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Summary

Quantum mechanics shows that if one is able to generate and manipulate entan­
glement over a distance, one is able to perform certain tasks which are impossible
using only classical communication. Classical communication refers to what is used
in the Internet of today. A quantum internet would therefore bring new capabilities
to our highly connected world. These capabilities both involve (1) the ability to
perform tasks with are provably impossible in the current Internet, such as uncon­
ditionally secure communication, and (2) the ability to perform certain tasks much
more efficient, such as distributed (quantum) computing or extending the baseline
of telescopes.

To be able to build a quantum internet, two main components are needed: (i)
hardware that can store, manipulate and entangle qubits and (ii) a software stack
to control the hardware. The core task of both of these is to generate entangle­
ment to be used by applications. In this thesis we focus on the latter, i.e. the
development of software and protocols that enable entanglement generation using
capable hardware.

To enable a certain application, one can certainly, in theory, manually specify
each operation the hardware should perform, involving micro­wave pulses, lasers
etc. However, in practice this is not feasible, if not to say impossible, due to the
complexity of the operations needed, especially in a distributed system such as
a quantum network. What is needed is a software stack, which can help with
abstracting complexity away in multiple layers. This allows for someone to program
a protocol in one layer without knowing all the details of the lower layers. In
particular, one can abstract away the hardware details, in order to make higher­
layer protocols and applications hardware­agnostic. Therefore, to be able to build
a universal, efficient and scalable quantum internet, a software stack is crucial.

In chapter 2 we start discussing the networking part of a software stack. Namely,
we introduce a network stack for a quantum internet, drawing parallels to the
IP/TCP­suite of the classical Internet. We continue with proposing a service and
interface of the lowest layer of the network stack: the link layer. The link layer is
here responsible for generating entanglement between nodes in a quantum network
which are directly connected by a quantum link, i.e. a fiber cable.

When developing a protocol or application it is very useful to be able to run it.
Both to see if the intended ideas make sense and also to check that the implemen­
tation is actually correct. Currently we do not have quantum hardware that exposes
a full­fledge API that can be used to execute applications. For this reason, it is very
useful to be able to instead simulate the hardware in a way that exposes the same
API as the hardware being developed. In chapter 3 we introduce SimulaQron for
this exact purpose.
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x Summary

Any application of a quantum internet will need entanglement in one way or
another. However, entanglement is generally hard to generate and is usually the
bottleneck when executing an application. We would therefore like to make use of
the generated entanglement in the most optimal way. To be able to do this we need
to understand how entanglement can be transformed and distributed in a quantum
network. We study the entanglement of a particular class of states called graph
states in chapters chapters 4 to 9 and how these states can be transformed in a
quantum network.



Samenvatting

Kwantummechanica laat zien dat zodra de generatie en manipulatie van verstren­
geling over afstanden mogelijk is, dat het dan mogelijk is om bepaalde taken uit
te voeren die niet mogelijk zijn met enkel klassieke communicatie. Klassieke com­
municatie refereert naar dat wat gebruikt wordt in het Internet van vandaag de
dag. Een kwantuminternet zou daardoor nieuwe mogelijkheden brengen aan ons
nu al sterk verbonden samenleving. Deze mogelijkheden zijn (1) het vermogen om
taken uit te voeren waarvan te bewijzen valt dat deze onmogelijk zijn uit te voeren
met het huidige internet, zoals onvoorwaardelijk veilige communicatie, en (2) het
vermogen om bepaalde taken veel efficiënter uit te voeren, zoals gedistribueerde
kwantumcomputatie of het effectief vergroten van de straal van een telescoop.

Om een kwantuminternet te bouwen zijn twee hoofdcomponenten nodig: (i)
hardware die het mogelijk maakt om qubits op te slaan, manipuleren en te ver­
strengelen, en (ii) een software stack die de hardware aanstuurt. De hoofdtaak
van beide is het maken van verstrengeling, welke vervolgens gebruikt kan worden
door applicaties. In deze thesis leggen we de focus op het laatste, i.e. de ont­
wikkeling van software en protocollen die het mogelijk maakt om verstrengeling te
maken, mits de hardware toereikend daarvoor is.

Als een applicatie uitgevoerd dient te worden is het altijd mogelijk, in theorie,
om handmatig de individuele operaties van de hardware te specificeren, zoals de
microgolf pulsen, lasers, enzovoort. In de praktijk is dit niet haalbaar, dan wel
onmogelijk, vanwege de complexiteit van de benodigde operaties, vooral in een
gedistribueerde systeem zoals een kwantumnetwerk. Een software stack lost dit
probleem op door het abstraheren van de complexiteit in meerdere lagen. Dit maakt
het mogelijk voor iemand om een protocol te programmeren in een bepaalde laag,
zonder de details te kennen van alle details van de onderliggende lagen. Het is
in het bijzonder mogelijk om details van de hardware te abstraheren, waardoor
protocollen op hogere lagen en applicaties agnostisch van de hardware kunnen
zijn. Voor deze redenen is een software stack cruciaal voor het maken van een
universele, efficiënte en schaalbaar kwantuminternet.

In hoofdstuk 2 bespreken we het netwerk gedeelte van een software stack.
Namelijk, we introduceren een netwerk stack voor een kwantuminternet, waarbij we
parallellen trekken tussen onze software stack en de IP/TCP­suite van het klassieke
internet. Vervolgens maken we een voorstel voor de service en interface voor de
laagste laag van de netwerk stack: de linklaag. De linklaag is verantwoordelijk voor
het genereren van verstrengeling tussen nodes in een kwantumnetwerk die direct
verbonden zijn met een kwantumlink, i.e. een glasvezel kabel.

Tijdens het ontwikkelen van een protocol of applicatie is het praktisch om deze
uit te kunnen voeren, om te verifiëren dat zowel de bedoelde ideeën logisch zijn
en dat de implementatie daadwerkelijk correct is. Momenteel is de hardware nog
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xii Samenvatting

niet zover dat een volledig API gebruikt kan worden om applicaties uit te voeren.
Het zou daarom dus van praktische waarde zijn om een simulator te hebben die
dezelfde interface heeft met de API die later gebruikt zal worden. In hoofdstuk 3
introduceren we SimulaQron voor deze reden.

Elke toepassing van een kwantuminternet zal verstrengeling nodig hebben. Ver­
strengeling is moeilijk om te genereren, en is de voornaamste bottleneck bij het
uitvoeren van applicaties. Het is dus belangrijk om verstrengeling die al bestaat in
een kwantumnetwerk optimaal te gebruiken. Om dit te doen, is het belangrijk om
te begrijpen hoe verstrengeling getransformeerd en gedistribueerd kan worden in
een kwantumnetwerk. We bestuderen de verstrengeling van een bepaalde klasse
van toestanden genaamd graaf toestanden in hoofdstukken chapters 4 to 9 en hoe
deze toestanden getransformeerd kunnen worden in een kwantumnetwerk.
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2 1. Introduction

T his thesis is about quantum networks, and in particular how to enable the exe­
cuting of arbitrary applications in a scalable design, forming a universal quantum

internet. In a large­scale quantum internet, all applications require the generation
of entanglement. Entanglement is a phenomena in quantum mechanics where a
system of two or more particles are in a state which cannot be described by con­
sidering each particle individually. Rather, to completely specify the system, one
must describe the combined state of the particles. The non­quantum reader can
find a gentle introduction about qubits and entanglement in section 1.4.

Most applications in a quantum internet require the generation of entanglement
explicitly. Some prepare­and­measure applications simply need to be able to pre­
pare, transmit and measure qubits [1]. However, long­range qubit­transmission
can only be done by consuming entanglement through the use of quantum tele­
portation [2], at least with any foreseeable hardware. For this reason, the core
functionality of a quantum internet is to generate entanglement between qubits
held by remote nodes. These entangled qubits can then be used to transmit other
qubit states by the use of teleportation [2]. This is in contrast to the classical In­
ternet where the core functionality is to send classical data between remote nodes.

The main question we therefore try to solve in this thesis is how to efficiently
generate entanglement in a quantum internet, using a robust and scalable design.
We approach this question from two angles, which form the two main research
directions of this thesis:

Software stack for a quantum internet: Here we take a computer­science
approach to the question of entanglement generation and focus more on the
robustness and to find a scalable design of a software stack.

Transforming graph states: Here on the other hand we take a mathematical­
physics approach to study different forms of entanglement and how these
can be transformed in a quantum network in order to distribute these to
applications in an efficient manner.

In the next two sections we detail these research directions further. In sec­
tion 1.3 we additionally mention some research done during this PhD which is not
part of this thesis. Finally, we then provide a condensed quantum introduction,
section 1.4, for anyone not familiar with the core concepts needed throughout the
thesis.

1.1. Software stack for a quantum internet
In 1969, the first computers were connected in the ARPANET, forming the first wide­
area packet­switching network [3]. This network is the foundation to the network
we all use today. The key point to be able to expand this network in a scalable way
to what we see today, was the development of the TCP/IP­suite [4]. The protocols
in this suite are used by most people everyday, when sending an email, login to
a bank or while streaming videos. The TCP/IP­suite is a network stack of multiple
layers, each with its own responsibility which together allow the transmission of
messages across the globe. The layered structure allow a protocol in one layer to
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Robust entanglement generation
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Figure 1.1: Functional allocation in a quantum network stack. Entanglement forms an inherent con­
nection already at the physical layer, which contrasts with classical networking where shared state is
typically only established at much higher layers.

not have to know all the details of the lower layers, only what service and interface
it provides.

To have a scalable design for a quantum internet it is crucial that a network stack
tailored for quantum networks is developed. There are many similarities between
a classical network and a quantum network which can be used when it comes to
naming, routing, scheduling and more. However, the different tasks of sending
messages and establishing entanglement clearly brings some different demands to
the network stacks.

Possibly the biggest difference between classical networks and quantum net­
works, is where the notion of a connection happens. When a connection is estab­
lished between two nodes in a network, both nodes are aware of the connection by
holding some state indicating whether the connection is up or not. In the classical
Internet this happens only in the transmission layer, which is the second to highest
layer in the network stack. However, in a quantum network this happens in some
way already at the lower layers when entanglement is established. Since entan­
glement requires the cooperation between the nodes part of the entanglement to
keep it alive, it is in some sense already a connection. This puts further require­
ments on the protocols in the stack handling the entanglement. Concretely, more
state needs to be held at the lower layers of the stack. In contrast to the lower
layers of the classical network stack, which can forget about a message directly af­
ter it being sent, the same is not true in a quantum internet where the established
entanglement needs to be kept alive.

The first half of the thesis, chapters 2 to 3, focuses on research related to a
software stack for a quantum internet. Chapter 2 proposes a functional allocation
of a quantum network stack and introduces a protocol providing the service of
the link layer. This protocol is the world’s first link layer protocol for a quantum
network. As discussed in the related works section of the chapter, initial proposals
have previously been outlined, however no explicit protocols have been worked out
and benchmarked before our work.

In chapter 3 we introduce SimulaQron, which is a simulator to enable software­
development of quantum Internet applications in the absence of available quan­
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tum hardware. Similar simulators for quantum computing already exists, see sec­
tion 3.1.3, however, SimulaQron was the first simulator for quantum networks that
exposes an API which is intended to be used on actual hardware.

1.2. Transforming graph states
As mentioned, the core functionality of a quantum network is to establish entangle­
ment between remote nodes. The process of establishing entanglement is difficult
and, with current hardware, usually the bottleneck of any application. We would
therefore like to make the most optimal use of the entanglement established in the
network and not waste any of it. To do so, we need to be able to understand what
forms entanglement can take and how these can be transformed into each other.

Graph states is a certain subclass of all quantum states. This subclass is in fact
much smaller1 that the class of all quantum states. One can show that for quan­
tum computers, the class of graph states, together with operations that preserve
the class, provide no computational advantage over classical computers. For quan­
tum networks on the other hand, the class of graph states do provide an advantage
over classical networks. This is because these states contain various form of entan­
glement which can be exploited. In fact, most, if not all, applications for a quantum
internet can be performed efficiently by preparing graph states and performing local
operations on these.

The second half of the thesis, chapters 4 to 9, focus on research related to
transforming graph states in a quantum network. Graph states and its superclass
stabilizer states have previously been studied extensively, for example in the con­
text of quantum error­correcting codes [5]. Van den Nest et al. showed in [6] that
the action of certain single­qubit operations on graph states can be completely char­
acterized by a set of operations on simple graphs. Interestingly, these exact graph
operations have already been studied in graph theory by for example Bouchet [7].

𝑋(2)1
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b b

b bb

1 2
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Figure 1.2: Example of measuring a graph state at qubit 1 in the 𝑋­basis.

We make use of this relation between graph states and graph theory to answer
question related to transforming graph states in a quantum network. In particular
we consider the problem of deciding if a graph state can be reached from another
by using only single­qubit Clifford operations, single­qubit Pauli measurement and
classical communication (LC+LPM+CC). We show that this problem is in general
NP­Complete in chapter 6 but also provide efficient algorithms in certain restricted
cases in chapters 5 and 6. It turns out that this work on graph states also answers

1Graph states are countable many as opposed to all quantum states
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a open questions in graph theory, see chapter 7. Furthermore, in chapter 8 we con­
sider the complexity of a similar problem, namely that of transforming graph states
to bipartite entangled states under LC + LPM + CC, which are the most common
states in a quantum network. Finally, in chapter 9 we consider the complexity of
counting graph states equivalent under single­qubit Cliffords, which can be related
to the number of equivalent quantum error­correction codes of a certain type.

Simple Graphs

Circle Graphs

Distance-
hereditary

NP-Complete

Unbounded rank-width

Rank-width 1

E�cient algorithm

Unbounded rank-width

Circle graphs represented
by Eulerian tours on
triangle-expanded graphs

FPT in terms of
size of star graph (G’)

Figure 1.3: An overview of the graph classes discussed in the second half of this thesis and what the
computational complexities of solving the problem of deciding if a graph state in one of these classes
can be transformed into a GHZ­state using LC + LPM + CC. The sizes of the sets in the figure are not
exact, however their intersections and non­intersections are.

1.3. Other work
In this section we list research projects conducted during this PhD but are not
included in this thesis:

NetQASM: Additional to networking and entanglement generation, a software
stack also need to be able to perform local gates, manage qubits, do schedul­
ing etc. All these things need to be accessible to someone implementing an
application for a quantum internet. The capabilities of the hardware need to
be utilized in an efficient way, while at the same time not expose too much de­
tails and complexity of the underlying hardware to the user. What information
is exposed is defined by the API or instruction set of the underlying architec­
ture. In [8] we introduce such an instruction set for quantum networks called
NetQASM, which replaces CQC as defined in section 3.3.

QuAlg: QuAlg is an open­source symbolic algebra package for quantum informa­
tion. In [9] we introduce QuAlg. The source code and documentation can be
found at https://github.com/AckslD/QuAlg.

https://github.com/AckslD/QuAlg
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1.4. Quantum prelude
This section provides a very short introduction to quantum information and in par­
ticular quantum states, entanglement, fidelity and decoherence. For a deeper in­
troduction to quantum information, see for example [10]. The content of this intro­
duction is intended for someone without background in quantum information and
the explanations are of a more informal nature.

1.4.1. Qubits and states
A quantum bit (qubit) is a two­level system, where the two levels are usually de­
noted |0⟩ and |1⟩ respectively (“ket”­notation) and called the basis states of the
qubit. These levels can for example be two energy levels of an electron spin or ­
when considering transmitting qubits ­ vertical and horizontal polarization of a pho­
ton, presence or absence of a photon, or a time­bin of early and late. Compared to
a “classical” bit |0⟩ or |1⟩, a qubit can be in superpositions thereof. Mathematically,
a state |𝜙⟩ of a qubit is written as

|𝜙⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ (1.1)

where 𝛼 and 𝛽 are arbitrary complex numbers with the constraint that |𝛼|2+|𝛽|2 =
1, and

|0⟩ = ( 10 ) , |1⟩ = (
0
1 ) . (1.2)

Note that |0⟩ and |1⟩ form a basis for ℂ2. Some common states are

|𝑋, 0⟩ = 1
√2
(|0⟩ + |1⟩) |𝑋, 1⟩ = 1

√2
(|0⟩ − |1⟩) (1.3)

|𝑌, 0⟩ = 1
√2
(|0⟩ + i |1⟩) |𝑌, 1⟩ = 1

√2
(|0⟩ − i |1⟩) (1.4)

|𝑍, 0⟩ = |0⟩ |𝑍, 1⟩ = |1⟩ (1.5)

corresponding to a ’0’ or ’1’ in the three different bases labeled 𝑋, 𝑌, and 𝑍. The
label 𝑍 also refers to the standard basis. We also use ⟨𝜙| = (|𝜙⟩∗)𝑇 to denote the
conjugate transpose of |𝜙⟩.

Measuring a qubit in the standard (𝑍) basis (|0⟩, |1⟩), gives measurement out­
comes ’0’ (i.e. |0⟩) or ’1’ (i.e. |1⟩). Measuring a qubit which is in the state |𝜙⟩ as
in equation 1.1 in the standard basis, yields the outcomes 0 or 1 with the following
probabilities

𝑃[”measuring 0”|𝑍­basis] = |𝛼|2, 𝑃[”measuring 1”|𝑍­basis] = |𝛽|2. (1.6)

which is why |𝜙⟩ needs to be normalized. Measuring a qubit in the standard basis
collapses it to |0⟩ or |1⟩. Measuring a qubit in the 𝑋­ or 𝑌­basis yields outcomes
with probabilities

𝑃[”measuring 0”|𝑋/𝑌­basis] = | ⟨𝑋/𝑌, 0|𝜓⟩ |2 (1.7)
𝑃[”measuring 1”|𝑋/𝑌­basis] = | ⟨𝑋/𝑌, 1|𝜓⟩ |2 (1.8)
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where ⟨⋅|⋅⟩ is the inner product.
Three useful single­qubit gates are the bit flip 𝑋 |𝑥⟩ = |𝑥 + 1 mod 2⟩, phase

flip 𝑍 |𝑥⟩ = (−1)𝑥 |𝑥⟩ and 𝑌 |𝑥⟩ = (−1)𝑥i |𝑥 + 1 (mod 2)⟩, given as

𝑋 = (0 1
1 0) , 𝑌 = (

0 −i
i 0 ) , 𝑍 = (

1 0
0 −1) . (1.9)

These, so called Pauli gates, are special cases of more general single­qubit opera­
tions, defined as

𝑅𝑋(𝜃) = exp(−𝜃2 i𝑋) = (
cos (𝜃2 ) −i sin (𝜃2 )
−i sin (𝜃2 ) cos (𝜃2 )

) (1.10)

𝑅𝑌(𝜃) = exp(−𝜃2 i𝑌) = (
exp (−i𝜃2 ) 0

0 exp (i𝜃2 ))
) (1.11)

𝑅𝑍(𝜃) = exp(−𝜃2 i𝑍) = (
cos (𝜃2 ) − sin (𝜃2 )
− sin (𝜃2 ) cos (𝜃2 )

) (1.12)

which performs basis rotations with angle 𝜃 radians around the 𝑋­, 𝑌­ and 𝑍­axis
respectively.

1.4.2. Entangled states
If qubit 𝐴 is in a state |𝜙1⟩ and qubit 𝐵 is in the state |𝜙2⟩, then their joint state (at
possibly remote nodes) is given by the tensor product of the individual states |𝜙1⟩𝐴
and |𝜙2⟩𝐵, i.e. as

|”joint state”⟩ = |𝜙1⟩𝐴⊗ |𝜙2⟩𝐵 . (1.13)
Importantly, for the discussion here is that not all joint states can be factorized into
single qubit states |𝜙1⟩𝐴 and |𝜙2⟩𝐵 in this way. These are called entangled states.
For example, consider the state

|Φ+⟩ = 1
√2

(|0⟩𝐴⊗ |0⟩𝐵 + |1⟩𝐴⊗ |1⟩𝐵) , (1.14)

which is a superposition of (1) both qubits being in the state |0⟩ and (2) both qubits
being in the state |1⟩. This is an entangled state, i.e., it cannot be factorized into
two individual states, giving rise to genuinely quantum correlations between 𝐴 and
𝐵 that have no classical analogue. The state |Φ+⟩ is one of the so called Bell states.
These are entangled states, where the other three are given as

|Φ−⟩ = 1
√2
(|0⟩𝐴⊗ |0⟩𝐵 − |1⟩𝐴⊗ |1⟩𝐵), (1.15)

|Ψ+⟩ = 1
√2
(|0⟩𝐴⊗ |1⟩𝐵 + |1⟩𝐴⊗ |0⟩𝐵), (1.16)

|Ψ−⟩ = 1
√2
(|0⟩𝐴⊗ |1⟩𝐵 − |1⟩𝐴⊗ |0⟩𝐵). (1.17)
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Measurement outcomes of measuring the two qubits in any of the Bell­states in the
bases 𝑋, 𝑍 and 𝑌 are either perfectly correlated or perfectly anti­correlated. For
example, for |Φ+⟩ the measurement outcomes are perfectly correlated in the 𝑋 and
𝑍 bases but perfectly anti­correlated in the 𝑌 basis. On the other hand, for |Ψ−⟩
the measurement outcomes are perfectly anti­correlated in all three bases.

Relevant to understand the generation of bipartite entanglement is that all the
Bell­states can be transformed to one another by only applying local quantum gates
to one of the qubits. Applying the gates from equation (1.9) on qubit 𝐴 (at node 𝐴
only) allows one to transform:

|Φ−⟩ = 𝑍𝐴 |Φ+⟩ , |Ψ+⟩ = 𝑋𝐴 |Φ+⟩ , |Ψ−⟩ = 𝑍𝐴𝑋𝐴 |Φ+⟩ , (1.18)

where we added the index 𝐴 to emphasize the gates are applied to qubit 𝐴. We
could also apply such gates to qubit 𝐵 to have the same effect.

In the heralded entanglement generation, see chapter 2, we can obtain either
failure, or else success. In the case of success, an additional bit indicates whether
we produced the state |Ψ+⟩ or |Ψ−⟩. From equation (1.18), these two states can be
transformed between each other by simply applying a 𝑍­gate to one of the qubits.

Additionally to bipartite entanglement as above, multiple qubits can also be
entangled in various forms. In chapters 4 to 9 we consider one class of multi­
partite entangled states called graph states.

1.4.3. Remote state preparation
Entanglement can be used to teleport qubits between remote nodes [2]. Another
basic application of entanglement, which showcase its use in a quantum network,
is that of remote state preparation.

A node 𝐴 sharing an entangled state (for example |Ψ−⟩) with another node 𝐵
can prepare a qubit state at 𝐵 by the use of remote state preparation [11]. 𝐴
choses an arbitrary basis {|𝑏0⟩ , |𝑏1⟩} and the state prepared at 𝐵 will either be |𝑏0⟩
or |𝑏1⟩ with equal probability. 𝐵 will learn whether the first or second state was
produced but not in which basis. To understand how this works, lets for simplicity
assume that 𝐴 and 𝐵 share the state |Ψ−⟩. What is special about this state is that
it is invariant under basis change, i.e. for an arbitrary basis

{|𝑏0⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , |𝑏0⟩ = 𝛽∗ |0⟩ − 𝛼∗ |1⟩} (1.19)

the state can be written

|Ψ−⟩ = 1
√2
(|𝑏0⟩𝐴⊗ |𝑏1⟩𝐵 − |𝑏1⟩𝐴⊗ |𝑏0⟩𝐵). (1.20)

One can then see that if 𝐴 measures in the basis {|𝑏0⟩ , |𝑏1⟩} and receives outcome
0 (1), the state at 𝐵 will be |𝑏1⟩ (|𝑏0⟩).

1.4.4. Fidelity and QBER
In any real implementation of a quantum network, the generated entangled states
will always differ from the perfect Bell states above due to noise in the system.
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Figure 1.4: Abstract model of a quantum network and its components. End­nodes handle application
code by users, which require end­to­end entanglement. Long­distance entanglement is generated in
the network using the quantum routers and repeaters by consuming entanglement generated over
elementary links. An elementary link may consist of quantum channels connected to a beam­splitter
with two detectors where photons interfere, for more details see section 2.4.4. End­nodes hold two
types of qubits: (1) communication qubits which can be used to generated entanglement with remote
nodes and (2) memory qubits which can be used to store quantum states and apply operations. The
qubits within an end­node can interact through quantum gates and their state can be measured.

When writing noisy states, it is convenient to express the state as a density matrix.
For a perfectly prepared state |Ψ−⟩, the density matrix is 𝜌 = |Ψ−⟩⟨Ψ−|. This allows
one to express noise. For example, the analogue of applying a classical bit flip error
𝑋 with some probability 𝑝err can be written as

𝜌noisy = (1 − 𝑝err)𝜌 + 𝑝err𝑋𝜌𝑋 . (1.21)

The fidelity 𝐹 measures how close a realized state 𝜌 is to an ideal target state
|Ψ−⟩. The fidelity of a state 𝜌 with the target state |Ψ−⟩ can be written as

𝐹[Ψ−] = ⟨Ψ−| 𝜌 |Ψ−⟩ (1.22)

where 𝐹 = 1 if 𝜌 is identical to the target state. We have 0 ≤ 𝐹 ≤ 1, where a larger
value of 𝐹 means we are closer to the target state.

It is important to note that one cannot measure the fidelity of a single instance
of a quantum state. However, if we produce the same state many times in succes­
sion, we can estimate its fidelity. One way to do this, for bipartite entanglement, is
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to measure the qubit­error­rate (QBER). Consider |Ψ−⟩ above and recall that mea­
surement outcomes in the 𝑋, 𝑍 and 𝑌 bases are always perfectly anti­correlated in
this case. I.e. we always get different measurement outcome for qubit 𝐴 and for
qubit 𝐵. In case the state is noisy, this is no longer the case. For a fixed basis
(say 𝑍) the QBER (here QBER𝑍) is the probability of receiving equal2 measurement
outcomes, when measuring qubit 𝐴 and qubit 𝐵 in the 𝑍 basis. Similarly, we can
define QBER𝑋 and QBER𝑌 for measurements in the 𝑋 and 𝑌 bases. One can show
that the fidelity and QBER of the Bell state state |Ψ−⟩ are related as

𝐹[Ψ−] = 1 − QBER𝑋 +QBER𝑌 +QBER𝑍
2 . (1.23)

1.4.5. Decoherence
Quantum memories are inherently noisy and the amount of noise a qubit expe­
riences depends on how long it stays in the memory. How long a qubit state is
preserved is usually captured by the two numbers T1 (energy/thermal relaxation
time) and T2 (dephasing time) of the qubit [10], as well as free­induction decay
𝑇∗2 (see e.g. [12]). In Figure 1.5a we illustrate how fidelity behaves as a function
of time, in the presence of noise. To highlight the actual effect of limited memory
lifetimes we show the timescales in terms of kilometers in fiber, where 𝑐 = 206753
km/s is the speed of light in fiber. What is shown in the figure is the fidelity of
an entangled state stored in two qubits with a coherence time (T2) of 1.46 s as a
function of the time it takes to communicate over a certain distance.

2QBER for the other Bell states is defined in a similar manner, taking into account that measurement
outcomes are always equal in some bases for the other ideal Bell states.
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(a) Reduction in fidelity 𝐹 when storing a perfect entangled state |Ψ+⟩ in the communication
(blue, left triangles) and memory (orange, right triangles) qubit in terms of the number of
communication rounds between nodes separated by 25 km. Noise parameters used are: 𝑇1 =
2.68 ms and 𝑇2 = 1.00 ms for communication and 𝑇1 = ∞ and 𝑇2 = 3.5 ms for memory qubit.

(b) Illustration of an improved communication qubit with 𝑇2 = 1.46 s (𝑇1 = ∞). Such improvements can be achieved
by for example a technique called dynamical decoupling, see appendix A.3. If such a qubit was used in a platform
connected to a network, the qubit could be kept alive while waiting for classical control communication over long
distances.

Figure 1.5
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A Link Layer Protocol for

Quantum Networks
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Quantum communication brings radically new capabilities that are provably
impossible to attain in any classical network. Here, we take the first step
from a physics experiment to a quantum internet system. We propose a func­
tional allocation of a quantum network stack, and construct the first physical
and link layer protocols that turn ad­hoc physics experiments producing her­
alded entanglement between quantum processors into a well­defined and ro­
bust service. This lays the groundwork for designing and implementing scal­
able control and application protocols in platform­independent software. To
design our protocol, we identify use cases, as well as fundamental and tech­
nological design considerations of quantum network hardware, illustrated by
considering the state­of­the­art quantum processor platform available to us
(Nitrogen­Vacancy (NV) centers in diamond). Using a purpose built discrete­
event simulator for quantum networks, we examine the robustness and per­
formance of our protocol using extensive simulations on a supercomputing
cluster. We perform a full implementation of our protocol in our simulator,

Parts of this chapter have been published in proceedings of ACM SIGCOMM 2019 Conference [1].
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where we successfully validate the physical simulation model against data
gathered from the NV hardware. We first observe that our protocol is robust
even in a regime of exaggerated losses of classical control messages with
only little impact on the performance of the system. We proceed to study the
performance of our protocols for 169 distinct simulation scenarios, including
trade­offs between traditional performance metrics such as throughput, and
the quality of entanglement. Finally, we initiate the study of quantum net­
work scheduling strategies to optimize protocol performance for different use
cases.
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2.1. Introduction

Q uantum communication enables the transmission of quantum bits (qubits) in
order to achieve novel capabilities that are provably impossible using classi­

cal communication. As with any radically new technology, it is hard to predict all
uses of a future Quantum Internet [4, 5], but several major applications have al­
ready been identified depending on the stage of quantum network development [4].
These range from cryptography [6, 7], sensing and metrology [8, 9], distributed
systems [10, 11], to secure quantum cloud computing [12, 13].

Qubits are fundamentally different from classical bits, which brings significant
challenges both to the physical implementation of quantum networks, as well as
the design of quantum network architectures. Qubits cannot be copied, ruling out
signal amplification or repetition to overcome transmission losses to bridge great
distances. Two qubits can share a special relation known as entanglement, even
if these two qubits are stored at distant network nodes. Such entanglement is
central not only to enable novel applications, but also provides a means to realize
a quantum repeater, which enables quantum communication over long­distances
(Figure 2.1).

At present, short­lived entanglement has been produced probabilistically over
short distances (≈ 100 km) on the ground by sending photons over standard tele­
com fiber (see e.g. [14, 15]), as well as from space over 1203 km from a satel­
lite [16]. Such systems can allow the realization of applications in the prepare­and­
measure stage [4] of quantum networks on point­to­point links, i.e. the stage in
where end nodes can only prepare and measure single qubits. However, they can­
not by themselves be concatenated to allow the transmission of qubits over longer
distances. Using such technology, secure communication links have been realized
over short distances on the ground, individually or in chains of trusted nodes [4]
­ see e.g. [17–19]). In a chain of trusted nodes, a separate key is produced be­
tween each pair of nodes along the chain, and hence compromising any of those
nodes leads to a break in security. Importantly, trusted nodes do not enable the
end­to­end transmission of qubits.

Teleport Entanglement
Swap

A AB B C

(a) (b)

Figure 2.1: Entanglement enables long­distance quantum communication: (a) once two qubits (pur­
ple/dark) are confirmed to be entangled (threaded links between qubits), a data qubit (yellow/light)
can be sent deterministically using teleportation [2], consuming the entangled pair; (b) long­distance
entanglement can be built from shorter segments: If node 𝐴 is entangled with 𝐵 (repeater), and 𝐵 with
𝐶, then 𝐵 can perform entanglement swapping [3] to create long­distance entanglement between the
qubits at 𝐴 and 𝐶.
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In order to enable long­distance quantum communication and the execution of
complex quantum applications, we would like to produce long­lived entanglement
between two quantum nodes that are capable of storing and manipulating qubits.
To do so efficiently (Section 2.3.1), we need to confirm entanglement generation by
performing heralded entanglement generation. This means that there is a heralding
signal that can be sent to the two nodes to indicate that entanglement has been
successfully generated. The generation of a specific entangled pair is not heralded
by default, since it requires the ability to generate such a signal without collapsing
the quantum state of the entangled qubits (see e.g. Section 2.4.4 for a method
that achieves this).

The current world distance record for producing heralded entanglement is 1.3 km,
which has been achieved using a solid state platform known as Nitrogen­Vacancy
(NV) centers in diamond [20]. Intuitively, this platform is a few qubit (as of now
8 [21]) quantum computer capable of executing arbitrary quantum gates and mea­
surements, with an optical interface to connect to other nodes for entanglement
generation. Key capabilities of the NV platform have already been demonstrated,
including qubit lifetimes of 1.46 s [22], entanglement production faster than it is
lost [23], and sending qubits over entanglement using deterministic quantum tele­
portation [24]. Other hardware platforms exist that are identical on an abstract
level (quantum computer with an optical interface), and on which heralded long­
lived entanglement generation has been demonstrated (e.g. Ion Traps [25], and
Neutral Atoms [26]). Theoretical proposals and early stage demonstrations of indi­
vidual components also exists for other physical platforms (e.g. quantum dots [27],
rare earth ion­doped crystals [28], atomic gases [29, 30], and superconducting
qubits [31]), but their performance is not yet good enough to generate entangle­
ment faster than it is lost.

Up to now, the generation of long­lived entanglement has been the domain of
highly sophisticated, but arguably ad­hoc physics experiments. We are now on
the verge of seeing early stage quantum networks becoming a reality, entering a
new phase of development which will require a joint effort across physics, computer
science and engineering to overcome the many challenges in scaling such networks.
In this chapter, we take the first step from a physics experiment to a fully­fledged
quantum communication system.

Design considerations and use cases: We identify general design consid­
erations for quantum networks based on fundamental properties of entanglement,
and technological limitations of near­term quantum hardware, illustrated with the
example of our NV platform. For the first time, we identify systematic use cases,
and employ them to guide the design of our stack and protocols.

Functional allocation quantum network stack: We propose a functional
allocation of a quantum network stack, and define the service desired from its link
layer to satisfy use case requirements and design considerations. In analogy to clas­
sical networking, the quantum link layer is responsible for producing entanglement
between two nodes that share a direct physical connection (e.g. optical fiber).

First physical and link layer entanglement generation protocols: We
proceed to construct the world’s first physical and link layer protocols for a quan­
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tum network stack that turn ad­hoc physics experiments producing heralded en­
tanglement into a well defined service. This lays the groundwork for designing and
implementing control and application protocols in platform­independent software in
order to build and scale quantum networks. At the physical layer, we focus primar­
ily on the quantum hardware available to us (NV platform), but the same protocol
could be realized directly using Ion Traps or Neutral Atoms, as well as—with mi­
nor changes—other means of producing physical entanglement [32]. Our link layer
protocol takes into account the intricacies of the NV platform, but is in itself already
platform independent.

Simulation validated against quantum hardware: Using a purpose built
discrete­event simulator for quantum networks, we examine the robustness and
performance of our protocol using more than 169 scenarios totaling 94244 h wall
time and 707 h simulated time on a supercomputing cluster. To this end, we perform
a complete implementation of our protocols and let them use simulated quantum
hardware and communication links. To illustrate their performance, we consider
two concrete short and long­distance scenarios based on the NV platform: (1) Lab
where the nodes 𝐴 and 𝐵 are 2m apart. Since this setup has already been real­
ized, we can use it to compare the performance of the entanglement generation
implemented on real quantum hardware against the simulation to validate its phys­
ical model, and (2) a planned implementation of QL2020 where 𝐴 and 𝐵 are in
two Dutch cities separated by ≈25 km over telecom fiber. Next to investigating
trade­offs between traditional performance metrics (e.g. throughput or latency)
and genuinely quantum ones (fidelity, Section 2.4.2), we take a first step in exam­
ining different quantum network scheduling strategies to optimize performance for
different use cases.

2.2. Related Work
At present there is no quantum network stack connected to quantum hardware,
no link layer protocols have been defined to produce long­lived entanglement, and
no quantum networks capable of end­to­end qubit transmission or entanglement
production have been realized (see [4] and references therein). Also, we are not
aware of any other systematic investigation on use cases informing requirements
for such an architecture.

A functional allocation of a stack for quantum repeaters and protocols controlling
entanglement distillation (a process of correcting errors in entanglement) has been
outlined in [33–36], which is complementary to this work. This is very useful to ulti­
mately realize entanglement distillation, even though no complete control protocols
or connection to a hardware system were yet given. We remark that here we do
not draw layers from specific protocols like entanglement distillation, but focus on
the service that these layers should provide (a layer protocol may of course choose
distillation as a means to realize requirements). An outline of a quantum network
stack was also put forward in [37], including an appealing high level quantum in­
formation theory protocol transforming multi­partite entanglement. However, this
high level protocol does not yet consider failure modes, hardware imperfections, nor
the requirements on entanglement generation protocols and the impact of classical
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control. Plans to realize the physical layer of a quantum network from a systems
view were put forward in [38], however development has taken a different route.

In the domain of single­use point­to­point links for quantum key distribution
(QKD), software has been developed for trusted repeater networks [4] to make use
of such key in e.g. VoIP [39]. However, these do not allow end­to­end transmission
of qubits or generation of entanglement, and rely on trust in the intermediary nodes
who can eavesdrop on the communication. Control using software defined networks
(SDN) to assist trusted repeater nodes has been proposed, e.g. [40, 41]. These
QKD­centric protocols however do not address control problems in true quantum
networks aimed at end­to­end delivery of qubits, and the generation of long­lived
entanglement.

In contrast, classical networking knows a vast literature on designing and analyz­
ing network protocols. Some ideas can indeed be borrowed from classical network­
ing such as scheduling methods, but fundamental properties of quantum entan­
glement, as well as technological considerations of quantum hardware capabilities
(Section 2.4.5) call for new protocols and methods of network control and man­
agement. Naturally, there is a continuous flow of systems papers proposing new
networking architectures, e.g. for SDN [42], data center networks [43], content de­
livery networks [44] or cloud computing [45], to name a few. Yet, we are unaware
of any system­level papers proposing a quantum network stack including protocols
for concrete hardware implementations.

2.3. Design Considerations for Quantum Network
Architectures

We first discuss design considerations of quantum networks themselves, followed by
considerations specific to the quantum physical and link layers (Section 2.4). These
can be roughly subdivided into three categories: (i) fundamental considerations
due to quantum entanglement, (ii) technological limitations of near­term quantum
hardware, and (iii) requirements of quantum protocols themselves.

2.3.1. Qubits and Entanglement
We focus on properties of entanglement as relevant for usage and control (see sec­
tion 1.4, and [46, 47]). Teleportation [2] allows entanglement to be used to send
qubits (see Figure 2.1). We will hence also call two entangled qubits an entangled
link or entangled pair. Teleportation consumes the entangled link, and requires two
additional classical bits to be transmitted per qubit teleported. Already at the level
of qubit transmission we hence observe the need for a close integration between
quantum and classical communication. Specifically, we will need to match quantum
data stored in quantum devices with classical control information that is sent over
a separate physical medium, akin to optical control plane architectures for classical
optical networks [48]. To create long­distance entanglement, we can first attempt
to produce short­distance entangled links, and then connect them to form longer
distance ones [49, 50] via an operation known as entanglement swapping (see
Figure 2.1). This procedure can be used iteratively to create entanglement along



2.3. Design Considerations for Quantum Network Architectures

2

19

long chains, where we remark that the swapping operations can in principle be
performed in parallel. From a resource perspective, we note that to store entangle­
ment, both nodes need to store one qubit per entangled link. Proposals for enabling
quantum communication by forward communication using quantum error correc­
tion also exist, which avoid entanglement swapping [51]. However, these have
arguably much more stringent requirements in terms of hardware, putting them in
a technologically more distant future: they require the ability to create entangled
states consisting of a large number of photons (only ten realized today [52]) and
densely placed repeater stations performing near perfect operations [53].

Producing heralded entanglement does however allow long­distance quantum
communication without the need to create entanglement consisting of many qubits.
Here, the heralding signal (see Figure 2.2) provides a confirmation that an entan­
glement generation attempt has succeeded. Such heralding ­ i.e. confirmed entan­
glement ­ allows techniques using entanglement swapping to enable long­distance
quantum communication without exponential overheads [49], and without the need
for more complex resources [54, 55]. Creating long­distance links between two con­
trollable nodes by means of entanglement swapping (Section 2.3.2), and executing
complex applications requires both nodes to know the state of their entangled links
(which qubits belong to which entangled link, and who holds the other qubit of the
entangled pair). As illustrated in Figure 2.1, remote nodes (”𝐵” in the figure) can
change the state of such entangled links (”𝐴” and ”𝐶” in the figure). Entanglement
is an inherently connected element already at the lowest physical level, whereas
classical communication typically proceeds by forward communication that does not
require information at both the sender and receiver to be used.

2.3.2. Quantum Network Devices
We focus on a high level summary of devices in a quantum network without delving
into detailed physics (for more details, see [4, 32, 56] and Section 2.4.4). Qubits
can be sent optically through standard telecom fiber using a variety of possible en­
codings, such as polarization [6, 57], time­bin [58], or absence and presence of
a photon [55]. Such qubits can be emitted from quantum nodes [59–61], but in
principle also transferred [61–63] from fiber into the node’s local quantum mem­
ory. Present day quantum memories have very limited lifetimes, making it highly
desirable to avoid the exchange of additional control information before the entan­
glement can be used.

We distinguish two classes of quantum nodes. One, which we will call a control­
lable quantum node, offers the possibility to perform controllable quantum opera­
tions as well as storing qubits. Specifically, these nodes enable decision making,
e.g. which nodes to connect by entanglement swapping. Such nodes can act as
quantum repeaters and decision making routers in the network (e.g. NV platform
or other quantum memories combined with auxiliary optics), and—if they support
the execution of gates and measurements—function as end nodes [4] on which we
run applications (e.g. NV centers in diamond or Ion Traps). Others, which we call
automated quantum nodes, are typically only timing controlled, i.e. they perform
the same pre­programmed action in each time step. Such nodes can also support
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Figure 2.2: Heralded entanglement generation on the NV platform. (a) NV centers are point defects
in diamond with an electronic spin as a communication qubit (purple) and carbon­13 nuclear spins as
memory qubits (yellow), realized in custom chips (b). (c) A trigger produces entanglement between
the communication qubits of 𝐴 and 𝐵 (diamonds) and two qubits (photons) traveling over fiber to the
heralding station 𝐻. 𝐻 measures the photons by observing clicks in the left or right detector giving
the heralding signal 𝑠: [failure] (none or both click), [success,|Ψ+⟩] (left clicks), [success,|Ψ−⟩] (right
clicks). Success confirms one of two types of entangled pairs |Ψ+⟩ or |Ψ−⟩ (wiggly purple line). 𝐻 sends
𝑠 to 𝐴 and 𝐵 (not pictured).
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a limited set of quantum operations and measurements, but only those necessary
to perform their pre­programmed tasks. Automated nodes are still very useful,
for example, to establish entanglement along a chain of quantum repeaters per­
forming the entanglement swapping operations [49, 50] (see again Figure 2.1). In
Section 2.4.4 we give a concrete example of such a timing controlled element.

2.3.3. Use Cases
We distinguish five use cases of the stack: one related to producing long­distance
entanglement, and four that come from application demands. Since no quantum
network has been realized to date, we cannot gain insights from actual usage be­
havior. Instead we must resort to properties of application protocols known today.
Looking into the future, we desire flexibility to serve all use cases, including sup­
porting multiple applications at the same time.

Measure Directly (MD) Use Case: The first application use case comes from
application protocols that produce many (≥ 104) pairs of entangled qubits sequen­
tially, where both qubits are immediately measured to produce classical correla­
tions. As such, no quantum memory is needed to store the entanglement and it
is not necessary to produce all entangled pairs at the same time. It follows that
applications making use of this use case may tolerate fluctuating delays in entan­
glement generation. Additionally, it is not essential to deliver error free correlations
obtained from entanglement to the application. Such applications will thus already
anticipate error fluctuation across the many pairs. This contrasts with classical net­
working where errors are often corrected before the application layer. Examples of
such applications are QKD [7], secure identification [64] and other two­party cryp­
tographic protocols [65–69] at the prepare­and­measure network stage [4], and
device­independent protocols at the entanglement network stage [4].

Create and Keep (CK) Use Case: The second application use case stems from
protocols that require genuine entanglement, possibly even multiple entangled pairs
to exist simultaneously. Here, we may wish to perform joint operations on multiple
qubits, and perform quantum gates that depend on back and forth communica­
tion between two nodes while keeping the qubits in local quantum storage. While
more applications can be realized with more qubits, this use case differs substan­
tially in that we want to create relatively few (even just one) entangled pairs, but
want to store this entanglement. Since we typically want these pairs to be avail­
able at the same time, and memory lifetimes are short, we want to avoid delay
between producing consecutive pairs, which is superficially similar to constraints
in real time classical traffic. Also for CK, many applications can perform well with
noisy entangled links and the amount of noise forms a performance metric (fi­
delity, Section 2.4.2). Examples of such protocols lie in the domain of sensing [8],
metrology [9], and distributed systems [10, 11] which are in the quantum memory
network stage and above [4].

Remote State Preparation (RSP) Use Case: For certain application protocols
(for example, secure delegated quantum computation [12, 13]), an interpolation
between the CK and MD use case can be considered. Here, one of the two qubits
is immediately measured as in the MD use case, but the other is stored as in the
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CK use case. Due to the similarity to the CK use case, we will only distinguish the
RSP case in the appendix A.

Send Qubit (SQ) Use Case: While many application protocols known to date
consume entanglement itself, some — such as distributed quantum computing ap­
plications — ask for the transmission of (unknown) qubits. This can be realized
using teleportation over any distance as long as entanglement is confirmed be­
tween the sender and the receiver. For the quantum link layer, this again does not
differ from CK, where we want to produce one entangled pair per qubit to be sent.

Network Layer (NL) Use Case: In analogy to the classical notion of a link layer,
we take the quantum link layer to refer to producing entanglement between neigh­
boring nodes (see Section 2.3.4). The network layer will be responsible for produc­
ing entanglement between more distant ones. While usage behavior of quantum
networks is unknown, it is expected (due to technological limitations) that rout­
ing decisions, i.e. how to form long­distance links from pairwise links, will not
be entirely dynamic. One potential approach would be to first determine a path,
and reserve it for some amount of time such that pairwise entanglement can be
produced. Producing pairwise entanglement concurrently enables simultaneous en­
tanglement swapping along the entire path with minimal delay to combat limited
memory lifetimes. For this, the network layer needs to be capable of prioritizing
entanglement production between neighboring nodes.

2.3.4. Network Stack
Based on these considerations, we propose an initial functional allocation of a quan­
tum network stack (see Figure 1.1). In analogy to classical networking, we refer to
the lowest element of the stack as the physical layer. This layer is realized by the
actual quantum hardware devices and physical connections such as fibers. We take
the physical layer to contain no decision making elements and keep no state about
the production of entanglement (or the transmissions of qubits). The hardware at
the physical layer is responsible for timing synchronization and other synchroniza­
tion, such as laser phase stabilization [23], required to make attempts to produce
heralded entanglement (Section 2.4.4). A typical realization of the physical layer in­
volves two controllable quantum nodes, linked by an (chain of) automated quantum
node that attempt entanglement production in well­defined time slots.

The task of the quantum link layer is then to turn the physical layer making en­
tanglement attempts into a robust entanglement generation service, that can pro­
duce entanglement between controllable quantum nodes connected by an (chain
of) automated quantum node. Requests can be made by higher layers to the link
layer to produce entanglement, where robust means that the link layer endows the
physical system with additional guarantees: a request for entanglement genera­
tion will (eventually) be fulfilled or result in a time­out. This can be achieved by
instructing the physical layer to perform many attempts to produce entanglement
until success.

Built on top of the link layer rests the network layer, which is responsible for
producing long­distance entanglement between nodes that are neither connected
directly, nor connected by a chain of automated quantum nodes at the physical
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layer. This may be achieved by means of entanglement swapping, using the link
layer to generate entanglement between neighboring controllable nodes. In ad­
dition, it contains an entanglement manager that keeps track of entanglement in
the network, and which may choose to pre­generate entanglement to service later
requests from higher layers. It is possible that the network layer and entanglement
manager may eventually be separated.

To assist the SQ use case, a transport layer takes responsibility for transmitting
qubits deterministically (e.g. using teleportation). One may question why this
warrants a separate layer, rather than a library. Use of a dedicated layer allows
two nodes to pre­share entanglement that is used as applications of the system
demand it. Here, entanglement is not assigned to one specific application (purpose
ID, Section 2.4.1). This potentially increases the throughput of qubit transmission
via teleportation, as teleportation requires no additional connection negotiation,
but only forward communication from a sender to the receiver. Implementing such
functionality in a library would incur delays in application behavior as entanglement
would need to be generated on­demand rather than supplying it from pre­allocated
resources.

2.4. Design Considerations for quantum link layer
2.4.1. Desired Service
The link layer offers a robust entanglement creation service between a pair of con­
trollable quantum nodes 𝐴 and 𝐵 that are connected by a quantum link, which
may include automated nodes along the way. This service allows higher layers
to operate independently of the underlying hardware platform, depending only on
high­level parameters capturing the hardware capabilities.

Requesting entanglement
Our use cases bring specific requirements for such a service. Entanglement creation
can be initiated at either 𝐴 or 𝐵 by a CREATE request from the higher layer with
parameters:

• Remote node with whom entanglement generation is desired if the node is
connected directly to multiple others.

• Type of request ­ create and keep (K), create and measure (M), and remote
state preparation (R). The first type of request (K) stores entanglement, ad­
dressing the use cases CK and NL (see Section 2.3.3). The second (M) leads
to immediate measurement, supporting the use case MD. The reason for dis­
tinguishing these two scenarios is twofold: first, we will show later (Section
2.4.4) that a higher throughput can for some implementations be achieved
for M than for K on the same system. Second, simple photonic quantum
hardware without a quantum memory and sophisticated processing capabil­
ities [70] only supports the M mode of operation. In R, a measurement is
performed only at one node. Since it behaves like K, we will only expand
upon R in the appendix A.
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• Number of entangled pairs to be created. Allowing the higher layer to re­
quest several pairs at once can increase throughput by avoiding additional
processing delays due to increased inter­layer communication (as compared
to classical networks [71, Table 2]). It also helps the CK use case where an
application actually needs several pairs concurrently.

• Atomic is a flag that indicates that the request should be satisfied as a whole
without interruption by other requests.

• Consecutive is a flag indicating an OK is returned for each pair made for a
request (typical for NL use case). Otherwise, an OK is sent only when the
entire request is completed (more common in application use cases).

• Waiting time, 𝑡max (and time units) can be used to indicate the maximum
time that the higher layer is willing to wait for completion of the request.
This allows a general timeout to be set, and enables the NL and CK use case
to specify strict requirements since the requested pairs may no longer be
desirable if they are delivered too late.

• A purpose ID can be specified which allows the higher layer to tag the entan­
glement for a specific purpose. For an application use case, this purpose ID
may be considered analogous to a port number found in the TCP/IP stack. In­
cluding it in the CREATE request allows both nodes to immediately provide the
entanglement to the right application and proceed processing without incur­
ring further communication delays. Reducing any additional communication
overhead is necessary due to the noisy nature of quantum devices. A purpose
ID is also useful to identify entanglement created by the NL use case for a
specific long­distance path. We envision that an entanglement manager who
may decide to pre­generate entanglement would use a special tag to indi­
cate “ownership“ of the requested pairs. For the NL use case for example,
if the entanglement request does not correspond to a pre­agreed path, then
the remote node may refuse to engage in entanglement generation. Finally,
because quantum resources are scarce, a purpose ID enables rejection of
requests from remote nodes based on scheduling or security policies.

• A priority that may be used by a scheduler. Here we use only three priorities in
our simulations (use cases NL, MD and CK), but we remark that in the future
more fine grained priorities may find use. For now, were merely provision
space for such information for traffic engineering purposes.

• Random basis choice to be used for measurements in MD requests. May
be used to specify measurement bases that are sampled from uniformly by
the local and remote nodes from a set of bases commonly used in QKD (see
section 1.4).

• Measurement basis for the local and remote nodes should one desire all mea­
surements be performed in a fixed basis. Default is a measurement in the
standard basis. Other bases may be specified in terms of rotations around
the Bloch sphere axes of a qubit (see section 1.4).
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• Finally, we allow a specification of a purely quantum parameter (see sec­
tion 1.4), the desired minimum fidelity, 𝐹min, of the entanglement [46]. Here,
it is sufficient to note that the fidelity 0 ≤ 𝐹 ≤ 1 measures the quality of
entanglement, where a higher value of 𝐹 means higher entanglement qual­
ity. The ideal target state has 𝐹 = 1, while 𝐹 ≥ 1/2 is often desirable [72].
Higher fidelity implies lower quantum bit error rate (QBER), which captures
the probability that measurements on the entangled state deviate from the
ideal outcomes (see section 1.4).

The reason for allowing different 𝐹min instead of fixing one for each hardware plat­
form is that the same platform can be used to produce higher or lower fidelity pairs,
where a higher fidelity pair costs more time to prepare. An example of this is the
use of entanglement distillation [73, 74] where two lower quality pairs are com­
bined into one higher quality one. Another is the choice of bright state population
𝛼 (see Section 2.4.4), which can be chosen to trade­off fidelity and throughput. In
practice, the necessary minimum fidelity required to execute either long distance
entanglement generation or application protocols may be obtained by the require­
ments for the successful operation of said protocols, and differs significantly across
protocols. Such minimum fidelity requirements are typically concluded from an an­
alytical or numerical analysis of such protocols, and are not yet known for many
proposed application protocols.

Response to entanglement requests
If entanglement has been produced successfully, an OK message should be re­
turned. In addition, the use cases specified in Section 2.3.3 desire several other
pieces of information, which may also be tracked at higher layer:

• An entanglement identifier 𝐸𝑛𝑡𝐼𝐷 unique in the network during the lifetime of
the entanglement. This allows both nodes to immediately process the entan­
glement without requiring an additional round of communication degrading
the entanglement due to limited memory lifetimes.

• A qubit ID for 𝐾­type (create and keep) requests which identifies where the
local qubit is in the quantum memory device.

• The “Goodness“ 𝐺, which for 𝐾 requests is an estimate (see section 1.4) of
the fidelity — where 𝐺 ≥ 𝐹min should hold — and for 𝑀 an estimate of the
QBER (see section 1.4).

• The measurement outcome for 𝑀 type requests.

• The time of entanglement creation.

• The time the goodness parameter was established. The goodness may later
be updated given fixed information about the underlying hardware platform.

Explicit OK messages from the link layer are desired for several reasons which derive
from the task of the link layer to turn low probability generation at the physical layer
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into a robust service: First, before an entanglement swapping or other operation
may be performed by the network layer we need to know entanglement has been
produced. Second, applications demand knowledge of entanglement identifiers or
measurement outcomes to proceed successfully.

Evidently, there are many possibilities of failure resulting in the return of error
messages. This includes:

• Timeout when a request could not be fulfilled in a specific time frame (TIME­
OUT).

• An immediate rejection of the request because the requested fidelity is not
achievable in the given time frame (UNSUPP).

• The quantum storage is permanently (MEMEXCEEDED) or temporarily (OUT­
OFMEM) too small to simultaneously store all pairs of an atomic request.

• Refusal by the remote node to participate (DENIED).

Finally, we allow an EXPIRE message to be sent, indicating that the entangle­
ment is no longer available. This in principle can be indicated by a quantum memory
manager (see Section 2.5.2) instead of the protocol, but we will show that this al­
lows for recovery from unlikely failures.

Fixed hardware parameters
Not included in these request or response messages are parameters that are fixed
for the specific hardware platform, or change only very infrequently. As such,
these may be obtained by the higher­level software by querying the low level sys­
tem periodically, similarly to some classical network architectures (e.g. [75]). Such
parameters include:

• The number of available qubits.

• The qubit memory lifetimes.

• Possible quantum operations.

• Attainable fidelities and generation time.

• The class of states that are produced.

The latter refers to the fact that more information about that state than just the
fidelity allows optimization at layers above the link layer.

2.4.2. Performance Metrics
Before designing any protocols that adhere to these requirements, we consider the
performance metrics that such protocols may wish to optimize. Standard metrics
from networking also apply here, such as throughput (entangled pairs/s), and the
latency. We distinguish between:
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• Latency per request (time between submission of a CREATE request and its
successful completion at a requesting node).

• Latency per pair (time between CREATE and OK at requesting node).

• Latency per request divided by the number of requested pairs (which we
denote as the scaled latency).

Given that requests may originate at both 𝐴 and 𝐵, we also demand fairness, i.e.,
the metrics should be roughly independent of the origin of the request. Here, we
also care about genuinely quantum quality metrics, specifically the fidelity 𝐹 (at
least 𝐹min).

The non­quantum reader may wonder about the significance of 𝐹, and why we
do not simply maximize throughput (e.g. [42, 76]) or minimize latency (e.g. [44,
77]). For instance, QKD (a MD use case as listed in Section 2.3.3), requires a
minimum quantum bit error rate (QBER) between measurement outcomes at 𝐴
and 𝐵 (related to 𝐹, see section 1.4). A lower 𝐹 results in a larger QBER, allowing
less key to be produced per pair. We may thus achieve a higher throughput, but a
lower number of key bits per second, or key generation may become impossible.

2.4.3. Error Detection
Link layer protocols for classical communication typically aim to correct or detect
errors, e.g. using a CRC. In principle, there exists an exact analogy at the quan­
tum level: We could use a checksum provided by a quantum error correcting code
(QECC) [46, 78] to detect errors. This is technologically challenging and experi­
mental implementations of QECC are in very early stages [79–81]: to use a QECC
for information traveling 5̃km, we would need to create highly entangled quan­
tum states of many qubits, combined with quantum operations of extremely high
precision [82]. Yet, apart from technological limitations, future quantum link layer
protocols may not use quantum checksums due to different use case requirements.
We typically only demand some minimum fidelity 𝐹𝑚𝑖𝑛 with high confidence that
may also fluctuate slightly for pairs produced within a time window. That is, the
applications do not expect all errors to be corrected for them.

As we thus allow imperfect pairs to be delivered to an application, we instead
use a different mechanism: we intersperse test rounds during entanglement gen­
eration (for details, see appendix A.1) to verify the quality of the link, by estimating
the fidelity of the generated entanglement. Such test rounds are easy to produce
without the need for complex gates or extra qubits. Evidently, there exists an ex­
act analogy in the classical networking world, where we would transmit test bits to
measure the current quality of transmission, e.g. a direct analogy to network pro­
filing [75] to gain confidence that the non­test bits are also likely to be transmitted
with roughly the same amount of error. Yet, there we typically care about correct­
ness of a specific data item, rather than an enabling resource like entanglement.
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2.4.4. Physical Entanglement Generation
Let us now explain how heralded entanglement generation is actually performed
between two controllable nodes 𝐴 and 𝐵 (see appendix A for details). As an exam­
ple, we focus on the hardware platform available to us (NV in diamond, Figure 2.2),
but analogous implementations have been performed using remote Ion Traps [25]
and Neutral Atoms [26].

In all cases (NV, Ion Trap, Neutral Atom, and others), processing nodes 𝐴 and
𝐵 are few­qubit quantum computers, capable of storing and manipulating qubits.
They are connected to an intermediate station called the heralding station 𝐻 over
optical fibers. This station is a much simpler automated node, built only from linear
optical elements. Each node can have two types of qubits: memory qubits as a local
memory, and communication qubits with an optical interface, that can be entangled
with a photon. To produce entanglement, a time synchronized trigger is used at
both 𝐴 and 𝐵 to create entanglement between each communication qubit, and a
corresponding traveling qubit (photon). These photons are sent from 𝐴 and 𝐵 to 𝐻
over fiber. When both arrive at 𝐻, 𝐻 performs an automatic entanglement swapping
operation which succeeds with some probability. Since 𝐻 has no quantum memory,
both photons must arrive at 𝐻 at the same time to succeed. Success or failure is
then transmitted back from 𝐻 to the nodes 𝐴 and 𝐵 over a standard classical channel
(e.g. 100Base­T). In the case of success, one of several entangled states may be
produced, which can however be converted to one other using local quantum gates
at 𝐴 or 𝐵. The heralding signal is used to indicate which state was produced. After
a generation attempt, the communication qubit may be moved to a memory qubit,
in order to free the communication qubit to produce the next entangled pair. Many
parameters influence the success and quality of this process, such as the quality
of the qubits themselves, the probability of emission of a photon given a trigger
signal, losses in fiber, and quality of the optical elements such as detectors used at
𝐻 (Figure 2.2).

To understand this process in more detail, consider the NV platform (Figure 2.2)
(see e.g. [23] for details on this process, and [83] for an overview of the NV platform
in general). Two different schemes for producing entanglement have been imple­
mented, that differ in how the qubits are encoded into photons (time­bin [54],
or presence/absence of a photon [55]). While physically different, both of these
schemes fit into the framework of our physical and link layer protocols.

To evaluate the performance of the protocol (Section 2.6) and provide intuition
of timings, we compare to data from the setup [23] which uses presence/absence
of a photon as encoding. A microwave pulse prepares the communication qubit
depending on a parameter 𝛼, followed by a laser pulse to trigger photon emission
(total duration 5.5𝜇𝑠). A pair (|Ψ+⟩ or |Ψ−⟩) is successfully produced with fidelity
𝐹 ≈ 1−𝛼 with probability 𝑝succ ≈ 2𝛼𝑝det, where 𝑝det ≪ 1 is, given that a photon was
emitted, the probability of heralding success. The parameter 𝛼 thus allows a trade­
off between the rate of generation (𝑝succ), and the quality metric 𝐹. Other factors
that impact the fidelity are memory decoherence, detector dark­counts, phase in­
stabiliy, losses, imperfect operations and more (see appendix A.3.2). For K type
requests, we may store the pair in the communication qubit, or move to a memory



2.4. Design Considerations for quantum link layer

2

29

qubit (gate duration 1040𝜇𝑠 for the qubit considered). The quality of this qubit de­
grades as we wait for 𝐻 to reply. For M type requests, we may choose to measure
immediately before receiving a reply (here readout takes 3.7𝜇𝑠). Important is the
time of an attempt 𝑡attempt (time preparing the communication qubit until receiving
a reply from 𝐻, and completion of any post­processing such as moving to memory),
and the maximum attempt rate 𝑟attempt (maximum number of attempts that can be
performed per second not including waiting for a reply from H or post­processing).
The rate 𝑟attempt can be larger than 1/𝑡attempt: (1) for M the communication qubit is
measured before receiving the reply from 𝐻 and thus allows for multiple attempts
to overlap and (2) for K, if the reply from 𝐻 is failure, then no move to memory is
done.

For performance evaluation we consider two physical setups as an example
(see appendix A.2.2) with additional parameters hereafter referred to as the Lab
scenario and the QL2020 scenario. The Lab scenario already realized [23] with 1m
distance to the station from both 𝐴 and 𝐵 (communication delay to 𝐻 negligible),
𝑝succ ≈ 𝛼 ⋅ 10−3 (𝐹 vs. 𝛼, Figure 2.8). For 𝑀 requests, we act the same for
Lab and QL2020 and always measure immediately before parsing the response
from 𝐻 to ease comparison (thus 𝑡attempt = 1/𝑟attempt = 10.12 𝜇s which includes
electron readout 3.7 𝜇s, photon emission 5.5 𝜇s and a 10 % extra delay to avoid
race conditions). For 𝐾 requests in Lab, 𝑡attempt = 1045 𝜇s but 1/𝑟attempt ≈ 11 𝜇s
as memory qubits need to be periodically initialized (330 𝜇s every 3500 𝜇s). The
QL2020 scenario has not been realized and is based on a targeted implementation
connecting two Dutch cities by the end of 2020 (≈ 10𝑘𝑚 from 𝐴 to 𝐻 with a
communication delay of 48.4𝜇𝑠 in fiber, and ≈ 15𝑘𝑚 from 𝐵 to 𝐻 with a 72.6𝜇𝑠
delay). Frequency conversion of 637nm to 1588nm needs to be performed on the
photons emitted in our modeled NV center, where fiber losses at 1588nm are taken
to be 0.5 dB/km (values for deployed QL2020 are 0.43­0.47 db/km). We assume
the use of optical cavities to enhance photon emission [84, 85] giving a probability
of success 𝑝succ ≈ 𝛼 ⋅ 10−3. 𝐹 is worse due to increased communication times
from 𝐻. For QL2020, 𝑡attempt = 145 𝜇s for M (trigger, wait for reply from 𝐻) and
𝑡attempt = 1185 𝜇s for K (trigger, wait for reply from 𝐻, swap to carbon). Maximum
attempt rates are 1/𝑟attempt = 10.120 𝜇s (M) and 1/𝑟attempt ≈ 165 𝜇s (K).

2.4.5. Hardware Considerations
Quantum hardware imposes design considerations for any link layer protocol based
on top of such experiments for generating entanglement.

Trigger generation: Entanglement can only be produced if both photons arrive
at the heralding station at the same time. This means that the low level system re­
quires tight timing control; such control (ns scale) is also required to keep the local
qubits stable. This imposes hard real time constraints at the lowest level, with ded­
icated timing control (AWG) and software running on a dedicated microcontroller
(Adwin ProII). We expect that a physical layer protocol built on heralded entangle­
ment without the use of additional quantummemories would operate over distances
up to 100km. As such, providing timing synchronization at the required level may
be done using existing techniques such as White Rabbit [86]. Timing constraints
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to perform entanglement swapping over larger distances at higher layers, or using
automated nodes with memories are less stringent. When considering a functional
allocation between the physical and link layer in the quantum network stack, this
motivates taking all timing synchronization to happen at the physical layer. At this
layer, we may then also timestamp classical messages traveling to and from 𝐻, to
form an association between classical control information and entangled pairs.

Scheduling and flow control: Consequently, we make the link layer responsible
for all higher level logic, including scheduling, while keeping the physical layer as
simple as possible. An example of scheduling other than priorities, is flow control
which controls the speed of generation, depending on the availability of memory
on the remote node to store such entanglement.

Note that depending on the number of communication qubits, and parallelism of
quantum operations that the platforms allows, a node also needs a global scheduler
for the entire system and not only the actions of the link layer.

Noise due to generation: One may wonder why one does not continuously
trigger entanglement generation locally whenever the node wants a pair, or why one
does not continuously produce pairs and then this entanglement is either discarded
or otherwise made directly available. In the NV system, triggering entanglement
generation causes the memory qubits to degrade faster [87, 88]. As such we would
like to achieve agreement between nodes to avoid triggering unless entanglement
it is indeed desired.

This consideration also yields a security risk: if an attacker could trick a node
into triggering entanglement generation, without a matching request on the other
side, this would allow a rapid destruction of contents of the nodes’ local quantum
memory. For this reason, we want classical communication to be authenticated
which can be achieved using standard methods.

Memory allocation: Decisions on which qubits to use for what purpose lies in the
domain of higher level logic, where more information is available. We let such deci­
sions be taken by a global quantum memory manager (QMM), which can assist the
link layer to make a decision on which qubits to employ. It can also translate logical
qubit IDs into physical qubit IDs in case multiple qubits are used to redundantly
form one logical storage qubit.

2.5. Protocols
We now present our protocols satisfying the requirements and considerations set
forth in Sections 2.3 and 2.4. The entanglement generation protocol (QEGP) at the
link layer, uses the midpoint heralding protocol (MHP) at the physical layer. Classical
communication is authenticated, and made reliable using standard methods (e.g.
802.1AE [89], authentication only).

2.5.1. Physical Layer MHP
Our MHP is a lightweight protocol built directly on top of physical implementations
of the form of Section 2.4.4, supplementing them with some additional control
information. With minor modifications this MHP can be adapted to other forms of
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heralded entanglement generation between controllable nodes, even using multiple
automated middle nodes [90].

The MHP is meant to be implemented directly at the lowest level subject to
tight timing constraints. Protocol execution is divided into time slots, which are
synchronized between the two neighboring nodes (Section 2.4.4). In each time
slot, the MHP polls the higher layer (Figure 2.3, the link layer QEGP) to determine
whether entanglement generation is required in this slot. A batched operation is
possible, should the delay incurred by the polling exceed the minimum time to make
one entanglement generation attempt ­ the MHP cycle ­ and hence dominate the
throughput. MHP keeps no other state. Upon polling, the higher layer may respond
“no“ in which case no attempt to produce entanglement will be made or with “yes“,
additionally providing parameters to use in the attempt. These parameters include
the type of request (M, measure) or (K, store) passed on from the higher layer, for
which the MHP takes the following actions.

Protocol for Create and Keep (K)
The parameters given to the MHP with a “yes“ response contain the following:

• An ID for the attempt that is forwarded to 𝐻,

• Generation parameters (𝛼, Section 2.4.4),

• The device qubits for storing the entanglement,

• A sequence of operations to perform on the device memory 1.

The higher layer may instruct the MHP to perform a gate on the communication
qubit depending on the heralding signal from 𝐻 allowing the conversion from the
|Ψ−⟩ state to the |Ψ+⟩ state, before returning completion to the higher layer. Entan­
glement generation is then triggered at the start of the next time interval, using the
generation parameter 𝛼, and a GEN message is sent to 𝐻 which includes a times­
tamp, and the given ID. The motivation for including the ID is to protect against
errors in the classical control, for example losses.

The station 𝐻 uses the timestamp to link the message to a detection window in
which the accompanying photons arrived. Should messages from both nodes arrive,
the midpoint verifies that the IDs transmitted with the GEN messages match, and
checks the detection counts (Figure 2.2) from the corresponding detection window.
The midpoint will then send a REPLY message indicating success or failure, and in
the case of success, which of the two states, |Ψ+⟩ and |Ψ−⟩, was produced. The
REPLY additionally contains a sequence number uniquely identifying the generated
pair of entangled qubits chosen by 𝐻, which later enables the QEGP to assign
unique entanglement identifiers. This REPLY and the ID is forwarded to the link
layer for post­processing. Note that the REPLY may be received many MHP cycles
later, allowing the potential for emission multiplexing (Section 2.5.2).

1Less abstractly, by specifying microwave and laser pulse sequences controlling the chip (see ap­
pendix A).
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QEGP A MHP A Station H

trigger?

y/n, info GEN

REPLYRESULT

Figure 2.3: Timeline of the MHP polling higher layers to see if entanglement should be produced.

Protocol for Create and Measure (M)
Handling M type requests is very similar, differing only in two ways: Instead of
performing a gate on the communication qubit, the “yes“ message requests the
MHP to perform a measurement on the communication qubit in a specified basis
once the photon has been emitted, even before receiving the response from 𝐻.
The outcome of the measurement and the REPLY are passed back to the QEGP.
In practice, the communication time from transmitting a GEN message to receiving
a REPLY may currently exceed the duration of such a local measurement (3.7 𝜇𝑠
vs. communication delay Lab 9.7 ns, and QL2020 145 𝜇s). The MHP may thus
choose to perform the measurement immediately (communication delay exceeds
measurement delay) such as in Figure 2.4, or only after receiving the response
(measurement delay exceeds communication delay).

Station 𝐴 Heralding Station 𝑀 Station 𝐵

GEN,𝑝 GEN,𝑝

REPLY/ERR REPLY/ERR

GEN,𝑝 GEN,𝑝

REPLY/ERR REPLY/ERR

... ...

... ...

Figure 2.4: Timeline of multiplexing photon emission in the MHP: multiple GEN,𝑝 messages are sent
one by one. For details about the GEN and REPLY/ERR messages, see figs. A.18 and A.19

2.5.2. Link Layer QEGP
Here we present an implementation of a link layer protocol, dubbed QEGP (quantum
entanglement generation protocol), satisfying the service requirements put forth in



2.5. Protocols

2

33

Section 2.4 (see appendix A.4 for details and message formats). We build up this
protocol from different components:

Distributed Queue
Both nodes that wish to establish entangled link(s) must trigger their MHP devices
in a coordinated fashion (Section 2.4.4). To achieve such agreement, the QEGP
employs a distributed queue comprised of synchronized local queues at the con­
trollable nodes. These local queues can be used to separate requests based on
priority, where here we employ 3 queues for the different use cases (CK, NL, MD).
Due to low errors in classical communication (estimated < 4 × 10−8 on QL2020,
see appendix A.3.6), we let one node hold the master copy of the queue, and use
a simple two­way handshake for enqueing items, and a windowing mechanism to
ensure fairness. Queue items include a 𝑚𝑖𝑛_𝑡𝑖𝑚𝑒 that specifies the earliest pos­
sible time a request is deemed ready for processing by both nodes (depending
on their distance). Specifying 𝑚𝑖𝑛_𝑡𝑖𝑚𝑒 prevents either node from beginning en­
tanglement generation in different timesteps. We note that while the distributed
queue requires timing synchronization for such functionality, the timing constraints
are looser than those found at the physical layer. Hence, sufficient synchronization
may be obtained by piggy­backing on the mechanisms used at the physical layer,
or by using PTP [91].

One may wonder why we employ a distributed queue to coordinate entangle­
ment rather than utilizing classical discussion after entanglement has been gener­
ated. Recall from Section 2.4.5 that the memory lifetimes of qubits are very short.
By agreeing on coordination in advance, we reduce the amount of noise introduced
into the qubits before they are used by applications. An alternative design choice
worthwhile exploring would be to employ the heralding midpoint as the master of
the distributed queue. Such a construction may allow coordination of entanglement
generation between several endnodes connected to a common midpoint station.

Quantum Memory Management (QMM)
The QEGP uses the node’s QMM (Section 2.4.5) to determine which physical qubits
to use for generating or storing entanglement.

Fidelity Estimation Unit (FEU)
In order to provide information about the quality of entanglement, the QEGP em­
ploys a fidelity estimation unit. This unit is given a desired quality parameter 𝐹min,
and returns generation parameters (such as 𝛼) along with an estimated minimal
completion time. Such a fidelity estimate can be calculated based on known hard­
ware capabilities such as the quality of the memory and operations. To further
improve this base estimate the QEGP intersperses test rounds.

Physical Translation Unit (PTU)
The link layer protocol processes CREATE requests in a hardware­independent man­
ner. To resolve physical gate instructions that must be provided to the MHP and
underlying platform, a physical translation unit that converts hardware­independent
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instruction descriptions into hardware­dependent instructions is used. For exam­
ple, the PTU may convert the Euler decomposition of a single­qubit gate or a pair
of physical qubit ids for a two­qubit gate (such as moving the state of one to the
other) into a sequence of physical instructions that should be issued to the hardware
below. This unit also converts entanglement generation parameters like 𝛼 supplied
by the FEU into the corresponding physical instruction (here, a specific microwave
pulse).

Scheduler
The QEGP scheduler decides which request in the queue should be served next. In
principle, any scheduling strategy is suitable as long as it is deterministic, ensuring
that both nodes select the same request locally. This limits two­way communication,
which adversely affects entanglement quality due to limited memory lifetimes.

Protocol
Figure 2.5 presents an architecture diagram visualizing the operation. The proto­
col begins when a higher layer at a controllable node issues a CREATE operation
to the QEGP specifying a desired number of entangled pairs along with 𝐹𝑚𝑖𝑛 and
𝑡𝑚𝑎𝑥 (Section 2.4.1). Upon receipt of a request the QEGP will query the FEU to
obtain hardware parameters (𝛼), and a minimum completion time (depending on
𝛼). If this time is larger than 𝑡max, the QEGP immediately rejects the request
(UNSUPP). Should the request pass this evaluation, the local node will compute a
fitting 𝑚𝑖𝑛_𝑡𝑖𝑚𝑒 specifying the earliest MHP polling cycle the request may begin
processing. The node then adds the request into the distributed queue shared by
the nodes. This request may be rejected by the peer should the remote node have
queue rules that do not accept the specified purpose ID. Then, the QEGP locally
rejects the request (DENIED).

The local scheduler selects the next request to be processed, given that there
exists a ready one (as indicated by 𝑚𝑖𝑛_𝑡𝑖𝑚𝑒). The QMM is then used to allocate
qubits needed to fulfill the specified request type (create and keep K or create and
measure M). The QEGP will then again ask the FEU to obtain a current parameter
𝛼 due to possible fluctuations in hardware parameters during the time spent in the
queue. The scheduler then constructs a “yes” response to the MHP containing 𝛼
from the FEU, along with an ID containing the unique queue ID of the request
in the distributed queue, and number of pairs already produced for the request.
This response is then forwarded to the local MHP upon its next poll to the QEGP.
If no request is ready for processing, a “no” response is returned to the MHP . At
this point the MHP behaves as described in the previous section and an attempt at
generating entanglement is made.

Whenever a REPLY and ID is received from the MHP, the QEGP uses the ID to
match the REPLY to an outstanding request, and evaluates the REPLY for correct­
ness. Should the attempt be successful, the number of outstanding pairs in the
request is decremented, and an OK message is propagated to higher layers con­
taining the information specified in Section 2.4.1, where the Goodness is obtained
from the FEU.
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Figure 2.5: Flow diagram of the MHP and QEGP operation. The QEGP handles CREATE requests and
schedules entanglement generation attempts are issued to the MHP. Replies from the midpoint are
parsed and forwarded to the QEGP from request management.

In the appendix A, we consider a number of examples to illustrate decisions
and possible pitfalls in the QEGP. One such example is the possibility of emission
multiplexing [92]: The QEGP can be polled by the MHP before receiving a response
from the MHP for the previous cycle. This allows the choice to attempt entanglement
generation multiple times in succession before receiving a reply from the midpoint,
e.g., in order to increase the throughput for the MD use case.

Errors such as losses on the classical control link can lead to an inconsistency
of state (of the distributed queue) at 𝐴 and 𝐵 from which we need to recover.
Inconsistencies can also affect the higher layer, e.g. with node 𝐴 issuing an OK to
higher layer, but not node 𝐵. Since the probability of e.g. control message losses is
extremely low, we choose not to perform additional two­way discussion to further
curb all inconsistencies at the link layer. Instead, the QEGP can issue an EXPIRE
message for an OK already issued if inconsistency is detected later, e.g. when the
remote node never received an OK for this pair.

2.6. Evaluation
We investigate the performance of our link layer protocol using a purpose built dis­
crete event simulator for quantum networks (NetSquid [93], Python/C++) based
on DynAA [94] (see appendix A.2 for details and more simulation results). Both
the MHP and QEGP are implemented in full in Python, running on simulated nodes
that have simulated versions of the quantum hardware components, fiber connec­
tions, etc. All simulations were performed on the supercomputer Cartesius at SURF­
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sara [95], in a total of 2578 separate runs using a total of 94244 core hours, and
707 hours time in the simulation (∼250 billion MHP cycles). One simulated second
currently takes about two core minutes on average, since in each entanglement
generation attempt (every 10.12 𝜇s for type MD) multiple events are scheduled
and handled and the 16×16­matrix representing the state of the two photons and
electrons is updated based on multiple sources of noise and gate operations. The
code used for the simulation can be found at [96] and complete data at [97].

We conduct the following simulation runs:

• Long runs: To study robustness of our protocol, we simulate the 169 sce­
narios described below for an extended period of time. Each scenario was
simulated twice for 120 wall time hours, simulating 502−13437 seconds. We
present and analyze the data from these runs in sections 2.6.1, 2.6.2 and
appendix A.2.2.

• Short runs: We perform the following simulations for a shorter period of time
(24 wall time hours, reaching 67 − 2356 simulated seconds):

– Performance trade­offs: To study the trade­off between latency, through­
put and fidelity we sweep the incoming request frequency and the re­
quested minimum fidelity, see Figure 2.6.

– Metric fluctuations: To be able to study the impact of different schedul­
ing strategies on the performance metrics, we run 4 scenarios, 102 times
each. The outcomes of theses simulation runs are discussed in sec­
tion 2.6.3.

To explore the performance at both short and long distances, the underlying
hardware model is based on the Lab and QL2020 scenarios, where we validate
the physical modeling of the simulation against data collected from the quantum
hardware system of the Lab scenario already realized (Figure 2.8). For the quantum
reader we note that while our simulations can also be used to predict behavior of
physical implementations (such as QL2020), the focus here is on the performance
and behavior of the link layer protocol. This includes a first investigation of how
different scheduling strategies can affect traditional performance metrics (such as
throughput) in relation of genuinely quantum ones (the fidelity) for different use
cases.

We structure the evaluation along the three different use cases (NL, CK, MD),
leading to a total of 169 different simulation scenarios. First, we use different kinds
of requests:

• NL (network layer): K type request, consecutive flag, priority 1 (highest),
store qubit in memory qubit.

• CK (create and keep) an application asking for one or more long­lived pairs:
K type request, immediate return flag, priority 2 (high), store qubit in memory
qubit.

• MD (measure directly): M type request, consecutive flag, priority 3 (lowest).
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For an application such as QKD, one would not set the immediate return flag in
practice for efficiency, but we do so here to ease comparison to the other two
scenarios. Measurements in MD are performed in randomly chosen bases 𝑋, 𝑍 and
𝑌 (see section 1.4).

In each MHP cycle, we randomly issue a new CREATE request for a random
number of pairs 𝑘 (max 𝑘max), and random use case 𝑃 ∈ {NL,CK,MD} with prob­
ability 𝑓𝑃 ⋅ 𝑝succ/(𝐸 ⋅ 𝑘), where 𝑝succ is the probability of one attempt succeeding
(Section 2.4.4), 𝑓𝑃 is a fraction determining the load in our system of kind 𝑃, and
𝐸 is the expected number of MHP cycles to make one attempt (𝐸 = 1 for MD
and 𝐸 ≈ 1.1 for NL/CK in Lab due to memory re­initialization and post­processing;
𝐸 ≈ 16 for NL/CK in QL2020 due to classical communication delays with 𝐻 (145𝜇𝑠)).
This probability is chosen in a way such that the queue (without a max size) storing
these requests is stable (finite expected length) for ∑𝑃∈{NL,CK,MD} 𝑓𝑃 < 1 and other­
wise unstable (infinite expected length). In the long runs, we first study single kinds
of requests (only one of MD/CK/NL), with 𝑓𝑃 = 0.7 (Low), 0.99 (High) or 1.5 (Ultra).
For these long runs, we fix one target fidelity 𝐹min = 0.64 to ease comparison. For
each of the 3 kinds (MD/CK/NL), we examine:

• 𝑘max = 1, one pair per request.

• 𝑘max = 3, one to three pairs per request.

• 𝑘max = 255, one to 255 pairs per request (only for MD).
For Ultra the number of outstanding requests intentionally grows until the queue is
full (max 256), to study an overload of our system.

To study fairness, we take 3 cases of who issues the CREATE for each single
kind (MD/CK/NL) scenario:

• all from 𝐴 (master of the distributed queue).

• all from 𝐵.

• 𝐴 or 𝐵 are randomly chosen with equal probability.
To examine scheduling, we additionally consider long runs with mixed kinds of

requests (appendix A.2.2, e.g. Figure 2.7).

2.6.1. Robustness
To study robustness, we artificially increase the probability of losing classical control
messages (100 Base T on QL2020 fiber < 4×10−8 (see appendix A.3.6)), which can
lead to an inconsistency of state of the QEGP, but also higher layers (Section 2.5.2).
These classical control messages are part of both the MHP protocol and QEGP
protocol including the distributed queue. We ramp up loss probabilities up to 10−4
(see appendix A.2.2) and observe our recovery mechanisms work to ensure stable
execution in all cases (35 runs, 281 ­ 3973 s simulated time), with only small impact
to the performance parameters (maximum relative differences 2 to the case of no
2Relative difference between 𝑚1 and 𝑚2 is |𝑚1 −𝑚2|/max(|𝑚1|, |𝑚2|)
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Figure 2.6: Performance trade­offs. (a) Scaled latency vs. 𝑓𝑃 determining fraction of throughput (b)
Scaled latency vs. fidelity 𝐹𝑚𝑖𝑛. Demanding a higher 𝐹𝑚𝑖𝑛 lowers the probability of success (Sec­
tion 2.4.4), meaning (c) throughput directly scales with 𝐹𝑚𝑖𝑛 (each point averaged over 40 short runs
each 24 h, 93 − 2355 s simulated time, QL2020, 𝑘max = 3, for (b,c) 𝑓𝑃 = 0.99). Higher 𝐹𝑚𝑖𝑛 not
possible for NL in (b).

losses, fidelity (0.005), throughput (0.027), latency (0.629), number of OKs (0.026)
with no EXPIRE messages). We see a relatively large difference for latency, which
may however be due to latency not reaching steady state during the simulation
(70 × 70 core hours), see the next section.

2.6.2. Performance Metrics
We first consider runs including only a single kind of request (MD/CK/NL). In ad­
dition to the long runs, we conduct specific short runs examining the trade­off
between latency and throughput for fixed target fidelity 𝐹min (Figure 2.6(a)), and
the trade­off between latency (throughput) and the target fidelity in Figure 2.6(b)
(Figure 2.6(c)). As described in section 2.4.4, the probability of successful entan­
glement generation, and therefore throughput, is directly proportional to one minus
fidelity of the generated pair.

Below we present the metrics extracted from the long runs with single kinds of
requests:
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Fidelity: As a benchmark, we began by recording the average fidelity 𝐹avg in all
169 scenarios with fixed minimum fidelity. We observe that 𝐹avg is independent of
the other metrics but does depend on the distance, and whether we store or mea­
sure: 0.745 < 𝐹avg < 0.757 (NL/CK Lab), 0.626 < 𝐹avg < 0.653 (NL/CK QL2020),
0.709 < 𝐹avg < 0.779 (MD Lab), 0.723 < 𝐹avg < 0.767 (MD QL2020) (Fidelity MD
extracted from QBER measurements, see section 1.4). This is to be expected since
(1) we fix one 𝐹min and (2) we consider an NV platform with only 1 available memory
qubit so no change in quality is observed by using different memory qubits (Lab).

Throughput: All scenarios High and Ultra in Lab reach an average throughput
𝑡ℎavg (1/s) of 6.05 < 𝑡ℎavg < 6.47 NL/CK and 6.51 < 𝑡ℎavg < 7.09 for MD. It
is expected that MD has higher throughput, since no memory qubit needs to be
initialized. The time to move to memory (1040𝜇𝑠) is less significant since many
MHP cycles are needed to produce one pair, but we only move once. As expected
for Low the throughput is slightly lower in all cases, 4.44 < 𝑡ℎavg < 4.72 NL/CK, and
4.86 < 𝑡ℎavg < 5.22 MD. For QL2020, the throughput for NL/CK is about 14 times
lower, since we need to wait (145𝜇𝑠) for a reply from 𝐻 before MHP can make a
new attempt.

Latency: The scaled latency highly depends on the incoming request frequency
as the longer queue causes higher latency. However, from running the same
scenarios many (102) times for a shorter period (24 wall time hours) (see Sec­
tion 2.6.3), we see that the average scaled latency fluctuates a lot, with a standard
deviation of up to 6.6 s in some cases. For QL2020 with NL requests specifying
1­3 pairs from both nodes, we observe an average scaled latency of 10.97 s Low,
142.9 s High and 521.5 s Ultra. For MD requests, 0.544 s Low, 3.318 s High and
32.34 s Ultra. The longer scaled latency for NL is largely due to longer time needed
to create a pair, and not that the queues are longer (average queue length for NL:
3.83 Low, 56.3 High, 214 Ultra), and for MD: 3.23 Low, 22.4 High and 219 Ultra).

Fairness: For 103 scenarios of the long runs (single kinds of requests (MD/CK­
/NL) randomly from 𝐴 and 𝐵), we see only slight differences in fidelity, throughput
or latency between requests from 𝐴 and 𝐵. Maximum relative differences do not
exceed: fidelity 0.033, throughput 0.100, latency 0.073, number of OKs 0.100 (for
Ultra).

2.6.3. Scheduling
We take a first step studying the effect of scheduling strategies on the perfor­
mance when using mixed kinds of requests. Part of simulating the performance
of a scheduling strategies can certainly be done without implementing all details
of the physical entanglement generation. However, since we do simulate these
details we can first confirm that different scheduling strategies below do not affect
the average fidelity in these scenarios. Here, we examine two simple scheduling
strategies: (1) first­come­first­serve (FCFS) and (2) a strategy where NL (priority 1)
has a strict highest priority, and use a weighted fair queue (WFQ) for CK (priority 2)
and MD (priority 3), where CK has 10 times the weight of MD. With these schedul­
ing strategies, we simulate two different request patterns ((i) uniform and (ii) no
NL more MD), 102 times over 24 wall time hours each and extract the performance
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Figure 2.7: Request latency vs. time for two scheduling scenarios (long runs simulated 120 h wall time).
As expected the max. latency for NL is decreased due to strict priority. In this scenario, there are more
incoming NL requests (𝑓NL = 0.99 ⋅ 4/5 , 𝑓CK = 0.99 ⋅ 1/5 and 𝑓MD = 0.99 ⋅ 1/5).

metrics of throughput and scaled request latency (Table 2.1).
As expected we see a drastic decrease of the average scaled latency for NL

when giving it strict priority: 10.3 s with FCFS and 3.5 s with WFQ. For CK there
is similarly a decrease in average scaled latency, however smaller than for NL, of
10.1 s (FCFS) and 6.5 s (WFQ). For MD the average scaled latency goes up in both
cases when using WFQ instead of FCFS, by factors of 2.49 (uniform) and 1.28 (no
NL more MD).

We observe that the throughput gets less affected by the scheduling strategy
than the latency for these scenarios. The maximal difference between the through­
put for FCFS and WFQ is by a factor of 1.16 (for MD in the scenario of no NL and
moreMD). Furthermore, we see that the total throughput for all requests goes down
from 2.75 (5.99) 1/s for FCFS to 2.44 (5.92) 1/s for WFQ in the case of uniform (no
NL more MD).
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Figure 2.8: Validation against data from NV hardware (Lab scenario). Fidelity (a) and probability an
attempt succeeds (b) in terms of 𝛼 (Section 2.4.4) shows good agreement between hardware and
simulation points (each at least 300 pairs averaged, 5s−117s simulated time, 500k−10.000k attempts,
122 hours wall time). Theoretical model [23] as visual guide (solid line).

Table 2.1: Throughput (T) and scaled latency (SL) using scheduling strategies FCFS and WFQ for two
request patterns: (i) with 𝑓NL = 𝑓CK = 𝑓MD = 0.99 ⋅ 1/3, i.e. a uniform load of the different priorities and
(ii) with 𝑓NL = 0, 𝑓CK = 0.99 ⋅ 1/5 and 𝑓MD = 0.99 ⋅ 4/5, i.e. no NL and more MD. The physical setup:
QL2020 and number of pairs per request: 2 (NL), 2 (CK), and 10 (MD). Each value average over 102
short runs each 24 h, with standard error in parentheses.

T (1/s) NL CK MD
(i) FCFS 0.146 (0.003) 0.144 (0.003) 2.464 (0.056)
(i) WFQ 0.154 (0.003) 0.156 (0.003) 2.130 (0.063)
(ii) FCFS ­ 0.086 (0.003) 5.912 (0.033)
(ii) WFQ ­ 0.096 (0.003) 5.829 (0.049)

SL (s) NL CK MD
(i) FCFS 10.272 (0.654) 10.063 (0.631) 1.740 (0.120)
(i) WFQ 3.520 (0.085) 6.548 (0.361) 4.331 (0.336)
(ii) FCFS ­ 5.659 (0.313) 0.935 (0.062)
(ii) WFQ ­ 2.503 (0.100) 1.194 (0.093)
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2.7. Conclusion
Our top down inventory of design requirements, combined with a bottom up ap­
proach based on actual quantum hardware allowed us to take quantum networks
a step further on the long path towards their large­scale realization. Our work
readies QL2020, and paves the way towards the next step, a robust network layer
control protocol. The link layer may now be used as a robust service without de­
tailed knowledge of the physics of the devices. Due to the relatively small size of
initial quantum networks, close attention was paid to application use cases even at
the link layer. We expect that in the future, the network layer will have a similar
interface to higher layers as the link layer itself, and nodes internal to the network
will not run applications themselves. Scheduling strategies catering to different use
cases may at this stage be applied primarily at the network layer at the level of
long­distance links, which are then directly passed to applications running at the
end nodes requesting long­distance entanglement. We expect that at the network
layer, and when considering larger quantum memories, smart scheduling strate­
gies will be important not only to combat memory lifetimes but also to coordinate
actions of different nodes in time, calling for significant effort in computer science
and engineering.
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3
SimulaQron ­ A simulator for
developing quantum internet

software

Axel Dahlberg, Stephanie Wehner

We introduce a simulator of a quantum internet with the specific goal to
support software development. A quantum internet consists of local quan­
tum processors, which are interconnected by quantum communication chan­
nels that enable the transmission of qubits between the different processors.
While many simulators exist for local quantum processors, there is presently
no simulator for a quantum internet tailored towards software development.
Quantum internet protocols require both classical as well as quantum infor­
mation to be exchanged between the network nodes, next to the execution
of gates and measurements on a local quantum processor. This requires
quantum internet software to integrate classical communication program­
ming practises with novel quantum ones.
SimulaQron is built to enable application development and explore software
engineering practises for a quantum internet. SimulaQron can be run on one
or more classical computers to simulate local quantum processors, which
are transparently connected in the background to enable the transmission
of qubits or the generation of entanglement between remote processors. Ap­
plication software can access the simulated local quantum processors to ex­
ecute local quantum instructions and measurements, but also to transmit

Parts of this chapter have been published in Quantum Science and Technology [1].
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qubits to remote nodes in the network. SimulaQron features a modular de­
sign that performs a distributed simulation based on any existing simulation
of a quantum computer capable of integrating with Python. Programming
libraries for Python and C are provided to facilitate application development.
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3.1. Introduction

A quantum internet enables quantum communication between remote quantum
processors in order to solve problems that are infeasible classically. Many ap­

plications of a quantum internet are already known, the most famous of which is
quantum key distribution (QKD) [2, 3] which allows two network nodes to establish
an encryption key. Examples of other applications are secure identification [4] and
other two­party cryptographic tasks [5], clock synchronization [6], secure delegated
quantum computation [7], and even extending the baseline of telescopes [8]. For
many of these applications, only relatively simple quantum processors capable of
operating on a handful of qubits are required, as they draw their power from quan­
tum entanglement. Entanglement can be realized using already one qubit at each
end point, and its capabilities cannot be replicated using classical communication.
In the case of QKD, for example, quantum processors capable only of preparing
and measuring single qubits can already be sufficient [2].

