classical processing. The program blocks (figure 2) are hence spread over
two separate systems: blocks of purely classical code are executed by the application layer, and blocks of
quantum code (containing both quantum operations and limited classical control) are executed by the
QNPU.

The quantum code (including limited classical control) is expressed using the Net QASM language. The
classical code is handled completely by the application layer, and we do not impose a restriction to its
format. In our implementation (section 7), we use Python. This classical code on the application layer also
handles all application-level classical communication between nodes, since it cannot be done on the QNPU.

We let the application layer initiate a program. Whenever quantum code needs to be executed, the
application layer delegates this to the QNPU. Since processing delay should be minimized (section 4), the
communication between application layer and QNPU should be minimized. Therefore, NetQASM bundles
the quantum operations together into blocks of instructions, called subroutines, to be executed on the
QNPU. A program, then, consists of both classical code and quantum code, and the quantum code is
represented as one or more subroutines. These subroutines can be seen as the quantum code blocks of
figure 2.

For most programs, we consider subroutines to be sent consecutively in time. However, if the QNPU
supports it, Net QASM also allows to send multiple subroutines to be executed on the QNPU at the same
time, although this requires some extra care when dealing with shared memory. From the perspective of the
QNPU, a program consists of a series of subroutines sent from the application layer. Before receiving
subroutines, the application layer first registers a program at the QNPU. The QNPU then sets up the classical
and quantum memories (see below) for this program. Then, the application layer may send subroutines to
the QNPU for execution.

5.1.2. Shared classical memory

Since classical and quantum blocks in the code (as per figure 2) can depend on each other, the application
layer and the QNPU need to have a way to communicate information to each other. For example, a
subroutine may include a measurement instruction; the outcome of this measurement may be used by the
application layer upon completion of the subroutine. Therefore, Net QASM uses a shared memory model
such that conceptually both layers can access and manipulate the same data. This solves the need to return
data, and to do conditionals (section 4).

Each program has a classical memory space consisting of registers and arrays. Registers are the default
way of storing classical values, like a measurement outcome. In the example of the application layer needing
a measurement outcome, there would be an instruction in the subroutine saying that a measurement
outcome needs to be placed in a certain register. The application layer can then access this same register
(since they share the memory space) and use it in further processing. The number of registers is small, and
constant for each program. Arrays are collections of memory slots (typically the slots are contiguous),

10

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

Classical
comp.

Application layer

—u
Circuit (e.g QASM) Circuit (e.g. QASM)
Outcome Outcome
Quantum
= = "= u

computing
device Execution Reset qubits

(a)

Classical
comp.

Application layer

— =
Quantum code block Quantum code block
Outcome Outcome
QNPU » aw a» u

Execution Qubits persists
(b)

Figure 5. Program interaction between the application layer and a quantum device in both the case of hybrid-quantum
computing (figure 5(a)) and quantum networks (figure 5(b)). In the case of hybrid-quantum computing, qubits are reset in
between circuits (in e.g. QASM). For quantum internet programs the qubits should on the other hand be kept in memory, since
they might be entangled with another node and intended to be used further.

which can be allocated by the program at runtime. Arrays are used to store larger chunks of data, such as
parameters for entanglement requests, entanglement generation results, or multiple measurement outcomes
when doing multiple entangle-and-measure operations. The application layer may only read from the
shared memory; writing to it can only be done by issuing Net QASM instructions such as set (for registers)
and store (for arrays). The QNPU may directly write to the shared memory, for example when
entanglement finished and it writes the results to the array specified by the program.

5.1.3. Unit modules

In order to support systems with multitasking (section 4), Net QASM provides a virtualized model of the
quantum memory to the program. This allows the QNPU to do mapping between the virtualized memory
and the physical memory and perform scheduling between programs.

The quantum memory for a program is represented by a unit-module (figure 6). A unit-module defines
the topology of the available qubits (which qubits are connected, i.e. on which qubit pairs a two-qubit gate
can be executed), plus additional information on each qubit. This additional information consists of which
gates are possible on which qubit or qubit pair. It also specifies if a qubit can be used for remote
entanglement generation or not. The extra information is needed since on some platforms, not all qubits
can be used for entanglement generation and different qubits may support different local gates. For
example, in a single NV-centre, there is only one communication qubit and any additional qubits are
storage qubits. Also, the communication qubit can do different local gates than the storage qubits (figure 7).

A single program has a single quantum memory space, which is not reset at the end of a subroutine,
which is in contrast with quantum computing. This allows the application layer to do processing while
qubits are in memory. The following sequence of operations provides an example. (1) The application layer
first sends a subroutine containing instructions for entanglement generation with a remote node R. (2) The
ONPU has finished executing the subroutine, and informs the application layer about it. There is now a
qubit in the program’s memory that is entangled with some qubit in R. (3) The application layer does some
classical processing and waits for a classical message from (the application layer of) R. (4) Based on the
contents of the message, the application layer sends a new subroutine to the QNPU containing instructions
to do certain operations on the entangled qubit. The subroutine can indeed access this qubit by using the
same identifier as the first subroutine, since the quantum memory is still the same. We note the contrast
with (non-network) quantum computing, where quantum memory is reset at the end of each block of
instructions (figure 5).

11

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

{ meas, rot_x, rot_y, rot_z }

O communication qubit

O memory qubit

—>» two-qubit gate

{ crot_x, crot_y }
{ crot_x, crot_y }

{rot_x, rot_y, rot_z } {rot_x, rot_y, rot_z }

Figure 6. Example of a unit-module topology on a platform using NV centers in diamond. A unit-module is a hypergraph [65],
with associated information on both nodes and edges. Each node represents a virtual qubit, containing information about (1) its
qubit type (communication or storage), (2) physical properties of the qubit, such as decoherence times and (3) which
single-qubit gates are supported on the qubit, together with their duration and noise. Each edge represents the possibility of
performing joint operations on those qubits, such as two-qubit gates, and also containing information about gate durations and
noise.

array 10 @O // array for writing EPR results to

array 1 @1 // array with virtual IDs for enangled qubits to be generated
store 0 @1[0] // set virtual ID of the only generated qubit to O

array 20 @2 // array for holding EPR request parameters

store 0 @2[0] // set request type to 0 (Create and Keep)

store 1 @2[1] // set number of requested EPR pairs to 1

create_epr(1,0) 1 2 0 // send command to create EPR pair

wait_all @O0[0:10] // wait until results for first pair (10 elements) are available
set QO 0

meas QO MO // measure the entangled qubit

qfree QO

ret_reg MO // return measurement outcome

Figure 7. Example of NetQASM code for generating a single entangled pair with another node followed by a measurement. See
the appendix for more details of the instructions.

unit-modules contain virtual qubit IDs. This is because of the requirement that it should be possible to run
multiple programs at the same time on a single QNPU (multitasking consideration in section 4). We use an
approach that is similar to virtual memory in classical systems [23]. Each application has control over a set
of physical qubits, but the application does not (need to) know which physical qubits these are exactly. The
unit-module provides a virtualized view of this available memory. This view contains virtual IDs each
representing a single qubit, called a virtual qubit. The QNPU maintains a mapping of virtual IDs (per
application) to physical qubits. The QNPU may change this mapping over time, without the applications
knowing. We stress that our virtualization hence only involves a mapping from IDs to physical qubits. There
is no copying of quantum states involved.

We note that this design decision meets our multitasking consideration (section 4). By using virtualized
unit-modules, the QNPU is free to map qubit IDs of the application to physical qubits as it sees fit. For
example, consider a node with a physical memory consisting of one communication qubit, and multiple
memory qubits. Application A creates entanglement with a remote node such that its half of the pair is in
the communication qubit. Then, application A needs to wait for a long time before further processing the
quantum state in this qubit, for example since it needs to wait for a classical message from a remote node.
Meanwhile, application B is waiting to be executed on the QNPU, and it also requires the communication
qubit for entanglement generation. The QNPU can now move the state from the communication qubit to
one of the memory qubits, and update the mapping of application A’s ID to this physical memory qubit.
Then, the QNPU can run application B while A is waiting for the classical message. When B has finished, the
QNPU can move A’s state back to the communication qubit. Since application A uses the unit-module and
does not know about the physical memory, it (1) does not care that its state was temporarily moved to a
different physical qubit, and (2) can remain oblivious about any other application being run (like B) while it
is waiting.

12

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

5.2. NetQASM language

5.2.1. Instructions

As explained in section 5.1, the application layer delegates quantum code (including limited classical
control) of the program to the QNPU by creating blocks of instructions and sending these to the QNPU for
execution. These blocks are called subroutines and contain Net QASM instructions. Since the QNPU is meant
to be limited in processing power, the instruction set that it interprets should also be simple and low-level.
The Net QASM instruction set contains instructions for simple arithmetic, classical data manipulation, and
simple control flow in the form of (un)conditional branch instructions. Although conditional control-flow
can be done at the application layer as well, Net QASM branching instructions allow for much faster
feedback since they are executed by the QNPU, and hence cover the design consideration of real-time
conditionals (section 4). We note the obvious performance gain by being able to do control logic without
having to go back to the application layer. There are no higher-level concepts such as functions or for-loops,
which would require more complicated and resource-demanding parsing for the QNPU, such as
constructing an abstract syntax tree.

A single instruction specifies an operation, possibly acting on classical or quantum data. For example, a
single-qubit rotation gate is represented as an instruction containing the type of gate, the classical register
containing the rotation angle, and the classical register containing the virtual ID of the qubit (as specified in
the unit-module) to act on. Net QASM specifies a set of core instructions that are expected to be
implemented by any QNPU. These include classical instructions like storing and loading classical data,
branching, and simple arithmetic. Different hardware platforms support different quantum operations.
NetQASM should also support platform-specific optimization (section 4). Therefore, Net QASM uses flavors
of quantum instructions (section 5.2.3). The vanilla flavor consists universal of a set of
platform-independent quantum gates. Particular hardware platforms, such as the NV-centre, may use a
special NV flavor, containing NV-specific instructions. A QNPU implementation may use a custom mapping
from vanilla instructions to platform-specific ones. The instructions in a flavor are also called a
software-visible gate set [31]. See appendix F for more details on Ne t QASM instructions.

