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Abstract

Over the past decades, Floating Offshore Wind Turbine (FOWT) has gained increasing
attention in wind engineering due to the rapidly growing energy demands. However, diffi-
culties in turbine maintenance will increase due to the harsh operational conditions. Fault
diagnosis techniques play a crucial role to enhance the reliability of FOWTs and reduce
the cost of offshore wind energy. In this paper, a novel data-driven fault diagnosis method
using regularized dynamic canonical correlation analysis (RDCCA) and Fisher discriminant
analysis (FDA) is proposed for FOWTs. Specifically, to overcome the collinearity problem
that exists in measured process data, dynamic canonical correlation analysis with a regu-
larization scheme, is developed to exploit the relationship between input and output sig-
nals. Then, the residual signals are generated from the established RDCCA model for fault
detection. To further classify the fault type, an FDA model is trained from the residual sig-
nals of different training faulty data sets. Simulations on a FOWT baseline model based on
the widely used National Renewable Energy Laboratory FAST simulator are carried out to
demonstrate the feasibility and efficacy of the proposed fault detection and classification
method. Results have shown many salient features of the proposed method with potential
applications in FOWTs.

1 INTRODUCTION

Nowadays, wind energy has become one of the most impor-
tant renewable sources for fulfilling the world’s energy demand
[1]. Compared to onshore installed wind turbines, offshore wind
turbines have several advantages such as more reliable sources
of wind energy, more power, less environmental impact etc.
Therefore, offshore wind turbines have a large potential to grow
in the future wind industry [2]. Among many types of offshore
wind turbines, floating offshore wind turbine (FOWT) can eas-
ily access deeper water areas to harness the best wind resources.
FOWT plays a leading role to economically harvest wind energy
over the deeper sea [3, 4].

However, FOWT would frequently suffer from various faults
and failures in sensors, actuators, and components, due to the
harsh working environments with storing wind, rising water
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level. Recently, some studies showed that the ratio of the opera-
tion and maintenance (O & M) costs to the total cost of energy
can reach 23% for offshore wind turbines [5]. Therefore, con-
dition monitoring (CM) is of vital importance for floating off-
shore wind power systems to ensure stability and extend long
service life [6]. With efficient fault detection and classification
technique for online condition monitoring of wind turbines, the
downtime can be reduced and severe component damage can be
avoided. Furthermore, maintenance strategies can be optimized
to avoid unnecessary activities, thus making fault detection and
classification techniques an enabling technology for reducing
O&M costs and maximizing the profit of wind energy projects
[7].

In recent years, there has been an increasing amount of lit-
erature on wind turbine fault detection and classification [8].
Wind turbine fault detection and classification methods can be
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roughly categorized into two classes: model-based and data-
driven approaches. For model-based approaches, Kalman filter
and estimators, parity equations, and observer-based fault detec-
tion techniques have been reported in the literature for wind
turbines or their subsystems [9–13]. The advantage of model-
based methods is that they can offer the faults insight. How-
ever, model-based approaches rely on an accurate mathematical
model which is often difficult to obtain for wind turbines or
their subsystems due to the complicated structure.

Different from model-based approaches, data-driven meth-
ods only require the available system I/O data for the task of
fault detection and classification. Due to the model-free char-
acteristic, the data-driven methods are more suitable and prac-
tical for wind turbines or their subsystems [14–17]. With the
rapid evolution of sensor and communication technologies, it
is facilitating the development of data-driven wind turbine fault
diagnosis. Recently, a considerable amount of literature has been
published on the data-driven wind turbine fault detection and
classification methods. Bessa et al. considered the detection of
the occurrence of faults as a change point detection problem in
time-series data. A wind turbine fault detection method based
on the Gibbs sampling algorithm was developed. Moreover,
a Fuzzy/Bayesian network scheme was applied for fault iso-
lation [18]. Pashazadeh et al. developed a wind turbine fault
detection and classification scheme through a fused classifier
with decision tree and k-nearest neighbor (knn) in parallel [19].
Based on supervisory control and data acquisition (SCADA)
data, Song et al. presented a wind turbine health states monitor-
ing method using a Bayesian framework to identify abnormal
turbine states [20]. Li et al. applied long short-term memory
networks (LSTM) to generate residual signals for the purpose
of wind turbine fault detection and employed random forest
for decision-making [21]. Jiang et al. applied denoising autoen-
coder (DAE) to build a multivariate reconstruction model on
raw time-series data from multiple sensors. The reconstruction
error of the DAE was analyzed to detect faults [22].