The first quantum networks that connect remote quantum processors capable
of operating on several qubits each are expected to be deployed within the coming
years. End­nodes, holding such quantum processors and on which applications run,
will be able to send qubits and generate entanglement between each other using
the network. Depending on the distance between the end­nodes, different ways
to realize the quantum communication can be used, including the use of quantum
repeaters [9–13]. In order to execute arbitrary quantum internet applications on
these networks, it is essential to create a development framework in which software
for these applications, running on the end­nodes, can be written and debugged.
Writing software for a quantum internet shares some similarities with programming
a quantum computer, but in addition poses new challenges. Similar to program­
ming a quantum computer, we wish to execute quantum gates and measurements
on each local quantum processor. Techniques for optimizing such gates and map­
ping them to the underlying hardware can be borrowed from quantum computing
efforts, and are hence not the subject of this work. What differentiates program­
ming a quantum network is the need for a close integration between classical and
quantum messages exchanged during the course of the protocol. The need for
such integration arises at several layers of abstraction, and poses significant de­
sign challenges. On a lower level, a quantum network stack is needed to create
and track entanglement in the network, which requires classical control messages
to be exchanged. On a higher level, applications which desire to create and use
such entanglement do themselves exchange classical messages during the course
of a protocol, requiring standard classical network programming techniques to inte­
grate with quantum ones. A functional allocation of a network stack was introduced
in chapter 2. We note that the CQC­interface as presented here have later been
replaced by an improved version which we now call NetQASM [14].

3.1.1. What SimulaQron does
SimulaQron is a simulator providing a tool for software development for a quan­
tum internet, freely available online [17]. Specifically, SimulaQron simulates sev­
eral quantum processors held by the end­nodes of the network, connected by a
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Figure 3.1: High­level schematic of the quantum network system of one node in the network. At the
lowest level lies the quantum hardware, which in the most general case consists of a quantum processor
capable of storing and manipulating qubits. The quantum processor has an optical interface over which
it can generate entanglement with neighbouring network nodes, and send/receive qubits. Sending and
receiving qubits may ­ depending on the implementation ­ be realized by first generating entanglement,
followed by quantum teleportation. At present, quantum network nodes that support local quantum
processing as well as the generation of long­lived entanglement are NV centers in diamond [15] and Ion
Traps [16]. The quantum hardware is controlled by a necessarily platform dependent control system that
may possess a classical communication interface to neighbouring nodes, for example to communicate
the successful generation of heralded entanglement [15]. Together the quantum hardware and low­
level control system form the platform dependent quantum processing system. SimulaQron provides
a stand­in for such platform dependent quantum processing systems, and the quantum communica­
tion between them. The platform dependent system provides a universal interface, which we call CQC
(Classical Quantum Combiner). CQC can be understood as an extended instruction set which ­ next
to supporting “standard” quantum instructions such as performing gates or measurements ­ features
special features tailored to a quantum network. This includes, for example, commands to produce en­
tanglement or transmit qubits. Applications can be realized in the platform independent part of the
quantum internet system by sending the appropriate instructions using CQC to the underlying quantum
processing system. For simplicity, SimulaQron allows for direct communication between any two nodes
in the network. However, a different topologically can be realized by using SimulaQron in a restricted
fashion. Quantum network applications generally require the exchange of classical communication, and
the integration between such classical communication and the use of the local quantum processing sys­
tem is an integral aspect of application software development. In practice, this classical communication
may be solved transparently using the same physical medium as used for the low level control, but this
is not a requirement.

simulated quantum communication channels. This allows the simulation of single
quantum networks, as well as inter­connected quantum networks forming a quan­
tum internet. The quantum communication channels between the end­nodes in
a real implementation of the network, can be realized in different ways, for ex­
ample using quantum repeaters. The simulation of quantum repeaters and their
performance is an important aspect of developing a quantum network. Numerous
simulations of quantum repeaters have been conducted such as for example [18–
20], the objective of SimulaQron however is a rather different one in that it aims
provide a platform for application development to software engineers. SimulaQron
can be used to develop the software running at the end­nodes together with clas­
sical communication between these. Figure 3.1 provides a high level schematic
of such a quantum internet system, where SimulaQron should be understood as
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a stand­in for the quantum processing system (platform dependent) in order to
enable platform independent software development to proceed without access to
quantum hardware.

SimulaQron precisely mimicks a real network, and allows each simulated proces­
sor to run on a different classical computer. Each local processing system supports
the execution of local quantum gates and measurements, but also network specific
commands, for example to generate entanglement. SimulaQron transparently sim­
ulates the exchange of qubits and the creation of entanglement between remote
processors in the background, making this functionality available to applications.
This is achieved by classical communication between the computers hosting the
simulated quantum processors, as depicted in the schematic of Figure 3.2.

To perform the simulation of local quantum processors itself, SimulaQron uses
existing simulators of quantum processors. What’s more, SimulaQron’s modular
structure does in principle allow any simulation of a quantum computer accessible
via Python to serve as a backend. The key novelty in SimulaQron is to leverage
such backends into a distributed simulation that maps locally simulated entangled
qubits to remote network nodes, in order to simulate the availability of entangle­
ment between distant quantum computers. We emphasize that applications using
SimulaQron’s simulated entanglement, evidently do not provide the security guar­
antees afforded by real entanglement. The objective is instead to use SimulaQron
as a development platform to write software realizing these applications which can
later run on real quantum hardware and use real entanglement in order to achieve
these guarantees. SimulaQron can be used as a tool for software development in
all areas ranging from the implementation of the actual applications, the develop­
ment of application level abstractions and programming libraries, to exploring and
implementing a quantum network stack [21].

3.1.2. What SimulaQron does not
We emphasize that SimulaQron is written as a tool for software engineers, with
the objective of allowing software engineering efforts for a quantum internet to
proceed. Its goal is thus to allow developers to write software that can later run
with no or minimal modification on real quantum internet hardware.

For quantum experts, we remark that SimulaQron does not aim to achieve an
efficient simulation of a large scale quantum internet in order to test quantum re­
peater schemes, error correcting codes, or study the effects of noise on distant
qubits. Evidently, given that SimulaQron can use any local simulation of a quan­
tum processor in Python as a backend, it is straightforward to let it use a backend
simulating noisy qubits. Noise can also be added manually by the application, for
example, by probabilistically applying Pauli gates to the qubits during the protocol.
We remark however that such adhoc additions of noise do not allow us to make
general and accurate statements about the performance of quantum network appli­
cations in the presence of noise. Noise in quantum devices is highly time dependent,
and hence the amount of noise an application experiences is highly dependent on
time delays ­ for example, how long it takes classical and quantum data to travel
from one node to another. If SimulaQron would simply be programmed to apply
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Figure 3.2: A schematic overview of the communication in a quantum network simulated by SimulaQron.
The simulation of the quantum hardware at each node is handled by the SimulaQron backend server.
Communication between the SimulaQron servers is needed to simulate the network, for example to
simulate entanglement. Opting for this method enables a distributed simulation, i.e. the computers
in the figure can be physically different computers. The CQC servers provide the CQC interface (see
Figure 3.1) to the applications running on the network and the simulated platform dependent quantum
processing system (see also Figure 3.3). Internally the CQC servers establish a connection to the back­
end. The choice to use two distinct servers is motivated by modularity, in that the same CQC servers
can in principle give access to multiple backends (see also Section 3.1.2). Finally the applications can
communicate classically, as they would in a real implementation of a quantum network.

a time dependent noise based on the message delays during simulation, then this
would only be meaningful if these delays mirrored the exact time delays in the real
network. What’s more, even for executing local gates alone, the execution time of
the simulation on the classical computer does not provide reliable timings.

In order to explore the precise effect of noise in a quantum network, it is essen­
tial to be able to model time very precisely. This can be achieved using a technique
called discrete event simulation that is well known from classical networking. This is
subject of a separate simulation platform (NetSquid [22]), which performs a discrete
event simulation of a large scale quantum internet capable of precisely modelling
timing delays and hence study the effects of delays in quantum communication,
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as well as classical control communication on the performance of quantum pro­
tocols and a quantum network stack. NetSquid was only recently made publicly
available and differs from SimulaQron in several key aspects apart from its ability
to model time: first, it is a monolithic simulation and does not provide a real sim­
ulation network on different computers as SimulaQron does. As such, it does not
mirror software engineering practices in networked programming. Second, it does
not provide a real time interactive experience of working on a quantum network
as provided by SimulaQron. We remark that we have recently extended NetSquid
to support the new version of CQC, which we call NetQASM [14]. This way the
performance of applications written for SimulaQron can be tested under controlled
timing conditions, and realistic time dependent noise models of different hardware
platforms, using NetSquid. This work is however not yet public.

Also for software engineers, we remark that there are some things which are
purposefully not handled by SimulaQron. This includes, for example, the manage­
ment and tracking of entanglement required by a quantum network stack, which
may on the other hand be explored and implemented using SimulaQron. The rea­
son being that a quantum network stack, together with protocols for managing and
tracking entanglement was only developed after SimulaQron [21, 23]. Importantly,
we also note that for the same reason no efforts have been made to secure or
authenticate access to the simulated quantum processors. A SimulaQron backend
server will by default happily accept requests from any client connecting to it, and
in particular allow access to any qubit given its correct identifiers. It is clear that
mechanisms for implementing access control to quantum nodes and qubits are im­
portant to realize in software for a quantum internet, highlighting the need for a
tool like SimulaQron as a stand­in for quantum hardware in order to develop them.

3.1.3. Related Work
There is to our knowledge no analogue of SimulaQron available for application
development on a quantum internet. There are of course numerous simulators of
a quantum computers available, some of which could in principle be used as a local
simulation backend in conjunction with SimulaQron, with the distributed simulation
handled by SimulaQron. Freely available ones include ProjectQ [24] which is written
in Python and contains an optimizing compiler. Other simulators include Liquid [25]
(available as a binary), Forest by Rigetti [26], QX [27], the simulation backend of the
IBM Quantum Experience [28] (can be accessed in Python using QISKit), and the
Microsoft Quantum Development Kit [29] (using the programming language Q#).
Presently, the quantum backend of SimulaQron is simply realized using QuTip [30],
which is not designed to be an efficient simulator, but more than sufficient for the
purpose of simulating a small network. Using QuTip also has the advantage of
providing a very easy way to extend SimulaQron to operate on noisy instead of
perfect qubits, should one wish to gain insights into whether, for example, software
performing error correction for a quantum protocol has been implemented correctly.
Again, we emphasize that while this allows verification of the correct implementation
of such error correction schemes, SimulaQron is not meant to accurately model time
dependent noise in the network.
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3.1.4. Overview
SimulaQron itself is written in Python [31] due to the popularity of this language in
the quantum information community, making it easier to extend if desired. Inter­
nally, SimulaQron also makes use of the Twisted framework for Python [32]. Twisted
is a library providing functions that facilitate the development of network applica­
tions in Python. SimulaQron’s simulated quantum internet can be programmed in
two ways as outlined in Figure 3.3. In Section 3.2 we will provide an overview
of the design and inner workings of SimulaQron. In Section 3.3 we discuss the
integration with the CQC interface. We provide two simple examples on how to
program SimulaQron using the Python CQC library in Section 3.4, together with
performance analysis of SimulaQron for some test­cases. Further examples, pro­
gramming templates as well as an API documentation can be found online [17].
Finally, we discuss future developments and extensions of SimulaQron.

Application Program

SimulaQron

ClibPythonlib

CQC interfaceNative Mode
    Twisted

CQC backend

Figure 3.3: SimulaQron’s simulated quantum internet can be programmed in two ways. The first pro­
ceeds by directly accessing the SimulaQron backend using Twisted in Python. This way of programming
gives full access to the backend, but is highly specific to Twisted and unlikely to be available on any
real quantum network devices of the future. The second way of programming SimulaQron is by using
the Classical­Quantum­Combiner (CQC) interface. CQC specifies a packet format for issuing commands
to a quantum network node and we intend to make a (possibly refined) version of CQC available on
the planned 2020 quantum internet demonstrator in the Netherlands using actual quantum network
hardware. For ease of programming, we provide two libraries that encapsulate the CQC interface. More
specifically, we provide libraries in both Python and C for programming quantum internet applications,
which internally connect to SimulaQron over the CQC interface. Libraries for other languages are easy
to add and can access SimulaQron using the CQC interface.

3.2. Backend
Let us now first describe the SimulaQron backend, which can be accessed in Python
using Twisted’s Perspective Broker [32]. We note that for programming applications
there is no need to ever access the backend directly, as the Python library using
CQC provides a much easier way to program applications. CQC is an interface (close
to) what we intend to make available on the quantum internet demonstrator in the
Netherlands that can be accessed from any programming language. As mentioned,
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CQC has after this work been reworked and is now called NetQASM [14].

3.2.1. Challenges
The main challenge in providing a simulator suitable for programming quantum
internet applications is to simulate quantum entanglement. Mathematically, any
quantum state can be written as a density matrix 𝜌 ∈ ℂ𝑑×𝑑, where 𝑑 is the dimension
of the quantum system (see [33], or [34, Weeks 0 and 1] for an introduction to
quantum information). Crucially, for two entangled qubits 𝐴 and 𝐵, we have 𝜌 ≠
∑𝑗 𝑝𝑗𝜌𝐴𝑗 ⊗𝜌𝐵𝑗 , with 𝜌𝐴𝑗 ∈ ℂ2×2, 𝜌𝐵𝑗 ∈ ℂ2×2, and⊗ denoting the tensor product. This
means that we cannot factorize 𝜌 into different components 𝜌𝐴𝑗 and 𝜌𝐵𝑗 that could
be simulated individually on two different network nodes. Instead, we need to
simulate the entire matrix 𝜌 as one, while making qubits 𝐴 and 𝐵 virtually available
at two different nodes in the network.

One way of achieving this, is to let one simulating node hold all qubits in the
network in the same register, consisting of a matrix of dimension 2𝑛 × 2𝑛 where
𝑛 is the number of qubits. This places a prohibitively large load on the simulating
node, preventing large networks to be simulated. One step towards making the
simulation more efficient is to still use only one central simulating node, but keep
­ as much as possible ­ different registers. For example, by initially placing each
qubit in its own register requiring the simulation of only a 2 × 2 matrix per initial
qubit, and only merging registers as qubits become entangled with each other. This
improvement is indeed implemented in SimulaQron whenever qubits are created at
one node. Nevertheless if this was the only optimization, a significant load would
remain at one node in the network.

Consequently, we here go one step further and choose a distributed approach
to simulation, described in detail below. In summary, each node keeps a quantum
register of its own, in which a number of qubits are simulated. Qubits which are vir­
tually available at other nodes are mapped back to registers simulated at in principle
any other node, typically holding the other qubit of any entanglement. This allows
the network to grow dynamically, and distributes simulation efforts amongst many
computers. It is especially suited to situations where large amounts of fragmented
entanglement exists in the network. This is naturally the case if the simulated net­
work is very large but different subsets of nodes are executing protocols between
them at any one time. This is well motivated from the usage of the classical internet,
where many subsets of a few nodes each communicate with each other, but we do
not see all nodes on the internet engaging in a joint application protocol. Another
natural example, which we will also consider in a performance analysis below, is
given by a situation in which a large number of nodes in a ring keeps entanglement
with its neighbours ­ for example to transmit a qubit by forward teleportation along
a chain of nodes. Our analysis shows no significant problems in simulating 60 nodes
using 120 qubits on a single desktop machine, while if we had placed all 120 qubits
in a single register we would need to keep track of a 2120 dimensional matrix.

While a distributed simulation is more efficient and allows a dynamic growth
of the network, it also brings new challenges. Quantum gates performed on two
qubits can cause two qubits that were previously unentangled to become entangled.
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Consequently, if the two qubits were previously simulated in two different registers
in the network, then a register merge is required. This is made challenging by the
fact, that other nodes may simultaneously try and manipulate qubits simulated in
said registers, or even perform operations that require a different register merge.
It is in general challenging to manage access to distributed data in the presence
of many concurrent requests to use it. SimulaQron solves such concurrency issues
using a relatively simple but carefully crafted internal locking mechanism.

3.2.2. Design overview
Together, these considerations motivate the design of the SimulaQron backend de­
picted in Figure 3.4. The SimulaQron backend consists of running a client and server
program on each classical computer ­ a virtualNode ­ that wants to participate in
the simulated quantum network. All such programs connect to each other, forming
the simulated quantum internet backend.

SimulaQron itself does not provide a new quantum simulator, but rather builds a
distributed simulation on top of an existing one using a modular design. In the initial
release, we have simply used QuTip for the underlying simulation, but essentially
any existing simulator (or even real quantum computing ­ but not yet networked
­ hardware) that can be addressed via Python can easily be used in conjunction
with SimulaQron. An existing simulator can be made available to SimulaQron as a
backend by providing an interface in the form of a quantumEngine to function as a
quantumRegister. This register supports addressing individual qubits by their posi­
tion in the register, that is, for a register with 𝑛 qubits. For example, if a Hadamard
gate 𝐻 is requested on qubit 𝑗, quantumRegister is responsible for applying this
operation on the underlying quantum simulation. In the simple case of QuTip, this
means simply applying the unitary id⊗𝑗−1⊗𝐻⊗ id⊗𝑛−𝑗 to the matrix representing
𝜌 (see crudeSimulator.py).

Building on top of an underlying quantumRegister, SimulaQron uses a simulat­
edQubit object to represent each qubit simulated in the underlying quantumRegister.
Manipulation of qubits then follows exclusively by manipulating such simulatedQubits
without interacting directly with the quantumRegister. In particular, each simulat­
edQubit keeps track of its own position in the register, allowing easy manipulation
and update of qubits that are physically simulated at a particular node. For exam­
ple, if a qubit is measured it can be removed from the underlying quantumRegister,
effectively shrinking the size of the matrices. This allows the simulation to proceed
without having the underlying register grow arbitrarily while new qubits are being
created and discarded. Removal from the quantumRegister can be done by up­
dating only the simulated qubits (and not the corresponding virtual ones that may
be held by other nodes in the simulation), and hence the rest of the simulation
can proceed to access the simulated qubits without being aware that the under­
lying register has been shrunk. Figure 3.4 illustrates the relationship between the
quantumRegister and the simulatedQubits. We note that simulatedQubit objects
are local to the node performing their actual simulation in the quantumRegister.
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3.2.3. Virtual Qubits
Each simulatedQubit object is then associated with a virtualQubit object. Impor­
tantly, a virtualQubit does not need to reside at the same network node as the
corresponding simulatedQubit, but can be transferred to other nodes than the one
performing the backend simulation. Specifically, each virtualNode can hold a num­
ber of virtualQubit s which can either be simulated locally (i.e., the simulated qubit
and the virtual qubit are located at the same node), or at a remote node. Twisted’s
Perspective Broker is used to marshall the mapping of virtual qubits back to simu­
lated qubit objects at remote nodes on the simulated network.

simulated
qubits

quantum engine

virtual qubits

virtual node
Alice Bob

simulated
qubits

quantum engine

virtual qubits

virtual node

quantum register quantum register

Figure 3.4: A visualization of the interplay between different internal components of SimulaQron. The
simulatedQubits (blue squares) are objects handled locally in a virtualNode. These simulatedQubits point
to a part of the quantumRegister, which stores the quantum state simulated by the virtualNode. Opera­
tions on the simulated state in the quantumRegister are handled by the quantumEngine. Additionally, a
virtualNode also has virtualQubit s (red circles). These virtualQubit s point to simulatedQubits, possibly
in a different virtualNode. The virtualQubit s correspond to the actual qubits a node would have in a
physical implementation of the quantum network.

This way it is possible for SimulaQron to simulate entanglement between net­
work nodes: If simulated nodes 𝐴 and 𝐵 hold entanglement, then each virtualNode
has a virtualQubit that can be processed at nodes 𝐴 and 𝐵 as if they were truly
entangled. In the background, however, the two virtual qubits are mapped back
to two simulatedQubits within the same quantumRegister that may be located at
either 𝐴 or 𝐵, or even at some other node.

Any application wishing to use SimulaQron consists of a client program at each
computer that connects to the SimulaQron server backend. SimulaQron will make
virtual qubits available to any client connecting to the virtualNode server, as well as
allow the creation of new qubits and registers. Using Twisted’s Perspective Broker,
the client has full access to the specific virtualQubit , allowing it to perform gates,
measurements, or send the qubit to other nodes in the simulated quantum network.
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3.2.4. Register merges
One simple way to deal with virtual qubits is to have them simulated at one single
classical computer in the network. Evidently, this puts a large strain on that specific
computer, which then has to simulate every single qubit in the network. Here, we
have instead chosen a distributed simulation, which is more challenging to realize,
but does allow many nodes to take part in the simulation, as long as the global
entanglement in each quantum state is not too large. This is typically the case,
when investigating how to program applications that may each run on only a subset
of the nodes in the network.

We hence allow any virtualNode to hold a quantumRegister containing simulated
qubits that may eventually be sent as virtual qubits to other nodes in the network.
This enables a distributed simulation in which each classical computer participating
in the simulated quantum internet contributes its share to realizing the overall sim­
ulation. Yet, it is clear that this approach brings additional challenges. Specifically,
consider two virtual qubits 𝐴 and 𝐵 at one network node, which are mapped back to
two simulated qubits in different quantumRegisters. An example of such a situation
is given in Figure 3.5. If the protocol now requests the virtualNode to perform an
entangling gate between 𝐴 and 𝐵, qubits 𝐴 and 𝐵 may now become entangled and
can thus no longer be simulated in different registers.

Entangling gates may thus require a register merge in order for the simula­
tion to proceed. More precisely, entangling 𝐴 and 𝐵 then requires that the two
distinct quantum registers which hold the corresponding simulated qubits to be
merged into one single quantum register, followed by an update of the correspond­
ing simulatedQubits that the virtualQubit s are mapped to.

SimulaQron solves this problem by transparently merging the registers in the
background. For the application dealing with only the virtualQubit s such a merge
is invisible, but the simulated qubits representing the virtual qubits in question are
updated.

It is clear that locking is required to ensure consistency in performing such
register merges in case multiple requests to merge a register arise in the network
at the same time. At present, SimulaQron implements a very simple and relatively
inefficient locking mechanism tailored to acquiring the minimal set of locks required
to perform and update. As two separate locks for registers and simulated qubits are
used, a deadlock can arise which is dealt with using a simple randomized backoff
to marshall competition for locks. Future versions of SimulaQron may be enhanced
by a more sophisticated locking mechanism.
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Charlie
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Figure 3.5: A visualization of a register merge, initialized by a CNOT performed in the virtualNode Bob.
Alice and Bob initially share a EPR­pair, represented by a curvy line between the two virtualQubit s.
These entangled qubits are simulated in the virtualNode Alice. Bob then performs a CNOT between
his part of the entangled state (control) and another qubit (target) simulated at Bob. This operations
requires a register merge between Alice and Bob, since the three relevant qubits will now be in a GHZ­
state, which needs to be simulated locally. The registers of Alice and Bob are therefore merged and
all qubits simulated by either Alice or Bob are now simulated by Alice. Note that this also includes the
virtualQubit of Charlie, which is initially simulated by Bob.

3.3. CQC
The CQC1 instruction format provides a low level language programmable at the
level of quantum gates and measurements, tailored specifically to include certain
commands and behaviour that is useful in the quantum internet domain. The CQC
interface provides a way for applications to be developed independently of the
underlying platform and for these to be executed on any platform which provide
the CQC interface. On top of the backend, SimulaQron realizes a CQC interface
(classical­quantum combiner) as implemented by the so­called CQC backend. Sim­
ulaQron can therefore be programmed using any language capable of connecting
to the CQC server backend over a TCP connection, and sending packets of the re­
quired form, specified by the CQC message format. In this section we describe the
CQC interface and its messages in more detail.

Two libraries are included to program SimulaQron via the CQC interface in Python
and C. Programming SimulaQron via this Python library is the easiest way to make
use of SimulaQron and the recommended way to get started using SimulaQron.
Below, we provide two simple examples; many more examples can be found in the
online documentation [17].

We expect that the present CQC interface will undergo further evolution until its
use in the Dutch demonstration network. As such, we describe the main ideas and
what functionality exists. The current version of the CQC interface including the
precise message format is available online [17] and will be updated when a newer
version exist. CQC specifies a particular instruction format for requests and replies

1CQC has now been reworked and is instead called NetQASM [14].
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from the CQC backend. Requests may be given as a single message to the CQC
interface, or an entire batch of messages at once specifying a complex operation
consisting of many actions in succession.

Messages in the CQC interface can be of different types, as described in section
3.3.1. One of these types is COMMAND which instructs SimulaQron (or the physical
hardware) to perform a certain command. This command could for example be
a gate or to send a qubit to another node. More details on the message type
COMMAND is given in section 3.3.2.

In addition to the type of message and what command to perform, CQC mes­
sages will also contain information regarding for example the CQC version, an appli­
cation identifier, the length of the message (including additional commands if any)
and ­ if applicable ­ the qubit identifiers a command concerns, the IP and port­
number the node a qubit should be sent to. Other options that can be specified is
whether notification should be returned when the command is finished and if the
node should be blocked during the execution of the command, see table 3.1.

Option Effect
OPT_NOTIFY Send a notify when command is done
OPT_ACTION Execute further commands when done
OPT_IFTHEN Execute further commands based on result
OPT_BLOCK Block until command done

Table 3.1: Options that can be specified when sending a COMMAND message.

There is also the possibility to attach a list of commands that should be executed
directly after the command specified in the CQC message is completed, or if, for
example, a measurement outcome takes on a certain value. As such, it is assumed
that the CQC backend provides a rudimentary form of classical logic next to the
quantum specific instructions that allow certain simple processing to be executed
in the CQC backend, or indeed the actual hardware. That is, these commands can
be executed without having to send messages back and fourth through the CQC
interface between each command. Avoiding these messages between each com­
mand allows the sequence of commands to be executed faster, which is important
for a physically implemented quantum network, subject to decoherence.

3.3.1. Message types
We describe in this section message types currently implemented in the CQC in­
terface. As mentioned above, in future version of the interface, changes may be
made and the latest version can be found online. The types of messages sent
from the application to the hardware (either simulated by SimulaQron or physically
implemented) are specified in table 3.2.

A HELLOmessage can be used to check that the connection to the hardware/Sim­
ulaQron is up and also to get some specifications about the hardware. The com­
mands that can be specified using the type COMMAND is discussed in the follow­
ing section. FACTORY is a type similar to COMMAND, but here a certain command
should be executed a specified number of times. An example of the use of FACTORY
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Type Effect
TP_HELLO Alive check (get hardware spec.)
TP_COMMAND Execute (list of) command
TP_FACTORY Execute (list of) command repeatedly
TP_GET_TIME Get creation time of qubit

Table 3.2: Types of messages from the application to the hardware/SimulaQron.

is to instruct the hardware to continuously produce a specified number of entangled
EPR­pairs. An EPR­pair could then ready to be used whenever it is needed by the
protocol running on the network.

There are also message types returned by the hardware to the application, as
specified in table 3.3.

Type Effect
TP_NEW_OK Qubit was allocated
TP_EXPIRE Qubit has expired
TP_DONE Done with command
TP_RECV Received qubit
TP_EPR_OK Created EPR pair
TP_MEASOUT Measurement outcome
TP_INF_TIME Return timing information
ERR_GENERAL General purpose error
ERR_NOQUBIT No more qubit
ERR_UNKNOWN Unknown qubit ID
ERR_UNAVAILABLE Cannot allocate qubit
ERR_DENIED No access to qubit
ERR_VERSION CQC version not supported
ERR_UNSUPP Sequence not supported
ERR_TIMEOUT Timeout

Table 3.3: Types of messages from the hardware/SimulaQron to the application.

3.3.2. Possible commands
The different commands currently supported in the CQC interface when using the
message type COMMAND are specified in table 3.4. The full CQC packet format
includes qubit and entanglement identifiers required by the commands below [17].
We remark that we include a command to create pairwise entanglement, since this
reflects the way two nodes are entangled by a heralded entanglement generation
scheme (see Figure 3.1 for a high level implementation schematic and informa­
tion). When a qubit is received or entanglement has been generated, a message,
TP_RECV or TP_EPR_OK respectively, is returned to the application. This mes­
sage notifies the application that the command was successful and that possible
corrections required by the entanglement generation scheme has been applied.
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Command Effect
CMD_NEW Ask to allocate a new qubit
CMD_ALLOCATE Ask to allocate multiple qubits
CMD_RELEASE Release qubit to be used by other app.
CMD_RESET Reset qubit to |0⟩
CMD_MEASURE Measure qubit (demolition)
CMD_MEASURE_INPLACE Measure qubit (non­demolition)
CMD_SEND Send qubit to another node
CMD_RECV Ask to receive qubit
CMD_EPR Create EPR pair with another node
CMD_RECV_EPR Ask to receive half of EPR pair
CMD_SWAP Entanglement swapping
CMD_I Identity
CMD_X Pauli X
CMD_Y Pauli Y
CMD_Z Pauli Z
CMD_H Hadamard
CMD_K K gate (Z to Y)
CMD_T T gate
CMD_ROT_X Rotation around X (multiple of 2𝜋

256 )

CMD_ROT_Y Rotation around Y (multiple of 2𝜋
256 )

CMD_ROT_Z Rotation around Z (multiple of 2𝜋
256 )

CMD_CNOT CNOT (this qubit as control)
CMD_CPHASE CPHASE (this qubit as control)

Table 3.4: Commands that can be specified when using the type COMMAND.

The angle of rotation for the single­qubit rotations are currently specified by
one byte and is therefore discretized to 256 possible angles. When the creation of
an EPR pair is requested, a message containing an entanglement identifier will be
returned to the application. At present, there is no protocol to track and manage
entanglement in a network available. We are currently developing and testing such
a protocol, which will be referenced on the SimulaQron website once released [17].

3.4. Examples
We provide here a simple example of how to program SimulaQron using the Python
CQC library (see Figure 3.3). More examples, also using the C CQC library, can be
found in the full online documentation [17]. Before running the example presented
here, the simulated network we consider needs to be configured and the severs that
does the communication in the backend of SimulaQron has to be setup. Information
on how to configure the simulated network and setup the servers can be found in
the online documentation [17]. In what follows, we will hence assume that the
SimulaQron and CQC backends have been setup already, simulating the hardware
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of two quantum internet nodes labelled Alice and Bob. We remark that the names
Alice and Bob are translated by the Python CQC library into IP addresses according
the configuration file specified on [17].

3.4.1. Sending BB84 States
The first example we consider has no classical communication on the application
level between Alice and Bob. This implies that we do not need to set up a separate
client/server interaction to exchange information at the level of applications. This
means that Alice and Bob only connect locally to the CQC backend of SimulaQron,
which functions as the quantum hardware at their network node, to issue quantum
instructions. In this example, Alice will send a single qubit to Bob.

Code for Alice
The first thing we need to do is to initialize an object called a CQCConnection,
which does the communication with SimulaQron using the CQC interface. Once
this connection is set up, Alice has access to her own locally simulated quantum
hardware.

1 from SimulaQron.cqc.pythonLib.cqc import *
2

3 # Establish connection to SimulaQron
4 Alice=CQCConnection(”Alice”)

The argument that CQCConnection takes should be the name specified in the
configuration file for the CQC­network. Once the connection is set up we can then
create our first qubit. The qubit­object takes a CQCConnection as argument when
initialized. When operations are applied to the qubit, the CQCConnection is used
to communicate with SimulaQron, such that the corresponding simulatedQubit is
updated.

1 # Create new qubit
2 q=qubit(Alice)

Alice will then send Bob one out of the four states

|0⟩ , |1⟩ , |+⟩ , |−⟩ (3.1)

where |±⟩ = 1
√2(|0⟩ ± |1⟩), depending on the choice of the bits ℎ𝐴 and 𝑥 set in the

program. The states in equation (3.1) are usually called BB84­states and can be
described by two binary variables as follows

𝐻ℎ𝐴𝑋𝑥 |0⟩ ℎ𝐴, 𝑥 ∈ {0, 1}, (3.2)
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where 𝐻 is the Hadamard operation and 𝑋 is the Pauli­X operation, defined as

𝐻 = 1
√2

(1 1
1 −1) , 𝑋 = (0 1

1 0) . (3.3)

The second part of the code on Alice’s side will then apply the operation 𝐻ℎ𝐴𝑋𝑥 and
send the qubit to Bob. In our simple example, Alice is done using the quantum
internet and hence we close the CQCConnection.

1 # Determine which BB84 state to use
2 h_A=1;x=0
3

4 # if x=1, flip |0> to |1>
5 if x == 1: q.X()
6

7 # if h_A==1, convert to Hadamard basis
8 if h_A==1: q.H()
9

10 # Send qubit to Bob
11 Alice.sendQubit(q,”Bob”)
12

13 # Close connection to SimulaQron
14 Alice.close()

Code for Bob

We will now describe the code on Bobs side. In our example, Bob does nothing but
wait for a qubit to arrive. Once he receives one, he will measure it in the standard­
({|0⟩ , |1⟩}) (for ℎ𝐵 = 0) or the Hadamard­basis ({|+⟩ , |−⟩}) (for ℎ𝐵 = 1) and print
the measurement outcome. The code on Bobs side can be seen below, where h_B
determines that basis Bob measures in.
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1 from SimulaQron.cqc.pythonLib.cqc import *
2

3 # Establish a connection to SimulaQron
4 Bob=CQCConnection(”Bob”)
5

6 # Choose which basis we measure in
7 h_B=1
8

9 # Wait to receive a qubit
10 q=Bob.recvQubit()
11

12 # If we chose the Hadamard basis
13 # to measure in, apply H
14 if h_B==1: q.H()
15

16 # Measure the qubit in the standard
17 # basis and store the outcome in m
18 m=q.measure()
19

20 # Print measurement outcome
21 print(”Bobs meas. outcome: {}”.format(m))
22

23 # Close connection to SimulaQron
24 Bob.close()

Note that if ℎ𝐴 = ℎ𝐵 the measurement outcome for Bob will be Alice’s choice of
𝑥 with probability one.

3.4.2. Teleporting a qubit
In our second example, Alice teleports a qubit to Bob. This example demonstrates
how to create shared EPR pairs, and also how to perform additional classical com­
munication from Alice and Bob on the application level. This classical communica­
tion can be realized using standard client/servers programming. An inefficient, but
convenient testing tool, to perform classical communication tool is provided by the
Python library that does not require knowledge of classical client/server program­
ming.

Code for Alice
As in the previous example, the first thing that happens is that a CQCConnection is
initialized to handle the communication to SimulaQron via the CQC interface.

1 # Initialize the connection
2 Alice=CQCConnection(”Alice”)

By calling the method createEPR, Alice makes a request to generate an EPR­pair
with Bob, i.e. to generate the state 1

√2 (|00⟩𝐴𝐵 + |11⟩𝐴𝐵).
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1 # Make an EPR pair with Bob
2 qA=Alice.createEPR(”Bob”)

When the EPR­pair has been generated, Alice prepares another qubit q in the
state |+⟩ = 𝐻 |0⟩, which she wants to teleport to Bob.

1 # Create a qubit to teleport
2 q=qubit(Alice)
3

4 # Prepare the qubit to teleport in |+>
5 q.H()

Alice makes a Bell­measurement between the qubit qA in the EPR­pair shared
with Bob and the qubit q. The Bell­measurement is done by applying a CNOT gate
with q as control and qA as target, followed by a Hadamard gate on q and measuring
both qubits in the standard basis.

1 # Apply the local teleportation operations
2 q.cnot(qA)
3 q.H()
4

5 # Measure the qubits
6 a=q.measure()
7 b=qA.measure()
8 print(”Alice meas. out.: a={}, b={}”.format(a,b))

At this point Alice needs to communicate to Bob what her measurement out­
comes was, such that Bob can recover the state which is teleported. This classical
communication can be realized by setting up a client/server interaction between
Alice and Bob. There is a built­in feature in the Python library that realize this
functionality, which have been developed for ease of use for someone not famil­
iar with a client/server setup. This communication is also handled by the object
CQCConnection. For Alice to send a message to Bob, the method
Alice .sendClassical(”Bob”,msg) is simply called, where msg is the message she
wish to send to Bob. The method opens a socket connection to Bob, sends the
message and closes the connection again. Note that if this method is never called,
a socket connection is never opened.

We emphasise that to have classical communication between the applications,
one is not forced to use the built­in functionality realized by the CQCConnection. A
standard client/server setup can also be used.



3.4. Examples

3

71

1 # Send corrections to Bob
2 Alice.sendClassical(”Bob”,[a,b])
3

4 # Stop the connections
5 Alice.close()

Code for Bob
As mentioned, Bob will need to know the measurement outcomes from Alice and
will therefore setup a server to be able to receive these. Bob will then receive the
qubit qB which is part of the EPR­pair generated with Alice. By calling the method
recvClassical , Bob receives the measurement outcomes that Alice sent. Corrections
are then performed, depending on these measurement outcomes. The qubit qB will
then be in the state Alice prepared, i.e. the state |+⟩. Finally, Bob measures the
qubit qB which gives 0 or 1 with equal probability.

1 # Initialize the connection
2 Bob=CQCConnection(”Bob”)
3

4 # Make an EPR pair with Alice
5 qB=Bob.recvEPR()
6

7 # Receive info about corrections
8 data=Bob.recvClassical()
9 message=list(data)
10 a=message[0]
11 b=message[1]
12

13 # Apply corrections
14 if b==1: qB.X()
15 if a==1: qB.Z()
16

17 # Measure qubit
18 m=qB.measure()
19 print(”Bob meas. out.: {}”.format(m))
20

21 # Stop the connection
22 Bob.close()

3.4.3. Performance
In this section we present a practical performance analysis of SimulaQron, which
has been performed by running the following four tests:

(a) A network with 𝑛 nodes in a ring is used to teleport a qubit 𝑛 times from
a sender, through all the nodes and back to the sender again. The sender
records the time it took for the qubit to traverse the network. We test two
different cases, depending on when the nodes create the EPR­pairs for tele­
portation: (1) Each node creates an EPR­pair with the next node on the ring
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only once the qubit to be teleported is received. (2) The creation of all EPR­
pairs starts in advance. The qubit is teleported forward as soon as the next
EPR­pair becomes available. Case (1) is denoted ”EPR on the fly” in Figure 3.6
and case (2) as ”EPR first”. This test is executed on the same computer.

(b) A network consisting of two nodes is used to teleport a qubit back and forth
between the nodes 𝑛 times. This means teleporting a qubit 2𝑛 times. In this
test each node is simulated on its own physical computer, which both are on
the same Ethernet network. The time it takes to perform all the teleportations
of the qubit is again recorded.

(c) Here we test how much time it takes for one node to initialize 𝑛 qubits and
later measure them. No two­qubit gate, that can entangle the qubits, is used
in this test.

(d) One node initializes a GHZ state on 𝑛 qubits, i.e. |GHZ𝑛⟩ =
1
√2(|0⟩

⊗𝑛+|1⟩⊗𝑛),
and measures all the qubits. The time this takes is recorded.

The runtime for these tests can be found in Figure 3.6. Note that for these
simulations there are three processes running for each node: one performing the
actual simulation, one listening to incoming CQC messages and the application
program which sends the CQC messages, see Figure 3.2. Thus, in the case of 60
nodes in test (a), there are in fact 180 processes running on a single computer.
These processes communicate over TCP, which creates some delay in the runtime
of the simulation.

Since quantumRegisters are only merged when needed, i.e when a two­qubit
gate is performed between qubits in different quantumRegisters, the runtime highly
depends on how large multi­partite entangled states are produced in the simulation.
For example, in test (c) non­entangled qubits are generated in one node and the
runtime then scales linearly with the number of qubits. On the other hand in test
(d), all qubits are in a single entangled state which requires all qubits to be in the
same quantumRegister and the runtime then scales super­exponentially with the
number of qubits. We emphasize that this runtime is a direct consequence of using
QuTip as a backend for the simulation. Creating a GHZ­state directly in QuTip gives
the same runtime­scaling as in Figure 3.6(d). Thus, by using a different backend
for the simulation, the runtime to create larger entangled states can certainly be
improved.

As mentioned, new qubits are always put in different registers and these regis­
ters are only merged if a two­qubit gate is performed between qubits in different
registers. Currently fixed decisions are used to decide which node will store the reg­
ister after the merge, depending on which qubit is the target and which is control
in the two­qubit gate. There is clearly a room for improvement of the performance,
if the direction of the register merge is choosen in a more dynamic way, depending
on the protocol being simulated. At this point we do not have enough usage data
to know what good decisions for the direction of the register merge are. We also
point out that we make no effort in trying to split registers if qubits later become
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unentangled by some other gate, since this is unlikely to be feasible in general and
would require a lot of extra computations.

We emphasize that SimulaQron is not intended to substitute simulators dedi­
cated to handle large multipartite states, as in the case for quantum computation.
Despite this, developing software realizing for example distributed quantum com­
putation using SimulaQron, is in principle possible since universal quantum compu­
tation is supported by the provided operations. However, SimulaQron’s use­cases
are for larger (or smaller) networks where far from all nodes are entangled in a sin­
gle state. Nonetheless, this does not exclude cases where each node share some
entanglement with another node, for example as in test (a) where all the nodes
share two EPR­pairs with two other nodes, since these EPR­pairs can be simulated
in different quantumRegisters and does not require a single quantumRegister for
the whole network.
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Figure 3.6: Runtimes for the four tests (see Section 3.4.3). All the tests were executed on one (two for
(b)) iMac with a 3.2 GHz Intel Core i5 processor with 8 GB of 1600 MHz RAM running Python 3.6.0 with
Twisted 17.9.0.

3.5. Conclusion
SimulaQron provides access to simulated quantum internet hardware, enabling ap­
plication development. SimulaQron is undergoing continuous development and im­
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provements and new features may be added over time.
CQC itself can be understood as a very low level language by itself, supported

directly by SimulaQron, and tailored specifically to the needs and behaviour of quan­
tum internet application programs. At present, CQC is hidden away from view by
the Python and C libraries that enable application development at a much higher
level. Indeed, programming using the Python CQC library is the fastest way to
get started writing a quantum internet application using SimulaQron. It is conceiv­
able that CQC will be integrated into higher level languages directly by a means of
a compiler, which produces CQC commands instead of using a dedicated library.
As mentioned, this interface has after this work been improved and reworked and
instead goes under the name NetQASM [14].

We might also imagine that more convenient higher level programming environ­
ments and libraries become available in the future. While the Python CQC library
already offers many conveniences, such as dealing with qubits as Python objects,
performing specific gates to ­ for example ­ generate BB84 states, it is still a rel­
atively low level approach to programming the quantum internet. Indeed, many
protocols depend on exchanging BB84 states, and their creation and processing
could in the future be handled by a set of quantum internet software libraries.
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4
Graph states and single­qubit

operations

Axel Dahlberg, Jonas Helsen, Stephanie Wehner

In this chapter we introduce graph states and how certain single­qubit op­
erations, that preserve this class, act on them. Furthermore, we describe
how questions on transforming graph states in a quantum network relate to
questions in graph theory.

Parts of this chapter have been published in Phil. Trans. R. Soc. [1].
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4.1. Introduction

A key concept in realizing quantum technologies is the preparation of specific re­
source states, which then enable further quantum processing. For example,

many quantum network protocols first ask to prepare a specific resource state that
is shared amongst the network nodes, followed by measurements and exchange
of classical communication. The simplest instance of this concept is indeed quan­
tum key distribution [2, 3], in which we first produce a maximally entangled state,
followed by random measurements. Similarly, measurement­based quantum com­
puting [4] proceeds by first preparing the quantum device in a large resource state,
followed by measurements on the qubits.

An important class of such resource states are graph states. These states can
be described by a simple undirected and unweighted graph where the vertices
correspond to the qubits of the state [5]. The graph state of a given graph is
formed by initializing each qubit 𝑣 ∈ 𝑉(𝐺) in the state |+⟩𝑣 =

1
√2(|0⟩𝑣 + |1⟩𝑣) and

for each edge (𝑢, 𝑣) ∈ 𝐸(𝐺) applying a controlled phase gate between qubits 𝑢
and 𝑣. Apart from their broad range of applications, an appealing feature of graph
states is that they can be efficiently described classically. Specifically, to describe
a graph state on 𝑛 qubits, only 𝑛(𝑛−1)

2 bits are needed to specify the edges of the
graph. This is in sharp contrast to the 2𝑛 complex numbers required to describe a
general quantum state [6]. It turns out that for graph states, and indeed the more
general class of stabilizer states, their evolution under Clifford operations and Pauli
measurement can be simulated efficiently on a classical computer [7].

Well­known applications of graph states include cluster states [8] used in mea­
surement based quantum computing where, together with arbitrary single­qubit
measurements, these states form a universal resource for measurement­based
quantum computation [4]. Graph states also arise as logical codewords of many
error­correcting codes [9]. In the domain of quantum networking, a specific class
of graph states is of particular interest. Specifically, these are states which are
GHZ­like, i.e., they are equivalent to the GHZ­state up to single­qubit Clifford oper­
ations. GHZ­states have been shown to be useful for applications such as quantum
secret sharing [10], anonymous transfer [11], conference key agreement [12] and
clock synchronization [13]. It turns out that graph states described by either a star
graph or a complete graph are precisely those GHZ­like states [5].

Given the desire for graph states, we may thus ask how they can effectively be
prepared, and transformed. We consider the situation in which we already have a
specific starting state (the source state), and we wish to transform it to a desired
target state, using an available set of operations. Motivated by the fact that on a
quantum network or distributed quantum processor, local operations are typically
much faster and easier to implement, we consider the set of operations consisting
of single­qubit Clifford operations, single­qubit Pauli measurements, and classical
communication (LC+ LPM+CC). Applications of an efficient algorithm that finds
a series of operations to transform a source to a target state includes the ability
to make effective routing decisions for state preparation on a distributed quantum
processor or network. Here, fast decisions are essential since quantum memories
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are inherently noisy and the source state will therefore become useless if too much
time is spent on making a decision. Such algorithms could also be used as a design
tool in the study of quantum repeater schemes [14], and the discovery of effective
code switching procedures in quantum error correction [15, 16].

In this chapter we set our notation and recall various concepts which will be
used throughout the rest of the thesis. We start by providing the definitions of
graph states, qubit­minors and the relation to vertex­minors. We then recall the
definitions of local complementation and vertex deletion as operations on graphs.
These operations are useful in the context of graph states since they completely
capture the action of LC+LPM+CC on graph states. Furthermore, we discuss circle
graphs and their various characterizations and discuss how local complementation
behaves on these graphs. We also introduce the concept of semi­ordered Eulerian
tours, which is a key technical concept for the results later in this thesis. Finally
we discuss distance­hereditary graphs, which form a subclass of circle graphs. We
discuss how these graphs can be built up out of elementary pieces and prove some
technical results which will be used in later chapters.

4.1.1. Previous work
It turns out that single­qubit Clifford operations on graph states correspond to an
operation called local complementation [17] on the corresponding graph [18]. Fur­
thermore, single­qubit Pauli measurements and classical communication correspond
to local complementations and vertex­deletions [5]. The graphs reachable from 𝐺
by performing local complementations and vertex­deletions are called vertex­minors
of 𝐺. Vertex­minors are well­studied objects in graph theory [19]. To understand
which graph states are related under LC + LPM + CC operations we will intro­
duce the notion of a qubit­minor in section 4.4. A qubit­minor of a graph state
|𝐺⟩ is another graph state |𝐺′⟩ such that |𝐺⟩ can be transformed to |𝐺′⟩ using only
LC + LPM + CC operations. We show, theorem 4.4.2, that the notion of qubit­
minors is equivalent to the notion of vertex­minors, in the sense that the graph
state |𝐺′⟩ is a qubit­minor of |𝐺⟩ if and only if the graph 𝐺′ is a vertex­minor of 𝐺.

Vertex­minors play an important role in algorithmic graph theory, together with
the notion of rank­width, which is a complexity measure on graphs. Specifically,
one can efficiently decide membership of a graph in some set of graphs, if this set
is closed under taking vertex­minors and of fixed (bounded) rank­width [19]. An
example of such a set is the set of distance­hereditary graphs, which are exactly the
graphs with rank­width one [19]. Another example of a set of graphs which is closed
under taking vertex­minors are circle graphs, which are however of unbounded
rank­width ([20, Proposition 6.3] and [21]). An appealing connection between the
rank­width of graphs, and the entanglement in the corresponding graph states was
identified in [22], where it is shown that the rank­width of a graph equals the
Schmidt­rank width of the corresponding graph state. The Schmidt­rank width of
a quantum state is an entanglement measure. Specifically, the higher rank­width
a graph has, the more entanglement there is in the corresponding graph state, in
terms of this measure. Another interpretation of the Schmidt­rank width is that it
captures how complex the quantum state is. One reason for this interpretation is
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that quantum states can be described using a technique called tree­tensor networks
and it was shown in [22] that the minimum dimension of the tensors needed to
describe a state is in fact given by the Schmidt­rank width.

In the domain of complexity theory, the rank­width and related measures such
as the tree­ and clique­width [23, 24] also form a measure of the inherent com­
plexity of instances to graph problems, and feature prominently in the study of
fixed­parameter tractable (FPT) algorithms [25]. Specifically, a problem is called
fixed­parameter tractable in terms of a parameter 𝑟, if any instance 𝐼 of the prob­
lem of fixed 𝑟, is solvable in time 𝑓(𝑟) ⋅ |𝐼|𝒪(1), where |𝐼| is the size of the instance
and 𝑓 is a computable function of 𝑟 [25]. In this work, 𝑟 is the rank­width, and
for graphs of constant rank­width the techniques of Courcelle [26] and its general­
izations [27], can be used to obtain polynomial time algorithms for problems such
as Graph Coloring [28], or Hamiltonian Path [29]. While very appealing from a
complexity theory point of view, a direct application of these techniques does not
usually lead to polynomial time algorithms that are also efficient in practice, since
𝑓(𝑟) is often prohibitively large.

Since the problem of deciding whether a graph state |𝐺′⟩ is a qubit­minor of |𝐺⟩
(QubitMinor) is equivalent to deciding if 𝐺′ is a vertex­minor of 𝐺 (VertexMinor),
an efficient algorithm for VertexMinor directly provides an efficient algorithm for
QubitMinor. This in turn can be used for fast decisions on how to transform
graph states in a quantum network or distributed quantum processor. However,
not much was previously known about the computational complexity of VertexMi­
nor and therefore whether efficient algorithms exists. For a related but slightly
more restrictive minor­relation, namely pivot­minors it has been shown in [30] that
checking whether a graph 𝐺 has a pivot­minor isomorphic to another graph 𝐺′ is
ℕℙ­Complete. We show in in the upcoming chapters that also VertexMinor is
NP­Complete.

However, for fixed rank­width, we show in chapter 5 how one can apply the
techniques of Courcelle [26], to obtain an FPT algorithm for our problem that is
efficient if both the size of 𝐺′, as well as the rank­width of 𝐺 are bounded. Indeed,
a powerful method for deciding if a graph problem is fixed­parameter tractable is
by Courcelle’s theorem and its generalizations [27]. It turns out that also for our
case, a direct implementation of Courcelle’s theorem does not give an algorithm
that can be used in practice. In fact, in the case of VertexMinor, this constant
factor obtained by applying the techniques of Courcelle in chapter 5 can be shown
to be a tower of twos

𝑓(𝑟) = 22⋅
⋅⋅2
𝑟

(4.1)

where 𝑟 is the rank­width of the input graph 𝐺 and the height of the tower is 10. In
chapter 6 on the other hand we provide efficient algorithms for restricted versions
of the problem which can be used in practice.

4.2. Notation and definitions
Here we introduce some notation and vocabulary that will be used throughout this
thesis. We assume familiarity of the general notation of quantum information the­
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ory, see [6] for more details.
Quantum operations

The Pauli matrices will be denoted as

𝕀 = (1 0
0 1) , 𝑋 = (0 1

1 0) , 𝑌 = (0 −i
i 0 ) , 𝑍 = (1 0

0 −1) (4.2)

and for the single­qubit Pauli group 𝒫 or 𝒫1. The single­qubit Clifford group 𝒞
consists of operations which leave the Pauli group 𝒫 = ⟨i𝕀, 𝑋, 𝑍⟩ invariant. More
formally, 𝒞 is the normalizer of the Pauli group, i.e.

𝒞 = {𝐶 ∈ 𝒰 ∶ (∀𝑃 ∈ 𝒫 ∶ 𝐶𝑃𝐶† ∈ 𝒫)}, (4.3)

where 𝒰 is the single­qubit unitary operations. The 𝑛­qubit Pauli group 𝒫𝑛 is the
𝑛­fold single­qubit Pauli group whose elements are the tensor­products of elements
of 𝒫1.

Assume that v = (𝑣1, … , 𝑣𝑖 , … , 𝑣𝑛) are the labels of a qubit which is part of some
multi­qubit state |𝜓⟩𝑣1…𝑣𝑖…𝑣𝑛 . We will then denote 𝑃𝑣𝑖 as the operation

𝑃(𝑣1…𝑣𝑛)𝑣𝑖 = (𝕀)𝑣1 ⊗⋯⊗ (𝑃)𝑣𝑖 ⊗⋯⊗ (𝕀)𝑣𝑛 , (4.4)

where 𝑃 ∈ {𝕀, 𝑋, 𝑌, 𝑍}. We will never write an explicit ordering of the qubits in a
multi­qubit state |𝜓⟩𝑣1…𝑣𝑖…𝑣𝑛 and rather write |𝜓⟩𝑉, where 𝑉 is the set {𝑣1, … , 𝑣𝑛}.
For explicit calculations one just needs to use a consistent ordering. Similarly for
the operation 𝑃(𝑣1…𝑣𝑛)𝑣𝑖 we will write 𝑃𝑉𝑣𝑖 or even 𝑃𝑣𝑖 when it is clear which set 𝑉 is
considered.

Sequences and words
A sequence X = 𝑥1𝑥2…𝑥𝑘 is an ordered, possibly empty, tuple of elements in
some set 𝑋. We also call a sequence a word and its elements letters. We write
X ⊆ 𝑋, when all letters of X are in the set 𝑋. A sub­word X′ of X, is a word
which can be obtained from X by iteratively deleting the first or last element of X.
We denote the concatenation of two words X1 = 𝑥1…𝑥𝑘1 and X2 = 𝑦1…𝑦𝑘2 as
X1‖X2 = 𝑥1…𝑥𝑘1𝑦1…𝑦𝑘2 . We also denote the ‘mirror image’ by an overset tilde,
e.g. if X = 𝑎𝑏 then X̃ = 𝑏𝑎.

Sets
The set containing the natural numbers from 1 to 𝑛 is denoted [𝑛]. The symmetric
difference 𝑋Δ𝑌 between two sets 𝑋 and 𝑌 is the set of elements of 𝑋 and 𝑌 that
occur in 𝑋 or 𝑌 exclusively, i.e. 𝑋Δ𝑌 = (𝑋 ∪ 𝑌) ⧵ (𝑋 ∩ 𝑌).

We use the following notation for sets of consecutive natural numbers

[𝑘, 𝑛] ≡ {𝑖 ∈ ℕ ∶ 𝑘 ≤ 𝑖 < 𝑛} (4.5)
[𝑛] ≡ {𝑖 ∈ ℕ ∶ 0 ≤ 𝑖 < 𝑛} (4.6)

Graphs
A simple undirected graph 𝐺 = (𝑉, 𝐸) is a set of vertices 𝑉 and a set of edges
𝐸. Edges are 2­element subsets of 𝑉 for simple undirected graphs. Importantly,
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we only consider labeled graphs, i.e. we consider a complete graph with vertices
{1, 2, 3} to be different from a complete graph with vertices {2, 3, 4}, even though
these graphs are isomorphic. The reason for considering labeled graphs is that
these will be used to represent graph states on specific qubits, possibly at differ­
ent physical locations in the case of a quantum network. In a simple undirected
graph, there are no multiple edges or self­loops, in contrast with a multi­graph: An
undirected multi­graph 𝐻 = (𝑉, 𝐸) is a set of vertices 𝑉 and a multi­set of edges
𝐸. For undirected multi­graphs, edges are unordered pairs of elements in 𝑉. We
will often write 𝑉(𝐺) = 𝑉 and 𝐸(𝐺) = 𝐸 to mean the vertex­ and edge­set of the
(multi­)graph 𝐺 = (𝑉, 𝐸).

Next we list some glossary about (multi­)graphs:

• If a vertex 𝑣 ∈ 𝑉 is an element of an edge 𝑒 ∈ 𝐸, i.e. 𝑣 ∈ 𝑒, then 𝑣 and 𝑒 are
said to be incident to one another.

• Two vertices which are incident to a common edge are called adjacent.

• The set of all vertices adjacent to a given vertex 𝑣 in a (multi­)graph 𝐺 is
called the neighborhood 𝑁(𝐺)𝑣 of 𝑣. We will sometimes just write 𝑁𝑣 if it is
clear which (multi­)graph is considered.

• The degree of a vertex 𝑣 is the number of neighbors of 𝑣, i.e. |𝑁𝑣|.

• A 𝑘­regular (multi­)graph is a (multi­)graph such that every vertex in the
(multi­)graph has degree 𝑘.

• A walk 𝑊 = 𝑣1𝑒1𝑣2…𝑒𝑘𝑣𝑘+1 is an alternating sequence of vertices and edges
such that 𝑒𝑖 is incident to 𝑣𝑖 and 𝑣𝑖+1 for 𝑖 ∈ [𝑘].

• The vertices 𝑣1 and 𝑣𝑘+1 are called the ends of 𝑊.

• If the ends of a walk are the same vertex, it is called closed.

• A trail is a walk which does not include any edge twice.

• A closed trail is called a tour.

• A path is a walk which does not include any vertex twice, apart from possibly
the ends.

• A closed path is called a cycle.

• Two vertices 𝑢 and 𝑣 are called connected if there exists a path with 𝑢 and 𝑣
as ends.

• A (multi­)graph is called connected if any two vertices are connected in the
(multi­)graph.

• 𝐺′ = (𝑉′, 𝐸′) is a subgraph of 𝐺 = (𝑉, 𝐸) if 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸.
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• An induced subgraph 𝐺[𝑉′] of 𝐺 = (𝑉, 𝐸) is a subgraph on a subset 𝑉′ ⊆ 𝑉
and with the edge­set

𝐸′ = {(𝑢, 𝑣) ∈ 𝐸 ∶ 𝑢, 𝑣 ∈ 𝑉′}. (4.7)

• A connected component of a (multi­)graph 𝐺 = (𝑉, 𝐸) is a connected induced
subgraph 𝐺[𝑉′] such that no vertex in 𝑉′ is adjacent to a vertex in 𝑉 ⧵ 𝑉′ in
the (multi­)graph 𝐺.

• A cut­vertex 𝑣 of a (multi­)graph 𝐺 = (𝑉, 𝐸) is a vertex such that 𝐺[𝑉 ⧵ {𝑣}]
has strictly more connected components than 𝐺

• The distance 𝑑𝐺(𝑣, 𝑤) between two vertices 𝑣,𝑤 in a (multi­)graph 𝐺 is equal
to the number of edges in the shortest path that connects 𝑣 and 𝑤.

• The complement 𝐺𝐶 of a graph 𝐺 = (𝑉, 𝐸) is a graph with vertex­set 𝑉𝐶 = 𝑉
and edge­set

𝐸𝐶 = {(𝑢, 𝑣) ∈ 𝑉 × 𝑉 ∶ (𝑢, 𝑣) ∉ 𝐸 ∧ 𝑢 ≠ 𝑣}. (4.8)

A graph 𝐺 is assumed to be simple and undirected, unless specified and will be
denoted as 𝐺, 𝐺𝑖, 𝐺′, 𝐺̃ or similar. A multi­graph is assumed to be undirected, unless
specified and will be denoted as 𝐻, 𝐻𝑖, 𝐻′, 𝐻̃ or similar. Furthermore, 3­regular
simple graphs will be denoted as 𝑅, 𝑅𝑖, 𝑅′ or similar and 4­regular multi­graphs as
𝐹, 𝐹𝑖, 𝐹′ or similar. We will denote the complete graph on a set of vertices 𝑉 as 𝐾𝑉
and the star graph on a set of vertices 𝑉 with center 𝑐 by 𝑆𝑉,𝑐. We will often not
care about the choice of center, writing 𝑆𝑉 to mean any choice of star graph on the
vertex set 𝑉.

4.3. Stabilizer states
A stabilizer state |𝒮⟩ on 𝑛 qubits is defined by its stabilizer group 𝒮, which is a
subgroup of the Pauli group𝒫𝑛 [15]. The stabilizer state is defined to be a state such
that it is an eigenstate of all elements of 𝒮 with an eigenvalue of +1, i.e. 𝑠 |𝒮⟩ = |𝒮⟩
for 𝑠 ∈ 𝒮. To avoid |𝒮⟩ being a trivial zero state there are two requirements of 𝒮,
(1) −𝐼 ∉ 𝒮 and (2) all elements of 𝒮 should commute1. Furthermore, for |𝒮⟩ to be
a unique state (up to a global phase), 𝒮 needs to be of size 2𝑛 and can therefore
be described by 𝑛 independent generators. As an example consider the stabilizer
group 𝒮0 generated by 𝑋⊗𝑋 and 𝑍⊗𝑍. One can check that 𝒮0 describes the state

|𝒮0⟩ =
1
√2

(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩) (4.9)

4.4. Graph states
A graph state is a multi­partite quantum state |𝐺⟩ which is described by a graph
𝐺, where the vertices of 𝐺 correspond to the qubits of |𝐺⟩. The graph state is
1Elements of the Pauli group either commute or anti­commute.
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formed by initializing each qubit 𝑣 ∈ 𝑉(𝐺) in the state |+⟩𝑣 =
1
√2(|0⟩𝑣 + |1⟩𝑣)

and for each edge (𝑢, 𝑣) ∈ 𝐸(𝐺) applying a controlled phase gate between qubits
𝑢 and 𝑣. Importantly, all the controlled phase gates commute and are invariant
under changing the control­ and target­qubits of the gate. This allows the edges
describing these gates to be unordered and undirected. Formally, a graph state |𝐺⟩
is given as

|𝐺⟩ = ∏
(𝑢,𝑣)∈𝐸(𝐺)

𝐶(𝑢,𝑣)𝑍 (⨂
𝑣∈𝑉(𝐺)

|+⟩𝑣) , (4.10)

where 𝐶(𝑢,𝑣)𝑍 is a controlled phase gate between qubit 𝑢 and 𝑣, i.e.

𝐶(𝑢,𝑣)𝑍 = |0⟩ ⟨0|𝑢⊗ 𝕀𝑣 + |1⟩ ⟨1|𝑢⊗𝑍𝑣 (4.11)

and 𝑍𝑣 is the Pauli­𝑍 matrix acting on qubit 𝑣.
A graph state is also a stabilizer state [5] with a stabilizer group generated by

𝑔𝑣 = 𝑋𝑣 ∏
𝑢∈𝑁𝑣

𝑍𝑢 for 𝑣 ∈ 𝑉(𝐺) (4.12)

In fact, any stabilizer state can be transformed to some graph state using only
single­qubit Clifford operations [18]. Furthermore, given a stabilizer state, a graph
state equivalent under single­qubit Clifford operations can be found efficiently in
time 𝒪(𝑛3).

The GHZ states are an important class of stabilizer states given as

|GHZ⟩𝑘 =
1
√2

(|0⟩⊗𝑘 + |1⟩⊗𝑘) . (4.13)

It is easy to verify that any graph state given by a star or complete graph, i.e. |𝑆𝑉,𝑐⟩
or |𝐾𝑉⟩, can be turned into a GHZ state on the qubits 𝑉 using only single­qubit
Clifford operations. Furthermore, it is easy to see2 that no other graph states are
single­qubit Clifford equivalent to the GHZ­states.

In the section 4.4.1 we will discuss local complementations and vertex­deletions
on graph states. It turns out that single­qubit Clifford operations (LC), single­qubit
Pauli measurements (LPM) and classical communication (CC): LC + LPM + CC,
which take graph states to graph states, can be completely characterized by lo­
cal complementations and vertex­deletions on the corresponding graphs, see sec­
tions 4.4.1 and 4.4.2. More concretely, any sequence of single­qubit Clifford oper­
ations, mapping graph states to graph states, can be described as some sequence
of local complementations on the corresponding graph. Moreover, measuring qubit
𝑣 of a graph state |𝐺⟩ in the Pauli­𝑋, Pauli­𝑌 or Pauli­𝑍 basis, gives a stabilizer
state that is single­qubit Clifford equivalent to |𝑋𝑣(𝐺)⟩, |𝑌𝑣(𝐺)⟩, |𝑍𝑣(𝐺)⟩ respec­
tively. The operations 𝑋𝑣, 𝑌𝑣 and 𝑍𝑣 are graph operations consisting of sequences
2This follows from the fact that no other graph is LC­equivalent to the star or complete graph and that
graph states are single­qubit Clifford if and only if their corresponding graphs are LC­equivalent, see
section 4.4.1



4.4. Graph states

4

85

of local complementations together with the deletion of vertex 𝑣, which we define
in definition 4.4.10. As mentioned the post­measurement state of for example a
Pauli­𝑋 measurement on qubit 𝑣 is only single­qubit Clifford equivalent to the graph
state |𝑋𝑣(𝐺)⟩. The single­qubit Clifford operations that take the post­measurement
state to |𝑋𝑣(𝐺)⟩ depend on the outcome of the measurement of the qubit 𝑣 and
act on qubits adjacent to 𝑣 [5]. This means classical communication is required to
announce the measurement result at the vertex 𝑣 to its neighboring vertices.

We now introduce the notion of a qubit­minor which captures exactly which
graph states can be reached from some initial graph state under LC+ LPM+CC.
Formally we define a qubit­minor as:

Definition 4.4.1 (qubit­minor). Assume |𝐺⟩ and |𝐺′⟩ are graph states on the sets
of qubits 𝑉 and 𝑈 respectively. |𝐺′⟩ is called a qubit­minor of |𝐺⟩ if there exists a
sequence of single­qubit Clifford operations (LC), single­qubit Pauli measurements
(LPM) and classical communication (CC) that takes |𝐺⟩ to |𝐺′⟩, i.e.

|𝐺⟩ LC−−−−−−→
LPM+CC

|𝐺′⟩ ⊗ |junk⟩𝑉⧵𝑈 . (4.14)

If |𝐺′⟩ is a qubit­minor of |𝐺⟩, we denote this as

|𝐺′⟩ < |𝐺⟩ . (4.15)

⋄
In chapter 4.5 we will show that the notion of qubit­minors for graph states

is equivalent to the notion of vertex­minors for graphs. We will define and discuss
vertex­minors in section 4.5, however we formally state the relation between vertex­
minors here. For a proof see section 4.5.

Theorem 4.4.2. Let |𝐺⟩ and |𝐺′⟩ be two graph states such that no vertex in 𝐺′
has degree zero. |𝐺′⟩ is then a qubit­minor of |𝐺⟩ if and only if 𝐺′ is a vertex­minor
of 𝐺, i.e.

|𝐺′⟩ < |𝐺⟩ ⇔ 𝐺′ < 𝐺. (4.16)

⋄
Theorem 4.4.2 is very powerful since it allows us to consider graph states under

LC+LPM+CC, purely in terms of vertex­minors of graphs. We will in the upcoming
chapters use the formalism of vertex­minors to study the computational complexity
of QubitMinor and provide efficient algorithms for solving this problem. Next, we
will in more detail show the equivalence between single­qubit operations on graph
states and the mentioned graph operations.

4.4.1. Local Clifford operations
Let’s consider the following sequence of single­qubit Clifford operations

𝑈(𝐺)𝑣 = exp (−i𝜋4𝑋𝑣) ∏
𝑢∈𝑁𝑣

exp (i𝜋4𝑍𝑢) . (4.17)
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As shown in [5], the operation 𝑈(𝐺)𝑣 on the state |𝐺⟩ can be seen as an operation
on the graph 𝐺 since

𝑈(𝐺)𝑣 |𝐺⟩ = |𝜏𝑣(𝐺)⟩ (4.18)

where 𝜏𝑣 is a local complementation on the vertex 𝑣, as defined in definition 4.4.3
and illustrated in equation (4.20).

Definition 4.4.3 (local complementation). A local complementation 𝜏𝑣 acts on a
vertex 𝑣 of a graph 𝐺 by complementing the induced subgraph on the neighborhood
of 𝑣. The neighborhoods of the graph 𝜏𝑣(𝐺) are therefore given by

𝑁(𝜏𝑣(𝐺))𝑢 = {𝑁𝑢Δ(𝑁𝑣 ⧵ {𝑢}) if (𝑢, 𝑣) ∈ 𝐸(𝐺)
𝑁𝑢 else

, (4.19)

where Δ denotes the symmetric difference between two sets. ⋄
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Surprisingly, any single­qubit Clifford operation which takes some graph state to
another graph state can seen as some sequence of local complementations on the
corresponding graphs. This was proven in [18] and we restate this theorem here.

Theorem 4.4.4 (Van den Nest [18]). Two graph states |𝐺⟩ and |𝐺′⟩ are equivalent
under single­qubit Clifford operations if and only if their corresponding graphs 𝐺
and 𝐺′ are related by some sequence of local complementations. ⋄

Letm = 𝑣1𝑣2…𝑣𝑙 be a sequence of vertices of 𝐺, then we denote the sequence
of local complementations on the vertices in m as

𝜏m(𝐺) = 𝜏𝑣𝑙 ∘ … ∘ 𝜏𝑣2 ∘ 𝜏𝑣1(𝐺). (4.21)

If there exists a sequencem such that 𝜏m(𝐺) = 𝐺′ then we write this as 𝐺 ∼LC 𝐺′.
Theorem 4.4.4 can therefore be stated as

|𝐺⟩ ∼LC |𝐺′⟩ ⇔ 𝐺 ∼LC 𝐺′. (4.22)

Testing whether two graphs are LC­equivalent can be done in time 𝒪(𝑛4), where
𝑛 is the size of the graphs, as shown in [31].

Notable about local complementation is its action on star and complete graphs.
For a vertex set 𝑉 and 𝑐 ∈ 𝑉 we have that 𝜏𝑐(𝑆𝑉,𝑐) = 𝐾𝑉 and for any 𝑣 ∈ 𝑉 we have
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𝜏𝑣(𝐾𝑉) = 𝑆𝑉,𝑣. This means all star graphs on a vertex set 𝑉 are equivalent to each
other under local complementation and also to the complete graph on 𝑉. Moreover,
no other graph is equivalent to the star or complete graph.

Another operation which we will make use of is the pivot.

Definition 4.4.5 (Pivot). A pivot 𝜌𝑒 is a graph operation specified by an edge
𝑒 = (𝑢, 𝑣), taking a graph 𝐺 to 𝜌𝑒(𝐺) such that

𝜌𝑒(𝐺) = 𝜏𝑣 ∘ 𝜏𝑢 ∘ 𝜏𝑣(𝐺). (4.23)

⋄
The pivot can simply be specified by an undirected edge since

𝜏𝑣 ∘ 𝜏𝑢 ∘ 𝜏𝑣(𝐺) = 𝜏𝑢 ∘ 𝜏𝑣 ∘ 𝜏𝑢(𝐺) if (𝑢, 𝑣) ∈ 𝐸(𝐺) (4.24)

as shown in [32].
It will be useful to be able to specify a pivot simply by a vertex 𝑣. We therefore

also introduce the following definition:

Definition 4.4.6. The graph operation 𝜌𝑣 is specified by a vertex, taking a graph
𝐺 to 𝜌𝑣(𝐺) such that

𝜌𝑣(𝐺) = {
𝜌𝑒𝑣(𝐺) if |𝑁𝑣| > 0
𝐺 if |𝑁𝑣| = 0

(4.25)

where 𝑒𝑣 is an edge incident on 𝑣 chosen in some consistent way. For example we
could assume that the vertices of 𝐺 are ordered and that 𝑒𝑣 = (𝑣,min(𝑁𝑣)). The
specific choice will not matter but importantly 𝑒𝑣 only depends on 𝐺 and 𝑣, and the
same therefore holds for 𝜌𝑣(𝐺). ⋄

Another fundamental operation on a graph is that of vertex­deletion, which re­
lates to measuring a qubit of a graph state in the standard basis [5]. We denote
the deletion of vertex 𝑣 from the graph 𝐺 as 𝐺 ⧵𝑣 = 𝐺[𝑉(𝐺) ⧵ {𝑣}]. It turns out that
given a sequence of local complementations and vertex­deletions, acting on some
graph, one can always perform the vertex­deletions at the end of the sequence and
arrive at the same graph. This fact follows inductively from the following lemma.

Lemma 4.4.7. Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑣, 𝑢 ∈ 𝑉 be vertices such that 𝑣 ≠ 𝑢,
then

𝜏𝑣(𝐺 ⧵ 𝑢) = 𝜏𝑣(𝐺) ⧵ 𝑢. (4.26)

⋄
Proof. Note first that it is important that 𝑣 ≠ 𝑢 since the operation 𝜏𝑣(𝐺 ⧵ 𝑢) is
otherwise undefined. To prove that the graphs 𝐺1 = 𝜏𝑣(𝐺 ⧵ 𝑢) and 𝐺2 = 𝜏𝑣(𝐺) ⧵ 𝑢
are equal, we show that the neighborhoods of any vertex in the graphs are the
same, i.e. 𝑁(𝐺1)𝑤 = 𝑁(𝐺2)𝑤 for all 𝑤 ∈ 𝑉(𝐺) ⧵ 𝑢. The local complementation only
changes the neighborhoods for vertices which are adjacent to 𝑣, so for any vertex
𝑤 ≠ 𝑢 which is not adjacent to 𝑣, we have that

𝑁(𝐺1)𝑤 = 𝑁(𝐺2)𝑤 = 𝑁(𝐺)𝑤 ⧵ {𝑢}. (4.27)
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On the other hand, for a vertex 𝑤 which is adjacent to 𝑣, its neighborhood becomes

𝑁(𝐺1)𝑤 = (𝑁(𝐺)𝑤 ⧵{𝑢})Δ((𝑁(𝐺)𝑣 ⧵{𝑢})⧵{𝑤}) = (𝑁(𝐺)𝑤 Δ(𝑁(𝐺)𝑣 ⧵{𝑤}))⧵{𝑢} = 𝑁(𝐺2)𝑤 (4.28)

by the definition of a local complementation.

4.4.2. Local Pauli measurements
How should the corresponding graph of a graph state be updated when a mea­
surement is performed? In [33] it is shown how the Pauli projectors 𝑃(𝑋,±)𝑣 , 𝑃(𝑌,±)𝑣 ,
𝑃(𝑍,±)𝑣 act on graph states3

𝑃(𝑍,±)𝑣 |𝐺⟩ = 1
2 |𝑍, ±⟩𝑣⊗𝑈(𝑍,±)𝑣 |𝐺 ⧵ 𝑣⟩ (4.29)

𝑃(𝑌,±)𝑣 |𝐺⟩ = 1
2 |𝑌, ±⟩𝑣⊗𝑈(𝑌,±)𝑣 |𝜏𝑣(𝐺) ⧵ 𝑣⟩ (4.30)

𝑃(𝑋,±)𝑣 |𝐺⟩ = 1
2 |𝑋,±⟩𝑣⊗𝑈(𝑋,±)𝑒 |𝜌𝑒(𝐺) ⧵ 𝑣⟩ if |𝑁𝑣| > 0 (4.31)

where 𝑒 is an edge of 𝐺 incident on the vertex 𝑣. Choosing a different edge 𝑒′ inci­
dent on 𝑣 gives a single­qubit Clifford­equivalent graph state, i.e. |𝜌𝑒′(𝐺) ⧵ 𝑣⟩ ∼LC
|𝜌𝑒(𝐺) ⧵ 𝑣⟩. The operators 𝑈(𝑃,±)𝑣 are sequences of single­qubit Clifford operations
and take the post­measurement state to a graph state. The exact form of these
correction operators can be found in [33] but we will only need the ones for mea­
surements in the standard (𝑍­) basis, which are given by

𝑈(𝑍,+)𝑣 = 𝕀𝑣 , 𝑈(𝑍,−)𝑣 = ∏
𝑢∈𝑁𝑣

𝑍𝑢 . (4.32)

Since these correction operators of eqs. (4.29) to (4.31) are sequences of single­
qubit Clifford operations it is therefore the case that

|𝐺 ⧵ 𝑣⟩ , |𝜏𝑣(𝐺) ⧵ 𝑣⟩ , |𝜌𝑒(𝐺) ⧵ 𝑣⟩ (4.33)

are all qubit­minors of |𝐺⟩. Furthermore, Bouchet proved the following.

Lemma 4.4.8 (Bouchet, (9.2) in [32]). If 𝐺 ∼LC 𝐺′ then 𝐺′ ⧵ 𝑣 is LC­equivalent to
𝐺 ⧵ 𝑣, 𝜏𝑣(𝐺) ⧵ 𝑣 or 𝜌𝑒(𝐺) ⧵ 𝑣, where 𝑒 is some fixed edge incident on 𝑣 in 𝐺. ⋄

We therefore have the following lemma.

Lemma 4.4.9. Let |𝐺⟩ be a graph state, 𝑣 ∈ 𝑉(𝐺) be a vertex and 𝑒 ∈ 𝐸(𝐺) be an
edge incident on 𝑣. Furthermore, assume that |𝐺′⟩ is a qubit­minor of |𝐺⟩, where
𝑉(𝐺′) = 𝑉(𝐺)⧵𝑣 and that 𝐺′ has no vertices of degree zero. Then |𝐺′⟩ is single­qubit
Clifford­equivalent to at least one of the three states in equation (4.33). ⋄
3For the special case when |𝑁𝑣| = 0, a measurement in the 𝑋­basis does not change the graph state
since this is then |𝐺⟩ = |+⟩𝑣⊗ |𝐺 ⧵ 𝑣⟩.
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Proof. Since |𝐺′⟩ is a qubit­minor of |𝐺⟩ we know that there exists a sequence 𝒲
of single­qubit Clifford operations, single­qubit Pauli measurements and classical
communication that takes |𝐺⟩ to |𝐺′⟩, by definition. Any single­qubit Pauli mea­
surement on a qubit 𝑢 gives a product states between qubit 𝑢 and the rest of the
qubits, see equations (4.29)­(4.31). The sequence 𝒲 cannot therefore contain a
single­qubit Pauli measurement on a qubit 𝑢, different from 𝑣, since 𝑢 has non­zero
degree in the graph 𝐺′ by assumption. Without loss of generality we can in fact
assume that𝒲 is a sequence of single­qubit Clifford operations followed by a mea­
surement of 𝑣 in the standard basis and then by another sequence of single­qubit
Clifford operations. The reason why it is sufficient to consider a measurement in the
standard basis is that any other Pauli measurement can be simulated by performing
some single­qubit Clifford operation followed by a measurement in the standard ba­
sis. Assume that the sequence of single­qubit Clifford operations before (after) the
measurement is described by the sequences of local complementations m (m′),
which exists due to theorem 4.4.4. We therefore have that

𝜏m′(𝜏m(𝐺) ⧵ 𝑣) = 𝐺′. (4.34)

Using lemma 4.4.8 we have that 𝜏m(𝐺) ⧵ 𝑣, and therefore 𝐺′, is LC­equivalent to
either 𝐺 ⧵𝑣, 𝜏𝑣(𝐺)⧵𝑣 or 𝜌𝑒(𝐺)⧵𝑣. Finally, by theorem 4.4.4 the lemma follows.

To simplify notation we also introduce the following three graph operations,
which exactly captures how Pauli measurements act on graph states.

Definition 4.4.10. The graph operations 𝑋𝑣, 𝑌𝑣 and 𝑍𝑣, specified with a vertex 𝑣,
act on a graph 𝐺 by transforming it to

𝑋𝑣(𝐺) = 𝜌𝑣(𝐺) ⧵ 𝑣, 𝑌𝑣(𝐺) = 𝜏𝑣(𝐺) ⧵ 𝑣, 𝑍𝑣(𝐺) = 𝐺 ⧵ 𝑣 (4.35)

When we need to specify which edge incident on 𝑣 the pivot of 𝑋𝑣 acts on, we
write 𝑋(𝑢)𝑣 (𝐺) = 𝜌(𝑢,𝑣)(𝐺)⧵𝑣. We call the operations 𝑋𝑣, 𝑌𝑣 and 𝑍𝑣 for measurement
operations. ⋄

Equations (4.36) to (4.38) show examples of how these operations can act on
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graphs.
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The operation 𝑋(𝑢)𝑣 is the most complicated one, so we will here quickly describe
what happens to a graph when 𝑋(𝑢)𝑣 is applied. One can check that after the op­
eration 𝑋(𝑢)𝑣 , the vertex 𝑢 will have the neighbors that 𝑣 previously had, except 𝑣
itself. Furthermore, some edges between vertices in (𝑁𝑣 ∪𝑁𝑢) ⧵ {𝑢, 𝑣} will be com­
plemented, i.e. removed if present or added if not. To know which of these edges
gets complemented, let’s introduce the following three sets

𝑉𝑣𝑢 = 𝑁𝑣 ∩ 𝑁𝑢 , 𝑉𝑣 = 𝑁𝑣 ⧵ (𝑁𝑢 ∪ {𝑢}), 𝑉𝑢 = 𝑁𝑢 ⧵ (𝑁𝑣 ∪ {𝑣}) (4.39)

which form a partition of (𝑁𝑣 ∪𝑁𝑢) ⧵ {𝑢, 𝑣}. In eq. (4.38), these sets are 𝑉12 = {3},
𝑉1 = {4} and 𝑉2 = {5, 6}. An edge (𝑤1, 𝑤2) between vertices in (𝑁𝑣 ∪ 𝑁𝑢) ⧵ {𝑢, 𝑣}
gets complemented if and only if 𝑤1 and 𝑤2 belong to different sets of the partition
(𝑉𝑣𝑢 , 𝑉𝑣 , 𝑉𝑢). All other edges in the graph, i.e. edges containing a vertex not in
𝑁𝑣 ∪ 𝑁𝑣, will be unchanged.

4.5. Vertex­minors
Using the two operations local complementation and vertex­deletion, we can for­
mulate the notion of a vertex­minor of a graph.

Definition 4.5.1 (Vertex­minor). A graph 𝐺′ is called a vertex­minor of 𝐺 if and
only if there exist a sequence of local complementations and vertex­deletions that
takes 𝐺 to 𝐺′. If 𝐺′ is a vertex­minor of 𝐺 we write this as

𝐺′ < 𝐺 (4.40)
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and if 𝐺′ is not a vertex­minor of 𝐺 then

𝐺′ ≮ 𝐺. (4.41)

⋄

Equivalently, due to lemma 4.4.7, 𝐺′ is called a vertex­minor of 𝐺 if there exists
a sequence of vertices m such that

𝜏m(𝐺)[𝑉(𝐺′)] = 𝐺′ (4.42)

Vertex­minors were first studied in [32] but by the name of 𝑙­reductions. Note
that if 𝐺1 and 𝐺2 are two LC­equivalent graphs, then 𝐺′ < 𝐺1 if and only if 𝐺′ < 𝐺2.

In the previous sections we have seen that single­qubit Clifford operations that
take graph states to graph states can be seen as local complementations on the
corresponding graph and similarly for single­qubit Pauli measurements and vertex­
deletions. The relation between qubit­minors and vertex­minors is captured by
theorem 4.4.2 which we now prove.

Proof of theorem 4.4.2. Assume first that |𝐺′⟩ is a qubit­minor of |𝐺⟩. By the same
arguments as in the proof of lemma 4.4.9 we then have that there exists a sequence
of vertices 𝑚 such that

𝜏m(𝐺)[𝑉(𝐺′)] = 𝐺′ (4.43)

and by definition that 𝐺′ is a vertex­minor of 𝐺. Assume now on the other hand
that 𝐺′ is a vertex­minor of 𝐺, i.e. that 𝜏m(𝐺)[𝑉(𝐺′)] = 𝐺′ for some m. We can
then go from |𝐺⟩ to |𝐺′⟩ by simply performing the single­qubit Clifford operations
corresponding to the sequence of local complementation specified by m and then
measure the qubits 𝑉(𝐺) ⧵ 𝑉(𝐺′) in the standard basis. If the correct corrections,
i.e. 𝑈(𝑍,±)𝑣 , are applied after the measurements, the state |𝐺′⟩ is reached.

So to check whether a graph state has a certain qubit­minor we can check if the
corresponding graph has a certain vertex­minor. Note that one can also include the
case where 𝐺′ has vertices of degree zero. Let’s denote the vertices of 𝐺′ which
have degree zero as 𝑈. We then have that

|𝐺′⟩ < |𝐺⟩ ⇔ 𝐺′[𝑉(𝐺) ⧵ 𝑈] < 𝐺. (4.44)

It is interesting to consider under which conditions a graph 𝐺′ is a vertex­minor
of another graph 𝐺. As theorem 4.5.3 below states, to decide whether 𝐺′ < 𝐺 it is
sufficient to check whether 𝐺′ is LC­equivalent to at least one out of 3|𝑉(𝐺)|−|𝑉(𝐺′)|
graphs.

It turns out that the three operations {𝑋𝑣 , 𝑌𝑣 , 𝑍𝑣} from definition 4.4.10 are suf­
ficient to check whether some graph is a vertex­minor of another graph. This is
formalized in theorem 4.5.3 below. We first introduce some definitions needed to
prove the theorem.

It is sometimes convenient to denote a sequence of the operations 𝑋, 𝑌, 𝑍 on a
sequence of vertices:
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Definition 4.5.2. Let u = (𝑢1, … , 𝑢𝑛) be a sequence of vertices. Let 𝑃u = 𝑃𝑢𝑛 ∘…∘
𝑃𝑢1 denote a sequence of operations, where 𝑃𝑢𝑖 ∈ {𝑋𝑢𝑖 , 𝑌𝑢𝑖 , 𝑍𝑢𝑖} for each 𝑖. We call
𝑃u a measurement operation sequence. Let 𝒫u denote all such 𝑃u, i.e.

𝒫u = {𝑃𝑢𝑛 ∘ … ∘ 𝑃𝑢1 ∶ 𝑃𝑢 ∈ {𝑋𝑣 , 𝑌𝑣 , 𝑍𝑣}} (4.45)

Furthermore, let 𝒫𝑈, denote the union of all 𝒫𝜋(u) for all permutations 𝜋, where 𝑈
is the set {𝑢1, … , 𝑢𝑛}. ⋄

We are now ready to prove a generalization of lemma 4.4.9, which algorithm 5.1
is built on.

Theorem 4.5.3. Let 𝐺 and 𝐺′ be two graphs and 𝑈 be the set 𝑉(𝐺) ⧵ 𝑉(𝐺′) =
{𝑣1, … , 𝑣𝑛−𝑘}. Then we have that

𝐺′ < 𝐺 ⇔ ∃𝑃 ∈ 𝒫𝑈 ∶ 𝐺′ ∼LC 𝑃(𝐺). (4.46)

⋄

Proof. If there exists a 𝑃 in 𝒫𝑈 such that 𝐺′ ∼LC 𝑃(𝐺) then we clearly have that
𝐺′ < 𝐺, since any such 𝑃 is some sequence of local complementations and vertex­
deletions. Assume now that 𝐺′ < 𝐺. We will prove by induction on 𝑛 − 𝑘 that
there exists a 𝑃 in 𝒫𝑈 such that 𝐺′ ∼LC 𝑃(𝐺). For 𝑛 − 𝑘 = 1 this follows directly
from lemma 4.4.8. Assume therefore that it is true for 𝑛 − 𝑘 = 𝑙. We now show
that this implies that it is also true for 𝑛 − 𝑘 = 𝑙 + 1. Since 𝐺′ < 𝐺 we know that
𝜏𝑚(𝐺)[𝑉(𝐺′)] = 𝐺′ for some 𝑚. Let 𝑣 be a vertex in 𝑉(𝐺′) and consider the graph
𝐺̃ = 𝜏𝑚(𝐺)[𝑉(𝐺′) ∪ {𝑣}]. Note that 𝐺′ = 𝐺̃ ⧵ 𝑣. Clearly we have that 𝐺′ < 𝐺̃ < 𝐺
and by the induction assumption we know that

∃𝑃 ∈ 𝒫𝑈⧵{𝑣} ∶ 𝐺̃ ∼LC 𝑃(𝐺). (4.47)

Then from lemma 4.4.8 we know that 𝐺′ = 𝐺̃ ⧵ 𝑣 is LC­equivalent to at least one of
the following graphs

𝑋𝑣(𝑃(𝐺)), 𝑌𝑣(𝑃(𝐺)), 𝑍𝑣(𝑃(𝐺)) (4.48)

and the theorem follows.

Note that in 4.5.3 𝒫u is indexed simply with the set associated to the word u
since the statement is independent of the ordering of the elements of u. A direct
corollary of theorem 4.5.3 is therefore:

Corollary 4.5.3.1. Let 𝐺 and 𝐺′ be two graphs. Furthermore, let u and u′ be two
ordered tuples such that each element of 𝑉(𝐺) ⧵ 𝑉(𝐺′) occurs exactly once in both
u and u′. Then we have that

∃𝑃 ∈ 𝒫u ∶ 𝐺′ ∼LC 𝑃(𝐺) ⇔ ∃𝑃 ∈ 𝒫u′ ∶ 𝐺′ ∼LC 𝑃(𝐺). (4.49)

⋄
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Proof. This follows directly from theorem 4.5.3 since both sides in eq. (4.49) are
true if and only if 𝐺′ < 𝐺.

Note that theorem 4.5.3 does not give an efficient method to check if 𝐺′ is a
vertex­minor of 𝐺, since the set 𝒫u is of exponential size for all u. However, a non­
efficient algorithm can be constructed, see algorithm 5.1. To study this problem
further we formally define the vertex­minor problem.

Problem 4.5.4 (VertexMinor). Given a graph 𝐺 and a graph 𝐺′ defined on a
subset of 𝑉(𝐺), decide whether 𝐺′ is a vertex­minor of 𝐺. ⋄

We will often consider the special case where 𝐺′ is a star graph 𝑆𝑉′ defined on a
subset 𝑉′ of 𝑉(𝐺). Remember that a graph state described by a star graph is single­
qubit Clifford equivalent to a GHZ­state. Thus checking if 𝑆𝑉′ is a vertex­minor of
𝐺 is equivalent to checking if |𝐺⟩ can be transformed to GHZ­state on the qubits 𝑉′
by only using LC+ LPM+ CC. We will give this problem a separate name.

Problem 4.5.5 (StarVertexMinor). Given a graph 𝐺 and a vertex subset 𝑉′ of
𝑉(𝐺), decide whether 𝑆𝑉′ is a vertex­minor of 𝐺. ⋄

Note that we have not specified which star graph on 𝑉′ we use. This is not
ambiguous since all star graphs on 𝑉′ are equivalent under local complementation.
In the rest of the text we will often leave the choice of star graph open.

4.6. Rank­width
In this section we introduce the notion of rank­width, which is a complexity measure
of a graph. It is in some ways similar to the tree­width, introduced in [34]. The
tree­width captures essentially how tree­like the graph is. This is useful for finding
algorithms for problems on graphs of bounded tree­width, motivated by the fact
that many graph problems are easy on trees. More on algorithms for problems on
graphs of bounded tree­width can be found in [25]. Rank­width, compared to tree­
width, captures a larger class of graphs with similar complexity. For example, the
complete graph has very low complexity, due to its highly symmetric nature, but
the tree­width is in this case maximal. On the other hand the rank­width is one for
both trees and complete graphs. In fact, it turns out that the graphs of rank­width
one are exactly the distance­hereditary graphs, see [19].

We start by defining the cut­rank of a graph. To do this we will use the following
notation for a graph 𝐺 with vertices 𝑉 and adjacency matrix Γ and two subsets of
the vertices 𝐴, 𝐵 ⊆ 𝑉; Γ[𝐴, 𝐵] is the |𝐴| × |𝐵|­matrix describing the connections
between the sets 𝐴 and 𝐵. So, for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, the element (Γ[𝐴, 𝐵])𝑎𝑏 is 1 if
(𝑎, 𝑏) is an edge in 𝐺 and 0 otherwise.
Definition 4.6.1 (cut­rank). Let’s assume that 𝐴 is a subset of the vertices 𝑉 of
some graph 𝐺 with adjacency matrix Γ. The cut­rank cutrk𝐴(𝐺) of 𝐺 with respect
to 𝐴, is then defined as

cutrk𝐴(𝐺) ≡ rank𝔽2(Γ[𝐴, 𝑉 ⧵ 𝐴]), (4.50)

where rank𝔽2 is the rank over the finite field of order two. ⋄



4

94 4. Graph states and single­qubit operations

Note that the cut­rank is symmetric in the sense that

cutrk𝐴(𝐺) = rank𝔽2(Γ[𝐴, 𝑉 ⧵ 𝐴]) = rank𝔽2(Γ[𝑉 ⧵ 𝐴, 𝐴]⊤) = cutrk𝑉⧵𝐴(𝐺). (4.51)

Interestingly the cut­rank with respect to 𝐴 of a graph 𝐺 is in fact equal to the
Schmidt­rank of the state |𝐺⟩ with respect to the bipartition (𝐴, 𝑉 ⧵ 𝐴).4

Next we define what is called a rank­decomposition of a graph.

Definition 4.6.2 (rank­decomposition). A rank­decomposition of a graph 𝐺 is a
pair ℛ = (𝒯, 𝜇), where 𝒯 is a subcubic tree and 𝜇 is a bijection 𝜇 ∶ 𝑉(𝐺) → {𝑙 ∶
𝑙 is a leaf of 𝒯}. A subcubic tree is a tree with at least two vertices and each vertex
has degree less or equal to 3. Any edge 𝑒 in 𝒯 splits the tree into two connected
components upon deletion and therefore induces a partition (𝐴𝑒 , 𝐵𝑒) of the leaves.
The width of an edge 𝑒 of the subcubic tree is defined as the cut­rank of the corre­
sponding partition. Furthermore the width of the rank­decomposition is defined as
the maximum width over all edges, i.e.

widthℛ(𝐺) ≡ max
𝑒∈𝐸(𝒯)

cutrk𝜇−1(𝐴𝑒)(𝐺). (4.52)

To simplify notation we write the cut­rank induced by a rank­decomposition (𝒯, 𝜇)
and an edge 𝑒 as

cutrk𝜇−1(𝒯,𝑒)(𝐺) ≡ cutrk𝜇−1(𝐴𝑒)(𝐺). (4.53)

⋄

This allows us to define the rank­width of a graph.

Definition 4.6.3 (rank­width). The rank­width rwd(𝐺) of a graph 𝐺 is the mini­
mum width over all rank­decompositions, i.e.

rwd(𝐺) ≡min
ℛ

widthℛ(𝐺) =min
(𝒯,𝜇)

max
𝑒∈𝐸(𝒯)

cutrk𝜇−1(𝒯,𝑒)(𝐺). (4.54)

⋄

The rank­width of the graph 𝐺 is related to the entanglement of the state |𝐺⟩, al­
though as a relatively unknown entanglement monotone. In [22] the corresponding
entanglement monotone is called the Schmidt­rank width and is defined for general
quantum states. For graph states, the Schmidt­rank width of the state and the
rank­width of the corresponding graph coincide. There they also give an interpre­
tation of the Schmidt­rank width as a quantifier for the optimal description of the
state using a tree tensor network.