5.2.2. Remote entanglement generation

Generating entanglement with a remote node is also specified by instructions. These are however somewhat
special compared to other instructions. First, entanglement generation has a non-deterministic duration.
Therefore, when an entanglement instruction is executed, the request is forwarded to the part of the system
responsible for creating entanglement, but the instruction itself immediately returns. A separate wait
instruction can be used to block on entanglement generation to actually be completed. Second,
entanglement generation requests should be compatible with the network stack proposed in [21], including
the network layer from [22]. These requests need to be accompanied by information such as the number of
EPR pairs to generate or the minimum required fidelity. Third, this information should be able to depend
on runtime information. For example, the required fidelity may depend on an earlier measurement
outcome. Therefore, entanglement generation parameters cannot be static data, and must be stored in
arrays. Furthermore, the result of entanglement generation with the remote node consists of a lot of
information, such as which Bell state was produced, the time it took, and the measurement results in case of
measuring directly. This information is written by the QNPU to an array which is specified by the
entanglement instruction. Finally, since writing the information to the array indicates that entanglement
generation succeeded, the wait instruction can be used to wait until a certain array is filled in, such as the
one provided by the entanglement instruction. Since the entanglement instruction is non-blocking, it is
possible to continue doing local operations while waiting for entanglement generation to complete.

We assume that the QNPU implements a network stack where connections need to be set-up between
remote nodes before entanglement generation can happen [21, 22]. Net QASM provides a way for programs
to open such connections in the form of EPR sockets. The application layer can ask the QNPU to open an
EPR socket with a particular remote node. The QNPU is expected to set up the required connections in the
network stack, and associates this program socket with the connection. When the program issues an
instruction for generating entanglement, it refers to the EPR socket it wants to use. Based on this, the QNPU
can use the corresponding connection in the network.

5.2.3. Flavors

We want to keep Net QASM platform-independent. However, we also want the potential for
platform-specific optimization (section 4). Therefore we introduce the concept of flavors. Flavors only affect
the quantum instruction set of the language, and not the memory model or the interaction with the QNPU.
We use the vanilla or generic flavor for a general, universal gate set. Subroutines may be written or
generated in this vanilla flavor. Platform-independent optimization may be done on this level. A QNPU may

13

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

Application layer QNPU
RegisterApp i
Register AppOK
Subroutine
Execute subroutine
Done
Subroutine

Execute subroutine

Update memory

Done

StopApp

Figure 8. Flow of messages between the application layer and the QNPU.

directly support executing vanilla-flavored Net QASM. Platform-specific translations may then be done by
the QNPU itself. It can also be that a QNPU only supports a specific flavor of Net QASM. A reason for this
could be that the QNPU does not want to spend time translating of the instructions at runtime. In this case,
the application layer should perform a translation step from the vanilla flavor to the platform-specific
flavor. In such a case, the vanilla flavor can be seen as an intermediate representation, and the translation to a
specific flavor as a back-end compilation step.

5.2.4. Programmability

Since the Net QASM instructions are relatively low-level, we like to have a higher-level programming
language for writing programs, that is automatically compiled to Net QASM. We introduce a higher-level
SDK in section 7. However, we do not see this as part of the Net QASM specification itself. This decoupling
allows the development of SDKs to be independent such that these can be provided in various languages
and frameworks.

We still want Net QASM instructions to be suitable for manual writing and inspection. Therefore,
instructions (and subroutines) have two formats: a binary one that is used when sending to the QNPU, and
a text format that is human-readable. The text format resembles assembly languages including OpenQASM.
Example are given in section 7.1 and the appendix.

6. Implementation

6.1. Interface between application layer and QNPU

Here we explain the flow of messages between the application layer and the QNPU. The application layer
starts by declaring the registration of an application, including resource-requirements for the application.
After this, the application layer sends some number of subroutines for the QNPU to execute before declaring
the application is finished. See figure 8 for a sequence diagram and below for a definition of the messages.
In section 6.2 we will describe in more details the content of the subroutines and the format of instructions.
The QNPU returns to the application layer an assigned application ID for the registered application and
returns data based on the subroutines executed.

The application layer and the QNPU are assumed to run independently and in parallel. For example,
while a subroutine is being executed by the QNPU, the application layer could in principle do other
operations, such as heavy processing or communication with another node.

Figure 8 shows an example of a message exchange between the application layer and the QNPU. The
content of these messages is further detailed in appendix A.

14

I0P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

Core

Wait: N
wait all, wait any, easurement:
wait single meas
()
~ /

NetQASM flavors:

Vanilla flavor:

init, NV flavor:

X, ¥ 2, init, T1 flavor:

h, s, k, t, rot_x, rot_y, rot_ z,
rot_x, rot y, rot_z, cx_dir, cy dir

cnot, cphase

Figure 9. The core of NetQASM consists of eight groups of instructions. The quantum gates are defined as a set of
software-visible gates part of a Net QASM flavor. The vanilla flavor is the unique platform-independent Net QASM flavor of
NetQASM, which can be used by a compiler.

6.2. The language
The syntax and structure of Net QASM resemble that of classical assembly languages, which in turn inspired
the various QASM-variants for quantum computing [37-40].

A NetQASM instruction is formed by an instruction name followed by some number of operands:

0 instr operands

where instr specifies the instruction, for example add to add numbers or h to perform a Hadamard. The
operands part consists of zero or more values that specify additional information about the instruction,
such as which qubit to act on in the case of a gate instruction. Instructions and operands are further
specified in appendix B.

6.3. Instructions
There are eight groups of instructions in the core of Net QASM. Also summarized in figure 9, these are:

e Classical. Classical arithmetic on integers.

e Branch. Branching operations for performing conditional logic.

e Memory. Read and write operations to classical memory (register and arrays).

e Allocate. Allocation of qubits and arrays.

e Wait. Waiting for certain events. This can for example be the event that entanglement has been
generated by the network stack.

e Return. Returning classical values from the QNPU to the application layer. In our implementation we
implement this by having the QNPU write to the shared memory so that the application layer can
access it.

e Measurement. Measuring a qubit.

o Entanglement. Creating entanglement with a remote node using the quantum network stack.

Quantum gates are specific to a Net QASM flavor and given as a set of software-visible gates of a given

platform, see section 4. There is a single platform-independent Net QASM flavor which we call the vanilla
flavor, see figure 9. The vanilla flavor can be used as an intermediate representation for a compiler.

15

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

6.4. Compilation

Although application programmers could write Net QASM subroutines manually, and let their (classical)
application code send these subroutines to the QNPU, it is useful and more user-friendly to be able to write
quantum internet applications in a higher level language, and have the quantum parts compiled to
NetQASM subroutines automatically. For this, we use the compilation steps depicted in figure 10. The
format and compilation of the higher-level programming language is not part of the Net QASM
specification. However, we do provide an implementation in the form of an SDK, see section 7.

7. Python SDK

We implemented Net QASM by developing a SDK in Python. This SDK allows a programmer to write
quantum network programs as Python code, including the quantum parts. These parts are automatically
translated to NetQASM subroutines. The SDK contains a simulator that simulates a quantum network
containing end-nodes, each with a QNPU. The SDK can execute programs by executing their classical parts
directly and executing the quantum parts as Ne t QASM subroutines on the simulated QNPU. By executing
multiple programs at the same time, on the same simulated network, a whole multi-partite application can
be simulated. In section 8 we use this SDK to evaluate some of the design decisions of Net QASM.

We refer to the docs at [24] for the latest version of the SDK. Below, we give an example of an
application written in the SDK to give an idea of how development in the SDK looks like. In appendix H.2
we provide a few more examples of applications in the SDK and their corresponding Net QASM
subroutines.

All code can be found at [24, 66], including: (1) tools for serializing (de-serializing) to (from) both
human-readable text form and binary encoding, (2) the Net QASM SDK, together with compilers (no
optimization yet), (3) support for running applications written in the SDK on the simulators Net Squid
[26, 60] and SimulaQron [27], and (4) implemented applications in Ne t QASM, including: anonymous
transmission [67], BB84 [2], blind quantum computing [68, 69], CHSH game [70], performing a
distributed CNOT [71], magic square game [72], teleportation [73].

7.1. SDK
The SDK of Net QASM uses a similar framework to the SDK used by the predecessor CQC [74]. Any
program on a node starts by setting up a NetQASMConnection to the QNPU-implementation in the
backend. The NetQASM Connection encapsulates all communication that the application layer does
with the QNPU. More information about supported backends can be found below in section 7.1.1. Using the
NetQASMConnection one can for example construct a Qubit object. The qubit object has methods for
performing quantum gates and measurements. When these methods are called, corresponding Net QASM
instructions are included in the current subroutine being constructed. One marks the end of a subroutine,
and the start of another, either by explicitly calling flush on the NetQASMConnection or by ending the
scope of the with NetQASMConnection ... context.

The following Python code shows a basic application written in the Net QASM SDK. The application
will be compiled into a single subroutine executed on the QNPU, which creates a qubit, performs a
Hadamard operation, measures the qubit and returns the result to the application layer.

0 # Setup connection to backend
1 # as the node Alice

with NetQASMConnection("Alice") as alice:
3 # Create a qubit
= Qubit(alice)
Perform a Hadamard on the qubit
CHO
Measure the qubit
= q.measure ()
The end of the context also marks
the end of the subroutine
automatically but can also be done
explicitly using ‘alice.flush()*

© w9 o
#OoH o B H.Q %09

16

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

The following Net QASM subroutine is the result of translating the above Python code to Net QASM of
the vanilla (platform-independent) flavor.

.

0 # NETQASM 1.0

1 # APPID O

// Set the virtual qubit ID to use
set QO O

// Allocate and initialize a qubit
6 galloc QO
init QO

9 // Perform a Hadamard gate
10 h QO

// Measure the qubit
meas QO MO

// Return the outcome
6 ret_reg MO

7.1.1. Backends

As mentioned above, the NetQASMConnection in the SDK is responsible for communicating with the
implemented QNPU in the backend. The backend can either be a simulator or an actual QNPU using real
quantum hardware. Currently supported backends are the simulators SquidAsSM [66] (using Net Squid
[26, 60]) and SimulaQron [27]. A physical implementation of QNPU running on quantum hardware is
being worked on at the time of writing. Using the SDK provided at [24], one can for example simulate a set
of program files for the nodes of a quantum network on Net Squid using a density matrix formalism with
the command:

0 netqasm simulate --simulator=netsquid --formalism=dm

For more details see the docs at [24].

8. Evaluation

We evaluate two of the design choices that we made for Net QASM: (1) exposing unit-modules to the
application layer and (2) adding the possibility to use platform-specific flavors of instructions. For both
elements we study the difference in including them in Net QASM versus not including them. We do this by
simulating a teleportation application and a BQC application. These examples also showcase the ability of
NetQASM to express general quantum internet applications.

We have implemented a simulator, called SquidASM [66], that simulates a network in which end-nodes
have the internal architecture as described in section 2, that is, with an application layer and a QNPU. The
simulator internally uses NetSquid [60], which was made specifically for the simulation of quantum
networks. SquidASM executes programs written using the SDK (section 7), including sending Ne t QASM
subroutines to the (simulated) QNPU. The code and data that were used to produce the results in this
section can be found at [75].