Compared to the above-mentioned machine learning-based
methods, multivariate analysis (MVA) methods have also been
widely used in wind turbine fault detection and classification.
For MVA based fault detection method, a fault is detected
by comparing the constructed statistic and its corresponding
threshold [23]. The main advantages of MVA are its simplic-
ity and efficiency. Among these MVA methods, principal com-
ponent analysis (PCA) and Fisher discriminant analysis (FDA)
have been commonly employed for wind turbine fault detec-
tion and classification. In PCA, an orthogonal transformation
is learned to convert a set of correlated variables into uncor-
related variables. As a representative classification method, the
FDA determines a set of projection vectors that minimize the
scatter within each class while maximizing the scatter between
the classes [24]. Krüger et al. adopted PCA to investigate the
correlations of the measured process data for the detection of
process abnormalities that happened in wind turbine gearbox
and then used the FDA to classify the fault types [25]. Pozo
et al. used PCA and statistical hypothesis testing to develop
a fault detection scheme for wind turbine [26]. Wang et al.
studied the PCA based variable selection method and used the

established PCA model for developing wind turbine fault detec-
tion and identification algorithms [27]. Nevertheless, these sys-
tems are mostly designed for onshore wind turbines. The fault
detection and classification of FOWTs is rarely studied.

Different from PCA-based fault detection methods, canoni-
cal correlation analysis (CCA) determines the input–output rela-
tionship of the system by maximizing the correlations between
input and output signals [28, 29]. CCA-based fault detection
method is more efficient while the input–output relationship
is explicitly established, compared to PCA-based method [30,
31]. Since the measured process data often exhibits collinearity
problem in practice [29], a regularized scheme was employed. To
capture the system dynamics, CCA can be extended to dynamic
CCA (DCCA) or canonical variate analysis (CVA) by taking past
input and output data into consideration [32, 33]. CCA and its
variants have been successfully applied for fault detection and
diagnosis in a variety of industrial processes [34–38]. Further-
more, a combined canonical variate analysis and Fisher discrim-
inant analysis was developed for fault classification for chemical
processes, where the state space vector is extracted by canonical
variate analysis and fed into Fisher discriminant analysis model
[39]. However, to the authors’ knowledge, CCA is rarely inves-
tigated for system-wide wind turbine fault diagnosis.

Inspired by the idea of combined CVA and FDA [39], we
develop a new fault diagnosis method using regularized dynamic
canonical correlation analysis and Fisher discriminant analy-
sis for FOWT. First, the relationship between input and out-
put signals is described by presenting the regularized dynamic
canonical correlation analysis (RDCCA) where a regularization
scheme is integrated into dynamic canonical correlation analysis.
Then, the residual generator is established through the RDCCA
model. The system dynamics is captured and the collinearity
problem in measured process data is addressed. To further clas-
sify the fault types, FDA is combined into the framework of
RDCCA. The residual vectors derived from the RDCCA model
are used to build an FDA model for fault classification. The
main contributions of this paper are two-fold as follows,

∙ The fault detection and classification problem for FOWTs
is investigated. Although numerous studies of wind turbine
fault detection and classification systems have been reported
in the literature, little attention has been paid to FOWTs. The
critical faults of the power and control system and of the
FOWT drive train are considered in this paper.

∙ A new fault detection and classification method using
RDCCA and FDA is proposed for FOWTs. The RDCCA
is developed to design the fault detection of FOWTs by tak-
ing the dynamics and correlations in multivariate sensor time-
series data into account. And then the fault types are classified
by the integration of RDCCA and FDA methods.

The rest of this paper is organized as follows. In Section 2,
a brief review is dedicated to CCA. Section 3 presents the
proposed RDCCA-FDA approach based on fault detection
and classification scheme. The FOWT fault simulation bench-
mark using the National Renewable Energy Laboratory (NREL)
FAST (Fatigue, Aerodynamics, Structures and Turbulence) v8
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simulator is introduced in Section 4. Performance evaluation
is carried out on the simulated benchmark model in Section 5.
Finally, conclusions are drawn in Section 6.

2 BRIEF REVIEW OF CCA

As a representative multivariate analysis method, CCA has been
widely employed to analyze the relationship between two vari-
ables. By maximizing the correlations between the projections
of high-dimensional variables, the relationship between input
and output signals can be described in an explicit way. These
projections are also called canonical varieties in CCA. CCA has
been proven as a promising tool for developing fault diagnosis
systems [30, 32].

Let u ∈ m and y ∈ l be the normalized input and output
vectors. The aim of CCA is to find weight vectors wu and wy

to maximize the correlations between the projections wT
u u and

wT
y y. Thus, the optimization problem of CCA can be formu-

lated as follows,

max
wu ,wy

wT
u ˝uywy

(wT
u ˝uwu )1∕2(wT

y ˝ywy )1∕2

s.t. wT
u ˝uwu = 1, (1)

wT
y ˝ywy = 1,

where ˝uy is the covariance matrix between u and y. ˝u and ˝y

are the variance matrices of u and y, respectively. Generally, the
optimization problem Equation (1) can be easily solved through
singular vector decomposition (SVD) or eigenvalue decomposi-
tion.