4.7. Circle graphs
Here we introduce circle graphs and representations of these under the action of
local complementations. Circle graphs are graphs with edges represented as inter­
sections of chords on a circle. These graphs are also sometimes called alternance
4This is proven in [5], see proposition 10.
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graphs since they can be described by a double occurrence word such that the
edges of the graph are then given by the alternances induced by this word. We will
make use of the latter description here, which was introduced by Bouchet in [35]
and also described in [36]. This description is also related to yet another way to
represent circle graphs, as Eulerian tours of 4­regular multi­graphs, introduced by
Kotzig in [37]. For an overview and the history of circle graphs see for example the
book by Golumbic [38].

4.7.1. Double occurrence words
Let us first define double occurrence words and equivalence classes of these. This
will allow us to define circle graphs.

Definition 4.7.1 (Double occurrence word). A double occurrence wordX is a word
with letters in some set 𝑉, such that each element in 𝑉 occurs exactly twice in X.
Given a double occurrence word X we will write 𝑉(X) = 𝑉 for its set of letters. ⋄

Definition 4.7.2 (Equivalence class of double occurrence words). We say that a
double occurrence word Y is equivalent to another X, i.e. Y ∼ X, if Y is equal to X,
the mirror X̃ or any cyclic permutation of X or X̃. We denote by dX = {Y ∶ Y ∼ X}
the equivalence class of X, i.e. the set of words equivalent to X. ⋄

Next we define alternances of these equivalence classes, which will represent
the edges of an alternance graph.

Definition 4.7.3 (Alternance). An alternance (𝑢, 𝑣) of the equivalence class dX is
a pair of distinct elements 𝑢, 𝑣 ∈ 𝑉 such that a double occurrence word of the form
…𝑢…𝑣…𝑢…𝑣… is in dX. ⋄

Note that if (𝑢, 𝑣) is an alternance of dX then so is (𝑣, 𝑢), since the mirror of
any word in dX is also in dX.

Definition 4.7.4 (Alternance graph). The alternance graph 𝒜(X) of a double oc­
currence word X is a graph with vertices 𝑉(X) and edges given exactly by the
alternances of dX, i.e.

𝐸(𝒜(X)) = {(𝑢, 𝑣) ∈ 𝑉(X) × 𝑉(X) ∶ (𝑢, 𝑣) is an alternance of dX} (4.55)

⋄

Note that since𝒜(X) only depends on the equivalence class ofX, the alternance
graphs 𝒜(X) and 𝒜(Y) are equal if X ∼ Y. Now we can formally define circle
graphs.

Definition 4.7.5 (Circle graph). A graph 𝐺 which is the alternance graph of some
double occurrence word X is called a circle graph. ⋄
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Figure 4.1: An example of a circle graph induced by the double­occurrence word 𝑎𝑑𝑐𝑏𝑎𝑒𝑏𝑐𝑒𝑑.

4.7.2. Eulerian tours on 4­regular multi­graphs
There is yet another way to represent circle graphs, closely related to double oc­
currence words, as Eulerian tours of 4­regular multi­graphs.
Definition 4.7.6 (Eulerian tour). Let 𝐹 be a connected 4­regular multi­graph. An
Eulerian tour 𝑈 on 𝐹 is a tour that visits each edge in 𝐹 exactly once. ⋄

Any 4­regular multi­graph is Eulerian, i.e. has a Eulerian tour, since each vertex
has even degree [39].

Furthermore, any Eulerian tour on a 4­regular multi­graph 𝐹 traverses each
vertex exactly twice, except for the vertex which is both the start and the end of
the tour. Such a Eulerian tour induces therefore a double occurrence word, the
letters of which are the vertices of 𝐹, and consequently a circle graph as described
in the following definition.

Definition 4.7.7 (Induced double occurrence word). Let 𝐹 be a connected 4­
regular multi­graph on 𝑘 vertices 𝑉(𝐹). Let 𝑈 be a Eulerian tour on 𝐹 of the form

𝑈 = 𝑥1𝑒1𝑥2…𝑥2𝑘−1𝑒2𝑘−1𝑥2𝑘𝑒2𝑘𝑥1. (4.56)

with 𝑥𝑖 ∈ 𝑉. Note that every element of 𝑉 occurs exactly twice in 𝑈. From a Eulerian
tour 𝑈 as in eq. (4.56) we define an induced double occurrence word as

𝑚(𝑈) = 𝑥1𝑥2…𝑥2𝑘−1𝑥2𝑘 . (4.57)

To denote the alternance graph given by the double occurrence word induced by a
Eulerian tour, we will write 𝒜(𝑈) ≡ 𝒜(𝑚(𝑈)). ⋄

Similarly to double occurrence words, we also introduce equivalence classes of
Eulerian tours under cyclic permutation or reversal of the tour.

Definition 4.7.8 (Equivalence class of Eulerian tours). Let 𝐹 be a connected 4­
regular multi­graph and 𝑈 be an Eulerian tour on 𝐹. We say that an Eulerian tour
𝑈′ on 𝐹 is equivalent to 𝑈, i.e. 𝑈 ∼ 𝑈′, if 𝑈′ is equal to 𝑈, the reversal 𝑈̃ or any
cyclic permutation of 𝑈 or 𝑈̃. We denote by t𝑈 the equivalence class of 𝑈, i.e. the
set of Eulerian tours on 𝐹 which are equivalent to 𝑈. ⋄
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It is clear that if the Eulerian tours 𝑈 and 𝑈′ on a 4­regular multi­graph 𝐹 are
equivalent, then so are the double occurrence words 𝑚(𝑈) and 𝑚(𝑈′). Further­
more, as for double occurrence words, two equivalent Eulerian tours on a connected
4­regular multi­graph induce the same alternance graph.

4.7.3. Local complementations on circle graphs
We will now introduce an operation 𝜏𝑣 on double occurrence words that will be the
equivalent of performing a local complementation on the corresponding alternance
graph.

Definition 4.7.9 (𝜏𝑣). Let X be a double occurrence word and 𝑣 be an element in
𝑉(X). We can then always find sub­words A, B and C not containing 𝑣, such that
X = A𝑣B𝑣C. Note that some of the sub­words A, B and C are possibly empty.
The operation 𝜏𝑣 acting on a double occurrence word is then defined as

𝜏(A𝑣B𝑣C) = A𝑣B̃𝑣C. (4.58)

If v = (𝑣1, … , 𝑣𝑙) is a sequence of elements of 𝑉(X) we use the notation 𝜏v(X) =
𝜏𝑣𝑙 ∘ … ∘ 𝜏𝑣1(X). ⋄

The operation 𝜏𝑣 in the above definition maps equivalence classes to equivalence
classes, as defined in definition 4.7.2. That is, if X ∼ Y and 𝑣 ∈ 𝑉(X), then
𝜏𝑣(X) ∼ 𝜏𝑣(Y). For example, assume that Y is the mirror of X, i.e. Y = X̃. Then
we see that

𝜏𝑣(X) = A𝑣B̃𝑣C ∼ ̃A𝑣B̃𝑣C = C̃𝑣B𝑣Ã = 𝜏𝑣(Y). (4.59)

The case when Y is obtained by a cyclic permutation of X can be checked similarly.
In [36] it was shown that the alternance graph of𝒜(𝜏𝑣(X)), whereX is a double

occurrence word and 𝑣 ∈ 𝑉(X), is the same as the graph obtained by performing a
local complementation at 𝑣, i.e.

𝜏𝑣(𝒜(X)) = 𝒜(𝜏𝑣(X)). (4.60)

Similar to the above we can also define an operation 𝜏̄𝑣 on Eulerian tours 𝑈 on
4­regular multi­graphs which also has the effect of a local complementation on the
graph 𝒜(𝑈).

Definition 4.7.10 (𝜏̄𝑣). Let 𝐹 be a connected 4­regular multi­graph. Let 𝑈 be a
Eulerian tour on 𝐹 and 𝑣 be a vertex in 𝑉. Let 𝑃𝑣 be the first subtrail of 𝑈 that
starts and ends at 𝑣, i.e. 𝑈 = 𝑈1𝑃𝑣𝑈2, from some 𝑈1 and 𝑈2. We define 𝜏̄𝑣(𝑈)
to be the Eulerian tour obtained by traversing 𝑈1, the reversal of 𝑃𝑣 and then 𝑈2,
i.e. 𝜏̄𝑣(𝑈) = 𝑈1𝑃𝑣𝑈2. When v = 𝑣1…𝑣𝑙 is a sequence of vertices in 𝑉 we write
𝜏̄v(𝑈) ≡ 𝜏̄𝑣𝑙 ∘ … ∘ 𝜏̄𝑣1(𝑈). ⋄

Note in particular that 𝜏̄𝑣(𝑈), where 𝑈 is an Eulerian tour on 𝐹, is also a Eulerian
tour on 𝐹.

We have now defined 𝜏­operations on circle graphs, 𝜏­operations on double
occurrence words and 𝜏̄­operations on Eulerian tours of 4­regular multi­graphs.
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They are given similar names since they are in some sense the same operation but
in different representations of circle graphs. To see this note that

𝑚(𝜏̄𝑣(𝑈)) = 𝑚(𝑈1𝑃𝑣𝑈2) = 𝜏𝑣(𝑚(𝑈)) (4.61)

where 𝑈 = 𝑈1𝑃𝑣𝑈2 as in definition 4.7.10. From eq. (4.60) and the shorthand
𝒜(𝑈) = 𝒜(𝑚(𝑈)) we also have that

𝒜(𝜏̄𝑣(𝑈)) = 𝒜(𝜏𝑣(𝑚(𝑈))) = 𝜏𝑣(𝒜(𝑈)). (4.62)

The operation 𝜏̄𝑣 on Eulerian tours of 4­regular multi­graphs was introduced by
Kotzig in [40], where he called it a 𝜅­transformation.

As stated by Bouchet in [36], Kotzig [40] proved that any two Eulerian tours of
a 4­regular multi­graph are related by a sequence of 𝜅­transformations.

Theorem 4.7.11 (Proposition 4.1 in [36], [40]). Let 𝑈 and 𝑈′ be Eulerian tours on
the same connected 4­regular multi­graph. Then there exists a sequence v such
that 𝜏v(𝑈) ∼ 𝑈′. ⋄

4.7.4. Vertex­deletion on circle graphs
When we are considering vertex­minors of circle graphs, it is useful to have an op­
eration on the double occurrence word that corresponds to the deletion of a vertex
in the corresponding alternance graph. Let X = A𝑣B𝑣C be a double occurrence
word and 𝑣 be an element in 𝑉(X). We will denote by X ⧵ 𝑣 the deletion of the
element 𝑣, i.e.

X ⧵ 𝑣 ≡ (A𝑣B𝑣C) ⧵ 𝑣 = ABC. (4.63)

The resulting word ABC is also a double occurrence word and furthermore we have
that

𝒜(X) ⧵ 𝑣 = 𝒜(X ⧵ 𝑣). (4.64)

If 𝑊 = {𝑤1, 𝑤2… ,𝑤𝑙} is a subset of 𝑉, we will write X ⧵ 𝑊 as the deletion of all
elements in 𝑊, i.e.

X ⧵ 𝑊 = (… ((X ⧵ 𝑤1) ⧵ 𝑤2)… ) ⧵ 𝑤𝑙 . (4.65)

Connected to this we can also define an induced double occurrence sub­word
X[𝑊] = X ⧵ (𝑉 ⧵ 𝑊). The reason for calling this an induced double occurrence
sub­word stems from its relation to induced subgraphs of the alternance graph as

𝒜(X)[𝑊] = 𝒜(X[𝑊]). (4.66)

4.7.5. Vertex­minors of circle graphs
Since we now have expressions for local complementation and vertex deletion on
circle graphs in terms of double occurrence words, we can consider vertex­minors
of circle graphs completely in terms of double occurrence words. More precisely we
have the following theorem.
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Theorem 4.7.12. Let 𝐺 be a circle graph such that 𝐺 = 𝒜(X) for some double
occurrence word X. Then 𝐺′ is a vertex­minor of 𝐺 if and only if there exist a
sequence v of elements in 𝑉(𝐺) = 𝑉(X) such that

𝐺′ = 𝒜(𝜏v(X)[𝑉(𝐺′)]). (4.67)

⋄
Proof. By using eq. (4.66) and eq. (4.62) on the right hand side of eq. (4.67) we
have that

𝒜(𝜏v(X)[𝑉(𝐺′)]) = 𝒜(𝜏v(X))[𝑉(𝐺′)] = 𝜏v(𝒜(X))[𝑉(𝐺′)] (4.68)

Since 𝐺′ is a vertex­minor of 𝐺 = 𝒜(X) if and only if there exist a sequence v of
elements in 𝑉(𝐺) such that

𝐺′ = 𝜏v(𝐺)[𝑉(𝐺′)] (4.69)

the theorem follows.

We can also consider vertex minors of circle graphs in terms of their represen­
tations as Eulerian tours on connected 4­regular multi­graphs, which we will use in
section 6.2 to prove that VertexMinor is ℕℙ­Complete. Theorem 4.7.11, together
with eq. (4.62), implies that connected 4­regular multi­graphs describe equivalence
classes of circle graphs under local complementations. Bouchet pointed out this fact
in [36]. We formalize this here as a theorem together with a formal proof:

Theorem 4.7.13. Let 𝑈 be an Eulerian tour of a connected 4­regular multi­graph
𝐹 with vertices 𝑉. Then (1) any graph LC­equivalent to𝒜(𝑈) is an alternance graph
of some Eulerian tour of 𝐹 and (2) any alternance graph of a Eulerian tour of 𝐹 is
a graph LC­equivalent to 𝒜(𝑈). ⋄
Proof. We start by proving (1), so let us therefore assume that 𝐺 is a graph LC­
equivalent to 𝒜(𝑈). This means, by definition, that there exist a sequence v of
vertices in 𝑉 such that 𝐺 = 𝜏v(𝒜(𝑈)). By using eq. (4.62) we have that

𝐺 = 𝒜(𝜏̄v(𝑈)). (4.70)

which shows that 𝐺 is an alternance graph induced by a Eulerian tour of 𝐹, since
𝜏̄v(𝑈) is a Eulerian tour on 𝐹. To prove (2), assume that 𝑈′ is a Eulerian tour of 𝐹.
We will now prove that the alternance graph of 𝑈′,𝒜(𝑈′), is LC­equivalent to𝒜(𝑈).
By theorem 4.7.11, we know that there exists a sequence of 𝜏̄𝑣­transformations that
relates 𝑈 and 𝑈′, i.e. there exist a sequence v such that

𝜏̄v(𝑈) ∼ 𝑈′. (4.71)

Since these Eulerian tours are equivalent, their induced alternance graphs are equal,
i.e.

𝒜(𝜏̄v(𝑈)) = 𝒜(𝑈′). (4.72)

Finally, using eq. (4.62) on the above equation gives

𝜏v(𝒜(𝑈)) = 𝒜(𝑈′) (4.73)

which shows that 𝒜(𝑈) and 𝒜(𝑈′) are indeed LC­equivalent.
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Similarly to theorem 4.7.12 we can decide if a circle graph has a certain vertex­
minor by considering Eulerian tours of a 4­regular graph, which is captured in the
following theorem.

Theorem 4.7.14. Let 𝐹 be a connected 4­regular multi­graph and let 𝐺 be a circle
graph such that 𝒜(𝑈) for some Eulerian tour 𝑈 on 𝐹. Then 𝐺′ is a vertex­minor of
𝐺 if and only if there exist a Eulerian tour 𝑈′ on 𝐹 such that

𝐺′ = 𝒜(𝑚(𝑈′)[𝑉(𝐺′)]). (4.74)

⋄
Proof. Lets first assume that 𝐺′ is a vertex­minor of 𝐺. This means that there exists
a sequence v such that 𝐺′ = 𝜏v(𝐺)[𝑉(𝐺′)]. Since 𝐺 = 𝒜(𝑈) we have that

𝐺′ = 𝜏v(𝒜(𝑈))[𝑉(𝐺′)] (4.75)

= 𝒜(𝜏̄𝑣(𝑈))[𝑉(𝐺′)] (4.76)

= 𝒜(𝑚(𝜏̄𝑣(𝑈))[𝑉(𝐺′)]) (4.77)

where we used eq. (4.62) in the first step and eq. (4.66) in the second. We therefore
see that 𝑈′ = 𝜏̄𝑣(𝑈) is a Eulerian tour on 𝐹 satisfying eq. (4.74).

To prove the converse let us assume that there exist a Eulerian tour 𝑈′ on 𝐹
satisfying eq. (4.74). From theorem 4.7.11 we know that there exist a sequence v
such that 𝑈′ = 𝜏̄v(𝑈). We can then replace 𝑈′ by 𝜏̄v(𝑈) in eq. (4.74) such that

𝐺′ = 𝒜(𝑚(𝜏̄v(𝑈))[𝑉(𝐺′)]) (4.78)

= 𝒜(𝑚(𝜏̄v(𝑈)))[𝑉(𝐺′)] (4.79)

= 𝜏v(𝒜(𝑈))[𝑉(𝐺′)] (4.80)

where we again made use of eq. (4.66) and eq. (4.62). From eq. (4.80) we see
that 𝐺′ is indeed a vertex­minor of 𝐺, see definition 4.5.1, since 𝐺 = 𝒜(𝑈).

4.7.6. Semi­Ordered Eulerian tours
As discussed in section 4.4, the question of whether a graph state |𝐺⟩ can be trans­
formed into a GHZ­state on the qubits 𝑉′ corresponds to whether the graph 𝐺 has
vertex­minors on 𝑉′ in the form of star or complete graphs. From the previous sec­
tions we have seen that circle graphs and their vertex­minors can be described by
Eulerian tours on connected 4­regular multi­graphs. A natural question is therefore:
Given a set of vertices 𝑉′, what property should a connected 4­regular multi­graph
𝐹 satisfy, such that 𝑆𝑉′ is a vertex­minor of 𝒜(𝑈), for some Eulerian tour 𝑈 on 𝐹.
As we will see in this section, a necessary and sufficient condition is that 𝐹 allows
for what we call a semi­ordered Eulerian tour (SOET) with respect to 𝑉′.

The existence of a SOET on a 4­regular graph 𝐹 with respect to some vertex set
𝑉′ will therefore be a key technical tool when considering StarVertexMinor on
circle graphs, as described in section 6.2. We formally define this new concept of
a SOET as follows.
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Definition 4.7.15 (SOET). Let 𝐹 be a 4­regular multi­graph and let 𝑉′ ⊆ 𝑉(𝐹) be
a subset of its vertices. Furthermore, let s = 𝑠1𝑠2…𝑠𝑘 be a word with letters in
𝑉′ such that each element of 𝑉′ occurs exactly once in s and where 𝑘 = |𝑉′|. A
semi­ordered Eulerian tour 𝑈 with respect to 𝑉′ is a Eulerian tour such that 𝑚(𝑈) =
X0𝑠1X1𝑠2…𝑠𝑘X𝑘𝑠1Y1𝑠2…𝑠𝑘Y𝑘 for some s and where X0,X1, … ,X𝑘 ,Y1, … ,Y𝑘 are
words (possibly empty) with letters in 𝑉⧵𝑉′. This can also be stated as 𝑚(𝑈)[𝑉′] =
ss, for some s. ⋄

Note that the multi­graph 𝐹 is not assumed to be simple, so multi­edges and
self­loops are allowed. A SOET is a Eulerian tour on 𝐹 that traverses the elements
of 𝑉′ in some order once and then again in the same order. The particular order in
which the SOET traverses 𝑉′ will not be important here, only that it traverses 𝑉′ in
the same order twice. An example of a graph that allows for a SOET with respect
to the set 𝑉′ = {𝑎, 𝑏, 𝑐, 𝑑} can be seen in fig. 4.2a. A SOET for this graph is for
example 𝑚(𝑈) = 𝑎𝑏𝑐𝑑𝑎𝑒𝑏𝑐𝑒𝑑. The graph in fig. 4.2b on the other hand does not
allow for any SOET with respect to the set 𝑉′ = {𝑎, 𝑏, 𝑐, 𝑑}.
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Figure 4.2: Examples of two 4­regular multi­graphs. The graph in fig. 4.2a allows for a SOET with
respect to the set {𝑎, 𝑏, 𝑐, 𝑑} but the graph in fig. 4.2b does not.

We also formally define the SOET­decision problem, which takes a 4­regular
multi­graph 𝐹 and a subset 𝑉′ of the vertices as input and asks to decide whether
or not the graph 𝐹 allows for a Semi­Ordered Eulerian Tour with respect to the
vertex set 𝑉′.

Problem 4.7.16 (SOET). Let 𝐹 be a 4­regular multi­graph and let 𝑉′ be a subset
𝑉(𝐹). Decide whether there exists a SOET 𝑈 on 𝐹 with respect to the set 𝑉′. ⋄

As mentioned, the reason for introducing the notion of a SOET is that a 4­regular
multi­graph 𝐹 allows for a SOET with respect to a subset 𝑉′ ⊆ 𝑉(𝐹) if and only if
a star graph on 𝑉′ is a vertex­minor of an alternance graph 𝒜(𝑈) induced by a
Eulerian tour 𝑈 on 𝐹. This is captured in the following theorem, formulated as a
corollary of theorem 4.7.14.

Corollary 4.7.16.1. Let 𝐹 be a connected 4­regular multi­graph and let 𝐺 be a
circle graph given by the alternance graph of a Eulerian tour 𝑈 on 𝐹, i.e. 𝐺 = 𝒜(𝑈).
Then 𝑆𝑉′ is a vertex­minor of 𝐺 if and only if 𝐹 allows for a SOET with respect to
𝑉′. ⋄
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Proof. Note first that 𝑆𝑉′ ≤ 𝐺 if and only if 𝐾𝑉′ ≤ 𝐺, since 𝑆𝑉′ and 𝐾𝑉′ are LC equiv­
alent. From theorem 4.7.14 we know that 𝐾𝑉′ is a vertex­minor of 𝐺 if and only if
there exist an Eulerian tour 𝑈′ on 𝐹 such that

𝐾𝑉′ = 𝒜(𝑚(𝑈′)[𝑉′]). (4.81)

It is easy to verify that 𝒜(X) is a complete graph on 𝑉′ if and only if X = 𝑠1𝑠2…
𝑠𝑘𝑠1𝑠2…𝑠𝑘 where s = 𝑠1𝑠2…𝑠𝑘 is a word with letters in 𝑉′ such that each element
of 𝑉′ occur exactly once in s. The result then follows, since 𝑚(𝑈′)[𝑉′] is of this
form if and only if 𝑈′ is a SOET with respect to 𝑉′.

One can see that the existence of a SOET on a 4­regular multi­graph 𝐹 with
respect to 𝑉′, imparts an ordering on the subset of vertices 𝑉′. We will in particu­
lar be interested in vertices in 𝑉′ that are ‘consecutive’ with respect to the SOET.
Consecutiveness is defined as follows.

Definition 4.7.17 (Consecutive vertices). Let 𝐹 be a 4­regular graph and 𝑈 a
SOET on 𝐹 with respect to a subset 𝑉′ ⊆ 𝑉(𝐹). Two vertices 𝑢, 𝑣 ∈ 𝑉′ are called
consecutive in 𝑈 if there exist a sub­word 𝑢X𝑣 or 𝑣X𝑢 of 𝑚(𝑈) such that no letter
of X is in 𝑉′. ⋄

We also define the notion of a “maximal sub­word” associated with two consec­
utive vertices.

Definition 4.7.18 (Maximal sub­words). Let 𝐹 be a 4­regular multi­graph and 𝑈
a SOET on 𝐹 with respect to a subset 𝑉′ ⊆ 𝑉(𝐹). The double occurrence word
induced by 𝑈 is then of the form 𝑚(𝑈) = X0𝑠1X1𝑠2…𝑠𝑘X𝑘𝑠1Y1𝑠2…𝑠𝑘Y𝑘, where
𝑘 = |𝑉′|, 𝑠1, … , 𝑠𝑘 ∈ 𝑉′ and 𝑋0, … , 𝑋𝑘 , 𝑌1, … , 𝑌𝑘 are words (possibly empty) with
letters in 𝑉(𝐹) ⧵ 𝑉′. For 𝑖 ∈ [𝑘 − 1], we call X𝑖 and Y𝑖 the two maximal sub­words
associated with the consecutive vertices 𝑠𝑖 and 𝑠𝑖+1. Furthermore, we call X𝑘 and
Y𝑘X0 the two maximal sub­words associated with the consecutive vertices 𝑠𝑘 and
𝑠1. Given two consecutive vertices 𝑢 and 𝑣, we will denote their two maximal
sub­words as X and X′, Y and Y′ or similar. ⋄

4.8. Leaves, twins and axils
In this section we will consider certain vertices called leaves, twins and axils. First
we will prove that such vertices can in many cases be removed when considering
the vertex­minor problem, which can simplify the problem significantly. We capture
this in theorem 4.8.4. This motivates us to consider distance­hereditary graphs,
since it turns out that these are exactly the graphs that can be reached from a
single­vertex graph by adding leaves or performing twin­splittings. These graphs
therefore always have at least one leaf or twin. We will leverage these properties in
section 6.3.1 to find an efficient algorithm for StarVertexMinor when the input
graph is distance hereditary. We define and consider distance­hereditary graphs in
section 4.8.1.

Let us first formally define leaves, twins and axils.
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Definition 4.8.1 (Leaves and axils). A leaf is vertex with degree one. An axil is
the unique neighbor of a leaf. ⋄

Definition 4.8.2 (Twin). A twin is a vertex 𝑣 such that there exist a different vertex
𝑢 with the same neighborhood, i.e. 𝑣 is a twin if and only if

∃𝑢 ∈ 𝑉 ⧵ {𝑣} ∶ (𝑁𝑣 ⧵ {𝑢} = 𝑁𝑢 ⧵ {𝑣}). (4.82)

A vertex 𝑢 as in eq. (4.82) is called a twin­partner of 𝑣 and 𝑣, 𝑢 form a twin­pair. If
𝑣 and 𝑢 are adjacent, they form a true twin­pair and otherwise a false twin­pair. ⋄

Definition 4.8.3 (Foliage). The foliage of a graph 𝐺 is the set of leaves, axils and
twins in a graph 𝐺 and is denoted

𝑇(𝐺) = {𝑣 ∈ 𝑉(𝐺) ∶ 𝑣 is a leaf, axil or twin} (4.83)

⋄

We are now ready to prove the following theorem which can be used to sim­
plify some instances of VertexMinor, in particular when considering distance­
hereditary graphs, see section 4.8.1.

Theorem 4.8.4. Let 𝐺 be a graph, 𝐺′ be a connected graph and 𝑣 be a vertex in
𝐺 but not in 𝐺′. Then the following is true:

• If 𝑣 is a leaf or a twin, then 𝐺′ is a vertex­minor of 𝐺 if and only if 𝐺′ is a
vertex­minor of 𝐺 ⧵ 𝑣, i.e.

𝐺′ < 𝐺 ⇔ 𝐺′ < (𝐺 ⧵ 𝑣). (4.84)

• If 𝑣 is an axil, then 𝐺′ is a vertex­minor of 𝐺 if and only if 𝐺′ is a vertex­minor
of 𝜏𝑤 ∘ 𝜏𝑣(𝐺) ⧵ 𝑣, where 𝑤 is the leaf associated to 𝑣, i.e.

𝐺′ < 𝐺 ⇔ 𝐺′ < (𝜏𝑤 ∘ 𝜏𝑣(𝐺) ⧵ 𝑣). (4.85)

⋄

Proof. Firstly, if 𝐺′ is a vertex­minor of 𝐺 ⧵ 𝑣, then clearly 𝐺′ is also a vertex­minor
of 𝐺.

This means we only need to prove the other direction. Assume therefore that
𝐺′ is a vertex­minor of 𝐺. We start by proving the case where 𝑣 is a leaf in 𝐺. The
cases where 𝑣 is an axil or a twin in 𝐺 then follow by a short argument.

Hence assume that 𝑣 is a leaf in 𝑉 ⧵ 𝑉′, where 𝑉 = 𝑉(𝐺) and 𝑉′ = 𝑉(𝐺′).
Furthermore, let u be a sequence of vertices such that each element of 𝑉⧵𝑉′ occurs
exactly once in u. Since 𝐺′ is a vertex­minor of 𝐺, we know by theorem 4.5.3 that
there exists some sequence of operations 𝑃 ∈ 𝒫u, such that 𝑃(𝐺) ∼LC 𝐺′. Let us
denote the 𝑖­th operation in 𝑃 as 𝑃(𝑖), such that 𝑃 = 𝑃(𝑛−𝑘) ∘…∘𝑃(1), where 𝑛 = |𝐺|
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and 𝑘 = |𝐺′|. Remember that each operation 𝑃(𝑖) deletes the 𝑖­th vertex of u from
the graph. Furthermore, let’s denote the sequence of operations from 𝑖 through 𝑗
in 𝑃 as

𝑃𝑗𝑖 = 𝑃(𝑗) ∘ …𝑃(𝑖+1) ∘ 𝑃(𝑖). (4.86)
By corollary 4.5.3.1 we know that such a 𝑃 exist for all orderings u of the vertices
in 𝑉 ⧵ 𝑉′. Without loss of generality we can assume that 𝑣 is the first element in u.
This means that 𝑃(1) is either 𝑍𝑣, 𝑌𝑣 or 𝑋𝑣. We will now treat all three these cases
separately.

If 𝑃(1) is 𝑍𝑣 or 𝑌𝑣, then since 𝑣 is a leaf we have that
𝑃(1)(𝐺) = 𝐺 ⧵ 𝑣. (4.87)

Then it is easy to see that 𝐺′ is also a vertex­minor of 𝐺 ⧵ 𝑣, since
𝐺′ ∼LC 𝑃(𝐺) = 𝑃𝑛−𝑘2 ∘ 𝑃(1)(𝐺) = 𝑃𝑛−𝑘2 (𝐺 ⧵ 𝑣) (4.88)

If 𝑃(1) is 𝑋𝑣 then the axil of 𝑣 cannot be in 𝑉⧵𝑉′, since the operation 𝑋𝑣 on a leaf
disconnects the axil from its neighbors. Lets denote the axil of 𝑣 by 𝑤 and assume
again w.l.o.g. that the ordering of 𝑉 ⧵𝑉′ is such that 𝑤 is the second element of u.
Since 𝑤 is a disconnected vertex after 𝑃(1), any of the three operations {𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤}
act the same, i.e. deleting 𝑤. So the action of 𝑋𝑣 followed by 𝑃(2) ∈ {𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤} is
the same as deleting both 𝑣 and 𝑤 or in other words

𝑃21 (𝐺) = 𝑍𝑤(𝐺 ⧵ 𝑣) (4.89)

It is again clear that 𝐺′ is then a vertex­minor of 𝐺 ⧵ 𝑣, since
𝐺 ∼LC 𝑃(𝐺) = 𝑃𝑛−𝑘3 ∘ 𝑃21 (𝐺) = 𝑃𝑛−𝑘3 ∘ 𝑍𝑤(𝐺 ⧵ 𝑣) (4.90)

with a satisfying sequence taking 𝐺 ⧵ 𝑣 to an LC­equivalent graph of 𝐺′ being
(𝑍𝑤 , 𝑃(3), … , 𝑃(𝑛−𝑘)). This proves the theorem when 𝑣 is a leaf.
Now assume that 𝑣 is a twin in 𝐺. To prove that the theorem also hold for twins,
we first show that a twin can always be transformed into a leaf by local comple­
mentations. Assume that 𝑣 and 𝑤 are false twins, and denote one of their common
neighbors as 𝑛.5 Then the graph 𝐺̃ = 𝜏𝑤 ∘ 𝜏𝑛(𝐺) is a graph where 𝑣 is a leaf and
𝑤 is an axil. Since LC­equivalent graphs have the same vertex­minors, 𝐺′ is also a
vertex­minor of 𝐺̃. From what we showed above and that 𝑣 is a leaf, 𝐺′ is also a
vertex­minor of 𝐺̃ ⧵ 𝑣. Finally, 𝐺′ is then also a vertex­minor of

𝜏𝑛 ∘ 𝜏𝑤(𝐺̃ ⧵ 𝑣) = 𝜏𝑛 ∘ 𝜏𝑤 ∘ 𝜏𝑤 ∘ 𝜏𝑛(𝐺) ⧵ 𝑣 = 𝐺 ⧵ 𝑣 (4.91)

where we used lemma 4.4.7. An almost identical argument can be made for the
case where 𝑣 and 𝑤 are true twins by considering the graph 𝐺̃ = 𝜏𝑤(𝐺).

Now assume 𝑣 is an axil in 𝐺. If 𝑣 is an axil in 𝐺 and 𝑣 ∉ 𝐺′, then 𝑣 is a leaf in
the graph 𝐺̃ = 𝜏𝑤 ∘𝜏𝑣(𝐺), where 𝑤 is the leaf of 𝑣 in 𝐺. Since by assumption 𝐺′ < 𝐺,
we know that 𝐺′ < 𝐺̃ and from the cases of leaves we have that also 𝐺′ < 𝐺̃ ⧵ 𝑣,
since 𝑣 is a leaf in 𝐺̃. This completes the proof.
5Note that twins always have at least one common neighbor, except for the graph 𝐾2 where the twins
are anyway also leaves.
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4.8.1. Distance­hereditary graphs
In this section we introduce distance­hereditary graphs. As shown by Bouchet
in [41], distance­hereditary graphs are exactly the graphs with rank­width one.
These graphs have nice properties which we make use of in section 6.3.1.

Definition 4.8.5 (Distance­hereditary). A graph 𝐺 is distance­hereditary if and
only if, for each connected induced subgraph 𝐺[𝐴] and for any two vertices 𝑢, 𝑣 ∈ 𝐴
the distance between 𝑢 and 𝑣 is the same in 𝐺 and in 𝐺[𝐴], i.e.

𝑑𝐺(𝑢, 𝑣) = 𝑑𝐺[𝐴](𝑢, 𝑣). (4.92)

⋄
Trees, i.e. graphs without loops, is clearly a direct subset of distance­hereditary

graphs. The simplest example of a graph which is not distance­hereditary is the
five­cycle 𝐶5. To see this pick two vertices which have distance two in 𝐶5 and denote
their unique common neighbor by 𝑣. The distance between the same vertices in
the connected induced subgraph 𝐶5[𝑉 ⧵ 𝑣] is three and thus not the same as in
𝐶5. It turns out that distance­hereditary graphs are exactly the graphs which do
not contain a vertex­minor isomorphic to 𝐶5 [36]. We also note that distance­
hereditary graphs form a strict subclass of circle graphs [36]. This has been shown
before [36], but we provide a simple proof here for completeness.

Theorem 4.8.6. Any distance­hereditary graph is also a circle graph. ⋄
Proof. We will prove this by instead proving the contrapositive statement, i.e. if
a graph is not a circle graph then it is not a distance­hereditary graph. In [36]
Bouchet proved that a graph is not a circle graph if and only if it has a vertex­minor
isomorphic to one of the graphs in fig. 4.3. Similarly, a graph is not distance­
hereditary if and only if it has a vertex­minor isomorphic to the 5­cycle 𝐶5 [36, 42].
Since each graph in fig. 4.3 has a vertex­minor isomorphic to 𝐶5, this shows that if
a graph is not a circle graph then it is also not distance­hereditary.

Note that distance­hereditary graphs are a proper subset of circle graphs, i.e.
there are graphs which are circle graphs but not distance­hereditary. For example
𝐶5 is such a graph.
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Figure 4.3: A graph is not a circle graph if and only if it has one of these three graphs as a vertex­minor.
In [36] this is called a complete set of circle graph obstructions.

In [42] an equivalent property of distance­hereditary is shown: A graph is
distance­hereditary if and only if it can be obtained from a single­vertex graph
using the following three operations:
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• Add a leaf: Let 𝑢 be a vertex in a graph 𝐺. Add the vertex 𝑣 and the edge
(𝑢, 𝑣) to 𝐺.

• False twin­split: Let 𝑢 be a vertex in a graph 𝐺. Add the vertex 𝑣 and the
edges {(𝑣, 𝑥) ∶ 𝑥 ∈ 𝑁𝑢}.

• True twin­split: Let 𝑢 be a vertex in a graph 𝐺. Add the vertex 𝑣 and the
edges {(𝑣, 𝑥) ∶ 𝑥 ∈ {𝑢} ∪ 𝑁𝑢}.

Note that this implies that a distance­hereditary graph always has at least one
leaf or twin, i.e. the foliage is non­empty. This fact will be a critical element of the
algorithm presented in section 6.3.1.

We will now show that we can in fact rephrase this using only the operations of
local complementation and adding leaves. Formally we have the following theorem.

Theorem 4.8.7. A graph 𝐺 is distance­hereditary if and only if it can be built using
only the operations of (1) local complementations and (2) adding leaves, starting
from a graph with a single vertex. ⋄

Proof. The property of being distance­hereditary is invariant under local comple­
mentations and clearly also from adding leaves. Thus we directly see that the
property that a graph can be built by the operations above is a sufficient condition
for a graph being distance­hereditary. We will now prove that it is also a necessary
condition.

We know (from [42]) that a necessary (and sufficient) condition for a graph
being distance­hereditary is that it can be built using only the three operations
above. We now show that any of these operations can be performed using local
complementations and adding leaves, from which the theorem follows:

1. Add a leaf: Trivial.

2. True twin­split Assume that the original graph is 𝐺 and that vertex 𝑢 is split
into a true twin pair with 𝑣. The same graph can be reached by the following
sequence of operations

(a) Local complementation on 𝑢.
(b) Add leaf 𝑣 with neighbor 𝑢.
(c) Local complementation on 𝑢.

3. False twin­split Assume that the original graph is 𝐺 and that vertex 𝑢 is split
into a false twin pair with 𝑣 and that 𝑤 is a common neighbor of 𝑢 and 𝑣.
Note that 𝑤 must exist if |𝐺| > 1 and the case of |𝐺| = 1 is trivial. The same
graph can be reached by the following sequence of operations

(a) Local complementation on 𝑤.
(b) Split 𝑢 into a true twin pair with 𝑣.
(c) Local complementation on 𝑤.
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Note that we already proved above that performing true twin splits can be
performed with local complementations and adding leaves.

In the rest of this section we prove some properties of the foliage for distance­
hereditary graphs, which we make use of in section 6.3.1 to find an efficient algo­
rithm for VertexMinor on distance­hereditary graphs. First we show that the twin
relation is in fact transitive. This is a technical lemma we will use in later theorems.

Lemma 4.8.8. Let 𝐺 be a graph and let 𝑢 be a vertex of 𝐺 that is a twin and has
twin­partners {𝑡1, 𝑡2, … , 𝑡𝑘}. Then all vertices in 𝑢 ∪ {𝑡1, 𝑡2, … , 𝑡𝑘} are pairwise twins.
⋄

Proof. Since 𝑢 and 𝑡𝑖 form a twin­pair, for 𝑖 ∈ {1, 2, … , 𝑘}, we have that

𝑁𝑢 ⧵ {𝑡𝑖} = 𝑁𝑡𝑖 ⧵ {𝑢} (4.93)

which implies that
𝑁𝑡𝑖 = (𝑁𝑢 ⧵ {𝑡𝑖}) ∪ {𝑢}. (4.94)

Thus, we have that

𝑁𝑡𝑖 ⧵ {𝑡𝑗} = ((𝑁𝑢 ⧵ {𝑡𝑖}) ∪ {𝑢}) ⧵ {𝑡𝑗} (4.95)

= ((𝑁𝑢 ⧵ {𝑡𝑗})⏝⎵⎵⏟⎵⎵⏝
𝑁𝑡𝑗⧵{𝑢}

∪{𝑢}) ⧵ {𝑡𝑖} (4.96)

= 𝑁𝑡𝑗 ⧵ {𝑡𝑖}. (4.97)

This shows that, for 𝑖 ≠ 𝑗, 𝑡𝑖 and 𝑡𝑗 form a twin­pair.

Next we prove that adding leaves to a graph 𝐺 or performing (true or false)
twin­splits never decreases the size of the foliage 𝑇(𝐺).

Lemma 4.8.9. Assume 𝐺 is a connected, distance­hereditary graph. Let 𝐺′ be a
graph formed by doing a twin­split on 𝐺 or adding a leaf to 𝐺. Then

|𝑇(𝐺′)| ≥ |𝑇(𝐺)|, (4.98)

where 𝑇(𝐺) is the foliage of 𝐺. ⋄

Proof. To prove this, let us first consider the case when |𝐺| ≤ 2. Since 𝐺 is con­
nected it is necessary the case that 𝐺 = 𝐾1 or 𝐺 = 𝐾2:

• If 𝐺 = 𝐾1, then 𝐺′ = 𝐾2 and |𝑇(𝐺′)| = 2 ≥ 0 = |𝑇(𝐺)|.

• If 𝐺 = 𝐾2, then 𝐺′ = 𝐾3 or 𝐺′ = 𝑃3 and |𝑇(𝐺′)| = 3 ≥ 2 = |𝑇(𝐺)|.

Let’s now consider the case when |𝐺| > 2. We consider the two cases when 𝐺′ is
formed by adding a leaf and performing a twin­split separately:
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• Assume 𝐺′ is formed by adding a leaf 𝑣 to 𝐺, making 𝑢 an axil of 𝐺′.Note
first that if 𝑢 ∉ 𝑇(𝐺), then |𝑇(𝐺)| can only increase since no vertex in 𝑇(𝐺)
was affected. Let’s therefore assume that 𝑢 ∈ 𝑇(𝐺). There are then three
possibilities: (1) 𝑢 is a leaf, (2) 𝑢 is an axil but not a twin and (3) 𝑢 is a twin.
We consider these three cases separately:

– (1) Assume 𝑢 is a leaf in 𝐺. Then the axil of 𝑢 in 𝐺, is not in 𝑇(𝐺′), but
both 𝑢 and 𝑣 are. Therefore |𝑇(𝐺)| = |𝑇(𝐺′)|.

– (2) Assume 𝑢 is an axil but not a twin in 𝐺. Then 𝑢 is also an axil in 𝐺′
and we have that |𝑇(𝐺′)| = |𝑇(𝐺)| + 1.

– (3) Assume 𝑢 is a twin in 𝐺.
⋄ Assume there is only one twin­pair containing 𝑢 in 𝐺. Then the twin­
partner of 𝑢 in 𝐺, is not in 𝑇(𝐺′), but both 𝑢 and 𝑣 are. Therefore
|𝑇(𝐺′)| = |𝑇(𝐺)|.

⋄ Assume there is more than one twin­pair containing 𝑢 in 𝐺. Then
the twin­partners of 𝑢 are all pairwise twins, by lemma 4.8.8, and
will still be in 𝐺′. Therefore |𝑇(𝐺′)| = |𝑇(𝐺)| + 1.

• Assume 𝐺′ is formed by twin­splitting 𝑢 in 𝐺, creating 𝑣 and making 𝑣 and 𝑢
a twin­pair. Note first that if 𝑢 ∉ 𝑇(𝐺), then |𝑇(𝐺)| can only increase since no
vertex in 𝑇(𝐺) was affected. Let’s therefore assume that 𝑢 ∈ 𝑇(𝐺). There are
then three possibilities: (1) 𝑢 is a leaf, (2) 𝑢 is an axil but not a twin and (3)
𝑢 is a twin. We consider these three cases separately:

– (1) Assume 𝑢 is a leaf in 𝐺. Then the axil of 𝑢 in 𝐺 is either still an axil
in 𝐺′ or not, depending on if 𝑢 and 𝑣 are true or false twins. In either
case, |𝑇(𝐺′)| ≥ |𝑇(𝐺)| since 𝑣 ∈ 𝑇(𝐺′).

– (2) Assume 𝑢 is an axil but not a twin in 𝐺. Note that all leaves with 𝑢
as an axil in 𝐺 are also twins. These vertices are also twins in 𝐺′ since
they are all now also adjacent to 𝑣. Thus, |𝑇(𝐺′)| = |𝑇(𝐺)| + 1.

– (3) Assume 𝑢 is a twin in 𝐺.
⋄ Assume there is only one twin­pair in 𝐺 containing 𝑢. Then the twin­
partner of 𝑢 in 𝐺, may or may not still be a twin­partner of 𝑢 in 𝐺′
depending on whether the considered twin­pairs are true or false.
Therefore the size of 𝑇(𝐺) either remains the same or increases by
one since again 𝑣 ∈ 𝑇(𝐺′).

⋄ Assume there are more than one twin­pair in 𝐺 containing 𝑢. Then
the twin­partners of 𝑢 are all pairwise twins, by lemma 4.8.8, and
will still be in 𝐺′. Therefore |𝑇(𝐺′)| = |𝑇(𝐺)| + 1.

We now make use of the above theorem to prove that the foliage has a certain
minimum size.
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Theorem 4.8.10. Assume 𝐺 is a connected, distance­hereditary graph and 2 ≤
𝑘 ≤ 4, then

|𝐺| ≥ 𝑘 ⇒ |𝑇(𝐺)| ≥ 𝑘. (4.99)

⋄

Proof. First we explicitly check that the graphs on 2, 3 and 4 vertices has 𝑇(𝐺) = 2,
𝑇(𝐺) = 3 and 𝑇(𝐺) = 4, respectively.6 Then by lemma 4.8.9 and the fact that all
distance­hereditary graphs can be built up by twin­splits and adding leaves [41],
the result follows.

We point out that the theorem does not hold for 𝑘 > 4. Consider for example a
path graph 𝑃𝑘 on more than four vertices. It is easy to see that size of the foliage
in this case is |𝑃𝑘| = 4.

Finally we show that an interesting property regarding the foliage, in relation to
cut­vertices.7

Corollary 4.8.10.1. Assume that 𝐺 is a connected distance­hereditary graph and
that 𝑣 ∈ 𝐺 is a cut­vertex. Denote the connected components of 𝐺⧵𝑣 by 𝐺1, 𝐺2, … , 𝐺𝑘,
where 𝑘 is the number of connected components of 𝐺 ⧵ 𝑣. Then for any 1 ≤ 𝑖 ≤ 𝑘,
there exist a vertex 𝑢 ∈ 𝐺𝑖 such that 𝑢 ∈ 𝑇(𝐺). ⋄

Proof. Pick an arbitrary connected component 𝐺𝑖 with vertices 𝑉𝑖. If 𝐺𝑖 is just a
single vertex, then this vertex is necessarily a leaf in 𝐺 and is therefore in 𝑇(𝐺).
Now assume that |𝐺𝑖| > 1, then by using theorem 4.8.10, we have that there exist
at least one twin­pair not containing 𝑣 or a leaf which is not 𝑣 in 𝐺[{𝑣} ∪ 𝑉𝑖]. This
proves the corollary.
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5
Transforming graph states

using single­qubit operations

Axel Dahlberg, Stephanie Wehner

Stabilizer states form an important class of states in quantum information,
and are of central importance in quantum error correction. Here, we pro­
vide an algorithm for deciding whether one stabilizer ( target) state can be
obtained from another stabilizer (source) state by single­qubit Clifford oper­
ations (LC), single­qubit Pauli measurements (LPM), and classical communi­
cation (CC) between sites holding the individual qubits. What’s more, we
provide a recipe to obtain the sequence of LC + LPM + CC operations which
prepare the desired target state from the source state, and show how these
operations can be applied in parallel to reach the target state in constant time.
Our algorithm has applications in quantum networks, quantum computing,
and can also serve as a design tool ­ for example, to find transformations
between quantum error correcting codes. We provide a software implemen­
tation of our algorithm that makes this tool easier to apply.
A key insight leading to our algorithm is to show that the problem is equiv­
alent to one in graph theory, which is to decide whether some graph 𝐺′ is a
vertex­minor of another graph 𝐺. The vertex­minor problem is in general ℕℙ­
Complete, but can be solved efficiently on graphs which are not too complex.
A measure of the complexity of a graph is the rank­width which equals the
Schmidt­rank width of a subclass of stabilizer states called graph states,
and thus intuitively is a measure of entanglement. Here we show that the

Parts of this chapter have been published in Phil. Trans. R. Soc. [1].
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vertex­minor problem can be solved in time 𝑂(|𝐺|3) where |𝐺| is the size of
the graph 𝐺, whenever the rank­width of 𝐺 and the size of 𝐺′ are bounded.
Our algorithm is based on techniques by Courcelle for solving fixed parame­
ter tractable problems, where here the relevant fixed parameter is the rank
width. The second half of this chapter serves as an accessible but far from
exhausting introduction to these concepts, that could be useful for many other
problems in quantum information.
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5.1. Introduction

M otivated by the previous chapter we now proceed to study the computational
complexity of VertexMinor and therefore of QubitMinor. The computa­

tional complexity of these problems was, to the authors’ knowledge, previously
unknown. In chapter 6 we show that this decision problem is in fact ℕℙ­Complete.
There is therefore no efficient algorithm that solves this question in general, un­
less ℙ = ℕℙ. In this chapter on the other hand we show that is is fixed­paramter
tractable by using techniques by Courcelle which we will review.

5.1.1. Results
Here, we show that QubitMinor can be solved in cubic time in the number of
qubits of |𝐺⟩ on instances where the Schmidt­rank width of |𝐺⟩ and the number of
qubits of |𝐺′⟩ are bounded1. This is our first main result which we formally state in
theorem 5.1.1 and prove in section 5.4.3.

Theorem 5.1.1. There exists an algorithm that decides if |𝐺′⟩ is a qubit­minor of
|𝐺⟩, and therefore if 𝐺′ is a vertex­minor of 𝐺, and has running time

𝒪(𝑓(|𝐺′|, 𝑟) ⋅ |𝐺|3), (5.1)

where 𝑟 is the rank­width of 𝐺 which is equal to the Schmidt­rank width of |𝐺⟩, |𝐺|
denotes the number of vertices in the graph 𝐺 and 𝑓 is some computable function.
If conjecture 5.4.2 is true then there exists an algorithm to the same problem but
with running time

𝒪(𝑓(𝑟) ⋅ |𝐺|3). (5.2)

⋄

Our second main result concerns GHZ­states, which are useful for many appli­
cations on a quantum network and is therefore an important target state. One can
easily check that the state |GHZ⟩𝑈 is single­qubit Clifford equivalent to the graph
state |𝐾𝑈⟩, where 𝐾𝑈 is the complete graph with vertex­set 𝑈. It is therefore the
case that |GHZ⟩𝑈 can be mapped from |𝐺⟩ by LC + LPM + CC if and only if |𝐾𝑈⟩
is a qubit­minor of |𝐺⟩. We show that this question can be solved efficiently if the
Schmidt­rank width of |𝐺⟩ is bounded, as captured in theorem 5.1.2 and proven in
section 5.4.3.

Theorem 5.1.2. There exists an algorithm that decides if |𝐾𝑈⟩ is a qubit­minor of
|𝐺⟩, and therefore if 𝐾𝑈 is a vertex­minor of 𝐺 and has running time

𝒪(𝑓(𝑟) ⋅ |𝐺|3), (5.3)

where 𝑟 is the rank­width of 𝐺 which is equal to the Schmidt­rank width of |𝐺⟩, |𝐺|
denotes the number of vertices in the graph 𝐺 and 𝑓 is some computable function.
⋄
1Note that the time­dependence on the size of 𝐺′ can be removed if conjecture 5.4.2 is true.
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Note in particular that the running time in theorem 5.1.2 does not depend on
𝑈, even if conjecture 5.4.2 is false. Similarly to theorem 5.1.2 one can also decide
if a graph state has a qubit­minor on a subset 𝑈 with a given property2, efficiently
on graph states with bounded Schmidt­rank width, see theorem 5.4.5.

Both of the two main results, theorem 5.1.1 and theorem 5.1.2, rely on a variant
of Courcelle’s theorem, which we describe more in detail in section 5.4. Courcelle’s
theorem states that a large class of graph problems are fixed­parameter tractable.
This means that there exist algorithms for these problems which are efficient in the
size of the input graphs, provided a certain parameter of these graphs is bounded.
This is a very powerful theorem, but a direct implementation of the algorithm given
by Courcelle’s theorem is not useful in practice. The reason being that even though
the algorithm is efficient, the hidden constant factor of the algorithm’s asymptotic
runtime is huge. This huge constant factor is unavoidable since the theorem is so
general and captures many ℕℙ­Complete problems. On the other hand, by knowing
that a problem can be efficiently solved, one can usually find a more tailored efficient
algorithm for the problem at hand, that does not have a huge hidden constant in
the runtime. In chapter 6, we provide an efficient algorithm without a huge hidden
constant for the problem of deciding whether |𝐾𝑈⟩ is a qubit­minor of some graph
|𝐺⟩, if |𝐺⟩ has Schmidt­rank width one. There are also many other approaches
to find practical algorithms for problems captured by Courcelle’s theorem, see for
example [2] or [3].

We have implemented many of the concepts and algorithms mentioned in this
chapter in SAGE [4] and MONA [5]. Both the code in SAGE and MONA can be
freely accessed from the git­repository at [6]. The functionalities provided by this
repository include:

• A function taking two graphs, 𝐺 and 𝐺′, as input and returns True if the graph
states |𝐺⟩ and |𝐺′⟩ are equivalent under single­qubit Clifford operations and
otherwise returns False. The function has a runtime of 𝒪(|𝐺|4) and is an
implementation of the algorithm described in [7, 8].

• A function taking two graphs, 𝐺 and 𝐺′, as input and returns a sequence
of operations that takes |𝐺⟩ to a graph state which is single­qubit Clifford
equivalent to |𝐺′⟩, if |𝐺′⟩ < |𝐺⟩ and otherwise returns False. This function
uses a more sophisticated version of the non­efficient algorithm described in
section 5.2.

• A function taking a graph 𝐺 and a set 𝑈 as input and either returns a sequence
of operations that takes |𝐺⟩ to a graph state which is single­qubit Clifford
equivalent to |𝐾𝑈⟩ and therefore |GHZ⟩𝑈 or returns False. If the function
returns False and 𝐺 has rank­width one, then |𝐾𝑈⟩ ≮ |𝐺⟩ as we show in
chapter 6. The runtime of this function is 𝒪(|𝑈||𝐺|3).

• As described in section 5.4 one can express whether |𝐺′⟩ < |𝐺⟩ in a logic
called monadic second­order logic. We have implemented the expression for

2Expressible in C2MS.
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|𝐺′⟩ < |𝐺⟩ in MONA which is a software to translate such logic expressions to
finite­state automata. This can then be used to construct efficient algorithms
for graphs of bounded rank­width.

5.1.2. Overview
We start by providing a non­efficient but correct algorithm for deciding the vertex­
minor problem, taking any graph as input, in section 5.2. Note that such an algo­
rithm is necessarily non­efficient, unless ℙ = ℕℙ, since the problem it solves is in
general ℕℙ­Complete. Furthermore, we describe how the corresponding operations
on the graph states can be applied in constant time in section 5.3. In section 5.4 we
provide an efficient algorithm for graphs with bounded rank­width by making use
of monadic second­order logic and Courcelle’s theorem. It is our intention that this
section can also be used as a short introduction for those not familiar with these
concepts.

5.2. A non­efficient but general algorithm
Here we describe an algorithm that decides if 𝐺′ is a vertex­minor of 𝐺 and re­
turns a sequence of local complementations 𝑚 such that 𝜏𝑚(𝐺)[𝑉(𝐺′)] ∼LC 𝐺′ if
such a sequence exists. We will use same notation and terminology as introduced
in chapter 4. This algorithm works for any 𝐺 and 𝐺′ and has a running time of
𝒪(3𝑛−𝑘(𝑘4 + (𝑛 − 𝑘)𝑛2), where 𝑘 = |𝐺′| and 𝑛 = |𝐺|. Obviously this algorithm is
not efficient, due to the exponential scaling in the size­difference of the graphs, but
is still useful for smaller graphs or when 𝑛−𝑘 is bounded. For finite 𝑛, the algorithm
described in this section is also a useful benchmark for the efficient algorithm de­
scribed in section 5.4 for graphs of bounded rank­width. In appendix B.1 we show
how the runtime of this algorithm can be slightly improved.

From theorem 4.5.3 we see that to check if 𝐺′ is a vertex­minor of 𝐺 it is sufficient
to check if one of the graphs in

{𝑃(𝐺) ∶ 𝑃 ∈ 𝒫𝑉(𝐺)⧵𝑉(𝐺′)} (5.4)

are LC­equivalent to 𝐺′. Note that there are possibly 3|𝑉(𝐺)⧵𝑉(𝐺′)| graphs in the set
in equation (5.4) to check. As mentioned earlier it is possible to check whether two
graphs are LC­equivalent in time O(𝑘4), where 𝑘 is the size of the graphs. The
explicit algorithm for checking if 𝐺′ is a vertex­minor of 𝐺 is stated in algorithm 5.1
and theorem 5.2.1 captures the proof that it is correct and what its running time is.

Theorem 5.2.1. Algorithm 5.1 returns a sequencem such that 𝜏m(𝐺)[𝑉(𝐺′)] ∼LC
𝐺′ if 𝐺′ < 𝐺 and returns ⊥ if 𝐺′ ≮ 𝐺. Furthermore the runtime is 𝒪(3𝑛−𝑘(𝑘4 + (𝑛 −
𝑘)𝑛2), where 𝑘 = |𝐺′| and 𝑛 = |𝐺|. ⋄
Proof. We first prove that the algorithm is correct. Since the algorithm calls itself
recursively with the three graphs as in in line 13, 17 and 21 it will generate all the
graphs in equation (5.4). That is, the graphs tested for LC­equivalence against 𝐺′
in line 6 are exactly the graphs in equation (5.4). Furthermore, if at least one of
the base­cases, i.e. line 5­10, return an empty sequence then the top­level call to
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Algorithm 5.1 Non­efficient algorithm that decides if 𝐺′ < 𝐺.
Input: (𝐺,𝐺′).
Output: A sequence m such that 𝜏m(𝐺)[𝑉(𝐺′)] ∼LC 𝐺′ if 𝐺′ < 𝐺.

⊥ if 𝐺′ ≮ 𝐺.
1: function is_vm(𝐺,𝐺′)
2: if 𝑉(𝐺′) ⊈ 𝑉(𝐺) then
3: return ⊥
4: end if
5: if 𝑉(𝐺) = 𝑉(𝐺′) then
6: if 𝐺 ∼LC 𝐺′ then
7: return [] # Return an empty sequence
8: else
9: return ⊥
10: end if
11: else
12: Let 𝑣 be a vertex in 𝑉(𝐺) ⧵ 𝑉(𝐺′)
13: Let m = is_vm(𝑍𝑣(𝐺))
14: if m ≠ ⊥ then
15: return m
16: else
17: Let m = is_vm(𝑌𝑣(𝐺))
18: if m ≠ ⊥ then
19: return m ∥ [𝑣] # Concat. [𝑣] to m, return.
20: else
21: Let 𝑢 be a vertex incident to 𝑣 in 𝐺
22: Let m = is_vm(𝑋𝑣(𝐺))
23: if m ≠ ⊥ then
24: return m ∥ [𝑢, 𝑣, 𝑢] # Concat. [𝑢, 𝑣, 𝑢] to m, return.
25: else
26: return ⊥
27: end if
28: end if
29: end if
30: end if
31: end function

the algorithm will return a sequence m such that 𝜏m(𝐺)[𝑉(𝐺′)] ∼LC 𝐺′. On the
other hand, if all of the base­cases returns ⊥ then the top­level call returns ⊥. By
theorem 4.5.3 it follows that the algorithm is correct.

Let’s now consider the runtime of the algorithm. We assume that the graphs are
given as their adjacency matrices. Let’s denote the running time by 𝑇(𝑛, 𝑘). Picking
a vertex 𝑣 from the set 𝑉(𝐺)⧵𝑉(𝐺′), as in line 12, can be done in time 𝒪(𝑛). There
are three recursive calls on line 13, 17 and 21, where also four local complementa­
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tions are performed3. Each local complementation can be done in quadratic time in
the size of the graph. From the definition of local complementation, definition 4.4.3,
we see that this can be done by adding the row of the adjacency matrix correspond­
ing to the vertex where the local complementation is performed to the rows of its
neighbors, where adding means vector­addition modulo 2. We therefore have that
the running time of the full algorithm has the following recursive expression

𝑇(𝑛, 𝑘) = 3𝑇(𝑛 − 1, 𝑘) + 𝒪(𝑛2) (5.5)

where 𝑇(𝑘, 𝑘) = 𝒪(𝑘4) from testing LC­equivalence of the graphs as the base­case.
By induction we see that the running time can be expressed as

𝑇(𝑘 + 𝑙, 𝑘) = 3𝑙𝒪(𝑘4) +
𝑙−1

∑
𝑖=0
3𝑖𝒪((𝑘 + 𝑙 − 𝑖)2) (5.6)

Evaluating the above expression for 𝑙 = 𝑛 − 𝑘 we get

𝑇(𝑛, 𝑘) = 3𝑛−𝑘(𝒪(𝑘4) +
𝑛−𝑘−1

∑
𝑖=0

𝒪((𝑛 − 𝑖)2)) (5.7)

= 𝒪(3𝑛−𝑘(𝑘4 + (𝑛 − 𝑘)𝑛2) (5.8)

5.3. Constant time transformation
So far we have considered the task of finding the operations that take some graph
state to its qubit­minor, but what is the best way to apply these operations to the
state when they are found? Assume that we have, by some classical (or quantum)
algorithm, found a sequence of operations that takes us from the current state |𝐺⟩
to the target state |𝐺′⟩, i.e. |𝐺′⟩ is a qubit­minor of |𝐺⟩. There are different ways
to express these operations, for example as a sequence of single­qubit Clifford
operations and single­qubit Pauli measurements or as a sequence of local comple­
mentations and vertex­deletions on the corresponding graph. From the previous
section we have also seen how these different representations can be mapped to
each other. Let’s therefore assume that we have expressed the sequence of oper­
ations as local complementations m followed by vertex­deletions of the vertices in
𝑉(𝐺)⧵𝑉(𝐺′). The reason for doing this is that we can now perform the single­qubit
Clifford operations corresponding tom in parallel and then simultaneously measure
all the qubits in 𝑉(𝐺)⧵𝑉(𝐺′) in the standard basis. The simultaneous measurements
in the standard basis are possible since the corrections 𝑈(𝑍,±)𝑣 are either the identity
or 𝑍 on the neighbors of 𝑣 and do therefore not change the measurement basis of
neighboring vertices, in contrast to Pauli 𝑋 and 𝑌 measurement.
3Three local complementations for the pivot.
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We still need to know what corrections that are needed, depending on the mea­
surement outcomes of the qubits 𝑉(𝐺)⧵𝑉(𝐺′). In appendix B.2 we show that vertex
𝑣 ∈ 𝑉(𝐺′) only need to apply (𝑍𝑣)𝑦𝑣 , where

𝑦𝑣 = ∑
𝑢∈𝑁(𝐺)𝑣 ⧵𝑉(𝐺′)

𝑥𝑢 (mod 2) (5.9)

and 𝑥𝑢 ∈ {0, 1} is the measurement outcome of node 𝑢. In other words, a 𝑍
operations is applied to qubit 𝑣 if the parity of the measurement outcomes of the
neighbors of 𝑣 (in 𝐺) is odd. Otherwise, no correction is applied to qubit 𝑣. We
emphasize that the corrections of the qubit 𝑣 only depend on the measurement
outcomes of the neighborhood of that qubit in the graph 𝐺.

Another advantage of only performing measurements in the standard basis is
that in some cases it is possible to extract |𝐺′⟩ without destroying all the rest of
the entanglement in the original state. More specifically, consider the vertices that
are adjacent to at least one vertex in 𝑉(𝐺′) but which are not in 𝑉(𝐺′) themselves.
These vertices are exactly the ones in the set

𝑁𝑉(𝐺′) = ( ⋃
𝑣∈𝑉(𝐺′)

𝑁(𝜏𝑚(𝐺))𝑣 ) ⧵ 𝑉(𝐺′). (5.10)

Assume that 𝑁𝑉(𝐺′) ≠ 𝑉(𝐺) ⧵ 𝑉(𝐺′). Then the deletion of all the vertices in 𝑁𝑉(𝐺′)
from the graph 𝜏𝑚(𝐺) gives a graph with at least two connected components 𝐺′ =
𝜏𝑚(𝐺)[𝑉(𝐺′)] and 𝜏𝑚(𝐺)[𝑉(𝐺) ⧵ (𝑁𝑉(𝐺′) ∪ 𝑉(𝐺′))]. Let’s denote the second part as
𝐺rest. Note that 𝐺rest could consist of more than one connected component. We can
then see that if, after performing the single­qubit Clifford operations corresponding
to m, we only measure the qubits in 𝑁𝑉(𝐺′) in the standard basis, followed by
corrections, we arrive at the following state

|𝐺′⟩ ⊗ |𝐺rest⟩ ⊗ ⨂
𝑣∈𝑁𝑉(𝐺′)

|+⟩𝑣 . (5.11)

The entanglement in |𝐺rest⟩ is then not wasted. Since there are in fact multiple
sequences of vertices 𝑚 such that 𝜏m(𝐺)[𝑉(𝐺′)] = 𝐺′, one can also try to minimize
the neighborhood 𝑁𝑉(𝐺′) and therefore maximize the size of |𝐺rest⟩.

5.4. Efficient algorithm based on theorem by Cour­
celle

As mentioned, we show in chapter 6 that the problem of deciding if 𝐺′ is a vertex­
minor of 𝐺 is ℕℙ­Complete in general. Fortunately the problem is fixed­parameter
tractable in the rank­width of 𝐺 and in general the size of 𝐺′, which follows from
results by Oum and Courcelle in [9] as we show below. The statement that a
problem is fixed parameter­tractable in some parameter 𝑟 means that there exists
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an algorithm that solves the problem and has running time

𝒪(𝑓(𝑟) ⋅ 𝑝(𝑛)) (5.12)

where 𝑝 is some polynomial and 𝑛 is the size of the input to the problem. Many
ℕℙ­Complete problems are fixed­parameter tractable, which means that their time
complexity is not necessarily super­polynomial in the input size but rather in the
parameter 𝑟. For ℕℙ­Complete fixed­parameter tractable problems, the factor 𝑓(𝑟)
must scale super­polynomially with 𝑛 in the worst case, unless ℙ = ℕℙ.

In 1990, Courcelle proved that a large class of graph problems are fixed­parameter
tractable in the tree­width of the graph [10]. Courcelle’s theorem states that any
graph problem specified by a monadic second­order logic (MS) formula can be
solved in linear time on graphs of bounded tree­width. The tree­width is a notion
which essentially describes how tree­like a graph is [11]. Many problems that are
hard in general become tractable on trees, as for example the subgraph isomor­
phism problem[12]. The same holds for graphs which are not too different from
trees, i.e. have a low tree­width, which is exactly what Courcelle’s theorem states.
Since the original theorem by Courcelle, there has also been many generalizations
including the same statement but using rank­width. Bounded rank­width captures
a larger class of graph than tree­width, for example complete graphs have minimal
rank­width. Importantly here is that rank­width is invariant under local complemen­
tations and non­increasing under vertex­deletions [13]. More details on rank­width
can be found in section 4.6.

MS logic is an extension of first­order logic, which allows for quantification over
sets [14]. Courcelle’s theorem actually holds for a strictly more expressive logic
called counting monadic second­order logic (CMS) where one can also express
whether the size of a set is zero modulo 𝑝 [14]. A sublanguage of CMS is C2MS
where 𝑝 is restricted to be 2 and one can therefore express whether the size of a
set is even or odd.

Any graph problem specified by a C2MS formula can be solved in cubic time on
graphs of bounded rank­width, which is due to theorem 6.55 in [14]. We state this
formally in theorem 5.4.1. This is the result we make use of in this section to find
an efficient algorithm for the vertex­minor problem.

It turns out that the vertex­minor problem is expressible in C2MS, which we
formally state in theorem 5.4.4, by collecting results proven by Courcelle and Oum
in [9]. By theorem 5.4.1 and theorem 5.4.4 we see that the problem of deciding
whether |𝐺′⟩ is a qubit­minor |𝐺⟩ is fixed­parameter tractable in the rank­width of
𝐺 and in the size of 𝐺′ in general, as we captured in theorem 5.1.1. The reason the
qubit­minor problem is fixed­parameter tractable in both rwd(𝐺) and |𝐺′| is because
the formula VM𝐺′ in equation (5.31) depends on 𝐺′. Note that if conjecture 5.4.2 is
true this dependence of |𝐺′| in the running time can be removed. If 𝐺′ is restricted
to be a certain type of graph or if we ask the question whether 𝐺 has a vertex­minor
on the subset 𝑈 ⊆ 𝑉(𝐺) with a given property instead, then the running time does
not need to depend 𝐺′ or 𝑈 respectively, see theorems 5.1.2 and 5.4.5, even if
conjecture 5.4.2 is false.

Algorithm 5.2 below gives a high­level description of how to solve the vertex­
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minor problem efficiently on graphs of bounded rank­width. The overall runtime of
the algorithm is 𝒪(𝑓(|𝐺′|, 𝑟) ⋅ |𝐺|3) and is dominated by line 6. In line 5, the C2MS
formula VM′ defined in equation (5.51) can be constructed in time 𝒪(|𝐺′|). An as­
signment 𝛼𝑦 as in line 6 can be found in time 𝒪(𝑓(|𝐺′|, 𝑟) ⋅ |𝐺|

3) due to Courcelle’s
theorem for CMS selection problems [14] together with a proof similar to theo­
rem 5.4.1. Finally a sequence of switchings𝑚 taking the Eulerian vector (∅, 𝑉(𝐺), ∅)
to the 𝛼𝑦(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) can be done in time 𝒪(|𝐺|) as we show in appendix B.4.

Algorithm 5.2 Algorithm that decides if 𝐺′ < 𝐺. Runtime: 𝒪(𝑓(|𝐺′|, 𝑟) ⋅ |𝐺|3)
Input: (𝐺,𝐺′) where rwd(𝐺) = 𝑟.
Output: A sequence 𝑚 such that 𝜏𝑚(𝐺)[𝑉(𝐺′)] = 𝐺′ if 𝐺′ < 𝐺.

⊥ if 𝐺′ ≮ 𝐺.
1: function is_vm(𝐺,𝐺′)
2: if 𝑉(𝐺′) ⊈ 𝑉(𝐺) then
3: return ⊥
4: end if
5: Construct the C2MS formula VM

′
𝐺′(𝒳, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) # See eq. 5.51.

6: Find an assignment 𝛼𝑦 such that 𝐺 ⊧ VM′𝐺′(𝒳 ↦ 𝑉(𝐺′), 𝛼𝑦(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒))
7: if There is no such 𝛼𝑦 then
8: return ⊥
9: else
10: # See section 5.4.4
11: Find a sequence of switchings 𝑚 taking (∅, 𝑉(𝐺), ∅) to 𝛼𝑦(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒)
12: return 𝑚
13: end if
14: end function

5.4.1. Monadic second­order logic
Monadic second­order logic is an sublanguage of second­order logic which in turn
is an extension of first­order logic. In MS one can quantify over sets4 compared
to first­order logic which is restricted to only quantification over elements. For a
detailed reference on MS and its extensions, see the book by Courcelle and Engel­
friet [14].

MS formulas on graphs uses variables which are either vertex variables 𝑥, 𝑦, … or
set variables 𝑋, 𝑌, … , which are sets of vertices. A MS formula is a finite string built
up by the atomic formulas 𝑥 = 𝑦, 𝑥 ∈ 𝑋 and adj(𝑥, 𝑦)5 together with the following
recursive rules [2]:

1. If 𝜙 is a formula, then so is ¬𝜙.

2. If 𝜙1…𝜙𝑙 are formulas, then so are (𝜙1 ∨ … ∨ 𝜙𝑙) and (𝜙1 ∧ … ∧ 𝜙𝑙).
4In second­order logic one can more generally quantify over predicates. MS is restricted to quantification
over predicates with one argument (monadic), which is equivalent to quantification over sets.
5Expressing whether (𝑥, 𝑦) is an edge in the considered graph.
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3. If 𝜙 is a formula, then so are ∃𝑥 ∶ 𝜙, ∀𝑥 ∶ 𝜙, ∃𝑋 ∶ 𝜙 and ∀𝑋 ∶ 𝜙.
The variables of a formula which are not part of a quantifier, as in rule (iii) above,
are called free variables. A formula with no free variables is called a sentence.
We write 𝜙(𝑋1, … , 𝑋𝑙 , 𝑥1, … , 𝑥𝑚) for a formula with free variables 𝑋1…𝑋𝑙𝑥1…𝑥𝑚. To
simplify formulas we will sometimes make use of the following abbreviations

(𝜙 ⇒ 𝜓) ≡ (¬𝜙 ∨ 𝜓) (5.13)
(𝜙 ⇔ 𝜓) ≡ ((𝜙 ⇒ 𝜓) ∧ (𝜓 ⇒ 𝜙)) (5.14)
(𝑋 ⊆ 𝑌) ≡ (∀𝑥 ∶ (𝑥 ∈ 𝑋 ⇒ 𝑥 ∈ 𝑌)). (5.15)

A MS formula is related to a graph 𝐺 by the atomic formula adj(𝑥, 𝑦), which is
true if and only if (𝑥, 𝑦) is an edge in 𝐺. If a MS sentence 𝜙 is true on a graph 𝐺,
we say that 𝐺 models 𝜙 and write this as 𝐺 ⊧ 𝜙. For a formula with free variables,
an assignment 𝛼 is a mapping from the free variables to vertices and subsets of
vertices of a graph 𝐺. If a MS formula 𝜙(𝑋1, … , 𝑋𝑙 , 𝑥1, … , 𝑥𝑚) is true on a graph 𝐺
with the assignment 𝛼, we say that 𝛼 satisfies 𝜙 on 𝐺 and write this as

𝐺 ⊧ 𝜙(𝛼(𝑋1), … , 𝛼(𝑋𝑙), 𝛼(𝑥1), … , 𝛼(𝑥𝑚)). (5.16)

If 𝛼 assigns 𝑣 to the free variable 𝑥, we write this as 𝑥 ↦ 𝑣. Furthermore, if a
formula has free variables 𝒳 = 𝑋1…𝑋𝑙𝑥1…𝑥𝑚 then we sometimes write 𝜙(𝒳) and
𝜙(𝛼(𝒳)) for an assignment of these variables. When considering a formula on a
graph we implicitly assume that the quantifiers are over the vertex­set of the graph,
i.e.

𝐺 ⊧ ∀𝑥 ∶ 𝜙(𝑥) iff ⋀
𝑣∈𝑉(𝐺)

𝐺 ⊧ 𝜙(𝑥 ↦ 𝑣). (5.17)

As an example the complete graph satisfies the following formula

𝐾𝑛 ⊧ ∀𝑥, 𝑦 ∶ (¬(𝑥 = 𝑦) ⇒ adj(𝑥, 𝑦)). (5.18)

There are many ℕℙ­Complete problems that can be defined in MS, including for
example 3­colorability [3]. In extensions of MS, one can also consider optimization
problems such as minimum vertex cover and traveling sales person [2].

5.4.2. MS problems and complexity
Given a MS formula, there are multiple problems one can consider. We will here be
interested in model­checking, property­checking and selection problems, but will
also include listing, counting and optimizing for completeness. Below we define
these different problems and further details can be found in [14].

• Model­checking: Given a sentence 𝜙 and a graph, decide if 𝐺 ⊧ 𝜙.
• Property­checking: Given a formula 𝜙(𝒳), a graph 𝐺 and an assignment 𝛼,
decide if 𝐺 ⊧ 𝜙(𝛼(𝒳)).

• Selection: Given a formula 𝜙(𝒳) and a graph 𝐺, find an assignment 𝛼 such
that 𝐺 ⊧ 𝜙(𝛼(𝒳)) or if there is no such assignment output ⊥.
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• Listing: Given a formula 𝜙(𝒳) and a graph 𝐺, find the set of assignments
{𝛼 ∶ 𝐺 ⊧ 𝜙(𝛼(𝒳))}.

• Counting: Given a formula 𝜙(𝒳) and a graph 𝐺, find the size of the set of
assignments {𝛼 ∶ 𝐺 ⊧ 𝜙(𝛼(𝒳))}.

• Optimizing: Given a formula 𝜙(𝑋) and a graph 𝐺, find the maximum cardi­
nality of a set assigned to 𝑋, i.e. max({|𝛼(𝑋)| ∶ 𝐺 ⊧ 𝜙(𝛼(𝑋))}).

In the above definitions we have only considered the problem of finding assignments
to all the free variables of a formula for simplicity. One can also consider similar
problems as above, where one is given a formula 𝜙(𝒳,𝒴), a graph 𝐺, an assignment
𝛼𝑦 to the free variables 𝒴 and where the task is to find an assignment to the rest of
the free variables, i.e. a 𝛼𝑥 such that 𝐺 ⊧ 𝜙(𝛼𝑥(𝒳), 𝛼𝑦(𝒴)). It turns out that all the
above problems are fixed­parameter tractable6 in the formula and the clique­width
of the graph, as shown in [14]. The same is therefore true for rank­width, since
rank­width is bounded if and only if clique­width is bounded [15].

Theorem 5.4.1. There exists an algorithm which checks whether an assignment
𝛼 satisfies a C2MS formula 𝜙(𝒳) on 𝐺, i.e. whether 𝐺 ⊧ 𝜙(𝛼(𝒳)) or not, and has
a running time

𝒪(𝑓(|𝜙|, rwd(𝐺)) ⋅ |𝐺|3). (5.19)

where rwd(𝐺) is the rank­width of 𝐺 and 𝑓 is an computable function. ⋄

Proof. Theorem 6.55 in [14] states that CMS model­checking problem can be solved
in time

𝒪(𝑓(𝜙, cwd(𝐺)) ⋅ |𝐺|3), (5.20)

where cwd(𝐺) is the clique­width of 𝐺. In section 6.4.1 of [14] it is also shown
that the CMS property­checking problem can be reduced to the CMS model­checking
problem and can therefore equivalently be solved in time as in equation (5.20). Fur­
thermore, in definition 6.1 of [14] they show that the CMS model­checking problem
can be solved in time

𝒪(𝑓(|𝜙|, cwd(𝐺)) ⋅ |𝐺|3), (5.21)

since there are only finitely many sentences of size bounded by a given integer. The
theorem then follows since the rank­width is bounded if and only if the clique­with
is bounded, which is because

rwd(𝐺) ≤ cwd(𝐺) ≤ 2rwd(𝐺)+1 − 1, (5.22)

as shown by Oum in [15].

6Note that the output of the listing problem is possibly super­polynomial in the size of the graph. Thus
for the listing problem, fixed­parameter tractable means polynomial scaling in the size of the input plus
the size of the input.
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In many cases it is in fact the quantifier rank, see definition 5.4.3 below, which
dominates the runtime to solve MS problems. For example in [16] it is shown by
Langer, Rossmanith and Sikdar that the MS model­checking problem, i.e. if 𝐺 ⊧ 𝜙,
can be solved in time 𝒪(𝑓(qr(𝜙), cwd(𝐺)) ⋅ |𝐺|3)). As discussed with Langer, it is
probably possible to extend this statement to also the CMS model­checking problem
and therefore CMS property­checking problem. We therefore make the following
conjecture,

Conjecture 5.4.2. There exists an algorithm which checks whether an assignment
𝛼 satisfies a C2MS formula 𝜙(𝒳) on 𝐺, i.e. whether 𝐺 ⊧ 𝜙(𝛼(𝒳)) or not, and has
a running time

𝒪(𝑓(qr(𝜙), rwd(𝐺)) ⋅ |𝐺|3). (5.23)

where qr(𝜙) is the quantifier rank of 𝜙, rwd(𝐺) is the rank­width of 𝐺 and 𝑓 is a
computable function. ⋄

Definition 5.4.3. The quantifier rank qr(𝜙) of a formula 𝜙 is the maximum num­
ber of nested quantifiers as defined in [2] and can be found by the following recur­
sive relations.

qr(𝜙) = 0, if 𝜙 is atomic qr(∃𝑥 ∶ 𝜙(𝑥)) = qr(𝜙) + 1 (5.24)
qr(¬𝜙) = qr(𝜙) qr(∃𝑋 ∶ 𝜙(𝑋)) = qr(𝜙) + 1 (5.25)

qr(𝜙 ∨ 𝜓) =max({qr(𝜙),qr(𝜓)}) qr(∀𝑥 ∶ 𝜙(𝑥)) = qr(𝜙) + 1 (5.26)
qr(𝜙 ∧ 𝜓) =max({qr(𝜙),qr(𝜓)}) qr(∀𝑋 ∶ 𝜙(𝑋)) = qr(𝜙) + 1 (5.27)

⋄

5.4.3. Vertex­minor as C2MS formula
In [9] Courcelle and Oum show how one can express whether a graph 𝐺′ is a vertex­
minor of 𝐺 in counting monadic second­order logic C2MS. We restate this here and
also provide the explicit C2MS formula and its quantifier rank. In appendix B.3
we explicitly provide all subformulas we make use of here, which can also be found
in [9]. These formulas and the statement of this section build heavily on the concept
of an isotropic system which was introduced by Bouchet in [17]. We will describe
isotropic systems more in detail in chapter 9. The reason for the relation to isotropic
systems is that an isotropic system describes an equivalence class of graphs under
local complementation. Importantly, an isotropic system7 𝑆(𝐺) given by a graph 𝐺
has a number of Eulerian vectors and each of these Eulerian vectors describes a
LC­equivalent graph to 𝐺. Furthermore, any LC­equivalent graph to 𝐺 is described
by some Eulerian vector of 𝑆(𝐺). We will here describe a Eulerian vector by three
pairwise disjoint subsets of the vertices of 𝐺 whose union is 𝑉(𝐺) and write this as
a tuple (𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒). The set of Eulerian vectors of 𝑆(𝐺) will be denoted as ℰ(𝑆(𝐺)).
7There are actually multiple isotropic system 𝑆(𝐺, 𝐴, 𝐵) related to a graph, depending on the choice of
supplementary vectors 𝐴 and 𝐵, see [17]. Here we consider a canonical isotropic system 𝑆(𝐺) and
chose the supplementary vectors to be 𝐴 = (𝜔,… ,𝜔) and 𝐵 = (1,… , 1), where 𝜔 is a primitive element
of 𝔽4
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The formula Eul(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) in equation (B.16) describes whether (𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) is a
Eulerian vector of 𝑆(𝐺), i.e.

𝐺 ⊧ Eul(𝑋𝑒 ↦ 𝑈𝑒 , 𝑌𝑒 ↦ 𝑉𝑒 , 𝑍𝑒 ↦ 𝑊𝑒) iff (𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) ∈ ℰ(𝑆(𝐺)). (5.28)

As mentioned above, the set of graphs described by the Eulerian vectors of
𝑆(𝐺) are exactly the LC­equivalent graphs to 𝐺. Bouchet used this to develop an
efficient algorithm to test LC­equivalence between graphs in [7], which has been
used to efficiently test single­qubit Clifford equivalence of graph states in [8]. Let’s
denote the LC­equivalent graph to 𝐺 described by the Eulerian vector (𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒)
as 𝒢(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒). We will now find a formula that captures whether a graph 𝐺′ is a
vertex­minor of 𝐺. From the above and equation (4.42) we have that 𝐺′ < 𝐺 if and
only if there exists a Eulerian vector (𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) such that

𝒢(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒)[𝑉(𝐺′)] = 𝐺′. (5.29)

How do we express this as a C2MS formula? The formula Adj(𝑢, 𝑣, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) in equa­
tion (B.18) describes whether the edge (𝑢, 𝑣) is an edge of the graph 𝒢(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒),
i.e.

𝐺 ⊧ Adj(𝑥 ↦ 𝑢, 𝑦 ↦ 𝑣, 𝑋𝑒 ↦ 𝑈𝑒 , 𝑌𝑒 ↦ 𝑉𝑒 , 𝑍𝑒 ↦ 𝑊𝑒) iff (𝑢, 𝑣) ∈ 𝐸(𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒)).
(5.30)

Using equation (5.30) we can express whether 𝐺′ is a vertex­minor of 𝐺, as de­
scribed in the following theorem.

Theorem 5.4.4. For any 𝐺′ with vertex­set 𝑉(𝐺′) = {𝑥1, … , 𝑥𝑘}, there exists a
C2MS formula VM𝐺′(𝑥1, … , 𝑥𝑘) such that

𝐺 ⊧ VM𝐺′(𝛼(𝑥1), … , 𝛼(𝑥𝑘)) iff 𝛼(𝐺′) < 𝐺, (5.31)

where 𝑥𝑖 are the free variables of the formula, 𝛼 is a bijection from 𝑉(𝐺′) to a subset
of 𝑉(𝐺) of size 𝑘. In equation (5.31), 𝛼 functions both as an assignment of the free
variables of VM and as a relabeling of the vertices in 𝐺′ by 𝛼(𝐺). This dual­purpose
of 𝛼 is valid since we identify the free variables of VM with the vertices of 𝐺′. To be
precise, by 𝛼(𝐺) we mean the graph

𝛼(𝐺) = ({𝛼(𝑥) ∶ 𝑥 ∈ 𝑉(𝐺′)}, {(𝛼(𝑥), 𝛼(𝑦)) ∶ (𝑥, 𝑦) ∈ 𝐸(𝐺′)}). (5.32)

Furthermore the length and quantifier rank of VM has the following scaling

|VM𝐺′ | = 𝒪(|𝐺′|
2), qr(VM𝐺′) = 10 = 𝒪(1). (5.33)

⋄
Proof. We prove this by explicitly providing the C2MS formula as follows

VM𝐺′(𝑥1, … , 𝑥𝑘) = ∃𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒 ∶ (Eul(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) ∧ ⋀
(𝑥,𝑦)∈𝐸(𝐺′)

Adj(𝑥, 𝑦, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒)

∧ ⋀
(𝑥,𝑦)∉𝐸(𝐺′)

¬Adj(𝑥, 𝑦, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒))

(5.34)
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It is then clear that equation (5.31) is true, since if 𝐺 ⊧ VM(𝛼(𝑥1), … , 𝛼(𝑥𝑘)) then
we know that there exist an LC­equivalent graph to 𝐺 which induced subgraph on
𝑉(𝐺′) has the edge­set {(𝛼(𝑥), 𝛼(𝑦)) ∶ (𝑥, 𝑦) ∈ 𝐸(𝐺′)}. This is precisely 𝛼(𝐺′) and
therefore 𝛼(𝐺′) < 𝐺. Furthermore, if 𝛼(𝐺′) < 𝐺 then we know that there exist a
Eulerian vector (𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) such that

⋀
(𝑥,𝑦)∈𝐸(𝐺′)

Adj(𝛼(𝑥), 𝛼(𝑦), 𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) ∧ ⋀
(𝑥,𝑦)∉𝐸(𝐺′)

¬Adj(𝛼(𝑥), 𝛼(𝑦), 𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) (5.35)

is true.
Next we show how the length and quantifier rank of VM scale with 𝐺′. Firstly

the length clearly scales as

|VM| = 𝒪(|𝐸(𝐺′)|) = 𝒪(|𝐺′|2). (5.36)

The quantifier ranks of the subformulas used here are given in appendix B.3 and
in particular we have that qr(Eul) = 7 and qr(Adj) = 7. Thus, we have that the
quantifier rank of VM is

qr(VM) = 3 +max({qr(Eul),qr(Adj)}) = 3 +max({7, 7}) = 10 = 𝒪(1). (5.37)

It is easy to see that theorem 5.1.1 is a direct consequence of theorem 4.4.2,
theorem 5.4.1 and theorem 5.4.4.

As mentioned earlier, it is possible to specify in C2MS whether a graph has a
vertex­minor on a subset of the vertices with a given property. We capture this in
the following theorem.

Theorem 5.4.5. Given a C2MS sentence 𝜙 specifying some graph property 𝑃,
then there exists a C2MS formula Prop_VM𝜙(𝑋) capturing whether a graph has a
vertex­minor on 𝑋 which satisfies 𝑃, i.e.

𝐺 ⊧ Prop_VM𝜙(𝑋 ↦ 𝑈) iff ∃𝐺′ ∶ (𝑉(𝐺′) = 𝑈) ∧ (𝐺′ < 𝐺) ∧ (𝐺′ ⊧ 𝜙) (5.38)

⋄

Proof. Let 𝜙′ be the formula made from 𝜙 by replacing all instances of the predicate
adj(𝑥, 𝑦) by the formula Adj(𝑥, 𝑦, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒). If (𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) is a Eulerian vector of
𝑆(𝐺), then we have that

𝐺 ⊧ 𝜙′(𝑋𝑒 ↦ 𝑈𝑒 , 𝑌𝑒 ↦ 𝑉𝑒 , 𝑍𝑒 ↦ 𝑊𝑒) iff 𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) ⊧ 𝜙. (5.39)

The expression on the right of the above equation states that the LC­equivalent
graph 𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) models 𝜙, but what we want is that the induced subgraph
𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒)[𝑋] models 𝜙. This can be done by restricting all the quantifiers in
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𝜙′ to the set 𝑋. Thus, let 𝜙″ be the formula made from 𝜙′ by making the following
changes to all the quantifiers

∀𝑦 ∶ 𝜓(𝑦) → ∀𝑦 ∶ (𝑦 ∈ 𝑋 ⇒ 𝜓(𝑦)) (5.40)

∀𝑌 ∶ 𝜓(𝑌) → ∀𝑌 ∶ (𝑌 ⊆ 𝑋 ⇒ 𝜓(𝑌)) (5.41)

∃𝑦 ∶ 𝜓(𝑦) → ∃𝑦 ∶ (𝑦 ∈ 𝑋 ∧ 𝜓(𝑦)) (5.42)

∃𝑌 ∶ 𝜓(𝑌) → ∃𝑌 ∶ (𝑌 ⊆ 𝑋 ∧ 𝜓(𝑌)). (5.43)

We then see that if (𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) is an Eulerian vector of 𝑆(𝐺), then

𝐺 ⊧ 𝜙″(𝑋 ↦ 𝑈, 𝑋𝑒 ↦ 𝑈𝑒 , 𝑌𝑒 ↦ 𝑉𝑒 , 𝑍𝑒 ↦ 𝑊𝑒) iff 𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒)[𝑈] ⊧ 𝜙. (5.44)

The formula Prop_VM can then be built by checking if there exists a Eulerian vector
such that 𝐺 models 𝜙″, i.e.

Prop_VM𝜙(𝑋) = ∃𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒 ∶ [Eul(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) ∧ 𝜙″(𝑋, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒)]. (5.45)

Since it is possible to specify whether a graph is a complete graph in C2MS, see
equation (5.18), we see that theorem 5.1.2 directly follows from theorem 4.4.2, the­
orem 5.4.1 and theorem 5.4.5. Let’s use the method in the proof of theorem 5.4.5
to explicitly find the formula expressing whether a graph has the complete graph
as a vertex­minor on the subset 𝑋. Let Complete be the formula in equation (5.18)
which is modeled by 𝐺 if 𝐺 is a complete graph. We first find Complete′ by replacing
the predicate adj(𝑥, 𝑦)

Complete′(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) = ∀𝑥, 𝑦 ∶ (¬(𝑥 = 𝑦) ⇒ Adj(𝑥, 𝑦, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒)). (5.46)

Then replacing the quantifiers as in equations (5.40)­(5.43) we get the formula

Complete″(𝑋, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) = ∀𝑥 ∶ [𝑥 ∈ 𝑋 ⇒ (∀𝑦 ∶ 𝑦 ∈ 𝑋 ⇒ (¬(𝑥 = 𝑦) ⇒

Adj(𝑥, 𝑦, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒)))]

= ∀𝑥, 𝑦 ∶ [((𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋) ∧ ¬(𝑥 = 𝑦)) ⇒

Adj(𝑥, 𝑦, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒)] (5.47)

Finally by using the equation (5.45) we arrive at the formula

Complete_VM(𝑋) = ∃𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒 ∶ [Eul(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) ∧ Complete
″(𝑋, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒)] (5.48)

which has the following property

𝐺 ⊧ Complete_VM(𝑋 ↦ 𝑈) iff 𝐾𝑈 < 𝐺 (5.49)

where 𝐾𝑈 is the complete graph with vertex­set 𝑈.