We evaluate the performance of Net QASM by looking at the runtime quality of two applications, both
consisting of two programs (one per node). The first is a teleportation of a single qubit from a sender node
to a receiver node. We define the quality as the fidelity between the original qubit state at the sender and the
final qubit state at the receiver. The second application is a blind computation protocol which involves a
client and a server. The server effectively performs, blindly, a single-qubit computation on behalf of the
client. The protocol is a so-called verifiable BQC [69]. This means that some of the rounds of the protocols
are trap rounds. We define the quality that we evaluate as the error rate of these trap rounds, since this
indicates the blindness of the server.

We run these applications on SquidASM, where we simulate realistic quantum hardware. Specifically,
we simulate nodes based on NVs in diamond, that can do heralded entanglement generation between each
other. The simulated hardware uses noise models that are also used in [26]. For more details, see
appendix I.

A note on how we chose what to evaluate and what not. We listed several design considerations in
section 4. We addressed these in our design decisions (section 5). For some of these, it is straightforward to
see how they address a certain consideration, such as conditionals allowing for fast runtime feedback, and

17

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

: Full application, written by
: a programmer (e.g. Python)

Full application, multiple subrou-
! ¢ tines compiled together, including
: ¢ also classical logic at application level

(multiple subroutines)

Virtual qubits part of allocated unit-
! : module, abstract gates, single subroutine

(heavy compiling)

1 1 Same as above except for software-

NetQASM (HW flavor) ! visible gates (platform-dependent)

NetQASM (HW flavor) Input from above

Figure 10. Compilation steps from higher-level programming language, to the Ne t QASM flavor exposed by the specific
platform. What is contained at each level is further specified to the right of the diagram.

unit-modules for allowing multitasking, as explained in section 5. Also, fundamental requirements like
remote-entanglement generation and shared memory have been addressed. The remaining considerations,
and our solutions, namely platform independence and memory virtualization using unit-modules, are less
trivial to evaluate just by looking at the design. Therefore, we focus on the evaluation of these two design
decisions.

In our evaluation, we focus specifically on the NV hardware for our nodes. This has two reasons. First, it
is a promising hardware platform for quantum network nodes [19] which we know quite well since it is
available in the lab, and we have even used NetQASM in a simple test case running on nodes based on NV
[28]. Second, the NV hardware is interesting since it has a restricted gate set and qubit topology, which is
explained in more detail below. Therefore, we expect that the use of unit-modules and an NV-specific flavor
makes a difference in terms of runtime quality.

8.1. Unit modules

We ask ourselves the question whether it pays off to expose unit-modules, that is, a qubit topology with
gate- and entanglement information. Specifically, we want to know if there are situations where knowing
the unit-module gives the application layer an opportunity to optimize the application in a way that is not
possible when not knowing the unit-module. If so, we are interested in how much advantage this gives (in
terms of the runtime quality defined above).

In the next section we show that there are indeed situations where knowledge of the unit-module is
advantageous. It can be that the order in which Net QASM instructions are issued in a subroutine is
sub-optimal, since virtual qubit IDs may be mapped in such a way that the QNPU has to move virtual qubits
to different physical qubits in order to execute the instructions. If the application layer does not know this
mapping, it cannot know that the instructions are ordered sub-optimally. With knowledge of the
unit-module, on the other hand, the application layer can optimize the order and the overall application
performance is improved.

We consider a teleportation application where a sender program teleports a single qubit to another
receiver program. It is assumed that the underlying platform is based on NV centers in diamond (NV) and

18

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

use well-established models for both the noise and operations supported on such platforms, see appendix I.
The sender program uses two qubits: one to create entanglement with the receiver (qubit E), and one to
send (teleport) to the receiver (qubit T). At some point, the sender measures both qubits, after which it
sends the outcomes to the receiver so that it can do the relevant corrections on its received qubit. We
assume that the sender program is written in a higher-level language like, like in our SDK (section 7.1), and
in such a way that it first issues a measurement operation on qubit T, and then on E. However, due to the
differences in characteristics of the physical qubits, as will be explained below, it is more efficient to first do
the measurement on E, and then on T. Now we consider two scenarios, namely

e Unit-modules (UM). We assume that the sender program is written and executed on a software stack
implementating Ne t QASM, which means that the application’s view of its quantum working memory
is in the form of a unit-module. This unit-module contains information about the above-mentioned
hardware restrictions, and therefore a compiler can take advantage of it by re-ordering the
measurement operations while generating the Ne t QASM subroutines to be sent to the QNPU.

e No unit-modules (NUM). In this case the software stack also implements Ne tQASM, but without
unit-modules. Specifically, the application sees its quantum memory as just a number of uniform
qubits. Therefore, a compiler for this application does not know about the hardware restrictions, and
will construct Net QASM-subroutines sent to the QNPU without doing any optimization and leaves the
order of the operations to be performed as they are specified in the high-level SDK.

Let us first go through the steps of the teleportation application:

Sender:

Initialize qubit g, to be teleported in a Pauli state.
Create entanglement with receiver using qubit q..
Perform CNOT gate with g, as control and ¢, as target.
Perform Hadamard gate on g,.

Measure qubit g, and store outcome as ;.

Measure qubit g, and store outcome as 1.

NS U » D=

Send m; and m, to receiver.

Receiver:

1. Receive entanglement with sender using qubit g,.
2. Receive measurement outcomes from sender.

3. Apply correction operations on g, based on measurement outcomes.

We will now consider the order of the steps of the sender. Firstly, we assume that the qubit to be
teleported, g,, is always created before the entanglement. We motivate this assumption below. For this
reason, steps 1-3 and 7 are fixed and cannot change. However, we are free to do step 6 before steps 4 and 5,
since these single-qubit operations and measurements commute, as long as we are consistent with the
outcomes 11, and m,. Let us now consider what impact this decision of measuring g, before g, or not has on
the quality of execution for a NV-platform.

One of the biggest restrictions on a NV-platform is the topology of the qubits. In particular, the
NV-platform has a single communication-qubit (electron) surrounded by some number of storage qubits
(carbon spins), see for example figure 6. The single communication qubit is not only responsible for any
remote entanglement generation but also for any two-qubit gate and is the only qubit that can be directly
measured. These restrictions require qubit states to be moved back and forth between the communication
qubit and the storage qubits in order to free up the communication qubit, to create new entanglement or to
measure another qubit. Since the operation of moving a qubit state is relatively slow on this platform
(up to a millisecond [7]) and adds noise to the qubits, it is important to try to minimize the number of
moves needed. For more details on the NV-platform, see for example [61] or [21].

In the steps of the sender above, the communication qubit is first initialized to a Pauli state. This state is
then moved to a storage qubit to free up the communication qubit in order to create entanglement with the
receiver. Then in step 5, q, should be measured, which is currently in the storage qubit. This requires the
qubit state to first be moved to the communication qubit. However, at this point the communication qubit
is occupied by the entangled pair and therefore first needs to be moved to a second storage qubit. Qubit g,
can then be moved to the communication qubit to be measured and then the same is done for g, requiring
in total four move operations and three physical qubits.

We can now see that performing step 6 before 4 and 5 has the advantage that this qubit is already in the
communication qubit and can be measured directly without moving it first. Afterwards, g, can be moved to

19

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

Fidelity of teleported state vs 2-qubit gate noise probability
—#— Unit modules
0.80 4 ——&— No unit modules
0.75 1
2 0.70
o
°
=
0.65
0.60
0,60 0.62 0~64 D.(‘]G 0.;)8 OAY].D OAEI.Z 0.'14
2-qubit gate depolarising probability
(a)
Fidelity of teleported state and total executation time vs 2-qubit gate
duration
0.90
—#— Unit modules (fidelity)
0.88 ——&— No unit modules (fidelity) "
-#- Unit modules (execution time)
0.86 No unit modules (execution time)
H12 ‘E
0.84 5
2 & | £
o o
z 082 P 10 §
- " o
s . o
0.80 1 -_.___r____.;_“.—- - ~ — &
it ——F—e— o—eo—o |8
0.78 —
i
-
076 1 g== L6
O.ID 0:2 0?4 0:6 0;8 l.'O
2-qubit gate duration (ms)
()
Figure 11. (a) Average fidelity between the original state at the sender and the final state at the server, as a function of the
depolarizing noise of the native two-qubit gate of the NV-platform, both for the case of performing step 6 after (NUM) and
before (UM) steps 4 and 5. Execution time of the native two-qubit gate is set to 0.5 ms. The rest of the parameters used are listed
in appendix I. Each point is the average over each of the six Pauli states as initial state, repeated 100 times. (b) Average fidelity of
the teleported state (left y-axis, solid lines) and total execution time of the teleportation application (right y-axis, dashed lines) as
a function of the execution time of the native two-qubit gate of the NV-platform, both for the case of performing step 6 after
(NUM) and before (UM) steps 4 and 5. Dephasing parameter of the native two-qubit gate is set to 0.02. The rest of the
parameters used are listed in appendix I. Each point is the average over each of the six Pauli state as initial state, repeated 100
times. In both figures, error bars are smaller than the drawn dots.

the communication qubit, which is cleared after the measurement, requiring in total only 2 move
operations and only two physical qubits. The decision of performing step 6 before 4 and 5 is highly
dependent on the NV-platform and can only be made by a compiler that is aware about these restrictions.
The inclusion of unit-modules and qubit types in the Net QASM-framework, which are exposed to the
compiler at the application layer, allows for these optimization decision and can therefore improve the
quality of execution.

For the two scenarios we consider, i.e. performing step 6 before 4 and 5 (UM) or not (NUM), we check
the average fidelity of the teleported state as a function of the gate noise (figure 11(a)), as well as the average
fidelity and execution time as a function of gate duration (figure 11(a)), of the native two-qubit gate of the
NV-platform. We see that performing step 6 before 4 and 5 improves both total execution time and average
fidelity. This can be explained by the fact that using unit-modules allowed a compiler to produce Net QASM
code containing fewer two-qubit gates. Therefore, an increase in two-qubit gate noice leads to a lower
fidelity. Also, an increase in two-qubit gate duration leads to higher execution time difference between the
two scenarios. Finally, figure 11(a) shows that the two-qubit gate duration does not affect the final fidelity in
this situation, but the difference between using unit-modules versus not using them remains.