Assuming that N samples {ui , yi}i=1,…,N are collected, the
input and output matrices of U and Y can be obtained as,

U =
[
u1 u2 ⋯ uN

]
,

Y =
[
y1 y2 ⋯ yN

]
.

Then, the co-variance matrices Σu, Σy and cross-variance
matrix Σu,y can be estimated, respectively, as

Σu =
1

N − 1
UUT ,

Σy =
1

N − 1
YYT ,

Σu,y =
1

N − 1
UYT .

Perform SVD on the following matrix,

Σ
−1∕2
u Σu,yΣ

−1∕2
y = ΥcΔcΨ

T
c . (2)

Then, the weight matrices are obtained,

Wu = Σ
−1∕2
u Υc , (3)

Wy = Σ
−1∕2
y Ψc . (4)

However, the components extracted by the CCA often suffer
from ill-conditioned problem due to the sensitivity to noise in
the data. To deal with this problem, CCA is usually extended
to regularized CCA (RCCA) [29]. In RCCA, the regularization
terms are added as follows,

max
wu ,wy

wT
u ˝uywy

(wT
u ˝uwu )1∕2(wT

y ˝ywy )1∕2

s.t. wT
u (˝u + 𝛼1I)wu = 1, (5)

wT
y (˝y + 𝛼2I)wy = 1,

where 𝛼1 and 𝛼2 are the the regularization parameters to control
non-zero eigenvalues to avoid the ill-conditioned problem. The
optimization problem Equation (5) can be solved through SVD
in a similar manner as CCA.

Remark 1. The regularization terms are added into the objective
function Equation (2) to ensure non-zero eigenvalues. While 𝛼1
and 𝛼2 are set to 0, RCCA will reduce to CCA.

3 PROPOSED METHOD

The input and output signals are usually extended to the stacked
vectors to capture the system dynamics. To do so, the stacked
past data vector zp ∈ (l+m)q , future input vector u f ∈ mq

and future output vector y f ∈ l f are formed in a time-lagged
way. For example, zp and u f are formed as follows,

zp(k) =

⎡⎢⎢⎢⎢⎢⎢⎣

u(k − 1)
⋮

u(k − q)
y(k − 1)

⋮

y(k − q)

⎤⎥⎥⎥⎥⎥⎥⎦
u f (k) =

⎡⎢⎢⎢⎣
u(k)

u(k + 1)
⋮

u(k + q − 1)

⎤⎥⎥⎥⎦ .

y f is also defined as u f . q is the number of time lags in past and
future data vectors zp(k), u f (k) and y f (k).

According to the realization theory [40], the future output
vector y f can be predicted through the past inputs and out-
puts zp, and the future inputs u f by analyzing their correlations.
For the purpose of establishing the relationship between y f and

zp f =
[
z⊤p u⊤

f

]⊤
, the optimization problem of DCCA can be

cast as,

max
wdz ,wdy

wT
dz

˝zp f ,y f
wdy

(wT
dz

˝zp f
wdz )1∕2(wT

dy
˝y f

wdy )1∕2
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s.t. wT
dz

˝zp f
wdz = 1, (6)

wT
dy

˝y f
wdy = 1,

where ˝zp f ,y f
is the covariance matrix between zp f and y f . ˝zp f

and ˝y f
are the variance matrices of zp f and y f , respectively. wdz

and wdy are the weight vectors to be found.
Collinearity is a common statistical issue in industrial data

sets, particularly while there exists feedback control in dynamic
systems. A simple way to address this collinearity issue is using
a regularization scheme. In this study, we also adopt the regular-
ization scheme to deal with the measured process data collected
from the wind turbine system. Specifically, two regularization
terms are added to convert Σzp f

and Σy f
to Σzp f

+ 𝛼1I and
Σy f

+ 𝛼2I, respectively. Here, 𝛼1 and 𝛼2 are the regularization
parameters. The regularization parameters 𝛼1 and 𝛼2 are often
determined by cross-validation. Therefore, the optimization
problem of RDCCA can be cast as,

max
wdz ,wdy

wT
dz

˝zp f ,y f
wdy

(wT
dz

˝zp f
wdz )1∕2(wT

dy
˝y f

wdy )1∕2

s.t. wT
dz

(˝zp f
+ 𝛼1I)wdz = 1, (7)

wT
dy

(˝y f
+ 𝛼2I)wdy = 1.