5.4. Efficient algorithm based on theorem by Courcelle

5

129

5.4.4. Finding the sequence of operations
In this section so far, we have looked at the problem of deciding whether 𝐺′ is
a vertex­minor of 𝐺, but if this is true then how does one find the sequence of
operations that takes 𝐺 to 𝐺′? Similarly, if |𝐺′⟩ is a qubit­minor of |𝐺⟩, what sequence
of operations takes |𝐺⟩ to |𝐺′⟩? We will here describe two ways to find the sequence
of operations.
Method 1: The first way is slightly simpler but increases the runtime from the de­
cision problem by a factor of |𝐺|. The idea is to use an algorithm that solves the
decision problem of whether 𝐺′ is a vertex­minor of 𝐺 to iteratively find the sequence
of operations. Let’s therefore assume that we know that 𝐺′ < 𝐺. Furthermore, let 𝑣
be a vertex in 𝑉(𝐺) ⧵𝑉(𝐺′). From theorem 4.5.3 we know that 𝐺′ is a vertex­minor
of at least one of the three graphs 𝑋𝑣(𝐺), 𝑌𝑣(𝐺) or 𝑍𝑣(𝐺). By using an algorithm for
the decision problem we can decide which of these three graphs has 𝐺′ as a vertex­
minor. Let’s denote one of these graphs by 𝐺1 and the operation that takes 𝐺 to 𝐺1
as 𝑃1, i.e. 𝐺1 = 𝑃1(𝐺). That is, 𝑃1 is either 𝑋𝑣, 𝑌𝑣 or 𝑍𝑣, such that 𝐺′ < 𝐺1 < 𝐺. Now
perform the same step again to find an operation 𝑃2 taking 𝐺1 to a graph 𝐺2 which
has 𝐺′ as a vertex­minor. Perform the step 𝑛−𝑘 times, where 𝑛 = |𝐺| and 𝑘 = |𝐺′|.
It is then clear that the sequence 𝑃 = 𝑃𝑛−𝑘 ∘…∘𝑃1 takes 𝐺 to a LC­equivalent graph
of 𝐺′. From 𝑃 it is easy to find the induced sequence of local complementations 𝑚
such that 𝜏𝑚(𝐺)[𝑉(𝐺′)] ∼LC 𝐺′. Finally we can use the algorithm in [7] to find a
sequence of local complementations 𝑚′ such that 𝜏𝑚′ ∘𝜏𝑚(𝐺)[𝑉(𝐺′)] = 𝐺′. Assume
that |𝐺′| and rwd(𝐺) are bounded8. Then according to theorem 5.1.1 the decision
problem can be solved in time 𝒪(𝑛3). To find 𝑃 we need to run the algorithm for
the decision problem 𝒪(𝑛 − 𝑘) times and compute 𝑃𝑖(𝐺𝑖−1) the same number of
times. Computing 𝑃𝑖(𝐺𝑖−1) can be done in time 𝒪(𝑛2), as described in section 5.2.
Lastly finding the sequence 𝑚′ can be done in time 𝒪(𝑘4). Thus, the total runtime
is

𝒪((𝑛3 + 𝑛2)(𝑛 − 𝑘)) + 𝒪(𝑘4) = 𝒪(𝑛4) (5.50)

Method 2: Another way to find the sequence of operations that takes 𝐺 to 𝐺′, given
that 𝐺′ < 𝐺, is to formulate the problem as a C2MS selection problem as described in
section 5.4.2. Recall that an algorithm that solves the C2MS selection problem takes
as input a formula 𝜙 with free variables𝒳, 𝒴, an assignment 𝛼𝑥 to the free variables
𝒳 and a graph 𝐺 and returns an assignment 𝛼𝑦 such that 𝐺 ⊧ 𝜙(𝛼𝑥(𝒳), 𝛼𝑦(𝒴)) or
returns ⊥ if no such assignment exists. We will now formulate a selection problem by
making 𝑋𝑒, 𝑌𝑒 and 𝑍𝑒 free variables in equation (5.31) instead of quantifier variables.
Therefore, let 𝐻 be an isomorphic graph to 𝐺′ with vertex­set 𝑉(𝐻) = {𝑥1, … , 𝑥𝑘}
and define the C2MS formula

VM′𝐻(𝑥1, … , 𝑥𝑘 , 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) = Eul(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) ∧ ⋀
(𝑥,𝑦)∈𝐸(𝐻)

Adj(𝑥, 𝑦, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) (5.51)

Let 𝛼𝑥 be a bijection from 𝑉(𝐻) to 𝑉(𝐺′) such that 𝛼𝑥(𝐻) = 𝐺′. We then have the
following property of the formula VM′

∃𝛼𝑒 ∶ 𝐺 ⊧ VM′𝐻(𝛼𝑥(𝑥1, … , 𝑥𝑘), 𝛼𝑒(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒)) iff 𝐺′ < 𝐺. (5.52)
8If conjecture 5.4.2 is true, then |𝐺′| does not need to be bounded.
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From theorem 6.55 and similar arguments as in the proof of theorem 5.4.1 we know
that we can solve the selection problem in time 𝒪(𝑛3) if 𝑘 and rwd(𝐺) are bounded,
where 𝑛 = |𝐺| and 𝑘 = |𝐺′|. Thus, given an assignment to the free variables
(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒), i.e. given an Eulerian vector (𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) such that 𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒)[𝑉(𝐺′)] =
𝐺′, the question is then how to find a sequence of local complementations that takes
𝐺 to 𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒). In appendix B.4 we show how to do this in time 𝒪(𝑛), which
shows that the total runtime is

𝒪(𝑛3) + 𝒪(𝑛) = 𝒪(𝑛3). (5.53)

5.5. Discussion
The problem of deciding whether a stabilizer state |𝑆𝑡⟩ can be obtained from an­
other |𝑆𝑠⟩ by single­qubit Clifford operations, single­qubit Pauli measurement and
classical communication is equivalent to deciding if some graph 𝐺′ is a vertex­minor
of another graph 𝐺. We showed here that the vertex­minor problem can be solved
in cubic time in the size of 𝐺 on instances where 𝐺 has bounded rank­width and 𝐺′
has bounded size, by using the theory of monadic second­order logic and a version
of Courcelle’s theorem. Furthermore, if conjecture 5.4.2 is true then the vertex­
minor problem can be solved in cubic time in the size of 𝐺 on the strictly larger
class of instances where 𝐺 has bounded rank­width and 𝐺′ is arbitrary. A direct
implementation of Courcelle’s theorem is however not practical, due to a huge con­
stant factor in the runtime of the algorithm. Finding more tailored algorithms for
the vertex­minor problem on graphs of bounded rank­width is therefore of value.
In chapter 6 we provide an efficient algorithm for graphs of rank­width one, which
does not have a huge constant factor in the runtime.

Given some graph property 𝑃 expressible in C2MS one can decide if a graph 𝐺
has a vertex­minor on a subset 𝑈 ⊆ 𝑉(𝐺) that satisfies 𝑃, in cubic time in the size
of 𝐺 for graphs with bounded rank­width, as we show in section 5.4.3. The graph
property 𝑃 can be for example that the graph is a complete graph or that it is 𝑘­
colourable. Testing for for example 2­colourable qubit­minors could be interesting
in the context of purification since it has been shown that the purification schemes
in [18] purify all 2­colourable graph states.

In section 5.4.4 we also showed how to find the sequence of operations that take
|𝐺⟩ to its qubit­minor |𝐺′⟩. Finally in section 5.3 we showed how these operations
can be applied in constant time in the size of the graph states and how this can
be done without destroying all the rest of the entanglement in the source state.
An open question is how to find an optimal sequence of operations that destroys a
minimum amount of entanglement in the rest of the state.
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6
How to transform graph
states using single­qubit

operations: computational
complexity and algorithms

Axel Dahlberg, Jonas Helsen, Stephanie Wehner

Graph states are ubiquitous in quantum information with diverse applica­
tions ranging from quantum network protocols to measurement based quan­
tum computing. Here we consider the question whether one graph (source)
state can be transformed into another graph ( target) state, using a specific
set of quantum operations (LC + LPM + CC): single­qubit Clifford operations
(LC), single­qubit Pauli measurements (LPM) and classical communication
(CC) between sites holding the individual qubits. This question is of inter­
est for effective routing or state preparation decisions in a quantum network
or distributed quantum processor and also in the design of quantum repeater
schemes and quantum error­correction codes.
We first show that decidingwhether a graph state |𝐺⟩ can be transformed into
another graph state |𝐺′⟩ using LC + LPM + CC is ℕℙ­Complete, which was
previously not known. We also show that the problem remains NP­Complete
even if |𝐺′⟩ is restricted to be the GHZ­state. However, we also provide effi­
cient algorithms for two situations of practical interest.

Parts of this chapter have been published in Quantum Science and Technology [1].
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Our results make use of the insight that deciding whether a graph state |𝐺⟩
can be transformed to another graph state |𝐺′⟩ is equivalent to a known de­
cision problem in graph theory, namely the problem of deciding whether a
graph 𝐺′ is a vertex­minor of a graph 𝐺. The computational complexity of the
vertex­minor problem was prior to this chapter an open question in graph the­
ory. We prove that the vertex­minor problem is ℕℙ­Complete by relating it to
a new decision problem on 4­regular graphs which we call the semi­ordered
Eulerian tour (SOET) problem.
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6.1. Introduction

I n this chapter we continue our study of the computational complexity of Qubit­Minor and our search for efficient algorithms by bulding on the previous two
chapters. In particular we prove that it is in general ℕℙ­Complete to decide whether
a graph 𝐺′ is a vertex­minor of another graph 𝐺. We however also give efficient
algorithms for this problem whenever the input graphs belong to particular graph
classes. An overview of the complexity of the problem for different classes of graphs
considered in this chapter can be seen in fig. 1.3.

We will use the same notation and terminology from the previous two chapters.
Before diving in to the details we will here outline the results and technique used.
The results described in this section will be phrased informally. Details and formal
statements is in the later parts of the chapter.

6.1.1. Results and proof techniques
We start by pointing out that our results of ℕℙ­Completeness and the presented
algorithms also apply to the more general class of stabilizer states of relevance in
quantum error correction. This is because any stabilizer state can be transformed
to some graph state using only single­qubit Clifford operations. Furthermore, given
a stabilizer state on 𝑛 qubits, a graph state equivalent under single­qubit Clifford
operations can be found efficiently in time 𝒪(𝑛3) [2].

Below we list the main results and proof techniques of this chapter. Our first
result is a proof that VertexMinor and QubitMinor are both ℕℙ­Complete.

Theorem6.1.1 (informal). The problem of deciding whether a graph 𝐺′ is a vertex­
minor of another graph 𝐺 is ℕℙ­Complete. This implies that QubitMinor is also
ℕℙ­Complete. ⋄

Our study of QubitMinor and VertexMinor is motivated by the fact that
efficient algorithms that solve these problems can be used to make for example
routing decisions in a quantum network. Unfortunately theorem 6.1.1 tells us that
no such algorithms exist, unless ℕℙ=ℙ. However, along with the proof of ℕℙ­
Completeness we also provide efficient algorithms for the following three restricted
variants of VertexMinor and QubitMinor:

1. Decide if a star graph on vertices 𝑉′ is a vertex­minor of a distance­hereditary
graph 𝐺. This is equivalent to deciding if the GHZ­state on qubits 𝑉′ is a
qubit­minor of a graph state |𝐺⟩ with Schmidt­rank width one.

2. For a fixed 𝑘, decide if a star graph on vertices 𝑉′, where |𝑉′| ≤ 𝑘, is a
vertex­minor of a circle graph 𝐺. This corresponds to deciding if a GHZ­state
of bounded size on qubits 𝑉′ is a qubit­minor of a circle graph state |𝐺⟩ with
unbounded entanglement.

3. Decide if a graph 𝐺′ on vertices 𝑉′, where |𝑉′| ≤ 3 is a vertex­minor of a
graph 𝐺.
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For a visual overview of these different graph classes see fig. 1.3 and for more
details chapter 4. We will from now on denote the special case of VertexMinor
where 𝐺′ is restricted to be a star graph as StarVertexMinor.

Theorem 6.1.2 (informal). The algorithm presented in section 6.3.1, consisting
of algorithm 6.1 and algorithm 6.2, solves StarVertexMinor in time

𝒪 (|𝑉(𝐺′)| ⋅ |𝑉(𝐺)|3) (6.1)

and is correct if 𝐺 is distance­hereditary, or equivalently if 𝐺 has rank­width one. ⋄

The algorithm mentioned in the above theorem can therefore be used to de­
cide how to transform graph states, with Schmidt­rank width one, to GHZ­states
using single­qubit Clifford operations, single­qubit Pauli measurements and classi­
cal communication. As mentioned above, a more general method to find efficient
algorithms for certain graph problems on graphs with bounded rank­width is by
using Courcelle’s theorem [3]. Compared to the algorithm provided by a direct im­
plementation of Courcelle’s theorem, see chapter 5, our algorithm presented here
does not suffer from a huge constant factor in the runtime, as in eq. (4.1). In fact,
besides providing proof for correctness and runtime, we have also implemented the
algorithm [4] and see that it typically takes for example 50 ms to run for the case
when |𝑉(𝐺)| = 50 on a standard desktop computer, see fig. 6.1.

We call 𝑘­StarVertexMinor the restriction of StarVertexMinor where 𝐺′
is restricted to a star graph having 𝑘 vertices, corresponding to a GHZ­state (up to
LC) on 𝑘 qubits.

Theorem 6.1.3 (informal). 𝑘­StarVertexMinor is in ℙ if 𝐺 is a circle graph1. ⋄

The above theorem implies that StarVertexMinor is fixed­parameter tractable
in the size of the target star graph on circle graphs. Interestingly the class of circle
graphs has unbounded rank­width ([8, Proposition 6.3] and [9]) and the corre­
sponding graph states therefore have unbounded entanglement according to the
Schmidt­rank width. Thus, theorem 6.1.3 is not captured by the results from Cour­
celle [3] and implies that efficient algorithms can be found even on graphs with
unbounded rank­width.

Theorem 6.1.4 (informal). Any connected graph 𝐺′ on three vertices or less is a
vertex­minor of any connected graph 𝐺 if and only if the vertices of 𝐺′ are also in
𝐺. ⋄

Along with the above theorem we also provide an efficient algorithm for finding
the transformation that takes the former graph to the latter.

We show this result by first proving that 𝐺 has a vertex­minor which is con­
nected, on any subset of its vertices. Then from the fact that there is only a single
equivalence class for connected graphs on one, two or three vertices, respectively,
under the considered operations, the result follows.
1Not to be confused with cycle graph.
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Figure 6.1: Average and maximal observed run­times for two algorithms that check if a GHZ­state on
four qubits is a qubit­minor of a randomly generated connected graph state |𝐺⟩ on qubits 𝑉 of Schmidt­
rank width 1. Random connected graph states of Schmidt­rank width 1 are generated by starting from
a single­qubit graph and randomly adding leaves or performing twin­splits, see section 4.8.1, which
generates any connected graph state of Schmidt­rank width 1 [5]. ”Our alg.” refers to the algorithm
described in section 6.3.1 and ”Brute” is the non­efficient algorithm 5.1. Algorithm 5.2 based on the
techniques of Courcelle [6] is not depicted here since the pre­factor makes an application impractical in
practice whenever |𝑉| < 𝑓(𝑟) of eq. (4.1). For each size of 𝑉, 10 random graph states are generated for
”Brute” and 100 random graph states for ”Our alg.”, from which the average ”(avg.)” and max ”(max)”
runtime is computed. Both algorithms are implemented in SAGE [7] and the tests were performed on
an iMac with 3.2 GHz Intel Core i5 processor with 8 GB of 1600 MHz RAM.

Along with the mentioned theorems we also prove several theorems needed for
the main results that may be interesting in their own right. For example we prove
the following theorem which points out an interesting behaviour of bipartitions of
vertices of a graph.

Theorem 6.1.5 (informal). Assume 𝐺 is a graph on the vertices 𝑈 ∪ 𝐿 such that
𝑈 ∩ 𝐿 = ∅ and 𝑈 ≠ ∅. Furthermore, assume that for each 𝑙 in 𝐿, there is at least
one vertex in 𝑈 not adjacent to 𝑙 and for each 𝑢 in 𝑈, there is at least one vertex
in 𝐿 adjacent to 𝑢. Then there exist two vertices 𝑢1 and 𝑢2 in 𝑈 and two vertices 𝑙1
and 𝑙2 in 𝐿 such that 𝑢1 is adjacent to 𝑙1 but not to 𝑙2 and 𝑢2 is adjacent to 𝑙2 but
not to 𝑙1. ⋄

As mentioned, we prove that StarVertexMinor is NP­Complete on a strict
subclass of circle graphs2 and that StarVertexMinor is in ℙ on distance­hereditary
graphs. These two graph classes are in fact disjoint, which we prove in the following
theorem.
2These circle graphs are in fact circle graphs induced by Eulerian tours on triangular expansions of
3­regular graphs.
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Theorem 6.1.6 (informal). No circle graph induced by a Eulerian tour on a trian­
gular expansion of some 3­regular graph is distance­hereditary. ⋄

6.1.2. Overview
The chapter is structured as follows. Formal statement and proof of theorem 6.1.1
above is given in section 6.2 (as theorem 6.2.2), theorem 6.1.2 in section 6.3.1,
theorem 6.1.3 in section 6.3.2 (as corollary 6.3.11.1) and theorem 6.1.4 in sec­
tion 6.4 (as theorem 6.4.1). In section 6.2 we consider the computational com­
plexity of the VertexMinor and StarVertexMinor problems. In particular we
prove that both problems are ℕℙ­Complete (result 1.). In section 6.3 we provide
an efficient algorithm for StarVertexMinor when the input graph is restricted
to be distance­hereditary and prove that it is correct (result 2.). We also provide a
fixed­parameter tractable algorithm for StarVertexMinor when the input graph
is a circle graph and prove its correctness (result 3.). Finally we prove that any con­
nected graph 𝐺′ with three or less vertices is a vertex­minor of any connected graph
𝐺 if 𝑉(𝐺′) ⊆ 𝑉(𝐺) and provide an efficient algorithm for finding the transformation
that takes the former graph to the latter (result 4.).

6.2. Complexity
In this section we consider the computational time­complexity of deciding whether
a graph state |𝐺⟩ can be transformed into another graph state |𝐺′⟩ using only single­
qubit Clifford operations, single­qubit Pauli measurements and classical communi­
cation (QubitMinor). We will in fact prove that this problem is ℕℙ­Complete,
even when |𝐺⟩ is in the restricted class of circle graph states and |𝐺′⟩ is a GHZ­
state (up to LC). As we already shown in chapter 4, QubitMinor is equivalent to
VertexMinor. We will here show that a highly restrictive version of the Ver­
texMinor is ℕℙ­Hard, namely when 𝐺′ is a star graph and 𝐺 is in a strict subclass
of circle graphs. Since we also prove that VertexMinor is in ℕℙ this then proves
that VertexMinor is ℕℙ­Complete and out main result (corollary 6.2.2.1) follows.

6.2.1. VertexMinor is in ℕℙ
We begin by arguing that the vertex­minor problem is in ℕℙ. Given graphs 𝐺 and
𝐺′ such that 𝐺′ < 𝐺, a witness to this relation would be a sequence of local comple­
mentations and vertex deletions that takes 𝐺 to 𝐺′. It is not a priori clear that this
sequence is polynomial in length w.r.t. to the number of vertices of 𝐺. However
from theorem 4.5.3 one can argue that whenever there is such a sequence, there
is also a sequence of polynomial length. This leads to the following lemma.

Lemma 6.2.1. The decision problem VertexMinoris in ℕℙ. ⋄

Proof. Let 𝐺 and 𝐺′ be graphs, on 𝑛 and 𝑘 vertices respectively. Furthermore, let
u be a sequence such that each element of 𝑉(𝐺) ⧵ 𝑉(𝐺′) occur exactly once in u.
If 𝐺′ < 𝐺 then, by theorem 4.5.3, there exists a sequence of operations 𝑃 ∈ 𝒫u,
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as specified in definition 4.5.2, such that 𝑃(𝐺) ∼LC 𝐺′. Furthermore, the sequence
of operations 𝑃 consists of 𝒪(𝑛 − 𝑘) local complementations and vertex­deletions.
A witness to the instance (𝐺, 𝐺′) will then be the sequence of operations 𝑃. On
the other hand, if 𝐺′ ≮ 𝐺, then by theorem 4.5.3, there exist no 𝑃 ∈ 𝒫u such that
𝑃(𝐺) ∼LC 𝐺′.

Given (𝐺, 𝐺′) and a sequence of operations 𝑃, a verifier can therefore perform
the following protocol to check if (𝐺, 𝐺′) is a yes­instance of StarVertexMinor.

1. Compute 𝑃(𝐺).

2. Decide if 𝑃(𝐺) ∼LC 𝐺′ using Bouchet’s algorithm for checking if two graphs
are LC­equivalent [10].

3. Output yes if Bouchet’s algorithm outputs TRUE and no otherwise.

The verifier will therefore output yes if 𝑃 is such that 𝑃(𝐺) ∼LC 𝐺′ and no if 𝐺′ ≮ 𝐺,
since then 𝑃(𝐺) ≁LC 𝐺′ for any 𝑃. Computing 𝑃(𝐺) can be done in time 𝒪(𝑛2(𝑛−𝑘)),
since each local complementation can be performed in time 𝒪(𝑛2) [10]. Further­
more, checking whether 𝑃(𝐺) and 𝐺′ are LC­equivalent can be done in time 𝒪(𝑘4)
using Bouchet’s algorithm [10]. Thus the verifier will output yes or no in time
𝒪(𝑛2(𝑛 − 𝑘)) + 𝒪(𝑘4).

6.2.2. VertexMinor is ℕℙ­Complete
Next we will argue that the problem VertexMinor is also ℕℙ­Hard and hence that
it is ℕℙ­Complete. We will do this through a sequence of three reductions.

• Firstly we will reduce StarVertexMinor to VertexMinor. This is done in
theorem 6.2.2.

• Secondly we will reduce the new problem SOET, which we introduce in sec­
tion 4.7.6, to StarVertexMinor. This is done in section 6.2.2 using the
results from section 4.7.6.

• Finally we will reduce the problem of deciding whether a 3­regular (or cu­
bic) graph has a Hamiltonian cycle or not (CubHam), which is a known ℕℙ­
complete problem [11], to the SOET problem. This is the most complicated
part of the reduction and is done in several steps in section 6.2.2.

The reductions between these problems are summarized in fig. 6.2. Eventually we
will have the following theorem, which can be considered the main theorem of this
section.

Theorem 6.2.2. VertexMinor is ℕℙ­Complete ⋄

Proof. Note first that StarVertexMinor trivially reduces to VertexMinor. This
is so since every yes(no)­instance of StarVertexMinor is also an yes(no)instance
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VM SVM CubHamSOET

k-DPP

Figure 6.2: The different decision problems considered and how they can be reduced to each other. An
solid arrow between problem 𝐴 and 𝐵 means that any instance of 𝐴 can be reduced to 𝐵 in polynomial
time. A dashed line means that a subclass of instances of the 𝐴 can be reduced to 𝐵 in polynomial
time. VertexMinor and StarVertexMinor are presented in section 4.5, SOET in section 4.7.6,
CubHam in section 6.2.2 and 𝑘­DPP (𝑘­Disjoint Paths Problem) in section 6.3.2. The dashed line from
StarVertexMinor to SOET is restricted to circle graphs. The dashed line from SOET to CubHam is
restricted to triangle­expanded graphs Λ(𝑅) where the SOET is with respect to 𝑉(𝑅). Finally the dashed
line from SOET to 𝑘­DPP is for SOET problems where the SOET is with respect to a set of size 𝑘.

of VertexMinor. From theorem 6.2.3 we see that we can reduce the SOET prob­
lem to StarVertexMinor and finally from corollary 6.2.6.1 we see that we can
reduce CubHam to the SOET problem. Since CubHam is a known ℕℙ­Complete
problem this implies that VertexMinor is ℕℙ­Hard[11]. From lemma 6.2.1 we
have that VertexMinor is in ℕℙ and hence it is ℕℙ­Complete.

As a direct corollary we have the following result.

Corollary 6.2.2.1. Given two graph states |𝐺⟩ and |𝐺′⟩, deciding if |𝐺⟩ can be
transformed into |𝐺′⟩ using only single­qubit Clifford operations, single­qubit Pauli
measurement and classical communication is ℕℙ­Complete. ⋄

Now we will detail every step in the above reduction. We begin with proving
that the SOET decision problem reduces to StarVertexMinor.

Reducing the SOET problem to StarVertexMinor
In this section we show that the SOET problem reduces to StarVertexMinor. For
this we will make use of the properties of circle graphs, discussed in section 4.7.
In corollary 4.7.16.1 we showed that a 4­regular multi­graph 𝐹 allows for a SOET
with respect to a subset of its vertices 𝑉′ ⊆ 𝑉(𝐹) if and only if an alternance graph
𝒜(𝑈) (which is a circle graph), induced by some Eulerian tour on 𝐹, has 𝑆𝑉′ as a
vertex­minor.

Since circle graphs are a subset of all simple graphs we can then decide whether
a 4­regular graph 𝐹 allows for a SOET with respect to some subset 𝑉′ of it’s vertices
by constructing the circle graph induced by an Eulerian tour on 𝐹 and checking
whether it has a star­vertex minor on the vertex set 𝑉′. This leads to the following
theorem.

Theorem 6.2.3. The decision problem SOET reduces to StarVertexMinor. ⋄
Proof. Let (𝐹, 𝑉′) be an instance of SOET, where 𝐹 is a 4­regular multi­graph and 𝑉′
a subset of the vertex set of 𝐹. Also let 𝐺 be a circle graph induced by any Eulerian
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tour 𝑈 on 𝐹. From corollary 4.7.16.1 we see that 𝐺 has 𝑆𝑉′ as a vertex­minor if and
only if 𝐹 allows for a SOET with respect to the vertex set 𝑉′. Since an Eulerian tour
𝑈 can be found in polynomial time [12] and since 𝐺 can be efficiently constructed
given 𝑈, this concludes the reduction.

Reducing CubHam to the SOET problem
In this section we will prove that the SOET problem, as defined in problem 4.7.16,
is ℕℙ­Complete by reducing the problem of deciding if a 3­regular graph is Hamil­
tonian (CubHam), a well­known ℕℙ­Complete problem [11], to the SOET problem
(it is in ℕℙ by theorem 6.2.3 and lemma 6.2.1). For completeness we include the
definition of a Hamiltonian graph.

Definition 6.2.4 (Hamiltonian). A graph is said to be Hamiltonian if it contains a
Hamiltonian cycle. A Hamiltonian cycle is a cycle that visits each vertex in the graph
exactly once. ⋄

We can use this to formally define the CubHam problem.

Problem 6.2.5 (CubHam). Let 𝑅 be a 3­regular graph. Decide whether 𝑅 is Hamil­
tonian. ⋄

The reduction of CubHam to the SOET problem is done by going though the
following steps.

1. Introduce the notion of a (4­regular) triangular­expansion Λ(𝑅) of a 3­regular
graph. This is done in definition 6.2.7.

2. Argue that given a 3­regular graph 𝑅, its triangular­expansion can be con­
structed efficiently. This is done in lemma 6.2.8.

3. Introduce the notions of skip and true skip that capture an essential behav­
ior of SOET s on triangular­expansions of 3­regular graphs. This is done in
section 6.2.2.

4. Prove that if a 3­regular graph 𝑅 is Hamiltonian then the triangular­expansion
Λ(𝑅) of 𝑅 allows for a SOET with respect to the set 𝑉(𝑅). This is done in
lemma 6.2.11.

5. Prove that if the triangular­expansion Λ(𝑅) of a 3­regular graph 𝑅 allows for a
special kind of SOET, called a HAMSOET with respect to 𝑅 (HAMSOETs are de­
fined in definition 6.2.12, but can be thought of as SOETs with no true skips),
then the 3­regular graph 𝑅 is Hamiltonian. This is done in lemma 6.2.13.

6. Prove that if the triangular­expansion Λ(𝑅) of a 3­regular graph 𝑅 allows for
a SOET with respect to 𝑉(𝑅) then it also allows for a HAMSOET with respect
to 𝑅. This is done in lemma 6.2.14.

Performing all these steps will lead to the following theorems.
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Theorem6.2.6. Let 𝑅 be a 3­regular graph and Λ(𝑅) be its triangular­expansion as
defined in definition 6.2.7. 𝑅 is Hamiltonian if and only if Λ(𝑅) allows for a SOET with
respect to 𝑉(𝑅). ⋄

Proof. Let 𝑅 be a 3­regular graph and let Λ(𝑅) be its triangular­expansion as defined
in definition 6.2.7. If 𝑅 is Hamiltonian then lemma 6.2.11 guarantees that Λ(𝑅)
allows for a SOET with respect to the vertices 𝑉(𝑅). In the other direction, if
Λ(𝑅) allows for a SOET with respect to the vertices 𝑉(𝑅) then we can see from
lemma 6.2.13 that it also allows for a HAMSOET. The existence of a HAMSOET on
Λ(𝑅) then implies, via lemma 6.2.13 that 𝑅 has a Hamiltonian cycle and hence that
it is Hamiltonian. This proves the theorem.

Corollary 6.2.6.1. The SOETproblem is ℕℙ­Complete. ⋄

Proof. The Hamiltonian cycle problem (CubHam) is ℕℙ­Complete on 3­regular
graphs [11]. We will reduce this problem to the SOET problem. Let 𝑅 be an instance
of CubHam, i.e. a 3­regular graph. From this 3­regular graph we can construct its
triangular­expansion Λ(𝑅). In lemma 6.2.8 it is argued that this construction can
be performed in 𝑂(|𝑉(𝑅)|) time. We can then use theorem 6.2.6 to see that 𝑅 is
Hamiltonian if and only if Λ(𝑅) allows for a SOET with respect to the vertex set
𝑉(𝑅). Hence there exists an efficient reduction of CubHam to the SOET problem.
This means that the SOET problem is ℕℙ­Hard. Furthermore, the SOET problem is
in ℕℙ since it can be efficiently reduced to StarVertexMinor by theorem 6.2.3,
which is in ℕℙ by lemma 6.2.1. Hence the SOET problem is ℕℙ­Complete.

Corollary 6.2.6.2. The SOET problem is ℕℙ­Complete on graphs which are
triangular­expansions of planar 3­regular triply­connected graphs, i.e. graphs in
the set

{Λ(𝑅) ∶ 𝑅 is planar, 3­regular and triply­connected}. (6.2)

⋄

Proof. The proof is the same as the proof of corollary 6.2.6.1 but using the fact that
CubHam is ℕℙ­Complete on planar triply­connected graphs.

Triangular­expansions
It now remains to prove lemmas 6.2.11, 6.2.13 and 6.2.14. These lemmas will re­
late Hamiltonian cycles on 3­regular graphs and SOET s on 4­regular multi­graphs
by using a mapping from 3­regular graphs to 4­regular multi­graphs. We call this
mapping ‘triangular­expansion’. We have the following definition.

Definition 6.2.7 (Triangular­expansion). Let 𝑅 be a 3­regular graph. A triangular­
expansion Λ(𝑅) of a 3­regular graph 𝑅 is constructed from 𝑅 by performing the
following two steps:
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1. Replace each vertex 𝑣 in 𝑅 with the subgraph below
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(6.3)
where 𝑥, 𝑦 and 𝑧 are the neighbors of 𝑣. We will denote this triangle subgraph
associated to the vertex 𝑣 with 𝑇𝑣, i.e. 𝑇𝑣 = 𝐺[{𝑣, 𝑣(𝑥), 𝑣(𝑦), 𝑣(𝑧), 𝑣̃(𝑦), 𝑣̃(𝑧)}].

2. Double every edge that is incident on two subgraphs 𝑇𝑣 , 𝑇𝑣′ .

⋄

The graph Λ(𝑅) will be called a triangular­expansion of 𝑅. A multi­graph 𝐹 that
is the triangular­expansion of some 3­regular graph 𝑅 will also be referred to as
a triangular­expanded graph. Note that the triangular­expansion is not uniquely
defined, since for each vertex 𝑣 ∈ 𝑅 there is a choice how to orient the triangle
with respect to the neighbors of 𝑣. Furthermore, the number of vertices in Λ(𝑅) is
6 ⋅ |𝑉(𝑅)| and the number of edges is 2 ⋅ |𝐸(𝑅)| + 9 ⋅ |𝑉(𝑅)|. In fig. 6.3 we show an
example of a 3­regular graph and its triangular­expansion.

For a given triangle subgraph 𝑇𝑣 in a triangular­expanded graph, we will refer
to the vertices adjacent to other triangle subgraphs 𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧 as ’outer vertices’ and
label them according to the triangle subgraph they are adjacent to. Concretely we
label the vertex in 𝑇𝑣 that is adjacent to 𝑇𝑤 as 𝑣(𝑤), the index signifies which triangle
subgraph it connects to.

In the following lemma we argue that this construction can be made efficiently
in the size of 𝑅.

Lemma 6.2.8. Let 𝑅 be a 3­regular graph. We can construct its triangular­
expansion in 𝑂(|𝑉(𝑅)|2) time. ⋄

Proof. Let 𝑅 be a 3­regular graph. Without loss of generality assume some label­
ing on the vertices of 𝑅, i.e. 𝑉(𝑅) = {𝑣1, … , 𝑣𝑘} where 𝑘 = |𝑉(𝑅)|. We begin by
constructing the vertex set 𝑉(Λ(𝑅)) off the triangular­expansion Λ(𝑅) of 𝑅.

For each 𝑖 ∈ [𝑘] construct the set 𝑉𝑖 = {𝑣𝑖 , 𝑣̃
(𝑣𝑗)
𝑖 , 𝑣̃(𝑣𝑗′ )𝑖 , 𝑣(𝑣𝑗)𝑖 , 𝑣𝑖(𝑣𝑗′ ), 𝑣(𝑣𝑗̂)} where

𝑣𝑖 ∈ 𝑉(𝑅) and 𝑣𝑗 , 𝑣𝑗′ , 𝑣 ̂𝑗 are the three unique neighbors of 𝑣𝑖 in 𝑅. Constructing
this set takes 𝑂(|𝑉(𝑅)|) as we must search the set of edges 𝐸(𝑅) of 𝑅 to find the
neighbors of 𝑣𝑖 and we have that |𝐸(𝑅)| = 𝑂(|𝑉(𝑅)|) since 𝑅 is 3­regular. Thus
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Figure 6.3: Figure showing the complete graph on vertices 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} and its associated triangular­
expansion Λ(𝐾𝑉).

constructing the set 𝑉(Λ(𝑅)) = ∪𝑖∈[𝑘]𝑉𝑖 takes 𝑂(|𝑉(𝑅)|2) time.

Now we construct the edge multi­set 𝐸(Λ(𝑅)) of the triangular­expansion of 𝑅.
For each 𝑖 ∈ [𝑘] we define the multi­set

𝐸𝑖 = {(𝑣𝑖 , 𝑣̃
(𝑣𝑗)
𝑖 ),(𝑣𝑖 , 𝑣̃

(𝑣𝑗′ )
𝑖 ), (𝑣𝑖 , 𝑣

(𝑣𝑗)
𝑖 ), (𝑣𝑖 , 𝑣

(𝑣𝑗′ )
𝑖 ), (𝑣̃(𝑣𝑗)𝑖 , 𝑣̃(𝑣𝑗′ )𝑖 ),

(𝑣(𝑣𝑗)𝑖 , 𝑣̃(𝑣𝑗)𝑖 ), (𝑣(𝑣𝑗′ )𝑖 , 𝑣̃(𝑣𝑗′ )𝑖 ), (𝑣
(𝑣𝑗̂)
𝑖 , 𝑣̃(𝑣𝑗)𝑖 ), (𝑣

(𝑣𝑗̂)
𝑖 , 𝑣̃(𝑣𝑗′ )𝑖 ),

(𝑣(𝑣𝑗)𝑖 , 𝑣(𝑣𝑖)𝑗 ), (𝑣(𝑣𝑗′ )𝑖 , 𝑣(𝑣𝑖)𝑗′ ), (𝑣
(𝑣𝑗̂)
𝑖 , 𝑣(𝑣𝑖)̂𝑗 )}. (6.4)

This multi­set can be constructed in constant time. Hence the multi­set 𝐸(Λ(𝑅)) =
∪𝑖∈[𝑘]𝐸𝑖 can be constructed in 𝑂(|𝑉(𝑅)|) time. It is easy to check that the multi­
graph defined by the vertex set Λ(𝑅) and edge multi­set 𝐸(Λ(𝑅)) is indeed the
triangular­expansion of 𝑅. This completes the lemma.

Skips and true skips
A key insight in the behavior of the SOET problem on triangular­expanded graphs
is the notion of skips. The word skip stems from the fact that since any SOET 𝑈
on the triangular­expansion Λ(𝑅) of a 3­regular graph is a Eulerian tour, it must
traverse any triangle subgraph 𝑇𝑣 of Λ(𝑅) exactly three times. However in order
for 𝑈 to be a valid SOET with respect to 𝑉(𝑅) it must traverse the vertex 𝑣 exactly
two of those three times. This means it must skip the vertex 𝑣 exactly once while
traversing 𝑇𝑣.
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We state a more formal definition of a (true) skip in terms of maximal sub­words
(see definition 4.7.18).

Definition 6.2.9 (Skip). Let 𝑅 be a 3­regular graph and let Λ(𝑅) be its triangular­
expansion. Let 𝑈 be a SOET on Λ(𝑅) with respect to 𝑉(𝑅). Let X be a maximal
sub­word of 𝑚(𝑈) (definition 4.7.18) associated to vertices 𝑢, 𝑣 ∈ 𝑉(𝑅). We say the
sub­trail described by X makes a skip at a vertex 𝑤 ∈ 𝑉(𝑅) ⧵ {𝑢, 𝑣} if 𝑥(𝑤)1 𝑤(𝑥1) and
𝑥(𝑤)2 𝑤(𝑥2) are sub­words of X (up to reflection), where 𝑥1, 𝑥2 ∈ 𝑉(𝑅). Furthermore,
if 𝑥1 ≠ 𝑥2 then we say that the trail described by X makes a true skip at 𝑤 or
sometimes that 𝑇𝑤 contains a true skip. ⋄

Note that since X is a maximal sub­word associated to 𝑢, 𝑣 and 𝑤 ∉ {𝑢, 𝑣}, 𝑤
cannot be a letter of X. As stated above, there is always exactly one maximal
sub­word describing a sub­trail of a SOET that makes a skip at a certain triangle
subgraph, as formalized in the following lemma. One can think of this lemma as
giving necessary conditions for the existence of a SOET with respect to 𝑉(𝑅) on the
triangular­expansion of a 3­regular graph 𝑅

Lemma6.2.10. Let 𝑅 be a 3­regular graph and let Λ(𝑅) be its triangular­expansion.
Let 𝑈 be a Eulerian tour on Λ(𝑅). Let 𝑤 ∈ 𝑉(𝑅) and let 𝑇𝑤 be its triangle subgraph
in Λ(𝑅). If 𝑈 is a SOET on Λ(𝑅) with respect to 𝑉(𝑅) then there exists exactly one
maximal sub­trail of 𝑈 that makes a skip at 𝑤. ⋄

Proof. We will prove this by showing that there are exactly three maximal sub­trails
of 𝑈 that traverse vertices in 𝑇𝑤 and that exactly one of these makes a skip at
𝑤. Note first that the Eulerian tour 𝑈 will enter and exit the triangle subgraph 𝑇𝑤
exactly three times, since there are six edges incident to 𝑇𝑤. Hence there exists
exactly three distinct edge­disjoint sub­trails, 𝑡1, 𝑡2 and 𝑡3 of 𝑈 that exit and enter
𝑇𝑤, i.e. the last vertices they traverse in 𝑇𝑤 will be 𝑥(𝑤)𝑖 , where 𝑥𝑖 for 𝑖 ∈ [3] are
the neighbors of 𝑤 in 𝑅. Note that 𝑡1, 𝑡2 and 𝑡3 each contain at least one vertex in
𝑇𝑤 and they jointly traverse all edges in 𝑇𝑤 (Since 𝑈 is a Eulerian tour).

Now consider the vertex 𝑤. The Eulerian tour 𝑈 traverses this vertex exactly
twice. There are now two options for the trails 𝑡1, 𝑡2, 𝑡3. Either (1) one of the trails
contains the vertex 𝑤 exactly twice or (2) there are exactly two trails that contain
the vertex 𝑤 exactly once.

Now assume 𝑈 is a SOET with respect to 𝑉(𝑅). If option (1) is true the tour 𝑈
traverses the vertex 𝑤 twice in succession before traversing any other vertex in the
set 𝑉′. This is in contradiction with the assumption that 𝑈 is a SOET. Hence if 𝑈 is
a SOET we must have that option (2) is true, that is, exactly two of the sub­trails
𝑡1, 𝑡2 and 𝑡3 must contain 𝑤.

Lets assume without loss of generality that 𝑤 ∈ 𝑡2 and 𝑤 ∈ 𝑡3. Hence we have
that 𝑤 ∉ 𝑡1 and thus 𝑡1 induces a sub­word 𝑚(𝑡1) not containing 𝑤. The word
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𝑚(𝑡1) can be extended to a maximal sub­word X not associated to 𝑤 but describ­
ing a sub­trail traversing vertices in 𝑇𝑤. Therefore by definition 6.2.9 X describes a
sub­trail making a skip at 𝑤. Furthermore, 𝑚(𝑡2) has an overlap with two maximal
sub­words associated with 𝑦1, 𝑤 and 𝑤, 𝑦2, respectively for some 𝑦1, 𝑦2 ∈ 𝑉(𝑅).
Similarly for 𝑚(𝑡3) and the vertices 𝑧1, 𝑤 and 𝑤, 𝑧2. Thus, the maximal sub­words
that have an overlap with 𝑚(𝑡2) or 𝑚(𝑡3) do not make a skip at 𝑤.

Finally, there is no other maximal sub­word describing a sub­trail that traverses
a vertex in 𝑇𝑤. The reason for this is that 𝑡1, 𝑡2 and 𝑡3 jointly traverse all edges in
𝑇𝑤, so any maximal sub­trail traversing a vertex in 𝑇𝑤 must have an overlap with
𝑡1, 𝑡2 or 𝑡3. The lemma then follows since we found exactly one maximal sub­word
describing a sub­trail of 𝑈 making a skip at 𝑤, i.e. the unique one that has an
overlap with 𝑡1.

Equivalence between SOET’s and Hamiltonian cycles
Now that we have defined the triangular­expansion Λ(𝑅) of a 3­regular graph 𝑅 and
discussed skips we can finally make the central argument of the reduction given in
corollary 6.2.6.1. We begin by proving that if a 3­regular graph is Hamiltonian then
its corresponding triangular­expansion Λ(𝑅) allows for a SOET w.r.t. the vertex set
𝑉(𝑅). We have the following lemma.
Lemma 6.2.11. Let 𝑅 be a 3­regular graph and Λ(𝑅) be a triangular­expansion
as defined in definition 6.2.7. If 𝑅 is Hamiltonian, then Λ(𝑅) allows for a SOET with
respect to 𝑉(𝑅). ⋄
Proof. Let 𝑅 be Hamiltonian. This means there exists a Hamiltonian cycle 𝑀 on 𝑅.
We will prove that there exists a SOET 𝑈 with respect to 𝑉(𝑅) on the triangular­
expansion Λ(𝑅) of 𝑅 by constructing, from the cycle 𝑀 on 𝑅, a tour 𝑈 that visits
every vertex 𝑣 ∈ 𝑉(𝑅) twice in the same order. We will then argue that this tour
can always be lifted to a Eulerian tour and hence can be made into a SOET.

Note first that 𝑀 induces an ordering on the vertices of 𝑅 which without of loss
of generality we will take to be 𝑣1, … 𝑣𝑘 where 𝑘 = |𝑉(𝑅)|. Note that for all 𝑖 ∈ [𝑘−1]
the vertices 𝑣𝑖 and 𝑣𝑖+1 are adjacent in 𝑅 and so are 𝑣𝑘 and 𝑣1. Now consider, for
each 𝑖 ∈ [𝑘−1] the triangle subgraphs 𝑇𝑣𝑖 , 𝑇𝑣𝑖+1 and 𝑇𝑣̂𝑖 in the triangular­expansion
Λ(𝑅) of 𝑅 where 𝑣̂𝑖 is the unique vertex adjacent to 𝑣𝑖 in 𝑅 that is not 𝑣𝑖+1 or 𝑣𝑖−1.
There are now three cases, depending on the orientation of the triangle subgraph
𝑇𝑣𝑖 . Either (1) 𝑣𝑖 is adjacent to 𝑣

(𝑣𝑖−1)
𝑖 and 𝑣(𝑣𝑖+1)𝑖 or (2) 𝑣𝑖 is adjacent to 𝑣(𝑣𝑖−1)𝑖 and

𝑣( ̂𝑣𝑖)𝑖 or (3) 𝑣𝑖 is adjacent to 𝑣(𝑣𝑖+1)𝑖 and 𝑣(𝑣̂𝑖)𝑖 .

For case (1), i.e. 𝑣𝑖 is adjacent to 𝑣(𝑣𝑖−1)𝑖 and 𝑣(𝑣𝑖+1)𝑖 in 𝑇𝑣𝑖 , we can define two
edge­disjoint trails on the triangular­expansion Λ(𝑅) by their description as words
X𝑖 ,X′𝑖 on the vertices of Λ(𝑅).

X𝑖 = 𝑣(𝑣𝑖−1)𝑖 𝑣̃(𝑣𝑖−1)𝑖 𝑣(𝑣̂𝑖)𝑖 𝑣̃(𝑣𝑖+1)𝑖 𝑣𝑖𝑣(𝑣𝑖+1)𝑖 𝑣(𝑣𝑖)𝑖+1 , (6.5)

X′𝑖 = 𝑣
(𝑣𝑖−1)
𝑖 𝑣𝑖𝑣̃(𝑣𝑖−1)𝑖 𝑣̃(𝑣𝑖+1)𝑖 𝑣(𝑣𝑖+1)𝑖 𝑣(𝑣𝑖)𝑖+1 . (6.6)
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An illustration of the trails described by these words is given in fig. 6.4a. We can
similarly define two edge­disjoint trails for the cases (2) and (3). We will abuse
notation and refer to the words as X𝑖 and X′𝑖 in all three cases. Importantly, for
all three of these cases the trails described by X𝑖 ,X′𝑖 are edge­disjoint and both
begin at 𝑣(𝑣𝑖−1)𝑖 and end at 𝑣(𝑣𝑖+1)𝑖 . We can extend this definition to trails 𝑈0, 𝑈′0
described by the words X0,X′0, also for the case of the adjacent vertices 𝑣𝑘 and 𝑣1.
Note now that the walk 𝑈 described by the wordW = X0X1…X𝑘−1X′0X′1…X𝑘−1 is
a tour and moreover that it traverses the vertices in 𝑉(𝑅) twice in the order 𝑣1, … 𝑣𝑘.

The tour 𝑈 described by the wordW above visits every vertex in 𝑉(𝑅) such that
W[𝑉(𝑅)] = 𝑣1…𝑣𝑘𝑣1…𝑣𝑘. However it is not yet a Eulerian tour, since it has not
traversed all edges in Λ(𝑅). Note that the edges not traversed by 𝑈 are precisely
the triangular­expansions of the edges in 𝑅 not traversed by the Hamiltonian cycle
𝑀. We can easily construct a Eulerian tour out of 𝑈 by looping over all elements
of the word X and whenever we encounter a vertex 𝑣(𝑣̂𝑖)𝑖 for all 𝑖 ∈ [𝑘], where 𝑣̂𝑖 is
defined as above, we check whether 𝑈 already traverses the edges (𝑣(𝑣̂𝑖)𝑖 , 𝑣̂(𝑣𝑖)𝑖 ). If
so we continue the loop and if not we insert the trail (𝑣(𝑣̂𝑖)𝑖 , 𝑣̂(𝑣𝑖)𝑖 )𝑣̂(𝑣𝑖)(𝑣(𝑣̂𝑖)𝑖 , 𝑣̂(𝑣𝑖)𝑖 )𝑣(𝑣̂𝑖)𝑖
into 𝑈 at this position. This procedure is illustrated in fig. 6.4b. Now 𝑈 is Eulerian
and hence a SOET. This completes the proof.

Next we define a special type of SOET on triangular­expanded graphs, which
we call HAMSOET s. These special SOET s on a triangular­expanded graph Λ(𝑅),
are closely related to Hamiltonian cycles on 𝑅.
Definition 6.2.12 (HAMSOET). Let 𝑅 be a 3­regular graph and Λ(𝑅) its triangular­
expansion. Furthermore, let 𝑈 be a SOET on Λ(𝑅) with respect to 𝑉(𝑅). 𝑈 is called
a HAMSOET with respect to 𝑅 if, for all vertices 𝑢, 𝑣 ∈ 𝑉(𝑅) we have that if 𝑢 and 𝑣
are consecutive with respect to the SOET 𝑈 they are also adjacent in the graph 𝑅.
⋄

Next we prove that if the triangular­expansion of a 3­regular graph 𝑅 allows for
a HAMSOET with respect to 𝑅 then the 3­regular graph 𝑅 is Hamiltonian.
Lemma6.2.13. Let 𝑅 be a 3­regular graph and let Λ(𝑅) be its triangular­expansion.
If Λ(𝑅) allows for a HAMSOET with respect to 𝑅, then 𝑅 is Hamiltonian. ⋄
Proof. This follows by the definition of a HAMSOET. A HAMSOET 𝑈 will induce a
double occurrence word of the form

𝑚(𝑈) = X0𝑠1X1𝑠2…𝑠𝑘X𝑘𝑠1X′1𝑠2…𝑠𝑘X′𝑘 . (6.7)

where 𝑠1, … 𝑠𝑘 ∈ 𝑉(𝑅) with 𝑘 = |𝑉(𝑅)| and where X𝑖 and X′𝑖 are maximal sub­words
associated to 𝑠𝑖 , 𝑠𝑖+1 ∈ 𝑉(𝑅). Now consider the induced double occurrence word
𝑚(𝑈)[𝑉(𝑅)]. We have

𝑚(𝑈)[𝑉(𝑅)] = 𝑠1…𝑠𝑘𝑠1…𝑠𝑘 . (6.8)

Consider now the sub­word 𝑠1…𝑠𝑘 of 𝑚(𝑈)[𝑉(𝑅)] . This sub­word describes a
Hamiltonian cycle on 𝑅. To see this, note that each vertex in 𝑉(𝑅) occurs exactly
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Figure 6.4: The trails used in the proof of lemma 6.2.11 to construct a SOET on a triangular­expanded
graph Λ(𝑅) from a Hamiltonian cycle on 𝑅. Figure 6.4a shows the trails described by the words X𝑖 (solid
red) and X′𝑖 (dashed green), defined in eqs. (6.5) and (6.6). Figure 6.4b shows how these trails can
be extended to form a Eulerian tour and therefore a SOET with respect to 𝑉(𝑅). The dotted gray lines
show edges of Λ(𝑅) which are not used by the trails.

once in 𝑠1𝑠2…𝑠𝑘. Furthermore, since 𝑠𝑖 and 𝑠𝑖+1 are consecutive in 𝑈, they are
adjacent in 𝑅 for all 𝑖 ∈ [𝑘 − 1], by definition of a HAMSOET. Finally, the same also
holds for 𝑠𝑘 and 𝑠1. Hence the tour on 𝑅 described by 𝑠1…𝑠𝑘 visits each vertex in
𝑅 exactly once and is hence a Hamiltonian cycle.

We would like to prove that for any 3­regular graph 𝑅 the existence of a SOET
on its triangular­expansion Λ(𝑅) implies the existence of a Hamiltonian cycle on
𝑅. So far we have proven this only when Λ(𝑅) allows for a HAMSOET. However,
a priori not all SOETs on triangular­expansions Λ(𝑅) have to be HAMSOETs. The
reason for this is that consecutive vertices in a SOET are not necessarily adjacent
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in 𝑅, since a SOET can contain true skips.

In the following lemma we will prove that consecutive vertices in a SOET are ac­
tually adjacent in 𝑅, except for two special cases. These special cases can be reme­
died since we show that for these cases we can always find a different SOET which
is actually a HAMSOET.

The arguments proven below are understood the easiest when one reproduces
the visual aids given in figs. 6.6 and 6.7 as one follows the arguments. We have
the following lemma.

Lemma6.2.14. Let 𝑅 be a 3­regular graph and Λ(𝑅) be its triangular­expansion. If
Λ(𝑅) allows for a SOET with respect to 𝑉(𝑅), then Λ(𝑅) allows for a HAMSOET with
respect to 𝑉(𝑅). ⋄

Proof. To prove this lemma we will go through the following steps

Step 1 Note that if two vertices 𝑢, 𝑣 in 𝑉(𝑅) (𝑅 being a 3­regular graph) are not
adjacent in 𝑅 but are consecutive in a SOET 𝑈 with respect to 𝑉(𝑅) on Λ(𝑅),
then the sub­trails of 𝑈 described by the maximal sub­words associated to 𝑢
and 𝑣 must make a non­zero number of true skips in Λ(𝑅)

Step 2 Argue by contradiction that this non­zero number of true skips can never
be greater than one. This argument leverages lemma 6.2.15 which states that
if a sub­trail of a SOET 𝑈 with respect to 𝑉(𝑅) makes true skips at triangle
subgraphs 𝑇𝑤1 , 𝑇𝑤2 for 𝑤1, 𝑤2 ∈ 𝑉(𝑅) and 𝑤1, 𝑤2 are adjacent in 𝑅 then 𝑤1, 𝑤2
must actually be consecutive in the SOET 𝑈 and lemma 6.2.16 which, in a
slightly different initial situation than lemma 6.2.15, also concludes that two
vertices must be consecutive in a SOET 𝑈 with respect to 𝑉(𝑅).

Step 3 Argue by contradiction that there are only two possible ways for the sub­
trails described by the maximal sub­words associated to 𝑢 and 𝑣 to make one
true skip each. This argument also leverages lemmas 6.2.15 and 6.2.16.

Step 4 Argue that if a triangular­expansion of a 3­regular graph 𝑅 allows for a SOET 𝑈
as in Step 3, then it also allows for a SOET 𝑈′ that is a HAMSOET.

Details of step 1
Let 𝑅 be such that Λ(𝑅) allows for a SOET with respect to 𝑉(𝑅). Let 𝑈 be any

such SOET. If 𝑈 is also a HAMSOET then we are directly done, therefore assume
that 𝑈 is not a HAMSOET. Since 𝑈 is not a HAMSOET there must exist at least two
vertices 𝑢, 𝑣 ∈ 𝑉(𝑅) which are consecutive in 𝑈, but not adjacent in 𝑅. By defini­
tion, since 𝑢 and 𝑣 are consecutive and 𝑈 is a SOET, there must exist exactly two
different maximal sub­words X,X′ of 𝑚(𝑈), associated to 𝑢 and 𝑣. Since 𝑢 and
𝑣 are not adjacent in 𝑅, the trails described by X, X′ must each traverse vertices
in at least one (but possibly more) triangle subgraph that is not 𝑇𝑢 or 𝑇𝑣. Since
X and X′ are maximal sub­words, they can not contain any vertex in 𝑉(𝑅) as a
letter and hence the sub­trails described by X,X′ must each make true skips (see
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definition 6.2.9) at at least one triangle subgraph.

Assume w.l.o.g. that the sub­trail described by X makes true skips at the trian­
gle subgraphs 𝑇𝑠1 , 𝑇𝑠2 , … 𝑇𝑠𝑟 , in this order, and similarly for X′ and 𝑇𝑠′1 , … 𝑇𝑠′𝑟′ . The
true skips that the sub­trail described by Xmakes, must be at different triangle sub­
graphs than the ones for X′, since there can only be exactly one skip per triangle
subgraph, due to lemma 6.2.10. The triangle subgraphs 𝑇𝑠1 , 𝑇𝑠2 , … 𝑇𝑠𝑟 , 𝑇𝑠′1 , … 𝑇𝑠′𝑟′ are
therefore pairwise different. We will call this situation a 𝑟𝑟′­skip, which is illustrated
in fig. 6.5. Note that by assumption, 𝑟 and 𝑟′ are both greater than zero. We will
first show that the case where either 𝑟 or 𝑟′ is greater than one can never occur if
𝑈 is a SOET.
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Figure 6.5: This figure is a visual aid for Step 1 of lemma 6.2.14. A simplified visualization of a triangular­
expansion Λ(𝑅) of a 3­regular graph 𝑅 is used. In the figure triangle subgraphs are shown in gray with
only their outer vertices (circles) and vertices in 𝑉(𝑅) (diamonds) shown. Also shown are the sub­trails,
of a SOET 𝑈, described by maximal sub­words X and X′ associated to vertices 𝑢, 𝑣 making true skips
at triangle subgraphs 𝑇𝑠1 , … , 𝑇𝑠𝑟 and 𝑇𝑠′1 , … , 𝑇𝑠′𝑟 respectively. These sub­trails always begin and end at a
vertex in 𝑉(𝑅) but their path inside triangle subgraphs is not shown explicitly. Dashed lines are used to
indicate that the sub­trails also traverse unspecified further parts of the graph Λ(𝑅).

Details of step 2
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As a visual aid for the following argument, refer to fig. 6.6. We will make an argu­
ment by contradiction. Therefore let 𝑟 be strictly greater than one. Consider the
sub­trail described by the sub­word X defined above. By assumption this sub­trail
makes true skips at at least two adjacent triangle subgraphs. Take these to be
𝑇𝑠1 and 𝑇𝑠2 . As we will prove in lemma 6.2.15, if two adjacent triangle subgraphs
𝑇𝑠1 , 𝑇𝑠2 contain true skips, then 𝑠1 and 𝑠2 must be consecutive in the SOET 𝑈 and
that there is some maximal sub­word Y of 𝑚(𝑈) associated to 𝑠1, 𝑠2 that contains
the sub­word 𝑠(𝑠2)1 𝑠(𝑠1)2 .

This implies that (by definition of SOET) there is some other maximal sub­word
Y′ of 𝑚(𝑈) associated to 𝑠1 and 𝑠2. This sub­word Y′ cannot contain the sub­word
𝑠(𝑠2)1 𝑠(𝑠1)2 , as 𝑠(𝑠2)1 𝑠(𝑠1)2 already appears in both the maximal sub­word X and the
maximal sub­word Y.

This implies the sub­trail described by Y′ must make a nonzero number of true
skips at triangle subgraphs 𝑇𝑠̂1 , … , 𝑇𝑠̂𝑘 in that order. Now consider the triangle sub­
graphs 𝑇𝑠1 and 𝑇𝑠̂1 . As we will prove below, lemma 6.2.16 applied to the triangle
subgraphs 𝑇𝑠1 , 𝑇𝑠̂1 implies that the vertices 𝑠1 and 𝑠̂1 must be consecutive in 𝑈.
Call the maximal sub­word of 𝑚(𝑈) associated to these vertices W0. Moreover, by
lemma 6.2.16 this maximal sub­word contains the sub­word 𝑠(𝑠̂1)1 𝑠̂(𝑠1)1 . Similarly we
can see that the vertices 𝑠2 and 𝑠̂𝑘 must be consecutive in 𝑈. Call the maximal
sub­word of 𝑚(𝑈) associated to these vertices W𝑘. By lemma 6.2.16 this maximal
sub­word contains the sub­word 𝑠(𝑠̂𝑘+1)2 𝑠̂(𝑠2)𝑘+1.

By applying lemma 6.2.16 again to all triangle subgraph pairs 𝑇𝑠̂𝑖 , 𝑇𝑠̂𝑖+1 for 𝑖 ∈
[𝑘 − 1] we come to the conclusion that 𝑠̂𝑖 , 𝑠̂𝑖+1 for 𝑖 ∈ [𝑘 − 1] must be consecu­
tive in 𝑈. Call the maximal sub­word of 𝑚(𝑈) associated to these vertices W𝑖. By
lemma 6.2.16 these maximal sub­words contain the sub­word 𝑠̂(𝑠̂𝑖+1)𝑖 𝑠̂(𝑠̂𝑖)𝑖+1. This im­
plies that 𝑈 must traverse the vertices 𝑠1, 𝑠̂1, … , 𝑠̂𝑘 , 𝑠2, 𝑠1, 𝑠̂1, … , 𝑠̂𝑘 , 𝑠2 in order. Since
by construction {𝑠1, 𝑠2, 𝑠̂1, … , ̂𝑠𝑘} ≠ 𝑉(𝑅) we have that 𝑈 is not a valid SOET on 𝑉(𝑅)
(this can be seen by noting that e.g. 𝑇𝑠′1 already contains a true skip, hence 𝑠

′
1 can

not be part of the set). Hence by contradiction we must have 𝑟 ≤ 1. We can make
the same argument for 𝑟′ yielding 𝑟′ ≤ 1.

Details of step 3
As a visual aid for the following argument, refer to fig. 6.7. Now let 𝑟 = 𝑟′ = 1. This
means the sub­trails described by the maximal sub­words X and X′ associated to
the vertices 𝑢 and 𝑣 make exactly one true skip each at triangle subgraphs triangle
subgraphs 𝑇𝑠1 , 𝑇𝑠′1 respectively. We will now argue that there are essentially only two
ways that a SOET 𝑈 with the above properties can exist on Λ(𝑅). This argument
will again go in steps:

Step 3.1 Argue that the SOET 𝑈 must have a maximal sub­word associated to the
vertex 𝑠1 and some other vertex 𝑥 that describes a trail traversing the edge
connecting the triangle subgraphs 𝑇𝑢 and 𝑇𝑠1 .

Step 3.2 Argue that this sub­trail must make a true skip at the triangle subgraph
𝑇𝑢. Note that this is equivalent to arguing 𝑥 ≠ 𝑢.
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ŝk

X
′

X Y Y
′

W k
W k−1

W 1
W 0

X

X

Y
′

Y
′

X
′

Figure 6.6: This figure is a visual aid for Step 2 of lemma 6.2.14. A simplified visualization of a triangular­
expansion Λ(𝑅) of a 3­regular graph 𝑅 is used. In the figure triangle subgraphs are shown in gray with
only their outer vertices (circles) and the vertices in 𝑉(𝑅) (diamonds) shown. Also shown are sub­trail of
a SOET 𝑈 labeled by the maximal sub­words that describe them. These sub­trails always begin and end
at a vertex in 𝑉(𝑅) but their path inside triangle subgraphs is not shown explicitly. Dashed lines are used
to indicate that the sub­trails also traverse unspecified further parts of the graph Λ(𝑅). In this argument
a contradiction is arrived at by first assuming the that the SOET 𝑈 has a sub­trail described by the
maximal sub­wordX associated to the vertices 𝑢, 𝑣 makes true skips at triangle subgraphs 𝑇𝑠1 , 𝑇𝑠2 . Using
lemma 6.2.15 it is shown that the maximal sub­word Y must exist (associated to vertices 𝑠1 , 𝑠2). This
then means that the maximal sub­word Y′ must exist (also associated to 𝑠1 , 𝑠2). The sub­trail described
by this sub­word must make true skips at triangle subgraphs 𝑇𝑤1 , … , 𝑇𝑤𝑘 . Using lemma 6.2.15 and
lemma 6.2.16 it is then concluded that the SOET𝑈must visit the vertices 𝑠1 , 𝑤1 , …𝑤𝑘 , 𝑠2 , 𝑠1 consecutively
which means 𝑈 is not a valid SOET (since {𝑠1 , 𝑤1 , … ,𝑤𝑘 , 𝑠2} ≠ 𝑉(𝑅)). This is a contradiction.

Step 3.3 Apply the same sequence of arguments for the vertices 𝑠1 and 𝑣 and also
for the vertices 𝑠′1 and 𝑢 and 𝑠′1 and 𝑣.

Step 3.4 Conclude from the fact that the SOET 𝑈 can only make a single true skip
at the triangle subgraphs 𝑇𝑢 and 𝑇𝑣 that 𝑠1 and 𝑠′1 must be consecutive in 𝑈
and moreover that the maximal sub­words Z,Z′ associated to 𝑠1 and 𝑠′2 must
make true skips at 𝑇𝑢 and 𝑇𝑣 respectively.
Details of step 3.1
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Consider the second edge connecting the triangle subgraphs 𝑇𝑢 and 𝑇𝑠1 .
This is the edge (𝑢(𝑠1), 𝑠(𝑢)1 ). Since the SOET 𝑈 is Eulerian it must traverse this
edge. Note also that 𝑇𝑠1 already contains a true skip (made by the sub­trail
described by X). This means, by lemma 6.2.10 that any sub­trail of 𝑈 crossing
the edge (𝑢(𝑠1), 𝑠(𝑢)1 ) connecting 𝑇𝑢 , 𝑇𝑠1 must traverse the vertex 𝑠1. Let Z be
the maximal sub­word describing the sub­trail starting at 𝑠1 and containing the
sub­word 𝑢(𝑠1)𝑠(𝑢)1 . This maximal sub­word is (by definition) associated to two
vertices in 𝑉(𝑅). One of these vertices is 𝑠1 and will label the other one 𝑥.

We will now argue that 𝑥 ≠ 𝑢 and hence that the sub­trail described by Z
makes a true skip at 𝑇𝑢. We do this by contradiction in the following argument.

Details of step 3.2
For this part of the argument assume that 𝑥 = 𝑢. This means that 𝑢 is

consecutive to both 𝑠1 and 𝑣. This means there must be some other maximal
sub­word Z′ associated to 𝑠1 and 𝑢. Note that this sub­word cannot contain
the sub­word 𝑢(𝑠1)𝑠(𝑢)1 as it is already contained in the maximal sub­words Z
and X′.

Now consider the unique third vertex that is adjacent to 𝑢 in 𝑅 (the vertex
adjacent to 𝑢 which is not 𝑠1 or 𝑠′1). Let us label this vertex 𝑤.

Since 𝑇𝑠′1 already contains a true skip (which implies Z
′ cannot connect to 𝑢

by making a true skip at 𝑇𝑠′1) the sub­trail described by the maximal sub­word
Z′ must make a true skip at 𝑤. Now consider the maximal sub­word Y of 𝑚(𝑈)
that that describes a sub­trail traversing the unused edge between 𝑇𝑠′1 and 𝑇𝑢,
i.e. Y contains the sub­word 𝑢(𝑠′1)𝑠′(𝑢)1 . This sub­trail must be associated to
𝑠′1 (since 𝑇𝑠′1 already contains a true skip) and can not not be associated to
𝑢 since 𝑢 is already consecutive with two vertices in 𝑉(𝑅). This means the
sub­trail described by the maximal sub­word Y must make a true skip at the
triangle subgraph 𝑇𝑢. Since the sub­word 𝑢(𝑠1)𝑠(𝑢)1 is already contained in Z
and X′ the maximal sub­word Y must contain the sub­word 𝑢(𝑤)𝑤(𝑢). Since
𝑇𝑤 already contains a true skip this implies that 𝑤 must be associated to the
maximal sub­word Y and hence that 𝑤 and 𝑠′1 are consecutive. This means
there must be a second maximal sub­word Y′ associated to 𝑤 and 𝑠′1.

Since both edges connecting 𝑇𝑢 and 𝑇𝑤 have already been traversed by, the
sub­trail described by the maximal sub­word Y′ must make true skips on some
triangle subgraphs 𝑇𝑠̂1 , … , 𝑇𝑠̂𝑘 .

There are now two possibilities. Either (1) we have that 𝑠̂1 = 𝑣 (see
fig. 6.7a) or (2) that 𝑠̂1 ≠ 𝑣 (see fig. 6.7b). We will now consider both of
these cases:

1. If 𝑠̂1 = 𝑣 we can apply lemma 6.2.16 to the vertices 𝑣 and 𝑠1 to conclude
that 𝑠̂1 = 𝑣 implies that 𝑣 and 𝑠1 are consecutive. Call the maximal sub­
word connecting them W. We now have that the vertices 𝑢, 𝑣 and 𝑠1 are
pairwise consecutive to each other. Since {𝑢, 𝑣, 𝑠1} is a strict subset of
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Figure 6.7: This figure is a visual aid
for Steps 3.1 and 3.2 of lemma 6.2.14.
A simplified visualization of a triangular­
expansion Λ(𝑅) of a 3­regular graph 𝑅
is used. In the figure triangle subgraphs
are shown in gray with only their outer
vertices (circles) and vertices in 𝑉(𝑅) (di­
amonds) shown. Also shown are sub­
trail of a SOET 𝑈 labeled by the maxi­
mal sub­words that describe them. These
sub­trails always begin and end at a ver­
tex in 𝑉(𝑅) but their path inside tri­
angle subgraphs is not shown explicitly.
Dashed lines are used to indicate that the
sub­trails also traverse unspecified further
parts of the graph Λ(𝑅). In Step 3.2
of lemma 6.2.14 it is argued that if the
subtrail described by the maximal sub­
word X′ associated to vertices 𝑢, 𝑣 makes
a true skip at the triangle subgraph 𝑇𝑠1
then the sub­trail described by the maxi­
mal sub­word Z associated to 𝑠1 and an­
other vertex 𝑥 must make a true skip at
the triangle subgraph 𝑇𝑢 (or equivalently
that 𝑥 ≠ 𝑢). This is done by contradiction
so it is assumed (as seen in both (a) and
(b)) that 𝑥 = 𝑢. This implies the existence
of the maximal sub­word Z′ which must
make a true skip at 𝑇𝑤 where 𝑤 is the
unique neighbor of 𝑢 s.t. 𝑤 ≠ 𝑠1 , 𝑠′1. This
in turn implies that 𝑠′1 and𝑤 must be con­
secutive and connected by a sub­trail de­
scribed by the maximal sub­word labeled
Y in both (a) and (b). This means an­
other sub­trail connecting 𝑠′1 and 𝑤 must
exist, which described by a maximal sub­
word Y′. This sub­word makes true skips
at triangle subgraphs 𝑠̂1 , … 𝑠̂𝑘. There are
now 2 options. Either, as shown in (a) we
have that 𝑣 = 𝑠̂1 or we have, as shown
in (b) that 𝑣 ≠ 𝑠̂1. In the first case (a)
lemma 6.2.16 is applied to conclude that
𝑣 must be consecutive to 𝑠1 , 𝑠′1 and 𝑢
leading to a contradiction. In the second
case (b) lemma 6.2.15 and lemma 6.2.16
are used to show that any SOET 𝑈 must
traverse the vertices 𝑠′1 , 𝑤, 𝑠̂𝑘 , … , 𝑠̂1 , 𝑠′1 in
order leading to a contradiction.

𝑉(𝑅), 𝑈 cannot be a a SOET which is a contradiction.
2. Now assume that 𝑣 ≠ 𝑠̂1. By lemma 6.2.16 we can now conclude that
𝑤 and 𝑠̂𝑘 must be consecutive and that 𝑠′1 and 𝑠̂1 ≠ 𝑣 must be consec­
utive. We have to perform one last construction to prove the lemma.
This construction is visualized in fig. 6.7b. Call the maximal sub­words
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associated to these vertex pairs 𝑤 and 𝑠̂𝑘 and 𝑠′1 and 𝑠̂1 W𝑘 and W0
respectively. We can again use lemma 6.2.15 to conclude that 𝑠̂𝑖 is con­
secutive to 𝑠̂𝑖+1 for all 𝑖 ∈ [𝑘 − 1]. Call the maximal sub­words associ­
ated to the vertices 𝑠̂𝑖 and 𝑠̂𝑖+1 W𝑖. This implies that 𝑈 must traverse
the vertices 𝑠′1, 𝑠̂1, … , 𝑠̂𝑘 , 𝑤, 𝑠′1, 𝑠̂1, … , 𝑠̂𝑘 , 𝑤 in order. Since by construction
{𝑠′1, 𝑠𝑤 , 𝑠̂1, … , ̂𝑠𝑘} ≠ 𝑉(𝑅) we have that 𝑈 is not a valid SOET on 𝑉(𝑅) (this
can be seen by noting that e.g. 𝑇𝑢 already contains a true skip, hence 𝑢
can not be part of the set).

Hence in both cases we arrive at a contradiction. This means by contradiction
that 𝑥 ≠ 𝑢 and thus that the sub­trail described by Z makes a true skip at 𝑇𝑢.

Details of step 3.3
Now similarly to Step 3.1 consider the edge connecting 𝑇𝑠1 and 𝑇𝑣. We can

again argue that there must exist a maximal sub­word Z′ associated to the
vertex 𝑠1 and some other vertex 𝑥′ that describes a sub­trail that traverses this
edge. By the same argument as Step 3.2 we can conclude that 𝑥′ ≠ 𝑣 and
thus that Z′ describes a sub­trail making a true skip at 𝑇𝑣.

We can make the same argument for the vertex 𝑠′1 establishing the exis­
tence of maximal sub­words 𝑍̂, 𝑍̂′ that describe sub­trails making true skips at
𝑇𝑢 and 𝑇𝑣 respectively.

Details of step 3.4
Note that the sub­trails described by Z and�Zmake true skips at the triangle

subgraph 𝑇𝑢. Since 𝑇𝑢, by lemma 6.2.10 can only contain a single true skip and
since Z,�Z are maximal sub­words we must have that Z ∼ �Z and thus that the
vertices 𝑠1 and 𝑠′1 are consecutive with respect to the SOET 𝑈. However since
we must also conclude that Z′ ∼�Z′ we have that 𝑠1 and 𝑠′1 are consecutive and
have two maximal sub­words associated to them. Since there are no further
constraints on 𝑈 imposed by the the fact that the sub­words X,X′ associated
to the vertices 𝑣, 𝑢 make true skips. Therefore SOETs with this type of behavior
are in fact allowed. These SOETs can also be found explicitly, as can be sen
in fig. 6.8. If a SOET 𝑈 has this type of behavior (𝑢 and 𝑣 are not adjacent in
𝑅 but are consecutive in the SOET 𝑈 on Λ(𝑅)) we say that the SOET 𝑈 has a
valid 11­skip. Next we show that if a SOET 𝑈 has a valid 11­skip, and thus is
not a HAMSOET, it can always be turned into a HAMSOET by applying a fixed
set of local complementation.

Details of step 4

We now show that a SOET with valid 11­skips can be turned into a HAMSOET.
The two possibilities for a SOET with a valid 11­skip are shown in fig. 6.8. Note that
these possibilities have the same ‘local’ structure, the only difference is how the rest
of the SOET 𝑈 is connected to the valid 11­skip. We first show the procedure that
should be applied if the 11­skip is of the form in fig. 6.8a.
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Figure 6.8: This figure is a visual aid for
Step 4 of lemma 6.2.14. A simplified visu­
alization of a triangular­expansion Λ(𝑅) of
a 3­regular graph 𝑅 is used. In the figure
triangle subgraphs are shown in gray with
only their outer vertices (circles) and the
vertices in 𝑉(𝑅) (diamonds) shown. Also
shown are sub­trail of a SOET 𝑈 labeled
by the maximal sub­words that describe
them. These sub­trails always begin and
end at a vertex in 𝑉(𝑅) but their path in­
side triangle subgraphs is not shown ex­
plicitly. Dashed lines are used to indicate
that the sub­trails also traverse unspeci­
fied further parts of the graph Λ(𝑅). Fig­
ures 6.8a and 6.8b show the two valid 11­
skips. The sub­word X1 describes some
sub­trail of 𝑈 connecting 𝑇𝑣 and 𝑇𝑠1 . With
a slight abuse of notation we denote the
endpoints of this trail by 𝑣(𝑋) and 𝑠(𝑋)1 .
Similarly for X2, X′1 and X′2.

The SOET 𝑈 in fig. 6.8a is of the form

𝑚(𝑈) = U1𝑣(𝑠1)U2𝑣(𝑠1)U3𝑠′(𝑢)1 U4𝑠′(𝑢)1 U5 (6.9)
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where

U1 = 𝑢𝑢(𝑠1)𝑠(𝑢)1 𝑠(𝑣)1 (6.10)

U2 = 𝑣𝑣(𝑋)X1𝑠(𝑋)1 𝑠1𝑠(𝑣)1 (6.11)

U3 = 𝑣(𝑠
′
1)𝑠′(𝑣)1 𝑠′1𝑠′(𝑋

′)
1 X′1𝑢(𝑋

′)𝑢𝑢(𝑠′1) (6.12)

U4 = 𝑠′(𝑣)1 𝑣(𝑠′1)𝑣𝑣(𝑋)X2𝑠(𝑋)1 𝑠1𝑠(𝑢)1 𝑢(𝑠1)𝑢(𝑠′1) (6.13)

U5 = 𝑠′1𝑠′(𝑋
′)

1 X′2𝑢(𝑋
′) (6.14)

where X1 is the word associated to the sub­trail connecting 𝑣(𝑋) and 𝑠(𝑋)1 as seen in
fig. 6.8a and similarly for X′1,X2,X′2. Since our goal is to make this a HAMSOET we
need to have that pairs of vertices in 𝑉(𝑅) are only consecutive w.r.t. 𝑈 if they are
adjacent in 𝑅. This can be done by applying 𝜏̄­operations to 𝑈 at 𝑣(𝑠1) and 𝑠′(𝑢)1 .
The Eulerian tour 𝑈′ after these operations will be described by

𝑚(𝑈′) = 𝑚(𝜏̄(𝑣(𝑠1) ,𝑠′(𝑢)1 )(𝑈)) = U1𝑣(𝑠1)Ũ2𝑣(𝑠1)U3𝑠′(𝑢)1 Ũ4𝑠′(𝑢)1 U5 (6.15)

where the over­set tilde indicates the mirror­inverting of a sub­word. Note that
neither (𝑢, 𝑣) or (𝑠1, 𝑠′1) are consecutive anymore, but instead (𝑢, 𝑠1) and (𝑣, 𝑠′1) are
now consecutive w.r.t. 𝑈′. To make sure that this procedure works we need to
check two things: (1) 𝑈′ is a SOET and (2) there are no additional consecutive
pairs of vertices in 𝑈′ that are not adjacent in 𝑅. To do this, lets look at the
order 𝑈 and 𝑈′ traverse the vertices in 𝑉(𝑅), i.e. we will look at 𝑚(𝑈)[𝑉(𝑅)] and
𝑚(𝑈′)[𝑉(𝑅)]. Since 𝑈 is a SOET we must have that X1[𝑉(𝑅)] = X2[𝑉(𝑅)] and
similarly X′1[𝑉(𝑅)] = X′2[𝑉(𝑅)]. Lets denote these words by X𝑉 = X1[𝑉(𝑅)] and
X′𝑉 = X′1[𝑉(𝑅)]. We then have that the double occurrence word of 𝑚(𝑈) induced
by 𝑉(𝑅) is

𝑚(𝑈)[𝑉(𝑅)] = 𝑢𝑣X𝑉𝑠1𝑠′1X′𝑉𝑢𝑣X𝑉𝑠1𝑠′1X′𝑉 (6.16)

and similarly for 𝑈′ we have

𝑚(𝑈′)[𝑉(𝑅)] = 𝑢𝑠1X̃𝑉𝑣𝑠′1X′𝑉𝑢𝑠1X̃𝑉𝑣𝑠′1X′𝑉 (6.17)

It is therefore clear that the Eulerian tour 𝑈′ is a SOET. Furthermore the only con­
secutive pairs of vertices in 𝑈′ which where not consecutive in 𝑈 are (𝑢, 𝑠1) and
(𝑣, 𝑠′1). Since (𝑢, 𝑠1) and (𝑣, 𝑠′1) are edges of 𝑅 we see that we can iteratively apply
this procedure to any valid 11­skip as in fig. 6.8a and turn the SOET into a HAM­
SOET. Similarly the SOET in fig. 6.8b can be turned into a HAMSOET by applying
𝜏­operations to the vertices 𝑠(𝑢)1 and 𝑣(𝑠′1). One can explicitly check this by applying
the operations to 𝑈 in fig. 6.8b which is given by

𝑚(𝑈) = U1𝑠(𝑢)1 U2𝑠(𝑢)1 U3𝑣(𝑠
′
1)U4𝑣(𝑠

′
1)U5 (6.18)
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where

U1 = 𝑢𝑢(𝑠1) (6.19)

U2 = 𝑠(𝑣)1 𝑣(𝑠1)𝑣𝑣(𝑋)X1𝑠(𝑋)1 𝑠1 (6.20)

U3 = 𝑢(𝑠1)𝑢(𝑠
′
1)𝑠′(𝑢)1 𝑠′1𝑠′(𝑋

′)
1 X′1𝑢(𝑋

′)𝑢𝑢(𝑠′1)𝑠′(𝑢)1 𝑠′(𝑣)1 (6.21)

U4 = 𝑣𝑣(𝑋)X2𝑠(𝑋)1 𝑠1𝑠(𝑣)1 𝑣(𝑠1) (6.22)

U5 = 𝑠′(𝑣)1 𝑠′1𝑠′(𝑋
′)

1 X′2 (6.23)

with everything defined similarly to the case of fig. 6.8b. Going through a similar
argument as above we can show that we can also turn the SOET 𝑈 into a HAMSOET.
This completes the lemma.

Lemma 6.2.15. Let 𝑅 be a 3­regular graph and Λ(𝑅) be its triangular­expansion.
Also let 𝑢, 𝑣 be adjacent vertices on 𝑅. Let 𝑈 be a SOET on Λ(𝑅) with respect to
𝑉(𝑅). LetX be a maximal sub­word of𝑚(𝑈) not associated to 𝑢 and/or 𝑣 containing
𝑢(𝑣)𝑣(𝑢) and describing a sub­trail that makes true skips at 𝑇𝑢 and 𝑇𝑣. Then 𝑢 and
𝑣 are consecutive in 𝑈 and moreover 𝑚(𝑈) contains a sub­word of the form

𝑢Z1𝑢(𝑣)𝑣(𝑢)Z2𝑣, Z1 ⊂ 𝑉(𝑇𝑢), Z2 ⊂ 𝑉(𝑇𝑣), (6.24)

⋄

Proof. The situation described in the lemma is described graphically in fig. 6.9.
Because 𝑈 is a SOET the sub­word 𝑣(𝑢)𝑢(𝑣) must be contained exactly twice in
𝑚(𝑈). Note that at most one of these instances can be contained in the maximal
sub­word X. The other instance must be contained in a different maximal sub­
word 𝑍. This maximal sub­word will be associated to two vertices 𝑤1, 𝑤2. Note that
since 𝑣(𝑢)𝑢(𝑣) ∈ 𝑍 and 𝑣(𝑢)𝑢(𝑣) ∈ 𝑋 either we must have that 𝑤1 = 𝑢 or that the
sub­trail described by the maximal sub­word Z makes a true skip at 𝑇𝑢. Since 𝑇𝑢
already contains a true skip (made by the sub­trail described by X) we must have
that 𝑤1 = 𝑢. We can make the same argument for the vertex 𝑣. This means the
maximal sub­word Z must be associated to 𝑢 and 𝑣 and hence that 𝑢, 𝑣 must be
consecutive in 𝑈 and moreover we have that

Z = Z1𝑢(𝑣)𝑣(𝑢)Z2, Z1 ⊂ 𝑉(𝑇𝑢) ⧵ {𝑢}, Z2 ⊂ 𝑉(𝑇𝑣) ⧵ {𝑣}. (6.25)

Lemma 6.2.16. Let 𝑅 be a 3­regular graph and Λ(𝑅) be its triangular­expansion.
Also let 𝑢, 𝑣 be adjacent vertices on 𝑅. Also take 𝑥1, 𝑥2 to be the vertices adjacent to
𝑢 in 𝑅 such that 𝑥1 ≠ 𝑣, 𝑥2 ≠ 𝑣. Let 𝑈 be a SOET on Λ(𝑅) with respect to 𝑉(𝑅). Let
Y be a maximal sub­word of 𝑚(𝑈) not associated to 𝑢 and/or 𝑣 containing 𝑢(𝑥1)𝑥(𝑢)1
and 𝑢(𝑥2)𝑥(𝑢)2 and describing a sub­trail making a true skip at 𝑇𝑢. Also let X be a
maximal sub­word associated to 𝑢 and a vertex 𝑥3 ≠ 𝑣 that describes a sub­trail
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Figure 6.9: This figure is a graphical aid for lemma 6.2.15. Shown are two triangle subgraphs 𝑇𝑢, 𝑇𝑣
(gray triangles) with outer vertices (circles) and the vertices 𝑢 and 𝑢 (diamonds) shown. The lemma
starts from assuming the existence of the sub­trail described by the maximal sub­word X, labeled as
such in the figure. From this starting point the existence of the maximal sub­word Z associated to the
vertices 𝑢 and 𝑣 is derived.

making a true skip at 𝑣. Then 𝑢, 𝑣 are consecutive and moreover 𝑚(𝑈) contains a
sub­word of the form

𝑢Z1𝑢(𝑣)𝑣(𝑢)Z2𝑣, Z1 ⊂ 𝑉(𝑇𝑢), Z2 ⊂ 𝑉(𝑇𝑣), (6.26)

⋄

Proof. The situation described in the lemma is described graphically in fig. 6.10.
Because 𝑈 is a SOET the sub­word 𝑣(𝑢)𝑢(𝑣) must be contained exactly twice in
𝑚(𝑈). Note that at most one of these instances can be contained in the maximal
sub­word Y and none can be contained in the maximal sub­word X. This means
there must be a maximal sub­word Z of 𝑚(𝑈) (different from X and X) containing
𝑣(𝑢)𝑢(𝑣). This maximal sub­word must again be associated with two vertices 𝑥, 𝑥̂.
If these vertices are not 𝑢, 𝑣 then the sub­trail described by Z must make true skips
at 𝑇𝑢 , 𝑇𝑣 or both. Since both of these triangle subgraphs already contain true skips
this is not possible and hence Z must be associated to 𝑢 and 𝑣 which means they
are consecutive. Moreover, by construction of Z we have

Z = Z1𝑢(𝑣)𝑣(𝑢)Z2, Z1 ⊂ 𝑉(𝑇𝑢) ⧵ {𝑢}, Z2 ⊂ 𝑉(𝑇𝑣) ⧵ {𝑣}. (6.27)
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Figure 6.10: This figure is a graphical aid for lemma 6.2.16. Shown are two triangle subgraphs 𝑇𝑢, 𝑇𝑣
(gray triangles) with outer vertices (circles) and the vertices 𝑢 and 𝑣 (diamonds) shown. The lemma
starts from assuming the existence of the sub­trails described by the maximal sub­words Y andX, labeled
as such in the figure. From this starting point the existence of the maximal sub­word Z associated to
the vertices 𝑢 and 𝑣 is derived.

6.3. Algorithms
In this section we provide algorithms for deciding if a graph state |𝐺⟩ can be trans­
formed into another graph state |𝐺′⟩ using only LC + LPM + CC, (i.e. if |𝐺′⟩ is a
qubit­minor of |𝐺⟩) when certain restrictions are put on the two graph states. We
will again use the fact that |𝐺′⟩ is a qubit­minor of |𝐺⟩ if and only if 𝐺′ is a vertex­
minor of 𝐺, see theorem 4.4.2. Firstly, we describe an efficient algorithm to decide
if |𝐺′⟩ is a qubit­minor of |𝐺⟩ whenever |𝐺′⟩ is a GHZ­state (up to LC) and |𝐺⟩ has
Schmidt­rank width one. Phrased in graph theory, this is an algorithm for deciding
if 𝐻 is a vertex­minor of 𝐺, whenever 𝐻 is a star graph and 𝐺 is distance­hereditary.
We prove that this algorithm always terminates and gives correct results. We also
analyze its runtime and show that it is 𝒪(|𝑛′||𝑛|3), where 𝑛 (𝑛′) is the number of
qubits of |𝐺⟩ (|𝐺′⟩). Next we describe an algorithm for QubitMinor, whenever
|𝐺′⟩ is a star graph and |𝐺⟩ is a circle graph state, i.e. that 𝐺 is a circle graph. We
prove that this algorithm is fixed­parameter tractable in the number of qubits of
|𝐺′⟩.

6.3.1. Star graph as vertex­minor of a distance­hereditary graph
In this section we present an efficient algorithm for deciding whether a star graph
on a given set of vertices 𝑉′ is a vertex­minor of a given distance­hereditary graph
𝐺. This directly gives an efficient algorithm for deciding if a GHZ­state on a given set
of qubits is a qubit­minor of a given graph state |𝐺⟩ with Schmidt­rank width one.
Throughout this section we assume that the graph 𝐺 is connected and distance­
hereditary and that 𝑉′ is a subset of its vertices. The algorithm presented in this
section will return a sequence of vertices v in 𝑉(𝐺), such that 𝜏v(𝐺)[𝑉′] = 𝑆𝑉′ if
such a sequence exists and raise an error­flag otherwise, indicating that 𝑆𝑉′ is not
a vertex­minor of 𝐺. We first present the algorithm in section 6.3.1, analyze its
runtime in section 6.3.1 and prove that it is correct in section 6.3.1. The results of
these sections imply the following theorem

Theorem 6.3.1. Algorithm 6.1 takes a vertex­set 𝑉′ and a graph 𝐺 as input, rep­
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resented as an adjacency matrix, and has runtime 𝒪(|𝑉′||𝑉(𝐺)|3). If the algorithm
returns a sequence of vertices v then the induced subgraph of 𝜏v(𝐺) on the vertices
𝑉′ is a star graph. If the algorithm raises an error and 𝐺 is distance­hereditary, then
no star graph on vertices 𝑉′ is a vertex­minor of 𝐺. ⋄

Proof. We provide a proof of the runtime of the algorithm in section 6.3.1 and proof
of correctness in section 6.3.1.

An implementation in SAGE [7] of the algorithm can be found at [4].

The algorithm
We first give a rough sketch of the idea behind the algorithm. Remember that the
task of the algorithm is to find a sequence of local complementations 𝜏v such that
the induced subgraph of 𝜏v(𝐺) on the vertices 𝑉′ is a star graph.

The algorithm starts by choosing a one vertex 𝑐 in 𝑉′ which will become the
center of the star graph on 𝑉′. It then proceeds by picking different vertices 𝑣 ∈ 𝑉′
and making them adjacent to 𝑐 by performing local complementations. After every
vertex that is made adjacent the algorithm will check if the induced subgraph on
the neighborhood of 𝑐 is a star graph. If it is not it will attempt to turn it into a star
graph by local complementations. If it fails at doing so it will raise an error and if it
succeeds it will pick another vertex in 𝑉′ and repeat the procedure until all vertices
in 𝑉′ are in the neighborhood of 𝑐. We will often call this process of making a vertex
𝑣 adjacent to 𝑐 ‘adding’ the vertex 𝑣 to the star graph. To understand when the
algorithm might fail we now zoom in on the situation where all but one vertex of 𝑉′
has been added to the neighborhood of 𝑐. Let us call this vertex 𝑓. At this point in
the algorithm the induced subgraph 𝐺[𝑉′{𝑓}] is already a star graph (be previous
successful iterations of this procedure).

The task is now to turn 𝐺[𝑉′] into a star graph by making 𝑓 adjacent to the center
𝑐 of 𝐺[𝑉′ ⧵ {𝑓}] but to no other vertex of 𝑉′, and at the same time not change any
edges in 𝐺[𝑉′ ⧵ {𝑓}]. This will be done in two steps, which are explained further
below:

1. Make 𝑓 and 𝑐 adjacent, without changing any edges in 𝐺[𝑉′ ⧵ {𝑓}]. The star
graph 𝑆𝑉′ is then a subgraph of the graph, but not necessarily an induced sub­
graph, since 𝑓 could be also be adjacent to other vertices in 𝑉′ than 𝑐. We will
call these edges between 𝑓 and vertices in 𝑉′ ⧵ {𝑓} bad edges. This first step
is the task of algorithm 6.2 below. Interestingly, this step always succeeds if
the graph is connected, even if the graph is not distance­hereditary.

2. Remove the bad edges, without changing any other edges between vertices
in 𝑉′. The removal of the bad edges is the task of algorithm 6.1 below.
Algorithm 6.1 tries to remove the bad edges by checking a few cases. Thus,
one of the main results of this section is to prove that these cases provide a
necessary condition for 𝑆𝑉′ being a vertex­minor of 𝐺.
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We will now describe the two main steps above of the algorithm in more detail.
Let’s denote the vertices as above and furthermore the current leaves in 𝐺[𝑉′ ⧵ {𝑓}]
as 𝑉′ ⧵ {𝑐, 𝑓} = {𝑙1, … , 𝑙𝑘}.
Details of step 1:
The vertices 𝑐 and 𝑓 are made adjacent by performing local complementations
along the shortest path 𝑃 from 𝑐 and 𝑓, see fig. 6.11a. The operations along the
path 𝑃 will in fact be either pivots, i.e. 𝜌(𝑢,𝑣) = 𝜏𝑣 ∘ 𝜏𝑢 ∘ 𝜏𝑣, or single local com­
plementations depending on the situation. The reason for this is to not remove
edges between 𝑐 and the 𝑙𝑖 ’s. The details of the operations along the path 𝑃 are
given in algorithm 6.2 together with the proof in section section 6.3.1.
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Figure 6.11: Visualization of how a vertex 𝑓 is added to the neighborhood of 𝑐. The original graph is
shown in fig. 6.11a where the vertices {𝑐} ∪ {𝑙𝑖}𝑖 (squares) already form a star graph and the dotted
lines are arbitrary edges to the rest of the graph. The new vertex 𝑓 (white circle) is made adjacent to
the center 𝑐 (white square) by performing pivots and local complementations along the shortest path 𝑃
(black circles). After the pivots and local complementations the new vertex 𝑓 is adjacent to the center
𝑐 of the star graph but also to some leaves 𝐵 by bad edges (dashed lines), see fig. 6.11b.

As mentioned above, by making 𝑓 and 𝑐 adjacent we might have also added bad
edges between 𝑓 and some of the vertices {𝑙𝑖}𝑖, see fig. 6.11b. Let’s denote the
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set of vertices which are incident to a bad edge by 𝐵 and the set of vertices not
incident to a bad edge, apart from 𝑐, by 𝐿 = (𝑉′ ⧵ {𝑐}) ⧵ 𝐵. We call such a graph as
the induced subgraph on 𝑉′ a star­star graph, see definition 6.3.2.

Next, we must remove the bad edges in order to turn 𝐺[𝑉′] into a star graph.
Let 𝐺 now be the graph with 𝑓 and 𝑐 adjacent but with possibly some bad edges.
Details of step 2:
In this step we will remove the bad edges, if we can. A situation where bad edges
can be removed, as we will show, is when there exists a vertex 𝑢 ∉ 𝑉′, which is
adjacent to all vertices in 𝐵 but not to any vertex in 𝐿. The existence of such a
vertex 𝑢 is thus a sufficient condition for the removal of bad edges. When 𝐺 is a
distance hereditary graph, it turns out that this condition is also necessary, that
is if no such vertex 𝑢 exists, then the star graph on 𝑉′ is not a vertex­minor of
𝐺, and we can stop the algorithm. This is shown in detail in section 6.3.1. For
this statement to hold 𝐿 cannot be empty, but this can always be achieved by
performing a local complementation at 𝑐 first if needed, which is done in line 14
in algorithm 6.1. Assume that there indeed exist such a vertex 𝑢, i.e.

(𝐿 ≠ ∅) ∧ (𝑢 ∉ 𝑉′) ∧ (𝐵 ⊆ 𝑁𝑢) ∧ (𝐿 ∩ 𝑁𝑢 = ∅) (6.28)

see fig. 6.12. Now 𝑢 can be adjacent to 𝑐 or not. Let’s consider these cases
separately:

• Case 1 𝑢 and 𝑐 are not adjacent:
Remember that 𝑓 is the center of the induced star graph 𝐺[𝐵]. If a local
complementation is performed at 𝑢, the bad edges are removed but new
ones will be created between the vertices in 𝐵 ⧵ {𝑓}. These new bad edges
will then form a complete graph on 𝐵 ⧵ {𝑓} and we call such a graph on the
vertices 𝑉′ ⧵ {𝑓} a complete­star graph, see definition 6.3.3.
Performing the same step again, i.e. doing a local complementation at an­
other vertex adjacent to all vertices in 𝐵 ⧵ {𝑓}, will remove all bad edges.
We have then produced the star graph on 𝑉′ in two steps.

• Case 2: 𝑢 and 𝑐 are adjacent:
In this case, if a local complementation is performed at 𝑢, some edges
between 𝑐 and vertices in 𝐿 will be removed, which is not desired. We can
solve this by finding another vertex ℎ adjacent to both 𝑢 and 𝑐 but not to any
other vertex in 𝑉′, by which we can remove the edge (𝑢, 𝑐), see fig. 6.13.
In the following section we show that if there is no vertex ℎ of this form,
the star graph is not a vertex­minor of 𝐺 and we can stop the algorithm.

To prove that the algorithm is correct we need to show that cases checked by
algorithm 6.2 to remove the bad edges actually provides a necessary condition
for 𝑆𝑉′ being a vertex­minor of 𝐺. To be precise, we will show that a necessary3

3This condition is not sufficient in itself, however theorem 6.3.4 provide a necessary and sufficient
condition.