20

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

Entangle ($F)

Entangle (®*) Server — R.(4) O
/
Setver Ru(52) a

Figure 12. Circuit representation of the simulated BQC application. The client remotely prepares two qubits on the server, by
twice creating an entangled pair with the server followed by a local measurement. The server locally entangles its two qubits
(cphase gate). Then, the client and server use classical communication to further guide the server’s quantum operations. The
client computes §; = o — 6, + p, - 7 and sends this to the server. The server uses the received value to do a local rotation and
later sends measurement outcome 1; back to the client. The client then sends 6, = (—1)"1 - (8 — 6, + p, - 7) to the server. The
qubit state g is the result of this application.

8.2. Flavors

While aiming to let Net QASM be mostly platform-independent, we did also choose to allow
platform-specific instructions, bundled in flavors. The idea is that this allows for platform-specific
optimization leading to better application performance. Here we evaluate if flavors really impact potential
performance, and if so how much.

We show that platform-specific optimization can indeed improve application performance, and that
there are such optimizations that are not possible without flavors. We see that it has impact mostly on the
execution time, but not necessarily on outcome quality.

We consider the blind computation application depicted in figure 12, where both the client and server
node implement the NV hardware. Again we compare two scenarios, in this case:

e Vanilla. We compile both the client’s and server’s application code to NetQASM subroutines with the
vanilla flavor. The QNPU, controlling NV hardware which does not implement all vanilla gates
natively, needs to translate the vanilla instructions on the go. We assume this translation is ad-hoc and
does not do any optimizations like removing redundant gates.

e NV. The code is compiled to Net QASM subroutines containing instructions in the NV flavor, and
redundant gates are optimized away. The QNPU can directly execute the instructions on the hardware.

We implemented this by writing two separate programs in the SDK, one for the client and one for the
server. The SDK automatically compiles the relevant parts of these programs into Ne t QASM subroutines.
Classical communication (values d;, m; and d,) is done purely between the two simulated application
layers, so these operations are not compiled to Net QASM subroutines. More details about the simulation
can be found in appendix I.

The protocol is a verifiable blind quantum protocol [69], which means that the circuit in figure 12 is run
multiple times, namely once per round. Some of these rounds are trap rounds in which the client chooses a
special set of input values. Such a trap round can either succeed or fail, depending on the values returned by
the server. The fraction of trap rounds that fail is called the error rate. The error rate should stay low in
order for the computation to be blind.

We simulate the BQC application by running the client’s and server’s programs in SquidASM. We look
at the error rate of the trap round as a function of the two-qubit gate noise. The result can be seen in
figure 13. It can be seen that using the NV flavor provides a better (lower) error rate than using the vanilla
flavor. This can be explained by noting that Net QASM instructions in the vanilla flavor are mapped ad-hoc
to native NV gates by the QNPU at runtime, which leads to more two-qubit gates in total.

To gain some more insight into why using the NV flavor provides a lower error rate we also look at the
fidelity of the two quantum states on the server before any local gates are applied. As can be seen in
figure 12, the client remotely prepares two states on the server by twice creating entanglement and
measuring its own half of the EPR pair. In figure 14 we see that already during this remote state preparation
phase the NV flavor outperforms the vanilla flavor in terms of the fidelity of the prepared states.

8.3. Relation to other results

We note that a similar question of how many physical details to expose from lower-level layers (in our case
the QNPU) to higher-level layers (in our case the application layer) has also been evaluated in [31]. Their
conclusion is that exposing and leveraging some of these details can indeed improve certain program
success metrics. That result agrees with that of ours, which shows that program execution quality can
improve by exposing and leveraging unit-modules and platform-specific Net QASM flavors.

21

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

BQC trap round error rate vs two-qubit gate noise probability

—#— Vanilla NetQASM
0357 —— NV NetQASM

0.30 1

0.25 4

Error rate

0.20 4

0.15 A

0.00 0.02 0.04 0.06 0.08 0.10
2-qubit gate depolarising probability

Figure 13. Average error rate of trap rounds for the circuit of figure 12. Each point is the average over four combinations of ¢,
and 6,, each used in 500 trap rounds. It can be seen that using the vanilla (platform-independent) Ne t QASM flavor results in a
worse (higher) error rate on average.

Fidelity of remotely prepared states

1.00
—#— 2nd prepared state (both vanilla and NV)
—&— 1st prepared state (vanilla)
—#— 1st prepared state (nv)
0.95 A
0.90 A
2
T
b=
T
0.85 A
0.80 A1
0.75

0.00 0.02 0.04 0.06 0.08 0.10
2-qubit gate depolarising probability

Figure 14. Fidelity of the two remotely prepared states on the server in the BQC application. To remotely prepare a state, the
client and server first create an EPR pair, and the client then measures its half in a specific basis while the server keeps its half
stored in the communication qubit. This first prepared state is then moved to a memory qubit to free up the communication
qubit for preparing the second state. This move operation has a negative effect on the fidelity of the first prepared state. Since the
fidelity of the second prepared state only depends on the link entanglement generation, there is no difference between using
vanilla or NV instructions. The values are from the same simulation experiment as for figure 13. Error bars are negligible.

9. Conclusion

NetQASM enables the development of quantum internet applications in a platform-independent manner. It
solves the question of dealing with the complexity of having both classical and quantum operations in a
single program, while at the same time providing a relatively simple format for QNPU-like layers to handle.
Multiple applications, such as remote teleportation and BQC, have already been implemented. A simple
compiler has been implemented that can translate code written in the higher-level SDK into Net QASM.
Additionally to the work in this paper, we are also developing a physical implementation of the QNPU.

One key component in this implementation is the quantum node operating system (QNode0S), which acts
as the bridge between the applications and the physical layer. QNodeOS will be presented in a dedicated
paper including results of a first integration test between Net QASM, QNodeOS and underlying physical
quantum hardware. This will mark the first time a quantum network node has been programmed using

platform-independent code.

22

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

Acknowledgments

We thank Arjen Rouvoet and Onder Karpat for valuable discussions. This work was supported by ERC
Starting Grant, EU Flagship on Quantum Technologies, Quantum Internet alliance, NWO VIDI.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
https://github.com/QuTech-Delft/netqgasm-paper-data.

Appendix A. Flow of messages

Here we define the content of each of the messages being sent between the application layer and the QNPU.
Each message has an ID chosen by the application layer which is used to associate replies from the QNPU to
the application layer.

e RegisterApp. Sent once from the application layer to the QNPU whenever a new application starts.
Contains information on what resources are required by the application, in particular:

* unit module spec. Specification of unit-module needed, e.g. number of qubits.

* epr socket spec. Specification of EPR sockets needed, see [22], containing (1) EPR socket
ID, (2) remote node ID, (3) remote EPR socket ID and (4) minimum required fidelity.

e RegisterAppOK. Returned from the QNPU when application is registered, containing an application
ID to be used for future messages.

* app_id. Application ID.

e RegisterAppErr. Returned from the QNPU when registration of application failed. For example if
required resources could not be met.

* error_code. Error code specifying what went wrong.

e Subroutine. Message from the application layer to the QNPU, containing a subroutine to be executed.
Details on the content are presented in later sections.

* app id. Application ID.
* subroutine. The subroutine to be executed.

e Done. Message from the QNPU to the application layer, indicating that a subroutine has finished. Which
subroutine is indicated by the message ID.

* message id. Message ID used for the subroutine-message.

e Update memory. The application layer will have access to a copy of the memory allocated by the QNPU
for certain registers and arrays, see section 6.2. This memory is read-only by the application layer.
Updates to the copy of the memory are performed by the end of a subroutine or if the subroutine is
waiting. Furthermore, updates need to be explicitly specified in the subroutine by using one of the
return-commands. How the actual update is implemented depends on the platform and can either be
done by message-passing or with an actual shared memory. However, the subroutine is independent
from this implementation. The application layer will be notified by an explicit message whenever the
memory is updated.

e StopApp. Sent from the application layer to the QNPU indicating that an application is finished.

Appendix B. Operands

In this section we give the exact definition of the types of operands used in the Net QASM language. Each
instruction of NetQASM takes one or more operands. There are five types of operands, which are listed and
described below. Each instruction has a fixed types of operands at each position. The exact operands for
each instruction is listed in appendix F. We note also that in the human-readable text-form of NetQASM,
there are also branch variables. However, these are always replaced by IMMEDIATEs (constants),
corresponding to the instruction number of the subroutine, before serializing, see appendix C.

The operand types of Net QASM are:

23

https://github.com/QuTech-Delft/netqasm-paper-data

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

o IMMEDIATE (constant). An integer seen as it is value. The following instruction, beq branch-if-equal,
branches to instruction index 12 since the number 0 equals the number 0.

0o beq 0 0 12 l

In the binary encoding used at [24], IMMEDIATEs are int32.

o REGISTER. A register specifying a register name and a index. The following instruction sets index 0 of
the register name R to be 0.

o set RO O \

In the current version of Net QASM there are four register names and the indices are relative to the

names. They are all functionally the same but are meant to be used for different purposes and increase
readability:

* C. Constants, meant to only be set once throughout a subroutine.
* R. Normal register, used for looping etc.
* Q. Stores virtual qubit IDs.

* M. Stores measurement outcomes.
In the binary encoding used at [24], REGISTERs are specified by one byte and hold one int32.

e ADDRESS. Specifies an address to an array. Starts with @. The following instruction declares an array of
length 10 at address 0.

o array 10 @O

For more information about arrays, see below. The address here is just an identifier of the array and
does not refer to a actual memory address. For this reason @1 above does not mean the second entry of the

declared array but simply a different array. Addresses are relative to the application ID and are valid across
subroutines.

e ARRAY_ENTRY. Specifies an entry in an array. Takes the form @a [1], where a specifies the address and
i the index. The following instruction stores the value of RO to the second entry of the array with
address 0.

o store RO @O[1]

In the text-form 1 can either be an IMMEDIATE or a REGISTER, however in the binary encoding used
at [24], 1 is always a REGISTER. This is handled by the compiler by using a set-command before.

e ARRAY_SLICE. Specifies a slice of an array. Takes the form @a [s: e], where a specifies the address, s
the start-index (inclusive) and e the end-index (exclusive). The following instruction waits for the
second to the fourth entry of array with address 0 to become not null, see appendix F.7.

0o wait_all @O0[1:4]

24

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

In the text-form s and e can either be an IMMEDIATEs or a REGISTERs, however in the binary
encoding defined used at [24], s and e are always a REGISTERs. This is handled by the compiler by using a
set-commands before.