Assuming that N samples are collected, the Hankel matrices
of zp f and y f can be created as,

Zp f =
[
zp f (q + 1) ⋯ zp f (M )

]
,

Y f =
[
y f (q + 1) ⋯ y f (M )

]
,

where M = N − 2q + 1. Then, the co-variance matrices
Σzp f

, Σy f
and cross-variance matrix Σzp f ,y f

can be estimated,
respectively, as

Σzp f
=

1
N − 1

Zp f ZT
p f
, (8)

Σy f
=

1
N − 1

Y f YT
f
, (9)

Σzp f ,y f
=

1
N − 1

Zp f YT
f
. (10)

Based on the estimated covariance matrices and cross-
variance matrix, the optimization problem Equation (7) can be
readily solved through SVD. According to linear algebra theory,
the SVD operation is performed as follows,

(Σzp f
+ 𝛼1I)−1∕2Σzp f ,y f

(Σy f
+ 𝛼2I)−1∕2 = ΥΔΨT , (11)

to derive the solution of Equation (7). In Equation (11), Υ con-
tains the left singular vectors and Ψ contains the right singular
vectors. Δ = diag(𝜆1, … , 𝜆lq ) is a diagonal matrix which con-

sists of descended order singular values. For the purpose of
dimensionality reduction, only n largest singular values are
retained. Usually, n ≤ lq. Thus, Δn = diag(𝜆1, … , 𝜆n ). From the
result of SVD, the weight matrices Wdz and Wdy can be calcu-
lated,

Wdz = Σ
−1∕2
zp f

Υ(∶, 1 ∶ n), (12)

Wdy = Σ
−1∕2
y f

Ψ(∶, 1 ∶ n). (13)

Remark 2. In the proposed RDCCA method, the regular-
ization terms are imposed where wT

dz
(˝zp f

+ 𝛼1I)wdz = 1 and

wT
dy

(˝y f
+ 𝛼2I)wdy = 1. While 𝛼1 and 𝛼2 are set to 0, RDCCA

will reduce to DCCA.
Based on the established RDCCA model, the residual signals

are generated from zp f (k) and y f (k) at time instant k as

r(k) = WT
dy

y f (k) − ΔnWT
dz

zp f (k) (14)

For fault detection, the Hotelling’s statistic T 2
r (k) is calculated

from r(k),

T 2
r (k) = r(k)T Σ−1

r r(k) (15)

Here, Σr is the co-variance matrix of r. Under the assumption
that measured process data are sampled from Gaussian distri-
butions, the threshold Jth can be calculated from 𝜒2 distribution
corresponding to a certain significance level 𝛼,

Jth = 𝜒2
𝛼 (n). (16)

Using Hotelling’s statistic T 2
r (k) and threshold Jth, the fault

decision logic can be concluded,{
T 2

r (k) > Jth ⇒ faulty.

T 2
r (k) ≤ Jth ⇒ fault-free.

(17)

The procedure of the RDCCA-based fault detection method
can be summarized as follows,

∙ Offline Training

◦ Normalize the collected samples U and Y under the fault-
free scenario.

◦ Compute the covariance and variance matrices.
◦ Perform SVD through Equation (11) with determined

parameters to extract the weight matrices.
◦ Obtain the residuals from Equation (14) and calculate the

corresponding Hotelling’s statistics from Equation (15).
◦ Calculate the threshold from Equation (16) corresponding

to a certain significance level.
∙ Online Monitoring

◦ Collect and normalize the online sample with the mean
and variance of normal samples.
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◦ Obtain the online residuals and Hotelling’s statistic from
Equations (14) and (15) with calculated weight matrices in
the offline training phase.

◦ Determine the fault-free or faulty sample by using the logic
Equation (17).

To further classify the fault type after the detection of fault
occurrence, FDA is integrated into RDCCA in this study. FDA
is a typical pattern classification method [41]. In this paper,
we conduct the FDA method using the residual signals derived
from RDCCA. The basic idea of FDA is to determine a set of
projection vectors that optimize the Fisher criterion. Assuming
that Nall observations of residuals r(k) are obtained from all c

faulty classes, the training data matrix for FDA is then arranged
as R ∈ Nall ×n. The dispersion of one class can be represented
by using the within-scatter matrix. As an example, for the j th
class R j , the scatter matrix S j is defined as,

S j =
∑

r(k)∈R j

(r(k) − rm, j )(r(k) − rm, j )
T , (18)

where rm, j is the mean vector of residuals of R j . The within-
class-scatter matrix is given by summing all S j ,

Sw =

c∑
j=1

S j . (19)

The dispersion of all classes is indicated by the total-scatter
matrix. The total-scatter matrix St is defined as,

St =
∑

r(k)∈R

(r(k) − rm )(r(k) − rm )T , (20)

where rm is the mean vector of R. The between-class-scatter
matrix Sb is calculated as,

Sb =

c∑
j=1

n j (rm − rm, j )(rm − rm, j )
T = St − Sw . (21)

Here, n j is the number of observations of j th class. The aim
of FDA is to find the optimal discriminant directions wi (for
i = 1, … , b with b ≤ c − 1) to maximize the separability between
different classes while minimizing the within-class scatter. Thus,
the Fisher criterion is to be maximized as follows,

max
w

wT Sbw

wT Sww
. (22)