6

164
6. How to transform graph states using single­qubit operations:

computational complexity and algorithms

r

r

r

r

r
r

r

r

r

b
rs

u

L

L

L

L

L
B

B

B

B

c

(a)

r

r

r

r

r
r

r

r

r

b
rs

u

B

B

B L

L

L

L

L

c

B

(b)

Figure 6.12: Visualization of how bad edges are removed. The original graph is shown in fig. 6.12a
where the vertices 𝐵 ∪ 𝐿 ∪ {𝑐} (squares) are the desired vertices of the star graph, the dashed lines
are the bad edges and vertex 𝑢 (black circle) is as in eq. (6.29). Figure 6.12b shows the graph after
performing a local complementation on 𝑢 which produces a new leaf (white square) and makes the bad
edges form a complete graph. This complete graph of bad edges can then be removed by finding a
vertex 𝑢′ that is adjacent to all vertices in 𝐵 (and to none in 𝐿) and performing a local complementation
at 𝑢′.

condition for the star graph on 𝑉′ being a vertex­minor of 𝐺 is

𝒫(𝐵, 𝐿, 𝑐) = ∃𝑢 ∈ 𝑉 ⧵ 𝑉′ ∶ (𝐵 ⊆ 𝑁𝑢 ∧ 𝐿 ∩ 𝑁𝑢 = ∅ ∧ (

(𝑢, 𝑐) ∉ 𝐸 ∨ ∃ℎ ∶ (ℎ ∈ 𝑁𝑢 ∩ 𝑁𝑐 ⧵ ⋃
𝑥∈𝑉′⧵{𝑐}

𝑁𝑥))), (6.29)

where 𝑉′ = 𝐵∪𝐿 ∪ {𝑐} and 𝐿 is assumed to be nonempty. It is important to note
here that this condition is only valid if the graph is in the correct form, i.e. the
induced subgraph on 𝑉′ forms a star­star graph or a complete­star graph.
We formally state that eq. (6.29) is a necessary condition for the star graph on

𝑉′ being a vertex­minor of 𝐺 in theorem 6.3.4, which we prove in section 6.3.1. The
theorem uses the notion of star­star and complete­star graphs which we formally
define as:

Definition 6.3.2 (Star­star graph). A graph 𝐺 = (𝑉, 𝐸) is called a star­star graph if
there exist two subsets 𝐵 and 𝐿 and a vertex 𝑐, such that {𝐵, 𝐿, {𝑐}} form a partition
of 𝑉 and |𝐵| > 1. Furthermore 𝑁𝑙 = {𝑐} ∀𝑙 ∈ 𝐿 and 𝑐 ∈ 𝑁𝑏 ∀𝑏 ∈ 𝐵. Finally
𝐺[𝐵] = 𝑆𝐵. Such a graph is denoted 𝑆𝑆(𝐵,𝐿,𝑐). ⋄

Definition 6.3.3 (Complete­star graph). A graph 𝐺 = (𝑉, 𝐸) is called a complete­
star graph if there exist two subsets 𝐵 and 𝐿 and a vertex 𝑐, such that {𝐵, 𝐿, {𝑐}}
form a partition of 𝑉 and |𝐵| > 1. Furthermore 𝑁𝑙 = {𝑐}, ∀𝑙 ∈ 𝐿 and 𝑐 ∈ 𝑁𝑏 , ∀𝑏 ∈ 𝐵.
Finally 𝐺[𝐵] = 𝐾𝐵. Such a graph is denoted 𝐾𝑆(𝐵,𝐿,𝑐). Note that if |𝐵| = 2, 𝐺 is also
a star­star graph. ⋄
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Figure 6.13: A visualization of the case where a vertex 𝑢 used to remove the bad edges is also adjacent
to 𝑐 (red thick edge). The vertex ℎ can be used to remove the edge (𝑢, 𝑐) by applying a local comple­
mentation at ℎ. Since ℎ is not adjacent to any other vertex in 𝑉′, no edges in the induced subgraph on
𝑉′ are changed by this local complementation.

Theorem 6.3.4. Let 𝐺 be a distance­hereditary graph on the vertices 𝑉 and let 𝑉′
be a subset of 𝑉. Furthermore, let 𝑉′ = 𝐵 ∪ 𝐿 ∪ {𝑐} be a partition of 𝑉′ and let 𝑆𝑉′
be a star graph on the vertices 𝑉′. Then the following statements hold

• If 𝐺[𝑉′] = 𝑆𝑆(𝐵,𝐿,𝑐) is a star­star graph and |𝐵| = 2, then
𝒫(𝐵, 𝐿, 𝑐) ⇔ 𝑆𝑉′ < 𝐺. (6.30)

• If 𝐺[𝑉′] = 𝑆𝑆(𝐵,𝐿,𝑐) is a star­star graph then

¬𝒫(𝐵, 𝐿, 𝑐) ⇒ 𝑆𝑉′ ≮ 𝐺. (6.31)

• If 𝐺[𝑉′] = 𝑆𝑆(𝐵,𝐿,𝑐) is a star­star graph and 𝑓 is the center of the star graph
𝐺[𝐵], then

𝒫(𝐵, 𝐿, 𝑐) ⇔ 𝐾𝑆(𝐵⧵{𝑓},𝐿∪{𝑓},𝑐) < 𝐺. (6.32)

• If 𝐺[𝑉′] = 𝐾𝑆(𝐵,𝐿,𝑐) is a complete­star graph then

𝒫(𝐵, 𝐿, 𝑐) ⇔ 𝑆𝑉′ < 𝐺. (6.33)

⋄
Theorem 6.3.4 implicitly gives a necessary and sufficient condition for when 𝑆𝑉′

is a vertex­minor of 𝐺, if 𝐺[𝑉′] is a star­star graph. More precisely, if the induced
subgraph on 𝑉′ is a star­star graph and 𝒫(𝐵, 𝐿, 𝑐) is true then we know that local
complementations can be performed to turn the induced subgraph on 𝑉′ ⧵{𝑓} into a
complete­star graph, see eq. (6.32). Then, if 𝒫(𝐵⧵{𝑓}, 𝐿∪{𝑓}, 𝑐) is again true, then
a star graph can be created on 𝑉′ by performing further local complementations,
see eq. (6.33). If in any of these two steps, 𝒫(𝐵, 𝐿, 𝑐) or 𝒫(𝐵⧵{𝑓}, 𝐿∪{𝑓}, 𝑐) is false,
then 𝑆𝑉′ is not a vertex­minor of 𝐺, see eqs. (6.31) and (6.33). In section 6.3.1 we
prove these statements.
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Runtime of the algorithm
The algorithm described in the previous section checks if a star graph with vertex
set 𝑉′ is a vertex­minor of a distance­hereditary graph 𝐺. Here we show that the
runtime of this algorithm is 𝒪(|𝑉′||𝑉(𝐺)|3). We will represent subsets of a base­set
as unsorted binary lists4, where 1 indicates that an element in the base­set is in the
represented set and 0 that an element in the base­set is not in the represented set.
This will be the case both for sets of vertices and sets of edges. The base­set for
sets of vertices will be the set of vertices 𝑉(𝐺) of the input graph 𝐺 and the base­set
for edges­sets will be 𝑉(𝐺)×𝑉(𝐺). Thus, we assume that the input graph 𝐺 is given
as an unsorted binary list, of length |𝑉(𝐺)|2, indicating which edges are in 𝐸(𝐺).
This allows us to check if an edge (𝑢, 𝑣) is in the graph or not in constant time.
Furthermore, we assume that the input­set 𝑉′ is also represented as an unsorted
binary list, of length |𝑉(𝐺)|, indicating which of the vertices of 𝐺 are in 𝑉′. We also
assume that the size of |𝑉′| is given together with its representation, which allows
us to faster create representations of subsets of 𝑉′.

Sets used internally by the algorithm (𝐵, 𝐿 and 𝑈) will also be represented as
unsorted binary lists together with the size of the sets. The sizes of the sets will
be updated accordingly whenever an element is added. Note that 𝐵 and 𝐿 are
subsets of 𝑉′ and will therefore be represented as unsorted binary lists, of length
|𝑉′|, indicating which elements of 𝑉′ are in these sets. However, 𝑈 is not a subset of
𝑉′ and will therefore be represented by an unsorted binary list of length |𝑉|. Thus,
given a vertex 𝑣, checking if 𝑣 is in a set of vertices 𝑉 can be done in constant time
and adding a vertex to a set can be done in constant time (flipping the bit at the
corresponding position). Furthermore, iterating over elements in a set can be done
in linear time with respect to the base­set, i.e. 𝒪(|𝑉(𝐺)|) for 𝑉′ and 𝑈 and 𝒪(|𝑉′|)
for 𝐵 and 𝐿.

As described, the full algorithm starts by calling algorithm 6.1, which in turn
calls algorithm 6.2, which again calls algorithm 6.1 and so on. We will see that
the computation that dominates the runtime is updating the graph 𝜏v(𝐺) whenever
v is concatenated, as in line 13 of algorithm 6.1 and line 6 of algorithm 6.2. We
will assume that both algorithm 6.1 and algorithm 6.2 have access to a common
graph which they can update to 𝜏v(𝐺), whenever v is concatenated, to prevent this
from being done for the whole sequence v every time. Note that 𝜏v(𝐺) takes up the
same amount of space regardless of v. Each local complementation in the sequence
can be performed in time 𝒪(|𝑉(𝐺)|2) [10]. Since algorithm 6.1 and algorithm 6.2
increase the length of v by 𝒪(1) and 𝒪(|𝑉(𝐺)|) respectively each call, the runtime
to update the graph 𝜏v(𝐺) is 𝒪(|𝑉(𝐺)|

3). We will now show that all other parts of
both algorithm 6.1 and algorithm 6.2 takes time less than 𝒪(|𝑉(𝐺)|3), which will
imply that the total runtime is 𝒪(|𝑉′||𝑉(𝐺)|3) since algorithm 6.2 is called 𝒪(|𝑉′|)

4It is possible to represent the sets in different ways, by for example (un)sorted lists containing the
vertices as entries. However most reasonable data structures will not affect the total runtime of the
algorithm but can reduce the memory used.
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times5. Let’s start by going through the runtime of algorithm 6.1 line by line:

• Line 6 (and 15, 24): Checking if there is only one element (or none) in 𝑉′
(in 𝐵, in 𝑈) can be done in constant time, since we keep track of the sizes of
these sets.

• Line 11: Finding a vertex 𝑐 ∈ 𝑉′ adjacent to all vertices in 𝑉′ (except itself) can
be done in time 𝒪(|𝑉′|2) by checking for each vertex 𝑣 in 𝑉′ if 𝜏v(𝐺) contains
all edges in the set {(𝑣, 𝑤) ∶ 𝑤 ∈ 𝑉′ ⧵ {𝑣}}. Let 𝑐 be the first such vertex 𝑣.

• Line 13 and 14: Constructing the sets 𝐵 and 𝐿 can be done in time 𝒪(|𝑉′|2)
by checking, for each vertex 𝑣 in 𝑉′ ⧵ {𝑐}, if 𝜏v(𝐺) contains at least one edge
from the set {(𝑣, 𝑤) ∶ 𝑤 ∈ 𝑉′ ⧵ {𝑐}. If this is the case, 𝑣 will be added to the
array representing 𝐵, otherwise 𝑣 will be added to 𝐿.

• Line 19: Checking if 𝐵 = 𝑉′ ⧵ {𝑐} can be done in time 𝒪(|𝑉′|) by checking if
all entries of the list representing 𝐵 are 1, except at position 𝑐.

• Line 23: Constructing the set 𝑈 can be done in time 𝒪(|𝑉′||𝑉(𝐺)|) by checking,
for each 𝑢 in 𝑉(𝐺)⧵𝑉′, that 𝜏v(𝐺) contains all edges in the set {(𝑢, 𝑤) ∶ 𝑤 ∈ 𝐵}
and no edges in the set {(𝑢, 𝑤) ∶ 𝑤 ∈ 𝐿}. If this is the case, 𝑢 will be added
to the array representing 𝑈.

• Line 28­38: The body of this for­loop will be executed 𝒪(|𝑉(𝐺)|) since there
are at most 𝒪(|𝑉(𝐺)|) elements in 𝑈.

– Line 29: Checking if (𝑢, 𝑐) is an edge in 𝜏v(𝐺) can be done in constant
time.

– Line 33: Finding a vertex ℎ which is adjacent to both 𝑢 and 𝑐 but to no
other vertex in 𝑉′ can be done in time 𝒪(|𝑉′||𝑉(𝐺)|) (or determining that
there is none), by first finding the neighbors of 𝑢, i.e all the vertices ℎ
such that (𝑢, ℎ) is an edge in 𝜏v(𝐺) and then, for each neighbor ℎ of 𝑢,
checking if ℎ is also adjacent to 𝑐 but to no other vertex in 𝑉′. This is
done by checking if (ℎ, 𝑐) is an edge in 𝜏v(𝐺) and that no element of the
set {(ℎ, 𝑤) ∶ 𝑤 ∈ 𝑉′ ⧵ {𝑐}} is.

Thus, the total runtime of algorithm 6.1, except for the recursive call to algo­
rithm 6.2 in line 10, is 𝒪(|𝑉′||𝑉(𝐺)|2) (from line 33 in the for­loop.).

The runtime of each command in algorithm 6.2 is:

• Line 5: Picking the vertex 𝑓 can be done in constant time (pick the first entry).

• Line 7: Finding a shortest path between 𝑓 and 𝑐 can be done in time 𝒪(|𝑉(𝐺)|2)
by using Dijkstra’s algorithm [13].

5Note that algorithm 6.2 calls algorithm 6.1 with the set 𝑉′ ⧵ {𝑓}, thereby reducing the size of 𝑉′ in each
recursive call.
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• Line 8­15: The body of this for­loop will be executed 𝒪(|𝑉(𝐺)|) since the
shortest path 𝑃 is necessarily shorter than the number of vertices in 𝜏v(𝐺).

– Line 9: Checking if 𝑓 is adjacent to any vertex in 𝑉′ ⧵ {𝑐} can be done in
time 𝒪(|𝑉′|) by checking if any of the edges {(𝑓, 𝑤) ∶ 𝑤 ∈ 𝑉′ ⧵ {𝑐} are in
𝜏v(𝐺).

– Line 10: The column with entry 1 in line 9 can be used for 𝑣 here and
thus only adds a constant time to the runtime.

Thus, the total runtime of algorithm 6.2, except for the recursive call to algo­
rithm 6.1 in line 6, is 𝒪(|𝑉(𝐺)|2) (from line 7 in the for­loop).

To further substantiate the efficiency of the algorithm we give actual run­times
for an implementation of the algorithm in fig. 6.1.

Proof that the algorithm is correct
In this section we prove that the algorithm presented in the previous section works,
i.e. it gives a sequence of local complementations v such that 𝜏v(𝐺)[𝑉′] = 𝑆𝑉′ , given
a distance­hereditary graph 𝐺, if such a sequence exists. It is relatively easy to show
that the algorithm gives the desired results when it does not return an error, which
we show in section 6.3.1. The hard part is to prove that, when the algorithm gives
an error­flag it is in fact not possible to produce the star graph, i.e. the star graph
is not a vertex­minor of G, which is done in section 6.3.1. The notation will be the
same as in the previous section, 𝑐 is a vertex in 𝑉′ and is adjacent to the rest of
the vertices in 𝑉′. The vertices in 𝐺[𝑉′ ⧵ {𝑐}] with degree greater than 0, i.e. the
vertices incident on some bad edge, are denoted as the set 𝐵.

Algorithm succeeds In this section we show that if algorithm 6.1 returns a
sequence v, i.e. does not give an error­flag, then 𝜏v(𝐺)[𝑉′] = 𝑆𝑉′ . We start by
showing that algorithm 6.2 always succeeds and gives the desired result, assuming
that algorithm 6.1 works. Recall that the task of algorithm 6.2 is to transform
𝐺 using local complementations such that a star graph on 𝑉′ is a subgraph of 𝐺.
Algorithm 6.1 then tries to remove any bad edges to make the star graph an induced
subgraph. We now show that the correctness of algorithm 6.2.

Note first that, after performing a pivot 𝜌(𝑣,𝑢), i.e. 𝜏𝑢 ∘ 𝜏𝑣 ∘ 𝜏𝑢, any neighbor
of 𝑣 will become a neighbor of 𝑢, except 𝑢 itself. This means that after the first
pivot in line 9 in algorithm 6.2, i.e. 𝜌(𝑝1 ,𝑓), 𝑓 and 𝑝2 will be adjacent. We want to
inductively show that this implies that after performing pivots along the whole path,
𝑓 and 𝑐 are adjacent. To do this we only need to make sure that a pivot does not
remove edges in the later part of the path. More precisely, the pivot 𝜌(𝑝𝑖 ,𝑓) should
not remove an edge (𝑝𝑗 , 𝑝𝑗+1) for 𝑗 > 𝑖. The fact that later edges in the path are
not removed follows from the properties of the pivot and that the path is a shortest
path. Apart from edges incident on 𝑢 or 𝑣, a pivot 𝜌(𝑣,𝑢) can only flip edges in the
set 𝑁𝑣 × 𝑁𝑢. This shows that the pivot 𝜌(𝑝𝑖 ,𝑓) cannot remove an edge (𝑝𝑗 , 𝑝𝑗+1)
since neither 𝑝𝑗 or 𝑝𝑗+1 is equal to 𝑓 or 𝑝𝑖 or is adjacent to 𝑓. If 𝑝𝑗 or 𝑝𝑗+1 would be
adjacent to 𝑓, then this would not be a shortest path. We also need to make sure
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that we do not remove the edges from 𝐸(𝑆𝑉′⧵{𝑓}) = {(𝑐, 𝑣) ∶ 𝑣 ∈ 𝑉′ ⧵ {𝑐, 𝑓}}, when
doing pivots along the path. By the same argument above we have that the pivot
𝜌(𝑝𝑖 ,𝑓) can only remove an edge in 𝐸(𝑆𝑉′⧵{𝑓}) if 𝑓 is adjacent to a vertex in 𝑉′ ⧵ {𝑐}.
This is the reason for the if­statement in line 5 in algorithm 6.2, where we then just
perform a local complementation on the corresponding vertex in 𝑣 ∈ 𝑉′ ⧵ {𝑐} which
will make 𝑓 and 𝑐 adjacent. Performing the local complementation on such a vertex
𝑣 will not remove edges in 𝐸(𝑆𝑉′⧵{𝑓}), since 𝑣 is a leaf in the induced subgraph on
𝑉′. Note that there are only two cases where bad edges are created. If 𝑓 and 𝑐
are made adjacent by a local complementation on a vertex 𝑣 ∈ 𝑉′ ⧵ {𝑐}, as in line
7, the bad edge (𝑓, 𝑣) will be created. On the other hand, if this is not the case
but the last vertex 𝑝𝑘 is adjacent to some vertices 𝑈 ⊆ (𝑉′ ⧵ {𝑐, 𝑓}), then the bad
edges {(𝑓, 𝑢)}𝑢∈𝑈 will be created. In both of these cases 𝜏v(𝐺)[𝑉′] will be a star­star
graph, see definition 6.3.2. Note that 𝑓 can also be adjacent to some vertices in
𝑉′ ⧵ {𝑓}, even before we perform the local complementations, but these edges will
still form a star graph with 𝑓 as the center. If one wants to minimize the number
of local complementations and use local complementation instead of pivots along
the path, this is in fact possible. The only place where a pivot is needed instead of
a local complementation is towards the end of the path, when 𝑝𝑖 is adjacent to a
vertex in 𝑉′ ⧵ {𝑐, 𝑓} not on the path.

What is left to show is that if algorithm 6.1 succeeds and returns a v, then
𝜏v(𝐺) = 𝑆𝑉′ . This is easy to see, since if we perform local complementations on
such vertices we are looking for, i.e. 𝑢 and possibly ℎ in eq. (6.29), we will remove
the bad edges and produce the star graph. If |𝐵| > 2 this has to be done twice, as
captured by the loop over 𝑖 in algorithm 6.1. The reason for this is that, when doing
a local complementation on such a 𝑢 we complement the induced subgraph 𝐺[𝐵].
Since 𝐺[𝐵] is a star graph, the induced subgraph after the local complementation
will be a complete graph plus a single disconnected vertex which was the center of
𝐺[𝐵]. Performing the step once more will then complement the complete graph,
without the disconnected vertex, and all bad edges are thus removed.

Note that we have nowhere in this section used the assumption that the graph
is distance­hereditary. This implies that if the algorithm succeeds we know that
𝜏v(𝐺) = 𝑆𝑉′ , independently of whether 𝐺 is distance­hereditary, in fact even inde­
pendently of the rank­width of 𝐺. Furthermore, since algorithm 6.2 always succeeds
to make 𝜏v(𝐺)[𝑉′] connected and from the fact that any connected graph on two
or three vertices is either a star graph or a complete graph, this implies that a star
graph on any subset of size two or three is a vertex­minor of 𝐺, if the vertices are
connected in 𝐺, which we make use of in section 6.4. On the other hand, if the
algorithm stops and gives an error­flag, then we do not know in general if 𝑆𝑉′ is a
vertex­minor of 𝐺 or not. In the next section we show that if the graph is distance­
hereditary and the algorithm gives an error­flag we actually do know that 𝑆𝑉′ is not
a vertex­minor of 𝐺.

Algorithm gives error In this section we prove that if algorithm 6.1 gives an
error­flag, i.e. if 𝒫(𝐵, 𝐿, 𝑐) in eq. (6.29) is false, then the star graph is not a vertex­
minor of the input graph. At the steps in the algorithm where the error­flag can be
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raised, we know that the induced subgraph on 𝑉′ is either a star­star graph (defi­
nition 6.3.2) or a complete­star (definition 6.3.3) graph as shown in section 6.3.1.
The proof will follow the following sequence of steps.

1. Prove for any distance­hereditary graph 𝐺 that if 𝒫(𝐵, 𝐿, 𝑐) is false and 𝐺[𝑉′]
is a star­star graph (or complete­star graph) where |𝑉′| = 4 then 𝑆𝑉′ is not a
vertex­minor of 𝐺. This is done in theorem 6.3.5.

2. Use the case proven in step 1 to argue that if 𝒫(𝐵, 𝐿, 𝑐) is false and 𝐺[𝑉′] is
a star­star graph where |𝑉′| > 4 then 𝑆𝑉′ is not a vertex­minor of 𝐺. This is
done in theorem 6.3.6.

3. Use the case proven in step 1 to argue that if 𝒫(𝐵, 𝐿, 𝑐) is false and 𝐺[𝑉′] is a
complete­star graph where |𝑉′| > 4 then 𝑆𝑉′ is not a vertex­minor of 𝐺. This
is done in theorem 6.3.8.

Proof for a star­star (complete­star) graph of size 4 We will first show in
theorem 6.3.5 that if 𝒫(𝐵, 𝐿, 𝑐) is false and |𝑉′| = 4, then 𝑆𝑉′ is not a vertex­minor
of 𝐺. This will then allow us to prove the statement for the cases where |𝑉′| ≥ 4.

Theorem 6.3.5. Let’s assume that 𝐺 is a distance­hereditary graph with the fol­
lowing induced subgraph (which is both a star­star and a complete­star­graph)

𝐺[𝑉′ = {1, 2, 3, 4}] = b

b b

1

4

2

3

b

. (6.34)

Furthermore assume that 𝒫(𝐵, 𝐿, 𝑐) in eq. (6.29) is false, where 𝐵 = {3, 4}, 𝐿 = {1}
and 𝑐 = 2. Then 𝑆𝑉′ ≮ 𝐺. ⋄

Proof. We will prove this by first showing that if 𝒫(𝐵, 𝐿, 𝑐) is false and |𝑉(𝐺)| > 4,
then there exist a removable leaf or twin.6 This then implies the we can actually
delete removable leaves and twins, i.e. vertices in 𝑇(𝐺) ⧵ 𝑉′, until there is only
the vertices in 𝑉′ left. This is because, if 𝒫(𝐵, 𝐿, 𝑐) is false, then it is also false for
any graph reached by deleting vertices in 𝑉 ⧵ 𝑉′. From theorem 4.8.4, i.e. the fact
that deletion of removable twins or leafs does not change the property of whether
a graph on a 𝑉′ is a vertex­minor, we then know that 𝐺[𝑉′] is in fact the only
vertex­minor of 𝐺 on the vertices 𝑉′. Since 𝑆𝑉′ ≠𝐿𝐶 𝐺[𝑉′], the theorem follows.

Let’s first look at what 𝒫(𝐵, 𝐿, 𝑐) implies. Visually, 𝒫(𝐵, 𝐿, 𝑐) is false if there exist
no 𝑢, ℎ ∈ 𝑉 ⧵ 𝑉′ such that

𝐺[𝑉′ ∪ {𝑢}] =
b

b b

1

4

2

3

b

bu

∨ 𝐺[𝑉′ ∪ {𝑢, ℎ}] =
b

b b

1

4

2

3

b

bu

b h . (6.35)

6As in section section 4.8, removable means a vertex not belonging to the target vertices 𝑉′
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There are only two ways for 𝒫(𝐵, 𝐿, 𝑐) to be false; either (𝑁3 ∩ 𝑁4) ⧵ {2} = ∅ or

(𝑁3 ∩ 𝑁4) ⧵ {2} ≠ ∅ ∧ ∀𝑢 ∈ (𝑁3 ∩ 𝑁4) ⧵ (𝑁1 ∪ {2}) ∶
((𝑢, 2) ∈ 𝐸(𝐺) ∧ (𝑁𝑢 ∩ 𝑁2) ⧵ (𝑁1 ∪ 𝑁3 ∪ 𝑁4) = ∅). (6.36)

We will consider these two cases separately and prove that if either is true, then
𝑇(𝐺) ⧵ 𝑉′ ≠ ∅. In most cases below we will do this by showing that one of the
four vertices in 𝑉′ is not in 𝑇(𝐺) which shows that 𝑇(𝐺) ⧵ 𝑉′ ≠ ∅ since 𝑇(𝐺) ≥ 4 by
theorem 4.8.10.
Case 1:
To prove that if (𝑁3∩𝑁4)⧵ {2} = ∅ and |𝑉(𝐺)| > 4, then there exists a removable
leaf or twin, we consider the following cases.

• Assume that |(𝑁3 ∪ 𝑁4) ⧵ {3, 4}| > 1. Since, by assumption 𝑁3 ∩𝑁4 = {2}, 3
and 4 does not form a twin­pair. Also, neither 3 nor 4 is not a twin, since the
twin­partner would have to be a common neighbor of 3 and 4. Furthermore,
neither 3 or 4 is a leaf. Thus, the only way for 3 ∈ 𝑇(𝐺), is if 3 is an axil,
requiring some vertex not in 𝑉′ being a leaf.7 Finally, if 3 ∉ 𝑇(𝐺), then there
exist a vertex in 𝑇(𝐺) which is not in 𝑉′, since by theorem 4.8.10 we know
that |𝑇(𝐺)| ≥ 4.

• Assume that (𝑁3 ∪ 𝑁4) ⧵ {3, 4} = {2}.
– Assume that |𝑁1| > 1. Then 1 is not a leaf and 2 is not an axil. Fur­
thermore, since nothing else is connected to 3 and 4, 2 is not a twin.
Thus, the only way for 2 ∈ 𝑇(𝐺), is if 2 is an axil, requiring some vertex
not in 𝑉′ being a leaf. Finally, if 2 ∉ 𝑇(𝐺), then since |𝑇(𝐺)| ≥ 4 by
theorem 4.8.10, there must exist a vertex in 𝑇(𝐺) which is not in 𝑉′.

– Assume that |𝑁1| = 1. Then 2 is necessarily a cut­vertex and 𝐺 ⧵ 2 will
contain a connected component with no vertices in 𝑉′, since |𝑉(𝐺)| > 4,.
Thus, there exist a vertex in 𝑇(𝐺) which is not in 𝑉′ by corollary 4.8.10.1.

Case 2:
To prove that if eq. (6.36) is true then there exists a removable leaf or twin, we
consider the following cases.

• Assume that |𝑁1| > 1. Then if 2 is an axil, the corresponding leaf cannot
be in 𝑉′, since 1 is not a leaf. Furthermore, since 2 is not a leaf, if 2 ∈ 𝑇(𝐺)
then 2 has a twin­partner not in 𝑉′, which is then also in 𝑇(𝐺). On the other
hand if 2 ∉ 𝑇(𝐺), then there exist a vertex in 𝑇(𝐺) which is not in 𝑉′, by
theorem 4.8.10.

• Assume that 𝑁1 = {2}.
– Assume that |(𝑁3 ∪ 𝑁4) ⧵ {3, 4}| > |𝑁3 ∩ 𝑁4|. In this case, 3 and 4 does
not form a twin­pair. Furthermore, neither 3 or 4 is a leaf. Thus the
only only way for 3(or 4) ∈ 𝑇(𝐺), is if 3(4) is an axil or a twin, requiring
some vertex not in 𝑉′ being a leaf or a twin. Finally if 3(4) ∉ 𝑇(𝐺), then

7The same for 4.
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there exist a vertex in 𝑇(𝐺) which is not in 𝑉′, since by theorem 4.8.10
we know that |𝑇(𝐺)| ≥ 4.

– Assume that (𝑁3 ∪ 𝑁4) ⧵ {3, 4} = 𝑁3 ∩ 𝑁4. We will for this case show
that |𝑇(𝐺) ⧵ 𝑉′| > 0 by assuming that 𝑇(𝐺) = 𝑉′ and arriving at a con­
tradiction. Since this implies that 𝑇(𝐺) ≠ 𝑉′ and from the fact that
|𝑇(𝐺)| ≥ 4, we know that |𝑇(𝐺) ⧵ 𝑉′| > 0. Consider the induced sub­
graph 𝐺 ⧵ 4 which is also distance­hereditary.8 From theorem 4.8.10
we know that |𝑇(𝐺 ⧵ 4)| ≥ 4, since (𝑁3 ∩ 𝑁4) ⧵ {2} ≠ ∅ and therefore
|𝐺 ⧵ 4| ≥ 4. Thus, there is a vertex 𝑣 ∉ 𝑉′ such that 𝑣 ∈ 𝑇(𝐺 ⧵ 4) but
𝑣 ∉ 𝑇(𝐺). Note that by the assumption from eq. (6.36), any neighbor
of 4, except 2, is also a neighbor of both 2 and 3. The removal of 4
cannot therefore create a new leaf in 𝑉 ⧵ 𝑉′. The only option left is if
there are two vertices 𝑣, 𝑣′ ∈ 𝑉(𝐺) ⧵ {4}, such that 𝑣, 𝑣′ form a twin­pair
in 𝐺 ⧵ 4 but not in 𝐺. If 𝑣 and 𝑣′ are such vertices, it must be the case
that 4 is adjacent to exactly one of 𝑣 and 𝑣′. Assume without loss of
generality that 4 is adjacent to 𝑣′ but not to 𝑣. The neighborhoods of
these vertices are then

𝑁𝑣 = 𝑁𝑣′ ⧵ {4} ∧ 4 ∈ 𝑁𝑣′ . (6.37)

Note that the vertices adjacent to 4 are (𝑁3∩𝑁4)∪{3}. Firstly, 𝑣′ cannot
be in 𝑁3∩𝑁4, since 𝑣 is then necessarily adjacent to 3 but not to 4 which
contradicts the assumption that (𝑁3∪𝑁4)⧵{3, 4} = 𝑁3∩𝑁4. Secondly, 𝑣′
cannot be 3, since 𝑣 is then necessarily a neighbor of 2 and all vertices
in 𝑁3 ∩ 𝑁4, contradicting the second part of eq. (6.36).

Proof for star­star graphs We are now able to prove the same statement as in
theorem 6.3.5 but for |𝑉′| ≥ 4. The case when 𝐺[𝑉′] is a star­star graph is given
in theorem 6.3.6.

Theorem 6.3.6. Let’s assume that 𝐺 is a distance­hereditary graph and 𝑉′ is a sub­
set 𝑉′ ⊆ 𝑉(𝐺) such that the induced subgraph 𝐺[𝑉′] is a star­star graph 𝑆𝑆(𝐵′ ,𝐿′ ,𝑐′).
Furthermore assume that 𝒫(𝐵′, 𝐿′, 𝑐′) is false, then 𝑆𝑉′ ≮ 𝐺. ⋄
Proof. Pick an edge in (𝑏1, 𝑏2) ∈ 𝐺[𝐵′], which exist since |𝐵′| > 1 and 𝐺[𝐵′] is a
star graph. We will prove this by first showing that

¬𝒫(𝐵′, 𝐿′, 𝑐′) ⇒ ∃𝑙 ∈ 𝐿′ ∶ (¬𝒫({𝑏1, 𝑏2}, {𝑙}, 𝑐′)).9 (6.38)

Then from theorem 6.3.5 we know that 𝑆{𝑙,𝑐′ ,𝑏1 ,𝑏2} ≮ 𝐺 for some 𝑙 ∈ 𝐿′ and the
corollary follows, because if 𝑆{𝑙,𝑐′ ,𝑏1 ,𝑏2} is not a vertex­minor of 𝐺 then neither is
𝑆𝑉′ , since 𝑆{𝑙,𝑐′ ,𝑏1 ,𝑏2} < 𝑆𝑉′ . To show that eq. (6.38) is true, we instead show the
contrapositive statement, i.e.

∀𝑙 ∈ 𝐿′ ∶ (𝒫({𝑏1, 𝑏2}, {𝑙}, 𝑐′)) ⇒ 𝒫(𝐵′, 𝐿′, 𝑐′). (6.39)
8Induced subgraphs of a distance­hereditary graph are distance­hereditary.
9Remember that 𝐿′ ≠ ∅, by definition of a star­star graph.
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Let 𝒬(𝑢, 𝐵, 𝐿, 𝑐) be the expression on 𝒫(𝐵, 𝐿, 𝑐) such that
𝒫(𝐵, 𝐿, 𝑐) = ∃𝑢 ∈ 𝑉 ⧵ 𝑉′ ∶ 𝒬(𝑢, 𝐵, 𝐿, 𝑐) (6.40)

For each 𝑙 ∈ 𝐿′, let 𝑢𝑙 be a vertex in 𝑉 ⧵ {𝑙, 𝑐′, 𝑏1, 𝑏2} such that 𝒬(𝑢𝑙 , {𝑏1, 𝑏2}, {𝑙}, 𝑐′) is
true. We will now show that for at least one of these 𝑢𝑙, 𝑢𝑙 ∈ 𝑉⧵𝑉′ and 𝒬(𝑢𝑙 , 𝐵′, 𝐿′, 𝑐′)
is true. To show that for at least one 𝑢𝑙, 𝑢𝑙 ∈ 𝑉 ⧵ 𝑉′ and 𝒬(𝑢𝑙 , 𝐵′, 𝐿′, 𝑐′) is true we
will go through the following steps:

1. Show that
∀𝑙 ∈ 𝐿′ ∶ (𝑢𝑙 ∉ 𝑉′) (6.41)

2. Show that
∀𝑙 ∈ 𝐿′ ∶ (𝐵′ ⊆ 𝑁𝑢𝑙) (6.42)

3. Show that
∃𝑙 ∈ 𝐿′ ∶ (𝐿′ ∩ 𝑁𝑢𝑙 = ∅) (6.43)

4. Fix 𝑙 ∈ 𝐿′ to be such that the corresponding expression in eq. (6.43) is true.
5. Show that

(𝑢𝑙 , 𝑐′) ∈ 𝐸(𝐺) ∨ ∃ℎ ∶ (ℎ ∈ 𝑁𝑢𝑙 ∩ 𝑁𝑐′ ⧵ ⋃
𝑥∈𝑉′⧵{𝑐′}

𝑁𝑥) (6.44)

If all the statements in the above steps are shown to be true we know that there
exist a 𝑢𝑙 in 𝑉 ⧵ 𝑉′ such that 𝒬(𝑢𝑙 , 𝐵′, 𝐿′, 𝑐′) and therefore 𝒫(𝐵′, 𝐿′, 𝑐′) is true. It
is important to note that even if we consider the statements in the above steps
separately we know that there exist at least one 𝑢𝑙 that simultaneously satisfy all.
To see this, note that we only use an existential quantifier in step 3 and in step 5
we consider a 𝑢𝑙 which satisfies the corresponding property in step 3. Let’s now
consider the steps 1 through 5 one by one.10 We will in these steps often claim
that certain small graphs are not distance­hereditary. Verifying this can be done by
hand or using our code supplied at [4].
Step 1:
Firstly, since 𝒬(𝑢𝑙 , {𝑏1, 𝑏2}, {𝑙}, 𝑐′) is true we know that 𝑢𝑙 ≠ 𝑐′. Similarly, we
know that 𝑢𝑙 ∈ (𝑁𝑏1 ∩𝑁𝑏2) ⧵ {𝑐′}, thus 𝑢𝑙 is not in 𝐵′, since 𝐺[𝐵′] is a star graph.
Furthermore, since 𝑏 and 𝑙 are not adjacent ∀𝑏 ∈ 𝐵′ and ∀𝑙 ∈ 𝐿′, 𝑢𝑙 is not in 𝐿′.
We therefore know that 𝑢𝑙 ∉ 𝑉′. ⋄

Step 2:
To see that 𝐵′ ⊆ 𝑁𝑢𝑙 , assume first that this is not the case, i.e. ∃𝑏̃ ∈ 𝐵′ ∶ 𝑏̃ ∉ 𝑁𝑢𝑙 .
We will now show that this contradicts the distance­hereditary property. Note
that 𝑏̃ is not the center of the star graph 𝐺[𝐵], because either 𝑏1 or 𝑏2 is the
center, since (𝑏1, 𝑏2) is an edge in 𝐺[𝐵]. Let’s assume without loss of generality
that 𝑏1 is the center of 𝐺[𝐵]. Furthermore, let’s consider the cases where 𝑢𝑙 and
𝑐′ are adjacent or not separately.

10Step 4 is trivial.
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• Assume that 𝑢𝑙 and 𝑐′ are not adjacent and consider the following induced
subgraph

𝐺[{𝑐′, 𝑏̃, 𝑏1, 𝑏2, 𝑢𝑙}] = b b

ul

b2b1b

b

b̃

c
′

b

. (6.45)

The graph in eq. (6.45) is not distance­hereditary, since the distance be­
tween for example 𝑏̃ and 𝑢𝑙 increase if 𝑏1 is removed. This is therefore a
contradiction to the assumption that 𝐺 is distance­hereditary.

• Assume that 𝑢𝑙 and 𝑐′ are adjacent. We then know that there exist a vertex
ℎ𝑙 which is adjacent to 𝑢𝑙 and 𝑐′, since 𝒬(𝑢𝑙 , {𝑏1, 𝑏2}, {𝑙}, 𝑐′) is true. First,
let’s show that ℎ𝑙 and 𝑏̃ are not adjacent. In fact we will show that ℎ𝑙 is not
adjacent to any vertex in 𝐵, which will be useful in step 5.
Assume the opposite, i.e. ℎ𝑙 is adjacent to some vertex 𝑏̂ ∈ 𝐵′ ⧵ {𝑏1, 𝑏2}.
We already know that ℎ𝑙 is not adjacent to 𝑏1 or 𝑏2, since 𝒬(𝑢𝑙 , {𝑏1, 𝑏2},
{𝑙}, 𝑐′) is true. Consider therefore the following induced subgraph

𝐺[{𝑐′, 𝑏̂, 𝑏1, 𝑏2, ℎ𝑙}] =
b b

b2b1b

b

b̂

c
′

b
hl

(6.46)

which is not distance­hereditary and we therefore know that 𝑁ℎ𝑙 ∩𝐵′ = ∅.
Consider now on the other hand the following induced subgraph, with the
knowledge that ℎ𝑙 is not adjacent to 𝑏̃

𝐺[{𝑐′, 𝑏̃, 𝑏1, 𝑢𝑙 , ℎ𝑙}] =
b b

ul

hl

b1b

b

b̃

c
′

b

(6.47)

which is also not distance­hereditary.

Since in all cases we arrived at a non­distance­hereditary graph we know that
𝐵′ ⊆ 𝑁𝑢𝑙 . ⋄

Step 3:
We show that at least for one of the 𝑢𝑙, 𝐿′∩𝑁𝑢𝑙 = ∅. We will do this by contradic­
tion, assume therefore that ∀𝑙 ∈ 𝐿′ ∶ (𝐿′ ∩ 𝑁𝑢𝑙 ≠ ∅). Since 𝒬(𝑢𝑙 , {𝑏1, 𝑏2}, {𝑙}, 𝑐′) is
true, we know that {𝑙}∩𝑁𝑢𝑙 = ∅ for all 𝑙 ∈ 𝐿′. Consider now the graph 𝐺[𝐿′∪{𝑢𝑙}𝑙].
From theorem 6.3.7 we know that there exist 𝑙1, 𝑙2 ∈ 𝐿′ and 𝑢𝑙3 , 𝑢𝑙4 ∈ 𝑉 ⧵𝑉′, such
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that 𝑢𝑙3 is adjacent to 𝑙1 but not to 𝑙2 and 𝑢𝑙4 is adjacent to 𝑙2 but not to 𝑙1.11
But this is in contradiction with that the graph is distance­hereditary. To see this,
consider the induced subgraph

𝐺[{𝑐′, 𝑏1, 𝑙1, 𝑙2, 𝑢𝑙3 , 𝑢𝑙4}] =

b b ul4
b1b

b

ul3

c
′

bb l2l1

(6.48)

which is not distance­hereditary, independently if the edges (𝑢𝑙3 , 𝑢𝑙4), (𝑐′, 𝑢𝑙3)
and (𝑐′, 𝑢𝑙4) are individually present or not. Since this contradicts the distance­
hereditary property we know that ∃𝑙 ∈ 𝐿′ ∶ (𝐿′ ∩ 𝑁𝑢𝑙 = ∅). ⋄

Step 5:
Let’s assume that 𝑢𝑙 is then a vertex such that 𝐵 ⊆ 𝑁𝑢𝑙 and 𝐿′ ∩ 𝑁𝑢𝑙 = ∅. If 𝑢𝑙
is not adjacent to 𝑐′, then clearly 𝒬(𝑢𝑙 , 𝐵′, 𝐿′, 𝑐′). On the other hand if 𝑢𝑙 and 𝑐′
are adjacent we know that there exist a ℎ𝑙 in 𝑁𝑢𝑙 ∩ 𝑁𝑐′ ⧵ ⋃𝑥∈{𝑙,𝑏1 ,𝑏2}𝑁𝑥. We thus
need to show that ℎ𝑙 is not adjacent to any vertex in 𝑉′, other than 𝑐′. Firstly,
ℎ𝑙 cannot be adjacent to a vertex in 𝐿′, since this would violate the distance­
hereditary property. To see this, assume that ℎ𝑙 is adjacent to ̃𝑙 ∈ 𝐿′ and consider
the following induced subgraph

𝐺[{𝑐′, 𝑏1, ̃𝑙, 𝑢𝑙 , ℎ𝑙}] =

ul

b1 b

b

c
′

b

b

b

l̃

hl

(6.49)

which is not distance­hereditary. This is a contradiction with the distance­hereditary
property and we therefore know that 𝑁ℎ𝑙 ∩ 𝐿′ = ∅. As we already shown in step
2, ℎ𝑙 is also not adjacent to any vertex in 𝐵′. Thus, ℎ𝑙 is not adjacent to any
vertex in 𝑉′ = 𝐵′ ∪ 𝐿′ ∪ {𝑐′}. ⋄

We have therefore shown that eq. (6.39) is true which implies that eq. (6.38) is
true. Finally, as we described in the beginning of the proof, this implies that if
𝒫(𝐵′, 𝐿′, 𝑐′) is false then 𝑆𝑉′ ≮ 𝐺.
Theorem 6.3.7. Assume 𝐺 is a graph on the vertices 𝑈 ∪ 𝐿 such that 𝑈 ∩ 𝐿 = ∅
and 𝑈 ≠ ∅. Furthermore, assume that for each 𝑙 in 𝐿, there is at least one vertex
in 𝑈 not adjacent to 𝑙 and for each 𝑢 in 𝑈, there is at least one vertex in 𝐿 adjacent
to 𝑢, i.e. 𝐺 satisfies the following expression

ℛ(𝑈, 𝐿) = ∀𝑙 ∈ 𝐿 ∶ (∃𝑢 ∈ 𝑈 ∶ 𝑢 ∉ 𝑁𝑙) ∧ ∀𝑢 ∈ 𝑈 ∶ (∃𝑙 ∈ 𝐿 ∶ 𝑙 ∈ 𝑁𝑢) (6.50)

11Note that for example 𝑙1 and 𝑙3 could be the same vertex, but not necessarily.
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Then there exist two vertices 𝑢1 and 𝑢2 in 𝑈 and two vertices 𝑙1 and 𝑙2 in 𝐿 such
that 𝑢1 is adjacent to 𝑙1 but not to 𝑙2 and 𝑢2 is adjacent to 𝑙2 but not to 𝑙1. In other
words the induced subgraph is of the following form

𝐺[{𝑢1, 𝑢2, 𝑙1, 𝑙2}] =
b b

b b

l2

u2

l1

u1

. (6.51)

where the dashed edges are individually either present or not. ⋄

Proof. We will first show that |𝐿| ≥ 2 and |𝑈| ≥ 2. Pick an element 𝑢1 ∈ 𝑈,
which exists since 𝑈 ≠ ∅, by assumption there is a 𝑙1 ∈ 𝐿 which is adjacent to 𝑢1.
Furthermore there exist a 𝑢2 ∈ 𝑈 which is not adjacent to 𝑙1, thus 𝑢1 ≠ 𝑢2. Finally,
by assumption there is a 𝑙2 ∈ 𝐿 which is adjacent to 𝑢2, thus 𝑙1 ≠ 𝑙2. Note, that
this does not yet prove the theorem, since 𝑢1 and 𝑙2 might be adjacent.

We will first prove the theorem for |𝐿| = 2 and then use this to prove the general
case.
|𝐿| = 2 :
Let’s denote the vertices in 𝐿 by 𝑙1 and 𝑙2. We first show by contradiction that
both vertices in 𝐿 must have at least one neighbor in 𝑈. Assume that 𝑙1 does not
have a neighbor in 𝑈, then all vertices in 𝑈 must be adjacent to 𝑙2 by the second
part of eq. (6.50), but then the first part of eq. (6.50) is false. Thus 𝑙1 has at least
one neighbor in 𝑈 and by symmetry the same is true for 𝑙2. Now choose such a
neighbor of 𝑙1 in 𝑈 and denote this 𝑢1. We now show by contradiction that there
exist another vertex 𝑢2 ∈ 𝑈 which is adjacent to 𝑙2 but not to 𝑙1. Assume that this
is not the case, i.e. all vertices in 𝑈 ⧵ {𝑢1} are adjacent to 𝑙1 or not adjacent to
𝑙2. If a vertex in 𝑈 is not adjacent to 𝑙2 then it is necessarily adjacent to 𝑙1, thus
by assumption all vertices in 𝑈 ⧵ {𝑢1} are adjacent to 𝑙1. This is in contradiction
with the first part of eq. (6.50) and the theorem for |𝐿| = 2 follows.

|𝐿| > 2 :
We will show that the following is true: (1) 𝐺 has an induced subgraph as in
eq. (6.51) or (2) there exist a 𝑙 ∈ 𝐿 such that 𝐺 ⧵ 𝑙 satisfy ℛ(𝑈, 𝐿 ⧵ {𝑙}). The
theorem then follows since if (1) is true the theorem follows directly and if (2) is
true we can make the same argument for 𝐺 ⧵ 𝑙 for some 𝑙 ∈ 𝐿 and then possibly
for (𝐺 ⧵ 𝑙) ⧵ 𝑙′ etc., which at some point will give the case |𝐿| = 2, which we have
proven above. Note that if the graph reached by deleting vertices from 𝐺, has
the graph in eq. (6.51) as an induced subgraph, then so does 𝐺.

To prove that (1) or (2) is true, we show that if (2) is false then (1) is neces­
sarily true. Therefore, assume now that (2) is false, which means that for every
choice of 𝑙, 𝐺 ⧵ 𝑙 does not satisfy ℛ(𝑈, 𝐿 ⧵ {𝑙}). The only possibility for this to
happen, i.e. the deletion of 𝑙 makes the graph not satisfy eq. (6.50), is if the
deletion of 𝑙 makes some 𝑢 ∈ 𝑈 not adjacent to any vertex in 𝐿. It is easy to see
that this can only happen if ∃𝑢 ∈ 𝑈 ∶ (𝐿 ∩𝑁𝑢 = {𝑙}). Since this should be true for
all 𝑙 ∈ 𝐿, we have that if (2) is false, the following is true,

∀𝑙 ∈ 𝐿 ∶ (∃𝑢 ∈ 𝑈 ∶ (𝐿 ∩ 𝑁𝑢 = {𝑙})). (6.52)



6.3. Algorithms

6

177

But eq. (6.52) implies that (1) is true. To see this pick two different vertices 𝑙1
and 𝑙2 in 𝐿. From eq. (6.52) we know that there exist a vertex 𝑢1 ∈ 𝑈 such that
𝐿 ∩ 𝑁𝑢1 = {𝑙1} and similarly a 𝑢2 for 𝑙2. Note that 𝑢1 ≠ 𝑢2 since 𝑁𝑢1 ≠ 𝑁𝑢2 .
Furthermore, since 𝐿 ∩ 𝑁𝑢1 = {𝑙1} and 𝐿 ∩ 𝑁𝑢2 = {𝑙2} the induced subgraph
𝐺[{𝑢1, 𝑢2, 𝑙1, 𝑙2}] is as in eq. (6.51).

Proof for a complete­star graph Here we prove that if 𝒫(𝐵′, 𝐿′, 𝑐′) is false,
then 𝑆𝑉′ ≮ 𝐺 for the case where 𝐺[𝑉′] is a complete­star graph. We have the
following theorem.

Theorem 6.3.8. Let’s assume that 𝐺 is a distance­hereditary graph and 𝑉′ is a
subset 𝑉′ ⊆ 𝑉(𝐺) such that the induced subgraph 𝐺[𝑉′] is a complete­star graph
𝐾𝑆(𝐵′ ,𝐿′ ,𝑐′). Furthermore assume that 𝒫(𝐵′, 𝐿′, 𝑐′) is false, then 𝑆𝑉′ ≮ 𝐺. ⋄

Proof. We will prove this by induction on the size of 𝐵′. The base­case, |𝐵′| = 2, is
true due to theorem 6.3.6, since for |𝐵′| = 2, the graph 𝐺 is also a star­star graph.
Let’s now assume that theorem 6.3.8 is true for |𝐵′| = 𝑘. We will now prove that
the theorem is true for |𝐵′| = 𝑘 + 1 by showing that

¬𝒫(𝐵′, 𝐿′, 𝑐′) ⇒ ∃𝑏 ∈ 𝐵′ ∶ ¬𝒫(𝐵′ ⧵ {𝑏}, 𝐿′, 𝑐′). (6.53)

where |𝐵′| = 𝑘+1 ≥ 3. Then from the induction hypothesis we know that 𝑆𝑉′⧵{𝑏} ≮
𝐺 for some 𝑏 ∈ 𝐵′ and the corollary follows, because if 𝑆𝑉′⧵{𝑏} is not a vertex­minor
of 𝐺 then neither is 𝑆𝑉′ , since 𝑆𝑉′⧵{𝑏} < 𝑆𝑉′ . To show that eq. (6.53) is true, we
instead show the contrapositive statement, i.e.

∀𝑏 ∈ 𝐵′ ∶ 𝒫(𝐵′ ⧵ {𝑏}, 𝐿′, 𝑐′) ⇒ 𝒫(𝐵′, 𝐿′, 𝑐′). (6.54)

Let’s therefore assume that 𝒫(𝐵′ ⧵{𝑏}, 𝐿′, 𝑐′) is true for all 𝑏 in 𝐵′. Let 𝒬(𝑢, 𝐵′, 𝐿′, 𝑐′)
be the expression on 𝒫(𝐵′, 𝐿′, 𝑐′) such that

𝒫(𝐵′, 𝐿′, 𝑐′) = ∃𝑢 ∈ 𝑉 ⧵ 𝑉′ ∶ 𝒬(𝑢, 𝐵′, 𝐿′, 𝑐′) (6.55)

For each 𝑏 ∈ 𝐵′, let 𝑢𝑏 be a vertex in 𝑉 ⧵ (𝑉′ ⧵ {𝑏}) such that 𝒬(𝑢𝑏 , 𝐵′ ⧵ {𝑏}, 𝐿′, 𝑐′)
is true. We now need to show that for at least one of these 𝑢𝑏, 𝑢𝑏 ∈ 𝑉 ⧵ 𝑉′ and
𝒬(𝑢𝑏 , 𝐵′, 𝐿′, 𝑐′) is true. Note that 𝐿′∩𝑁𝑢𝑏 = ∅ for all 𝑏, since 𝒬(𝑢𝑏 , 𝐵′ ⧵ {𝑏}, 𝐿′, 𝑐′) for
all 𝑏. Thus, to show that for at least on 𝑢𝑏, 𝑢𝑏 ∈ 𝑉 ⧵ 𝑉′ and 𝒬(𝑢𝑏 , 𝐵′, 𝐿′, 𝑐′) is true
we will go trough the following steps:

1. Show that there can maximally be one 𝑏̃ ∈ 𝐵′ such that 𝑢𝑏̃ ∈ 𝐵′, i.e.

∃𝑏̃ ∈ 𝐵′ ∶ (∀𝑏 ∈ 𝐵′ ∶ (𝑏 = 𝑏̃ ∨ 𝑢𝑏 ∉ 𝐵′)) (6.56)

2. Fix 𝑏̃ ∈ 𝐵′ to be such that the corresponding expression in eq. (6.56) is true.12

12Note that this does not imply that 𝑢𝑏̃ ∈ 𝐵′.
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3. Show that there can maximally be one 𝑏̂ ∈ 𝐵′ ⧵ {𝑏̃} such that 𝐵′ ⊈ 𝑁𝑢𝑏̂ , i.e.

∃𝑏̂ ∈ 𝐵′ ⧵ {𝑏̃} ∶ (∀𝑏 ∈ 𝐵′ ⧵ {𝑏̃} ∶ (𝑏 = 𝑏̂ ∨ 𝐵′ ⊆ 𝑁𝑢𝑏)) (6.57)

4. Fix 𝑏̂ ∈ 𝐵′ to be such that the corresponding expression in eq. (6.57) is true.
5. Use step 1 to 4 to show that there exist a 𝑏 ∈ 𝐵′ such that 𝑢𝑏 ∉ 𝐵′, 𝐵′ ⊆ 𝑁𝑢𝑏
and

(𝑢𝑏 , 𝑐′) ∉ 𝐸(𝐺) ∨ ∃ℎ𝑏 ∶ (ℎ𝑏 ∈ 𝑁𝑢𝑏 ∩ 𝑁𝑐′ ⧵ ⋃
𝑥∈𝑉′⧵{𝑐′}

𝑁𝑥) (6.58)

i.e. 𝒬(𝑢𝑏 , 𝐵′, 𝐿′, 𝑐′) is true.
Let us now consider the steps 1 through 5 one by one.13 We will in these steps
often claim that certain small graphs are not distance­hereditary. Verifying this can
be done by hand or using our code supplied at [4].
Step 1:
Here we show that eq. (6.56) is true. Firstly, if for all 𝑏 ∈ 𝐵′ we have that 𝑢𝑏 ∉ 𝐵′,
then eq. (6.56) is clearly true, since 𝑏̃ can then be chosen as any element in
𝐵′.14 We now show by contradiction that there cannot exist two different vertices
𝑏̃1, 𝑏̃2 ∈ 𝐵′, such that 𝑢𝑏̃1 ∈ 𝐵′ and 𝑢𝑏̃2 ∈ 𝐵′. Thus, let’s assume that such vertices
𝑏̃𝑖 for 𝑖 ∈ {1, 2}, does exist. Note that, since 𝒬(𝑢𝑏̃𝑖 , 𝐵′⧵{𝑏̃𝑖}, 𝐿′, 𝑐′) is true, we know
that 𝑢𝑏̃𝑖 is adjacent to all vertices in 𝐵′⧵{𝑏̃𝑖} and therefore 𝑢𝑏̃𝑖 = 𝑏̃𝑖. Since 𝑢𝑏̃𝑖 = 𝑏̃𝑖,
we know that 𝑢𝑏̃1 ≠ 𝑢𝑏̃1 . Furthermore, from the fact that 𝑢𝑏̃𝑖 ∈ 𝐵′, we know that
𝑢𝑏̃𝑖 is adjacent to 𝑐′ and thus, since 𝒬(𝑢𝑏̃𝑖 , 𝐵′ ⧵ {𝑏̃𝑖}, 𝐿′, 𝑐′) is true, there exist a
vertex ℎ𝑖 such that

ℎ𝑖 ∈ 𝑁𝑢𝑏̃𝑖 ∩ 𝑁𝑐′ ⧵ ⋃
𝑥∈𝑉′⧵{𝑐′ ,𝑏̃𝑖}

𝑁𝑥 . (6.59)

The vertices ℎ𝑖 are necessarily different, since ℎ1 is adjacent to 𝑏1 = 𝑢𝑏̃1 but not
to 𝑏2 and vice versa for ℎ2. Now consider the following induced subgraph

𝐺[{𝑐′, 𝑏̃1, 𝑏̃2, 𝑏, ℎ1, ℎ2}] =

b b

b b

h2

b2

h1

b1
b

b

b

c
′

(6.60)

where 𝑏 is a vertex in 𝐵′⧵{𝑏1, 𝑏2}, which exists since |𝐵′| ≥ 3 by assumption. The
graph in eq. (6.60) is not distance­hereditary, independently if the edge (ℎ1, ℎ2)
is present or not. Since this contradicts the fact that 𝐺 is distance­hereditary, we
know that eq. (6.56) is true. ⋄

13Step 2 and 4 are trivial.
14Remember that |𝐵′| ≥ 3.
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Step 3:

Here we show that eq. (6.57) is true. Firstly, if for all 𝑏 ∈ 𝐵′ ⧵ {𝑏̃} we have that
𝐵′ ⊆ 𝑁𝑢𝑏 , then eq. (6.57) is clearly true, since 𝑏̂ can then be chosen as any
element in 𝐵′ ⧵ {𝑏̃}.15 We now show by contradiction that there cannot exist two
different vertices 𝑏̂1, 𝑏̂2 ∈ 𝐵′, such that 𝐵′ ⊈ 𝑁𝑢𝑏̂1 and 𝐵

′ ⊈ 𝑁𝑢𝑏̂2 . Thus, let’s
assume that such vertices 𝑏̂𝑖 for 𝑖 ∈ {1, 2}, does exist. Let’s for the remainder
of this step denote 𝑢𝑏̂𝑖 as 𝑢

(𝑖). From the previous steps we know that 𝑢(𝑖) ∉ 𝐵′
and furthermore (𝐵′ ⧵ {𝑏̂𝑖}) ⊆ 𝑁𝑢(𝑖) since 𝒬(𝑢(𝑖), 𝐵′ ⧵ {𝑏̂𝑖}, 𝐿′, 𝑐′) is true. Thus,
by assumption, we have that 𝑏̂𝑖 ∉ 𝑁𝑢(𝑖) . The vertices 𝑢(𝑖) are then necessarily
different, i.e. 𝑢(1) ≠ 𝑢(2), since for example 𝑏̂1 is a neighbor of 𝑢(2) but not of
𝑢(1). We will now show that this contradicts the fact that 𝐺 is distance­hereditary,
by considering the following cases:

• Assume that 𝑢(1) is not adjacent to 𝑢(2) and consider the following induced
subgraph

𝐺[{𝑏, 𝑏̂1, 𝑏̂2, 𝑢(1), 𝑢(2)}] =
b̂2b̂1

u
(2)

u
(1)

b

bb

b
b

b
(6.61)

where 𝑏 is a vertex in 𝐵′⧵{𝑏̂1, 𝑏̂2}, which exists since |𝐵′| ≥ 3 by assumption.
The graph in eq. (6.61) is not distance­hereditary.

• Assume that 𝑢(1) is adjacent to 𝑢(2).
– Assume that neither 𝑢(1) or 𝑢(2) is adjacent to 𝑐′ and consider the fol­
lowing induced subgraph

𝐺[{𝑐′, 𝑏̂1, 𝑏̂2, 𝑢(1), 𝑢(2)}] =

c
′

b̂2b̂1

u
(2)

u
(1)bb

b

b b (6.62)

which is not distance­hereditary.
– Assume that exactly one of 𝑢(1) and 𝑢(2) is adjacent to 𝑐′ and let’s
assume without loss of generality that it is 𝑢(1) that is adjacent to 𝑐′.
Since 𝒬(𝑢(1), 𝐵′ ⧵ {𝑏̂1}, 𝐿′, 𝑐′) is true and 𝑢(1) is adjacent to 𝑐′, we know
that there exist a vertex ℎ1 such that

ℎ1 ∈ 𝑁𝑢(1) ∩ 𝑁𝑐′ ⧵ ⋃
𝑥∈𝑉′⧵{𝑐′ ,𝑏1}

𝑁𝑥 . (6.63)

15Remember that |𝐵′| ≥ 3.
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Consider now the following induced subgraph

𝐺[{𝑐′, 𝑏, 𝑏̂2, 𝑢(1), 𝑢(2), ℎ1}] =

c
′

b̂2

u
(2)

u
(1)

b

bb

b

b
b b h1 (6.64)

where 𝑏 is a vertex in 𝐵′⧵{𝑏̂1, 𝑏̂2}, which exists since |𝐵′| ≥ 3 by assump­
tion. The graph in eq. (6.64) is not distance­hereditary, independently
if the edge (ℎ1, 𝑢(2)) is present or not.

– Assume that both 𝑢(1) and 𝑢(2) is adjacent to 𝑐′. Since 𝒬(𝑢(𝑖), 𝐵′ ⧵
{𝑏̂𝑖}, 𝐿′, 𝑐′) is true and 𝑢(𝑖) is adjacent to 𝑐′, we know that there exist a
vertex ℎ𝑖 such that

ℎ𝑖 ∈ 𝑁𝑢(𝑖) ∩ 𝑁𝑐′ ⧵ ⋃
𝑥∈𝑉′⧵{𝑐′ ,𝑏𝑖}

𝑁𝑥 . (6.65)

⋄ Assume that ℎ1 = ℎ2, which implies that ℎ1 is not adjacent to 𝑏̂1 or
𝑏̂2 and consider the following induced subgraph

𝐺[{𝑏̂1, 𝑏̂2, 𝑢(1), 𝑢(2), ℎ1}] =
b̂2b̂1

u
(2)

u
(1)bb

b b

bh1

(6.66)

which is not distance­hereditary.
⋄ Assume that ℎ1 ≠ ℎ2 and consider the following induced subgraph

𝐺[{𝑐′, 𝑏, 𝑏̂1, 𝑏̂2, 𝑢(1), 𝑢(2), ℎ1, ℎ2}] =

c
′

b̂2

u
(2)

u
(1)

b

bb

b

b
b

b b h2h1

b
b̂1

(6.67)
where 𝑏 is a vertex in 𝐵′ ⧵ {𝑏̂1, 𝑏̂2}, which exists since |𝐵′| ≥ 3
by assumption. The graph in eq. (6.67) is not distance­hereditary,
independently if the edges

(ℎ1, ℎ2), (ℎ1, 𝑢(2)), (ℎ2, 𝑏̂2), (ℎ1, 𝑢(1)), (ℎ1, 𝑏̂2) (6.68)
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are individually present or not. To make this statement more trans­
parent, we also provide the adjacency matrix of the graph in eq. (6.67).
The graph in eq. (6.67) has adjacency matrix

Γ =

𝑐′ 𝑏 𝑏̂1 𝑏̂2 𝑢(1) 𝑢(2) ℎ1 ℎ2

⎛
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟

⎠

𝑐′ 0 1 1 1 1 1 1 1
𝑏 1 0 1 1 1 1 0 0
𝑏̂1 1 1 0 1 0 1 𝑥1 0
𝑏̂2 1 1 1 0 1 0 0 𝑥2
𝑢(1) 1 1 0 1 0 1 1 𝑥3
𝑢(2) 1 1 1 0 1 0 𝑥4 1
ℎ1 1 0 𝑥1 0 1 𝑥4 0 𝑥5
ℎ2 1 0 0 𝑥2 𝑥3 1 𝑥5 0

(6.69)

where 𝑥1, … , 𝑥5 ∈ {0, 1}. By explicit computation one can check
that for any assignment of the variables 𝑥1, … , 𝑥5, the graph with
adjacency matrix as in eq. (6.69) is not distance­hereditary.

Since in all cases we arrived at a contradiction of the fact that 𝐺 is distance­
hereditary, we know that eq. (6.57) is true. ⋄

Step 5:
Here we show that there exist a 𝑏 ∈ 𝐵′ such that 𝑢𝑏 ∉ 𝐵′, 𝐵′ ⊆ 𝑁𝑢𝑏 and

(𝑢𝑏 , 𝑐′) ∉ 𝐸(𝐺) ∨ ∃ℎ𝑏 ∶ (ℎ𝑏 ∈ 𝑁𝑢𝑏 ∩ 𝑁𝑐′ ⧵ ⋃
𝑥∈𝑉′⧵{𝑐′}

𝑁𝑥). (6.70)

Note that 𝐵′ ⊆ 𝑁𝑢𝑏 implies 𝑢𝑏 ∉ 𝐵′, thus we can focus on the first property. We
prove the statement by contradiction and assume therefore that there exist no
such 𝑏, i.e. there exist no 𝑏 ∈ 𝐵′ such that 𝐵′ ⊆ 𝑁𝑢𝑏 and for which eq. (6.70)
is true. Let’s first introduce the set ℬ of vertices in 𝐵′ which satisfy the first of
these properties, i.e.

ℬ = {𝑏 ∈ 𝐵′ ∶ (𝐵′ ⊆ 𝑁𝑢𝑏)}. (6.71)

From the previous steps we know that ℬ is not empty. Furthermore, from our
assumption we must have that for all 𝑏 ∈ ℬ, eq. (6.70) is false, i.e

∀𝑏 ∈ ℬ ∶ ((𝑢𝑏 , 𝑐′) ∈ 𝐸(𝐺) ∧ ∀ℎ𝑏 ∶ (ℎ𝑏 ∉ 𝑁𝑢𝑏 ∩ 𝑁𝑐′ ⧵ ⋃
𝑥∈𝑉′⧵{𝑐′}

𝑁𝑥)). (6.72)

Let 𝑏 now be a fixed element of ℬ. Since 𝑢𝑏 is adjacent to 𝑐′ and from the fact
that 𝒬(𝑢𝑏 , 𝐵′ ⧵ {𝑏}, 𝐿′, 𝑐′) is true, we know that there exist a ℎ𝑏 such that

ℎ𝑏 ∈ 𝑁𝑢𝑏 ∩ 𝑁𝑐′ ⧵ ⋃
𝑥∈𝑉′⧵{𝑐′ ,𝑏}

𝑁𝑥 . (6.73)
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Note that, eq. (6.72) together with eq. (6.73) implies that ℎ𝑏 is adjacent to 𝑏 but
to no other vertex in 𝐵′. We will now show that this leads to a contradiction by
considering a vertex 𝑏1 ∈ 𝐵′ ⧵ {𝑏}, such that 𝑢𝑏1 ∉ 𝐵′, which we showed exists in
step 1. Furthermore, let 𝑏2 a vertex in 𝐵′ ⧵ {𝑏, 𝑏1}, which is necessarily adjacent
to 𝑢𝑏1 , since 𝒬(𝑢𝑏1 , 𝐵′ ⧵ {𝑏1}, 𝐿′, 𝑐′) is true. Let’s consider the following cases:
• Assume that 𝑢𝑏1 is not adjacent to 𝑐′. By assumption we then have that
𝐵′ ⊈ 𝑁𝑢𝑏1 , which implies that 𝑢𝑏1 is not adjacent to 𝑏1. Consider now the
following induced subgraph

𝐺[{𝑐′, 𝑏, 𝑏1, 𝑏2, 𝑢𝑏1 , ℎ𝑏}] =

c
′

b1

ub1 b

b2

bb

b

b
b b hb (6.74)

which is not distance­hereditary, independently if the edge (ℎ𝑏 , 𝑢𝑏1) is present
or not.

• Assume that 𝑢𝑏1 is adjacent to 𝑐′.
– Assume that 𝐵′ ⊆ 𝑁𝑢𝑏1 . By the same argument as for 𝑏 and 𝑢𝑏, we
know that there exist a vertex ℎ𝑏1 which is adjacent to 𝑢𝑏1 , 𝑐′ and 𝑏1
but not to any other vertex in 𝐵′. Consider now the following induced
subgraph

𝐺[{𝑐′, 𝑏, 𝑏1, 𝑏2, ℎ𝑏 , ℎ𝑏1}] =

b b

b b

hb1

b1

hb

b b

b

b2

c
′

(6.75)

which is not distance­hereditary, independently if the edge (ℎ𝑏 , ℎ𝑏1) is
present or not.

– Assume that 𝐵 ⊈ 𝑁𝑢𝑏1 , which implies that 𝑏1 is not adjacent to 𝑢𝑏1
since 𝒬(𝑢𝑏1 , 𝐵′ ⧵ {𝑏1}, 𝐿′, 𝑐′) is true. Furthermore, we know that there is
a vertex ℎ𝑏1 which is adjacent to 𝑢𝑏1 and 𝑐′ and possibly to 𝑏1 but no
other vertex in 𝐵′. Consider now the following induced subgraph

𝐺[{𝑐′, 𝑏, 𝑏1, 𝑏2, 𝑢𝑏 , 𝑢𝑏1 , ℎ𝑏 , ℎ𝑏1}] =

c
′

b

ub ub1

b2

bb

b

b
b

b b hb
hb1

b
b1

(6.76)
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which is not distance­hereditary, independently if the edges

(ℎ𝑏 , ℎ𝑏1), (ℎ𝑏 , 𝑢𝑏1), (ℎ𝑏1 , 𝑏1), (ℎ𝑏1 , 𝑢𝑏), (𝑢𝑏 , 𝑢𝑏1) (6.77)

are individually present or not. To make this statement more transpar­
ent, we also provide the adjacency matrix of the graph in eq. (6.76).
The graph in eq. (6.76) has adjacency matrix

Γ =

𝑐′ 𝑏 𝑏1 𝑏2 𝑢𝑏 𝑢𝑏1 ℎ𝑏 ℎ𝑏1

⎛
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟

⎠

𝑐′ 0 1 1 1 1 1 1 1
𝑏 1 0 1 1 1 1 1 0
𝑏1 1 1 0 1 1 0 0 𝑥1
𝑏2 1 1 1 0 1 1 0 0
𝑢𝑏 1 1 1 1 0 𝑥2 1 𝑥3
𝑢𝑏1 1 1 0 1 𝑥2 0 𝑥4 1
ℎ𝑏 1 1 0 0 1 𝑥4 0 𝑥5
ℎ𝑏1 1 0 𝑥1 0 𝑥3 1 𝑥5 0

(6.78)

where 𝑥1, … , 𝑥5 ∈ 𝔽2. By explicit computation one can check that for any
assignment of the variables 𝑥1, … , 𝑥5, the graph with adjacency matrix
as in eq. (6.78) is not distance­hereditary.

Since in all cases we arrived at a contradiction of the fact that 𝐺 is distance­
hereditary, we know that there exist a 𝑏 ∈ 𝐵′ such that 𝑢𝑏 ∉ 𝐵′, 𝐵′ ⊆ 𝑁𝑢𝑏 and
such that eq. (6.70) is true. ⋄

We have therefore shown that eq. (6.54) is true which implies that eq. (6.53) is true.
Finally, as we described in the beginning of the proof, this implies, by induction, that
if 𝒫(𝐵′, 𝐿′, 𝑐′) is false then 𝑆𝑉′ ≮ 𝐺.

6.3.2. Fixed­parameter tractable algorithm for unbounded rank­
width

In this section we will show that the star vertex­minor problem (StarVertexMinor)
is fixed­parameter tractable for circle graphs, in terms of the size of the considered
star graph. More specifically, we will show that there exists an efficient algorithm
to decide if 𝑆𝑉′ is a vertex­minor of 𝐺, given that 𝐺 is a circle graph and the subset
𝑉′ ⊆ 𝑉(𝐺) is of size 𝑘. We will do this by showing that we can map this problem
in polynomial time to deciding whether the 4­regular multi­graph that defines 𝐺
has a SOET on the vertices 𝑉′. This is done in section 6.3.2. We will then give an
algorithm that decides whether a 4­regular multi­graph has a SOET on a subset 𝑉′
of its vertices where 𝑉′ = 𝑘 is fixed. This is done in section 6.3.2. We begin by
formally stating the decisions problems considered.

We first define the problem 𝑘­StarVertexMinor.

Problem 6.3.9 (𝑘­StarVertexMinor). Let 𝐺 be a graph and let 𝑉′ be a subset
of 𝑉(𝐺) with |𝑉′| = 𝑘. Decide whether 𝑆𝑉′ is a vertex­minor of 𝐺. ⋄
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We also define the problem 𝑘­SOET.

Problem 6.3.10 (𝑘­SOET). Let 𝐹 be a 4­regular multi­graph and let 𝑉′ be a subset
of 𝑉(𝐹) with |𝑉′| = 𝑘. Decide whether 𝐹 allows for a SOET with respect to 𝑉′ ⋄

Theorem 6.3.11. 𝑘­StarVertexMinor, restricted to circle graphs, is in ℙ. ⋄

Proof. This will follow from theorem 6.3.12 which provides an efficient mapping of
every circle graph instance of k−StarVertexMinor to a corresponding instance
of k−SOET. By corollary 6.3.16.1 k−SOET is in ℙ and hence so is
k−StarVertexMinor. An efficient algorithm for k−SOET is given in algorithm 6.4.

This theorem has the following corollary.

Corollary 6.3.11.1. StarVertexMinor is fixed­parameter tractable in the size
of the input vertex­set 𝑉′ if the input graph 𝐺 is a circle graph. ⋄

The existence of this fixed­parameter tractable algorithm is theoretically inter­
esting but it is not likely to be of practical use. This is so because while the algorithm
is efficient in the size of the input graph 𝐺 it suffers from a hidden constant that is of
size 𝑂(𝑘! ⋅ (𝑓(𝑘)𝒪(𝑘𝑓(𝑘)))), where 𝑓(𝑘) = 22𝒪(𝑘

2)
making its practical implementation

unlikely.

Mapping 𝑘­StarVertexMinor to 𝑘­SOET
In this section we will prove that there exists an efficient mapping from instances of
k−StarVertexMinor that are circle graphs to k−SOET. This is formalized in the
following theorem, the proof of which also provides a prescription of the algorithm
that defines the mapping.

Theorem 6.3.12. Let (𝐺, 𝑉′) be an instance of k−StarVertexMinor and let 𝐺
be a circle graph. There is an efficient mapping from this instance to an instance
of k−SOET and moreover the instance (𝐺, 𝑉′) is a yes­instance of
k−StarVertexMinor if and only if its image under the mapping is a yes­instance
of k−SOET. ⋄

Proof. We will prove this by providing an explicit mapping. An instance (𝐺, 𝑉′) of 𝑘­
StarVertexMinor, where 𝐺 is a circle graph and 𝑉′ a vertex set, can be mapped
to an instance of k−SOET by the following two steps:

• Find a double occurrence word X with letters in 𝑉(𝐺) such that 𝐺 = 𝒜(X).
This can be done in time 𝒪(|𝑉(𝐺)|2) by using Spinrad’s algorithm [14].

• Construct a 4­regular multi­graph 𝐹, such that X = 𝑚(𝑈) for some Eulerian
tour 𝑈 on 𝐹. As shown in [15], this can be done in the following way:

– Let 𝐶X be a cycle graph with the vertices labeled as the consecutive
letters of X.
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– Contract every pair of vertices with the same label, while keeping all the
edges. Note that this step can create multi­edges or self­loops. This
step can be done in time 𝒪(|𝑉(𝐺)|) by adding the corresponding rows of
the adjacency matrix and deleting one row and one column.

The graph obtained from these steps is then a 4­regular multi­graph 𝐹 with a
Eulerian tour 𝑈, such that X = 𝑚(𝑈). Therefore, constructing the 4­regular
multi­graph 𝐹, given X, can also be done in time 𝒪(|𝑉(𝐺)|2).

One can see that the above algorithm runs in 𝒪(|𝑉(𝐺)|2) and given a circle graph 𝐺
outputs a 4­regular graph 𝐹 that has a Eulerian tour 𝑈 such that 𝒜(𝑈) = 𝐺. From
corollary 4.7.16.1 we then know that 𝑆𝑉′ < 𝐺 if and only if 𝐹 allows for a SOET with
respect to 𝑉′. Using the above two steps we see that any circle graph instance of
𝑘­StarVertexMinor can be mapped to 𝑘­SOET in time 𝒪(|𝑉(𝐺)|2).

Given this mapping, the next logical step is to find an efficient algorithm for
k−SOET. This is done in the next section.

𝑘­SOET is in ℙ
In this section we will prove that k−SOET is in ℙ. We will do this by explicitly writing
down an efficient algorithm. This algorithm will make use of an algorithm which
solves a well known graph problem we call k’−DPP. k’−DPP, for 𝑘′­Disjoint Path
Problem is formally defined as follows.

Problem6.3.13 (𝑘′­DPP). Let𝐻 be a multi­graph and let 𝐿 = {(𝑣1, 𝑣′1), … , (𝑣𝑘′ , 𝑣′𝑘′)}
be a set of two­tuples of vertices of 𝐻 such that |𝐿| = 𝑘′. Decide whether there
exist 𝑘′ edge­disjoint paths 𝑃𝑖 on 𝐻 that start at 𝑣𝑖 and end at 𝑣′𝑖 for 𝑖 ∈ [𝑘′]. ⋄

Robertson and Seymour proved that there exist an efficient algorithm for solving
𝑘′­DPP, if 𝑘′ is fixed. Their proof of correctness is based on 23 papers named Graph
minors. I , … , Graph minors. XXIII [16]. In [17] an improved algorithm for 𝑘′­DPP
is given, with a much smaller hidden constant describing the scaling in terms of
𝑘′. This hidden constant is still quite large as running time for the algorithm in
[17] is (𝑓(𝑘′)𝒪(𝑘′𝑓(𝑘′)))𝑛𝒪(1), where 𝑛 is the number of vertices in the graph and
𝑓(𝑘′) = 22𝒪(𝑘

′2)

We will discuss an algorithm that solves k−SOET efficiently. It will use an algo­
rithm for k’−DPP as a subroutine, calling it a constant number of times.

The algorithm for 𝑘­SOET is sketched as follows. Let 𝐹 be a 4­regular multi­
graph and let 𝑉′ ⊂ 𝑉(𝐹) be of size 𝑘. Recall that a SOET is a Eulerian path that
visits the vertices in 𝑉′ in some order. A necessary condition for a SOET to exist is
that there are, for some ordering of the vertices in 𝑉′ two edge­disjoint trails from
the first vertex in 𝑉′ to the second vertex in 𝑉′ and from the second to the third and
so on. If one is given such a collection of paths it is not hard to see that one can
connect these paths to each other to form a tour and moreover extend this total
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tour to be Eulerian. Hence we could use the 𝑘′­DPP algorithm described above to
find such a tour by finding all the edge disjoint trails that connect the vertices in 𝑉′.

There are two problems with this. The first problem is that a SOET with respect
to 𝑉′ can exist with respect to any possible ordering of the set 𝑉′. This means that
in order to find this tour we might have to apply 𝑘­DPP to all 𝑘! different orderings.
This is a large overhead but acceptable since we are only looking for an algorithm
that is efficient for fixed 𝑘. The second problem is that the 𝑘′­DPP algorithm ex­
pects 𝑘′ pairs of vertices and requires these pairs to be different.

This means we cannot input the same vertex­pair twice to get two edge disjoint
paths. We can resolve this at some overhead by running the 𝑘′­DPP algorithm on
a modified multi­graph 𝐻. This multi­graph, which we call a SOET splitting of 𝐹,
is created by taking each vertex 𝑣𝑖 in 𝑉 and splitting it into two vertices 𝑣(𝑎)𝑖 , 𝑣(𝑏)𝑖
such that the four edges 𝑒1, … 𝑒4 originally incident on 𝑣𝑖 are now pairwise incident
on 𝑣(𝑎)𝑖 , 𝑣(𝑏)𝑖 .

As an example we could have for instance that 𝑒1, 𝑒2 are incident on 𝑣(𝑎)𝑖 and
𝑒3, 𝑒4 are incident on 𝑣(𝑏)𝑖 . We must consider all possible choices of pairings here
(of which there are 6) and since there are 𝑘 vertices on which to perform this pro­
cedure (each vertex in 𝑉′) there are 6𝑘 such SOET splittings of 𝐹 (which are not
4­regular anymore). This means we must call the 2𝑘­DPP subroutine 6𝑘 ⋅ 𝑘! times
to account for all possible orderings of the SOET.

Let’s make this a little more rigorous. We begin by defining the notion of a
SOET­splitting of a 4­regular multi­graph 𝐹 with respect to a set 𝑉′.

Definition 6.3.14 (SOET­splitting). Let 𝐹 be a 4­regular multi­graph and let 𝑉′ be
a subset of it’s vertices. A SOET­splitting 𝐻 of 𝐹 with respect to 𝑉 is a multi­graph
created from 𝐹 y performing the following operation on all vertices in 𝑉

v
b ↦

v
(a)
b

b
v
(b)

(6.79)

We label the two vertices that originate from a vertex 𝑣 ∈ 𝑉′ as 𝑣(𝑎) and 𝑣(𝑏). Note
that we have not specified how to connect the edges that were originally incident
on 𝑣 to 𝑣(𝑎) and 𝑣(𝑏). There are six possible ways to do this for each 𝑣 ∈ 𝑉′ and
each choice leads to an a priori distinct SOET­splitting multi­graph 𝐻. ⋄

We also define the subroutine k’−DPP Note that we have only specified the
inputs and outputs of this subroutine. For details on the inner workings of this
algorithm see [17]. Using this subroutine we can write down an algorithm for
k−SOET.
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We now prove that this algorithm returns TRUE if and only if the multi­graph 𝐹
allows for a SOET with respect to the vertex­subset 𝑉′. We begin by proving that
if the algorithm returns TRUE the multi­graph 𝐹 allows for a SOET with respect to
the vertex­subset 𝑉′. We have the following theorem.

Theorem 6.3.15. Let 𝐹 be a connected 4­regular multi­graph and let 𝑉′ ⊂ 𝑉(𝐹)
be a subset of its vertices with |𝑉′| = 𝑘. If algorithm 6.4 returns TRUE then 𝐹
allows for a SOET with respect to the vertex set 𝑉′. ⋄

Proof. Let 𝐹 be a connected 4­regular multi­graph and let 𝑉′ ⊂ 𝑉(𝐹) be a subset
of its vertices with |𝑉′| = 𝑘. If algorithm 6.4 returns true this means there exists a
SOET­splitting 𝐻 of 𝐹 and a permutation 𝜋 of the set [𝑘] such that there exist 2𝑘
edge­disjoint paths in 𝐻 that connect the vertices 𝑣(𝑎)𝜋(1) and 𝑣

(𝑎)
𝜋(2), 𝑣

(𝑎)
𝜋(2) and 𝑣

(𝑎)
𝜋(3)

and so forth. Undoing the SOET­splitting operation that defines 𝐹 we can see that
these edge­disjoint paths can be attached to one another to form a closed trail16

(a tour) 𝑈 on 𝐹 that visits all vertices of 𝑉′ twice in the order 𝑣𝜋(1), … , 𝑣𝜋(𝑘). This is
not yet a Eulerian tour however. To construct a Eulerian tour out of the tour 𝑈 we
consider the multi­graph 𝐻̂ obtained from 𝐹 by deleting all vertices in 𝑉 (looking at
the induced subgraph 𝐹[𝑉 ⧵𝑉′]) and subsequently removing all edges in the tour 𝑈
from the remaining multi­graph. The resulting multi­graph will consist of multiple
connected components. These connected components will either consist of a single
vertex or will be multi­graphs with vertices of degree two and four. This means
all these connected components are Eulerian. Moreover each of these connected
components will contain a vertex that is also a vertex in the tour 𝑈. Consider on
each of these connected components then a Eulerian tour. These tours will thus
form tours on the original multi­graph 𝐹 as well and since all such tours have at
least one vertex in common with the tour 𝑈 we can extend 𝑈 to a Eulerian tour on
the multi­graph 𝐹 by cutting 𝑈 at such a vertex for each connected component and
inserting the tour originating from the connected components of 𝐺. This means
that 𝑈 can be turned into a Eulerian tour and hence there exists a SOET on the
multi­graph 𝐹. This proves the theorem.

Next we prove the converse statement.

Theorem 6.3.16. Let 𝐹 be a connected 4­regular multi­graph and let 𝑉′ ⊂ 𝑉(𝐹)
be a subset of its vertices with |𝑉′| = 𝑘. If 𝐹 allows for a SOET with respect to 𝑉′
then algorithm 6.4 will return TRUE. ⋄

Proof. Let 𝑈 be a SOET on 𝐹 with respect to 𝑉′ and without loss of generality
assume that 𝑈 traverses the vertices of 𝑉′ in the order 𝑣1, 𝑣2, … , 𝑣𝑘. Hence for
the vertices 𝑣1, 𝑣2 there are 2 sub­trails 𝑈(𝑎)1 , 𝑈(𝑏)1 of 𝑈 that start at 𝑣1 and end at
𝑣2. The sub­trail 𝑈(𝑎)1 (or 𝑈(𝑏)1 ) might not be a path, but one can easily pick a
subset of the edges in 𝑈(𝑎)1 which gives a path, for example as the shortest path
𝑃(𝑎)1 between 𝑣1 and 𝑣2 in the subgraph of 𝐹 given by the vertices and edges of
𝑈(𝑎)1 . Similarly for 𝑈(𝑏)1 and 𝑃(𝑏)1 . We can make the same argument for the vertices
16Note that a path is also a trail.
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𝑣2, 𝑣3 and so forth. By the definition of SOET splittings there must thus exist a
SOET splitting 𝐺 of 𝐹 with respect to 𝑉′ such that the path 𝑃(𝑎)1 starts at 𝑣(𝑎)1 and
ends at 𝑣(𝑎)2 and such that the path 𝑃(𝑏)1 starts at 𝑣(𝑏)1 and ends at 𝑣(𝑏)2 . We can
make the same argument for the vertices 𝑣2, 𝑣3 and so forth. Hence there must
exist a SOET­splitting 𝐺 of 𝐹 with respect to 𝑉′ such that the algorithm 2𝑘­DPP(𝐺, 𝑆)
with 𝑆 = {(𝑣(𝑎)1 , 𝑣(𝑎)2 ), … , (𝑣(𝑎)𝑘 , 𝑣(𝑎)1 ), (𝑣(𝑏)1 , 𝑣(𝑏)2 ), … , (𝑣(𝑏)𝑘 , 𝑣(𝑏)1 )} returns TRUE. Since
algorithm 6.4 runs over all possible orderings of 𝑉′ and all possible SOET splittings
this particular call to 2𝑘­DPP will always happen and hence algorithm 6.4 will return
TRUE. This proves the theorem.

This leads to the following corollary.

Corollary 6.3.16.1. k−SOET is in ℙ. ⋄

Proof. By 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 6.3.16 and 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 6.3.15, 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 6.4 returns TRUE if and
only if the tuple (𝐹, 𝑉′), with 𝐹 a 4­regular multi­graph and 𝑉′ ⊂ 𝑉(𝐹) a subset of its
vertices with |𝑉′| = 𝑘, is a YES instance of 𝑘­SOET. Moreover the function k’−DPP
runs in polynomial time in the size of the input graph and we have for all SOET­
splittings 𝐺 of 𝐹 with respect to 𝑉′ that |𝑉(𝐺)| = |𝑉(𝐹)| + 𝑘 and |𝐸(𝐺)| = |𝐸(𝐹)|.
Algorithm 6.4 hence performs a constant number of function calls (constant in the
size of 𝐹, not in 𝑘) of k’−DPP with an input multi­graph of size 𝑂(|𝑉(𝐹)|, |𝐸(𝐹)|).
Hence Algorithm 6.4 runs in polynomial time with respect to |𝑉(𝐹)|, |𝐸(𝐹)| and thus
we have that 𝑘­SOET is in ℙ.

This corollary then leads to theorem 6.3.11.
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Algorithm 6.1 Producing 𝑆𝑉′ from a distance­hereditary graph 𝐺
1: INPUT: A graph 𝐺 and a subset of vertices 𝑉′ ⊆ 𝑉(𝐺).
2: OUTPUT: A sequence v such that 𝜏v(𝐺)[𝑉′] = 𝑆𝑉′ , if 𝑆𝑉′ < 𝐺.
3: ERROR, if 𝑆𝑉′ ≮ 𝐺.
4:
5:
6: if |𝑉′| = 1 then
7: Return ()
8: QUIT
9: end if
10: Find a v such that 𝜏v(𝐺) contain the star graph on 𝑉′ as a subgraph by calling

algorithm 6.2.
11: Let 𝑐 be a vertex in 𝑉′, adjacent to all other in 𝑉′ (except itself).
12: for 𝑖 in {0, 1} do # Two iterations are always needed if there is more than one

bad edge
13: Let 𝐵 be the vertices incident to a bad edge. # These are the vertices in

𝜏𝑚(𝐺)[𝑉′ ⧵ {𝑐}] of degree 1 or higher
14: Let 𝐿 = 𝑉′ ⧵ ({𝑐} ∪ 𝐵).
15: if 𝐵 = ∅ then # If already 𝑆𝑉′ , only for 𝑖 = 0
16: Return v
17: QUIT
18: else
19: if 𝐵 = 𝑉′ ⧵ {𝑐} then # I.e. if 𝐿 = ∅
20: Set v = v‖(𝑐)
21: BREAK
22: end if
23: Let 𝑈 be the set 𝑈 = {𝑢 ∈ 𝑉(𝐺) ⧵ 𝑉′ ∶ 𝐵 ⊆ 𝑁𝑢 ∧ 𝐿 ⊈ 𝑁𝑢} # Candidates

for the 𝑢 in eq. (6.29)
24: if 𝑈 = ∅ then
25: Raise ERROR(𝑆𝑉′ is not a vertex­minor of 𝐺) # Actually not

needed, only for clarity
26: end if
27: Set 𝑓𝑜𝑢𝑛𝑑=False
28: for 𝑢 in 𝑈 do
29: if (𝑢, 𝑐) ∉ 𝐸(𝜏v(𝐺)) then
30: Set v = v‖(𝑢)
31: Set 𝑓𝑜𝑢𝑛𝑑=True # Found a 𝑢 satisfying eq. (6.29)
32: Break
33: else if ∃ℎ ∶ (ℎ ∈ 𝑁𝑢 ∩ 𝑁𝑐 ⧵ ⋃𝑥∈𝑉′{𝑢,𝑐}𝑁𝑥) then
34: Set v = v‖(ℎ, 𝑢)
35: Set 𝑓𝑜𝑢𝑛𝑑=True # Found a 𝑢 and ℎ satisfying eq. (6.29)
36: Break
37: end if
38: end for
39: if ¬𝑓𝑜𝑢𝑛𝑑 then # I.e. condition eq. (6.29) is false
40: Raise ERROR(𝑆𝑉′ is not a vertex­minor of 𝐺)
41: end if
42: end if
43: end for
44: Return v
45: QUIT
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Algorithm 6.2 Find a v such that 𝜏v(𝐺) contain the star graph on 𝑉′ as a subgraph
1: INPUT: A graph 𝐺 and a subset of vertices 𝑉′ ⊆ 𝑉(𝐺).
2: OUTPUT: A sequence v such that 𝜏v(𝐺)[𝑉′] = 𝑆𝑆(𝐵,𝐿,𝑐), where (𝐵, 𝐿, {𝑐}) is a
partition of 𝑉′.

3:
4:
5: Pick an arbitrary vertex from 𝑉′ and denote this 𝑓
6: Find a v such that 𝜏v(𝐺)[𝑉′ ⧵ {𝑓}] = 𝑆𝑉′ and denote the center 𝑐 by calling
algorithm 6.1

7: Find a shortest path 𝑃 = (𝑝0 = 𝑓, 𝑝1, … , 𝑝𝑘 , 𝑝𝑘+1 = 𝑐) between 𝑓 and 𝑐.
8: for 𝑖 in (1, … , 𝑘) do
9: if 𝑓 is adjacent to any vertex in 𝑉′ ⧵ {𝑐} in the graph 𝜏v(𝐺) then
10: Pick an arbitrary vertex in 𝑁𝑓(𝜏v(𝐺)) ∩ 𝑉′ ⧵ {𝑐} and denote this 𝑣
11: Set v = v‖𝑣
12: else
13: Set v = v‖(𝑓, 𝑝𝑖 , 𝑓)
14: end if
15: end for
16: Return v
17: QUIT

Algorithm 6.3 𝑘′­DPP
1: INPUT: A multi­graph 𝐻 and a set of 2­tuples {(𝑣1, 𝑣̂1), … (𝑣𝑘′ , 𝑣̂𝑘′)}
2: OUTPUT: TRUE if there exist edge­disjoint paths in 𝐻 connecting 𝑣𝑖 , 𝑣̂𝑖 for all
𝑖 ∈ [𝑘′].

3: FALSE otherwise
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Algorithm 6.4 k−SOET
1: INPUT: A 4­regular multi­graph 𝐹 and a set 𝑉′ = {𝑣1, … , 𝑣𝑘} such that 𝑉′ ⊂
𝑉(𝐹)

2: OUTPUT: TRUE if there exist a SOET on 𝐹 with respect to 𝑉′
3: FALSE otherwise
4:
5:
6: Generate a list 𝐿 of all possible SOET­splittings of 𝐹 with respect to 𝑉′
7:
8: for all graphs 𝐻 in 𝐿 do
9:
10: for all permutations 𝜋 of the set [1 ∶ 𝑘] do
11: Run 2𝑘­DPP on the set
12: {(𝑣(𝑎)𝜋(1), 𝑣

(𝑎)
𝜋(2)), … , (𝑣

(𝑎)
𝜋(𝑘), 𝑣

(𝑎)
𝜋(1)), (𝑣

(𝑏)
𝜋(1), 𝑣

(𝑏)
𝜋(2)), … , (𝑣

(𝑏)
𝜋(𝑘), 𝑣

(𝑏)
𝜋(1))}

13:
14: if 2𝑘­DPP returns TRUE then
15: RETURN TRUE
16: QUIT
17: end if
18: end for
19: end for
20: RETURN FALSE
21: QUIT
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6.4. Connected vertex­minor on three vertices or less
In this section we prove for the decision problem QubitMinor with arbitrary
connected17 input graphs states |𝐺⟩ and |𝐺′⟩, that whenever |𝑉(𝐺′)| ≤ 3 and
𝑉(𝐺′) ⊂ 𝑉(𝐺) we have that |𝐺′⟩ is a qubit­minor of 𝐺. Furthermore we provide
an algorithm that reduces the number of operations one needs to transform |𝐺⟩ to
the desired graph state. Equivalently, we have the following theorem.