Appendix C. Branch variables

The human-readable text-form of NetQASM supports the use of branch variables. Branch labels are
declared as VAR: before the instruction to branch to. Before serializing a Net QASM-subroutine, all branch
variables are replaced with IMMEDIATEs corresponding to the correct instruction index. Delaying this
replacement to the end is useful if the compiler wants to move around instructions. For example if a
subroutine is as follows:

o # NETQASM 1.0
1 # APPID O
2 set RO O

4 // Loop entry
5 LOOP:
5 beq RO 10 LOOP_EXIT

€
s // Loop body

o // If statement
10 bge RO 5 ELSE

11 // true block
12 add RO RO 1

13 jmp IF_EXIT

14 // false block
15 ELSE:

16 add RO RO 2

17 IF_EXIT:

19 // Loop exit
20 jmp LOOP
21 LOOP_EXIT:

Which effectively does the same as the following program written in Python (where the variable i
corresponds to the register RO above).

oi=20
1 while i != 10:
if i < b:
i+=1
4 else:
i += 2

After replacing the branch labels the body of the subroutine will instead look:

0 store RO O
1 beq RO 10 7
2 bge RO 5 5
; add RO RO 1
1 jmp 6

5 add RO RO 2
6 jmp 1

Appendix D. Arrays

Classical data produced during the execution of a subroutine are stored in either fixed registers or allocated
arrays. Arrays in Net QASM have fixed-length, which is specified when declared using the
array-instruction. Each entry of an array is an optional IMMEDIATE, meaning that the entry is an integer
(e.g. int32) or not defined (null). The arrays can be used to collect measurement outcomes to be
returned to the application layer but also other data such as information about the generated remote
entanglement [21, 22]. All wait-instructions of NetQASM wait for one or more entries in an array to
become defined (i.e. not null). The main use-case is for the execution of the subroutine to wait until the
quantum network stack of the QNPU has finished generated an entangled pair with a remote node. The

25

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

subroutine will be waiting for information about the entangled pair to be stored in a given array. Once this
is done, the execution can proceed.

The following subroutine for example creates and array with three elements, stores the values 1 and 2 to
the array and reads them and adds them up, storing the value in the third entry.

0o // Create two constant registers

set C1 1

set C2 2

3 // Make an array of three entries

4 array 3 @0

5 // Load the constants to the array

6 store C1 @O0[0]

7 store C2 @O0[1]

s // Load the array entries to two other registers
9 load RO @O0[0]

10 load R1 @O[1]

11 // Add the registers and store the result in the first
12 add RO R1 RO

13 // Store the sum in the third entry of the array
14 store RO @0[2]

.

Appendix E. Qubit address operands

Commands that perform actions on qubits have REGISTER-operands which specify the virtual address of
the qubit to act on. It is good practice to use register name Q for these registers. The following subroutine
performs a Hadamard gates on qubits with virtual addresses 0, 1 and 2.

o set QO O
1 set Q1 1
> h QO
3 h Q1
4 set QO 2
5 h QO

Note that Q0 is used twice but the value of the register is different.

Appendix E. Instructions

Here we list the current instructions part of the vanilla flavor of Net QASM. For the most up to date version
of the language, refer to [24]. Commands are specified as follows:
e name. Description of instruction.

* IMMEDIATE. Description of op1

* REGISTER. Description of op2

where name is the name of the instruction, followed by the list of operands, specified by their type and
description. We note that in the human-readable text-form of NetQASM, it is allowed to provide an
IMMEDIATE for operands that are specified as REGISTER. The compiler will then replace these, using the
set-command.

E1. Allocation
e galloc. Start using a qubit in the unit-module.
+ REGISTER. The virtual address of the qubit.
e array. Creates an array of a certain length (width is fixed)
* IMMEDIATE. Number of entries in the array.
+* ADDRESS. Address of array

E.2. Initialization
e init. Initializes a qubit to |0)
+ REGISTER. The virtual address of the qubit.

e set. Set a register to a certain value.

26

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

* REGISTER. The register to assign a value to.
* IMMEDIATE. The value to assign.

E.3. Memory operations

e store. Stores the value in a register to an index of an array.
* REGISTER. The register holding the value to store.
* ARRAY_ENTRY. The array-entry to store the value to.

e load. Loads the value from an index of an array to a register.
* REGISTER. The register to store the value to.
* ARRAY_ENTRY. The array-entry holding the value.

e undef. Sets an entry of an array to null, see appendix E.7.
+* ARRAY_ENTRY. Array-entry to make null.

e lea. Loads a given address of an array to a register.
* REGISTER. The register to store the address to.
* ADDRESS. The address to the array.

F.4. Classical logic

There are three groups of branch instructions: nullary, unary and binary.
Nullary branching

e jmp. Jump to a given line (unconditionally).
IMMEDIATE. Line to branch to.

Unary branching. There are two unary branching instructions: beq and bnz, which both have the
following structure:

e b{ez,nz}. Branch to a given line if condition fulfilled, see below.
+ REGISTER. Value v in condition expression.
* IMMEDIATE. Line to branch to.

Branching occurs if:

e bez: v = 0 (branch-if-zero)

e bnz: v # 0 (branch-if-not-zero)

Binary branching. There are four binary branch instructions: beq, bne, b1t and bge, which all have
the following structure:

e b{eg,ne, 1t,ge}. Branch if condition fulfilled, see below.
+* REGISTER. Value 1 v; in conditional expression.
+* REGISTER. Value 1 v; in conditional expression.
x IMMEDIATE. Line to branch to.

Branching occurs if:

e beq: vg = v; (branch-if-equal)

e bne: vy # v; (branch-if-not-equal)

e blt: vy < v; (branch-if-less-than)

e bge: vy > v; (branch-if-greater-or-equal)

E.5. Classical operations

There are currently four binary classical operations: addition (add), subtraction (sub) and addition
(addm), subtraction (subm) modulo a number. The first two have the following structure:

e {add, sub}. Perform a binary operation and store the result.

+ REGISTER. Register to write result () to.

+* REGISTER. First operand in binary operation (vg).

+* REGISTER. Second operand in binary operation (vy).
The second two have an additional operand to specify what module should be taken for the result:
e {add, sub}m. Perform a binary operation modulo mod and store the result.

* REGISTER. Register to write result (r) to.

+* REGISTER. First operand in binary operation (vg).

27

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

* REGISTER. Second operand in binary operation (v;).
* REGISTER. Modulo in binary operation ().

Binary operations are the following:

e add, r = (vg + v1)

e sub, r = (vg — v1)

e addm, r = (vg + v;) (mod m)

e subm, r = (vy — v;) (mod m)

F.6. Quantum gates
Single-qubit gates. There is a number of single-qubit gates which all have the following structure

e instr. Perform a single-qubit gate.

+ REGISTER. The virtual address of the qubit.
Single-qubit gates without additional arguments are the following.

o x. X-gate.
0 1
(1) -
e v. Y-gate.
0 —i
Y= (i 0) (F2)
e z. Z-gate.

z=(y %) (53)
50)
5= (é ?) (F3)
e

T= <(1) eig/4> (F7)

Single-qubit rotations. Additionally one can perform single-qubit rotations with a given angle. The
angles a are specified by two integers n and d as:

e h. Hadamard gate.

e s. S-gate (phase)

o k. K-gate.

e t. T-gate.

a="7 (F8)
These instructions have the following structure

e rot {x,y, z}.Perform a single-qubit rotation.

+ REGISTER. The virtual address of the qubit.

* IMMEDIATE. n, for angle, see above.

+ IMMEDIATE. d, for angle, see above.
Single-qubit rotations are the following.
e rot_x. Rotation around X-axis.
e rot_y. Rotation around Y-axis.
e rot z. Rotation around Z-axis.
Two-qubit gates. There are two two-qubit gates which have the following structure
e {cnot, cphase}. Perform a two-qubit operation.

* REGISTER. The virtual address of the control qubit.

* REGISTER. The virtual address of the target qubit.
Two-qubit gates are the following.

e cnot. Controlled X gate.

28

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

e cphase. Controlled Z gate.
Measurement
e meas. Measure a qubit in the standard basis.
+* REGISTER. The virtual address of the qubit.
* REGISTER. The register to write outcome address to.
Pre-measurement rotations. To measure in other bases one can perform gates/rotations before the
measurement. If the same measurement basis is used a lot, one can also make use of pre-measurement
rotations which can reduce the amount of communication needed internally in the QNPU. A

pre-measurement rotations is specified by either the pmr xyx, pmr zxz or pmr_yzy which have the
following structure. With any two of the bases X, Y and Z, one can do any rotation.
epmr_ {xyx, zxz, yzy}.Specify a pre-measurement rotation.

+* IMMEDIATE. no0, for angle of first rotation, see below.

+* IMMEDIATE. 40, for angle of first rotation, see below.

* IMMEDIATE. n1, for angle of second rotation, see below.

+* IMMEDIATE. d1, for angle of second rotation, see below.

+* IMMEDIATE. n2, for angle of third rotation, see below.

+* IMMEDIATE. d2, for angle of third rotation, see below.

If a pre-measurement rotation is specified, then three rotations are performed before measuring using a
meas_rot-command, see below. The axes of these rotations as given in the instruction name.

The angles of the rotations are specified by the integersn{0, 1, 2} andd{0o, 1, 2} in the same
way as for single-qubit rotations. That is, rotation 1 is done by angle Z—f}i’

Entanglement generation

There are two commands related to entanglement generation. A node can initiate entanglement
generation with another node by using the create epr-command. This command is not blocking until
entanglement has been generated but a wait-instruction (see below) can be used to block until certain a
certain array has been written to, indicating that entanglement has been generated. The remote node should
also provide a recv_epr-command. This command does not initiate the entanglement generation but is
used to provide the virtual qubit IDs that should be used for the entangled qubits.

e create_epr. Create an EPR pair with a remote node.

* REGISTER. Remote node ID.

* REGISTER. EPR socket ID.

* REGISTER. Provides the address to the array containing the virtual qubit IDs for the entangled
pairs in this request. The value of the register should contain the address to an array with as
many virtual qubit IDs stored as pair requested.

* REGISTER. Provides the address to the array which holds the rest of the arguments of the
entanglement generation to the network stack [21, 22]. The value of the register should contain
the address to an array with as entries as arguments in the entanglement generation request to
the network stack [21, 22] (except remote node ID and EPR socket ID).

* REGISTER. Provides the address to the array to which information about the entanglement
should be written. The value of the register should contain the address to an array with as many
eNtries as Mpairs X Margs, Where numi, g, is the number of arguments in the entanglement
information provided by the network stack [21, 22].

e recv_epr. Receive an EPR pair from a remote node.

* REGISTER. Remote node ID.

* REGISTER. EPR socket ID.