The solution of the optimization problem Equation (22) is
equivalent to solve a generalized eigenvalue problem,

Sbwi = 𝜇iSwwi , (23)

where 𝜇i is the generalized eigenvalue. The corresponding
eigenvector is the Fisher discriminant direction wi . From the

solution of generalized eigenvalue problem Equation (23),
the optimal discriminant directions can be defined as Wb =[
w1 w2 ⋯ wb

]
, where w1 to wb are the first b eigenvectors

sorted in the descending order of the eigenvalues. Then, the
projection of r(k) onto the discriminant subspace can be rep-
resented as,

d(k) = WT
b

r(k). (24)

To classify the class of a test residual vector r(t ), the Fisher
discriminant function is usually employed,

g j (r(t )) = −
1
2

(d(t ) − dm, j )
T

(
1

n j − 1
WT

b
S j Wb

)−1

(d(t ) − dm, j ),

−
1
2

ln

[
det

(
1

n j − 1
WT

b
S j Wb

)]
, (25)

where dm, j = WT
b

rm, j . Then, the class of the test r(t ) is deter-
mined to be one of the faulty classes by observing the Fisher
discriminant function,

C (r(t )) = arg max
1≤ j≤c

g j (r(t )) (26)

The procedure of the RDCCA-FDA based fault classification
method can be summarized as follows,

∙ Offline Training

◦ Collect and normalize the faulty samples.
◦ Obtain the residuals from the collected faulty samples as

Equation (14).
◦ Solve the generalized eigenvalue problem Equation (23) to

derive the optimal discriminant directions Wb.
∙ Online Classification

◦ Collect and normalize the online faulty sample.
◦ Calculate the Fisher discriminant function Equation (25).
◦ The faulty sample is classified as one of the faulty types

where the corresponding Fisher discriminant function has
the maximum value.

In summary, the flowchart of the proposed RDCCA-FDA
based fault detection and classification approach is illustrated in
Figure 1.

4 CASE STUDY

In this section, a 10MW three-bladed variable speed reference
wind turbine with the Triple-Spar floating platform is simu-
lated to verify the performance of the proposed RDCCA-FDA
method. The simulation is based on the high-fidelity bench-
mark model developed by the Technical University of Denmark
(DTU)[42] and Stuttgart Wind Energy (SWE) institute [13, 43].
The benchmark model of the operational FOWT is simulated
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FIGURE 1 The RDCCA-FDA based fault detection and classification approach

TABLE 1 Specifications of the DTU 10MW FOWT (SWL: Sea Water
Level)

Parameter Value

Turbine system

Rating 10 MW

Rotor orientation, configuration Upwind, 3 blades

Pitch control Variable speed, collective pitch

Drive-train Medium speed, multiple stage gearbox

Rotor, hub diameter 178.3 m, 5.6 m

Hub height 119 m

Cut-in, rated, cut-out wind speed 4 m/s, 11.4 m/s, 25 m/s

Cut-in, rated rotor speed 6 rpm, 9.6 rpm

Rated tip speed 90 m/s

Floating platform

Total height 66 m

Distance from the tower center-line 26 m

Draft 56 m

Single column diameter 15 m

Column elevation above SWL 10 m

Elevation of tower base above SWL 25 m

Water displacement 29497.7 m3

by the physics-based FAST v8 simulator. The benchmark model
specifications and parameters are listed in Table 1.

In the FOWT benchmark model, the waves are simulated
by using the JONSWAP wave spectrum where the significant
wave height and peak period are estimated according to the
conditional probabilistic distribution of the wind speeds over
the North Sea. The wind model is using the IEC61400-3 design
regulation, where a turbulent wind field is modeled by mixing

TABLE 2 Wind and wave conditions in two LCs

Load Case Wind condition Um (m/s) Hs (m) Tp (s)

LC1 Turbulent wind 12 2.6 7.42

LC2 Turbulent wind 20 2.66 7.42

a mean wind and a fluctuating component. The turbulent wind
is generated by using Turbsim [44] according to the Kaimal
turbulence model including the turbulence intensity with IEC
Class C. Similar to [13], to simulate the realistic wind fields, the
turbulence intensity is a function of the wind speed at the hub
height. In this study, two load cases (LCs) are employed. The
parameters constant wind speed Um , significant wave height Hs
and peak-spectral period Tp are listed in Table 2.

The baseline control system consists of two individual con-
trollers: a blade pitch and a torque controller. The blade pitch
controller is designed as a proportional-integral (PI) controller,
and the torque controller is based on a nonlinear state feedback
function. Details of these controllers can be found in [45]. The
block diagram of the closed-loop system is shown in Figure 2.