Theorem 6.4.1. Let 𝐺 be a connected graph and 𝐺′ be a connected graph with
vertices 𝑉′, such that |𝑉′| ≤ 3. Then we have that

𝐺′ < 𝐺 ⇔ 𝑉′ ⊆ 𝑉(𝐺) (6.80)

⋄
Proof. Note that if 𝐺′ < 𝐺 then clearly 𝑉′ ⊆ 𝑉(𝐺). Assume therefore that 𝑉′ ⊆ 𝑉(𝐺).
Let’s denote the vertices in 𝑉(𝐺) ⧵ 𝑉′ as 𝑈 = (𝑣1, 𝑣2, … , 𝑣𝑛−𝑘), where 𝑛 = |𝑉(𝐺)|
and 𝑘 = |𝐺′|. We will now show that 𝐺′ < 𝐺 by finding a sequence of operations
𝑃 = 𝑃𝑣𝑛−𝑘 ∘ … ∘ 𝑃𝑣1 , where 𝑃𝑣𝑖 ∈ {𝑋𝑣 , 𝑌𝑣 , 𝑍𝑣}, such that each intermediate graph
𝐺(𝑖) = 𝑃𝑣𝑖 ∘ … ∘ 𝑃𝑣1(𝐺) is connected. Since any connected graph with vertices 𝑉′,
for |𝑉′| ≤ 3, is either a star graph or a complete graph, which are LC­equivalent,
this shows that 𝐺′ < 𝐺. Let’s therefore consider such an intermediate graph 𝐺(𝑖)
for some 𝑖 ∈ [𝑛 − 𝑘] and the next vertex 𝑣𝑖+1. We will now show that 𝐺(𝑖) ⧵ 𝑣𝑖+1 or
𝜏𝑣𝑖+1(𝐺(𝑖)) ⧵ 𝑣𝑖+1 is connected. This will be done by considering the following two
cases:
Assume that 𝐺(𝑖) ⧵ 𝑣𝑖+1 is not connected:
This means that 𝑣𝑖+1 is a cut vertex. Let 𝐺1 be a connected component in the
graph 𝐺(𝑖) ⧵𝑣𝑖+1 and 𝐺2 the rest of the vertices, see eqs. (6.81) and (6.82) for an
illustration. Since 𝑣𝑖+1 is a cut vertex, we know that no vertex in 𝑁𝑣𝑖+1 ∩ 𝑉(𝐺2)
is adjacent to any vertex in 𝑁𝑣𝑖+1 ∩ 𝑉(𝐺1), in the graph 𝐺(𝑖). Thus, all vertices in
𝑁𝑣𝑖+1∩𝑉(𝐺2) are adjacent to all vertices in 𝑁𝑣𝑖+1∩𝑉(𝐺1) in the graph 𝜏𝑣𝑖+1(𝐺̂)⧵𝑣𝑖+1,
showing that this graph is connected, see eq. (6.83).

𝐺(𝑖) = G1
G2

vi+1
b

(6.81)

𝐺(𝑖) ⧵ 𝑣𝑖+1 =
G1

G2
(6.82)

𝜏𝑣𝑖+1(𝐺(𝑖)) ⧵ 𝑣𝑖+1 =
G1

G2
(6.83)

17Here connected means that the corresponding graphs are connected or in other words that the there
is entanglement between any bipartition of the qubits of the state.
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Assume that 𝜏𝑣(𝐺̂) ⧵ 𝑣 is not connected:
This case follows from the previous. To see this, let 𝐺̃ be the graph 𝜏𝑣(𝐺(𝑖)). From
the above case we then know that 𝜏𝑣(𝐺̃) ⧵ 𝑣𝑖+1 is connected. But this graph is
exactly 𝐺(𝑖) ⧵ 𝑣𝑖+1 since local complementations are involutions and the theorem
follows.

From theorem 6.4.1 we can easily formulate an algorithm that finds a sequence
of operations taking 𝐺 to a desired connected graph 𝐺′ on 𝑉′, by simply checking
recursively if 𝐺̂⧵𝑣 or 𝜏𝑣(𝐺̂)⧵𝑣 is connected. However, if the vertices in 𝑉′ are already
close in 𝐺 and 𝐺 is a very large, it would be practical to not have to consider all
the vertices in 𝐺. Next, we present a more practical algorithm to find a sequence
of local complementations and vertex­deletions that take some graph 𝐺 to a star
graph18 on the vertices 𝑎, 𝑏 and 𝑐. The algorithm performs the following steps:

• Find the shortest path 𝑃1 between 𝑎 and 𝑏 and connect these by doing 𝜏­
operations along this path. This first step already gives an algorithm for cre­
ating a star graph on vertices 𝑎 and 𝑏, see algorithm 6.5.

• Then do the same with 𝑏 and 𝑐 by finding the shortest path 𝑃2 between 𝑏 and
𝑐. The question is now whether we removed the edge between 𝑎 and 𝑏 while
connecting 𝑏 and 𝑐. This could only happen if 𝑃2 goes through a vertex which
is a common neighbor of 𝑎 and 𝑏. Furthermore, since 𝑃2 is the shortest path
from 𝑐 to 𝑏 this could only be the case for the last vertex on the path, before
𝑏.

– If 𝑐 is connected to 𝑎 before the last local complementation on 𝑃2, then
stop, since the induced graph is already connected.

– Assume that 𝑐 is not connected to 𝑎 before the last local complemen­
tation is performed. So in this case, after performing the local comple­
mentation along 𝑃2, 𝑎 and 𝑏 will not be connected but they will both be
connected to 𝑐.

The full protocol is formalized in algorithm 6.6.

Algorithm 6.5 Producing 𝑆1 on vertices 𝑎 and 𝑏
1: INPUT: A graph 𝐺 and two vertices 𝑎, 𝑏 ∈ 𝑉(𝐺).
2: OUTPUT: A sequence of vertices v such that 𝜏v(𝐺)[{𝑎, 𝑏}] is a star graph.
3:
4:
5: Find the shortest path 𝑃 between 𝑎 and 𝑏
6: Perform 𝜏𝑝 for all 𝑝 ∈ 𝑃 ⧵ {𝑎, 𝑏}

18Note that any other connected graph on {𝑎, 𝑏, 𝑐} can easily be constructed.
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Algorithm 6.6 Producing 𝑆2 on vertices 𝑎, 𝑏 and 𝑐
1: INPUT: A graph 𝐺 and three vertices 𝑎, 𝑏, 𝑐 ∈ 𝑉(𝐺).
2: OUTPUT: A sequence of vertices v such that 𝜏v(𝐺)[{𝑎, 𝑏, 𝑐}] is a star graph.
3:
4:
5: Find the shortest path 𝑃1 between 𝑎 and 𝑏
6: Perform 𝜏𝑝 for all 𝑝 ∈ 𝑃1 ⧵ {𝑎, 𝑏}
7: Find the shortest path 𝑃2 = (𝑝0 = 𝑏, 𝑝1, … , 𝑝𝑛 , 𝑝𝑛+1 = 𝑐)
8: for 𝑖 in 1,… , 𝑛 do
9: if 𝑎 and 𝑐 are not adjacent then
10: Perform 𝜏𝑝𝑖
11: end if
12: end for

6.5. Conclusion
We have shown that deciding if a graph state |𝐺′⟩ can be obtained from another
graph state |𝐺⟩ using LC + LPM + CC is ℕℙ­Complete, by showing that Ver­
texMinor is ℕℙ­Complete. The computational complexity of VertexMinor was
previously unknown and was posted as an open problem in [18]. It is important to
note that our results are for labeled graphs, since vertices correspond to physical
qubits in the case of transforming graph states.

We presented an efficient algorithm for StarVertexMinor when the input
graph is restricted to be distance­hereditary. It would be interesting to know if the
same approach generalize to qudit graph states described by weighted graphs of
low rank­width.

We presented an efficient algorithm for k−StarVertexMinor on circle graphs,
that is the problem of deciding if the star graph on a subset of vertices 𝑉′, with |𝑉′| =
𝑘, is a vertex­minor of another graph. However, the computational complexity of
𝑘­StarVertexMinor or 𝑘­VertexMinor on general graphs is still unknown.

Below we list somemore open questions regarding the computational complexity
of deciding how graph states can be transformed using local operations:

• Is the problem still ℕℙ­Complete if one allows for arbitrary local operations
and classical communication (LOCC), instead of restricting to only LC+LPM+
CC? Is there an efficient algorithm for states with bounded Schmidt­rank
width also in this case? It has been shown that many graph states are
equivalent under LC if and only if they are equivalent under stochastic LOCC
(SLOCC) [19]. An interesting question is therefore whether graph states de­
scribed by distance­hereditary or circle graphs fall into this category.

• What is the computational complexity of deciding if a graph state |𝐺⟩ can
be transformed in to another |𝐺′⟩ if the qubits are partitioned into multiple
local sets, within which multi­qubit Clifford operations and multi­qubit Pauli
measurements can be performed.



References

6

195

• How do the computational complexity results of this chapter relate to the
complexity of code switching in stabilizer quantum error correction codes, e.g.
fault­tolerant interconversion between two stabilizer codes [20]? More pre­
cisely, can one re­use the techniques presented here, to prove that it is com­
putationally hard to decide whether one stabilizer code can be fault­tolerantly
transformed into another. We conjecture that this could be possible, since
many stabilizer codes (such as topological stabilizer codes) have a notion of
‘locality’ with fault­tolerant conversions being the conversions that respect this
locality [21].
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7
The complexity of the
vertex­minor problem

Axel Dahlberg, Jonas Helsen, Stephanie Wehner

A graph 𝐻 is a vertex­minor of a graph 𝐺 if it can be reached from 𝐺 by the suc­
cessive application of local complementations and vertex deletions. Vertex­
minors have been the subject of intense study in graph theory over the last
decades and have found applications in other fields such as quantum in­
formation theory. Therefore it is natural to consider the computational com­
plexity of deciding whether a given graph 𝐺 has a vertex­minor isomorphic to
another graph 𝐻. Here we prove that this decision problem is ℕℙ­complete,
even when restricting 𝐻, 𝐺 to be circle graphs, a class of graphs that has a
natural relation to vertex­minors.
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7.1. Introduction

A central problem in graph theory is the study of ‘substructures’ of graphs. These
substructures of some graph are usually defined as the graphs which can be

reached by a given set of graph operations. An example of such a substructure
to be seriously studied early on, was the graph minor, where the central question
was to decide whether a graph 𝐺 can be transformed into a graph 𝐻 through the
successive application on 𝐺 of vertex deletions, edge deletions and edge contrac­
tions [1]. If this is the case we call 𝐻 a minor of 𝐺. The problem (Minor) of
deciding whether a graph 𝐻 is a minor of 𝐺 is ℕℙ­complete when both 𝐻 and 𝐺 are
part of the input to the problem [2]. However, given a fixed 𝐻, we can define the
problem (𝐻­Minor) of deciding whether 𝐻 is a minor of 𝐺, where only 𝐺 is part of
the input. As expounded in Robertson & Seymour’s seminal series of papers [3],
𝐻­Minor is solvable in cubic time for any graph 𝐻. Since then a great variety of
minor­relations has been defined and for many of those the complexity has been
studied. Of particular interest recently are the minor­relations related to the graph
operation of local complementation, namely vertex­ and pivot­minors. These two
minor structures have been studied within the graph theory community [4–7] but
have also found surprising applications outside of it, notably in the field of quantum
information science [8–13]. The complexity of the vertex­ and pivot­minor decision
problems was a notable open problem (see question 7 in [14]). Recently it was
proven in [15] that the pivot­minor problem is ℕℙ­complete if both 𝐺 and 𝐻 are
part of the input to the problem, but the complexity of the vertex­minor problem
was left open. In chapter 6 we proved, in the context of quantum information the­
ory, the ℕℙ­completeness of the labeled version of the vertex­minor problem, i.e.
the problem of deciding if 𝐻 is a vertex­minor of the graph 𝐺, taking labeling into
account. The labeled version of the vertex­minor problem is relevant in the context
of quantum information theory since there the vertices of the graph corresponds to
physical qubits in, for example, a quantum network. However we did not discuss
the complexity of the related problem of deciding whether 𝐺 has a vertex­minor iso­
morphic to 𝐻 (on any subset of the vertices). Here we close this gap, proving that
the unlabeled version of the vertex­minor problem is also ℕℙ­complete. To avoid
confusion with the problems studied in chapter 6 we will here call the unlabeled
version of the vertex­minor problem Iso­VertexMinor. Moreover we here prove
that Iso­VertexMinor remains ℕℙ­complete even when 𝐻 is restricted to be a
star graph and 𝐺 a circle graph. Our work resolves the problem left open in [15]
and provides a partial answer to the questions posed in [14]. In the process of
proving hardness we make use of the concept of the semi­ordered Eulerian tour
(SOET), a graph construction we introduced in definition 4.7.15 that may be of fur­
ther independent interest.

The chapter is organized as follows: in section 7.2 we recall relevant graph
theoretic notions such as vertex­minors and circle graphs and rephase some of
these in the unlabeled setting. We also discuss the concept of semi­ordered Eulerian
tours. In section 7.3 we prove the main result: the ℕℙ­completeness of the vertex­
minor problem.
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7.2. Preliminaries
In this section we re­phrase some of the problems and results from chapter 4 but
for unlabeled graphs.

7.2.1. Vertex­minors
In chapter 4 we introduced problem 4.5.4. Here we are interested in the unlabeled
version:

Problem 7.2.1 (Iso­VertexMinor). Given a graph 𝐺 and a graph 𝐻 decide
whether their exists a graph 𝐻̃ such that (1) 𝐻 and 𝐻̃ are isomorphic, and (2)
𝐻̃ < 𝐺. ⋄

We can restrict this problem to a special case, where the graph 𝐻 is a star­graph
on 𝑘 vertices. We call this problem Iso­StarVertexMinor. Note that we must
only specify 𝑘 as there exists only one star­graph on 𝑘 vertices up to isomorphism.
Formally we have

Problem 7.2.2 (Iso­StarVertexMinor). Given a graph 𝐺 and an integer 𝑘
decide whether there exists a subset 𝑉′ of 𝑉(𝐺) with |𝑉′| = 𝑘 and a star graph on
𝑉′ denoted 𝑆𝑉′ such that 𝑆𝑉′ < 𝐺. ⋄

7.2.2. Semi­Ordered Eulerian tours
In chapter 6 we used the problem of finding a SOET, problem 4.7.16, to prove
that VertexMinor is ℕℙ­Complete. We will use a similar approach here and thus
introduce the unlabeled version of the SOET­problem.

Problem 7.2.3 (Iso­SOET). Let 𝐹 be a 4­regular multi­graph and let 𝑘 ≤ |𝑉(𝐹)|
be an integer. Decide whether there is a 𝑉′ ⊂ 𝑉(𝐹) with |𝑉′| = 𝑘 such that there
exists a SOET 𝑈 on 𝐹 with respect to the set 𝑉′. ⋄

In chapter 6 we proved that a version of problem 7.2.3 where 𝑉′ is part of
the input to the problem, is ℕℙ­complete. In the next section we prove that also
the problem of deciding whether such a 𝑉′ exists, i.e. problem 7.2.3, is also ℕℙ­
complete.

7.3. NP­completeness of Iso­VertexMinor
In this section we prove the ℕℙ­completeness of Iso­VertexMinor. This we do
in three steps. We will begin by (1) proving that Iso­SOET is ℕℙ­Hard. We do this
by reducing the problem of deciding whether a 3­regular graph 𝑅 is Hamiltonian
to Iso­SOET. Next we (2) reduce Iso­SOET to Iso­StarVertexMinor and
Iso­StarVertexMinor to Iso­VertexMinor, thus proving the ℕℙ­hardness
of Iso­VertexMinor. Finally we (3) show that Iso­VertexMinor is also in
ℕℙ.

7.3.1. ISO­SOET is NP­hard
We will make use of the definition of a Hamiltonian graph, definition 6.2.4, and the
associated CubHam decision problem, problem 6.2.5.
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The reduction of CubHam to Iso­SOET is done by going though the following
steps.

1. Introduce the notion of a (4­regular) 𝐾3­expansion Λ(𝑅) of a 3­regular graph
𝑅. This is done in definition 7.3.1.

2. Prove that if a 3­regular graph 𝑅 is Hamiltonian then the 𝐾3­expansion Λ(𝑅)
of 𝑅 allows for a SOET of size 2|𝑉(𝑅)|. This is done in lemma 7.3.2

3. Prove that if the 𝐾3­expansion Λ(𝑅) of a 3­regular graph 𝑅 allows for a SOET
of size 2|𝑉(𝑅)| then 𝑅 is Hamiltonian. This is done in lemma 7.3.4

Note that 1. and 2. above provides necessary and sufficient condition for
whether a 3­regular graph 𝑅 is Hamiltonian in terms of whether Λ(𝑅) allows for
a SOET of a certain size. This implies that CubHam reduces to Iso­SOET and
hence that Iso­SOET is ℕℙ­hard.

We begin by introducing the 𝐾3­expansion: a mapping from 3­regular graphs
to 4­regular multi­graphs. This expansion is similar to definition 6.2.7 which was
used in chapter 6 but differ in the graph used to replace each vertex.

Definition 7.3.1 (𝐾3­expansion). Let 𝑅 be a 3­regular graph. A 𝐾3­expansion
Λ(𝑅) of a 3­regular graph 𝑅 is constructed from 𝑅 by performing the following two
steps:

1. Replace each vertex 𝑣 in 𝑅 with a subgraph isomorphic to 𝐾3 as below

⟹

(7.1)

where 𝑥, 𝑦 and 𝑧 are the neighbors of 𝑣. We will denote the 𝐾3­subgraph
associated to the vertex 𝑣 with 𝑇𝑣, i.e. 𝑇𝑣 = 𝐺[{𝑣(𝑥), 𝑣(𝑦), 𝑣(𝑧)}].

2. For all 𝑣, 𝑣′ ∈ 𝑅 such that 𝑣 ≠ 𝑣′, double the edge that is incident on two
subgraphs 𝑇𝑣 , 𝑇𝑣′ .

⋄

The graph Λ(𝑅) will be called a 𝐾3­expansion of 𝑅. A multi­graph 𝐹 that is the
𝐾3­expansion of some 3­regular graph 𝑅 will also be referred to as a 𝐾3­expanded
graph. Furthermore, the number of vertices in Λ(𝑅) is 3 ⋅ |𝑉(𝑅)| and the number
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(a)

⟹

(b)

Figure 7.1: Figure showing (a) the complete graph 𝐾𝑉 on vertices 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} and (b) its associated
𝐾3­expansion Λ(𝐾𝑉).

of edges is 2 ⋅ |𝐸(𝑅)| + 3 ⋅ |𝑉(𝑅)|. In figure 7.1 we show an example of a 3­regular
graph and its 𝐾3­expansion.

We now argue that if a 3­regular graph 𝑅 is Hamiltonian then its 𝐾3­expansion
allows for a SOET on 2|𝑉(𝑅)| vertices and thus providing a necessary condition for
a 3­regular graph being Hamiltonian.

Lemma 7.3.2. Let 𝑅 be a triangular graph with 𝑘 vertices and let Λ(𝑅) be its
𝐾3­expansion. If 𝑅 is Hamiltonian then Λ(𝑅) allows for a SOET of size 2𝑘. ⋄

Proof. Let𝑀 be a Hamiltonian tour on 𝑅. Choose 𝑥0 ∈ 𝑉(𝑅) and let L = 𝑥0𝑥1⋯𝑥𝑘−1
be the word formed by walking along 𝑀 when starting on 𝑥0. Note that 𝑥𝑖 and
𝑥(𝑖+1 (mod 𝑘)) are adjacent in 𝑅 for all 𝑖 ∈ [𝑘]. Now consider the 𝐾3­expansion Λ(𝑅)
of 𝑅. We will argue that Λ(𝑅) allows for a SOET with respect to the set

𝑉′ = {𝑥(𝑥𝑘−1)0 , 𝑥(𝑥1)0 , 𝑥(𝑥0)1 , 𝑥(𝑥2)1 , … , 𝑥(𝑥𝑘−2)𝑘−1 , 𝑥(𝑥0)𝑘−1 }. (7.2)

For all 𝑖 ∈ [𝑘] let 𝑣𝑖 be the unique vertex adjacent to 𝑥𝑖 in Λ(𝑅) that is not
𝑥(𝑖−1 (mod 𝑘)) or 𝑥(𝑖+1 (mod 𝑘)). Now consider the following words on 𝑉(Λ(𝑅)).

V ∶= 𝑥𝑥𝑘−10 𝑥(𝑥1)0 𝑥(𝑥0)1 𝑥(𝑥2)1 𝑥(𝑥1)2 𝑥(𝑥3)2 …𝑥(𝑥𝑘−2)𝑘−1 𝑥(𝑥0)𝑘−1 (7.3)

W ∶= 𝑥𝑥𝑘−10 𝑥(𝑣0)0 𝑥(𝑥1)0 𝑥(𝑥0)1 𝑥(𝑣1)1 𝑥(𝑥2)1 𝑥(𝑥1)2 𝑥(𝑣2)2 𝑥(𝑥3)2 …𝑥(𝑥𝑘−2)𝑘−1 𝑥(𝑣𝑘−1)𝑘−1 𝑥(𝑥0)𝑘−1 (7.4)

These words describe disjoint trails on Λ(𝑅) as illustrated for an example graph in
figure 7.2.

Now consider the word VW. This word describes a trail 𝑈𝑉𝑊 on Λ(𝑅) that visits
every vertex in 𝑉′ exactly twice in the same order. This means 𝑈𝑉𝑊 is a semi­
ordered tour. It is however not Eulerian. To make it Eulerian we have to extend
the tour 𝑈𝑉𝑊 to include all edges in Λ(𝑅). Note that these edges are precisely the
edges connecting the vertices 𝑥(𝑣𝑖)𝑖 , 𝑣(𝑥𝑖)𝑖 for all 𝑖 ∈ [𝑘]. We can lift 𝑈𝑉𝑊 to a Eulerian
tour by adding vertices to 𝑊 by the following algorithm. It is easy to see that the
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(a) (b)

Figure 7.2: Figure showing (a) a Hamiltonian path (blue dashed arrows) on the complete graph on
vertices 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} and (b) the corresponding disjoint trails described by the words V (blue dashed
arrows) and W (pink dashed­dotted arrows) from eqs. (7.3) and (7.4) on the associated 𝐾3­expansion
Λ(𝐾𝑉). The edges used to extend the tour to a Eulerian tour as captured by algorithm 7.1 are show as
green dotted arrows.

Algorithm 7.1 Algorithm for lifting the tour 𝑈𝑉𝑊 to a Eulerian tour on Λ(𝑅)
for 𝑖 ∈ [𝑘] do

if 𝑥(𝑣𝑖)𝑖 𝑣(𝑥𝑖)𝑖 𝑥(𝑣𝑖)𝑖 ⊄ X′ then
Insert 𝑣(𝑥𝑖)𝑖 𝑥(𝑣𝑖)𝑖 into X′ right after 𝑥(𝑣𝑖)𝑖

end if
end for

tour described by VW after running algorithm 7.1 is also Eulerian and is hence a
SOET with respect to the set 𝑉′. This completes the lemma.

Next we prove a necessary condition (lemma 7.3.4) for the existence of a SOET
on a subset 𝑉′ of the vertices of a 4­regular graph 𝐹.

Lemma 7.3.3. Let 𝐹 be a 4 regular graph and 𝑉′ ≥ 4 be a subset of its vertices.
If the fully connected graph 𝐾3 is an induced subgraph of 𝐹[𝑉′] then 𝐹 does not
allow for a SOET with respect to 𝑉′ ⋄

Proof. Assume that 𝐹 has three vertices 𝑉′ = {𝑢, 𝑣, 𝑤} such that 𝐹[𝑉′] = 𝐾3. Let 𝑈
be a Eulerian tour on 𝐹 (note that 𝑈 always exists). Assume by contradiction that
𝑈 is a SOET with respect to 𝑉′. It is easy to see that since 𝑢 and 𝑣 are adjacent in
𝐹 they must also be consecutive in 𝑈. However the same is true for 𝑢 and 𝑤 and
also 𝑤 and 𝑣. This means a tour starting at 𝑢 and must traverse 𝑣, then 𝑤, and
then immediately 𝑢 again (up to interchanging 𝑢 and 𝑤). Since {𝑢, 𝑣, 𝑤} is a strict
subset of 𝑉′ (since by assumption |𝑉′| ≥ 4) this means that, when starting at 𝑢,
the tour 𝑈 does not traverse all vertices in 𝑉′ before returning to 𝑢. This gives a
contradiction with the definition of SOET from which the lemma follows.
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Now we will leverage lemma 7.3.3 to prove that if the 𝐾3­expansion Λ(𝑅) of a 3­
regular graph 𝑅 allows for a SOET with respect to a vertex­set 𝑉′ with |𝑉′| = 2|𝑉(𝑅)|
then the graph 𝑅 must be Hamiltonian.

Lemma 7.3.4. Let 𝑅 be a 3­regular graph and Λ(𝑅) its 𝐾3­expansion. If there
exists a set 𝑉′ ⊂ 𝑉(Λ(𝑅)) with |𝑉′| = 2|𝑉(𝑅)| such that Λ(𝑅) allows for a SOET with
respect to 𝑉′ then 𝑅 must be Hamiltonian. ⋄

Proof. Assume that there exists a subset 𝑉′ of 𝑉(Λ(𝑅)) with |𝑉′| = 2|𝑉(𝑅)| such
that Λ(𝑅) allows for a SOET 𝑈 with respect to 𝑉′.

Note first that since |𝑉(Λ)| = 3|𝑉(𝑅)| and |𝑉′| = 2|𝑉(𝑅)| we must have, by
lemma 7.3.3 that |𝑉[𝑇𝑢] ∩ 𝑉′| = 2 for all 𝑢 ∈ 𝑉(𝑅). This is easiest seen by con­
tradiction. Assume that there exists a 𝑢 ∈ 𝑉(𝑅) such that |𝑉[𝑇𝑢] ∩ 𝑉′| < 2. Since
𝑉(𝑇𝑣) ∩ 𝑉(𝑇𝑣′) = ∅ for all 𝑣, 𝑣′ ∈ 𝑉(𝑅), |𝑉(Λ)| = 3|𝑉(𝑅)|, and |𝑉′| = 2|𝑉(𝑅)| this
implies there must also a exist a 𝑢′ ∈ 𝑉(𝑅) such that |𝑉(𝑇𝑢′) ∩ 𝑉′| = 3. This means
that 𝑉(𝑇𝑢′) ⊂ 𝑉′. However the induced subgraph Λ(𝑅)[𝑇𝑢′] is isomorphic to 𝐾3
(this is easily seen from the definition of 𝐾3­expansion). By lemma 7.3.3 we must
thus conclude that Λ(𝑅) does not allow for a SOET with respect to 𝑉′ leading to a
contradiction. Hence we must have that |𝑉(𝑇𝑢) ∩ 𝑉′| = 2 for all 𝑢 ∈ 𝑉(𝑅).

Now consider two vertices 𝑥, 𝑥′ ∈ 𝑉′ such that 𝑥, 𝑥′ are consecutive in the SOET
𝑈. Note that, by definition of Λ(𝑅), there must exist 𝑤,𝑤′ ∈ 𝑉(𝑅) such that 𝑥 ∈ 𝑇𝑤
and 𝑥′ ∈ 𝑇𝑤′ . We will now argue that we must have either 𝑤 = 𝑤′ or 𝑤,𝑤′ are
adjacent in 𝑅. We argue this by contradiction. Assume thus that 𝑤,𝑤′ are neither
equal nor adjacent in 𝑅. Now consider the maximal sub­word Y of 𝑚(𝑈) associated
to 𝑥, 𝑥′. Since 𝑤,𝑤′ are neither equal nor adjacent in 𝑅, the trail described by the
word Y must pass through a triangle subgraph different from 𝑇𝑤 and 𝑇𝑤′ , i.e. there
exist a vertex 𝑤″ ∈ 𝑉(𝑅) such that |Y∩𝑉(𝑇𝑤″)| ≥ 2. However since by construction
|𝑉(𝑇𝑤″)∩𝑉′| = 2 (as shown above) and |𝑉(𝑇𝑤″)| = 3wemust have that |𝑉′∩Y| ≥ 1.
This is however in contradiction with the maximality of the sub­word Y. Hence we
must have that 𝑤 = 𝑤′ or that (𝑤,𝑤′) ∈ 𝐸(𝑅). Now consider the word 𝑚(𝑈)
associated to the SOET 𝑈 and the induced sub­word 𝑚(𝑈)[𝑉′]. By the above, and
the fact that if two vertices in 𝑉′ are adjacent in Λ(𝑅), they must also be consecutive
in 𝑈 (this is a consequence of 𝑈 being Eulerian and thus having to traverse the edge
connecting these vertices), we have that 𝑚(𝑈)[𝑉′] must be of the form

𝑚(𝑈)[𝑉′] = 𝑥0𝑥′0𝑥1𝑥′1𝑥2𝑥′2…𝑥𝑘−1𝑥′𝑘−1𝑥0𝑥′0…𝑥𝑘−1𝑥′𝑘−1 (7.5)

where 𝑥𝑖 , 𝑥′𝑖 ∈ 𝑇𝑤𝑖 and {𝑤1, …𝑤𝑘} = 𝑉(𝑅) and moreover that (𝑤𝑖 , 𝑤𝑖+1) ∈ 𝐸(𝑅)
for all 𝑖 ∈ [𝑘] and also (𝑤𝑘 , 𝑤0) ∈ 𝐸(𝑅). This immediately implies that the word
M = 𝑤1𝑤2…𝑤𝑘 describes a Hamiltonian tour on 𝑅, and hence that 𝑅 is Hamiltonian.

Since lemma 7.3.4 and 7.3.2 provide necessary and sufficient conditions for a
3­regular graph being Hamiltonian in terms of whether a 𝐾3­expanded graph allows
for a SOET, we can now easily prove the hardness of problem 7.2.3.

Theorem 7.3.5. Iso­SOET is ℕℙ­Hard. ⋄
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Proof. Let 𝑅 be an instance of CubHam, that is, a 3­regular graph on 𝑘 vertices.
From 𝑅 we can construct the 4­regular 𝐾3­expansion Λ(𝑅). Note that this can be
done in poly­time in 𝑘. Now note that (Λ(𝑅), 2𝑘) is an instance of Iso­SOET. If 𝑅 is
a YES instance of CubHam, that is, 𝑅 is Hamiltonian, then by lemma 7.3.2 we have
that (Λ(𝑅), 2𝑘) is a YES instance of Iso­SOET. On the other hand, if (Λ(𝑅), 2𝑘) is
a YES instance of Iso­SOET, then 𝑅 is a YES instance of CubHam by lemma 7.3.4.
By contra­position this means that if 𝑅 is a NO instance of CubHam, then (Λ(𝑅), 2𝑘)
is a NO instance of Iso­SOET. This means CubHam is Karp­reducible to SOET.
Since CubHam is ℕℙ­complete [16], this implies that SOET is ℕℙ­hard.

7.3.2. ISO­VERTEXMINOR is NP­Hard
Note first that Iso­StarVertexMinor trivially reduces to Iso­VertexMinor,
as it is a strict sub­problem. This means that if Iso­StarVertexMinor is ℕℙ­
hard then so is Iso­VertexMinor. In this section we show that the Iso­SOET
reduces to Iso­VertexMinor. For this we will make use of the properties of circle
graphs, discussed in section 7.2.

Corollary 4.7.16.1 states that a 4­regular multi­graph 𝐹 allows for a SOET with
respect to a subset of its vertices 𝑉′ ⊆ 𝑉(𝐹) if and only if an alternance graph𝒜(𝑈)
(which is a circle graph), induced by some Eulerian tour on 𝐹, has a star graph 𝑆𝑉′
on 𝑉′ as a vertex­minor.

Since circle graphs are a subset of all simple graphs we can then decide whether
a 4­regular graph 𝐹 allows for a SOET with respect to some subset 𝑉′ of its vertices
by constructing the circle graph induced by an Eulerian tour on 𝐹 and checking
whether it has a star­vertex­minor on the vertex set 𝑉′. This leads to the following
theorem.

Theorem 7.3.6. The decision problem Iso­SOET reduces to
Iso­StarVertexMinor. ⋄
Proof. Let (𝐹, 𝑘) be an instance of Iso­SOET, where 𝐹 is a 4­regular multi­graph
and 𝑘 ≤ |𝑉(𝐹)| some integer. Also let 𝐺 be a circle graph induced by some Eulerian
tour 𝑈 on 𝐹. From corollary 4.7.16.1 we see that 𝐺 has 𝑆𝑉′ as a vertex­minor for
some subset of vertices 𝑉′ of 𝐺 if and only if 𝐹 allows for a SOET with respect to
this vertex set 𝑉′. Since an Eulerian tour 𝑈 can be found in polynomial time [17]
and since 𝐺 can be efficiently constructed given 𝑈, see chapter 6, considering the
case of |𝑉′| = 𝑘 concludes the reduction.

7.3.3. ISO­VERTEXMINOR is in NP
Next we argue that the problem Iso­VertexMinor is in ℕℙ. This just follows
from the fact that the non­isomorphic vertex­minor problem is in ℕℙ.
Theorem 7.3.7. The decision problem Iso­VertexMinor is in ℕℙ. ⋄
Proof. From chapter 6 we know that there exists a polynomial­length witness for
the problem of deciding if a labeled graph 𝐺 has a vertex­minor equal to another
graph 𝐻 on some fixed subset of its vertices. Since GRAPHISOMORPHISM is in
ℕℙ we can construct a polynomial­length for Iso­VertexMinor, i.e. to decide if
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𝐺 has a vertex­minor isomorphic to 𝐻. We thus conclude that Iso­VertexMinor
is in ℕℙ.
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8
Transforming graph states to

Bell­pairs is NP­Complete

Axel Dahlberg, Jonas Helsen, Stephanie Wehner

Critical to the construction of large scale quantum networks, i.e. a quantum
internet, is the development of fast algorithms for managing entanglement
present in the network. One fundamental building block for a quantum in­
ternet is the distribution of Bell pairs between distant nodes in the network.
Here we focus on the problem of transforming multipartite entangled states
into the tensor product of bipartite Bell pairs between specific nodes using
only a certain class of local operations and classical communication. In par­
ticular we study the problem of deciding whether a given graph state, and
in general a stabilizer state, can be transformed into a set of Bell pairs on
specific vertices using only single­qubit Clifford operations, single­qubit Pauli
measurements and classical communication. We prove that this problem is
NP­Complete.
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8.1. Introduction

E ntanglement takes center stage in the modern understanding of quantum me­
chanics. Apart from its usefulness as a theoretical tool, entanglement can also

be seen as a resource that can be harnessed for secure communication and many
other tasks, see e.g. [1], not achievable by any protocol using only classical com­
munication. One can imagine a network of quantum­enabled nodes, a quantum
internet, generating entanglement and harnessing it to perform tasks. However,
entanglement over large distances is very difficult to produce and even with rapidly
improving technology, the amount of entanglement available in a network will for
the foreseeable future be the limiting factor when performing the tasks mentioned
above. Moreover entanglement comes in different classes that are not necessarily
mutually inter­convertible by operations performed locally on the nodes. These two
considerations: (1) the scarcity of entanglement as a resource and (2) the lack of
local inter­convertibility of classes of entanglement sets the stage for the present
work. In this chapter we assume that we already have some existing shared en­
tangled state in a quantum network and we ask the question of whether this state
can be transformed into a set of Bell pairs between specific nodes, using only a re­
stricted set of local operations. Examples of such a situation can be found in [2, 3],
where an approach is presented of first probabilistically generating a large graph
state and then transforming this to the desired target state using local operations.
In [2] this target state is precisely a set of Bell pairs between multiple pairs of
nodes.

Any decision on this transformation process must be made fast, since entan­
glement decays over time [4]. Hence there is a need for fast algorithms to decide
whether different entangled states can be converted into each other by local op­
erations. In [5], measurement­based quantum network coding was introduced,
where one step in the procedure includes transforming general graph states into
Bell­pairs using single­qubit Clifford operations, single­qubit Pauli measurement and
classical communication: LC + LPM + CC. However, the computational complex­
ity of finding the correct operations or even deciding if it can be done, was never
mentioned. In this work we answer this question. Specifically we investigate the
computational complexity of the question of whether a given graph state can be de­
composed into a series of Bell pairs on specific vertices, using only LC+LPM+CC.
We consider this set of operations since they are on many hardware platforms the
simplest and fastest operations to perform. For example on Nitrogen­Vacancies in
diamond, single­qubit gates on one of the qubits (electron) is many orders faster
than two­qubits gates and single­qubit gates on the other qubits (nuclear spins) [6].
Furthermore, restricting to only Cliffords, instead of allowing general unitary oper­
ations, is natural on systems where, for example, the qubits are logical qubits of
some error­correcting code. Since in this case, doing non­Clifford operations is a
costly process involving, in many cases, the consumption of magic states. More­
over, over the years many techniques from graph theory have been put to bear on
specifically the behavior of graph states under LC+ LPM+CC [7–12]. This gives
us the ability to ask very precise questions and also answer them.

For discussion on previous work we refer to section 4.1.1.
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Our main result is that we prove that the problem of deciding whether a given
graph state can be converted into Bell Pairs using only LC+LPM+CC (BellVM) is
in general NP­Complete. This means that unless ℙ = ℕℙ, there will be no efficient
algorithm for solving this problem on arbitrary graph states. In order to prove our
results we make heavy use of results in algorithmic graph theory, and in fact we
prove new graph theoretical results in the process of proving our main theorem.

Overview
In section 8.2 we phrase some of the concepts introduced in the previous sections
with focus on transforming graph states to tensor product of Bell pairs. In sec­
tion 8.3 we discuss the Edge­Disjoint path problem, a well­studied computational
problem in algorithmic graph theory. In section 8.4 we show that a certain version
of the Edge Disjoint Path problem can be polynomially reduced to BellVM and in
appendix D.1 that this version of the Edge Disjoint Path problem is NP­Complete,
implying that BellVM is NP­hard. Finally, in section 8.5 we discuss the implications
of our result.

8.2. Bell vertex­minors
In this chapter we are interested in the question of whether a given graph state |𝐺⟩
can be transformed into some number of Bell pairs using LC+LPM+CC between
specific vertices. We will denote the following Bell pair on qubits 𝑎 and 𝑏 as

|Φ+⟩𝑎𝑏 =
1
√2
(|0⟩𝑎⊗ |0⟩𝑏 + |1⟩𝑎⊗ |1⟩𝑏). (8.1)

We formally define the following main problem of this chapter.

Problem 8.2.1 (BellQM). Given a graph state |𝐺⟩ and a set of disjoint pairs 𝐵 =
{{𝑝1, 𝑝′1}, … , {𝑝𝑘 , 𝑝′𝑘}}. Let |𝐺𝐵⟩ be the state following state consisting of Bell pairs
between each pair of 𝐵

|𝐺𝐵⟩ = ⨂
{𝑝,𝑝′}∈𝐵

|Φ+⟩𝑝𝑝′ (8.2)

Decide if |𝐺𝐵⟩ is a qubit­minor of 𝐺. ⋄

The graph state described by the complete graph on two vertices 𝐾2 is single­
qubit Clifford equivalent to each of the four Bell pairs since

|𝐾2⟩ =
1
√2
(|0⟩𝑎⊗ |+⟩𝑏 + |1⟩𝑎⊗ |−⟩𝑏) = 𝐻𝑏 |Φ+⟩𝑎𝑏 (8.3)

where |+⟩ = (|0⟩ + |1⟩)/√2, 𝐻𝑏 is a Hadamard gate on qubit 𝑏.
Using theorem 4.4.2 we can turn the question of transforming graph states

to Bell pairs using LC + LPM + CC i.e. BellQM, into the question of whether
a disjoint union of 𝐾2’s is a vertex­minor of some graph. Formally we have the
following problem graph problem.
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Problem8.2.2 (BellVM). Given a graph 𝐺 and a set of disjoint pairs 𝐵 = {{𝑝1, 𝑝′1}, …
, {𝑝𝑘 , 𝑝′𝑘}}. Let 𝐺𝐵 be the graph with vertices 𝑉(𝐺𝐵) = ⋃𝑖∈[𝑘]{𝑝𝑖 , 𝑝′𝑖} and edges
𝐸(𝐺𝐵) = ⋃𝑖∈[𝑘]{(𝑝𝑖 , 𝑝′𝑖)}. Decide if 𝐺𝐵 is a vertex­minor of 𝐺. ⋄

To be precise (|𝐺⟩ , 𝐵) is a YES­instance of BellQM, if and only if (𝐺, 𝐵) is a
YES­instance of BellVM.

In section 4.7 we described how vertex­minors of circle graphs can be character­
ized by certain Eulerian tours on 4­regular multi­graphs. Using theorem 4.7.14, we
can now ask what property a 4­regular multi­graph should have, such that it’s in­
duced alternance graphs are YES­instances to BellVM, given a set of disjoint pairs
𝑃. As we show in lemma 8.4.2, this question will be directly related to a restricted
version of the edge­disjoint path problem, which we define in the next section.

(a)

𝜏𝑏∘𝜏𝑒∘𝜏𝑏−−−−−−→

(b)

⧵{𝑏,𝑒}−−−−→

(c)

Figure 8.1: An example of a graph being transformed to a union of two 𝐾2 graphs, using local comple­
mentations and vertex­deletions. The original graph in fig. 8.1a get transformed to the graph in fig. 8.1b
by performing local complementations on the vertices 𝑏, 𝑒 and then 𝑏 again. Finally, when vertices 𝑏
and 𝑒 are deleted, the disjoint union of two 𝐾2 graphs, on vertices {𝑎, 𝑓} and {𝑐, 𝑑} respectively, is
reached (fig. 8.1c).

8.3. The Edge­disjoint path problem
In section 8.4 we show that BellVM is NP­Complete by reducing the 4­regular ED­
PDT (Edge Disjoint Paths with Disjoint Terminals) problem (see below) to BellVM.
We then show that that 4­regular EDPDT is NP­Complete, see corollary 8.3.4.1,
which therefore implies that the same is true for BellVM. This is done by reduc­
ing the EDP(Edge Disjoint Path) problem to EDPDT and then EDPDT to 4­regular
EDPDT. We begin by formally defining all problems just mentioned. We will de­
note the set of edges in a path 𝑃 = 𝑣0𝑒1𝑣1…𝑒𝑙𝑣𝑙 as 𝐸(𝑃) = {𝑒1, … , 𝑒𝑙}. Moreover,
given two graphs 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) and 𝐷 = (𝑉(𝐷), 𝐸(𝐷)) we denote by 𝐺 ∪ 𝐷
the graph formed by the vertices 𝑉(𝐺 ∪ 𝐷) = 𝑉(𝐺) ∪ 𝑉(𝐷) and the edge multi­set
𝐸(𝐺 ∪ 𝐷) = 𝐸(𝐺) ∪ 𝐸(𝐷). A path on a graph is a walk without repeated vertices. A
closed path is called a circuit.

We first define the EDP(Edge Disjoint Path) problem.

Problem 8.3.1 (EDP). Let 𝐺 and 𝐷 be graphs such that 𝑉(𝐷) ⊆ 𝑉(𝐺). Decide
whether there exists a set of edge­disjoint circuits 𝒞 on the graph 𝐺 ∪ 𝐷 such that
every edge 𝑒 ∈ 𝐸(𝐷) is part of exactly one circuit in 𝒞. ⋄

Let (𝐺, 𝐷) be a YES­instance of EDP and let 𝒞 be the edge­disjoint circuits of
problem 8.3.1. For each edge 𝑒 in 𝐸(𝐷) denote the circuit in 𝒞 which 𝑒 is part
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Figure 8.2: The EDPproblem concerns deciding if there exists a set of edge­disjoint circuits in 𝐺 ∪ 𝐷
such that each edge in 𝐷 is in part of exactly one of the circuits. In this example a satisfying solution is
a set consisting of the three circuits 𝑎(𝑎, 𝑐)𝑐(𝑐, 𝑎)𝑎, 𝑑(𝑑, 𝑏)𝑏(𝑏, 𝑐)𝑐(𝑐, 𝑑)𝑑 and 𝑑(𝑑, 𝑒)𝑒(𝑒, 𝑓)𝑓(𝑓, 𝑑)𝑑.

of as 𝐶𝑒. These edge disjoint circuits 𝐶𝑒 on 𝐺 ∪ 𝐻 correspond to edge disjoint
paths on the graph 𝐺 with terminals, i.e. beginning and ending points of the path,
precisely at the vertices 𝑢, 𝑣 s.t. 𝑒 = (𝑢, 𝑣) for all 𝑒 ∈ 𝐷. The EDPproblem is known
to be NP­Complete even in the case where 𝐺 ∪ 𝐷 is a Eulerian graph [13]. The
EDPDTproblem is now the EDPproblem but with the demand graph 𝐷 restricted to
be a disjoint union of connected graphs on two vertices, i.e. of the form 𝐾×𝑘2 for
some 𝑘, such that the terminals are distinct.

Problem 8.3.2 (EDPDT). Let 𝐺 and 𝐷 = 𝐾×𝑘2 be graphs such that 𝑉(𝐷) ⊆ 𝑉(𝐺).
Decide EDP with the instance (𝐺, 𝐷). ⋄

The 4­regular EDPDT problem is then a further restriction of this problem to the
case where 𝐺 ∪ 𝐷 is 4­regular (and 𝐷 = 𝐾×𝑘2 ). Formally we have

Problem 8.3.3 (4­regular EDPDT). Let 𝐺 and 𝐷 = 𝐾×𝑘2 be graphs such that 𝑉(𝐷) ⊆
𝑉(𝐺) and 𝐺 ∪ 𝐷 is 4­regular. Decide EDP with the instance (𝐺, 𝐷). ⋄

Note that the 4­regularity of 𝐺 ∪ 𝐷 means that all vertices in 𝐺 which are not
in 𝐷 must have degree 4, while all vertices also in 𝐷 must have degree 3. We can
equivalently formulate the 4­regular EDPDTproblem as a problem involving only 𝐺
and a set of terminal pairs on 𝐺, which will be a more useful definition for some of
the proofs.

Problem 8.3.4 (4­regular EDPDT(equivalent formulation)). Let 𝐺 be a multi­graph
where each vertex has degree either 3 or 4. Let 𝑇 = {{𝑡1, 𝑡′1}, … , {𝑡𝑘 , 𝑡′𝑘}} be the set
of disjoint terminal pairs, such that 𝑡𝑖 , 𝑡′𝑖 ∈ 𝑉(𝐺) and 𝑑𝐺(𝑡𝑖) = 𝑑𝐺(𝑡′𝑖) = 3 for all
𝑖 ∈ [𝑘]. Furthermore, assume that there are no other vertices of degree 3 in 𝐺, i.e.
⋃𝑖∈[𝑘]{𝑡𝑖 , 𝑡′𝑖} = {𝑣 ∈ 𝑉(𝐺) ∶ 𝑑𝐺(𝑣) = 3}. Decide if there exists 𝑘 edge­disjoint paths
𝑃𝑖 for 𝑖 ∈ [𝑘] such that the ends of 𝑃𝑖 are 𝑡𝑖 and 𝑡′𝑖. ⋄

In the appendix (theorem D.1.3) we show that EDP can be reduced to 4­regular
EDPDT in polynomial time. A corollary to this theorem is therefore.

Corollary 8.3.4.1. 4­regular EDPDT is NP­Complete. ⋄
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8.4. BellVM is NP­Complete
Now we move on to proving the main result of this chapter. The 4­regular EDPDT
problem can be reduced to the BellVM problem as shown below in theorem 8.4.1.
Since we also show that BellVM is in NP we conclude that BellVM is NP­Complete.

Corollary 8.4.0.1. BellVM is NP­Complete. ⋄

Proof. Theorem 8.4.1 states that there exists a Karp reduction from 4­regular ED­
PDT to BellVM. This implies that BellVM is NP­hard, by corollary 8.3.4.1. Since
any instance of BellVM is also an instance of the general vertex­minor problem,
which is in ℕℙ, see chapter 6, also BellVM is in NP and hence NP­Complete.

As a directly corollary we then also have that.

Corollary 8.4.0.2. BellQM is NP­Complete. ⋄

Proof. Follows directly from corollary 8.4.0.1 and theorem 4.4.2.

The remaining part of this section will be used to prove theorem 8.4.1. The
main part of the proof consists of proving lemma 8.4.2 which provides an explicit
reduction from 4­regular EDPDT to BellVM. This is done by constructing a 4­regular
multi­graph 𝐻(𝐺,𝑇) from an instance (𝐺, 𝑇) of 4­regular EDPDT, together with the
graph 𝐺𝐵 = 𝐾×|𝑇|2 on a certain subset 𝐵 of the vertices of 𝐻(𝐺,𝑇). The construction is
such that 𝐺𝐵 is a vertex­minor of any alternance graph𝒜(𝑈) induced by an Eulerian
tour 𝑈 on 𝐻(𝐺,𝑇) if and only if (𝐺, 𝑇) is a YES­instance of 4­regular EDPDT. In other
words, (𝒜(𝑈), 𝐵) is a YES­instance of BellVM if and only if (𝐺, 𝑇) is a YES­instance
of 4­regular EDPDT. What is left to show is that reduction can be done in polynomial
time, which is done in the proof of theorem 8.4.1 below.

Theorem 8.4.1. The 4­regular EDPDT problem is polynomially reducible to Bel­
lVM. ⋄

Proof. From lemma 8.4.2 below we see that any yes(no)­instance of 4­regular ED­
PDT can be mapped to a yes(no)­instance of BellVM. What remains to be shown
is that this mapping can be performed in polynomial time. The reduction consist of
the following to three steps:

1. Construct the multi­graph 𝐻(𝐺,𝑇) as defined in lemma 8.4.2.

2. Find an Eulerian tour 𝑈 on 𝐻(𝐺,𝑇).

3. Construct the alternance graph 𝒜(𝑈) induced by 𝑈.

Computing the graph 𝐻(𝐺,𝑇) can be done in polynomial time by simply adding
the vertices and edges described in lemma 8.4.2. Note that the number of vertices
and vertices in 𝐻(𝐺,𝑇) is |𝑉(𝐺)|+2 ⋅ |𝑇| and |𝐸(𝐺)|+4 ⋅ |𝑇|. Finding an Eulerian tour
𝑈 on 𝐻(𝐺,𝑇) can be done in polynomial time [14] in the size of 𝐻(𝐺,𝑇). Furthermore,
constructing the alternance graph 𝒜(𝑈) can be done in polynomial time as shown
in [15].
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Lemma 8.4.2. Let (𝐺, 𝑇 = {{𝑡1, 𝑡′1}, … , {𝑡𝑘 , 𝑡′𝑘}}) be an instance of 4­regular ED­
PDT(see problem 8.3.4). As illustrated in fig. 8.3a, let 𝐻(𝐺,𝑇) be the multi­graph
constructed from 𝐺 by adding the distinct vertices 𝑉𝐵 = ⋃𝑖∈[𝑘]{𝑝𝑖 , 𝑝′𝑖} and the
edges (𝑡𝑖 , 𝑝𝑖), (𝑡′𝑖 , 𝑝′𝑖), (𝑝𝑖 , 𝑝′𝑖) and1 (𝑝𝑖 , 𝑝′𝑖) for 𝑖 ∈ [𝑘] and the edges (𝑝′𝑖 , 𝑝𝑖+1) for
𝑖 ∈ [𝑘 − 1] and the edge (𝑝′𝑘 , 𝑝1). Let 𝐺𝐵 be the graph with vertices 𝑉𝐵 and edges
⋃𝑖∈[𝑘]{(𝑝𝑖 , 𝑝′𝑖)}. Let 𝒜(𝑈) be a circle graph described by the Eulerian tour 𝑈 on
𝐻(𝐺,𝑇). Then 𝐺𝐵 is a vertex­minor of 𝒜(𝑈) if and only if (𝐺, 𝑇) is a yes­instance of
4­regular EDPDT. ⋄

b b b b

r r r r
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b b
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p2 p′2
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Figure 8.3: Figure 8.3a shows the graph construction used to reduce 4­regular EDPDT to BellVM. The
graph 𝐺 is a graph with only vertices of degree 4 except the vertices {𝑡1 , 𝑡′1 , 𝑡2 , 𝑡′2 , … , 𝑡𝑘 , 𝑡′𝑘} which have
degree 3. The vertices of 𝐺 not in {𝑡1 , 𝑡′1 , 𝑡2 , 𝑡′2 , … , 𝑡𝑘 , 𝑡′𝑘} are visualized as a grey solid area in order to
show that we put no further restrictions on 𝐺. 𝐻(𝐺,𝑇) is constructed from 𝐺 by adding the red square
vertices and red dashed edges. In fig. 8.3b the tour 𝑈0 described by the word in eq. (8.4) is illustrated
using solid blue arrows.

1Note that (𝑝𝑖 , 𝑝′𝑖 ) is added twice.
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Proof. Let’s first assume that (𝐺, 𝑇) is a YES­instance of 4­regular EDPDT. This
implies that there exist 𝑘 edge­disjoint paths 𝑃𝑖 for 𝑖 ∈ [𝑘] such that the ends of
𝑃𝑖 are 𝑡𝑖 and 𝑡′𝑖. These paths also exist in 𝐻(𝐺,𝑇), since 𝐺 is a subgraph of 𝐻(𝐺,𝑇).
Consider then the tour 𝑈′, see fig. 8.3b, described by the word

𝑚(𝑈′) = 𝑝1𝑝′1𝑝1𝑚(𝑃1)𝑝′1𝑝2…𝑝′𝑘−1𝑝𝑘𝑝′𝑘𝑝𝑘𝑚(𝑃𝑘)𝑝′𝑘 . (8.4)

Note 𝑈′ is not necessarily an Eulerian tour but can be extended to one using the
efficient Hierholzer’s algorithm [16]. Denote the Eulerian tour obtained from 𝑈′ by
𝑈. Consider now the induced subgraph 𝒜(𝑈)[𝑉𝐵]. Using eq. (4.66) we know that
this induced subgraph is the same as the alternance graph given by the induced
word

𝑚(𝑈)[𝑉𝐵] = 𝑝1𝑝′1𝑝1𝑝′1𝑝2…𝑝′𝑘−1𝑝𝑘𝑝′𝑘𝑝𝑘𝑝′𝑘 . (8.5)

We then have that 𝒜(𝑚(𝑈)[𝑉𝐵]), and therefore 𝒜(𝑈)[𝑉𝐵], is the graph 𝐺𝐵. To
see this, note that the only alternances of 𝑚(𝑈)[𝑉𝐵] are 𝑝𝑖𝑝′𝑖𝑝𝑖𝑝′𝑖 for 𝑖 ∈ [𝑘] and
the edges of 𝒜(𝑚(𝑈)[𝑉𝐵]) are therefore (𝑝𝑖 , 𝑝′𝑖) for 𝑖 ∈ [𝑘]. Since 𝒜(𝑈)[𝑉𝐵] is an
induced subgraph of 𝒜(𝑈) it is by definition also a vertex­minor of 𝒜(𝑈). As we
saw above, 𝐺𝐵 is equal to 𝒜(𝑈)[𝑉𝐵] and is therefore also a vertex­minor of 𝒜(𝑈).

Let’s now instead assume that (𝐺, 𝑇) is a NO­instance of 4­regular EDPDT. We
will show that 𝐺𝐵 is not a vertex­minor of𝒜(𝑈). Let 𝑈 be an Eulerian tour on 𝐻(𝐺,𝑇),
which exist since 𝐻(𝐺,𝑇) is 4­regular. Consider the sub­trails of 𝑈 for which both ends
are in 𝑉𝐵 and that use no edges between vertices in 𝑉𝐵. Note that there are 𝑘 such
sub­trails since each vertex in 𝑉𝐵 only has one edge which does not go to another
vertex in 𝑉𝐵. Let’s denote these sub­trails as 𝑃̃𝑖 for 𝑖 ∈ [𝑘] and their ends as {𝑝𝑖 , 𝑝̃′𝑖}.
From the assumption that (𝐺, 𝑇) is a no­instance of 4­regular EDPDT, we know that
{𝑝𝑖 , 𝑝̃′𝑖} ≠ {𝑝𝑖 , 𝑝′𝑖} for at least one 𝑖 ∈ [𝑘]. Consider now the graph 𝒜(𝑈)[𝑉𝐵]. We
will now show that 𝒜(𝑈)[𝑉𝐵] cannot be 𝐺𝑃. Since 𝑈 was an arbitrary Eulerian tour
on 𝐻(𝐺,𝑇), we then know that 𝐺𝐵 is not a vertex­minor of 𝑈, by theorem 4.7.14.

To show that𝒜(𝑈)[𝑉𝐵] is not 𝐺𝐵, consider the induced subgraph 𝐻(𝐺,𝑇)[𝑉𝐵]. Note
that all vertices in 𝐻(𝐺,𝑇)[𝑉𝐵] have degree 3, see fig. 8.3a. Let 𝐻(𝑈,𝐵) be the graph
obtained from 𝐻(𝐺,𝑇)[𝑉𝐵] by adding the edges (𝑝𝑖 , 𝑝̃′𝑖). Note now that 𝑚(𝑈)[𝑉𝐵] also
describes an Eulerian tour on 𝐻(𝑈,𝐵). Thus, 𝒜(𝑈)[𝑉𝐵] is the alternance graph𝒜(𝑈′)
for some Eulerian tour 𝑈′ on 𝐻(𝑈,𝐵). Therefore, by using lemma 8.4.3 we know that
𝒜(𝑈)[𝑉𝐵] is not 𝐺𝐵.

Lemma 8.4.3. Let 𝐵 be the set {𝑝1, 𝑝′1, … , 𝑝𝑘 , 𝑝′𝑘}. Let 𝐶𝐵 be the cycle graph on
vertices ⋃𝑖∈[𝑘]{𝑝𝑖 , 𝑝′𝑖} and with edges {(𝑝1, 𝑝′1), (𝑝′1, 𝑝2), … (𝑝𝑘 , 𝑝′𝑘), (𝑝′𝑘 , 𝑝1)}. Let 𝐶̃𝐵
be the multi­graph obtained from 𝐶𝐵 by duplicating the edges {(𝑝𝑖 , 𝑝′𝑖)}𝑖∈[𝑘]. Let
𝐸̃𝐵 = {(𝑝𝑖 , 𝑝̃′𝑖)}𝑖∈[𝑘] be edges such that if they are added to 𝐶̃𝐵, the graph obtained
is 4­regular. Denote the graph obtained from 𝐶̃𝐵 by adding the edges 𝐸̃𝐵 by 𝐻(𝐵,𝐸̃𝐵).
Let 𝐺𝐵 be the graph (𝐵,⋃𝑖∈[𝑘]{(𝑝𝑖 , 𝑝′𝑖)}. Then for any Eulerian tour 𝑈 on 𝐻(𝐵,𝐸̃𝐵), the
graph 𝒜(𝑈) is equal to 𝐺𝐵 if and only if {𝑝𝑖 , 𝑝̃′𝑖} = {𝑝𝑖 , 𝑝′𝑖} for all 𝑖 ∈ [𝑘]. ⋄
Proof. First note that if𝒜(𝑈) = 𝐺𝐵 for some Eulerian tour 𝑈 on𝐻(𝐵,𝐸̃𝐵) then𝒜(𝑈′) =
𝐺𝐵 for any Eulerian tour 𝑈′ on 𝐻(𝐵,𝐸̃𝐵). This is because the graph 𝐺𝐵 is invariant
under local complementations.
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Figure 8.4: The graph 𝐻(𝐵,𝐸̃𝐵) used in lemma 8.4.3, where 𝐸̃𝐵 are the solid blue edges. Lemma 8.4.3
states that there exist an Eulerian tour 𝑈 on 𝐻(𝐵,𝐸̃𝐵) such that 𝒜(𝑈) = 𝐺𝐵 if and only if all the solid blue
edges 𝐸̃𝐵 are between vertices 𝑝𝑖 and 𝑝′𝑖 for 𝑖 ∈ [𝑘].

Assume now that {𝑝𝑖 , 𝑝̃′𝑖} = {𝑝𝑖 , 𝑝′𝑖} for all 𝑖 ∈ [𝑘]. Then the tour 𝑈 described by
the double occurrence word

𝑚(𝑈) = 𝑝1𝑝′1𝑝1𝑝′1𝑝2…𝑝′𝑘−1𝑝𝑘𝑝′𝑘𝑝𝑘𝑝′𝑘 . (8.6)

is an Eulerian tour on 𝐻(𝐵,𝐸̃𝐵). Furthermore, 𝒜(𝑈) = 𝐺𝐵.
Assume now on the other hand that {𝑝𝑖 , 𝑝̃′𝑖} ≠ {𝑝𝑖 , 𝑝′𝑖} for some 𝑖 ∈ [𝑘]. Let

(𝑝𝑖 , 𝑝̃′𝑖) be a pair for which {𝑝𝑖 , 𝑝̃′𝑖} ≠ {𝑝𝑖 , 𝑝′𝑖}. Consider now the tour

𝑈′ = 𝑝𝑖(𝑝𝑖 , 𝑝̃′𝑖)𝑃𝐶 (8.7)

on 𝐻(𝐵,𝐸̃𝐵) where 𝑃𝐶 is a path in 𝐶𝐵 which ends at 𝑝𝑖, i.e. 𝐸(𝑃𝐶) ∩ 𝐸̃𝐵 = ∅. By
Hierholzer’s algorithm let 𝑈 be an Eulerian tour on 𝐻(𝐵,𝐸̃𝐵) obtained by extending
𝑈′. Note now that (𝑝𝑖 , 𝑝̃′𝑖) is an alternance in 𝑚(𝑈) and therefore an edge in 𝒜(𝑈).
But since (𝑝𝑖 , 𝑝̃′𝑖) is not an edge in 𝐺𝐵, we know that 𝒜(𝑈) is not equal to 𝐺𝐵.

8.5. Conclusion
The problem of transforming graph states to Bell­pairs using local operations is
a problem with direct applications to the development of quantum networks or
distributed quantum processors. Solutions to special cases of this problem have
been considered in for example [2] and [5]. However, at least to our knowledge,
the computational complexity of this problem was previously unknown. Here we
show that deciding whether a given graph state |𝐺⟩ can be transformed into a set
of Bell pairs on a given set of vertices, using only single­qubit Clifford operations,
single­qubit Pauli measurements and classical communication is NP­Complete. In
fact, we show that the problem remains NP­Complete if 𝐺 is a circle graph.
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9
Counting single­qubit Clifford

equivalent graph states is
#ℙ­Complete

Axel Dahlberg, Jonas Helsen, Stephanie Wehner

Graph states, which include Bell states, Greenberger­Horne­Zeilinger (GHZ)
states, and cluster states, form a well­known class of quantum states with
applications ranging from quantum networks to error­correction. Whether
two graph states are equivalent up to single­qubit Clifford operations is known
to be decidable in polynomial time and have been studied both in the context
of producing certain required states in a quantum network but also in relation
to stabilizer codes. The reason for the latter is that single­qubit Clifford equiv­
alent graph states exactly correspond to equivalent stabilizer codes. We here
consider the computational complexity of, given a graph state |𝐺⟩, counting
the number of graph states, single­qubit Clifford equivalent to |𝐺⟩. We show
that this problem is #ℙ­Complete. To prove our main result we make use of
the notion of isotropic systems in graph theory. We review the definition of
isotropic systems and point out their strong relation to graph states. We be­
lieve that these isotropic systems can be useful beyond the results presented
in this chapter.

Parts of this chapter have been published in Journal of Mathematical Physics [1].
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9.1. Introduction

G raph states form a well­studied class of quantum states and are applied in many
fields such as in quantum networks and quantum computers. In a quantum

network, graph states are a resource used by applications such as secret shar­
ing [2], anonymous transfer [3] and others. In a quantum computer, graph states
are the logical codewords of many quantum error­correcting codes [4] and form
a universal resource for measurement­based quantum computing [5]. The action
of single­qubit Clifford operations on graph states is well­understood and can be
characterized completely in terms of operations called local complementations, act­
ing on the corresponding graph [6]. When faced with a class of objects and an
action on them it is natural to consider the orbits induced by this action. The orbit
of graph states under single­qubit Clifford operations can be studied by considering
the orbits of simple graphs under local complementations, through the mapping
mentioned above. The orbits of graph states have been studied in for example [7].
There the motivation came from quantum error correction: graph states can be
mapped to stabilizer codes and moreover, the number of orbits for a given number
of qubits is equal to the number of equivalent stabilizer codes. This gives a method
to count the number of inequivalent stabilizer codes on a fixed number of qubits.
In [7] the number of inequivalent stabilizer codes is computed for up to 12 qubits
by counting the number of orbits of graphs under local complementations.

Furthermore, when studying entanglement measures and the equivalence of
quantum states under local operations, the orbits of graphs states under single­
qubit Cliffords is naturally an important question. In the excellent survey on graph
states [8] it is stated that the computational complexity of generating the orbit of
a given graph states is unknown. Here we show that given a graph 𝐺, counting
the number of graph states equivalent to |𝐺⟩ under single­qubit Clifford operations,
i.e. deciding the size of the orbit, is #ℙ­Complete. #ℙ­Complete problems are
of great interest in the field of quantum computing. The reason being that the
problem of boson­sampling [9], efficiently solvable using a quantum computer, has
very strong similarities with the #ℙ­Complete problem of computing the permanent
of a matrix [10].

From previous chapters we know that the action of single­qubit Clifford opera­
tions on graph states can be completely described by the action of local comple­
mentations on the corresponding graphs. This fact allows us to instead focus on
the problem of counting the number of graphs equivalent under local complemen­
tations, also called locally equivalent graphs.

We point out that, since the property of whether a graph is locally equivalent
to another is also expressible in MS, see chapter 5, Courcelle’s machinery can also
be applied to this problem. In fact, Courcelle’s theorem also holds for counting the
number of satisfying solutions [11], which is what we are interested in here. The
details for how to apply Courcelle’s theorem to the problem at hand, we leave for
another thesis. Here, we instead show that the problem is #ℙ­Complete, and thus
has no efficient algorithm in the general case, unless ℙ = ℕℙ.

Furthermore, we review the concept of isotropic systems which captures equiv­
alence classes of graphs under local complementations, introduced by Bouchet
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in [12]. We focus on how these concept can be used when studying equivalence
of graph states

Overview
In section 9.2 we show that graph states are equal if and only if there corresponding
graphs are equal and that there therefore is a bijective mapping from simple graphs
to graph states. In section 9.3 we review the graph theoretical notion of an isotropic
system and relate this to stabilizer and graph states. In section 9.4 we review
the complexity class #ℙ­Complete. In section 9.5 we prove our main result that
counting the number of graph states equivalent under single­qubit Cliffords is #ℙ­
Complete.

Notation
We use the same notation introduced in section 4.2 and in particular the notion of
a neighborhood of a vertex 𝑢 in a graph 𝐺 = (𝑉, 𝐸) as

𝑁𝐺(𝑣) = {𝑢 ∈ 𝑉 ∶ (𝑢, 𝑣) ∈ 𝐸}. (9.1)

Furthermore, given a subset 𝑋 ⊆ 𝑉 we use the following notation for the symmetric
difference of the neighborhoods of the vertices in 𝑋

𝑁𝐺(𝑋) =Δ
𝑣∈𝑋

𝑁𝐺(𝑣). (9.2)

9.2. Graph states
In chapter 4 we discussed graph states which form a subset of stabilizer states.
Importantly here is that the above in fact gives a bijective mapping from graphs to
graph states. Formally we have the following theorem.

Lemma 9.2.1. Two graphs states |𝐺⟩ and |𝐺′⟩ are equal if and only if their corre­
sponding graphs 𝐺 and 𝐺′ are equal. ⋄
Proof. Let |𝐺⟩ and |𝐺′⟩ be two graph states. If 𝐺 and 𝐺′ have differing vertex­sets
then clearly |𝐺⟩ and |𝐺′⟩ are different since they are states on different sets of
qubits. Assume now that 𝐺 and 𝐺′ are graphs with the same vertex­set 𝑉. The
inner product between |𝐺⟩ and |𝐺′⟩ will then be given as1

⟨𝐺|𝐺′⟩ = (⨂
𝑣∈𝑉

⟨+|𝑣) ∏
(𝑢,𝑣)∈𝐸(𝐺)

𝐶(𝑢,𝑣)𝑍 ∏
(𝑢,𝑣)∈𝐸(𝐺′)

𝐶(𝑢,𝑣)𝑍 (⨂
𝑣∈𝑉

|+⟩𝑣) . (9.3)

Using the fact that 𝐶(𝑢,𝑣)𝑍 commute and square to identity for any (𝑢, 𝑣) we find that
the above equation evaluates to

⟨𝐺|𝐺′⟩ = (⨂
𝑣∈𝑉

⟨+|𝑣) |𝐺 + 𝐺′⟩ (9.4)

1We assume here that when iterating over a set, the order of the elements is always the same.
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where 𝐺 +𝐺′ is the graph with vertex­set 𝑉 and edge­set 𝐸(𝐺)Δ𝐸(𝐺′) with Δ being
the symmetric difference. The state |𝐺 + 𝐺′⟩ is equal to ⨂𝑣∈𝑉 ⟨+|𝑣 if and only if
𝐺+𝐺′ is the empty graph. One can see this by for example considering the Schmidt­
rank for a bipartition which separates some adjacent vertices in 𝐺 + 𝐺′, since this
would be one for ⨂𝑣∈𝑉 |+⟩𝑣 and greater than one for |𝐺 + 𝐺′⟩. We therefore have
that ⟨𝐺|𝐺′⟩ is one if and only if 𝐺 and 𝐺′ are equal.

We have seen in chapter 4 that single­qubit Clifford operations on graph states
can be completely described by local complementations on graphs. As a direct
corollary of lemma 9.2.1 and theorem 4.4.4, we therefore have the following result.

Corollary 9.2.1.1. Let 𝐺 be a graph with its corresponding graph state |𝐺⟩. The
number of graph states which are single­qubit Clifford equivalent to |𝐺⟩ is equal to
the number of locally equivalent graphs to 𝐺. ⋄

Using corollary 9.2.1.1 we can now restrict ourselves to the problem of counting
locally equivalent graphs.

9.3. Isotropic systems
Our main result of this chapter makes great use of the concept of an isotropic
system. In this section we review the definition of an isotropic system and its
relation to locally equivalent graphs and graph states. What is interesting to point
out, and perhaps never before noted, is that an isotropic system is in fact equivalent
to a stabilizer group, see below. For this reason, results obtained for isotropic
systems can be of great use when studying stabilizer states and graph states.

Isotropic systems were introduced by Bouchet in [12]. The power of isotropic
systems is that they exactly capture the equivalence classes of graphs under local
complementation or equivalently equivalence classes of graphs states under single­
qubit Clifford operations. Any isotropic system has a set of fundamental graphs
which are all locally equivalent. As shown in [13], any graph 𝐺 is a fundamental
graph of some isotropic system 𝑆. Furthermore, given a isotropic system 𝑆 with a
fundamental graph 𝐺, another graph 𝐺′ is a fundamental graph of 𝑆 if and only if
𝐺 and 𝐺′ are locally equivalent2.

In section 9.3.2 we review the formal definition of an isotropic system. In the
sections leading up to this, we first set the notation and introduce certain concepts
needed.

9.3.1. Finite fields and Pauli groups
Let {0, 1, 𝜔, 𝜔2} be the elements of the finite field of four elements 𝔽4. Under
addition we have that 𝑥 + 𝑥 = 0 for any element 𝑥 of 𝔽4 and furthermore we have
that 1 + 𝜔 = 𝜔2. Under multiplication we have that 𝑥𝑖 ⋅ 𝑥𝑗 = 𝑥𝑖+𝑗 (mod 3) for any
element 𝑥 ≠ 0. An useful inner product on 𝔽4 is the trace inner product, defined as

⟨𝑎, 𝑏⟩ = 𝑎 ⋅ 𝑏2 + 𝑎2 ⋅ 𝑏 (9.5)
2That is, if and only if |𝐺⟩ and |𝐺′⟩ are equivalent under single­qubit Clifford operations.
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What is interesting in relation to quantum information theory is that addition in
𝔽4 corresponds to matrix multiplication in the Pauli group, up to a global phase.
Furthermore, the trace inner product captures whether two elements of the Pauli
group commute or not. To see this, consider the following mapping 𝛼 from 𝔽4 to
the Pauli group.

𝛼(0) = 𝐼, 𝛼(1) = 𝑋, 𝛼(𝜔) = 𝑌, 𝛼(𝜔2) = 𝑍. (9.6)

One can then check that

𝛼(𝑎)𝛼(𝑏) = i𝑘𝛼(𝑎 + 𝑏) where 𝑘 ∈ ℤ4. (9.7)

Furthermore, we have that

[𝛼(𝑎), 𝛼(𝑏)] = 0 ⇔ ⟨𝑎, 𝑏⟩ = 0. (9.8)

where [⋅, ⋅] is the commutator. Similarly we can also define a map from the elements
of the vector space 𝔽𝑛4 . Let v be a vector of 𝔽𝑛4 and v𝑖 be the 𝑖’th element of v. We
then define a map from 𝔽𝑛4 to the Pauli group on 𝑛 qubits as follows.

𝛼(v) =
𝑛

⨂
𝑖=0

𝛼(v𝑖). (9.9)

Both eq. (9.6) and eq. (9.8) hold for 𝛼 also acting on vectors of 𝔽𝑛4 .

9.3.2. Isotropic systems
Formally an isotropic system is defined as follows3.

Definition 9.3.1 (isotropic system). A subspace 𝑆 of 𝔽𝑛4 is said to be an isotropic
system if: (1) for all v,w ∈ 𝑆 it holds that ⟨v,w⟩ = 0 and (2) 𝑆 has dimension 𝑛. ⋄

Now note that 𝛼(𝑆) ≡ {𝛼(v) ∶ v ∈ 𝑆} forms a stabilizer group (ignoring global
phases). This is because condition (1) of the above definition says that all the
elements of 𝛼(𝑆) commute, by eq. (9.8), as required by a stabilizer group.

9.3.3. Complete and Eulerian vectors
Here we review some further concepts related to isotropic systems which we need
for the proof of our main result. Certain isotropic systems can be represented
as Eulerian tours on 4­regular multi­graphs (see section 9.3.5). These Eulerian
tours correspond to what are called Eulerian vectors of the isotropic system. The
definition of a Eulerian vector also generalizes to all isotropic systems, even those
not representable as Eulerian vectors on 4­regular multi­graphs. In order to give
the definition of an Eulerian vector we must first define what are called complete
vectors.
3The definition here is equivalent to the original one in [12], however we use a slightly different notation
than Bouchet used 30 years ago.
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Definition 9.3.2 (complete vector). A vector v of 𝔽𝑛4 such that v𝑖 ≠ 0 for all 𝑖 ∈ [𝑛]
is called complete. ⋄

We will also need to notion of supplementary vectors.

Definition 9.3.3 (supplementary vectors). Two vectors v,w of 𝔽𝑛4 are called sup­
plementary if (1) they are complete and (2) v𝑖 ≠ w𝑖 for all 𝑖 ∈ [𝑛]. ⋄

Complete vectors come equipped with a notion of rank. To define the rank of a
complete vector we need some further notation. Let v be a complete vector of 𝔽𝑛4 .
Let 𝑋 be a subset of [𝑛] and let v[𝑋] be a vector such its elements are

(v[𝑋])𝑖 = {v
𝑖 if 𝑖 ∈ 𝑋
0 else

(9.10)

We can now define the following set

𝑉v = {v[𝑋] ∶ 𝑋 ⊆ [𝑛]}. (9.11)

Note that 𝑉v forms a subspace of 𝔽𝑛4 . The rank of v with respect to 𝑆 is now defined
as the dimension of the intersection of 𝑉v and 𝑆.

Definition 9.3.4 (rank of a complete vector). Let v be a complete vector of 𝔽𝑛4 .
The rank of v, 𝑟𝑆(v), with respect to 𝑆 is the dimension of the intersection of 𝑉v and
𝑆, i.e.

𝑟𝑆(v) = dim(𝑉v ∩ 𝑆) (9.12)

⋄

We are now ready to formally define an Eulerian vector of an isotropic system.

Definition 9.3.5 (Eulerian vector). A complete vector v of 𝔽𝑛4 , such that 𝑟𝑆(v) = 0
is called an Eulerian vector of 𝑆. ⋄

9.3.4. Fundamental graphs
As mentioned, the power of isotropic systems is that their fundamental graphs are
exactly the graphs in an equivalence class under local complementations. Here we
review the definition of fundamental graphs of an isotropic system, which is defined
by a Eulerian vector through a graphic description.

Definition 9.3.6 (graphic presentation). Let 𝐺 be a graph with vertices4 𝑉(𝐺) =
[𝑛] and v,w be supplementary vectors of 𝔽𝑛4 . The following is then an isotropic
system

𝑆 = {v[𝑁𝑋] +w[𝑋] ∶ 𝑋 ⊆ 𝑉(𝐺)}. (9.13)

The tuple (𝐺,v,w) is called a graphic presentation of the isotropic system 𝑆. Fur­
thermore, 𝐺 is called a fundamental graph of 𝑆. ⋄
4Note that we can always choose such a labeling of the vertices of 𝐺.
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Note that
{v[𝑁𝑣] +w[{𝑣}] ∶ 𝑣 ∈ 𝑉(𝐺)} (9.14)

forms a basis for 𝑆. In [13] it is shown that if (𝐺,v,w) is a graphic presentation of
𝑆 then v is a Eulerian vector of 𝑆. Furthermore, it is shown that given an Eulerian
vector v of 𝑆, there exists a unique graphic presentation (𝐺, ṽ,w) of 𝑆 such that
v = ṽ. Note that two Eulerian vectors can still represent the same fundamental
graph.

The observant reader will notice the close similarity between eq. (9.14) and
eq. (4.12). Indeed, consider the two supplementary vectors v𝜔2 = (𝜔2, … , 𝜔2) and
w1 = (1,… , 1). Now, let 𝐺 be an arbitrary graph and 𝑆 be the isotropic system
with (𝐺,v𝜔2 ,w1) as a graph presentation, as by eq. (9.13). We will here call 𝑆𝐺 the
canonical isotropic system of 𝐺. We then have that 𝛼(𝑆𝐺) is exactly the stabilizer
group of the graph state |𝐺⟩. To see this note that

𝑔𝑣 = 𝛼(v[𝑁𝑣] +w[{𝑣}]) ∀𝑣 ∈ 𝑉(𝐺) (9.15)

using eq. (9.9) and eq. (4.12).
As mentioned before, any two graphs 𝐺 and 𝐺′ are locally equivalent if and only

if they are fundamental graphs of the same isotropic system [13]. Furthermore,
any graph is a fundamental graph of some isotropic system. We therefore see that,
for any isotropic system 𝑆, there exists a surjective map from the set of Eulerian
vectors of 𝑆 to the graphs in an equivalence class of graphs under local comple­
mentations. As described in the section 9.3.6, for certain isotropic systems, the
number of Eulerian vectors equals the number of Eulerian tours on some 4­regular
multi­graph. We will make use of this fact to prove our main result.

9.3.5. Graphic systems
Certain isotropic systems, called graphic systems, can be represented as a 4­regular
multi­graphs. There is then a surjective map from the Eulerian tours on the 4­
regular multi­graph to the fundamental graphs of the graphic system [13]. The set
of fundamental graphs for graphic systems is exactly the set of circle graphs [13].
We will briefly describe this relation here, however leaving out some details which
are out of scope for this chapter. For details on graphic systems see [13], for circle
graphs see [14, 15] and it’s relation to graph states see chapter 4.

In section 4.7 we recalled the definition of circle graphs, also called alternance
graphs, and their relation to Eulerian tours on 4­regular graphs. It turns out that
the set of alternating graphs induced by the Eulerian tours on some 4­regular multi­
graph 𝐹 are exactly the fundamental graphs of some isotropic system 𝑆. We then
say that 𝑆 is associated to 𝐹. An isotropic system that is associated to some 4­
regular multi­graph is called graphic. There is a formal mapping 𝜆 from a 4­regular
multi­graph 𝐹 together with an ordering 𝑇 of its edges to an isotropic system 𝑆 =
𝜆𝑇(𝐹). However, this mapping is rather complex and the interested reader can find
the details in [13]. What is important here is that, for any 𝑇, there is a bijective
mapping from the Eulerian tours of 𝐹 to the Eulerian vectors of 𝑆 = 𝜆𝑇(𝐹) [13].
This statement is implied by the results developed in [13], however in a non­trivial
way. For this reason, we here point out why this follows in section 9.3.6.
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9.3.6. Eulerian decompositions
An Eulerian decomposition 𝐷 of a 4­regular multi­graph 𝐹 is a set of tours on 𝐹
such that each edges of 𝐹 is in exactly one of the tours. As shown in [13], given
a 4­regular multi­graph on 𝑛 vertices, any Eulerian decomposition can be describe
by a complete vector of 𝔽𝑛4 . To see this, note that an Eulerian decomposition on a
4­regular multi­graph 𝐹 can be described by, for each vertex 𝑣 in 𝐹, a pairing of the
incident edges on 𝑣. For example, let 𝑒1𝑣 , 𝑒2𝑣 , 𝑒3𝑣 and 𝑒4𝑣 be the four edges incident
on the vertex 𝑣 and consider now a pairing where 𝑒1𝑣 is paired with 𝑒2𝑣 and 𝑒3𝑣 with
𝑒4𝑣 , written as ((𝑒1𝑣 , 𝑒2𝑣), (𝑒3𝑣 , 𝑒4𝑣)). We can then construct an Eulerian decomposition
by walking along the vertices and edges of 𝐹 and when we reach 𝑣 through the
edge 𝑒1𝑣 we should exit through the edge 𝑒2𝑣 and vice versa. Note that there are
exactly three different ways to pair the four edges of a vertex and we can thus
represent this pairing by a non­zero element of 𝔽4 as

1 ↦ ((𝑒1𝑣 , 𝑒2𝑣), (𝑒3𝑣 , 𝑒4𝑣)) (9.16)
𝜔 ↦ ((𝑒1𝑣 , 𝑒3𝑣), (𝑒2𝑣 , 𝑒4𝑣)) (9.17)
𝜔2 ↦ ((𝑒1𝑣 , 𝑒4𝑣), (𝑒2𝑣 , 𝑒3𝑣)). (9.18)

Furthermore we can represent the pairings of all the vertices of 𝐹 as a complete
vector of 𝔽𝑛4 . Note that the Eulerian decomposition for a given complete vector
depends on the ordering of the edges incident on a vertex. However this ordering
simply changes which Eulerian decomposition is related to which complete vector,
but not the fact that we now have a mapping from complete vectors of 𝔽𝑛4 to
Eulerian decompositions of 𝐹. This ordering 𝑇 is exactly the ordering mentioned
in section 9.3.5, which can be used to map 𝐹 to an isotropic system 𝑆 = 𝜆𝑇(𝐹).
Let now 𝐷𝑇(v) be the Eulerian decomposition induced by the complete vector v as
described above.

Importantly here, as stated in [13], is that, for any Eulerian decomposition 𝐷
of 𝐹 there is a unique complete vector v ∈ 𝔽𝑛4 such that 𝐷 = 𝐷𝑇(v), for a fixed
𝑇. Furthermore, the Eulerian decomposition 𝐷𝑇(v) consists of an Eulerian tour if
and only if v is an Eulerian vector of 𝑆 = 𝜆𝑇(𝐹). We therefore have the following
corollary.

Corollary 9.3.1.1 (Implied by [13]). Let 𝐹 be a 4­regular multi­graph with 𝑛 ver­
tices. Let 𝑇 be an ordering of its vertices as described above and formally defined
in [13]. The number of Eulerian tours on 𝐹 equals the number of Eulerian vectors
of 𝑆 = 𝜆𝑇(𝐹). ⋄

Proof. From above we already know that a Eulerian decomposition of 𝐹 is described
by exactly one complete vector of F𝑛4 through the mapping 𝐷𝑇. Furthermore, the
Eulerian decomposition 𝐷𝑇(v) consists of exactly one Eulerian tour if and only if v
is a Eulerian vector of 𝑆 = 𝜆𝑇(𝐹). Finally the number of Eulerian decompositions
of 𝐹 that consists of exactly one Eulerian tour are clearly equal to the number of
Eulerian tours on 𝐹.
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9.3.7. Number of locally equivalent graphs
In [16] Bouchet showed that 𝑙(𝐺), the number of graphs locally equivalent to some
graph 𝐺, is given by

𝑙(𝐺) = 𝑒(𝑆)
𝑘(𝑆) (9.19)

where 𝑆 is an isotropic system with 𝐺 as a fundamental graph and 𝑒(𝑆) is the
number of Eulerian vectors of 𝑆 and 𝑘(𝑆) is an index of 𝑆. We also have that if
𝑆 and 𝑆′ are isotropic systems which both have 𝐺 as a fundamental graph, then
𝑒(𝑆) = 𝑒(𝑆′) and 𝑘(𝑆) = 𝑘(𝑆′). Using the canonical isotropic system we introduced
in section 9.3.4 we can therefore also define

𝑒(𝐺) ≡ 𝑒(𝑆𝐺), 𝑘(𝐺) ≡ 𝑘(𝑆𝐺), (9.20)

such that

𝑙(𝐺) = 𝑒(𝐺)
𝑘(𝐺) . (9.21)

Below, we review the definition of 𝑘(𝐺) as presented in [16]. The index 𝑘(𝐺)
of a graph is given as

𝑘(𝐺) = {|𝜈(𝐺)
⊥| + 2 if 𝐺 is in the class 𝜇

|𝜈(𝐺)⊥| else
(9.22)

where the bineighborhood space 𝜈(𝐺) and the graph class 𝜇 are defined below and
⊥ denotes the orthogonal complement. Firstly, we introduce the following notation
that will help simplify some later expressions.

Definition 9.3.2. Let 𝑆 = {𝑠1, … , 𝑠𝑘} be a set and 𝑃 ⊆ 𝑆 a subset of 𝑆. We will
associate to 𝑃 a binary vector ⃗⃗𝑃 of length 𝑘 as follows:

⃗⃗𝑃(𝑖) = {1 if 𝑠𝑖 ∈ 𝑃
0 else

(9.23)

where ⃗⃗𝑃(𝑖) is the 𝑖­th element of ⃗⃗𝑃. We denote the number of nonzero elements of
⃗⃗𝑃 as |⃗⃗𝑃|, such that |⃗⃗𝑃| = |𝑃|. ⋄

Here, the base­set 𝑆 will here be the vertices 𝑉 of a graph 𝐺 and from the context
it will always be clear which graph. We will also use ⋅ to denote the element­wise
product between two binary vectors, such that

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑃1 ∩ 𝑃2 = ⃗⃗⃗⃗𝑃1 ⋅ ⃗⃗⃗⃗𝑃2. (9.24)

To define the graph class 𝜇 we first need to review the notion of a bineighbor­
hood space.

Definition 9.3.3 (bineighborhood space). Let 𝐺 = (𝑉, 𝐸) be a simple graph and
𝐺 = (𝑉, 𝐸) the complementary graph of 𝐺. For any 𝑢, 𝑣 ∈ 𝑉 let

𝜈𝐺(𝑒) = ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑁𝐺(𝑢) ∩ 𝑁𝐺(𝑣). (9.25)
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For any subset 𝐸′ ⊆ 𝐸 ∪ 𝐸, let

𝜈𝐺(𝐸′) = ∑
𝑒∈𝐸′

𝜈𝐺(𝑒). (9.26)

We will sometimes write 𝜈(𝑒) or 𝜈(𝐸′) if it is clear which graph is considered. A
subset 𝐶 ⊆ 𝐸 such that the number of edges in 𝐶 incident to any vertex in 𝐺 is
even is called a cycle. We denote the set of cycles of 𝐺 as 𝒞(𝐺). Let 𝔙 = ℤ|𝑉|2 be
the binary vector space of dimensions |𝑉| and consider the two subspaces

𝔈 = {𝜈(𝐸′) ∶ 𝐸′ ⊆ 𝐸}, ℭ = {𝜈(𝐶) ∶ 𝐶 ⊆ 𝒞(𝐺)} (9.27)

The bineighborhood space 𝜈(𝐺) is defined as the sum of the two subspaces 𝔈 and
ℭ, i.e.

𝜈(𝐺) = 𝔈 + ℭ. (9.28)

⋄
Finally the graph class 𝜇 is defined as follows.

Definition 9.3.4 (graph class 𝜇). A simple graph 𝐺 = (𝑉, 𝐸) is said to be in the
class 𝜇 if:
1. 𝑑𝐺(𝑣) = 1 (mod 2) for every vertex 𝑣 ∈ 𝑉. I.e. all vertices in 𝐺 should have
an odd degree.

2. |𝜈(𝑒)| = 0 (mod 2) for all edges 𝑒 ∈ 𝐸. I.e. for every edge (u,v), not in
𝐺, the symmetric difference of the neighborhoods of 𝑢 and 𝑣 should have an
even size.

3. |𝜈(𝐶)| = |𝐶| (mod 2) for all cycles 𝐶 ∈ 𝒞(𝐺). I.e., for all cycles 𝐶 of 𝐺,
the number of non­zero elements of the 𝜈(𝐶) and the number of edges of 𝐶
should both be even or both be odd.

⋄

9.4. Complexity
The problems in ℕℙ are decision problems where YES­instances to the problem
have proofs that can be checked in polynomial time. For example the SAT­problem
is in ℕℙ, where one is asked to decide if a given boolean formula has a satisfying
assignment of its variables [17]. On the other hand, problems where the NO­
instances have proofs that can be checked in polynomial time are the problems in
co­ℕℙ. A problem is said the be ℕℙ­Complete if (1) it is in ℕℙ and (2) any other
problem in ℕℙ can be reduced to this problem in polynomial time. ℕℙ­Complete
problems are therefore informally the hardest problem in ℕℙ.

#ℙ problems are the counting versions of the ℕℙ problems. For example, the
counting version of SAT (#SAT) is to compute how many satisfying assignments
a given boolean formula has. #ℙ­Complete problems are the problems in #ℙ for



9.5. Counting the number of locally equivalent graphs is #ℙ­Complete

9

229

which any other problem in #ℙ can be polynomially reduced to. For example #SAT
is #ℙ­Complete [10]. Note that #ℙ­Complete is at least as hard as ℕℙ­Complete,
since if we know the number of satisfying assignments we know if at least one
exists. Other well­known problems #ℙ­Complete are for example computing the
permanent of a given boolean matrix or finding how many perfect matchings a
given bipartite graph has [10].

Recently, #ℙ­Complete problems have been the interest of the quantum com­
puting community due to the problem of boson sampling [9]. The boson sampling
problem can be solved efficiently on a quantum computer. Furthermore, the boson
sampling problem can be related to the problem of estimating the permanent of
a complex matrix. Since computing the permanent is in general a #ℙ­Complete
problem and thus believed the be infeasible to solve efficiently on a classical com­
puter, the boson sampling problem is therefore is a strong candidate for a problem
showing ’quantum supremacy’.

9.5. Counting the number of locally equivalent graphs
is #ℙ­Complete

Here we show our following main result.

Theorem 9.5.1 (main). Counting the number, 𝑙(𝐺), of locally equivalent graphs
to a given graph 𝐺 is #ℙ­Complete. ⋄

We do this by showing that counting the number of Eulerian tours of a 4­regular
multi­graph can be reduced in polynomial time to computing 𝑙(𝐺), where 𝐺 is a circle
graph. Since counting the number of Eulerian tours of a 4­regular multi­graph is
#ℙ­Complete [18], the result follows. By corollary 9.2.1.1 we have the following
corollary.

Corollary 9.5.1.1. Counting the number of graph states which are single­qubit
Clifford equivalent to a given graph state |𝐺⟩ is #ℙ­Complete. ⋄

Proof. Directly implied by theorem 9.5.1 and corollary 9.2.1.1.

9.5.1. Reducing # of Eulerian tours to # of local equivalent
graphs

Here we show how the problem of computing the number of Eulerian tours on a 4­
regular multi­graph can be reduced in polynomial time to the problem of computing
the number of locally equivalent graphs to some circle graph and thus provide the
proof for theorem 9.5.1.

Proof of theorem 9.5.1. From corollary 9.3.1.1 we know that for any 4­regular multi­
graph 𝐹, there exists an isotropic system 𝑆 = 𝜆𝑇(𝐹) such that the number of Eulerian
vectors 𝑒(𝑆) equals the number of Eulerian tours on 𝐹. Let now 𝐺 be a fundamental
graph of 𝑆. We then have that 𝑒(𝐺) = 𝑒(𝑆), by eq. (9.20) and [13]. Furthermore,
recall the 𝐺 is necessarily also an alternance graph induced by some Eulerian tour
on 𝐹, see section 9.3.5. We can therefore compute the number of Eulerian tours
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on 𝐹 by computing 𝑙(𝐺) ⋅ 𝑘(𝐺), as by eq. (9.21). As we show below, we can both
find 𝐺 and compute 𝑘(𝐺) in polynomial time from which the theorem follows.

We can find 𝐺 in polynomial time as follows.

1. Find an Eulerian tour 𝑈 on 𝐹, can be done in polynomial time by Fleury’s
algorithm [19].

2. Construct the alternance graph 𝐺 = 𝒜(𝑈) induced by 𝑈, can be done in
polynomial time, see chapter 6.

In the rest of this section we show that 𝑘(𝐺) can be computed in polynomial
time from which the main result follows.We will start by showing that determining
if a graph 𝐺 is in the class 𝜇, see definition 9.3.4, can be done in time 𝒪(|𝑉|5).
Note that there might be even faster ways to compute this, but we are here only
interested to show that this can be done in polynomial time. We assume that the
graph 𝐺 = (𝑉, 𝐸) is represented by its adjacency matrix. To check if 𝐺 is in the class
𝜇 one needs to check the three properties in definition 9.3.4:

1. Checking if all vertices have odd degree can be done in 𝒪(|𝑉|2) time.

2. Checking if |𝜈(𝑒)| is even for all edges can be done in 𝒪(|𝑉|3) time, since
there are 𝒪(|𝑉|2) edges and computing |𝜈(𝑒)| can be done in linear time5.