+* REGISTER. Provides the address to the array containing the virtual qubit IDs for the entangled
pairs in this request. The value of the register should contain the address to an array with as
many virtual qubit IDs stored as pair requested.

+* REGISTER. Provides the address to the array to which information about the entanglement
should be written. The value of the register should contain the address to an array with as many
eNtries as Mpairs X Margs, Where flyrg is the number of arguments in the entanglement information
provided by the network stack [21, 22].

29

10P Publishing

*

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

E.7. Waiting
There are three wait-commands that can wait for entries in arrays to become defined, i.e. not null. Entries
in a new array is by default null (undefined).

e wait all. Wait for all entries in a given array slice to become not null.
* ARRAY_SLICE. Array slice to wait for.

e walt any. Wait for any entry in a given array slice to become not null.
* ARRAY_SLICE. Array slice to wait for.

e wait single. Wait for a single entry in an array to become not null.
+* ARRAY_ENTRY. Array entry to wait for.

E.8. Deallocation
e gfree. Stop using a qubit in the unit-module.
+ REGISTER. The virtual address of the qubit.

E9. Return
There are two commands for returning data to the application layer. These commands indicate that the
copy of the memory on the application layer side should be updated, see above.

e ret reg. Return a register.
+* REGISTER. The register to return.
e ret_ arr. Return an array,

* ADDRESS. The address of the array to return.

Appendix G. Preprocessing

A subroutine written in text form will first be preprocessed, which does the following:

e Parses preprocessing commands and handles these. Any preprocessing command starts with # and
should be before any command in the body of the subroutine. Allowed preprocessing commands are:

+* aNetQASM (required). Sets the Net QASM version in the metadata.

o # NETQASM 1.0

* APPID (required). Sets the application ID in the metadata.

o # APPID O

DEFINE (optional). Defines a macro with a key and a value. Any occurrence of the key prepended by $
will be replaced with the value in the subroutine. Values containing spaces should be enclosed with { }.

o # DEFINE q O
1 # DEFINE add {add @0 @0 @1}

First command replaces any occurrence of $q with 0 and second $add with add @0 @0 @1.

Appendix H. Examples

Here we list some examples of programs written in Net QASM. In appendix H.1, we show some examples
written directly in the Net QASM-language. In appendix H.2, we show the corresponding examples, instead
written in the Python SDK.

30

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

H.1. NetQASM

H.1.1. Classical logic (if-statement)

A subroutine which creates a qubit, puts in the |+) state, measures it and depending on the outcome
performs an X-gates such that by the end of the subroutine the qubit is always in the state |0).

o # NETQASM 1.0
1 # APPID O

2 // Set the virtual qubit ID to use
5 set QO O

1

5 // Allocate and initialize a qubit
6 qalloc QO

7 init QO

// Perform a Hadamard gate
10 h QO

12 // Measure the qubit
13 meas QO MO

15 // Branch to end if m = 0
16 bez MO EXIT

18 // Perform X gate
19 x QO
20

21 EXIT:

H.1.2. Classical logic (for-loop)

A subroutine which performs a for-loop which body creates a qubit, puts in the |4 state and measures it.
The outcomes are stored in an array. In a higher-level language (using python syntax) the below subroutine
might be written as follows:

o ms = [Nonel * 10

1

> for i in range (10):
5 q = Qubit()
4

q.HO
5 m = g.measure ()
6 ms[i] = m

The equivalent Net QASM subroutine is:

NETQASM 1.0

APPID O

DEFINE ms @O

DEFINE i RO

DEFINE q QO

DEFINE m MO

¢ // Create an array with 10 entries (all null)
array 10 $ms

HOHE ¥ B

~

9 // Initialize loop counter
store $i 0

12 // Set the virtual qubit ID to use
13 set $§q O

15 // Loop entry
16 LOOP:
17 beq $i 10 EXIT

19 // Loop body
20 gqalloc $q

21 init $q

22 h $q

23 meas $q $m

214 store $m $ms[$i]
25 qfree $q

¢ add $i $i 1

s // Loop exit
20 jmp LOOP
50 EXIT:

In the above subroutine DEFINE statements have been used to clarify what registers/arrays correspond
to the variables in the higher-level language example above.

31

10P Publishing Quantum Sci. Technol. 7 (2022) 035023

H.1.3. Create and recv EPR
This code is for the side initializing the entanglement request.

A Dahlberg et al

NETQASM 1.0

APPID O

DEFINE qubits @O

DEFINE args $1

DEFINE entinfo @2
// Initilizer side

// Setup array with virtual qubit IDs to be used
// for the EPR pairs

array 1 $qubits

store 0 $qubits [0]

// Setup array to store other arguments to entanglement
// generation request
array 20 $args

// Setup array to store entanglement information
array 10 $entinfo

// Create entanglement

// Remote node ID O and EPR socket ID 0O

// NOTE that these IMMEDIATEs will be replaced by
// REGISTERs when pre-processing.

create_epr 1 0 $qubits $args $entinfo

// Wait for the entanglement to succeed

// i.e. that all entries in the entinfo array becomes
// valid.

wait_all $entinfo [0:10]

// Measure the entanglement qubit
load QO $qubits[0]
meas QO MO

// Return the outcome
ret_req MO

This code is for the receiving side.

NETQASM 1.0

APPID O

DEFINE qubits @O

DEFINE entinfo @1

// Receiver side (very similar to the initializer side)

// Setup array with virtual qubit IDs to be used
// for the EPR pairs

array 1 $qubits

store 0 $qubits [0]

Setup array to store entanglement information
array 10 $entinfo

// Receive entanglement

// Remote node ID 1 and EPR socket ID O

// NOTE that these IMMEDIATEs will be replaced by
// REGISTERs when pre-processing.

recv_epr 1 0 $qubits $entinfo

// Wait for the entanglement to succeed
wait_all $entinfo [0:10]

// Measure the entanglement qubit
load QO $qubits[0]
meas QO MO

// Return the outcome
ret_req MO

H.2. SDK
Each of the examples in this section are functionally the same as the examples in appendix H.1. A compiler
will produce a similar subroutine as the examples in the previous section but might vary depending on the
exact implementation of the compiler.

32

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023

H.2.1.
Functionally the same as the Net QASM-subroutine (appendix H.1.1).

Classical logic (if-statement)

A Dahlberg et al

Setup connection to backend
as the node Alice
with NetQASMConnection("Alice") as alice:
Create a qubit
= Qubit(alice)
Perform a Hadamard on the qubit
LHO
Measure the qubit
= q.measure ()
Conditionally apply a X-gate
with m.if_eq(1):
q.X0

B #.0 #.9

H.2.2. Classical logic (for-loop)

Functionally the same as the Net QASM-subroutine (appendix H.1.2).

Setup connection to backend
as the node Alice
with NetQASMConnection("Alice") as alice:
Create an array for the outcomes
outcomes = alice.new_array (10)
For-loop
with alice.loop(10) as i:
Create a qubit
= Qubit(alice)
Perform a Hadamard on the qubit
LHO
Measure the qubit
= g.measure ()
Add the outcome to the array
outcomes[i] = m

B #.09 #.,0

H.2.3. Create and recv EPR

Functionally the same as the Net QASM-subroutine (appendix H.1.3).

This code is for the side initializing the entanglement request.

0

Setup an EPR socket with the node Bob
epr_socket = EPRSocket ("Bob")

Setup connection to backend

as the node Alice

with NetSquidConnection(

5 "Alice",

epr_sockets=[epr_socket],

)
Create entanglement
epr = epr_socket.create() [0]
Measure the entangled qubit
m = epr.measure ()

This code is for the receiving side.

0

11

Setup an EPR socket with the node Alice
epr_socket = EPRSocket ("Bob")

Setup connection to backend

as the node Bob

with NetSquidConnection(

"Alice",

epr_sockets=[epr_socket]

)
Create entanglement

epr = epr_socket.recv() [0]

Measure the entangled qubit
m = epr.measure ()

33

10P Publishing Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

Table 1. Gate durations for scenario B of section 8. ¢ is the value being swept in figure 11(b). All values are

from [21].

Gate Durations (ns) Explanation

electron init 2 x 10° Initialize a communication qubit (electron) to |0)
electron_rot 5 Single-qubit rotation on communication qubit (electron)
measure 3.7 x 10° Measure communication qubit (electron)
carbon init 3.1 x 10° Initialize a storage qubit (carbon) to |0)
carbon_xy rot t X/Y-rotation on storage qubit (carbon)
carbon z rot 5 Z-rotation on storage qubit (carbon)
ec_controlled dir xy t Native two-qubit gates, see equations (I1) and (12)

Appendix 1. Simulation details

In this section we detail how simulations in section 8 were performed and what models and parameters
were used. All simulations used the NetQASM SDK [24], using Net Squid [26, 60] as the underlying
simulator. All code used in these simulations can also be found at [66].

I.1. Noise model

In both the teleportation and the blind quantum computing scenario we used the same model for NV
centres in diamonds as was used in [21, 26]. All gates specified by the application in the SDK were
translated to NV-specific gates, see table 1, using a simple compiler without any optimization. The
parameters used in the model from [21] are listed in tables 1 and 2, together with an explanation and a
reference. ec_controlled dir xy are the native two-qubit gates of the NV-platform, ideally
performing one of the unitary operations

_ [(Ri(a) 0
Ut = (5 4 L) (1)
ot = (%7 1) "

where R,(a) and R, («) are the rotation matrices around X and Y, respectively. When sweeping the duration
and noise of this two-qubit gate the same value is also used for the carbon_xy rot (X- and Y-rotations
on the carbon) on the storage qubits, since these are also effectively done with a similar operation also
involving the communication qubit (electron). All noise indicated by a fidelity in table 2 are applied as
depolarising noise by applying the perfect operation, producing the state p;4..;» and mapping

this to

pnoisy - (1 - p)pideal + %)XpidealX + %)Ypidealy + gzpidealz (13)

where X, Y and Z are the Pauli operators in equations (F1) to (F3), p = %(1 — F), with F being the value
specific in table 2. Decoherence noise is specific as T} (energy/thermal relaxation time) and T, (dephasing
time) [76].

I.2. BQC application and flavors
In section 8.2 we simulated the BQC application from figure 12. The code for this is available at [66].

In the scenario when the application code was compiled to subroutines with the vanilla lavour, the
QONPU had to map the vanilla instructions to NV-native operations on the fly. We used the gate mappings
listed below. For convenience we use PT and PI_OVER_2 for 7 and 7 respectively.