Similar to the widely used wind turbine fault detection and
diagnosis benchmark model proposed by [46], a number of
realistic faults including the actuator, sensor and component
faults, are simulated. Table 3 lists the descriptions of these faults.
Among these faults, faults 1–4 and 7-8 are sensor faults includ-
ing scaling, offset and stuck; fault 5-6 are actuator faults such as
stuck and offset. Fault 9, instead, is a component fault to sim-
ulate the cracking, debonding/delamination and fiber breakage
of blades. The simulation of fault 9 is usually implemented as a
reduction of the blade stiffness.

Variables including the measurements y and controller out-
puts u are selected from the closed-loop system (see Table 4)
to build the monitoring model. All these variables are easily
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FIGURE 2 Block diagram of the closed loop
system

TABLE 3 Descriptions of fault scenarios

Fault No.

Fault

type Description Amplitude Time

Sensor

f1 Scaling Generator speed 0.95 185–210 s

f2 Scaling Generator power 1.1 240–265 s

f3 Offset Blade root bending
moment

104KN⋅m 295–320 s

f4 Scaling Rotor speed 1.1 350–375 s

f7 Stuck Pitch sensor 0.2 deg 570–595 s

f8 Scaling Torque sensor 0.9 645–670 s

Actuator

f5 Stuck Pitch actuator 0.2 420–445 s

f6 Offset Torque actuator +20 KN⋅m 495–520 s

Component

f9 Scaling Rotor blade
sudden fault

0.2 700–1000 s

TABLE 4 Selected variables for fault detection

Variable Symbol Units

u

Pitch angle reference 𝛽r deg

Generator torque reference 𝜏g,r Nm

y

Generator power Pg,m W

Generator angular speed 𝜔g,m rad/s

Pitch angle of ith blade 𝛽i,m deg

Blade root moment of ith blade MB,i,m Nm

Rotor angular speed 𝜔r ,m rad/s

Generator torque 𝜏r ,m Nm

acquired by standard commercial SCADA systems as found in
modern wind turbines. Additionally, a band-limited Gaussian
white noise is added to the measurements. The specification of
the band-limited Gaussian white noise can be found in [13].

The sampling interval for the selected variables is 0.01s. In
each LC, the simulation duration is 1000s and the start time of
these faults is listed in Table 3. For each LC, three data sets are

generated: the first is produced under normal operating condi-
tions for training fault detection model; the second is generated
under 9 faulty scenarios to build the FDA model; the last data set
is collected for validation. The wind power under normal oper-
ating condition is plotted in Figure 3 for LC1. The plot of wind
power in LC2 is similar to LC1. Since the wind turbine start-up
phase starts from 0 to 86s, all the data sets are collected from
86s for each load case. Thus, the training data contains 91400
samples which are collected under the fault-free condition.

5 RESULTS AND ANALYSIS

For CCA-based methods, the input variables are the pitch angle
reference 𝛽r and the generator torque reference 𝜏g,r , while the
remaining ones are outputs. For PCA-based methods, all the
variables are considered as observations. In this study, q =

30 is predefined for DCCA and RDCCA methods. The sys-
tem order n is determined as 20 using the method in [32].
Furthermore, for simplicity, the regularization coefficients of
RDCCA are set equal where 𝛼1 = 𝛼2 = 𝛼. An appropriate 𝛼
is selected where a lower false alarm rate (FAR) is obtained
through grid search. The definition of FAR will be introduced
later. Specifically, in the offline training phase, we use different 𝛼
to train the RDCCA model. Then, several FARs are calculated.
Figure 4 plots the FARs corresponding to different 𝛼 for LC2.
For RDCCA, the regularization coefficients are set as 10−5.

Similarly, the regularization coefficients of RCCA are set as
10−2. The threshold is determined according to Equation (16).
In order to verify the fault detection performance, the exist-
ing PCA and dynamic PCA (DPCA) based wind turbine fault
detection methods [25, 27] are employed. In terms of the recon-
struction error, PCA and DPCA use the squared prediction
error (SPE) statistic (Q statistic) for residual evaluation and
threshold calculation. The number of principal components is
determined such that the cumulative variance contribution rates
exceed 99%. For all compared methods, the significance level is
set as 0.01.