3. For the last property is not directly clear whether this can be done in polyno­
mial time since we need to a priori check the property |𝜈(𝐶)| = |𝐶| (mod 2)
for all cycles in 𝐺, which might be exponentially many. As we will now show,
we only need to check the property for the cycles in a cycle basis of 𝐺. A
cycle basis 𝒞ℬ = {𝐶1, … , 𝐶𝑘}, where 𝑘 = 𝒪(|𝑉|

2), is a set of cycles such that
any cycle of 𝐺 can be written as the symmetric difference of the elements of
a subset of 𝒞ℬ. As shown in [20] a cycle basis of an undirected graph can be
found in 𝒪(|𝑉|2) time. Thus any cycle of 𝐺 can be written as

Δ
𝐶′∈𝒞

𝐶′ (9.29)

where 𝒞 is a subset of the cycle basis 𝒞ℬ. We then have that

𝜈 (Δ
𝐶′∈𝒞

𝐶′) = ∑
𝐶′∈𝒞

𝜈(𝐶′). (9.30)

Thus we need to show that for any 𝒞ℬ

|∑
𝐶′∈𝒞

𝜈(𝐶′)| = |Δ
𝐶′∈𝒞

𝐶′| (mod 2) ∀𝒞 ⊆ 𝒞ℬ (9.31)

5By taking the inner product of the corresponding rows in the adjacency matrix.
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if and only if
|𝜈(𝐶)| = |𝐶| (mod 2) ∀𝐶 ∈ 𝒞ℬ. (9.32)

Lets first show that eq. (9.31) implies eq. (9.32). Equation (9.31) states that
the equation holds for every subset 𝒞 of the elements of the cycle basis 𝒞ℬ.
In particular it should hold for the singletons 𝒞 = {𝐶}, where 𝐶 ∈ 𝒞ℬ. Note
that this directly implies eq. (9.32). For the rest of this section we now prove
that eq. (9.32) implies eq. (9.31). We will do this by induction on the size of
𝒞. This is obviously true if |𝒞| = 1. Lets therefore assume that the statement
is true for |𝒞| ≤ 𝑘 which we will show implies that it is also true for |𝒞| = 𝑘+1.
Lets assume that 𝒞 is a subset of 𝒞ℬ of size 𝑘 + 1 and that 𝐶̃ is an element
of 𝒞. Lets then consider the left­hand side of eq. (9.31)

|∑
𝐶′∈𝒞

𝜈(𝐶′)| = | ∑
𝐶′∈𝒞⧵{𝐶̃}

𝜈(𝐶′) + 𝜈(𝐶̃)|. (9.33)

We will now make use of the fact that the size of the symmetric difference of
two sets 𝑆1 and 𝑆2 is |𝑆1Δ𝑆2| = |𝑆1| + |𝑆2| − 2|𝑆1 ∩ 𝑆2|. Expressed in terms
of binary vectors this relation reads |⃗⃗⃗⃗⃗𝑆1 + ⃗⃗⃗⃗⃗𝑆2| = |⃗⃗⃗⃗⃗𝑆1| + |⃗⃗⃗⃗⃗𝑆2| − 2|⃗⃗⃗⃗⃗𝑆1 ⋅ ⃗⃗⃗⃗⃗𝑆2|. We
therefore have that eq. (9.33) evaluates to

| ∑
𝐶′∈𝒞⧵{𝐶̃}

𝜈(𝐶′) + 𝜈(𝐶̃)| = | ∑
𝐶′∈𝒞⧵{𝐶̃}

𝜈(𝐶′)| + |𝜈(𝐶̃)| − 2|( ∑
𝐶′∈𝒞⧵{𝐶̃}

𝜈(𝐶′)) ⋅ 𝜈(𝐶̃)|

(9.34)
Wr can then see that eq. (9.32) implies eq. (9.31) since when taking (mod 2),
the last term in the above expression vanishes and the two first evaluate to

| Δ
𝐶′∈𝒞⧵{𝐶̃}

𝐶′| + |𝐶̃| (9.35)

where we used the induction hypothesis. By a similar argument one can see
that the expression in eq. (9.35) equals (mod 2)

|Δ
𝐶′∈𝒞

𝐶′|. (9.36)

Thus the total time to check property 3 in definition 9.3.4 is 𝒪(|𝑉|5). To see
this, note that we need to check |𝜈(𝐶)| = |𝐶| (mod 2) for all 𝐶 ∈ 𝒞ℬ, which
contains 𝒪(𝑉2) elements. To compute |𝜈(𝐶)|, we compute 𝜈(𝑒), in linear time,
for each of the 𝒪(𝑉2) elements of 𝐶, and add these together, also in linear
time.
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In addition to deciding if the graph 𝐺 is in the class 𝜇, we also need to compute
|𝜈(𝐺)⊥| to determine 𝑘(𝐺). This can be done by first finding bases for the subspaces
𝔈 and ℭ. For 𝔈 a basis can be found as {⃗⃗ ⃗⃗ ⃗⃗{𝑒} ∶ 𝑒 ∈ 𝐸}. As stated above we can also
find a basis for ℭ, i.e. the cycle basis, in 𝒪(|𝑉|2) time. From the bases for 𝔈
and ℭ we can find a basis for 𝜈(𝐺) in 𝒪(|𝑉|3) time, by Gaussian elimination. The
number of basis vectors we found for 𝜈(𝐺) is then the dimension of 𝜈(𝐺). From the
dimension of 𝜈(𝐺) we can find the dimension of 𝜈(𝐺)⊥ as

dim(𝜈(𝐺)⊤) = |𝑉| − dim(𝜈(𝐺)) (9.37)

and finally the size of 𝜈(𝐺)⊥ as

|𝜈(𝐺)⊥| = 2dim(𝜈(𝐺)⊥). (9.38)

Thus there exist an algorithm to compute 𝑘(𝐺) with running time 𝒪(|𝑉|5). This
then implies that computing the number of Eulerian tours in a 4­regular multi­graph
can be reduced in polynomial time to computing the number of locally equivalent
graphs to some circle graph, by using eq. (9.21), and therefore theorem 9.5.1.

9.6. Conclusion
We have shown that counting the number of graph states equivalent under single­
qubit Clifford operations is #ℙ­Complete. To do this we have made heavy use of
certain concepts in graph theory, mainly developed by Bouchet. As it turns out
these concepts, for example isotropic systems, are highly relevant for the study
of stabilizer and graph states. We hope that this chapter can serve as not only a
proof of our main theorem but also as a reference for those in quantum information
theory interested in finding use for these graph theory concepts in their research.
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10
Conclusion

This chapter summarizes the thesis and discusses future research directions
building on this work.
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10.1. Summary of results

T he focus of this thesis has been to enable arbitrary applications in a quantum
internet and in particular to tackle the question on how to generated entangle­

ment, in an efficient, robust and scalable manner. In the first half of the thesis,
advancements towards a software stack for a quantum internet has been made,
summarized by the following results:

• We presented a functional allocation of a network stack for a quantum inter­
net. Furthermore, we developed an protocol providing the proposed service
of the link layer. The performance of this link layer protocol was benchmarked
through rigorous simulations.

• We created a simulator, SimulaQron, which is intended to be used to develop
software for a quantum internet.

In the second half of the thesis we explored how graph states, a certain class
of entangled quantum states, can be transformed in a quantum network, arriving
at the following results:

• We showed how Courcelle’s theorem can be applied to problems concerning
transforming graph states in a quantum network.

• We showed that deciding if a GHZ­state, on a given subset of qubits, can be
reached from a given graph state, using only single­qubit Clifford operations,
single­qubit Pauli measurements and classical communication is NP­Complete.

• We showed that there exists efficient algorithm that solve the same prob­
lem when certain restrictions are met which can be of practical interest for a
quantum network.

• We show that deciding if a GHZ­state, on any subset of qubit of a certain
size, can be reached from a given graph state, using only single­qubit Clifford
operations, single­qubit Pauli measurements and classical communication is
also NP­Complete. This result also show that a related problem in graph the­
ory concerning vertex­minors is also NP­Complete, solving an open question
in this field.

• We showed that deciding if a given tensor­product of Bell pairs can be reached
from a given graph state, using only single­qubit Clifford operations, single­
qubit Pauli measurements and classical communication is NP­Complete.

• We showed that counting the number of graph states which are equivalent to
a given graph state under single­qubit Clifford operations is #P­Complete.

10.2. Future work
In this section we list some possible future research directions that can extend the
work done in this thesis:
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Scheduling of operations in a quantum network: Some quantum devices,
such as for example those based on nitrogen­vacancies in diamond [1], can­
not perform local operations and entanglement generation with remote nodes
at the same time. There is thus a need for arbitration between local oper­
ations and networking operations. However, the networking operations, i.e.
entanglement generation, needs to be synchronized with remote nodes. This
creates a complicated distributed scheduling problem, which needs to be ad­
dressed in order to enable a quantum internet based on these devices.

Optimized compiler for NetQASM: In chapter 3 we introduced the interface
CQC. In later work [2], not part of this thesis, we have reworked this inter­
face to a low­level instruction set architecture which we now call NetQASM.
There is currently a very simple compiler from a higher­level SDK, in Python,
for NetQASM. However, this compiler does currently no optimization and only
compiles an application at run­time. To be able to efficiently execute applica­
tions on real quantum hardware the compiler also need to optimize both quan­
tum gates and classical logic. Since such optimization can be time­consuming
this should furthermore be done ahead­of­time, rather than during runtime.
This task is a whole research project on its own. Optimized compilers already
exist for quantum computing. However, in this case the compilation and op­
timization need to also take care of the distributed action of entanglement
generation and also closely integrate quantum operations with classical logic,
which might include information communicated from a remote node.

Local multi­qubit Clifford equivalence of graph states: In chapters 4 to 9
we have considered the transformation of graph states under single­qubit
Clifford operations, single­qubit Pauli measurements and classical communi­
cation. These are generally the most simple operations and are therefore
considered cheap. However, one can also envision a scenario where each
node in a network has some set of qubits, and is able to perform arbitrary
Clifford operations between its set of qubits. One would then have a graph
representing the state, together with a partition of the vertices specifying be­
tween which qubits these operations are allowed. If Pauli measurements are
allowed, the general problem of deciding if a graph state can be transformed
to another is clearly NP­Complete, since the problem we discussed in 6 is
then a special case. However, if only local multi­qubit Clifford operations are
allowed, it is not so clear. What we know is that if each entry in the partition
of the qubits has size 1, then the problem can be efficiently solved. The same
holds if there is a single entry in the partition, containing all the qubits, since
then all graph states are equivalent. The question is then if this problem re­
mains efficiently solvable for any partition or if there is a middle ground where
it becomes NP­Complete. As far as we are aware, this question is still open.
An initial investigation was done in [3].

Does LULC hold for distance­hereditary (circle) graph states?: In chap­
ters 4 to 9 we considered the transformation of graph states using single­
qubit Clifford operations. It turns out that for some graph states, allowing
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also for general single­qubit unitary operations does not increase the equiv­
alence class. If this is the case, the class of graph states are said to satisfy
the LULC property (local unitary operations, local Clifford operations). It is
known that for example graph states described by trees and complete graphs
satisfy the LULC property. The class of distance­hereditary graphs considered
in previous chapter in this thesis is a super­class of both trees and complete
graphs. It is then a natural question to ask if distance­hereditary graph states
satisfy the LULC property, which is to our knowledge not known. If this would
be the case, then some of the results presented here could also be applied
to the more general question of transforming graph states under single­qubit
unitary operations, single­qubit Pauli measurements and classical communi­
cation. The same question could then be asked also for circle graph states,
since these are again a superclass of distance­hereditary graph states.
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I n this Appendix, we provide further background and details, as well as morein­depth simulation results from chapter 2.

• In Section A.1, we explain how to estimate the fidelity by interspersing test
rounds.

• In Section A.2, we provide further simulation results to illustrate protocol per­
formance and further validate our simulation against hardware.

• In Section A.3, we provide further details of the NV platform as relevant for
the design considerations of the proposed protocol. Furthermore, we provide
details the physical modeling as well as numerical methods used to conduct
the simulation.

• In Section A.4, we provide a complete description of the proposed protocol.

A.1. Testing
We now explain the test used to gain confidence in transmission quality, specifically
to estimate the quality parameter fidelity 𝐹 used in the FEU (section 2.5.2). The
following is a standard procedure in quantum information to estimate the fidelity
𝐹 = 𝐹[|Ψ−⟩] of a state 𝜌 to the entangled target state |Ψ−⟩. We emphasize that it
is not possible to measure 𝐹 from a single copy of the state 𝜌. The matrices 𝜌 are a
mathematical description of an underlying quantum system, and not a matrix that
one can read or access like classical information.

We first describe the standard procedure in the way that it is normally used.
We then outline how this protocol can be extended to the case of interest here,
and why we can draw conclusions even in real world scenarios in which we can
experience arbitrary correlated errors.

Let us first assume a simpler scenario, in which 𝑛 identical noisy entangled states
𝜌 are produced in succession and we want to estimate 𝐹. We remark that when
using imperfect quantum devices it is evidently a highly idealized situation that all
states 𝜌 are exactly identical. We can see from Eq. (1.23) that we can express 𝐹 in
terms of the quantum bit error rates QBER𝑋, QBER𝑍, and QBER𝑌, which immediately
suggests a protocol: specifically, we will estimate the QBERs in bases 𝑋, 𝑍 and 𝑌
to obtain 𝐹. We sketch such a protocol in a specific way to build intuition for the
more general procedure below:

• Node 𝐴 randomly chooses an 𝑛 element string 𝑟 = 𝑟1, … , 𝑟𝑛 ∈ {𝑋, 𝑍, 𝑌} and
sends it to Node 𝐵.

• Nodes 𝐴 and 𝐵 now perform the following procedure for 1 ≤ 𝑗 ≤ 𝑛 rounds:
– Node 𝐴 produces one entangled pair 𝜌 with Node 𝐵.
– Nodes 𝐴 and 𝐵 both measures their respective qubits in the basis 𝑟𝑗 and
record outcomes 𝑥𝐴𝑗 (Node 𝐴) and 𝑥𝐵𝑗 (Node 𝐵) respectively.

• Node 𝐵 (𝐴) transmits the outcome string 𝑥𝐵 = 𝑥𝐵1 , … , 𝑥𝐵𝑛 (𝑥𝐴 = 𝑥𝐴1 , … , 𝑥𝐴𝑛 ) to
Node 𝐴 (𝐵).
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• Both nodes estimate the error rates

𝑄𝐵𝐸𝑅𝑍 ≈
#{𝑗 ∣ 𝑥𝐴𝑗 = 𝑥𝐵𝑗 , 𝑟𝑗 = 𝑍}

#{𝑗 ∣ 𝑟𝑗 = 𝑍}
, (A.1)

𝑄𝐵𝐸𝑅𝑋 ≈
#{𝑗 ∣ 𝑥𝐴𝑗 = 𝑥𝐵𝑗 , 𝑟𝑗 = 𝑋}

#{𝑗 ∣ 𝑟𝑗 = 𝑋}
, (A.2)

𝑄𝐵𝐸𝑅𝑌 ≈
#{𝑗 ∣ 𝑥𝐴𝑗 = 𝑥𝐵𝑗 , 𝑟𝑗 = 𝑌}

#{𝑗 ∣ 𝑟𝑗 = 𝑌}
, (A.3)

(A.4)

where #{𝑗 ∣ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} is the number of indices 1 ≤ 𝑗 ≤ 𝑛 satisfying the
stated condition.

Using Eq. (1.23) then yields an estimate of 𝐹.
Before we continue it may be instructive to compare the procedure above to

the classical world. Evidently, classically, one way to gain confidence in a channel’s
ability to transmit classical bits would be rather similar: Instead of preparing states
𝜌, we choose 𝑛 random bits and send them. In the end, we estimate the error rate.
Translated to the quantum setting, we would be preparing random bits |0⟩ and |1⟩
at node 𝐴, and sending them to node 𝐵 which measures them in the 𝑍 basis to
obtain an estimate of the bit error rate, similarly to 𝑄𝐵𝐸𝑅𝑍. Such an estimate can
give us confidence that also future bits are likely to be transmitted with roughly the
same amount of errors as the test bits. This of course does not allow the same
level of confidence as error detection in the quality of transmission. Specifically, a
CRC is a check for a specific piece of data (e.g. one frame in 100 Base T), whereas
such a test only yields a confidence in transmission quality.

Creating an analogous quantum CRC is theoretically possible by using a quan­
tum error correcting code [2], but technologically highly challenging and highly
infeasible for many years to come. Yet, we remark that also in a future in which
such methods would become feasible we may not want to employ them because
the requirements of our use cases are different. Since many protocols for our use
cases are probabilistic, or make many pairs (especially NL and MD use cases), we
often do not require more confidence on the exact quality of a single pair. Indeed,
we can pass errors all the way up to the application level (such as for example in
QKD [3]), where errors are then corrected using classical instead of quantum error
correction. In such cases, fluctuations in quality are indeed expected at the applica­
tion level. Here, using fast and easy to produce test rounds may remain preferable
over more time consuming quantum CRCs.

The protocol above is limited in two ways: (1) all states were assumed to be
both identical and independent from each other. I.e., there are no memory effects
in the noise. Such memory effects are non­trivial in the quantum regime since
they may inadvertently create (some amount of) entanglement not only between
𝐴 and 𝐵, but between subsequent pairs produced. (2) We measured all 𝑛 rounds,
consuming all entangled pairs. Instead, we would like a protocol in which only
test rounds are interspersed, and we can draw an inference about the pairs which
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we did not measure. Again, the possibility of quantum correlated noise between
subsequent rounds makes this non­trivial.

To achieve this, we use a slight variant of the above as in [4]. Precise statis­
tical statements are relatively straightforward ­ but very lengthy ­ to obtain using
the techniques in [4, 5] and are out of scope of this chapter. Here, we focus on
the practical protocol and intuition without the need for mathematical tools from
quantum information, which is a direct extension of the one above:

• Nodes 𝐴 and 𝐵 agree on a sampling window 𝑁.

• Nodes 𝐴 and 𝐵 randomly pick an𝑁 bit string 𝑡 = 𝑡1, … , 𝑡𝑁 where Pr[𝑡𝑗 = 1] = 𝑞
for some parameter 𝑞 determining the frequency of using test rounds. 𝐴 and
𝐵 periodically refresh 𝑡 as needed.

• Nodes 𝐴 and 𝐵 randomly pick an 𝑁 element basis string 𝑟 = 𝑟1, … , 𝑟𝑁 ∈
{𝑋, 𝑍, 𝑌}. 𝐴 and 𝐵 periodically refresh 𝑟 as needed.

• The QEGP uses 𝑡 to determine when to intersperse a test round. When pro­
ducing the 𝑗­th response to the MHP, the QEGP checks whether 𝑡𝑗 = 1. If so,
it uses a standard test response instead to attempt to produce a test pair 𝜌,
and takes as the measurement basis the next available in the random basis
string 𝑟.

• 𝐴 and 𝐵 record their measurement outcomes.

• 𝐴 and 𝐵 estimate QBER𝑋, QBER𝑍, QBER𝑌 over the past 𝑁 rounds of producing
entanglement (tested and untested ’data’ rounds)

The key insight in the analysis of this procedure is that we can (with some amount
of confidence depending on 𝑁 and 𝑞) use the QBER measured on the test rounds to
determine the QBER on the untested ­ i.e. data ­ rounds [5, Inequality 1.3]. Using
Eq. (1.23), then again allows one to draw conclusions about the average fidelity of
the untested rounds to inform the FEU.

A.2. Simulation and modeling
Here we provide additional simulation results, and further verification against the
quantum hardware.

For our simulations we make use of a purpose built discrete event simulator for
quantum networks: NetSquid1. By utilizing the discrete event paradigm NetSquid
is capable of efficiently simulating the transmission and decay of quantum infor­
mation in combination with the complex and stochastic nature of communication
protocols. NetSquid can simulate both arbitrary quantum operations and Clifford­
only gates, the former allowing for a precise simulation of small networks, while
the latter allowing for networks containing thousands of nodes and qubits to be
studied. Complete libraries of base classes enable users to simulate protocols and
model physical devices at different levels of abstraction; for instance, (quantum)
1NetSquid is an acronym for Network Simulator for Quantum Information using Discrete events.
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channels with modular noise, loss and delay models, or quantum processing devices
with configurable gate topologies. NetSquid thus provides an ideal tool to validate
network design choices and verify the performance of quantum network protocols
in a physically­realistic setting.

The core simulation engine used by NetSquid is based on DynAA[6–8], a computer­
aided analysis and design tool for the development of large, distributed, adaptive,
and networked systems. It combines the best of network and system simulation
technologies in a discrete­event modeling framework. DynAA provides a simple, yet
powerful language able to describe large and complex system architectures, and
innovative constructs to express adaptation mechanisms of the system, such as dy­
namic parameterization, and functional and architectural reconfiguration. A DynAA
model can be simulated and/or analyzed to reveal system wide performance indi­
cators, such as – but not limited to – throughput, power consumption, connectivity,
reliability, and availability.

A.2.1. Validation of simulation
We compare our simulation model against further data gathered from the NV plat­
form Labscenario. Node A rotates its qubit over the Z­axis of the Bloch sphere by
a fixed angle, followed by measuring its communication qubit in a basis (𝑋, 𝑌 or 𝑍)
that the nodes agreed upon beforehand. Node B only performs the measurement
on its communication qubit, in the same pre­agreed basis. Regardless of the signal
from the heralding station, both nodes initialize their qubit in |0⟩ before the start of
the next round.

We compute the correlations of the measurement outcomes (𝑚𝐴, 𝑚𝐵 = ±1)as
shown in Figure A.1 using

Pr(𝑚𝐴 ≠ 𝑚𝐵) =
1 − ⟨ℬ ⊗ ℬ⟩

2
where ⟨ℬ ⊗ ℬ⟩ is the expectation value of the product of joint measurement out­
comes 𝑚𝐴 ⋅ 𝑚𝐵 with ℬ ∈ {𝑋, 𝑌, 𝑍} the measurement basis after rotation.

The fidelity with the target state |Ψ±⟩ (where ± denotes the heralding detector)
can be expressed as a function of the correlations as

1
4 [1 ± ⟨𝑋 ⊗ 𝑋⟩ ± ⟨𝑌 ⊗ 𝑌⟩ − ⟨𝑍 ⊗ 𝑍⟩] .

Assuming independence between the different rounds, propagation of standard
deviations can be computed using standard techniques.

A.2.2. Simulation data
In this section we present further results from the simulations of our proposed link
layer protocol. Simulation data is available at [11]. In total 1618 simulation runs
were performed: 2 × 169 long runs (120 h wall time each) with 169 scenarios and
1280 shorter runs (24 h wall time each) with varying request load and minimal
requested fidelity. Out of the 169 scenarios used in the long runs, 2 × 5 × 3 = 30
concerned scenarios where the entanglement generation requests were a mix of
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Figure A.1: Comparison of simulation results with data from NV hardware from [9] (Lab scenario),
showing good agreement. (a) Probability of success that the two nodes’ measurements in basis 𝑋/𝑌/𝑍
on the state after a one­sided 𝑍­rotation are unequal, at 𝛼 = 0.1 and (b) fidelities, both computed from
correlations in the measurement outcomes (see text). (c) Probability that a single generation attempt
succeeds, which is computed as 1/𝑁̄ where 𝑁̄ is the average number of runs up to and including
successful heralding of entanglement. Solid line is the theoretical model from [9]. Error bars indicate 1
standard deviation. The simulation data was extracted by running our model implemented in NetSquid
on the supercomputer Cartesius at SURFsara[10] for 122 hours of wall clock time using 63 cores. A
single data point is the average over at least (a) 100 pairs, (b) 300 pairs and (c) 600 pairs, which took
between 500k (for 𝛼 = 0.5) and 10.000k (for 𝛼 = 0.03) entanglement generation attempts, with elapsed
simulated time between 5 and 117 seconds.

the priorities NL, CK and MD. For these mixed scenarios we considered (1) two
physical setups, Lab and QL2020, (2) five usage patterns (described below) and
(3) three different schedulers, FCFS, LowerWFQ and HigherWFQ.

We implement different usage patterns of the link layer by, in every MHP cy­
cle, issuing a new CREATE request for a random number of pairs 𝑘 (max 𝑘max)
with probability 𝑓 ⋅ 𝑝succ/(𝐸 ⋅ 𝑘), where 𝑝succ is the probability of an attempt being
successful, 𝑓 is a fraction determining load of our system and 𝐸 is the expected
number of MHP cycles to make one attempt. For Lab(QL2020) 𝐸 = 1 (𝐸 = 1) for
M requests and 𝐸 ≈ 1.1 (𝐸 ≈ 16) for K requests. We consider five different use
patterns with 𝑓 and 𝑘max defined in table A.1.
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Table A.1

Usage pattern NL CK MD
Uniform 𝑓 = 0.99 ⋅ 1/3, 𝑘max = 1 𝑓 = 0.99 ⋅ 1/3, 𝑘max = 1 𝑓 = 0.99 ⋅ 1/3, 𝑘max = 1
MoreNL 𝑓 = 0.99 ⋅ 4/6, 𝑘max = 3 𝑓 = 0.99 ⋅ 1/6, 𝑘max = 3 𝑓 = 0.99 ⋅ 1/6, 𝑘max = 256
MoreCK 𝑓 = 0.99 ⋅ 1/6, 𝑘max = 3 𝑓 = 0.99 ⋅ 4/6, 𝑘max = 3 𝑓 = 0.99 ⋅ 1/6, 𝑘max = 256
MoreMD 𝑓 = 0.99 ⋅ 1/6, 𝑘max = 3 𝑓 = 0.99 ⋅ 1/6, 𝑘max = 3 𝑓 = 0.99 ⋅ 4/6, 𝑘max = 256
NoNLMoreCK 𝑓 = 0, 𝑘max = 3 𝑓 = 0.99 ⋅ 4/5, 𝑘max = 3 𝑓 = 0.99 ⋅ 1/5, 𝑘max = 256
NoNLMoreMD 𝑓 = 0, 𝑘max = 3 𝑓 = 0.99 ⋅ 1/5, 𝑘max = 3 𝑓 = 0.99 ⋅ 4/5, 𝑘max = 256

Table A.2: Relative difference (Rel. Diff.) for the metrics: fidelity (Fid.), throughput (Throughp.) scaled latency (Laten.) and number of generated entangled
pairs (Nr. pairs), between two identical scenarios except that the probability of losing a classical message (𝑝loss) is zero for one and between 10−10 and
10−4 for the other. The relative difference is maximized over three simulation runs (281 ­ 3973 s simulated time and 70 h wall time each) with requests of
priority either NL, CK or MD (𝑓 = 0.99, 𝑘max = 3), with equal 𝑝loss.

𝑝loss Max Rel. Diff. Fid. Max Rel. Diff. Throughp. Max Rel. Diff. Laten. Max Rel. Diff. Nr pairs
10−4 0.005 0.027 0.629 0.026
10−5 0.004 0.012 0.469 0.008
10−6 0.016 0.037 0.332 0.047
10−7 0.040 0.026 0.576 0.020
10−8 0.007 0.023 0.623 0.020
10−9 0.004 0.026 0.338 0.021
10−10 0.018 0.075 0.742 0.077
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We make use of the following three scheduling strategies:

• FCFS: First­come­first­serve with a single queue.

• LowerWFQ: NL are always service first (strict priority) and a weighted fair
queue (WFQ) is used between CK (weight 2) and MD (weight 1).

• HigherWFQ: NL are always service first (strict priority) and a weighted fair
queue (WFQ) is used between CK (weight 10) and MD (weight 1).

Figures A.2­A.7 show scaled latencies and request latencies as functions of sim­
ulated time for 20 of the first long simulations runs using the different scenarios
of mixed request types. Furthermore, Figures A.8­A.13 show the throughput as a
function of simulated time for the same runs. We also ran a second batch with
the same scenarios which produced similar plots. When using FCFS the request
latency for the different requests are highly correlated, which is to be expected
since all requests are in the same queue. On the other hand the scaled latency for
the different request priorities, in particular MD, deviates from the others, which is
due to the varying number of pairs in the requests. From Figures A.8­A.13 one can
observe that the type of scheduler, at least for these simulated scenarios, have a
relatively small effect on the throughput. In table A.3 and A.4 the average through­
put, scaled latency and request latencies are collected for the same 20 simulation
runs.



A
.2.S

im
u
lation

an
d
m
odelin

g

A

247

(a) QL2020 (b) QL2020

(c) Lab (d) Lab

Figure A.2: Latencies for Uniform
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Figure A.3: Latencies for MoreNL
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(a) QL2020 (b) QL2020

(c) Lab (d) Lab

Figure A.4: Latencies for MoreCK
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Figure A.5: Latencies for MoreMD
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(a) QL2020 (b) QL2020

(c) Lab (d) Lab

Figure A.6: Latencies for NoNLMoreCK
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Figure A.7: Latencies for NoNLMoreMD
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(a) QL2020 (b) Lab

Figure A.8: Throughputs for Uniform

(a) QL2020 (b) Lab

Figure A.9: Throughputs for MoreNL
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Figure A.10: Throughputs for MoreCK

(a) QL2020 (b) Lab

Figure A.11: Throughputs for MoreMD
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(a) QL2020 (b) Lab

Figure A.12: Throughputs for NoNLMoreCK

(a) QL2020 (b) Lab

Figure A.13: Throughputs for NoNLMoreMD
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Table A.3: Average throughput for 20 simulation scenarios, as defined above, of requests with mixed priorities. Each value is computed as (#pairs/𝑡sim_max)
where 𝑡sim_max is the reached simulated time (93 ­ 2355 s) of a single simulation run (24 h wall time).

Scenario Throughput_NL (1/s) Throughput_CK (1/s) Throughput_MD (1/s)
Lab_MoreCK_FCFS 0.976 4.126 1.187
Lab_MoreCK_HigherWFQ 1.046 3.719 1.408
Lab_MoreMD_FCFS 1.025 0.905 4.771
Lab_MoreMD_HigherWFQ 0.981 1.058 4.659
Lab_MoreNL_FCFS 3.975 0.950 1.375
Lab_MoreNL_HigherWFQ 4.447 0.986 1.117
Lab_NoNLMoreCK_FCFS ­ 4.696 1.366
Lab_NoNLMoreCK_HigherWFQ ­ 5.101 0.916
Lab_NoNLMoreMD_FCFS ­ 1.044 4.600
Lab_NoNLMoreMD_HigherWFQ ­ 1.300 5.408
Lab_Uniform_FCFS 2.066 2.035 2.170
Lab_Uniform_HigherWFQ 2.210 2.186 1.908
QL2020_MoreCK_FCFS 0.064 0.302 1.398
QL2020_MoreCK_HigherWFQ 0.078 0.329 1.146
QL2020_MoreMD_FCFS 0.075 0.078 4.139
QL2020_MoreMD_HigherWFQ 0.066 0.073 4.793
QL2020_MoreNL_FCFS 0.312 0.066 1.667
QL2020_MoreNL_HigherWFQ 0.292 0.084 1.374
QL2020_NoNLMoreCK_FCFS ­ 0.355 1.480
QL2020_NoNLMoreCK_HigherWFQ ­ 0.374 1.180
QL2020_NoNLMoreMD_FCFS ­ 0.084 6.756
QL2020_NoNLMoreMD_HigherWFQ ­ 0.091 5.036
QL2020_Uniform_FCFS 0.175 0.143 2.538
QL2020_Uniform_HigherWFQ 0.154 0.166 2.483
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Table A.4: Average scaled latencies (SL) and request latencies (RL) for 20 simulation scenarios, as defined above, of requests with mixed priorities of a
single simulation run (93 ­ 2355 s simulated time and 24 h wall time). Values in parentheses are estimates of standard errors, computed as 𝑠𝑛/√𝑛 where
𝑠𝑛 is the sample standard deviation and 𝑛 is the number of data points used for averaging.

Scenario SL_NL (s) SL_CK (s) SL_MD (s) RL_NL (s) RL_CK (s) RL_MD (s)
Lab_MoreCK_FCFS 40.18 (0.90) 41.09 (0.42) 19.64 (5.52) 55.50 (0.30) 55.58 (0.14) 55.11 (2.83)
Lab_MoreCK_HigherWFQ 0.30 (0.01) 25.63 (0.61) 24.95 (15.20) 0.46 (0.02) 33.88 (0.66) 264.28 (35.75)
Lab_MoreMD_FCFS 40.25 (1.15) 41.70 (1.28) 13.87 (2.91) 55.63 (1.00) 57.24 (1.00) 62.55 (2.43)
Lab_MoreMD_HigherWFQ 0.23 (0.01) 2.09 (0.29) 27.53 (6.00) 0.36 (0.02) 2.65 (0.35) 129.30 (3.51)
Lab_MoreNL_FCFS 45.59 (0.47) 46.44 (0.95) 14.70 (4.65) 60.36 (0.21) 60.59 (0.42) 61.80 (2.76)
Lab_MoreNL_HigherWFQ 0.69 (0.02) 83.79 (2.64) 98.34 (46.15) 0.97 (0.02) 114.89 (2.57) 299.28 (37.25)
Lab_NoNLMoreCK_FCFS ­ 13.05 (0.27) 3.55 (1.36) ­ 17.58 (0.30) 23.04 (3.21)
Lab_NoNLMoreCK_HigherWFQ ­ 6.70 (0.16) 26.14 (9.05) ­ 9.04 (0.19) 76.02 (12.51)
Lab_NoNLMoreMD_FCFS ­ 23.45 (1.65) 10.97 (2.51) ­ 30.86 (1.94) 39.33 (4.09)
Lab_NoNLMoreMD_HigherWFQ ­ 2.26 (0.31) 44.33 (11.92) ­ 3.34 (0.43) 204.78 (9.54)
Lab_Uniform_FCFS 11.41 (0.27) 11.46 (0.27) 12.38 (0.26) 11.41 (0.27) 11.46 (0.27) 12.38 (0.26)
Lab_Uniform_HigherWFQ 0.35 (0.01) 0.73 (0.02) 61.19 (0.97) 0.35 (0.01) 0.73 (0.02) 61.19 (0.97)
QL2020_MoreCK_FCFS 40.65 (4.43) 37.46 (1.93) 12.22 (3.82) 52.20 (5.21) 51.34 (2.33) 43.41 (5.79)
QL2020_MoreCK_HigherWFQ 4.11 (0.24) 26.66 (0.95) 76.29 (16.50) 5.72 (0.34) 35.91 (1.05) 238.09 (21.00)
QL2020_MoreMD_FCFS 25.45 (3.03) 28.34 (3.01) 9.30 (1.63) 32.94 (3.43) 38.90 (3.65) 37.97 (2.67)
QL2020_MoreMD_HigherWFQ 2.62 (0.42) 3.04 (0.42) 14.44 (1.92) 3.79 (0.60) 4.51 (0.62) 47.64 (2.75)
QL2020_MoreNL_FCFS 65.92 (1.93) 64.05 (4.18) 26.16 (5.84) 89.83 (1.79) 85.99 (3.70) 85.98 (5.24)
QL2020_MoreNL_HigherWFQ 7.04 (0.35) 45.87 (3.73) 50.55 (12.63) 9.78 (0.41) 59.92 (4.15) 236.03 (21.62)
QL2020_NoNLMoreCK_FCFS ­ 15.98 (0.64) 4.63 (0.87) ­ 21.90 (0.72) 21.27 (1.63)
QL2020_NoNLMoreCK_HigherWFQ ­ 39.31 (1.64) 70.64 (16.03) ­ 55.94 (1.93) 277.08 (19.97)
QL2020_NoNLMoreMD_FCFS ­ 60.12 (6.95) 22.28 (4.04) ­ 102.23 (4.17) 104.88 (2.69)
QL2020_NoNLMoreMD_HigherWFQ ­ 3.01 (0.35) 6.21 (1.58) ­ 5.18 (0.70) 38.91 (4.89)
QL2020_Uniform_FCFS 49.13 (1.29) 50.85 (1.38) 47.39 (0.33) 49.13 (1.29) 50.85 (1.38) 47.39 (0.33)
QL2020_Uniform_HigherWFQ 4.16 (0.26) 8.22 (0.58) 34.39 (0.61) 4.16 (0.26) 8.22 (0.58) 34.39 (0.61)
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A.3. Under the hood
We now provide some more details on the simulation, numerical methods and the
underlying NV platform. We remark that physical models for different parts of the
NV platform are well established and validated [12]. The validation performed here
is thus only about how the combined system performing entanglement generation
matched with our simulation.

A.3.1. The simulated network
To understand our simulation we perform a full implementation of the MHP and
QEGP, running on simulated quantum hardware. To achieve this, we start by defin­
ing basic components in NetSquid, which, inspired by NS­3, is entirely modular and
can be used to construct complex simulation scenarios by combining component
elements. The components in the simulation are as follows, and our simulation
could easily be configured to examine the performance of our protocol on other
underlying hardware platforms such as Ion Traps.

• A QuantumProcessingDevice, which is a general component we defined in
NetSquid. Abstractly, such a QuantumProcessingDevice is described by the
following:

1. A number of communication and memory qubits. Each such qubit is
associated with a noise­model that describes how quantum information
decoheres over time when kept in the memory itself. Concrete parame­
ters for the NV platform are given in Section A.3.2.

2. Possible one or two­qubit quantum gates to be performed on each (pair
of) qubit(s), the time required to execute the gate, as well as a noise­
model associated with each such gate that may differ from qubit to qubit.
For the NV platform we will only need to consider the gates given in
Section A.3.2.

3. With each communication qubit we associate a trigger that allows the
generation of entanglement between this communication qubit and a
traveling qubit (a photon). Such an operation only succeeds with some
probability of success, requires a certain amount of time, and can also
be noisy. For the NV platform, we explain this in Section A.3.4.

4. Readout ­ i.e. measurement of a qubit. This takes a certain amount of
time, and does again carry a noise­model. For NV, we explain this in
Section A.3.3.

• A FiberConnection, which is a general NetSquid component that allows us to
simulate optical fibers, including photon loss per km.

• A HeraldingStation, which automatically measures incoming photons in a cer­
tain time interval. This process is again subject to several possible errors
explained in Section A.3.5.
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• ClassicalConnection, which we use to transmit classical messages allowing us
to simulate, for example, losses on the channel. Section A.3.6 explains the
model considered here.

• Node, which includes a QuantumProcessingDevice, and enjoys fiber connec­
tions with the HeraldingStation or other nodes. Each Node can run programs
in the same way that they could be run on e.g. a computer or microcontroller,
allowing these Programs to make use of ­ for example ­ the QuantumProcess­
ing Device. This allows us to perform a full implementation (here in Python) of
the MHP and QEGP including all subsystems in the same way as the program
will later run on an actual microcontroller (however, in C).

We briefly review properties of the nitrogen­vacancy (NV) center in diamond [12]
and how they affect the design and performance of our protocol. We will also
highlight how this can be modeled in simulation. Important to the design and
performance of our protocol is how long operations on qubits stored in the NV­
center take. Additionally, the coherence time, i.e. how long a qubit can be stored,
has an impact on our protocol. We summarize typical values for the noise­level and
execution time of the allowed operations of a NV­center together with coherence
times. These are the values we used in our simulation. Note however that these
values can vary significantly between samples.
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Table A.5: Gates and coherence times used in simulation. Values used in the simulation corresponding to Lab. We remark that since these are custom chips,
no two are exactly identical. Individual values have since seen significant improvements (Experimentally realized), but have not been realized simultaneously
for producing entanglement that would allow a direct comparison to simulation. We have thus focused in simulation only what enables a comparison to data
gathered from entanglement generation on hardware.

(Unsquared) fidelity Duration/time Experimentally realized
Electron 𝑇1 ­ 2.86 ms > 1h[13]
Electron 𝑇∗2 ­ 1.00 ms 1.46 s[13]
Carbon 𝑇1 ­ ∞ > 6m [14]
Carbon 𝑇∗2 ­ 3.5 ms ≈ 10ms [14]
Electron single­qubit gate 1.0 5 ns > 0.995 (100 ns) [15]
E­C controlled­√𝒳­gate (E=control) 0.992 500 𝜇s 0.992 (500­1000 𝜇s) fig 2 in [15]
Carbon Rot­𝑍­gate 0.999 20 𝜇s 1.0 (20 𝜇s) [16]
Electron initialization in |0⟩ 0.95 2 𝜇s 0.99 (2 𝜇s) [17]
Carbon initialization in |0⟩ 0.95 310 𝜇s 0.95 (300 𝜇s) [18]
Electron readout 0.95 (|0⟩), 0.995 (|1⟩) 3.7 𝜇s 0.95 (|0⟩), 0.995 (|1⟩) (3­10 𝜇s) [9]
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A.3.2. Qubits on the NV Platform
A NV center is formed by replacing a carbon atom in a diamond lattice with a
nitrogen atom and removing a neighboring carbon (vacancy). This structure traps
electrons which together form a spin­1 system. Two of the levels of the collective
spin­1 state can be used as a communication qubit in a quantum network. Around
the NV center there is also a natural abundance of carbon­13 atoms which interact
with the communication qubit (electron spin). The surrounding carbon spins can be
addressed using the communication qubit and can thus be used as memory qubits.
Here we consider a situation with only one communication qubit, and one memory
qubit.

Noise model ­ Free evolution of the electronic and nuclear spins
Noise in experimental implementations is described in terms of 𝑇1, 𝑇2, 𝑇∗2 times,
where Section 1.4.5 serves to provide intuition on how our quantity of interest ­
the fidelity to the maximally entangled target state |Ψ+⟩ ­ depends on their values.
Table A.5 lists values used in simulation (reflecting Lab), and state of the art for the
communication qubit (Electron), and memory qubit (Carbon).

Quantum gates
Procedure and parallelism constraints Quantum gates can be realized by
applying microwave pulses. Of specific interest that affects the throughput is the
duration of such operations given in Table A.5. While not absolutely necessary
for the understanding of the simulation, we briefly sketch how operations are per­
formed also on the carbons to illustrate one feature of this system that is relevant
for the performance of our protocols ­ namely the parallelism of the allowed gate
operations. We remark that operations on the carbon spins are performed using
the following pulse sequence

(𝜏 − 𝜋 − 2𝜏 − 𝜋 − 𝜏)𝑁/2, (A.5)

where 𝜋 is a microwave­𝜋­pulse on the electron spin, 2𝜏 is the time between the
pulses and 𝑁 is the total number of pulses. The target carbon spin can be chosen
by picking 𝜏 such that it is precisely in resonance with the target carbon spin’s
hyperfine interaction with the electron spin. If the electron spin is in the state |0⟩
(|1⟩) the target carbon spin will rotate around the 𝑋­axis of the Bloch sphere in the
positive (negative) direction, with an angle 𝜃 which depends on the total number
of pulses 𝑁. This means that one can perform quantum gates on the carbon that
are controlled by the state of the electron spin. The effective unitary operation
(E=control) on the electron and the target carbon spin is then given as

(𝑅𝑋(𝜃) 0
0 𝑅𝑋(−𝜃)) , (A.6)

where 𝑅𝑋(𝜃) = exp(i𝜃/2𝑋) denotes a rotation around the 𝑋­axis of an angle 𝜃. Not
only does the pulse sequence (A.5) manipulate the carbon spin, but it also decouples
the electron from its environment, thereby prolonging its coherence time and is thus
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also called dynamical decoupling, allowing longer memory lifetimes (Figure 1.5a).
We thus see a limit to the amount of parallelism when operating on the carbon and
the electron spin.

Other quantum gates are however simpler: Since the carbon continuously pre­
cesses around the 𝑍 axis of the Bloch sphere, rotations around 𝑍 (Carbon Rot­𝑍)
are simply done by waiting a correct amount of time. Thus, also controlled rotations
around other axes than 𝑋 can be performed by correctly interspersed waiting times
during the pulse sequence above.

A.3.3. Gates and their noise
In this section we collect parameters for noise and delays of gates used in our
simulation. Table A.5 summarize the possible gates that can be performed on the
electron and carbon spins in the NV system, together with decoherence times.
Section A.3.4 describes how the noise occurring from entanglement generation
attempts is modeled.

Here the E­C controlled­𝑋 rotates the carbon spin around the 𝑋­axis in the pos­
itive (negative) direction if the electron is in the |0⟩ (|1⟩) state. Furthermore, note
that there is an asymmetry in reading out the |0⟩­state and the |1⟩­state of the
electron.

Modeling noisy operations
Noise in gate operations is modeled by applying noise after a perfect gate (a stan­
dard method):

𝑈noisy (𝜌) = 𝒩𝑓
dephas ∘ 𝑈perfect (𝜌) ,

where
𝒩𝑝
dephas ∶ 𝜌 ↦ 𝑓𝜌 + (1 − 𝑓)𝒵𝜌𝒵

is the dephasing channel in 𝒵 and 𝑓 is the gate fidelity as given in table A.5. States
are initialized as 𝒩𝑝

depol(|0⟩⟨0|), where

𝒩𝑝
depol ∶ 𝜌 ↦ 𝑓𝜌 + 1 − 𝑓3 [𝒳𝜌𝒳 + 𝒴𝜌𝒴 + 𝒵𝜌𝒵]

denotes the depolarization channel by.

How the electron spin is initialized
Initialization of the electron spin means setting the state to |0⟩ [17]. Initialization of
the electron spin is done by performing optical pumping, in which light shines onto
the electron, thereby bringing its quantum state in a higher energy level, given it
was in |1⟩, after which it falls back to either |0⟩ or |1⟩ with a given probability. If the
electron falls down to the state |0⟩ is will stay there, thus after many repetitions of
this process, the electron is with high confidence in the state |0⟩. For our discussion
here, it will be relevant to remark that this operation takes time (Table A.5), and
we will need to perform it repeatedly as the first step in producing entanglement.
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Moving a qubit to memory
When moving a qubit from the communication qubit to the memory qubit, the
memory qubit needs to already be initialized. Initialization of the carbon is done
by effectively swapping the |0⟩ state from the electron to the carbon and cannot
therefore be performed while having an entangled state in the electron. For this
reason, initialization of the carbon (310 𝜇s) needs to be performed before a photon
is emitted from the electron during an entanglement generation attempt. However,
it is not necessary to re­initialize the carbon before every entanglement generation
attempt but simply periodically depending on the coherence time. In our simulation
we assumed 𝑇1 to be 3500 𝜇s and thus re­initialize the carbon every 3500 𝜇s (every
350th MHP cycle).

Swapping a state in the electron to the carbon can be done by 2 E­C controlled­
√𝒳­gates and single qubit gates (total time 1040 𝜇s) [15].

How a measurement (readout) is performed
Readout of the communication qubit First, we are again interested in the
time to perform this operation given in Table A.5 which will be relevant in the MD
use case. Evidently a readout can be noisy, where we remark that the noise is
asymmetric in that the probability of incorrectly obtaining measurement outcome 0
is much lower than incorrectly getting outcome 1.

Reading out a memory qubit We again remark that next to timing constraints
(Table A.5), we have limited parallelism on the current NV platform, since we need
the electron spin to readout the memory qubit. Reading out the nuclear spin is
done by performing the following steps:

1. initialize the electron spin,

2. apply an effective controlled NOT operation with the nuclear spin as control
(consisting of one E­C controlled­√𝒳­gate and single­qubit gates),

3. measure (readout) the electron spin.

The reason why a controlled NOT is sufficient, rather than a full swap, is the fol­
lowing: If the nuclear spin is in state 𝛼 |0⟩ + 𝛽 |1⟩, then after the CNOT, the com­
bined state is 𝛼 |00⟩𝐸𝐶 + 𝛽 |11⟩𝐸𝐶. The reduced state [2] of the electron is then
|𝛼|2 |0⟩⟨0|+|𝛽|2 |1⟩⟨1|, so measuring in the standard basis yields the same statistics
as measuring 𝛼 |0⟩ + 𝛽 |1⟩ in the same basis.

Readout noise Readout is modeled by performing a POVM measurement with
the following Kraus operators (see [2] for definition)

𝑀0 = (
√𝑓0 0
0 √1 − 𝑓1

) , 𝑀1 = (
√1 − 𝑓0 0
0 √𝑓1

) (A.7)

where 𝑓0 (𝑓1) is the readout fidelity of the |0⟩­state (|1⟩) as given in table A.5
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A.3.4. Physical Entanglement Generation and Noise
We here consider the single­click scheme of Lab. To understand timing and quality
as well as parameter choices, let us give a high­level overview of the single­click
scheme: A microwave pulse is used to prepare the communication qubit in the
state √𝛼 |0⟩ + √1 − 𝛼 |1⟩ (max. 5.5𝜇𝑠 for 𝐴 and 𝐵), where |0⟩ is also called the
bright state, and 𝛼 the bright state population. A resonant laser pulse is then used
to cause emission of a photon, if the state was in the bright state, preparing the
joint state of the communication qubit (𝐶) and an emitted photon (𝑃) in the state
√𝛼 |0⟩𝐶 |1⟩𝑃 + √1 − 𝛼 |1⟩𝐶 |0⟩𝑃, where |0⟩𝑃 (|1⟩) denotes the absence (presence)
of a photon. This process succeeds with probability 𝑝em ≈ 0.03 without Purcell
enhancement using optical cavities. To ensure phase­stabilization only one laser
may be used for both nodes, combined with local shutters to allow node control.
We remark that local control at the node is still desirable at a distance due to
aligning with other operations such as performing gates. to keep qubits stable.
The heralding station interferes both incoming photons on a beam splitter, thereby
performing a probabilistic entanglement swap. Intuitively, this can be understood
as a measurement of the incoming qubits in the Bell basis, where we can only obtain
outcomes |Ψ+⟩, |Ψ−⟩ or “other”. Since “other” is more than one possible state, we
declare failure in this case.

Depending on the clicks observed in the detectors, we have projected the state
of the communication qubits at 𝐴 and 𝐵 in the state |Ψ+⟩ = 1

√2(|0⟩𝐴 |1⟩𝐵+|1⟩𝐴 |0⟩𝐵)
(only left detector clicks), |Ψ−⟩ = 1

√2(|0⟩𝐴 |1⟩𝐵 − |1⟩𝐴 |0⟩𝐵) (only right detector
clicks), or we declare failure (either none or both of the detectors click). Success
occurs with probability 𝑝succ ≈ 2𝛼𝑝det, where 𝑝det is the probability of detecting an
emitted photon.

During entanglement generation, a variety of noise processes occur:

1. Dephasing of the nuclear spins (memory qubits) due to resetting the electron
during entanglement generation attempts.

2. Effective dephasing of the photon’s state due to uncertainty in the phase
difference between the paths the photons travel to the beam­splitter.

3. Effective dephasing of the photon’s state due to non­zero probability of emit­
ting two photons.

4. Effective amplitude damping of the photon state due to coherent emission,
i.e. the photon is in a superposition of being emitted at different times.

5. Effective amplitude damping due to collection losses from non­unity proba­
bility of emitting the photon in the zero­phonon line and non­unity collection
efficiency into the fiber.

6. Effective amplitude damping due to losses in fiber.

7. Non­perfect beam­splitter measurement at the heralding stations due to pho­
tons not being perfectly indistinguishable.
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8. Errors in the classical outcome from the detectors due to non­unity detection
efficiency and dark counts.

Dephasing mechanism on nuclear spins during entanglement attempts
Between every entanglement attempt, the electron spin (communication qubit)
needs to be reset. The dominant source of noise on the nuclear spins (memory
qubits) during the entanglement attempts is due to this re­initialization of the elec­
tron spin, as described in [19]. We model the noise on the nuclear spins as a fixed
amount of dephasing noise

𝒟𝑝𝑑(𝜌𝑛) = (1 − 𝑝𝑑)𝜌𝑛 + 𝑝𝑑𝑍𝜌𝑛𝑍 (A.8)

for every entanglement attempt. The dephasing parameter depends on: the bright
state population 𝛼, the coupling strength Δ𝜔 and a decay constant 𝜏𝑑 as follows

𝑝𝑑 =
𝛼
2 (1 − exp(−Δ𝜔2𝜏2𝑑/2)) , (A.9)

see equation (2) in [19]. If the length of the Bloch vector in the equatorial plane
of the state in the nuclear spin is before the entanglement attempts 𝑟𝑋𝑌, then after
𝑁 attempts the length will be

(1 − 𝑝𝑑)𝑁𝑟𝑋𝑌 . (A.10)

The bright state population can be chosen per experiment but the coupling
strength and decay constant for a nuclear spin are fixed but vary between different
spins. The decay constant can also vary by performing different microwave control
pulses of the electron spin. As an example of these parameters, for the nuclear
spin C1 and the standard microwave control pulses, the coupling strength is Δ𝜔 =
2𝜋 × 377 kHz and the decay constant is 𝜏𝑑 = 82 ns, see [19]. In the simulations
we use these values for the coupling strength and decay constant.

Phase uncertainty for photon paths
There is uncertainty in the phase between the paths the photon travels from the
nodes to the beam­splitter, due to for example uncontrolled stretching of the fiber.
If this phase difference is Δ𝜙 then the state after a successful measurement at the
heralding station (conditioned on there being only one photon) is

|0⟩𝑒𝐴 |1⟩𝑒𝐵 ± eiΔ𝜙 |1⟩𝑒𝐴 |0⟩𝑒𝐵 . (A.11)

where 𝑒𝐴 is the electron spin at node 𝐴 and 𝑒𝐵 is the electron spin at node 𝐵.
We model this by performing dephasing noise to both qubits encoding the pres­

ence/absence of photon from 𝐴 and 𝐵. As shown in [20], if we chose the dephasing
parameter to be

𝑝𝑑 = (1 −
𝐼1(𝜎(𝜙)−2)
𝐼0(𝜎(𝜙)−2)

) /2 (A.12)

then the standard deviation of the phase 𝜙 in the state between the electron (𝑒𝐴/𝑒𝐵)
and the photon (𝑝𝐴/𝑝𝐵)

|0⟩𝑒𝐴 |1⟩𝑝𝐴 ± ei𝜙 |1⟩𝑒𝐴 |0⟩𝑝𝐴 (A.13)
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is precisely 𝜎(𝜙). To efficiently compute quotients of modified Bessel functions we
implemented the algorithm described in [21]. Note that the variance of the phase
in equation (A.11) is twice the variance of the phase in equation (A.13). In ex­
periments the standard deviation of the phase for the state between the electrons,
i.e. (A.11), has in [9] shown to be 14.3∘. Thus, we set the standard deviation in
equation (A.13) to be 14.3∘/√2.

Two­photon emission
There is a probability that two photons are emitted from the electron during the
entanglement generation attempt at a node. For the physical setup we assume the
probability of there being two photons emitted, given that at least one is emitted,
to be approximately 4% [9]. As argued in [9], the two­photon event can effectively
be modeled as applying dephasing noise to the electron qubit which is part of the
generated entanglement.

Coherent emission, superposition of time­modes
The emission of the photon is a coherent process and the photon is actually in
a superposition of being emitted at different times. As shown in [20], the effect
of a finite detection window can be seen as effective amplitude damping noise to
the qubit encoding the presence/absence of a photon. The amplitude damping
parameter is then given by

𝑝𝑎 = exp(−𝑡𝑤/𝜏𝑒), (A.14)

where 𝑡𝑤 is the detection time window and 𝜏𝑒 is the characteristic time of the NV
emission (12 ns without cavity [22] and 6.48 ns with cavity [20]).

Collection losses
We model non­unity collection efficiencies by effective amplitude damping noise
on the qubit encoding the presence/absence of a photon. The amplitude damping
parameter is given by

𝑝𝑎 = (1 − 𝑝zero_phonon ⋅ 𝑝collection), (A.15)

where 𝑝zero_phonon is the probability of emitting a photon in the zero phonon line
(3% without cavity and 46% with cavity [22]) and 𝑝collection is the probability of
collection the photon into the fiber. From [9] we know that the total detection
efficiency of the system is 4 ⋅ 10−4, which can be decomposed as

𝑝total = 𝑝zero_phonon ⋅ 𝑝collection ⋅ 𝑝transmission ⋅ 𝑝detection, (A.16)

where 𝑝transmission is the probability that the photon is not lost during transmission
in the fiber and 𝑝detection is the probability that the detector clicks, given that there
was a photon. Using equation (A.16) we find that 𝑝collection = 0.014 given the
numbers in [9]. Frequency conversion succeeds with probability 30% [23], so in
this case we use 𝑝collection = 0.014 ⋅ 0.3.
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Transmission losses
Since the qubit sent from the node to the heralding station is encoded in the pres­
ence/absence of a photon, the losses during transmission over fiber are modeled as
amplitude damping noise. We use an amplitude damping parameter 𝑝t_loss given
as

𝑝t_loss = 1 − 10−𝐿⋅𝛾/10, (A.17)

where 𝐿 is the length of the fiber (in km) and 𝛾 is assumed to be 5 dB/km without
frequency conversion and 0.5 dB/km with frequency conversion.

Distinguishable photons
Entanglement is generated between the electrons of the two nodes since the beam­
splitter in the heralding station effectively deletes the information of which node a
detected photon came from. This information is only perfectly detected if the pho­
tons emitted from the nodes are completely indistinguishable. In reality however,
the photons properties (spectral, temporal etc.) can be slightly different and they
are therefore not completely indistinguishable. In section A.3.4 we derive effective
measurement operators of a beam­splitter measurement, taking photon indistin­
guishability into account, which we make use of in our simulation. For the physical
setup we simulate, the overlap (visibility) of the photons coming from the nodes is
approximately 0.9 [9], i.e. |𝜇|2 = 0.9 where 𝜇 is defined in equation (A.50).

Detection losses and dark counts
Detection losses and dark counts are modeled by probabilistically changing the ideal
classical outcome from the detectors at the heralding station. For each detector,
if the ideal detector clicked the noisy detector also clicks with probability 𝑝detection
and otherwise not. In the simulations we use 𝑝detection = 0.8, as measured in [24].

If the ideal detector did not click the noisy detector does click with probability
𝑝dark. The parameter used for the dark count is the dark count rate 𝜆dark = 20 per
second [9]. The dark counts follow a Poisson distribution and we have that

𝑝dark = 1 − exp(−𝑡𝑤 ⋅ 𝜆dark), (A.18)

where 𝑡𝑤 is the detection time window.

A.3.5. Heralding station
Let us now consider the measurement at the Heralding Station in more detail in
order to understand its error models.

Distinguishable photons
We here describe how wemodel a beam­splitter measurement of two photons which
are not perfectly indistinguishable. This is relevant for many heralding entangle­
ment generation schemes, since if photons are distinguishable the beam­splitter will
not erase the information of where the photons came from. Two perfectly indis­
tinguishable photons incident on a beam­splitter will always go to the same output
arm, as captured by the Hong­Ou­Mandel effect [25]. However, if the photons are



A

268 A. A Link Layer Protocol for Quantum Networks

distinguishable they do not necessarily go to the same output arm, which can be
detected in experiment. For a given setup, lets denote the probability that two
incident photons on the beam­splitter go to different output arms as 𝜒.

We will in this section derive the effective POVM and Kraus operators correspond
to detecting photons at the ends of the output arms of the beam­splitter in terms
of 𝜒, under the assumptions described below and using ideas from the paper [26]
where 𝜒 is computed.

Model
Assume that there is a 50:50 beam­splitter with input arms 𝑎 and 𝑏 and output arms
𝑐 and 𝑑. At the end of the output arms there are photon detectors that can click.
We will assume that the detectors have a flat frequency response and at first that
the detectors can count photons, i.e. there are different measurement outcomes
for there being one or two photons incident on a detector. However we will show
below how one can easily consider detectors which cannot count photons from the
analysis in this note.

Photons In many simulations we model the presence or absence of a photon as
a two­level system, i.e. a qubit 𝛼 |0⟩ + 𝛽 |1⟩, where |0⟩ means no photon and |1⟩
one photon. We would then describe the state before the beam­splitter as a state
living in a 2­qubit Hilbert space spanned by the following four basis vectors:

|00⟩𝑙𝑟 , |01⟩𝑙𝑟 , |10⟩𝑙𝑟 , |11⟩𝑙𝑟 (A.19)

describing 0 photons, photon on the right, photon on the left and two photons. Here
𝑙 and 𝑟 corresponds to arm 𝑎 and 𝑏 of the beam­splitter, but we distinguish these
since we will denote 𝑎 (and 𝑏) as the infinite dimensional Hilbert space describing
the spectral property of the photon. Note that we assume that there are never
more than one photon per arm.

Describing the presence and absence of a photon as a qubit masks the fact that
a photon can have many other degrees of freedom, such as polarization, spectral
and temporal properties. We will here focus on spectral and temporal properties
and will therefore model a photon in arm 𝑎 with a spectral amplitude function 𝜙 as
the state

∫d𝜔 𝜙(𝜔)𝑎†(𝜔) |0⟩𝑎 , (A.20)

where 𝑎†(𝜔) is the creation operator of a photon in arm 𝑎 of frequency 𝜔 and |0⟩𝑎
is the vacuum and 𝜙 is normalized such that

∫d𝜔 |𝜙(𝜔)|2 = 1. (A.21)

Furthermore, the state of arm 𝑏 will be described by a spectral amplitude function
𝜓 as

∫d𝜔 𝜓(𝜔)𝑏†(𝜔) |0⟩𝑏 . (A.22)
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Two photons arriving at the beam­splitter can have different spectral properties,
captured by 𝜙 and 𝜓 being different. We will also include a possible temporal shift
𝜏 between the arrival times of the two photons. As described in equation (16)
of [26], a temporal shift of a photon in arm 𝑏 induces the following action on the
creation operators

𝑏†(𝜔) → 𝑏†(𝜔)e−i𝜔𝜏 . (A.23)

Beam­splitter The 50:50 beam­splitter acts on the creation operators in the
following way:

𝑎†(𝜔) → 1
√2
(𝑐†(𝜔) + 𝑑†(𝜔)) (A.24)

𝑏†(𝜔) → 1
√2
(𝑐†(𝜔) − 𝑑†(𝜔)). (A.25)

Thus the state of a photon described as in equation (A.20), i.e. one photon in the
input arm 𝑎, will after the beam­splitter become

|𝜙⟩𝑐𝑑 =
1
√2

∫d𝜔 𝜙(𝜔)(𝑐†(𝜔) + 𝑑†(𝜔)) |0⟩𝑐𝑑 . (A.26)

Furthermore, the three other cases of no photon, one photon in the input arm 𝑏
and one photon in each input arm becomes after the beam­splitter:

|0⟩𝑐𝑑 (A.27)

|𝜓⟩𝑐𝑑 =
1
√2

∫d𝜔 𝜓(𝜔)e−i𝜔𝜏(𝑐†(𝜔) − 𝑑†(𝜔)) |0⟩𝑐𝑑 (A.28)

|𝜙, 𝜓⟩𝑐𝑑 =
1
2 ∫d𝜔1 ∫d𝜔2 𝜙(𝜔1)𝜓(𝜔2)e

−i𝜔1𝜏

(𝑐†(𝜔1) + 𝑑†(𝜔1))(𝑐†(𝜔2) − 𝑑†(𝜔2)) |0⟩𝑐𝑑
. (A.29)

Where the states |0⟩𝑐𝑑, |𝜙⟩𝑐𝑑, |𝜓⟩𝑐𝑑 and |𝜙, 𝜓⟩𝑐𝑑 should be thought of as the cor­
responding states to the states in equation (A.19). Below, we will in fact formally
define an isometry between these two Hilbert spaces.

Detectors As mentioned we assume that the detectors have a flat frequency
response. The event that the detector in arm 𝑐 detected one photon can then be
described by the projector

𝑃1,0 = ∫d𝜔 𝑐†(𝜔) |0⟩⟨0|𝑐𝑑 𝑐(𝜔) (A.30)

Since we assume that there is maximally one photon arriving at each input arm of
the beam­splitter the only other possible measurement outcomes are described by
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the following projectors:

𝑃0,0 = |0⟩⟨0|𝑐𝑑 (A.31)

𝑃0,1 = ∫d𝜔 𝑑†(𝜔) |0⟩⟨0|𝑐𝑑 𝑑(𝜔) (A.32)

𝑃1,1 = 𝑃1,0⊗𝑃0,1 = ∫d𝜔1 ∫d𝜔2 𝑐†(𝜔1)𝑑†(𝜔2) |0⟩⟨0|𝑐𝑑 𝑐(𝜔1)𝑑(𝜔2) (A.33)

𝑃2,0 =
1
2 ∫d𝜔1 ∫d𝜔2 𝑐

†(𝜔1)𝑐†(𝜔2) |0⟩⟨0|𝑐𝑑 𝑐(𝜔1)𝑐(𝜔2) (A.34)

𝑃0,2 =
1
2 ∫d𝜔1 ∫d𝜔2 𝑑

†(𝜔1)𝑑†(𝜔2) |0⟩⟨0|𝑐𝑑 𝑑(𝜔1)𝑑(𝜔2) (A.35)

where 𝑃0,0 corresponds to no photon, 𝑃0,1 one photon in arm 𝑑, 𝑃1,1 one photon in
each arm, 𝑃2,0 two photons in arm 𝑐 and 𝑃0,2 two photons in arm 𝑑. Note that the
factors of 12 are needed for 𝑃20 such that 𝑃

2
20 = 𝑃20 and similarly with 𝑃02.

Deriving effective POVMon presence/absence description The goal of this
note is to derive the effective POVM on the Hilbert space 𝑙𝑟, spanned by vectors
in equation (A.19), induced by the projective measurements in equations (A.30)­
(A.35) on the infinite­dimensional Hilbert space 𝑐𝑑. To do this we will first define an
isometry 𝑈𝑙𝑟→𝑐𝑑 from the Hilbert space 𝑙𝑟 to 𝑐𝑑, using the states in equation (A.19)
and equations (A.26)­(A.29). This isometry will have the following action on the
basis states of 𝑙𝑟:

|00⟩𝑙𝑟 → |0⟩𝑐𝑑 (A.36)
|01⟩𝑙𝑟 → |𝜓⟩𝑐𝑑 (A.37)
|10⟩𝑙𝑟 → |𝜙⟩𝑐𝑑 (A.38)
|11⟩𝑙𝑟 → |𝜙,𝜓⟩𝑐𝑑 (A.39)

and will therefore be given as

𝑈𝑙𝑟→𝑐𝑑 = |0⟩𝑐𝑑 ⟨00|𝑙𝑟 + |𝜓⟩𝑐𝑑 ⟨01|𝑙𝑟 + |𝜙⟩𝑐𝑑 ⟨10|𝑙𝑟 + |𝜙, 𝜓⟩𝑐𝑑 ⟨11|𝑙𝑟 . (A.40)

One can easily check that the states |0⟩𝑐𝑑, |𝜙⟩𝑐𝑑, |𝜓⟩𝑐𝑑 and |𝜙, 𝜓⟩𝑐𝑑 are mutually
orthogonal and that 𝑈𝑙𝑟→𝑐𝑑 is therefore indeed an isometry, i.e.

(𝑈𝑙𝑟→𝑐𝑑)†𝑈𝑙𝑟→𝑐𝑑 = 1𝑙𝑟 . (A.41)

Let us assume that |Φ⟩𝑙𝑟 is a state in 𝑙𝑟 and we wish to compute the proba­
bility of receiving a measurement outcome corresponding to the projector 𝑃 ∈
{𝑃00, 𝑃10, 𝑃01, 𝑃11, 𝑃20, 𝑃02} for the state 𝑈𝑙𝑟→𝑐𝑑 |Φ⟩𝑙𝑟. Using Born’s rule we find that
this probability is given as

⟨Φ|𝑙𝑟 (𝑈𝑙𝑟→𝑐𝑑)†𝑃𝑈𝑙𝑟→𝑐𝑑 |Φ⟩𝑙𝑟 = tr[(𝑈𝑙𝑟→𝑐𝑑)†𝑃𝑈𝑙𝑟→𝑐𝑑 |Φ⟩⟨Φ|𝑙𝑟]. (A.42)

From the above equation we find that the effective POVM on 𝑙𝑟 is given as
{(𝑈𝑙𝑟→𝑐𝑑)†𝑃𝑈𝑙𝑟→𝑐𝑑 ∶ 𝑃 ∈ {𝑃00, 𝑃10, 𝑃01, 𝑃11, 𝑃20, 𝑃02}}. (A.43)
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whose elements we will denote as 𝑀00, 𝑀10, 𝑀01, 𝑀11, 𝑀20 and 𝑀02. In sec­
tion A.3.5 we compute what these POVM­elements are and find a choice of Kraus
operators in section A.3.5 for both the case when the detector can count photons
and when it cannot.

Effective POVMs Here we compute the POVM­elements in equation (A.43) one­
by­one.
𝑀11:
Let us start with𝑀11 since this will allow us to relate these POVM­elements to 𝜒, i.e.
the probability that both detectors click, given that there was one photon in each
input arm. The operator 𝑃11 only has non­zero overlap with the term |𝜙, 𝜓⟩𝑐𝑑 ⟨11|𝑙𝑟
of 𝑈𝑙𝑟→𝑐𝑑 and is therefore given as

𝑀11 = (𝑈𝑙𝑟→𝑐𝑑)†𝑃11𝑈𝑙𝑟→𝑐𝑑 = |11⟩𝑙𝑟 ⟨𝜙, 𝜓|𝑐𝑑 𝑃11 |𝜙, 𝜓⟩𝑐𝑑 ⟨11|𝑙𝑟 . (A.44)

Let us evaluate the factor ⟨𝜙, 𝜓|𝑐𝑑 𝑃11 |𝜙, 𝜓⟩𝑐𝑑. Using equation (A.29) and equa­
tion (A.33) we find that the above expression evaluates to

⟨𝜙, 𝜓|𝑐𝑑 𝑃11 |𝜙, 𝜓⟩𝑐𝑑 =
1
2 ∫d𝜔1 ∫d𝜔2 𝜙

∗(𝜔1)𝜓∗(𝜔2)ei𝜔2𝜏

⟨0|𝑐𝑑 (𝑐(𝜔1) + 𝑑(𝜔1))(𝑐(𝜔2) − 𝑑(𝜔2))

× ∫d𝜔3 ∫d𝜔4 𝑐†(𝜔3)𝑑†(𝜔4) |0⟩⟨0|𝑐𝑑 𝑐(𝜔3)𝑑(𝜔4)

× 12 ∫d𝜔5 ∫d𝜔6 (𝑐
†(𝜔5) + 𝑑†(𝜔5))(𝑐†(𝜔6) − 𝑑†(𝜔6)) |0⟩𝑐𝑑

𝜙(𝜔5)𝜓(𝜔6)e−i𝜔6𝜏
(A.45)

= 1
4 ∫d𝜔1 ∫d𝜔2 ∫d𝜔3 ∫d𝜔4 ∫d𝜔5 ∫d𝜔6

𝜙∗(𝜔1)𝜓∗(𝜔2)𝜙(𝜔5)𝜓(𝜔6)ei𝜔2𝜏e−i𝜔6𝜏(
+ 𝛿(𝜔2 − 𝜔3)𝛿(𝜔3 − 𝜔6)𝛿(𝜔1 − 𝜔4)𝛿(𝜔4 − 𝜔5)
− 𝛿(𝜔2 − 𝜔3)𝛿(𝜔3 − 𝜔5)𝛿(𝜔1 − 𝜔4)𝛿(𝜔4 − 𝜔6)
− 𝛿(𝜔1 − 𝜔3)𝛿(𝜔3 − 𝜔6)𝛿(𝜔2 − 𝜔4)𝛿(𝜔4 − 𝜔5)
+ 𝛿(𝜔1 − 𝜔3)𝛿(𝜔3 − 𝜔5)𝛿(𝜔2 − 𝜔4)𝛿(𝜔4 − 𝜔6)) (A.46)

where we used the fact that ⟨0|𝑐𝑑 𝑐(𝜔1)𝑐†(𝜔2) |0⟩𝑐𝑑 = 𝛿(𝜔1 −𝜔2) and similarly for
arm 𝑑. Using that

∫d𝜔2 𝑓(𝜔2)𝛿(𝜔1 − 𝜔2) = 𝑓(𝜔1) (A.47)

we find that equation (A.46) evaluates to

1
2 ∫d𝜔1 ∫d𝜔2 (𝜙

∗(𝜔1)𝜓∗(𝜔2)𝜙(𝜔1)𝜓(𝜔2)

ei𝜔2𝜏e−i𝜔2𝜏 − 𝜙∗(𝜔1)𝜓∗(𝜔2)𝜙(𝜔2)𝜓(𝜔1)ei𝜔2𝜏e−i𝜔1𝜏 (A.48)
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Finally using equation (A.21) we find that 𝑀11 evaluates to

𝑀11 =
1
2(1 − |𝜇|

2) |11⟩⟨11|𝑙𝑟 (A.49)

where
𝜇 = ∫d𝜔 𝜙∗(𝜔)𝜓(𝜔)e−i𝜔𝜏 . (A.50)

From equation (A.49) we can relate |𝜇| to 𝜒 as

𝜒 = 1
2(1 − |𝜇|

2). (A.51)

𝑀20:
The operator 𝑃20 only has non­zero overlap with the term |𝜙, 𝜓⟩𝑐𝑑 ⟨11|𝑙𝑟 of 𝑈𝑙𝑟→𝑐𝑑
and is therefore given as

𝑀11 = (𝑈𝑙𝑟→𝑐𝑑)†𝑃20𝑈𝑙𝑟→𝑐𝑑 = |11⟩𝑙𝑟 ⟨𝜙, 𝜓|𝑐𝑑 𝑃20 |𝜙, 𝜓⟩𝑐𝑑 ⟨11|𝑙𝑟 . (A.52)

Lets evaluate the factor ⟨𝜙, 𝜓|𝑐𝑑 𝑃20 |𝜙, 𝜓⟩𝑐𝑑. Using equation (A.29) and equa­
tion (A.34) we find that the above expression evaluates to

⟨𝜙, 𝜓|𝑐𝑑 𝑃20 |𝜙, 𝜓⟩𝑐𝑑 =
1
2 ∫d𝜔1 ∫d𝜔2 𝜙

∗(𝜔1)𝜓∗(𝜔2)

ei𝜔2𝜏 ⟨0|𝑐𝑑 (𝑐(𝜔1) + 𝑑(𝜔1))(𝑐(𝜔2) − 𝑑(𝜔2))

× 12 ∫d𝜔3 ∫d𝜔4 𝑐
†(𝜔3)𝑐†(𝜔4) |0⟩⟨0|𝑐𝑑 𝑐(𝜔3)𝑐(𝜔4)

× 12 ∫d𝜔5 ∫d𝜔6 (𝑐
†(𝜔5) + 𝑑†(𝜔5))(𝑐†(𝜔6) − 𝑑†(𝜔6))

|0⟩𝑐𝑑 𝜙(𝜔5)𝜓(𝜔6)e−i𝜔6𝜏
(A.53)

= 1
8 ∫d𝜔1 ∫d𝜔2 ∫d𝜔3 ∫d𝜔4 ∫d𝜔5 ∫d𝜔6
𝜙∗(𝜔1)𝜓∗(𝜔2)𝜙(𝜔5)𝜓(𝜔6)ei𝜔2𝜏e−i𝜔6𝜏

× (𝛿(𝜔1 − 𝜔4)𝛿(𝜔2 − 𝜔3) + 𝛿(𝜔1 − 𝜔3)𝛿(𝜔2 − 𝜔4))

× (𝛿(𝜔3 − 𝜔6)𝛿(𝜔4 − 𝜔5) + 𝛿(𝜔3 − 𝜔5)𝛿(𝜔4 − 𝜔6)) (A.54)

where we used the fact that ⟨0|𝑐𝑑 𝑐(𝜔1)𝑐(𝜔2)𝑐†(𝜔3)𝑐†(𝜔4) |0⟩𝑐𝑑 = 𝛿(𝜔1−𝜔3)𝛿(𝜔2−
𝜔4) + 𝛿(𝜔2 − 𝜔3)𝛿(𝜔1 − 𝜔4). Then similarly to 𝑀11 we find that equation (A.54)
evaluates to

⟨𝜙, 𝜓|𝑐𝑑 𝑃20 |𝜙, 𝜓⟩𝑐𝑑 =
1
4(1 + |𝜇|

2) (A.55)

and we thus find 𝑀20 to be

𝑀20 =
1
4(1 + |𝜇|

2) |11⟩⟨11|𝑙𝑟 . (A.56)
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𝑀20:
Similarly to 𝑀20 we find that 𝑀02 evaluates to

𝑀02 =
1
2(1 + |𝜇|

2) |11⟩⟨11|𝑙𝑟 . (A.57)

𝑀10:
The operator 𝑃10 only has non­zero overlap with the terms |𝜙⟩𝑐𝑑 ⟨10|𝑙𝑟 and |𝜓⟩𝑐𝑑 ⟨01|𝑙𝑟
of 𝑈𝑙𝑟→𝑐𝑑 and is therefore given as

𝑀10 = (𝑈𝑙𝑟→𝑐𝑑)†𝑃10𝑈𝑙𝑟→𝑐𝑑 =
( |10⟩𝑙𝑟 ⟨𝜙|𝑐𝑑 + |01⟩𝑙𝑟 ⟨𝜓|𝑐𝑑 )𝑃10( |𝜙⟩𝑐𝑑 ⟨10|𝑙𝑟 + |𝜓⟩𝑐𝑑 ⟨01|𝑙𝑟 ). (A.58)

Lets evaluate the factors ⟨𝜙|𝑐𝑑 𝑃10 |𝜙⟩𝑐𝑑, ⟨𝜓|𝑐𝑑 𝑃10 |𝜓⟩𝑐𝑑, ⟨𝜙|𝑐𝑑 𝑃10 |𝜓⟩𝑐𝑑 and
⟨𝜓|𝑐𝑑 𝑃10 |𝜙⟩𝑐𝑑 one­by­one. First we have that:

⟨𝜙|𝑐𝑑 𝑃10 |𝜙⟩𝑐𝑑 =
1
√2

∫d𝜔1 𝜙∗(𝜔1) ⟨0|𝑐𝑑 (𝑐(𝜔1) + 𝑑(𝜔1))

× ∫d𝜔2 𝑐†(𝜔2) |0⟩⟨0|𝑐𝑑 𝑐(𝜔2)

× 1
√2

∫d𝜔3 (𝑐†(𝜔3) + 𝑑†(𝜔3)) |0⟩𝑐𝑑 𝜙(𝜔3)

= 1
2 ∫d𝜔1 ∫d𝜔2 ∫d𝜔3 𝜙

∗(𝜔1)𝜙(𝜔3)𝛿(𝜔1 − 𝜔2)𝛿(𝜔2 − 𝜔3)

= 1
2 ∫d𝜔 |𝜙(𝜔)|

2

= 1
2. (A.59)

and similarly that

⟨𝜓|𝑐𝑑 𝑃10 |𝜓⟩𝑐𝑑 =
1
2. (A.60)

Furthermore, we find that

⟨𝜙|𝑐𝑑 𝑃10 |𝜓⟩𝑐𝑑 =
1
√2

∫d𝜔1 𝜙∗(𝜔1) ⟨0|𝑐𝑑 (𝑐(𝜔1) + 𝑑(𝜔1))

× ∫d𝜔2 𝑐†(𝜔2) |0⟩⟨0|𝑐𝑑 𝑐(𝜔2)

× 1
√2

∫d𝜔3 (𝑐†(𝜔3) − 𝑑†(𝜔3)) |0⟩𝑐𝑑 𝜓(𝜔3)e−i𝜔3𝜏

= 1
2 ∫d𝜔1 ∫d𝜔2 ∫d𝜔3 𝜙

∗(𝜔1)𝜓(𝜔3)e−i𝜔3𝜏𝛿(𝜔1 − 𝜔2)𝛿(𝜔2 − 𝜔3)

= 1
2 ∫d𝜔 𝜙

∗(𝜔)𝜓(𝜔)e−i𝜔𝜏

= 1
2𝜇. (A.61)
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where 𝜇 is defined in equation (A.50). One easily then finds that

⟨𝜓|𝑐𝑑 𝑃10 |𝜙⟩𝑐𝑑 = (⟨𝜙|𝑐𝑑 𝑃10 |𝜓⟩𝑐𝑑)∗ =
1
2𝜇

∗. (A.62)

Combining the above results, we find that 𝑀10 is given as

𝑀10 =
1
2( |10⟩⟨10|𝑙𝑟 + |01⟩⟨01|𝑙𝑟 + 𝜇 |10⟩⟨01|𝑙𝑟 + 𝜇

∗ |01⟩⟨10| ) (A.63)

𝑀10:
Similarly to 𝑀10 one finds that 𝑀01 evaluates to

𝑀01 =
1
2( |10⟩⟨10|𝑙𝑟 + |01⟩⟨01|𝑙𝑟 − 𝜇 |10⟩⟨01|𝑙𝑟 − 𝜇

∗ |01⟩⟨10| ) (A.64)

𝑀00:
Its easy to see that

𝑀00 = |00⟩⟨00|𝑙𝑟 . (A.65)

POVM for photon­counter detectors To summarize we found that the POVM­
elements are given as

𝑀00 = (
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

) (A.66)

𝑀10 =
1
2 (

0 0 0 0
0 1 𝜇 0
0 𝜇∗ 1 0
0 0 0 0

) (A.67)

𝑀01 =
1
2 (

0 0 0 0
0 1 −𝜇 0
0 −𝜇∗ 1 0
0 0 0 0

) (A.68)

𝑀11 =
1
2
⎛

⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1 − |𝜇|2

⎞

⎠

(A.69)

𝑀20 =
1
4
⎛

⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1 + |𝜇|2

⎞

⎠

(A.70)

𝑀02 =
1
4
⎛

⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1 + |𝜇|2

⎞

⎠

(A.71)
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where the rows and columns of the above matrices are ordered as |00⟩⟨00|𝑙𝑟,
|10⟩⟨10|𝑙𝑟, |01⟩⟨01|𝑙𝑟, |11⟩⟨11|𝑙𝑟 and 𝜇 is given as

𝜇 = ∫d𝜔 𝜙∗(𝜔)𝜓(𝜔)e−i𝜔𝜏 . (A.72)

and is related by to the probability that both detectors click, given that there were
one photon in each input arm 𝜒 as

𝜒 = 1
2(1 − |𝜇|

2). (A.73)

POVM for non­photon­counter detectors If the detectors used cannot dis­
tinguish between one and two photons we can simply add the POVM elements 𝑀10
and 𝑀20 to get a new POVM given as

𝑀̃00 = (
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

) (A.74)

𝑀̃10 =
1
2
⎛

⎝

0 0 0 0
0 1 𝜇 0
0 𝜇∗ 1 0
0 0 0 (1 + |𝜇|2)/2

⎞

⎠

(A.75)

𝑀̃01 =
1
2
⎛

⎝

0 0 0 0
0 1 −𝜇 0
0 −𝜇∗ 1 0
0 0 0 (1 + |𝜇|2)/2

⎞

⎠

(A.76)

𝑀̃11 =
1
2
⎛

⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1 − |𝜇|2

⎞

⎠

(A.77)

Effective Kraus operators

Given the POVMs in equation (A.66)­(A.71) and equation (A.74)­(A.77) one can
choose corresponding Kraus operators for these measurements by taking the matrix
square root of the corresponding POVM­elements. Assuming that 𝜇 is real one finds
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a set of Kraus operators of the POVM {𝑀̃00, 𝑀̃10, 𝑀̃01, 𝑀̃11} to be

𝐸̃00 = (
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

) (A.78)

𝐸̃10 =
1
2
⎛
⎜⎜

⎝

0 0 0 0
0 (√1 + 𝜇 + √1 − 𝜇)/√2 (√1 + 𝜇 − √1 − 𝜇)/√2 0
0 (√1 + 𝜇 − √1 − 𝜇)/√2 (√1 + 𝜇 + √1 − 𝜇)/√2 0

0 0 0 √1 + |𝜇|2

⎞
⎟⎟

⎠
(A.79)

𝐸̃01 =
1
2
⎛
⎜⎜

⎝

0 0 0 0
0 (√1 + 𝜇 + √1 − 𝜇)/√2 (√1 − 𝜇 − √1 + 𝜇)/√2 0
0 (√1 − 𝜇 − √1 + 𝜇)/√2 (√1 + 𝜇 + √1 − 𝜇)/√2 0

0 0 0 √1 + |𝜇|2

⎞
⎟⎟

⎠
(A.80)

𝐸̃11 =
1
√2

⎛
⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 √1 − |𝜇|2

⎞
⎟

⎠

. (A.81)

A.3.6. Classical communication
Optical Link Error Model
We claimed that we highly inflated losses in the simulation to stress test our proto­
col. We now consider more realistic values for such errors by considering a realistic
packet­level error model for the non­quantum optical link. For this we have as­
sumed that two quantum internet end nodes are connected by a legacy 1000BASE­
ZX single­mode 1550 nm wavelength Gigabit Ethernet link. The reason for choosing
1000BASE­ZX interface is (i) its achievable long­distance transmission at least up
to 70 km with no dependency on optical repeaters and (ii) decades of its successful
deployment within magnitude of networks worldwide.

To be conservative, our optical Gigabit Ethernet model assumes a typical worst­
case optical link budget (0.5 dB/km attenuation2, 0.7 dB/connector loss, 0.1 dB/splice/
(joint) loss, and 3 dB safety margin) [27]. We also assume a typical worst­case
−1 dBm optical transmission power and −24dB receiver sensitivity of a 1000BASE­
ZX small form­factor hot pluggable transceiver, see e.g. [28]. For a maximum real­
ism of link error over an optical link we model a IEEE 802.3 frame errors, instead of
modeling individual bit errors of every message sent across the network. The lat­
ter would require a software implementation of a complete modulation and coding

2Fibers measured for QL2020 have been found to have this loss level.
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layer of IEEE 802.3 which is beyond the scope of this work. Using measurement
trace­driven packet­level Gigabit Ethernet frame error data from [29, Table 6.1] we
have mapped the received SNR per transmitter/receiver distance to the respective
frame error probability, which was then applied to every classical message sent
over an optical link between quantum end nodes. SNR values that were not repre­
sented in the measurements of [29] have been linearly interpolated. We have not
distinguished between the lengths of each classical message as the model of [29]
has aggregated over all messages captured over a measured campus Ethernet link
(cf. [29, Fig. 6.1]). We note that our modeling approach is equivalent to the frame
error models applied in e.g. NS­3 [30] for WiFi frame errors.

For two example long­distance Quantum Internet typologies (node­to­node dis­
tance of 15 km and 20 km, respectively) we have ended up in a perfect frame error
probability, with the assumption that amount of splices is zero3 (we only start to
observe frame errors only at transmitter/receiver distance exceeding 40 km for the
above model variables, with a very narrow transition error between no frame er­
ror rate and disconnected interface, i.e. frame error rate of one). Even when we
increase the number of splices to an exaggerated level, say 30 splices for a 15 km
interface (with 0.3 dB loss/splice), we still observe a very low frame error proba­
bility of 4×10­8. Therefore, to test the effect of frame errors on the non­quantum
optical link on the Quantum Internet protocol stack—in the cases of extreme frame
loss—we have increased the value of frame error to 10­4 (and tested frame error
rate up to 10­10—an error rate level of a 20 km link with 21 splices—in steps of
10­1). If our protocol would work in such a high (but unrealistic) condition then it
would also work on a realistic low­error optical link.

Optical Link CRC Error Model
Additionally, we have investigated a non­zero probability of CRC not being able
to detect a frame error. Assuming the same optical link type (e.g. 1000BASE­
ZX) we have used a model of [32] to calculate the respective probability of not
detecting a CRC frame error within a IEEE 802.3 frame. For this we have mapped
the transmitter/receiver distance to the respective SNR (the same way as described
in Section A.3.6). Then we mapped the SNR to the respective BER using [29, Table
6.3] (performing the same process of interpolating SNR between the points not
measured by [29] as for the optical link error model, see again Section A.3.6) and
then using [32, Fig. 1] mapped this resulting SNR to the respective probability
of undetected error. We have assumed a worst case scenario of the longest IEEE
802.3 frame (i.e. 𝑛 = 12144 bits, that is a maximum MTU). Again, for any of the
two Quantum Internet lengths mentioned above, we do not find any CRC errors.
At the highly­spliced case, considered in Section A.3.6, we obtain an extremely low
CRC error rate of 1.4×10­23. Therefore such errors were decided to be ignored
in our implementation. Another reason for not considering these errors: it would
require a full implementation of en­ and decoding of classical frames which outside
the scope of this work.

3Which is consistent with the measurements, e.g. in [31, Section 4].



A

278 A. A Link Layer Protocol for Quantum Networks

A.4. Protocols
Here we give details of the implementation of the physical and link layer protocols
in our simulations. In the following we assume that packets obey network byte
ordering (Big Endian).

A.4.1. Distributed Queue Protocol
In order to track the individual applications that the entangled qubits belong to,
the QEGP makes use of a distributed queue which shares request information be­
tween peers. Management of the distributed queue is performed by the Distributed
Queue Protocol (DQP). In addition to storing the parameters supplied with a CRE­
ATE request generated by the layers above the link layer4, DQP will keep additional
information about each entanglement request including its create_time, min_time
at which the request may be executed and MHP timeout cycle by which the en­
tanglement request will time out. We proceed with the introduction of the DQP by
describing the structure of priority queues, followed by the queue establishment
process, DQP message sequence diagram and DQP associated messages.

Priority Queues
Priorities are necessary to fulfill the use case requirements outlined in section 2.3.
This is accomplished by adding requests to different types of queues 𝒬 = {𝑄1, … , 𝑄𝐿},
where 𝐿 is the total number of queues in the distributed queue. Each queue can
contain a maximum of 𝑥 items simultaneously (in other words 𝑥 is the maximum
size of each individual queue), where an item is an individual entanglement request
with its associated metadata, e.g. create_time, min_time, MHP timeout cycle. Each
CREATE request is assigned a queue number by the scheduler (see Section A.4.3
below), and receives an absolute queue ID which is a tuple (𝑗, 𝑖𝑗) where 𝑗 indicates
the designated queue 𝑄𝑗 (or, more abstractly, the queue ID of the entanglement
request) and 𝑖𝑗 is a unique ID within 𝑄𝑗. We will denote (𝑗, 𝑖𝑗) as the absolute queue
ID or 𝑎𝐼𝐷, and use (𝑗, 𝑖𝑗) ∈ 𝒬 to indicate that a request with the absolute queue ID
(𝑗, 𝑖𝑗) is in the queue 𝒬.

The absolute queue ID must obey the following properties:

• Total order: Items on each queue follow a total order of items waiting in the
queue determined by 𝑖𝑗.

• Arrival time: ID of an entanglement (CREATE) request is a function of its
arrival time. Let 𝑡1 and 𝑡2 denote the create_time of entanglement requests
1 and 2, respectively. Then, let 𝑖1 and 𝑖2 denote their respective absolute
queue ID’s. If both requests are added to the same queue 𝑄𝑗, and 𝑡1 < 𝑡2,
then request 1 should be processed before request 2.

We will now outline the distributed queue establishment within DQP.

4Refer section 2.4 for the details of the CREATE request.
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DQP Queue Establishment
The core objective of DQP is to obtain shared queues at both nodes, i.e. the
items and the order of the elements in the queues are agreed upon. That is, both
controllable end nodes 𝐴 and 𝐵 hold local queues 𝒬𝐴 = {𝑄𝐴1 , … , 𝑄𝐴𝐿 } and 𝒬𝐵 =
{𝑄𝐵1 , … , 𝑄𝐵𝐿 } respectively, which are synchronized using the DQP. CREATE request
additions to the queue 𝑄𝑗 can be made by either 𝐴 or 𝐵 invoking the DQP by the
function ADD(𝑗, 𝑐𝑟), where 𝑐𝑟 is the entanglement request by CREATE message.
ADD returns a tuple (𝑖𝑗 , 𝑅) where 𝑅 indicated success or failure. Failure can occur if

• no acknowledgments are received within a certain time frame, i.e. a timeout
occurs,

• the remote node rejects addition to the queue, or

• the queue is full.

Success means that the request to create entanglement is placed into 𝒬𝐴 and
𝒬𝐵 such that the following properties are satisfied:

• Equal queue number: If a request is added by 𝐴 as (𝑗, 𝑖𝑗) ∈ 𝒬𝐴, then it will
(eventually) be added at 𝐵 with the same absolute queue ID (𝑗, 𝑖𝑗) ∈ 𝒬𝐵 (and
vice versa);

• Uniqueness of queue ID: If a request is placed into the queue by either 𝐴
or 𝐵, then it is assigned a unique queue number. That is, if (𝑗, 𝑎) ∈ 𝒬𝐴 and
(𝑗, 𝑎′) ∈ 𝒬𝐴 reference two distinct CREATE requests, then 𝑎 ≠ 𝑎′;

• Consistency: If (𝑗, 𝑖𝑗) ∈ 𝒬𝐴 and (𝑗, 𝑖𝑗) ∈ 𝒬𝐵 then both absolute queue IDs
refer to the same request5;

• Fairness: If 𝐴 (or 𝐵) is issuing requests continuously, then also the other node
𝐵 (or 𝐴) will get to add items to the queue after 𝐴 (or 𝐵) in a “fair manner“
as determined by the window size, denoted as 𝑊𝐴 (𝑊𝐵). More precisely,
if 𝑎1, … , 𝑎𝑁 are CREATE requests submitted at 𝐴, and 𝑏1, … , 𝑏𝑀 are CREATE
requests submitted at 𝐵 with 𝑁 > 𝑊𝐴 and 𝑀 > 𝑊𝐵—all assigned to the same
queue 𝑄𝑗 but not yet added—then the final ordering of the requests on the
queue obeys 𝑎1, … , 𝑎𝑚 , 𝑏1, … , 𝑏𝑘 , 𝑎𝑚+1, … with 𝑚 ≤ 𝑊𝐴 and 𝑘 ≤ 𝑊𝐵.

Recall that each request receives a minimum time before it can be executed—a
time buffer before the request may begin processing which takes into account the
processing time to add it into the queue (denoted by the min_time)—which we
will choose to be the expected propagation delay between 𝐴 and 𝐵. The purpose
of this minimum time is to decrease the likelihood 𝐴 or 𝐵 wants to produce an
entanglement before the other node is ready. If either 𝐴 or 𝐵 begins processing
early, no penalty other than reduced performance due to increased decoherence of
the quantum memory results. Refer to Section A.4.1 on how this minimum time is
passed between nodes.
5This is implied by the previous two conditions, but added for clarity.
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Distributed Queue 𝑀 Distributed Queue 𝑆

ADD

ACK/REJ

Figure A.14: DQP operation timeline. User𝑀 (master) adds an item to the distributed queue by sending
an ADD message to peer node 𝑆 (slave). 𝑆 either acknowledges or rejects the request using ACK and
REJ messages, respectively. Note that this process is symmetric when 𝑆 attempts to add an item to the
queue. For a definition of all messages refer to Figure A.15.