A h (Hadamard) vanilla instruction was mapped to the following NV instruction sequence:

0 rot_y PI_OVER_2
1 rot_x PI

34

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

Table 2. Noise parameters for used in the simulations of section 8. f is the value being swept in

figures 11(a) and 13. All fidelities are realized by a applying depolarising noise as in equation (I3). All values
are from [26], except 1ink fidelity which is set to relatively high value to avoid this being the major
noise-contribution and preventing any conclusions to be made.

Parameter Value Explanation

electron T1 1h T, of communication qubit (electron)
electron T2 1.46s T, of communication qubit (electron)
electron init 0.99 Fidelity to initialize communication qubit (electron)
electron rot 1.0 Fidelity for Z-rotation on communication qubit (electron)
carbon T1 10h T, of storage qubit (carbon)

carbon_ T2 s T, of storage qubit (carbon)
carbon_init 0.997 Fidelity to initialize storage qubit (carbon)
carbon z rot 0.999 Fidelity for Z-rotation on storage qubit (carbon)
carbon_xy rot f Fidelity for X/Y-rotation on storage qubit (carbon)
ec_controlled dir xy f Fidelity for native two-qubit gate
prob_error meas 0 0.05 Probability of flipped measurement outcome for |0)
prob error meas 1 0.005 Probability of flipped measurement outcome for |1)
link fidelity 0.9 Fidelity of generated entangled pair

A cnot C S vanilla instruction between a communication qubit (C) and a storage qubit (S) (as
specified in the unit-module) was mapped to the following NV instruction sequence:

1 rot_z
rot_x

0 cx_dir C S PI_OVER_2

C -PI_OVER_2
S -PI_OVER_2

A cnot S C vanilla instruction between a store qubit (S) and a communication qubit (C) (as specified
in the unit-module) was mapped to the following NV instruction sequence:

0 rot_y
rot_x
rot_y

rot_z
rot_x
6 rot_y
7 rot_y
8 rot_x

cx_dir C S PI_OVER_2

C PI_OVER_2
C PI
S PI_OVER_2

C -PI_OVER_2
S -PI_OVER_2
S PI_OVER_2
C PI_OVER_2
C PI

A cphase C S vanilla instruction between a communication qubit (C) and a storage qubit (S) (as
specified in the unit-module) was mapped to the following NV instruction sequence:

0 rot_y

S PI_OVER_2

cx_dir C S PI_OVER_2

; rot_z C -PI_OVER_2
., rot_x S -PI_OVER_2
i rot_y S -PI_OVER_2
ORCID iDs
Axel Dahlberg @ https://orcid.org/0000-0003-2479-7424

Bart van der Vecht @ https://orcid.org/0000-0002-1048-5588
Carlo Delle Donne @ https://orcid.org/0000-0003-2834-4334

Ingmar te Raa

References

https://orcid.org/0000-0002-9504-9370

[1] Wehner S, Elkouss D and Hanson R 2018 Quantum internet: a vision for the road ahead Science 362 eaam9288

[2] Bennett C H and Brassard G 1984 Quantum cryptography: public key distribution, and coin-tossing Proc. 1984 IEEE Int. Conf.
Computers, Systems, and Signal Processing pp 175-9

[3] Childs A M 2005 Secure assisted quantum computation Quantum Inf. Comput. 5 456—66

35

https://orcid.org/0000-0003-2479-7424
https://orcid.org/0000-0003-2479-7424
https://orcid.org/0000-0002-1048-5588
https://orcid.org/0000-0002-1048-5588
https://orcid.org/0000-0003-2834-4334
https://orcid.org/0000-0003-2834-4334
https://orcid.org/0000-0002-9504-9370
https://orcid.org/0000-0002-9504-9370
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.aam9288
https://doi.org/10.26421/qic5.6-4
https://doi.org/10.26421/qic5.6-4
https://doi.org/10.26421/qic5.6-4
https://doi.org/10.26421/qic5.6-4

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

(12]

Buhrman H, Cleve R, Massar S and de Wolf R 2010 Nonlocality and communication complexity Rev. Mod. Phys. 82 665-98
Gottesman D, Jennewein T and Croke S 2012 Longer-baseline telescopes using quantum repeaters Phys. Rev. Lett. 109 070503
Hensen B et al 2015 Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres Nature 526 6826
Humphreys P C, Kalb N, Morits J P J, Schouten R N, Vermeulen R F L, Twitchen D J, Markham M and Hanson R 2018
Deterministic delivery of remote entanglement on a quantum network Nature 558 268—73

Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L-M and Monroe C 2007 Entanglement of
single-atom quantum bits at a distance Nature 449 68—71

Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W and Weinfurter H 2012 Heralded entanglement between widely
separated atoms Science 337 72—5

Kalb N et al 2017 Entanglement distillation between solid-state quantum network nodes Science 356 928—32

Inlek I'V, Crocker C, Lichtman M, Sosnova K and Monroe C 2017 Multispecies trapped-ion node for quantum networking Phys.
Rev. Lett. 118 250502

Sangouard N, Simon C, De Riedmatten H and Gisin N 2011 Quantum repeaters based on atomic ensembles and linear optics Rev.
Mod. Phys. 83 33

Abobeih M H, Cramer J, Bakker M A, Kalb N, Markham M, Twitchen D J and Taminiau T H 2018 One-second coherence for a
single electron spin coupled to a multi-qubit nuclear-spin environment Nat. Commun. 9 2552

Ekert A K 1991 Quantum cryptography based on Bell’s theorem Phys. Rev. Lett. 67 661

Kobayashi H, Matsumoto K and Tani S 2014 Simpler exact leader election via quantum reduction Chicago J. Theor. Comput. Sci.
2014 10

Ganz M 2009 Quantum leader election (arXiv:0910.4952)

Cross AW et al 2021 OpenQASM 3: a broader and deeper quantum assembly language (arXiv:2104.14722)

Burgholzer L and Wille R 2021 Towards verification of dynamic quantum circuits (arXiv:2106.01099)

Taminiau T H, Cramer J, van der Sar T, Dobrovitski V 'V and Hanson R 2014 Universal control and error correction in
multi-qubit spin registers in diamond Nat. Nanotechnol. 9 171-6

Pompili M et al 2021 Realization of a multi-node quantum network of remote solid-state qubits Science 372 259—64

Dahlberg A et al 2019 A link layer protocol for quantum networks ACM SIGCOMM 2019 Conf. (SIGCOMM ’19) (New York:
ACM) p 15

Kozlowski W, Dahlberg A and Wehner S 2020 Designing a quantum network protocol (arXiv:2010.02575)

Arpaci-Dusseau R H and Arpaci-Dusseau A C 2018 Operating Systems: Three Easy Pieces (Madison, WI: Arpaci-Dusseau Books
LLC)

van der Vecht B and Dahlberg A 2021 Git repository with code for NetQASM https://github.com/QuTech-Delft/netqasm
Quantum Network Explorer 2022 https://quantum-network.comhttps://quantum-network.com

Coopmans T et al 2021 NetSquid, a network simulator for quantum information using discrete events Commun. Phys. 4 164
Dahlberg A and Wehner S 2018 SimulaQron—a simulator for developing quantum internet software Quantum Sci. Technol. 4
015001

Pompili M et al 2021 Experimental demonstration of entanglement delivery using a quantum network stack (arXiv:2111.11332)
Fu X et al 2017 An experimental microarchitecture for a superconducting quantum processor Proc. 50th Annual IEEE/ACM Int.
Symp. Microarchitecture (MICRO-5017) (New York: Association for Computing Machinery) pp 813-25

Eli Bourassa J et al 2020 Blueprint for a scalable photonic fault-tolerant quantum computer (arXiv:2010.02905)

Murali P, Linke N M, Martonosi M, Abhari A J, Nguyen N H and Alderete C H 2019 Full-stack, real-system quantum
computer studies: architectural comparisons and design insights Proc. 46th Int. Symp. Computer Architecture (ISCA °19)

(New York: Association for Computing Machinery) pp 527-40

Wecker D and Svore K M 2014 LIQUi|): a software design architecture and domain-specific language for quantum computing
(arXiv:1402.4467)

Khammassi N, Ashraf I, Someren J v, Nane R, Krol A M, Rol M A, Lao L, Bertels K and Almudever C G 2020 OpenQL: a portable
quantum programming framework for quantum accelerators (arXiv:2005.13283)

Amy M and Gheorghiu V 2020 Staq—a full-stack quantum processing toolkit Quantum Sci. Technol. 5 034016

Green A S, Lumsdaine P L, Ross N J, Selinger P and Valiron B 2013 Quipper: a scalable quantum programming language Proc.
34th ACM SIGPLAN Conf. Programming Language Design and Implementation vol 48 pp 333—42

Steiger D S, Héner T and Troyer M 2018 ProjectQ: an open source software framework for quantum computing Quantum 2 49
Cross AW, Bishop L S, Smolin J A and Gambetta] M 2017 Open quantum assembly language (arXiv:1707.03429)

Khammassi N, Guerreschi G G, Ashraf I, Hogaboam] W, Almudever C G and Bertels K 2018 cQASM v1.0: towards a common
quantum assembly language (arXiv:1805.09607)

Fu X et al 2019 An executable quantum instruction set architecture 2019 IEEE Int. Symp. High Performance Computer Architecture
(HPCA) pp 224-37

Liu S, Wang X, Zhou L, Guan J, Li Y, He Y, Duan R and Ying M 2017 Q|SI): a quantum programming environment
(arXiv:1710.09500)

Smith R S, Curtis M] and Zeng W] 2016 A practical quantum instruction set architecture (arXiv:1608.03355)

IBM (2020) Qiskit https://qiskit.org/

Google (2020) Cirq https://cirq.readthedocs.io/en/stable/

Microsoft (2020) Q# https://docs.microsoft.com/en-us/quantum/

Jones T, Brown A, Bush I and Benjamin S C 2019 Quest and high performance simulation of quantum computers Sci. Rep. 9
10736

Zulehner A and Wille R 2019 Compiling SU (4) quantum circuits to IBM QX architectures Proc. 24th Asia and South Pacific
Design Automation Conf. pp 185-90

Hiner T, Steiger D S, Svore K and Troyer M 2018 A software methodology for compiling quantum programs Quantum Sci.
Technol. 3 020501

Gokhale P, Koretsky S, Huang S, Majumder S, Drucker A, Brown K R and Chong F T 2020 Quantum fan-out: circuit
optimizations and technology modeling (arXiv:2007.04246)

Liu L and Dou X 2020 A new qubits mapping mechanism for multi-programming quantum computing ACM International
Conference on Parallel Architectures and Compilation Techniques (September 2020) pp 349-50

Gokhale P, Javadi-Abhari A, Earnest N, Shi Y and Chong F T 2020 Optimized quantum compilation for near-term algorithms
with openpulse arXiv 2004.11205