5.1 Fault detection results

Figures 5 and 6 depict the monitoring charts for LC1 and LC2,
respectively. For PCA, it can be found that T 2 and Q statistics
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FIGURE 3 Wind power under normal
operation condition in the case of wind speed of 12
m/s

FIGURE 4 FAR with different 𝛼 by RDCCA for LC2

can detect most faults, as shown in Figures 5a and 6a. As
displayed in Figures 5b and 6b, the fault detection performance
of DPCA Q statistic is improved, since the system dynamics
is taken into account. For CCA-based method, T 2

r statistic
can provide similar performance as DPCA in LC1. Due to the
introduction of regularization terms, false alarm conditions are
reduced by RCCA as shown in Figures 5c and 6c. Compared to
PCA, DPCA and CCA, DCCA can offer better performance as
shown in Figures 5e and 6e. It can be concluded that the explo-
ration of input–output relation and system dynamics can be
beneficial for fault detection. Though more faulty samples can
be detected, there are still many false alarms for DCCA-based
method. As plotted in Figures 5f and 6f, RDCCA can provide
similar fault detection performance as DCCA while reducing
the false alarm by utilizing a regularization scheme. However,
it is noticed that further improvements to detect Faults 3 and
9 are required, particularly for Fault 3. Despite the relatively
poor fault detection performance for faults 3 and 9, RDCCA
and DCCA have a better detection performance on these faults
than other methods.

To achieve a quantitative performance evaluation, two indices
are adopted. The first one is the fault detection rate (FDR). FDR
is calculated as the ratio of successfully detected faulty samples
to the total faulty samples. Another index is the false alarm rate
(FAR), which is the ratio of the number of false alarms to the
total number of fault-free samples. The definitions of FAR and

FDR are as follows,

FDR(%) =
n f

nt
× 100,

where n f denotes the number of faulty samples detected cor-
rectly by monitoring statistics and nt is the total number of faulty
samples.

FAR(%) =
n fi

nt f
× 100,

where n fi denotes the number of fault-free samples incorrectly
detected as faulty by monitoring statistics and nt f is the total
number of fault-free samples.

A good fault detection method should yield a high FDR and
a low FAR. Table 5 lists the FDRs and FARs for all the fault sce-
narios in LC1 and LC2. Taking the results in LC1 as an exam-
ple, the average FDR of DPCA Q statistic is 78.41% while for
PCA Q statistic is 67.22% under LC1. On the other hand, it
can be seen that the fault detection performance is improved
by exploiting the relationship between input and output. For
example, the average FDRs of static CCA T 2

r statistic is 76.63%.
DCCA method takes both the advantages of dynamic charac-
teristics and input–output relationship. Thus, the average FDRs
of DCCA T 2

r statistic is 86.06%. However, the FARs of CCA
and DCCA methods are also relatively high, that is, 3.38% and
6.25% for CCA and DCCA, respectively. The introduction of
the regularization scheme can be beneficial to reduce false alarm
rates. It can be seen that the FAR of RCCA is 2.20%. By tak-
ing both advantages of DCCA and regularization scheme, the
RDCCA method can achieve the best fault detection perfor-
mance: the FAR of RDCCA is 3.90% while its average FDR is
87.83%. For LC2, similar conclusions as in LC1 can be drawn.

5.2 Fault classification results

After a fault alarm is triggered, the next crucial step is to identify
the fault type for providing the operator with more information.
In our study, the parameter b in Equation (19) is selected as 4. To
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FIGURE 5 Fault detection result: LC1 (a) PCA (b) DPCA (c) CCA (d) RCCA (e) DCCA (f) RDCCA

FIGURE 6 Fault detection result: LC2 (a) PCA (b) DPCA (c) CCA (d) RCCA (e) DCCA (f) RDCCA

visualize the discriminate performance of RDCCA-FDA, taking
LC2 as an example, the first three FDA loading vectors are plot-
ted in Figure 7. It can be found that the distance between dif-
ferent clusters of faults is large. Specifically, the clusters of Fault
1, Fault 4, Fault 5, Fault 6, Fault 7 and Fault 8 are far away from
each other. Thus, these faults are easier to be classified. On the

other side, the clusters of Fault 2, Fault 3 and Fault 9 are near
each other. Error classification may occur as classifying Fault 2,
Fault 3 and Fault 9. A similar situation exists in LC1.

Figures 8 and 9 display the confusion matrices in LC1 and
LC2, respectively. A confusion matrix is designed to plot the
true labels and predicted labels. Taking the results in LC1 as an
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TABLE 5 Comparison of FDR (%) and FAR(%) with different methods

PCA [27] DPCA [25] CCA RCCA DCCA RDCCA

Fault No. T 2 Q T 2 Q T 2
r T 2

r T 2
r T 2

r

FDR: LC1 1 1.64 99.96 1.48 99.88 99.28 8.28 100 99.96

2 99.92 99.92 0.00 99.84 99.92 95.60 99.76 99.88

3 24.00 1.80 19.88 5.32 4.20 2.60 5.52 15.44

4 8.12 99.92 0.00 99.88 96.64 10.48 99.84 99.80

5 60.68 99.84 65.60 99.84 99.84 99.84 99.88 99.88

6 99.84 99.84 0.56 99.84 99.84 99.84 99.92 99.88

7 99.92 99.92 0.00 99.88 99.92 99.92 99.92 99.92

8 99.88 1.00 0.00 99.88 78.80 99.88 99.76 99.76

9 32.73 2.76 26.99 1.32 11.25 6.17 70.00 75.98

Average 58.53 67.22 12.72 78.41 76.63 58.70 86.06 87.83

FAR 9.73 1.80 9.82 3.12 3.38 2.20 6.25 3.90

FDR:LC2 1 0.24 99.96 0.04 99.88 13.56 1.48 99.96 99.96

2 99.92 1.16 99.68 56.00 99.60 96.28 99.92 99.92

3 5.12 0.88 5.84 1.96 1.44 1.00 6.28 17.68

4 15.96 99.92 24.64 99.88 84.72 7.24 99.80 99.68

5 99.76 99.84 99.44 99.84 99.84 99.84 99.88 99.88

6 99.84 1.36 69.16 99.84 99.84 99.84 99.92 99.88

7 99.92 99.92 0.00 99.88 99.92 99.92 99.92 99.92

8 99.88 0.60 51.64 99.88 95.76 99.60 99.84 99.88

9 0.08 0.69 0.00 0.35 0.91 0.93 65.07 65.77

Average 57.86 44.92 38.94 73.06 66.18 56.24 85.62 86.95

FAR 10.13 1.00 10.44 3.19 6.85 5.83 11.43 8.60

FIGURE 7 Projected training samples in Fisher discriminant subspace in the LC2: RDCCA-FDA

example, as shown in Figure 8, the rows correspond to the pre-
dicted class and the columns correspond to the true class. The
values of the diagonal cells are the number of samples that are
correctly classified. The off-diagonal cells correspond to incor-

rectly classified observations. For example, in the second row,
the number of correctly classified samples is 2338 as the number
of samples that belong to fault 2 is 2440. Thus, the percentage
of samples belonging to fault 3 that are correctly classified is
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FIGURE 8 Fault classification result for the RDCCA-FDA method in the
LC1

FIGURE 9 Fault classification result for the RDCCA-FDA method in the
LC2

95.8%, and that are incorrectly classified is 4.2% as shown in the
row at the bottom of Figure 8. On the other hand, the cluster
of Fault 9 is closed to the one of Fault 2. 1113 samples which
should be classified as Fault 9 are misclassified as Fault 3. The
column on the far right of the plot shows the percentages of all
the examples predicted to belong to each class that are correctly

and incorrectly classified. These metrics are often called the
Positive Predictive Value (PPV) and the False Discovery Rate
(FaDR), respectively [47]. For example, in the column on the
far right of the second row of Figure 8, the PPV and the FaDR
are 67.4% and 32.6%, since some samples belonging to Fault
9 are misclassified as Fault 2. The overall accuracy is 92.2%,
which is shown in the cell of the bottom right of Figure 8. For
the LC2, the results are similar to the LC1 as shown in Figure 9.
The overall accuracy is 93.8%. Nevertheless, RDCCA-FDA can
provide superior fault detection and classification performances
among comparable methods such as PCA and CCA.

To further verify the performance of RDCCA-FDA method,
the residuals obtained from RCCA model are used instead of rk

of RDCCA model for comparison. Then, a new RCCA-FDA
model is first trained. Similar to the RDCCA-FDA method, the
projected training samples in Fisher discriminant subspace in
the LC2 are plotted in Figure 10. Since the input u is only a two-
dimensional vector, the residuals obtained from RCCA model
are two-dimensional vectors. Thus, the dimensionality of Fisher
discriminant subspace is set as 2.

It can be observed that the projected training samples are
closed to each other. Therefore, the faulty samples are diffi-
cult to be classified to correct types. The confusion matrices
of RDCCA-FDA in LC1 and LC2 are plotted in Figures 11
and 12. Through the data in Figures 11 and 12, the results of
RCCA-FDA are not satisfactory where the overall accuracy is
only 25.6% for LC1 and 20.3% for LC2. However, by consid-
ering the dynamics in the proposed RDCCA-FDA method, the
performance can be highly enhanced.

6 CONCLUSIONS

In this paper, a novel data-driven FOWT fault diagnosis
approach is developed. The proposed RDCCA-FDA method
utilizes regularized dynamic canonical correlation analysis to
construct the residual generator for fault detection and feeds
the residuals into the Fisher discriminant analysis model to clas-
sify the fault types. The performance of the developed method
is validated on a FOWT baseline model based on the widely
used NREL FAST. The simulation results show that the pro-
posed RDCCA-FDA method can provide superior fault detec-
tion performance, by comparison with other relevant methods.
Although there are misclassification errors of faults 2 and 9,
RDCCA-FDA has achieved satisfying fault classification per-
formance. More effort to correctly classify fault 2 and fault 9
should be made in future work. In addition, the reduction of
false alarm rate should be studied in future work. Furthermore,
the application of the proposed RDCCA-FDA method to real-
world SCADA data collected from FOWTs should be investi-
gated in future work.
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