36

https://doi.org/10.1103/revmodphys.82.665
https://doi.org/10.1103/revmodphys.82.665
https://doi.org/10.1103/revmodphys.82.665
https://doi.org/10.1103/revmodphys.82.665
https://doi.org/10.1103/physrevlett.109.070503
https://doi.org/10.1103/physrevlett.109.070503
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/nature06118
https://doi.org/10.1038/nature06118
https://doi.org/10.1038/nature06118
https://doi.org/10.1038/nature06118
https://doi.org/10.1126/science.1221856
https://doi.org/10.1126/science.1221856
https://doi.org/10.1126/science.1221856
https://doi.org/10.1126/science.1221856
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1103/physrevlett.118.250502
https://doi.org/10.1103/physrevlett.118.250502
https://doi.org/10.1103/revmodphys.83.33
https://doi.org/10.1103/revmodphys.83.33
https://doi.org/10.1038/s41467-018-04916-z
https://doi.org/10.1038/s41467-018-04916-z
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.4086/cjtcs.2014.010
https://doi.org/10.4086/cjtcs.2014.010
https://arxiv.org/abs/0910.4952
https://arxiv.org/abs/2104.14722
https://arxiv.org/abs/2106.01099
https://doi.org/10.1038/nnano.2014.2
https://doi.org/10.1038/nnano.2014.2
https://doi.org/10.1038/nnano.2014.2
https://doi.org/10.1038/nnano.2014.2
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1126/science.abg1919
https://arxiv.org/abs/2010.02575
https://github.com/QuTech-Delft/netqasm
https://quantum-network.comhttps://quantum-network.com
https://doi.org/10.1038/s42005-021-00647-8
https://doi.org/10.1038/s42005-021-00647-8
https://doi.org/10.1088/2058-9565/aad56e
https://doi.org/10.1088/2058-9565/aad56e
https://arxiv.org/abs/2111.11332
https://arxiv.org/abs/2010.02905
https://arxiv.org/abs/1402.4467
https://arxiv.org/abs/2005.13283
https://doi.org/10.1088/2058-9565/ab9359
https://doi.org/10.1088/2058-9565/ab9359
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1805.09607
https://arxiv.org/abs/1710.09500
https://arxiv.org/abs/1608.03355
https://qiskit.org/
https://cirq.readthedocs.io/en/stable/
https://docs.microsoft.com/en-us/quantum/
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.1088/2058-9565/aaa5cc
https://arxiv.org/abs/2007.04246
https://doi.org/10.1145/3410463.3414659
https://doi.org/10.1145/3410463.3414659
https://doi.org/10.1145/3410463.3414659
http://arxiv.org/abs/2004.11205

10P Publishing

Quantum Sci. Technol. 7 (2022) 035023 A Dahlberg et al

(51]

(52]
(53]

(54]
(55]

(56]

(57]
(58]

(59]

Ding Y, Wu X-C, Holmes A, Wiseth A, Franklin D, Martonosi M and Chong F T 2020 SQUARE: Strategic quantum ancilla reuse
for modular quantum programs via cost-effective uncomputation ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA) pp 570-83

Smith R S, Peterson E C, Skilbeck M G and Davis E] 2020 An open-source, industrial-strength optimizing compiler for quantum
programs Quantum Sci. Technol. 5 044001

Sivarajah S, Dilkes S, Alexander C, Simmons W, Edgington A and Duncan R 2020 t|ket): a retargetable compiler for NISQ devices
Quantum Sci. Technol. 6 014003

Hietala K, Rand R, Hung S-H, Wu X and Hicks M 2019 A verified optimizer for quantum circuits (arXiv:1912.02250)

Zhang Y, Deng H and Li Q 2020 Context-sensitive and duration-aware qubit mapping for various NISQ devices
(arXiv:2001.06887)

Niu S, Suau A, Staffelbach G and Todri-Sanial A 2020 A hardware-aware heuristic for the qubit mapping problem in the NISQ era
(arXiv:2010.03397)

Bryan D and Di Matteo O 2020 A QUBO formulation for qubit allocation (arXiv:2009.00140)

Pozzi M G, Herbert S], Sengupta A and Mullins R D 2020 Using reinforcement learning to perform qubit routing in quantum
compilers (arXiv:2007.15957)

Nishio S, Pan Y, Satoh T, Amano H and Meter R V 2020 Extracting success from IBM’s 20-qubit machines using error-aware
compilation ACM J. Emerg. Technol. Comput. Syst. 16 1-25

QuTech 2020 NetSQUID https://netsquid.org/

Bernien H 2014 Control, measurement and entanglement of remote quantum spin registers in diamond PhD Thesis TU Delft
Ritter S et al 2012 An elementary quantum network of single atoms in optical cavities Nature 484 195

Bradley CE et al 2019 A 10-qubit solid-state spin register with quantum memory up to one minute Phys. Rev. X 9 031045
Fitzsimons] F 2017 Private quantum computation: an introduction to blind quantum computing and related protocols #pj
Quantum Inf. 3 23

Berge C 1984 Hypergraphs: Combinatorics of Finite Sets (Amsterdam: North-Holland)

van der Vecht B and Dahlberg A 2021 Git repository with code for SquidASM https://github.com/QuTech-Delft/squidasm
Christandl M and Wehner S 2005 Quantum anonymous transmissions Advances in Cryptology—ASIACRYPT 2005 ed B Roy
(Berlin: Springer) pp 217-35

Broadbent A, Fitzsimons] and Kashefi E 2009 Universal blind quantum computation Proc. 2009 50th Annual IEEE Symp.
Foundations of Computer Science (FOCS °09) (IEEE) pp 517-26

Fitzsimons J F and Kashefi E 2017 Unconditionally verifiable blind quantum computation Phys. Rev. A 96 012303

Kaniewski] and Wehner S 2016 Device-independent two-party cryptography secure against sequential attacks New J. Phys. 18
055004

Denchev V S and Pandurangan G 2008 Distributed quantum computing: a new frontier in distributed systems or science fiction?
ACM SIGACT News 39 77-95

Brassard G, Cleve R and Tapp A 1999 Cost of exactly simulating quantum entanglement with classical communication Phys. Rev.
Lett. 83 1874-7

Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Teleporting an unknown quantum state via dual
classical and Einstein—Podolsky—Rosen channels Phys. Rev. Lett. 70 1895

Dahlberg A 2021 Git repository with code for CQC https://github.com/SoftwareQuTech/CQC-Python

van der Vecht B 2022 Git repository with simulation code and data used for the evaluation in this paper https://github.com/
QuTech-Delft/netqasm-paper-data

Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information 10th edn (Cambridge: Cambridge
University Press)

37

https://doi.org/10.1109/ISCA45697.2020.00054
https://doi.org/10.1109/ISCA45697.2020.00054
https://doi.org/10.1109/ISCA45697.2020.00054
https://doi.org/10.1088/2058-9565/ab9acb
https://doi.org/10.1088/2058-9565/ab9acb
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://arxiv.org/abs/1912.02250
https://arxiv.org/abs/2001.06887
https://arxiv.org/abs/2010.03397
https://arxiv.org/abs/2009.00140
https://arxiv.org/abs/2007.15957
https://doi.org/10.1145/3386162
https://doi.org/10.1145/3386162
https://doi.org/10.1145/3386162
https://doi.org/10.1145/3386162
https://netsquid.org/
https://doi.org/10.1038/nature11023
https://doi.org/10.1038/nature11023
https://doi.org/10.1038/s41534-017-0025-3
https://doi.org/10.1038/s41534-017-0025-3
https://github.com/QuTech-Delft/squidasm
https://doi.org/10.1103/physreva.96.012303
https://doi.org/10.1103/physreva.96.012303
https://doi.org/10.1088/1367-2630/18/5/055004
https://doi.org/10.1088/1367-2630/18/5/055004
https://doi.org/10.1145/1412700.1412718
https://doi.org/10.1145/1412700.1412718
https://doi.org/10.1145/1412700.1412718
https://doi.org/10.1145/1412700.1412718
https://doi.org/10.1103/physrevlett.83.1874
https://doi.org/10.1103/physrevlett.83.1874
https://doi.org/10.1103/physrevlett.83.1874
https://doi.org/10.1103/physrevlett.83.1874
https://doi.org/10.1103/physrevlett.70.1895
https://doi.org/10.1103/physrevlett.70.1895
https://github.com/SoftwareQuTech/CQC-Python
https://github.com/QuTech-Delft/netqasm-paper-data
https://github.com/QuTech-Delft/netqasm-paper-data

	NetQASM—a low-level instruction set architecture for hybrid quantum–classical programs in a quantum internet
	1. Introduction
	1.1. Contribution
	1.2. Related work
	1.3. Outline

	2. Preliminaries and definitions
	2.1. Quantum networks
	2.2. Application layer and QNPU
	2.3. Applications and programs

	3. Use-cases
	4. Design considerations
	5. Design decisions
	5.1. Interface between application layer and QNPU
	5.1.1. Execution model
	5.1.2. Shared classical memory
	5.1.3. Unit modules

	5.2. NetQASM language
	5.2.1. Instructions
	5.2.2. Remote entanglement generation
	5.2.3. Flavors
	5.2.4. Programmability

	6. Implementation
	6.1. Interface between application layer and QNPU
	6.2. The language
	6.3. Instructions
	6.4. Compilation

	7. Python SDK
	7.1. SDK
	7.1.1. Backends

	8. Evaluation
	8.1. Unit modules
	8.2. Flavors
	8.3. Relation to other results

	9. Conclusion
	Acknowledgments
	Data availability statement
	Appendix A. Flow of messages
	Appendix A. Flow of messages
	Appendix B. Operands
	Appendix C. Branch variables
	Appendix D. Arrays
	Appendix E. Qubit address operands
	Appendix F. Instructions
	Appendix F. Instructions
	F.1. Allocation
	F.2. Initialization
	F.3. Memory operations
	F.4. Classical logic
	F.5. Classical operations
	F.6. Quantum gates
	F.7. Waiting
	F.8. Deallocation
	F.9. Return

	Appendix G. Preprocessing
	Appendix G. Preprocessing
	Appendix H. Examples
	Appendix H. Examples
	H.1. NetQASM
	H.1.1. Classical logic (if-statement)
	H.1.2. Classical logic (for-loop)
	H.1.3. Create and recv EPR

	H.2. SDK
	H.2.1. Classical logic (if-statement)
	H.2.2. Classical logic (for-loop)
	H.2.3. Create and recv EPR

	Appendix I. Simulation details
	I.1. Noise model
	I.2. BQC application and flavors

	ORCID iDs
	References