We recall that in the current implementation of quantum network we have two
nodes only. This implies that the queue establishment can be realized by one node
being the master controller of the queue marshaling access to the queue, and the
other the slave controller. Extensions to multiple nodes are more complex, and a
motivation to consider heralding station­centric protocols in the future versions of
the protocol. Also, as we have two nodes only, there is no need for the introduction
of leader election or a network discovery mechanism. We leave this as future work.

DQP Sequence Diagrams
Figure A.14 shows a DQP sequence diagram of adding an item to the queue con­
taining a request to the distributed queue. Specifically, an item is an entanglement
create request with its associated properties that is passed inside an ADD message
within its REQ field, refer to Figure A.15 for details.

Upon receiving an ADD message from master 𝑀, a slave 𝑆 may choose to ac­
knowledge the item with an ACK message, should validation pass, or reject it with
the REJ message for any of the previously mentioned reasons. In the case that
master 𝑀 never receives an acknowledgment (ACK) or rejection (REJ) message af­
ter a timeout, the item will not be placed in the queue and no processing will occur
on the request. Loss of ADD, REJ, and ACK messages in the distributed queue
protocol result in retransmissions of the original ADD to guarantee the receipt of
rejection and acknowledgement messages.

When the slave 𝑆 wishes to add an item to the queue, a message containing the
request information and desired queue is included within the messages. Because
the master controller has the final say on the state of the queue, a sequence num­
ber within the specified queue will be transmitted in return to the slave such that
absolute queue IDs are consistent between the nodes.

DQP Packet Formats
Figure A.15 presents the packet format for messages exchanged in the DQP. Sched­
ule Cycle and Timeout Cycle of 64 bits is governed by the maximum number of MHP
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPT (reserved) FT CSEQ QID QSEQ

Schedule Cycle

Timeout

Minimum Fidelity

Purpose ID Create ID

Number of Pairs Priority (reserved)

Initial Virtual Finish

Estimated Cycles/Pair

ST
R

AT
M

M
D

M
R (reserved)

Figure A.15: Packet format for ADD, ACK, and REJ. Explanation of the message fields—OPT: field re­
served for future options, FT: frame type (00: ADD, 01: ACK, 10: REJ), CSEQ: the communication
sequence number of the transmitted message (encoded as an integer in [0, 255]); QID: the ID of the
queue to add the request to (encoded as an integer in [0,15]); QSEQ: the sequence number within
the specified queue to assign the request (encoded as an integer in [0,255]); Schedule Cycle: the first
MHP cycle when the request may begin (encoded as an integer with 64 bits, equivalent to min_time);
Timeout: The MHP cycle when the request will time out (encoded as an integer with 64 bits); Minimum
Fidelity: The desired minimum fidelity, between 0 and 1; Priority: The priority of this request; Initial
Virtual Finish and Estimated Cycles Pair: Scheduling information for weighted fair queuing; STR: store
flag, ATM: atomic flag, MD: measure directly flag, MR: master request flag.

cycles in the scheduler. Purpose ID of 16 bits enables pointing to 216 different ap­
plications and the total number of uniquely addressed applications and follows from
the number chosen for IPv4. Create ID defines the identifier of locally created re­
quest. Number of pairs enables to request up to 216 pairs. Priority field of 4 bits is
used as we enable 16 local queues composing the distributed queue and each one
represents a priority lane. Initial Virtual Finish is used for weighted fair queuing.

A.4.2. Midpoint Heralding Protocol

The purpose of MHP is to create entanglement using a midpoint heralding protocol.
The operation of the MHP is defined by Protocol A.4.2. We provide table A.6 as a
reference to the reader when tracing the protocol.
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Variable/Parameter Possible Values
Pulse Sequence Identifier PSEQ A bit string identifier.
Absolute Queue ID aID Pair (𝑗, 𝑖𝑗) where 𝑗 ∈ [0, 15] and 𝑖𝑗 ∈ [0, 255].
MHP Error mhperr QUEUE_MISMATCH (1), TIME_MISMATCH (2),

NO_MESSAGE_OTHER (3), GEN_FAIL (4)

Table A.6: Reference table for variables and parameters in the MHP protocol description.

Protocol 1 MHP for use with the Node­Centric QEGP

Definition of functions and variables.

• POLLQEGP: process to poll for entanglement parameters from QEGP; it re­
turns:

– flag: true/false indicating whether entanglement should be attempted
or not;

– PSEQ: The pulse sequence identifier that should be issued to the hard­
ware to initialize communication qubit and produce spin­photon entan­
glement. May also instruct the hardware to store the spin state within a
storage qubit.

– aID: Absolute queue ID, i.e. (𝑗, 𝑖𝑗), of the request entanglement is being
attempted for (aID,A and aID,B for nodes 𝐴 and 𝐵, respectively);

– params: parameters to use for the entanglement attempt such as bright
state population 𝛼;

• mhperr: error in MHP reported to QEGP through REPLY message (REPLYA and
REPLYB sent to nodes 𝐴 and 𝐵, respectively), which can take the following
values:

– GEN_FAIL: general failure that occurs locally at the MHP (failed qubit
initialization; other errors). Note: this error message is passed to QEGP
locally and not included in the REPLY message (see Figure A.19);

– QUEUE_MISMATCH: an error sent by the midpoint when aID included in
frame from 𝐴 does not match aID included in frame from 𝐵;

– TIME_MISMATCH: when messages from 𝐴 and 𝐵 does not arrive at mid­
point within the same time interval;

– NO_MESSAGE_OTHER: when the midpoint receives a message from only
one of 𝐴 or 𝐵;

• GEN: the frame sent by 𝐴 and 𝐵 to the midpoint requesting entanglement.
The contents include:

– aID: same as aID above;
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Protocol 1 (cont.) MHP for use with the Node­Centric QEGP

• REPLYA and REPLYB: the REPLY frames sent to 𝐴 and 𝐵 respectively. The
contents include:

– outcome: the outcome of the attempted entanglement at the midpoint,
also encodes the error that occurred for the attempt at entanglement
(see errors listed above); stored locally at mid­point.

– seqMHP: the sequence number from the MHP;

– aID,receiver: The absolute queue ID that was submitted by the node re­
ceiving the REPLY.

– aID,peer: The absolute queue ID that was submitted by peer node.

Initialization. Initialize sequence numbers (set initial seqMHP = 0 at 𝐻). Start timer
using a global synchronized clock.

The protocol, executed at each time step:

1. Executed at Node 𝐴 or Node 𝐵:

(a) Poll QEGP, i.e. POLLQEGP= (flag, PSEQ, aID, params)

(b) If flag=true, i.e., we want to make entanglement:

i. Issue 𝑃𝑆𝐸𝑄 to hardware to initialize communication qubit and pro­
duce spin­photon entanglement. 𝑃𝑆𝐸𝑄 may also instruct the hard­
ware to store spin state in a storage qubit. If any failures occur, send
mhperr= GEN_FAIL back to the QEGP and skip to next time step.

ii. Use GEN = (aID) and transmit to midpoint upon photon emission.
iii. If params specifies a sequence of rotations and a measurement:

A. Perform the measurement basis rotation specified using
𝑅𝑂𝑇𝑋1, 𝑅𝑂𝑇𝑌, 𝑅𝑂𝑇𝑋2 ∈params.

B. Measure the communication qubit and obtain result 𝑏.
C. Set RESULT=(outcome=null, seqMHP=null, aID, err=000, b=𝑏)
and pass to QEGP.
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Protocol 1 (cont.) MHP for use with the Node­Centric QEGP

2. Heralding station 𝐻:

(a) Perform the following upon receipt of GEN messages:

i. If messages from 𝐴 and 𝐵 do not arrive within the same time interval,
let mhperr = TIME_MISMATCH and send REPLYA =(mhperr, seqMHP,
aID,A, ID,B) to 𝐴 and REPLYB =(mhperr, seqMHP, aID,B, aID,A) to 𝐵.

ii. If aID,A ≠ aID,B, then set mhperr = QUEUE_MISMATCH and send
REPLYA =(mhperr, seqMHP, aID,A,aID,B) to 𝐴 and REPLYB =(mhperr,
seqMHP, aID,B,aID,A) to 𝐵.

iii. If GEN arrives only from A, set mhperr = NO_MESSAGE_OTHER
and send REPLY = (mhperr, seqMHP, aID,A, aID,B=null) to A, where
aID,B=null indicates leaving the field as the zero string. Perform vice
versa if GEN arrives only from 𝐵.

iv. If no errors occurred then execute quantum swap. Inspect detection
result within corresponding time window with 𝑟 ∈ {0, 1, 2} where 0
denotes failure and 1 and 2 denote the creation of states one and two
respectively. If 𝑟 ∈ {1, 2}, an increasing sequence number seqMHP is
chosen by the heralding station (incrementing a counter) to be sent
to both 𝐴 and 𝐵. Midpoint sends REPLY = (outcome, seqMHP, aID, aID)
to 𝐴 and 𝐵.

3. Executed at Node 𝐴 or Node 𝐵(here aID,local=aID,A, aID,peer=aID,B in 𝐴 and
vice versa in 𝐵):

(a) If REPLY = (outcome, seqMHP, aID,local, aID,peer) returns from midpoint:

i. Set RESULT=(outcome, seqMHP, aID,local, err=000, aID,peer, b=null) and
pass to QEGP.

(b) Else if REPLY=(mhperr, seqMHP, aID,local, aID,peer) returns from the mid­
point:

i. Set RESULT=(outcome=0, seqMHP, aID,local, err=mhperr, aID,peer,
b=null) and pass to QEGP.

MHP Sequence Diagrams
The MHP sequence diagram is defined by two cases: the successful —see Fig­
ure A.16, and unsuccessful one—see Figure A.17. Specifically, there are three
failure scenarios that may occur in the MHP protocol: queue mismatch error (Fig­
ure A.17a)—where the message consistency check fails at the midpoint—, single­
sided transmission error (Figure A.17b) and time mismatch of the messages arriving
at 𝐻.
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Station 𝐴 Heralding Station 𝑀 Station 𝐵

GEN,𝑝 GEN,𝑝

REPLY REPLY

Figure A.16: Timeline of the MHP message exchange with a successful reply by the heralding station;
𝑝 is a photon associated with the GEN message. For a definition of GEN and REPLY message refer to
Figure A.18 and Figure A.19, respectively.

Station 𝐴 Heralding Station 𝑀 Station 𝐵

GEN,𝑝 GEN,𝑝

ERR(QM) ERR(QM)

(a) Queue mismatch error

Station 𝐴 Heralding Station 𝑀 Station 𝐵

GEN,𝑝

ERR(NCO)

(b) Single­sided transmission error

Figure A.17: Timeline of two types of errors within MHP. For a definition of GEN and REPLY message
refer to Figure A.18 and Figure A.19, respectively. QM and NCO refer to specific fields of the REPLY
message (i.e. OT field), i.e. QUEUE_MISMATCH and NO_MESSAGE_OTHER, respectively; both error
types are explained in Protocol A.4.2.

MHP Packet Formats
MHP relies on the exchange of the packets listed in the MHP sequence diagrams, see
Figure A.16 and Figure A.17: GEN and REPLY. Table A.7 shows the header encoding
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for the messages (we detail the packet specification for MHP_UP in section A.4.3).

Type Encoding
GEN 000000000001
RESULT 000000000010
REPLY 000000000011
ERROR 000000000100
MHP_UP 000000000101

Table A.7: MHP packet header encodings.

GEN packet (Figure A.18) is used by the midpoint to determine whether the
nodes are consistent in their local information regarding their knowledge of the
attempt at entanglement.

REPLY packet (Figure A.19) is sent by the midpoint in the case of no error. It
will include the senders’ submitted absolute queue ID (i.e. QID and QSEQ) and ad­
ditionally pass on the submitted queue ID of the peer node (i.e. QIDP and QSEQP).
The sequence number, SEQ, denotes the number of successful heralded entangle­
ment generations that have occurred at the midpoint heralding station and allows
the end nodes to keep track of the number of entangled pairs that have been gener­
ated. OT encodes the heralding signal from the midpoint upon successful operation
and encodes errors in case of failures.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Header QID QSEQ (reserved)

Figure A.18: GEN packet format (used in MHP) sent by end stations to heralding station (midpoint). The
pair (QID, QSEQ) represents the absolute queue ID where QID and QSEQ are encoded as integers, in
other words they map to (𝑗, 𝑖𝑗)—see Section A.4.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Header OT SEQ

QID QSEQ QIDP QSEQP (reserved)

Figure A.19: RESULT/REPLY/ERR packet format (used in MHP) for replies by midpoint with no error.
OT: outcome/error reported by midpoint, where 0000 encodes non­success, 0001 and 0010 encode the
two different successes, and error codes include 1001: QUEUE_MISMATCH: 1010: TIME_MISMATCH,
1100: NO_MESSAGE_OTHER, (refer to Protocol A.4.2 for the above error description); SEQ: sequence
number (integer in [0,65535]); QIDP: QID Peer; QSEQP: QSEQ Peer; QID and QSEQ are defined the
same as in for GEN message—see Figure A.18.

A.4.3. Entanglement Generation Protocol
The role of the Entanglement Generation Protocol (QEGP) is to produce the required
entanglement between two end nodes or otherwise declare failure.
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Entanglement Generation Scheduler
We now proceed with the description of the scheduler—refer to Protocol A.4.3 for
details. The QEGP scheduler fulfills the following arbitrage functions, where we
remark that for CREATE requests that demand multiple EPR pairs, only one request
is added to the queue, and hence NEXT (function to select the next request from
the local set of queues, see below) will return multiple pairs to be produced for the
same request when called successively.

• GET_QUEUE(creq): Once a request has been submitted, GET_QUEUE chooses
which queue 𝑄𝑗 to assign the CREATE request creq to. This may depend on
the details of the request, such as for example 𝑡max, or 𝐹min as well as the
purpose ID and priority.

• NEXT: Selects the next request from the local set of queues 𝒬 to serve, if any.
Specifically, NEXT will determine:

– Flag, set to true when a request is ready to be served;
– Absolute queue ID (and corresponding request details) of request to be
served;

– Parameters to use in the MHP depending on the number of type of out­
standing requests;

– Communication and storage qubits, determined in cooperation with QMM.

Protocol Description
Protocol A.4.3 presents a description of the Entanglement Generation Protocol. We
additionally provide a reference table in table A.8 indicating values that various
variables and parameters may take throughout the protocol to assist the reader.

Variable/Parameter Possible Values
Request Type K (Create and Keep, 1), MD (Measure Di­

rectly, 2), RSP (Remote State Prep., 3)
Number of pairs 𝑛 Integer in [1,65535]
Minimum/Estimated Fidelity 𝐹𝑚𝑖𝑛 Decimal number in [0,1]
Maximum Time 𝑡max Integer in [0,16384]
Purpose ID Integer in [0, 65535]
Priority Integer in [0,15]
Sequence Numbers (seqexpected,seqMHP) Integer in [0,65535]
Queue ID Integer in [0,15]
Protocol Error proto_err ERR_NOSUPP (1), ERR_NOTIME (2),

ERR_REJECTED (3), ERR_EXPIRE (4),
ERR_TIMEOUT (5)

Scheduler flag True/False
Qubit IDs (logical_id) Integer in [0,15]
Rotation Angles (ROTX1,ROTY/ROTX2) Integers in [0,255]

Table A.8: Reference table for variables and parameters used in the QEGP.
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Protocol 2 QEGP ­ Node A (B analogous exchanging A and B)

Definition of functions and variables.

• Node ID: the ID of the peer we want to create entanglement with;

• 𝑛: the number of entangled pairs we wish to create;

• 𝐹min: the minimum acceptable fidelity required for the generated pairs;

• 𝑡max: the maximum amount of time the higher layer is willing to wait for the
entanglement to be created

• Purpose ID: port/application ID the requested this entanglement—used for
forwarding OK messages to the appropriate application;

• priority: The priority of the request;

• seqexpected: The expected sequence number from the midpoint. Initially set
to 1;

• 𝑗 =GET_QUEUE(𝑐𝑟): The call to the scheduler to obtain the queue ID of 𝑄𝑗
where the request should be placed in the distributed queue.

• (𝑖𝑗 , 𝑜𝑘)=ADD(𝑗, creq): The call to the distributed queue to add the create
request 𝑐𝑟 to 𝑄𝑗. 𝑖𝑗 is the unique ID of the request within 𝑄𝑗 and 𝑜𝑘 is a
status code of performing the ADD to the distributed queue. Can take the
values success (item added), timeout (communication timeout with peer
while adding), or reject (the peer rejected adding the item to the queue);

• ERR_NOTIME: Error issued to higher layers by the QEGP upon receiving
OK=timeout from adding item to queue;

• ERR_REJECT: Error issued to higher layers by the QEGP upon receiving
OK=reject from adding item to queue;

• (𝑓𝑙𝑎𝑔, (𝑗, 𝑖𝑗), 𝑃𝑆𝐸𝑄, 𝑝𝑎𝑟𝑎𝑚𝑠) =NEXT(): The call to the scheduler to ob­
tain information for the next entanglement generation attempt where
flag=True/False indicates whether entanglement should be attempted
(same in MHP outline), (𝑗, 𝑖𝑗) is the absolute queue ID of the create request
being served, PSEQ is a pulse sequence identifier encoding the communica­
tion and storage qubit information to use for entanglement attempts, and
params encodes the parameters to use for entanglement attempts (same as
params in MHP outline);

• proto_err: Status of the attempt at entanglement, encodes the mhperr from
the MHP outline if an error occurred, 0 if no errors happened;

• create_time: timestamp of when the entanglement was generated;

• 𝐹est: the goodness passed in the frame, the estimate of the fidelity of the
entangled qubits;
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Protocol 2 (cont.) QEGP ­ Node A (B analogous exchanging A and B)

• logical_id: The storage qubit ID where the entangled qubit is stored, for use
by higher layers;

• 𝑡𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 ­ A timestamp of when 𝐹est was record.

• 𝑘: the number of pairs left to generate for the request.

• 𝑅𝐵: A buffered reply from the MHP initialized to null.

• 𝑀𝐵 and 𝐵𝐵: Buffers containing measurement results and basis choices re­
spectively, initialized to be empty.

• 𝑇𝑅𝑆𝑃: A table containing locally stored basis information for Remote State
Preparation requests, initialized to be empty.

• ROTX1(Y,X2): Rotation angles (multiples of 𝜋
255 ) used to perform basis rota­

tions for requests of type Measure Directly and Remote State Preparation.

Initialization. Query Physical Translation Unit (PTU) and load rotation angles
(ROTX1, ROTY, ROTX2) for random bases {𝑋, 𝑌, 𝑍, 𝑍+𝑋2 , 𝑍−𝑋2 }. Establish the dis­
tributed queue with peer and negotiate master­slave relationship. Exchange tim­
ing, device capability, and permitted purposeID information with peer for request
validation.

The protocol.

1. Adding to Queue:

(a) Validate the request against exchanged device capabilities of A and B. If
validation fails, issue ERR_NOSUPP and stop.

(b) Ask scheduler which queue this request should be added to: 𝑗 =
GET_QUEUE(𝑐𝑟).

(c) If the request is of type RSP, strip the ROTX1,ROTY,ROTX2 basis infor­
mation and store in a local variable 𝐼𝑏. Try to add request to the queue
using the DQP: (𝑖𝑗 , 𝑜𝑘) = ADD(𝑗, 𝑐𝑟).

(d) If 𝑜𝑘 = timeout error, issue ERR_NOTIME and stop.

(e) If 𝑜𝑘 = reject error, issue ERR_REJECTED and stop.

(f) Otherwise the request has been added to the Distributed Queue. If the
request was of type RSP, add the (key,value) pair ((𝑗, 𝑖𝑗), 𝐼𝑏) to 𝑇𝑅𝑆𝑃.
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Protocol 2 (cont.) QEGP ­ Node 𝐴 (𝐵 analogous exchanging 𝐴 and 𝐵)

2. POLLQEGP (triggers pair generation, polled by MHP):

(a) Ask the scheduler whether entanglement should be made and for which
request: NEXT = (flag, (𝑗,𝑖𝑗) ≡ req, params). For this end, the scheduler
will employ its priority policy, as well as perform flow control depending
on whether 𝐵 is likely to produce entanglement.

(b) If there is a generation waiting to be satisfied:

i. Query the FEU for the parameter 𝛼 to be used for the generation
attempt, obtain translation to hardware instruction PSEQ.

ii. If the request is of type MD and specifies a random basis, store a
sampled basis 𝐵 following the request’s probability distribution in 𝐵𝐵
and obtain preloaded 𝑅𝑂𝑇𝑋1, 𝑅𝑂𝑇𝑌, 𝑅𝑂𝑇𝑋2 angles for 𝐵. Other­
wise, use the request specified 𝑅𝑂𝑇𝑋1, 𝑅𝑂𝑇𝑌, 𝑅𝑂𝑇𝑋2. Query the
PTU with the selected angles and obtain gate instruction sequence
𝐺. Add 𝐺 to params.

iii. If the request is of type RSP and this is the creator node of the
request, obtain values 𝑅𝑂𝑇𝑋1, 𝑅𝑂𝑇𝑌, 𝑅𝑂𝑇𝑋2 from 𝑇𝑅𝑆𝑃 using (𝑗,𝑖𝑗)
and query the PTU to obtain gate instruction sequence 𝐺. Add 𝐺 to
params.

iv. Construct response for MHP POLLQEGP()=(flag, (𝑗,𝑖𝑗), PSEQ,
params).

v. Provide the response to the MHP.

(c) Otherwise if there are no generations to perform provide POL­
LQEGP()=(flag=False, aID,local=null, PSEQ=null, params=null).

3. Handle Measurement reply (message from MHP):

(a) Retrieve message from MHP including: absolute queue id (𝑗,𝑖𝑗), and
measurement result 𝑏.

(b) Store the result 𝑚 and absolute queue id (𝑗,𝑖𝑗) in 𝑀𝐵.
(c) If 𝑅𝐵 ≠null then Handle Midpoint reply with 𝑅𝐵, set 𝑅𝐵 =null. Otherwise

wait for reply.
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Protocol 2 (cont.) QEGP ­ Node 𝐴 (𝐵 analogous exchanging 𝐴 and 𝐵)

4. Handle Midpoint reply (message from MHP):

(a) Retrieve message from MHP including: result of generation 𝑟 ∈ {0, 1, 2},
seqMHP, absolute queue id (𝑗, 𝑖𝑗), and protocol error flag proto_err.

(b) If the specified absolute queue ID is not found locally then the request
may have timed out or expired:

i. Free the reserved communication/storage qubit in the Quantum
Memory Manager.

ii. Update seqexpected with seqMHP+1 and stop handling reply.
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Protocol 2 (cont.) MHP for use with the Node­Centric QEGP

4. (cont.) Handle Midpoint reply (message from MHP):

(c) Otherwise there is an absolute queue ID included in the response that is
associated with an active request:

i. If the absolute queue id (𝑗,𝑖𝑗) belongs to an MD request and 𝑀𝐵 is
empty, set 𝑅𝐵 =(r,seqMHP,(𝑗,𝑖𝑗),proto_err), and stop handling reply.

ii. Otherwise, remove 𝑏 and (𝑗,𝑖𝑗) from the head of 𝑀𝐵 and continue.
iii. If proto_err is not OK, a non quantum error occurred and no en­

tanglement was produced. Update expected sequence number with
seqMHP and stop handling reply.

iv. If 𝑟 = 0 we failed to produce entanglement, stop handling reply.
v. Process seqMHP:

A. If the seqMHP is larger than the expected sequence number, (par­
tially) ERR_EXPIRE the request to higher layer and send EXPIRE
message to peer. Stop handling reply.

B. Else. if seqMHP is smaller than the expected sequence number,
ignore reply. Stop handling reply.

C. Else, update next expected seqMHP sequence number (increment
current one modulo 216).

vi. A pair is established. If 𝑟 = 2 and we are the origin of this request,
apply correction information to transform state |Ψ−⟩ to state |Ψ+⟩,
if we are the peer then we instruct the scheduler to suspend sub­
sequent generation attempts until we believe the request originator
has completed correction.

vii. Look up queue item (𝑗, 𝑖𝑗):
A. If create_time + 𝑡max > current time or the request is not stored
locally anymore, issue ERR_TIMEOUT to higher layer and re­
move item from queue. Stop handling reply.

B. Get fidelity estimate 𝐹est from Fidelity Estimation Unit.
C. Construct OK with the CreateID, Entanglement ID: (𝐴, 𝐵,
seqMHP), Directionality, Remote Node ID, and Goodness 𝐹est. If
the request is of type K, include logical_id, 𝑡Goodness = 𝑛𝑜𝑤. If
the request is of type MD, include the oldest measurement 𝑏
from 𝑀𝐵 and measurement basis 𝐵 from 𝐵𝐵 if a random basis
was specified, otherwise 𝐵 =null. If the request is of type R and
we are the state preparer, include the measurement 𝑏.

D. If 𝑘 = 1, i.e. this was the last pair to be produced for this
request, remove item from queue.

E. If 𝑘 > 2, decrement 𝑘 on queue item.
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QEGP Sequence Diagrams
We proceed with the introduction of all message passing sequence diagrams for
the QEGP.

Figure 2.4 presents a sequence diagram for the QEGP/MHP operation when
performing emission multiplexing. In some cases (such as the M use case) it is
not necessary to wait for the REPLY message from the midpoint before attempt­
ing entanglement generation again if one simply desires to generate correlated bit
streams.

Figure A.20 shows a sequence diagram detailing the message flow should station
A receive a message from 𝐻 such that seqMHP is less than seqMHP, as well as a
timeline of the message exchange when QEGP processes at both nodes exchange
available quantum memory information. Sharing this information allows both nodes
to know whether there are available resources in order to proceed with satisfying
an entanglement request. In the absence of resources of either peer there is no
use in photon emission. Simply, both nodes must be able to emit photons for the
protocol to operate properly.

Imperfect message transmission may cause any of the GEN, REPLY, EXPIRE,
REQ(E), and ACK messages to become lost or corrupted in transit between nodes.
Depending on which messages are lost in the protocol, different actions are taken to
prevent deadlock. 𝐴 lost EXPIRE or corresponding ACK results in a retransmission
of the EXPIRE to ensure that OK messages are properly revoked at the peer node.
Loss of a REQ(E) message or its corresponding ACK results in a retransmission of
the REQ(E) to make sure that both nodes have up­to­date information of available
resources.

Losing a GEN message is handled by the midpoint heralding station when only
one GEN message arrives from an end node. In this case the REPLY message
containing NO_CLASSICAL_OTHER (see Protocol A.4.2) is issued to alert the nodes
of the failure. In this case no attempt at entanglement is made and the sequence
number at the midpoint remains the same.

Losing a REPLY message from the midpoint that contains an outcome of 0 has
no impact on 𝐴 or 𝐵 as seqexpected is only updated when a successful attempt at
entanglement occurs. When a REPLY message containing an outcome of 1 or 2
(for successful entanglement) is lost, the end node(s) that lost the message will
continue attempting entanglement generation in subsequent polls by the MHP as
there are outstanding pairs to be generated for the request. Upon successful receipt
of any message from the midpoint (REPLY), the included SEQ will be ahead of the
receiving node(s) seqexpected and the loss will be detected. The detecting node will
then transmit an EXPIRE message to its peer containing the old seqexpected that did
not agree with the SEQ received from the midpoint along with its new seqexpected, so
that any OK messages containing the missing set of sequence numbers are revoked
at the peer.

QEGP Packet Formats
Finally, we present the definitions of all messages being used by the QEGP. Fig­
ure A.25 describes the information passed from the QEGP to the MHP during each
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Station 𝐴 Station 𝐵

EXPIRE

ACK

Station 𝐴 Station 𝐵

REQ(E)

ACK(E)

Figure A.20: (Above) Timeline of request expiration within QEGP. Definitions of EXPIRE and ACK message
are given in Figure A.22 and Figure A.23, respectively. (Below) Timeline of memory advertisement
requests within QEGP. Definition of REQ(E) and ACK(E) message is given in Figure A.24.

periodic cycle, while Figure A.26 shows the packet format for replies from the phys­
ical layer MHP to the QEGP. Figure A.22 and Figure A.23, define EXPIRE and ACK
messages, respectively, exchanged in entanglement request expiration sequence
diagram described in Figure A.20. Figure A.24 shows the REQ(E) and ACK(E)
packet formats exchanged by memory advertisement requests made by the QEGP
sequence diagram described in Figure A.20. Figure A.27 and Figure A.28 present
the format of OK messages passed from the QEGP to higher layers, in case of create
and keep request and measure directly request, respectively. Table A.9 presents
an encoding of the headers in the messages.

Type Encoding
EXPIRE 000000001001
ACK 000000001010
REQ(E) 000000001011
ACK(E) 000000001100
POLLQEGP 000000001101

Table A.9: QEGP packet header encoding.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Remote Node ID

Minimum Fidelity tu Max Time

Purpose ID Number

Priority T A C RL RR rsvd PL1 PL2

PR1 PR2 ROTX1L ROTYL

ROTX2L ROTX1R ROTYR ROTX2R

Figure A.21: Packet format for CREATE message to QEGP. Explanation of the message fields— Remote
Node ID— Used if the node is directly connected to multiple nodes. Indicates which node to generate
entanglement with; Minimum Fidelity—The desired minimum fidelity, between 0 and 1, of the generated
entangled pair; tu—The time units to use for interpreting Max Time, where (00,01,10) each indicate
(𝜇s,ms,s) respectively and 11 is unused; Max Time —The maximum number of specified time units the
higher layer is willing to wait for the request to be fulfilled; Purpose ID—Allows the higher layer to tag
the request for a specific purpose; Number—The number of entangled pairs to generate; Priority—Can
be used to indicate if this request is of high priority and should ideally be fulfilled early; T—the type of
request, one of create and keep (K, encoded as 01), measure directly (M, encoded as 10), or remote state
preparation (RSP, encoded as 11), where K stores the generated entanglement in memory, M measures
the entanglement directly, and RSP performs a rotation on the qubit before measuring it to prepare the
state at the remote node; A—atomic flag, indicates that the request should be satisfied as a whole, i.e.
that all entangled pairs are available in memory at the same time; C—consecutive flag, indicates that an
OK is returned for each pair made for a request; RL(R)—random basis choice for the local (remote) node,
where 00 indicates omission, 01 indicates sampling from {𝑋, 𝑍}, 10 indicates sampling from {𝑋, 𝑌, 𝑍}, and
11 indicates sampling from {𝑍+𝑋2 , 𝑍−𝑋2 }; PL(R)1,PL(R)2—Probability distribution to use for the random
basis choice at the local (remote) node that takes values in [0,255]. In the case that the specified random
basis has 2 elements, the distribution obeys the probabilities (𝑃𝐿(𝑅)1255 , 1 − 𝑃𝐿(𝑅)1

255 ) whereas a random

basis of 3 elements obeys (𝑃𝐿(𝑅)1255 , 𝑃𝐿(𝑅)2255 , 1 − 𝑃𝐿(𝑅)1
255 − 𝑃𝐿(𝑅)2

255 ). The supported precision for PL(R)1/2

are multiples of 1
255 ; ROTX1L(R),ROTYL(R),ROTX2L(R)—specify a discrete multiple of

2𝜋
255 to be used for

performing the basis rotation (see equations 1.10 and 1.11) 𝑅𝑋(
𝑅𝑂𝑇𝑋2∗2𝜋

255 )𝑅𝑌(
𝑅𝑂𝑇𝑌∗2𝜋
255 )𝑅𝑋(

𝑅𝑂𝑇𝑋1∗2𝜋
255 )

before measurement for M requests at the local (remote) node.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Header QID QSEQ (reserved)

Origin ID

Create ID SEQ

Figure A.22: Packet format for EXPIRE message. Explanation of the message fields—Origin ID: ID of
the node the request originated from; Create ID: creation ID of the request. SEQ: up­to­date expected
MHP sequence number at the node the EXPIRE originates from. Recall that (QID, QSEQ) represent the
absolute queue ID.



A

296 A. A Link Layer Protocol for Quantum Networks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Header QID QSEQ (reserved)

SEQ (reserved)

Figure A.23: Packet format for ACK message. Recall that (QID, QSEQ) is the absolute queue ID and SEQ
is the acknowledger’s up­to­date expected MHP sequence number (the same as in the case of EXPIRE
message, see Figure A.22).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Header Ty
pe

CM
S STRG (reserved)

Figure A.24: REQ(E)/ACK(E) Packet format for QEGP memory requests. Explanation of the message
fields—Type: message type (0: REQ(E), 1: ACK); CMS: the number of available communication qubits,
STRG: the number of available storage qubits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Header G
EN QID QSEQ PSEQ (reserved)

Parameters CRC

Figure A.25: Packet format of POLLQEGP messages sent from QEGP to MHP. Explanation of the message
fields—GEN: emit photon flag; PSEQ: pulse sequence identifier which instructs the underlying quantum
communication device of the parameters to use when emitting the photon. See fig. 2.5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Header O
T SEQ (rsvd)

QID QSEQ ERR QIDP QSEQP (reserved)

CRC

Figure A.26: Packet format of messages from MHP to QEGP. Explanation of the message fields—OT:
measurement outcome (Header specifies whether OT contains the message from the heralding station
or from a local message such as a measurement). Error codes in ERR field encode the errors described
in the MHP protocol (refer to Protocol A.4.2). See fig. 2.5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Create ID LQID D reserved

Sequence Number Purpose ID

Remote Node ID

Goodness Goodness Time

Figure A.27: Packet format for OK message corresponding to a create and keep request. Explanation of
the message fields—Type: Indicates that this is a create and keep OK; Create ID: The same as the Create
ID returned to the requester; LQID: Logical Qubit ID where the entanglement is stored (encoded as an
integer); D: Directionality flag indicating the source of the request where 0 encodes the local node and 1
the remote node; Sequence Number: A sequence number for identifying the entangled pair (encoded as
an integer); Purpose ID: The purpose ID of the request (encoded as an integer); Remove Node ID: Used
if connected to multiple nodes; Goodness: An estimate of the fidelity of the generated pair (encoded as
a half­precision floating point number); Goodness Time: Time of the goodness estimate. See fig. 2.5.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Create ID M Basis D reserved

Sequence Number Purpose ID

Remote Node ID

Goodness (reserved)

Figure A.28: Packet format for OK message corresponding to a measure directly request. Explanation
of the message fields—Type: Indicates this is an OK for a measure directly request; Create ID: The
same Create ID given to the requester; M: Outcome of the measurement performed on local qubit of
the entangled pair; Basis: Which basis the local qubit of the entangled pair was measured in, used if the
basis is random. This field adheres to the following encoding scheme: 000: 𝑍, 001: 𝑋, 010: 𝑌, 011:
𝑍+𝑋
2 , 100: 𝑍−𝑋

2 , 101: Unused, 110: Unused, 111: Unused. The remainder of the fields are explained
in Figure A.27. See fig. 2.5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Create ID MD reserved

Sequence Number Purpose ID

Remote Node ID

Goodness (reserved)

Figure A.29: Packet format for OK message corresponding to a remote state preparation request. Ex­
planation of the message fields—Type: Indicates this is an OK for a remote state preparation request;
Create ID: The same Create ID given to the requester; M: Outcome of the measurement performed on
local qubit of the entangled pair (only for the creator node); The remainder of the fields are explained
in Figure A.27. See fig. 2.5.

Type Create ID ERR S reserved

Sequence Number Low Sequence Number High

Origin Node ID

Figure A.30: Packet format for ERR messages containing errors from QEGP. Explanation of the mes­
sage fields—Type: Indicates this is an ERR message; ERR: The error that occurred in the QEGP, may
be any of ERR_NOSUPP (0001), ERR_NOTIME (0010), ERR_REJECTED (0011), ERR_EXPIRE (0100),
ERR_TIMEOUT (0101); S: Used by ERR_EXPIRE, to specify whether a range of sequence numbers
should be expired (S=1) or all sequence numbers associated with the given Create ID and Origin Node
(S=0); Sequence Number Low/High: Use together to specify a range of sequence numbers to expire.
The remaining fields are explained in figure A.27.
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B.1. Measuring without disconnections

I n this section we show that if it is possible to go from one graph state |𝐺⟩ to
another |𝐺′⟩ by a sequence of Pauli measurements on some nodes, where 𝐺

and 𝐺′ are both connected and labelled, then one can always do this in way such
that the graphs at each step are always connected.1 The formal result is stated in
theorem B.1.1 together with the proof below. The theorem is something that can
be used to improve the runtime of we make use of in algorithm 5.1. The algorithm
can be changed so that whenever the recursion hits a disconnected graph it stops
searching that branch. This allows for searching less branches will still guaranteeing
that a solution will be found if it exists, since as the theorem state, if a solution exists
there is certainly one which has no disconnected intermediate graphs.

We will use the same notation as defined in definition 4.5.2. Additionally, we
will denote a subsequence of a sequence v as v𝑗𝑖 = (𝑣𝑖 , 𝑣𝑖+1, … 𝑣𝑗−1, 𝑣𝑗), where the
subscript and superscript denotes the start­ and end­index, respectively. Let u be
a sequence of vertices such that each vertex in 𝑉(𝐺) ⧵ 𝑉(𝐺′) occurs exactly once in
u. We can now define the set of measurement operation sequences that take |𝐺⟩
to |𝐺′⟩ by measuring the vertices 𝑉(𝐺) ⧵ 𝑉(𝐺′) in the order u as

𝒮u(𝐺 → 𝐺′) ≡ {𝑃u ∈ 𝒫u | 𝑃u(𝐺) ↔LC 𝐺′}. (B.1)

To simplify notation we will sometimes write 𝑃u𝑗𝑖
to mean

𝑃u𝑗𝑖
= (𝑃u𝑗𝑖

)
𝑗

𝑖
. (B.2)

Next follows the main theorem of this section.

Theorem B.1.1. Assume that 𝐺 and 𝐺′ are labelled connected graphs such that
𝑉(𝐺′) ⊆ 𝑉(𝐺). Furthermore, assume that the set 𝑈 = 𝑉(𝐺) ⧵ 𝑉(𝐺′) is given some
ordering u = (𝑢1, … , 𝑢𝑘), where 𝑘 = |𝑈|. If |𝒮u(𝐺 → 𝐺′)| > 0, then there exist a
𝑃u ∈ 𝒮u(𝐺 → 𝐺′) such that 𝑃u𝑖1(𝐺) is connected ∀𝑖, 1 ≤ 𝑖 ≤ 𝑘. ⋄

Proof. We will prove this by induction on the variable 𝑘, the number of measure­
ments performed. Lets denote the statement in theorem B.1.1 for a fixed 𝑘 by 𝑃[𝑘].
That 𝑃[1] is true is easy to see, since in this case there is only one measurement
to be performed. If |𝒮u(𝐺 → 𝐺′)| > 0, for 𝑘 = 1, then 𝑃u11(𝐺) = 𝐺′ is connected,
∀𝑃u ∈ 𝒮u(𝐺 → 𝐺′), since 𝐺′ is assumed to be connected. Let’s now fix a 𝑘 and
assume that 𝑃[𝑘] is true. Let 𝐺 and 𝐺′ be labelled connected graphs such that
𝑉(𝐺′) ⊆ 𝑉(𝐺) and |𝑉(𝐺) ⧵ 𝑉(𝐺′)| = 𝑘 + 1. Furthermore, let u be an ordering of
𝑈 = 𝑉(𝐺) ⧵ 𝑉(𝐺′) such that2 |𝒮u(𝐺 → 𝐺′)| > 0. Now take some 𝑃u ∈ 𝒮u(𝐺 → 𝐺′),
which is possible since the set is assumed to be non­empty. What we need to show
is that there exist a sequence 𝑃′u ∈ 𝒮u(𝐺 → 𝐺′), not necessarily different from 𝑃u,
1Throughout this section we will always mean connected except for the vertex which is actually mea­
sured.
2Note that the fact that the set is non­empty does not depend on u, according to corollary 4.5.3.1.
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such that each intermediate graph in the measurement operation sequence is con­
nected. Lets split this into two cases. Firstly, if 𝑃𝑢1(𝐺) is connected, then we can
directly use 𝑃[𝑘] since

𝑃u𝑘+12
∈ 𝒮u𝑘+12

(𝑃𝑢1(𝐺) → 𝐺′) (B.3)

which tells us that there exist a sequence of measurement that takes 𝑃𝑢1(𝐺) to 𝐺′
where each intermediate graph is connected.

In the other case we assume that 𝑃𝑢1(𝐺) is not connected. We will now further
split this into three cases where we consider 𝑃𝑢1 being 𝑍, 𝑌 or 𝑋.

• 𝑠1 = 𝑍: We now have that a 𝑍­measurement on vertex 𝑢1 gives a disconnected
graph3. Since we know that by performing the rest of the measurements in
𝑃u we can reach the connected graph 𝐺′ and that the measurements opera­
tions cannot connect disconnected components, it must be the case that all
the vertices in 𝑉(𝐺′) are in a single connected component of 𝑍𝑢1 . Lets de­
note this connected component by 𝐺1 and the rest of the vertices by 𝐺2, see
figs. B.1a and B.1b for an illustration. This implies that it is possible to go
from 𝐺1 to 𝐺′ by the corresponding measurements in 𝑃u. To find an 𝑃′u which
does not disconnect but still gives 𝐺1 and finally 𝐺′, we instead measure 𝑢1
in the 𝑌­basis. This gives the graph in fig. B.1c, where 𝐺𝑖 denotes the com­
plementation that occurs for the neighbors of 𝑢1 when this is measured in
the 𝑌­basis. Since the 𝑍­measurement on 𝑢1 disconnected 𝐺, we know that
no vertex in 𝑁𝑢1 ∩ 𝐺2 is adjacent to any vertex in 𝑁𝑢1 ∩ 𝐺1, in the original
graph 𝐺. Therefore all vertices in 𝑁𝑢1 ∩ 𝐺2 are connected to all vertices in
𝑁𝑢1 ∩ 𝐺1 after the 𝑌­measurement, showing that this graph is connected. If
we after the 𝑌­measurement also measure all vertices in 𝐺2 in the 𝑍­basis,
except a single vertex which was in 𝑁𝑢1 ∩𝐺2 denoted 𝑔̃2, we reach the graph
in fig. B.1d. Finally 𝑔̃2 can be measured in the 𝑌­basis to remove the com­
plementation which occurred in 𝐺1 and we again get the graph 𝐺1. We have
therefore showed that we can go from the connected graph 𝑌𝑢1(𝐺) to 𝐺′ by 𝑘
measurements. Although this measurement operation sequence might have
a different ordering than u, we know from corollary 4.5.3.1 that a sequence
for u then also exists. From the assumption 𝑃[𝑘] we know this can also be
done without disconnected intermediate graphs.

• 𝑠1 = 𝑌: This case is in some sense the complement of the previous. Similarly
to before we know that all vertices in 𝑉(𝐺′) has to be in a single connected
component of 𝑌𝑢1(𝐺) which we denote 𝐺1 and the rest of the vertices by 𝐺2,
see figs. B.1a and B.1b. Since the 𝑌­measurement is assumed to disconnect
𝐺1 and 𝐺2, we know that all vertices in 𝑁𝑢1 ∩ 𝐺2 must be connected to all
the vertices in 𝑁𝑢1 ∩ 𝐺1, in the original graph 𝐺. This is then still true if we
instead perform a 𝑍­measurement on 𝑢1, as in fig. B.1c. As for the case
𝑠1 = 𝑍, we then measure all vertices in 𝐺2 ⧵ {𝑔̃2} in the 𝑍­basis and finish

3In graph­theoretical terms this means that 𝑢1 is a cut vertex, since the operation 𝑍𝑢1 just removes the
vertex 𝑢1.
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Figure B.1: The original graph 𝐺 considered for the case 𝑠1 = 𝑍 is depicted in fig. B.1a. The graphs
after a 𝑍­ and a 𝑌­measurement on vertex 𝑢1 are shown in figs. B.1b and B.1c, respectively. Finally,
fig. B.1d shows the graph reached by measuring all vertices in 𝐺2 in the 𝑍­basis except one of the original
neighbors of 𝑢1, starting from the graph in fig. B.1c. This shows that instead of a 𝑍­measurement, a
𝑌­measurement can be done to not disconnect the rest of the graph but still reach same graph by the
end of the measurement­sequence.

with a 𝑌­measurement on 𝑔̃2, see fig. B.1d. We then reach 𝐺1 from which it
is possible to go to 𝐺′ with the corresponding measurements in 𝑠. From the
same reasoning as in 𝑠1 = 𝑍 together with 𝑃[𝑘] we know that this can be
done with no disconnected intermediate graphs.

G1
G2

b u1

(a)

G1
G2

(b)

G1
G2

(c)

G1
G2 b

g̃2

(d)

Figure B.2: The original graph 𝐺 considered for the case 𝑠1 = 𝑌 is depicted in fig. B.2a. The graphs
after a 𝑌­ and a 𝑍­measurement on vertex 𝑢1 are shown in figs. B.2b and B.2c, respectively. Finally,
fig. B.2d shows the graph reached by measuring all vertices in 𝐺2 in the 𝑍­basis except one of the original
neighbors of 𝑢1, starting from the graph in fig. B.2c. This shows that instead of a 𝑌­measurement, a
𝑍­measurement can be done to not disconnect the rest of the graph but still reach same graph by the
end of the measurement­sequence.

• 𝑠1 = 𝑋: The final case is when the measurement is in the 𝑋­basis and which is
the most complicated. A general graph for this case is visualized in fig. B.3a.
Note that the groups of vertices 𝐶, 𝐷, 𝐷′ and 𝐹 might include other vertices
which are not neighbors of either 𝑢1 or 𝑏 and that the edges going between
for example 𝑢1 and 𝐹 might be multiple, but only one is drawn for simplic­
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ity. Vertices in for example 𝑐 might be connected to vertices in 𝑓, but not
necessarily, hence the dotted lines. Recall that we define the sets 𝑐, 𝑑 and 𝑓
as

𝑐 = 𝑁𝑢1 ∩ 𝑁𝑏 , 𝑑 = 𝑁𝑏 ⧵ 𝑁𝑢1 , 𝑓 = 𝑁𝑢1 ⧵ 𝑁𝑏 . (B.4)

After a 𝑋­measurement on 𝑢1 with 𝑏 as a special neighbor, the graph de­
picted in fig. B.3b is reached. Since the 𝑋­measurement flips the adjacency
property of two vertices in different sets from 𝑐, 𝑑 and 𝑓, these edges are
now drawn as dashed. From the properties of the 𝑋­measurement we see
that there will always be a connected component containing {𝑏} ∪ 𝑐 ∪ 𝑓 and
possibly together with some vertices in 𝑑. Other connected components can
only include vertices in 𝑑 if these are connected to all vertices in 𝑐 ∪ 𝑓, lets
denote these components by 𝐷′. The vertices in 𝐺′ can then either be in 𝐷′ or
the connected component containing 𝑏. If they are in 𝐷′ we can instead do
a 𝑍­measurement on 𝑢1, which will not give a disconnected graph since we
know there exist a vertex in 𝑑 which is connected to all vertices in 𝑐∪𝑓. Then
all vertices in {𝑏}∪𝐶∪𝐷∪𝐹 can also be measured in the 𝑍­basis producing the
graph 𝐷′, from which it is possible to go to 𝐺′ by the corresponding measure­
ments in 𝑠. Again by the reasoning as for 𝑠1 = 𝑍 we can use 𝑃[𝑘] to conclude
that we can reach 𝐺′ with no disconnected intermediate graphs. On the other
hand if the vertices 𝑉(𝐺′) are in the connected component containing 𝑏, we
will instead measure 𝑢1 in the 𝑌­basis, producing the connected graph in
fig. B.3c. Then pick a vertex 𝑑̃ in 𝐷′ which is connected to all vertices in 𝑐∪𝑓,
which we know exists from the reasoning above. Measure all vertices in 𝐷′ in
the 𝑍­basis except 𝑑̃ which is measured in the 𝑌­basis last. This produces the
graph in fig. B.3d. By applying a local complementation on 𝑏 we see that this
graph is LC­equivalent to the connected component in fig. B.3b containing 𝑏.
Since we can go to 𝐺′ from this connected component, this is then also true
for the graph in fig. B.3d, because the LC­operations relating these graphs
just gives a different measurement sequence compared to 𝑠. This shows that
also in this case it is possible to go to 𝐺′ with no disconnected intermediate
graphs, using 𝑃[𝑘]. Note that this is also valid if 𝑐 or 𝑓 is empty.



B

306 B. Transforming graph states using single­qubit operations

F
D

′

C

D

b b bu1

(a)

F
D

′

C

D

b b

(b)

F
D

′

C

D

b b

(c)

F

C

D

b b

(d)

Figure B.3: The original graph 𝐺 considered for the case 𝑠1 = 𝑋 is depicted in fig. B.3a. The graphs
after a 𝑋­ and a 𝑌­measurement on vertex 𝑢1, with 𝑏 as special neighbor for the 𝑋­measurement, are
shown in figs. B.3b and B.3c, respectively. Finally, fig. B.3d shows the graph reached by measuring all
vertices in 𝑑′ in the 𝑍­basis except one of the original neighbors of 𝑏 and then measuring this in the
𝑋­basis with 𝑏 as the special neighbor, starting from the graph in fig. B.3c. This shows that instead of a
𝑋­measurement, a 𝑌­measurement can be done to not disconnect the rest of the graph but still reach
same graph by the end of the measurement­sequence.

B.2. Corrections from sequence of Pauli 𝑍 measure­
ment

By performing a measurement in the standard basis of a qubit 𝑣 which is part of a
graph state |𝐺⟩, one can effectively disconnect qubit 𝑣 from the rest of the state and
produce the state |0⟩𝑣⊗|𝐺 ⧵ 𝑣⟩. Depending on the measurement outcome, certain
single­qubit Clifford operations need to be performed to map the post­measurement
state to |0⟩𝑣⊗ |𝐺 ⧵ 𝑣⟩, as described in section 4.4.2. One can therefore effectively
cut out a graph state on a subset of the qubits 𝑉′, i.e. producing the state |𝐺[𝑉′]⟩,
by measuring the qubits in 𝑉(𝐺) ⧵ 𝑉′ in the standard basis and performing certain
single­qubit Clifford operations. Here we show what corrections need to be applied
to the qubits 𝑉′, such that the post­measurement state is mapped to the state
|𝐺[𝑉′]⟩.

Let’s assume that |𝐺⟩ is a graph state and we wish to transform this to |𝐺[𝑉′]⟩,
by measuring the qubits 𝑈 = 𝑉(𝐺)⧵𝑉′ in the standard basis. Let’s denote the qubits



B.2. Corrections from sequence of Pauli 𝑍 measurement

B

307

in 𝑈 as {𝑣1, 𝑣2, … , 𝑣𝑛−𝑘} and the measurement outcome of qubit 𝑣𝑖 by4 𝑥𝑖 ∈ {0, 1}.
Furthermore, let’s denote the projectors in the 𝑍 basis as 𝑃(0)𝑣 = 𝑃(𝑍,+)𝑣 and 𝑃(1)𝑣 =
𝑃(𝑍,−)𝑣 . The post­measurement state is then given by

|𝜓𝑛−𝑘post⟩ = 2𝑛−𝑘𝑃(𝑥𝑛−𝑘)𝑣𝑛−𝑘 ⋅ ⋯ ⋅ 𝑃(𝑥2)𝑣2 𝑃(𝑥1)𝑣1 |𝐺⟩ . (B.5)

By acting with the projectors on |𝐺⟩ we find by induction on 𝑛 − 𝑘 that the post­
measurement state can be evaluated to

|𝜓𝑛−𝑘post⟩ = (
𝑛−𝑘

⨂
𝑖=1

𝑍∑
𝑖−1
𝑗=1 𝑥𝑗adj(𝑣𝑖 ,𝑣𝑗)|𝑥𝑖⟩𝑣𝑖)⊗((

𝑛−𝑘

∏
𝑖=1
(𝑍[𝑁𝑣𝑖 ∩ 𝑉′])𝑥𝑖) |𝐺[𝑉′]⟩) , (B.6)

where adj(𝑢, 𝑣) is 1 if (𝑢, 𝑣) is an edge in 𝐺 and zero otherwise and where 𝑍[𝑋] is
∏𝑥∈𝑋 𝑍𝑥. One can see this by checking that indeed

2𝑃(𝑥𝑛−𝑘)𝑣𝑛−𝑘 |𝜓𝑛−𝑘−1post ⟩ = |𝜓𝑛−𝑘post⟩ . (B.7)

by using equations (4.29) and (4.32). The operations on the qubits in 𝑉(𝐺) ⧵ 𝑉′ in
the left part of equation B.6 will only give a global phase as follows

(
𝑛−𝑘

⨂
𝑖=1

𝑍∑
𝑖−1
𝑗=1 𝑥𝑗adj(𝑣𝑖 ,𝑣𝑗)|𝑥𝑖⟩𝑣𝑖) = (

𝑛−𝑘

⨂
𝑖=1

(−1)𝑥𝑖 ∑
𝑖−1
𝑗=1 𝑥𝑗adj(𝑣𝑖 ,𝑣𝑗)|𝑥𝑖⟩𝑣𝑖)

= (−1)∑
𝑛−𝑘
𝑖=1 ∑

𝑖−1
𝑗=1 𝑥𝑖𝑥𝑗adj(𝑣𝑖 ,𝑣𝑗)

𝑛−𝑘

⨂
𝑖=1

|𝑥𝑖⟩𝑣𝑖 . (B.8)

The exponent in the global phase ∑𝑛−𝑘𝑖=1 ∑
𝑖−1
𝑗=1 𝑥𝑖𝑥𝑗adj(𝑣𝑖 , 𝑣𝑗) is in fact the number of

edges in the induced graph 𝐺𝑥 = 𝐺[{𝑣𝑖 ∶ 𝑥𝑖 = 1}]. Let’s now consider the correction
operators in the right part of equation B.6. A qubit 𝑣 ∈ 𝑉′ will have a 𝑍 contribution
from the 𝑖th factor if 𝑣 ∈ 𝑁𝑣𝑖 and 𝑥𝑖 = 1. Thus, we see that the total contribution
on qubit 𝑣 is given by

𝑍𝑦𝑣 where 𝑦𝑣 = ∑
𝑖∈{𝑖 ∶ 𝑣𝑖∈𝑁𝑣⧵𝑉′}

𝑥𝑖 (B.9)

Finally we find that the post­measurement state from equation B.6 is given by

|𝜓𝑛−𝑘post⟩ = (−1)|𝐸(𝐺𝑥)| (
𝑛−𝑘

⨂
𝑖=1

|𝑥𝑖⟩𝑣𝑖)⊗((∏
𝑣∈𝑉′

𝑍𝑦𝑣𝑣 ) |𝐺[𝑉′]⟩) . (B.10)

4We identify 0 and 1 with the measurement outcomes +1 and −1, respectively.
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B.3. Vertex­minor formula
Here we provide the C2MS formulas5 from [2] which we make use of in section 5.4.3.
We state what the formula expresses and its quantifier rank in table B.1.

Table B.1: The C2MS formulas used in section 5.4.3, what they express and their quantifier rank. 𝑏𝑣 is
the unique vector in 𝑆(𝐺) with respect to (𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) as defined in [2].

Formula True if and only if qr
Disjoint(𝑋, 𝑌, 𝑍) 𝑋,𝑌 and 𝑍 are pairwise disjoint 1
Part(𝑋, 𝑌, 𝑍) (𝑋, 𝑌, 𝑍) is a tripartition 1

EvenInter(𝑄, 𝑣) |𝑁𝑣 ∩ 𝑄| = 0 (mod 2) 2
Member(𝑋, 𝑌, 𝑍) (𝑋, 𝑌, 𝑍) is a vector of 𝑆(𝐺) 4
Eul(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) (𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) is a Eulerian vector of 𝑆(𝐺) 7

Base(𝑋, 𝑌, 𝑍, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) (𝑋, 𝑌, 𝑍) is 𝑏𝑣 wrt. (𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) in 𝑆(𝐺) 4
Adj(𝑢, 𝑣, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) (𝑢, 𝑣) is an edge of 𝒢(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) 7

Disjoint(𝑋, 𝑌, 𝑍) = ∀𝑥 ∶ (¬(𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌) ∧ ¬(𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑍)∧
¬(𝑥 ∈ 𝑌 ∧ 𝑥 ∈ 𝑍)) (B.11)

Part(𝑋, 𝑌, 𝑍) = (∀𝑥 ∶ (𝑥 ∈ 𝑋 ∨ 𝑥 ∈ 𝑌 ∨ 𝑥 ∈ 𝑍)⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
”𝑉=𝑋∪𝑌∪𝑍”

) ∧ Disjoint(𝑋, 𝑌, 𝑍) (B.12)

EvenInter(𝑄, 𝑣) = ∀𝑅 ∶ ( ∀𝑢 ∶ 𝑢 ∈ 𝑅 ⇔ (adj(𝑢, 𝑣) ∧ 𝑢 ∈ 𝑄)⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
”𝑅=𝑁𝑣∩𝑄”

) ⇒ Even(𝑅) (B.13)

Member(𝑋, 𝑌, 𝑍) = Disjoint(𝑋, 𝑌, 𝑍) ∧ [∃𝑄 ∶ (∀𝑣 ∶ ( (B.14)

(𝑣 ∈ 𝑋 ⇐ (𝑣 ∉ 𝑄 ∧ ¬EvenInter(𝑄, 𝑣)))∧
(𝑣 ∈ 𝑌 ⇐ (𝑣 ∈ 𝑄 ∧ EvenInter(𝑄, 𝑣)))∧
(𝑣 ∈ 𝑍 ⇐ (𝑣 ∈ 𝑄 ∧ ¬EvenInter(𝑄, 𝑣)))∧

(¬(𝑣 ∈ 𝑋 ∨ 𝑣 ∈ 𝑌 ∨ 𝑣 ∈ 𝑍)⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
”𝑣∈𝑉(𝐺)⧵(𝑋∪𝑌∪𝑍)”

⇐ (𝑣 ∉ 𝑄 ∧ EvenInter(𝑄, 𝑣)))))] (B.15)

5Note that there seems to be a typo in [2] since they use the formula 𝑉 = 𝑋𝑒 ∪ 𝑌𝑒 ∪ 𝑍𝑒 to express that
the vector (𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) is complete, i.e. that each element of the vector is non­zero. This is however
not true, consider for example the sets 𝑋𝑒 = 𝑌𝑒 = 𝑍𝑒 = 𝑉 which corresponds to the zero­vector since
1 + 𝜔 + 𝜔2 = 0 and is therefore not complete. Their formula for whether (𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) is a Eulerian
vector is on the other hand still correct since the second part of the formula can never be true for a
non­complete vector (𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) for which 𝑉 = 𝑋𝑒 ∪ 𝑌𝑒 ∪ 𝑍𝑒.
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Eul(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) =(Part(𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒))∧
[∀𝑋, 𝑌, 𝑍 ∶ (𝑋 ⊆ 𝑋𝑒 ∧ 𝑌 ⊆ 𝑌𝑒 ∧ 𝑍 ⊆ 𝑍𝑒 ∧Member(𝑋, 𝑌, 𝑍))

⇒ (∀𝑣 ∶ ¬(𝑣 ∈ 𝑋 ∨ 𝑣 ∈ 𝑌 ∨ 𝑣 ∈ 𝑍)⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
”𝑋=𝑌=𝑍=∅”

)] (B.16)

Base(𝑋, 𝑌, 𝑍, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒 , 𝑣) =Member(𝑋, 𝑌, 𝑍) ∧ (
”𝑣∈𝑋∪𝑌∪𝑍”

⏜⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏜𝑣 ∈ 𝑋 ∨ 𝑣 ∈ 𝑌 ∨ 𝑉 ∈ 𝑍)∧
[∀𝑢 ∶ ¬(𝑣 = 𝑢) ⇒

((𝑢 ∈ 𝑋 ⇒ 𝑢 ∈ 𝑋𝑒) ∧ (𝑢 ∈ 𝑌 ⇒ 𝑢 ∈ 𝑌𝑒) ∧ (𝑢 ∈ 𝑍 ⇒ 𝑢 ∈ 𝑍𝑒))]
(B.17)

Adj(𝑢, 𝑣, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒) =¬(𝑢 = 𝑣)∧
[∃𝑋, 𝑌, 𝑍 ∶ (Base(𝑋, 𝑌, 𝑍, 𝑋𝑒 , 𝑌𝑒 , 𝑍𝑒 , 𝑣) ∧ (𝑢 ∈ 𝑋 ∨ 𝑢 ∈ 𝑌 ∨ 𝑢 ∈ 𝑍⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝

”𝑢∈𝑋∪𝑌∪𝑍”
))]

(B.18)

B.4. Local complementations from Eulerian vector
Let’s assume 𝐺 is a graph, 𝑆(𝐺) its canonical isotropic system and (𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) an
Eulerian vector describing the graph 𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒). We here consider the ques­
tion of how to find a sequence of local complementations 𝑚, such that 𝜏𝑚(𝐺) =
𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒). In this section we will represent Eulerian vectors as vectors in 𝔽𝑛4
instead of tripartitions of 𝑉(𝐺), where 𝑛 = |𝐺|. A tripartition (𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) induces
the vector

𝐴(𝑣) = {
1 if 𝑣 ∈ 𝑈𝑒
𝜔 if 𝑣 ∈ 𝑉𝑒
𝜔2 if 𝑣 ∈ 𝑊𝑒

(B.19)

where 𝐴(𝑣) is element 𝑣 of the vector 𝐴 ∈ 𝔽𝑛4 and 𝜔 is a primitive element of 𝔽4.
In [3] it is shown that for any Eulerian vector 𝐴 of an isotropic system there exists
exactly one other Eulerian vector 𝐴′ which differ from 𝐴 in only the element 𝑣. This
other Eulerian vector 𝐴′ is denoted 𝐴∗𝑣 and is called a switching of 𝐴. Furthermore,
the switching induces a local complementation on the graphs the Eulerian vectors
describe. More precisely, if the Eulerian vector 𝐴 describe the graph 𝐺, then the
Eulerian vector 𝐴 ∗ 𝑣 describe the graph 𝜏𝑣(𝐺). Thus, if we find a sequence of
switchings taking the Eulerian vector describing 𝐺 to the Eulerian vector describing
𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒), we have also directly found a sequence of local complementations
taking 𝐺 to 𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒). The Eulerian vector of 𝑆(𝐺) describing 𝐺 is given as
𝐴0 = (𝜔,… ,𝜔) and the one describing 𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒) is given as in equation (B.19).
A sequence of switchings taking 𝐴0 to 𝐴 can be found in linear time similarly to the
method described in section 4 of [4]. The idea is to go over the vectors 𝐴0 and
𝐴 element by element and make these equal one by one. Let’s consider a vertex
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𝑣 ∈ 𝑉(𝐺) and the four vectors 𝐴0, 𝐴0 ∗ 𝑣, 𝐴 and 𝐴 ∗ 𝑣. These four vectors cannot
all differ in the element 𝑣, since there are only three non­zero elements of 𝔽4, i.e.
{1, 𝜔, 𝜔2}. Repeating this process for all elements of 𝑉(𝐺) will give two sequences
of switchings, 𝑚1 and 𝑚2, one for 𝐴0 and one for 𝐴 such that

𝐴0 ∗ 𝑚1 = 𝐴 ∗ 𝑚2. (B.20)

Since the switchings are involutions we have that

𝐴0 ∗ (𝑚1𝑚2) = 𝐴 (B.21)

and therefore that
𝜏𝑚1𝑚2(𝐺) = 𝒢(𝑈𝑒 , 𝑉𝑒 ,𝑊𝑒), (B.22)

where𝑚1𝑚2 is the sequence𝑚1 followed by the reversal of𝑚2. Finding𝑚 = 𝑚1𝑚2
thus takes time 𝒪(𝑛).
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C. How to transform graph states using single­qubit operations:

computational complexity and algorithms

C.1. Circle graphs induced by Eulerian tours on triangular­
expanded graphs are not distance­hereditary

I n this section we show that circle graphs induced by Eulerian tours on triangularexpanded graphs (CETEx graphs) are not distance­hereditary. We showed in
section section 6.2 that StarVertexMinor is ℕℙ­Complete on CETEx graphs and
in section 6.3.1 that StarVertexMinor is in ℙ for distance­hereditary graphs. The
main result of this section is therefore to show that these two graph classes are in
fact disjoint. Furthermore, the results of this section validate fig. 1.3 as the class of
CETEx graphs (red) are drawn as being disjoint from the distance­hereditary graphs
(green).

We formally state the main result of this section as the following theorem:

Theorem C.1.1. Let 𝑈 be an Eulerian tour on a triangular expansion 𝒯(𝑅) of some
3­regular graph 𝑅. Then the alternance graph 𝒜(𝑈) is not distance­hereditary, i.e.
rwd(𝒜(𝑈)) > 1. ⋄

To simplify the notation in this section, let’s introduce a definition for the set of
circle graphs which are induced by Eulerian tours on a 4­regular multi­graph:

Definition C.1.2. Let 𝐹 be a 4­regular multi­graph. The set of circle graphs in­
duced by the set of Eulerian tours on 𝐹 will be denoted 𝔄(𝐹). ⋄

We will prove theorem C.1.1 by showing that all graphs which are in 𝔄(𝒯(𝑅))
for some 3­regular graph 𝑅 have a certain vertex­minor which has rank­width
two. Since rank­width cannot increase under local complementations and vertex­
deletions, the theorem follows. Below is a step­by­step overview on how we will
prove theorem C.1.1:

1. Introduce transition­minors of 4­regular multi­graphs.

2. Show that if 𝐹′ is a transition­minor of 𝐹, then any graph in 𝔄(𝐹′) is a vertex­
minor of any graph in 𝔄(𝐹).

3. Introduce subcubic minors of subcubic graphs, i.e. graphs where 𝑁𝑣 ≤ 3 for
any vertex 𝑣.

4. Extend the notion of triangular­expansion to also work for subcubic graphs.
We will call this extended triangular expansion and denote this as 𝒯̃ to distin­
guish it from the triangular expansion in section 6.2.2.

5. Show that if 𝑅′ is a subcubic minor of 𝑅, then 𝒯̃(𝑅′) is a transition­minor of
𝒯̃(𝑅).

6. Step 2 and 5 then imply that if 𝑅′ is a subcubic minor of 𝑅, then any graph in
𝔄(𝒯(𝑅′)) is a vertex­minor of any graph in 𝔄(𝒯(𝑅)).

7. Finally we show that there exist a subcubic graph 𝑅0 such that 𝑅0 is a sub­
cubic minor of any 3­regular graph 𝑅 and furthermore that all the graphs in
𝔄(𝒯(𝑅0)) have rank­width two.
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8. Step 7 imply that all graphs in 𝔄(𝒯(𝑅0)) are vertex­minors of any graph in
𝔄(𝒯(𝑅)), where 𝑅 is any 3­regular graph.

9. Theorem C.1.1 then follows.

Step 1:
In the following definition we introduce the notion of transition­minors of 4­

regular multi­graphs.

Definition C.1.3. Let 𝐹 be a connected 4­regular multi­graph. We call 𝐹′ a
transition­minor of 𝐹 if 𝐹′ is connected and can be reached from 𝐹 by some se­
quence of the following two operations:

• Let 𝑣 be a vertex in 𝐹 without self­loops. Denote the four vertices incident
on the four edges incident on 𝑣 by 𝑎, 𝑏, 𝑐 and 𝑑. Note that these vertices
are not pairwise different if multi­edges are incident on 𝑣. Let 𝐹 ∣(𝑣,𝑎,𝑏) be the
multi­graph obtained from 𝐹 by deleting 𝑣 and adding the edges (𝑎, 𝑏) and
(𝑐, 𝑑), as shown in the following equation

v
b

a c

b d

↦

a

b

c

d

. (C.1)

There are a priori three1 possible ways to perform this operation by choosing
which neighbors of 𝑣 to connect. Note that if for example the edge (𝑎, 𝑏) is
already present in the multi­graph 𝐹, then the multiplicity of (𝑎, 𝑏) increases
by one.

• Let 𝑣 be a vertex in 𝐹 with one self­loop. Denote the two vertices, other than
𝑣, incident on the two edges incident on 𝑣 which are not the self­loop by 𝑎
and 𝑏. Note that 𝑎 are not different if (𝑣, 𝑎) is a multi­edge. Let 𝐹 ∣(𝑣) be
the multi­graph obtained from 𝐹 by deleting 𝑣 and adding the edge (𝑎, 𝑏), as
shown in the following equation

v
b

a

b

↦

a

b

. (C.2)

⋄

Step 2:
To prove theorem C.1.5, which relates transition­minors and vertex­minors, we

need the following lemma:

1If there is a multi­edge with multiplicity two, there are two choices and for multiplicity three there is
only one.
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Lemma C.1.4. Let 𝐹 be a connected 4­regular multi­graph. Let 𝑣 be a vertex in 𝐹
without self­loops. Denote the four vertices incident on the four edges incident on
𝑣 by 𝑎, 𝑏, 𝑐 and 𝑑. If the graph 𝐹 ∣(𝑣,𝑎,𝑏) is connected then there exist an Eulerian
tour 𝑈 on 𝐹 such that 𝑎𝑣𝑏 is a subword of 𝑚(𝑈). ⋄

Proof. Due to Fleury’s algorithm [2] for finding Eulerian tours we know that an Eu­
lerian tour can be found by traversing a graph in an arbitrary way, while deleting
edges which are traversed, as long as a cut­edge2 is not traversed unless nec­
essary. Let’s therefore start Fleury’s algorithm at vertex 𝑎 and traverse the edge
(𝑎, 𝑣), which is a valid move since 4­regular graphs have no cut­edges3. The ques­
tion is now if traversing the edge (𝑣, 𝑏) is a valid move in Fleury’s algorithm. The
only possibility for this not being a valid move is if the deletion of both (𝑎, 𝑣) and
(𝑣, 𝑏) disconnects the graph. But this contradicts the assumption that 𝐹 ∣(𝑣,𝑎,𝑏) is
connected.

TheoremC.1.5. Let 𝐹 be a connected 4­regular multi­graph. Let 𝐹′ be a transition­
minor of 𝐹. Furthermore let 𝐺′ and 𝐺 be graphs in 𝔄(𝐹′) and 𝔄(𝐹) respectively.
Then we have that

𝐺′ < 𝐺 (C.3)

⋄

Proof. This follows implicitly from the work of Bouchet [4]. We will prove this for 𝐹′
being 𝐹 ∣(𝑣,𝑎,𝑏) or 𝐹 ∣(𝑣) as in definition C.1.3. The proof then follows by induction.
Let’s start with 𝐹′ = 𝐹 ∣(𝑣,𝑎,𝑏). Let 𝑈 be a Eulerian tour on 𝐹 such that 𝑎𝑣𝑏 is a
sub­word of 𝑚(𝑈). Such a 𝑈 exists by lemma C.1.4, since 𝐹′ is assumed to be
connected. In [4] it is shown4 that any graph in 𝔄(𝐹 ∣(𝑣,𝑎,𝑏)) is LC­equivalent to
𝒜(𝑈) ⧵ 𝑣. Showing that all graphs in 𝔄(𝐹 ∣(𝑣,𝑎,𝑏)) are a vertex­minors of 𝒜(𝑈)
and therefore vertex­minors of all graphs in 𝔄(𝐹). Consider now the case where
𝐹′ = 𝐹 ∣(𝑣). Since 𝑣 has a self­loop, for any Eulerian tour 𝑈 the induced double
occurrence word 𝑚(𝑈) will contain the sub­word 𝑎𝑣𝑣𝑏. Furthermore, there exist a
Eulerian tour 𝑈′ on 𝐹 ∣(𝑣) such that 𝑚(𝑈′) = 𝑚(𝑈) ⧵ 𝑣. As for the previous case,
this shows that all graphs in 𝔄(𝐹 ∣(𝑣)) are vertex­minors of 𝒜(𝑈) and therefore
vertex­minors of all graphs in 𝔄(𝐹).

Step 3:
Next, we extend the notion of triangular expansions to also allow for subcubic

graphs, rather than only 3­regular graphs.

2An edge whose deletion increases the number of connected components of the graph.
3In fact, any graph with only vertices of even degree has no cut­edge. An easy way to see this is to
assume that such an edge exists. Removing this edges creates two connected componentes 𝐹1 and
𝐹2. Consider the sum of the degress of the vertices in 𝐹1, which should be even since this is twice
the number of edges, by the handshaking lemma [3]. However, since only one incident edge was
removed from a vertex in 𝐹1 the sum of the degress should have decreased by one. This contradicts
the assumption that all vertices in the original graph had even degree.
4Note that Bouchet did not consider the case where 𝑎 = 𝑏 but it is easy to see that the statement also
applies for this case.
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Definition C.1.6 (extended triangular expansion). An extended triangular expan­
sion 𝒯̃(𝑅) of a graph 𝑅 will work very much like the triangular expansion in def­
inition 6.2.7. However we will not restrict 𝑅 to be 3­regular here, but rather be
connected, subcubic and contain more than one vertex. A extended triangular ex­
pansion of 𝑅 is reached by the following three steps:

• Replace any vertex in 𝑅 of degree three, with a triangle subgraph as in
eq. (6.3).

• Add a self­loop to any vertex of degree one.

• Double every original edge form the graph 𝑅.

⋄

Note that if 𝑅 is 3­regular then 𝒯(𝑅) = 𝒯̃(𝑅). Furthermore, note that 𝒯̃(𝑅) is
necessarily 4­regular. The following equation shows an example of an extended
triangular expansion of a subcubic graph:

𝒯̃
⎛
⎜⎜⎜

⎝

b

b

bb

⎞
⎟⎟⎟

⎠

=
b
b
bbb

b

b

bb

. (C.4)

Step 4:
We introduce the notion of subcubic minors which we relate to transition­minors

and thus vertex­minors in step 5 below.

Definition C.1.7 (subcubic minor). Let 𝑅 be a 3­regular graph and let 𝑅′ be a
graph obtained from 𝑅 by some sequence of the following operations:

• Vertex­deletion: 𝑅 ↦ 𝑅 ⧵ 𝑣, where 𝑣 ∈ 𝑉(𝑅).

• Edge­deletion: 𝑅 ↦ 𝑅 ⧵ (𝑢, 𝑣), where (𝑢, 𝑣) ∈ 𝐸(𝑅) and |𝑁𝑢| = |𝑁𝑣| = 3.

• Shrink path: 𝑅 ↦ 𝜏𝑣(𝑅) ⧵ 𝑣, where 𝑣 ∈ 𝑉(𝑅) and |𝑁𝑣| = 2.

Note that each vertex of 𝑅′ has three or less neighbors5. ⋄

Step 5:
Next, we relate subcubic minors and transition minors.

Theorem C.1.8. Let 𝑅 be a connected 3­regular graph and 𝑅′ be a connected
subcubic minor of 𝑅. Let 𝒯̃(𝑅) and 𝒯̃(𝑅′) be extended triangular expansions of 𝑅
and 𝑅′ respectively. Then we have that 𝒯̃(𝑅′) is a transition­minor of 𝒯̃(𝑅). ⋄
5i.e. 𝑅′ is subcubic.



C

316
C. How to transform graph states using single­qubit operations:

computational complexity and algorithms

Proof. Clearly, both 𝒯̃(𝑅) and 𝒯̃(𝑅′) are connected. We therefore need to show that
𝒯̃(𝑅′) can be reached from 𝒯̃(𝑅) by some sequence of the operations defined in
definition C.1.3. We will prove this by showing that if 𝑅′ is a subcubic minor reached
from 𝑅 by applying one of the operations in definition C.1.7 once, then 𝒯̃(𝑅′) is a
transition­minor of 𝒯̃(𝑅). The theorem then follows by induction. Let’s first assume
that 𝑅′ is reached from 𝑅 by deleting the vertex 𝑣. Firstly, if 𝑣 has degree one then
clearly 𝒯̃(𝑅′) is the multi­graph 𝒯̃(𝑅) ∣(𝑣) and therefore a transition­minor of 𝒯̃(𝑅).
Assume now that 𝑣 has degree two and furthermore that the neighbors of 𝑣 are of
degree three. This situation is visualized in the following equation

b b b

→
b b

. (C.5)

The corresponding reduction using transition­minor operations can be seen in
eq. (C.6) followed by eq. (C.7). Showing that indeed 𝒯̃(𝑅 ⧵ 𝑣) is a transition­minor
of 𝒯̃(𝑅).
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b

b →
bbbbb

(C.7)

The case when at least one of the two neighbors of 𝑣 have degree less than three
in 𝑅 can easily be checked in a similar way.

Note that eq. (C.6) also show the case when 𝑅′ is reached by deleting an edge or
by applying a local complementation followed by a vertex­deletion. To see this note
that the multi­graph in the second step in eq. (C.6) is 𝒯̃(𝜏𝑣(𝑅) ⧵ 𝑣). Furthermore,
the multi­graph in the third step of eq. (C.6) is the extended triangular expansion
of the graph reached from 𝜏𝑣(𝑅) ⧵ 𝑣 by deleting the edge created by the local
complementation.

Assume now that 𝑣 has degree three and that the three neighbors of 𝑣 also



C.1. Circle graphs induced by Eulerian tours on triangular­expanded
graphs are not distance­hereditary

C

317

have degree three. This situation is visualized in the following equation

b b

b

b

→
b b

b

(C.8)

That 𝒯̃(𝑅 ⧵ 𝑣) is a transition­minor of 𝒯̃(𝑅) can be seen from eq. (C.9), followed by
eq. (C.6) and eq. (C.7).
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Similarly, the case when some of the neighbors of 𝑣 have degree less than three
can be checked. This concludes the proof.

Step 6:
From the theorems in step 2 and 5, we have the following corollary.

Corollary C.1.8.1. Let 𝑅 be a 3­regular graph and 𝑅′ be a subcubic minor of 𝑅.
Let 𝒯̃(𝑅) and 𝒯̃(𝑅′) be the extended triangular expansions of 𝑅 and 𝑅′ respectively.
Furthermore, let 𝐺 and 𝐺′ be graphs in 𝔄(𝒯̃(𝑅)) and 𝔄(𝒯̃(𝑅′)) respectively. Then
we have that

𝐺′ < 𝐺. (C.10)

⋄

Proof. This follows directly from theorem C.1.5 and theorem C.1.8.

Step 7:

Lemma C.1.9. The diamond graph 𝐷4, i.e.

𝐷4 =
b

bb

b
(C.11)

is a subcubic minor of any connected 3­regular graph. Furthermore, circle graphs
induced by Eulerian tours on the extended triangular expansion of 𝐷4, i.e. graphs
in the set 𝔄(𝒯̃(𝐷4)) have rank­width two. ⋄
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Proof. We start by proving that 𝐷4 is a subcubic minor of any connected 3­regular
graph 𝑅. Let’s first introduce a notation which will be useful for this proof:
Let 𝑃 = 𝑣0𝑒1𝑣1…𝑒𝑘−1𝑣𝑘−1𝑒𝑘𝑣𝑘 be a path in a graph 𝑅. Denote by 𝑉(𝑃) =
{𝑣0, 𝑣1, … , 𝑣𝑘−1,𝑣𝑘} and 𝐸(𝑃) = {𝑒1, 𝑒2, … , 𝑒𝑘} the vertices and the edges in the
path respectively. Furthermore, let 𝑅 ⧵ 𝐸(𝑃) be the graph obtained from 𝑅 by
deleting all the edges in 𝐸(𝑃).
We will first prove, by contradiction, that 𝑅 contains a cycle 𝐶 such that there

exist at least two distinct vertices in 𝑉(𝐶) which are not disconnected in 𝑅 ⧵ 𝐸(𝐶).
Assume therefore that there exist no such 𝐶:
Then let 𝐶(0) = 𝑣0𝑒1𝑣1…𝑒𝑘−1𝑣𝑘−1𝑒𝑘𝑣0 be a cycle in 𝑅, which exists since 𝑅 is not
a tree6. Furthermore, let 𝑅(1) be the graph 𝑅 ⧵ 𝐸(𝐶(0)). From the assumption
we therefore have that 𝑅(1) consist of 𝑘 connected components {𝑅(1)𝑖 }𝑖 such that
𝑣𝑖 ∈ 𝑅(1)𝑖 for all 𝑖 ∈ [𝑘], see fig. C.1.
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Figure C.1: Visualizations of the contradictory assumption that 𝑅 contains no cycle 𝐶 such that at least
two vertices in 𝑉(𝐶) are connected in 𝑅⧵𝐸(𝐶). The graph 𝑅 is shown in fig. C.1a and the graph 𝑅⧵𝐸(𝐶)
in fig. C.1b.

Consider now one of these connected components 𝑅(1)𝑖 . Note that all vertices
in 𝑅(1)𝑖 have degree three, except 𝑣𝑖 and furthermore that |𝑅(1)𝑖 | > 1 since 𝑣𝑖 has
a neighbor in 𝑅(1)𝑖 . This implies that 𝑅(1)𝑖 is not a tree and therefore contains a
cycle 𝐶(1) = 𝑣′0𝑒′1𝑣′1…𝑒′𝑘′−1𝑣′𝑘′−1𝑒′𝑘′𝑣′0.

Consider then the graph 𝑅(2)𝑖 = 𝑅(1) ⧵ 𝐸(𝐶(1)). Once more, from the assump­
tion we know that 𝑅(2)𝑖 contain 𝑘′ connected components {𝑅(2)𝑖,𝑖′ }𝑖′ . Consider now
one of these connected components 𝑅(2)𝑖,𝑖′ such that 𝑣𝑖 ∉ 𝑅

(2)
𝑖,𝑖′ . Note that such a

connected component exists since 𝑘′ ≥ 3 if 𝐶(1) is to be a cycle.
Continue the same process for 𝑅(3), 𝑅(4), … , etc. But note that at each step,

edges are deleted and since the graph is finite this process must stop at some
point, which is in contradiction with the assumption. □

6A tree has leaves which are not of degree three.
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We therefore know that there exists a cycle 𝐶 = 𝑣0𝑒1𝑣1…𝑒𝑘−1𝑣𝑘−1𝑒𝑘𝑣0 and two
distinct vertices 𝑣𝑖 and 𝑣𝑗 in 𝑉(𝐶) which are connected in the graph 𝑅⧵𝐸(𝐶). Thus,
let 𝐶 be such a cycle and 𝑣𝑖 ≠ 𝑣𝑗 be two connected vertices in 𝑅⧵𝐸(𝐶). Furthermore,
let 𝑃 = 𝑣𝑖 𝑒̂1𝑣̂1… 𝑒̂𝑘̂−1𝑣̂𝑘̂−1𝑣𝑗 be a path from 𝑣𝑖 to 𝑣𝑗 in 𝑅 ⧵ 𝐸(𝐶). Consider now the
induced subgraph 𝑅[𝑉(𝐶) ∪ 𝑉(𝑃)], i.e. the induced subgraph on the vertices in 𝐶
and 𝑃, see fig. C.2. It is important to note that the graph 𝑅[𝑉(𝐶) ∪ 𝑉(𝑃)] could

b b
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b
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v̂
k̂−1
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Figure C.2: The induced subgraph 𝑅[𝑉(𝐶) ∪ 𝑉(𝑃)].

contain more edges than 𝐸(𝐶)∪𝐸(𝑃), see for example the edge between 𝑣𝑖+1 and
𝑣𝑖+3 in fig. C.2. Lets denote the set of edges in 𝑅[𝑉(𝐶) ∪ 𝑉(𝑃)] which are not in
𝐸(𝐶) ∪ 𝐸(𝑃) by 𝐸̂. We now claim that the edges in 𝐸̂ can be removed with the
edge­deletion operation used for subcubic minors. An edge can only be deleted
with this operation if both incident vertices have degree three. All edges in 𝑅 have
degree three by assumption. We therefore need to show that there are no two
edges in 𝐸̂, which are incident on a common vertex in 𝑉(𝐶) ∪ 𝑉(𝑃). This is easily
seen by the fact that each vertex in 𝑉(𝐶) ∪ 𝑉(𝑃) is incident on at least two edges
in 𝑅[𝑉(𝐶) ∪ 𝑉(𝑃)] and can therefore only be incident to maximally one edge in 𝐸̃,
since the vertices are of degree three. After the deletion of the vertices in 𝐸̃, all the
vertices not in 𝑉(𝐶) ∪ 𝑉(𝑃) can be deleted. This creates a subcubic minor in which
there are exactly three paths from 𝑣𝑖 to 𝑣𝑗, namely

𝑃 = 𝑣𝑖 𝑒̂1𝑣̂1… 𝑒̂𝑘̂−1𝑣̂𝑘̂−1𝑣𝑗 (C.12)
𝑃1 = 𝑣𝑖𝑒𝑖+1𝑣𝑖+1…𝑒𝑗−1𝑣𝑗−1𝑒𝑗𝑣𝑗 (C.13)
𝑃2 = 𝑣𝑖𝑒𝑖𝑣𝑖−1…𝑒𝑗+2𝑣𝑗+1𝑒𝑗+1𝑣𝑗 (C.14)

Note that 𝑃, 𝑃1 and 𝑃2 are pairwise edge­disjoint and all vertices on these paths,
except for 𝑣𝑖 and 𝑣𝑗 have degree two. By applying the operation 𝑅 ↦ 𝜏𝑣(𝑅) ⧵ 𝑣 to
all the vertices in 𝑉(𝐶)∪𝑉(𝑃) except 𝑣𝑖, 𝑣𝑗 and two vertices on distinct paths gives
the diamond graph 𝐷4 as in eq. (C.11). Note that at least two of the paths 𝑃, 𝑃1
and 𝑃2 contain at least three vertices since the graph is simple.

Finally the extended triangular expansion of 𝐷4 is given by

𝒯̃(𝐷4) = b
bb

b b b

b
bb

b b b

bb

. (C.15)



C

320 References

By explicit computation the rank­width of a circle graph induced by a Eulerian tour
the graph 𝒯̃(𝐷4), as in eq. (C.15), is found to be two. We have implemented this
calculation of the rank­width in SAGE [5] and the code for this can be found at [6].
For completeness, one can verify that the graph in fig. C.3 is the circle graph induced
by a Eulerian tour on the extended triangular expansion of 𝐷4 in eq. (C.15) and that
this graph is not distance­hereditary.

Figure C.3: The circle graph induced by a Eulerian tour on the extended triangular expansion of the
diamond graph 𝐷4, see eq. (C.11) and eq. (C.15).
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D.1. The 4­regular EDPDT problem is NP­Complete

F rom [1] we know that the EDP problem is NP­Complete even when the graph
𝐺 ∪ 𝐷 is Eulerian. Here we prove that this problem remains NP­Complete if we

restrict the demand graph to be of the form 𝐷 = 𝐾×𝑘2 and restrict 𝐺 ∪ 𝐷 to be 4­
regular. We call this problem 4­regular EDPDT, see problem 8.3.4. To do so we will
first introduce the notion of a grid graph gadget, an essential tool for reducing the
Eulerian EDP problem to the 4­regular EDP problem. We make use of these results
to show BellVM (and BellQM) is NP­Complete in section 8.4.

Definition D.1.1. Let 𝐺 be an Eulerian multi­graph and let 𝑣 be a vertex of 𝐺 of
degree 2𝑛 with incident edges labeled 1,…𝑛, 1′, … , 𝑛′. The grid gadget gadget 𝐺𝐺𝑣
associated to 𝑣, illustrated in fig. D.1, is a graph on 𝑛2 + 2𝑛 vertices labeled

𝑉(𝐺𝐺𝑣) = {𝑣𝑖 ∶ 𝑖 ∈ [𝑛]} ∪ {𝑣𝑖′ ∶ 𝑖 ∈ [𝑛]} ∪ {𝑣𝑖,𝑗′ ∶ 𝑖, 𝑗 ∈ [𝑛]} ⧵ {𝑣0,0′} (D.1)

with edge set

𝐸(𝐺𝐺𝑣) = {(𝑣𝑖 , 𝑣𝑖+1) ∶ 𝑖 ∈ [𝑛 − 1]} ∪ {(𝑣𝑛 , 𝑣1)}

∪ {(𝑣𝑖′ , 𝑣(𝑖+1)′) ∶ 𝑖 ∈ [𝑛 − 1]} ∪ {(𝑣𝑛′ , 𝑣1′)}

∪ [⋃
𝑖∈[𝑛]

{(𝑣𝑖 , 𝑣𝑖,1′)} ∪ {(𝑣𝑖,𝑗′ , 𝑣𝑖,(𝑗+1)′) ∶ 𝑗 ∈ [𝑛 − 1]}]

∪ [⋃
𝑖∈[𝑛]

{(𝑣𝑖′ , 𝑣1,𝑖′)} ∪ {(𝑣𝑗,𝑖′ , 𝑣𝑗+1,𝑖′) ∶ 𝑗 ∈ [𝑛 − 1]}]

∪ {(𝑣𝑖,𝑛′ , 𝑣𝑛,𝑖′) ∶ 𝑖 ∈ [𝑛]} ∪ {(𝑣1, 𝑣1′) . (D.2)

⋄

For later convenience we also define the following subsets of edges for 𝑖 ∈ [𝑛]

𝐸hor𝑖 [𝑗′, 𝑘′] = {(𝑣𝑖,𝑙′ , 𝑣𝑖,(𝑙+1)′) ∶ 𝑙 ∈ [𝑗 − 1, 𝑘 − 1]} for 𝑖, 𝑗, 𝑘 ∈ [𝑛] (D.3)

𝐸ver𝑖′ [𝑗, 𝑘] = {(𝑣𝑙,𝑖′ , 𝑣𝑙+1,𝑖′) ∶ 𝑙 ∈ [𝑗 − 1, 𝑘 − 1]} for 𝑖, 𝑗, 𝑘 ∈ [𝑛]. (D.4)

where 𝑣𝑖,0′ = 𝑣𝑖 and 𝑣0,𝑖′ = 𝑣𝑖′ . Informally, with respect to fig. D.1 the edges in
𝐸hor𝑖 [𝑗′, 𝑘′] are the horizontal edges at level 𝑖 which are right of 𝑗′ and left of 𝑘′.
Similarly, the edges in 𝐸ver𝑖′ [𝑗, 𝑘] are the vertical edges at level 𝑖′ which are above 𝑗
below 𝑘.

Note that all the vertices in the grid graph gadget 𝐺𝐺𝑣 have degree 4 or 3, with
only the vertices on the ’outside’ (associated to the incident edges of the vertex 𝑣)
having degree 3.

We will now prove that the grid gadget, in a specified sense, provides all­to­all
connectivity.
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Figure D.1: An example of the grid gadget defined in definition D.1.1.

Lemma D.1.2. Let 𝑣 be a vertex in a graph with 2𝑛 incident edges labeled 1,…
, 𝑛, 1′, … 𝑛′ and let 𝐺𝐺𝑣 be the associated grid graph gadget as defined in defini­
tion D.1.1. Consider an arbitrary pairing of the vertices 𝑣1, … , 𝑣𝑛 , 𝑣1′ , … , 𝑣𝑛′ con­
sisting of tuples of the form (𝑣𝑖 , 𝑣𝑗) (unprimed pairs), (𝑣𝑘 , 𝑣𝑙′) (mixed pairs) and
(𝑣𝑚′ , 𝑣𝑛′) (primed pairs). Then there exist edge­disjoint paths 𝑃1, … 𝑃𝑛 that connect
all pairs and moreover contain all edges in 𝐺𝐺𝑣. ⋄
Proof. Assume without of loss of generality that 𝑖 < 𝑗 for the unprimed pairs and
𝑚′ < 𝑛′ for the primed pairs (i.e. the first index is always smaller). We will prove
the lemma by explicit construction of the paths 𝑃1, … , 𝑃𝑛 Let 𝑀 be the list of mixed
pairs, 𝐿 be the list of unprimed pairs and 𝐿′ be the list of primed pairs. Note that
𝐿 and 𝐿′ are necessarily of equal length. Consider first the list of mixed pairs 𝑀.
Construct the paths 𝑃𝑘,𝑙′ by the following algorithm. An example of these paths is
shown in fig. D.2.

Algorithm D.1 Algorithm to construct the paths 𝑃𝑘,𝑙′ .
for 𝑥 ∈ [𝐾] where 𝐾 is the length of 𝑀 do

Create the path 𝑃𝑘𝑥 ,𝑙′𝑥 associated to the 𝑥’th pair in 𝑀 by:
(1) Walking horizontally rightwards from 𝑣𝑘𝑥 to 𝑣𝑘𝑥 ,𝑙′𝑥
(2) Walking vertically downwards from 𝑣𝑘𝑥 ,𝑙′𝑥 to 𝑣𝑙′𝑥

end for

Note that for every pair we have that

𝐸(𝑃𝑘,𝑙′) = 𝐸hor𝑘 [0, 𝑙′] ∪ 𝐸ver𝑙′ [0, 𝑘] (D.5)

where 𝐸hor𝑘 [0, 𝑙′] and 𝐸ver𝑙′ [0, 𝑘] are defined in eqs. (D.3) and (D.4). Note also that
since these sets are all disjoint the paths 𝑃𝑘,𝑙′ are all mutually edge­disjoint.
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Now consider the lists of of primed and unprimed pairs 𝐿 and 𝐿′. We will con­
struct paths 𝑃𝑖,𝑗 (unprimed) and 𝑃𝑚′ ,𝑛′ (primed) using the following algorithm.

Algorithm D.2 Algorithm to construct the paths 𝑃𝑖,𝑗 and 𝑃𝑖′ ,𝑗′ .
for 𝑥 ∈ [𝐾] where 𝐾 is the length of 𝐿 do # 𝐿 and 𝐿′ are necessarily of the
same length.

Create the path 𝑃𝑖𝑥 ,𝑗𝑥 associated to the 𝑘’th pair in 𝐿 by:
(1) Walking horizontally rightwards from 𝑣𝑖𝑥 to 𝑣𝑖𝑥 ,𝑚′𝑥
(2) Walking vertically upwards from 𝑣𝑖𝑥 ,𝑚′𝑥 to 𝑣𝑗𝑥 ,𝑚′𝑥
(3) Walking horizontally leftwards from 𝑣𝑗𝑥 ,𝑚′𝑥 to 𝑣𝑗𝑥

Create the path 𝑃𝑚′𝑥 ,𝑛′𝑥 associated to the 𝑥’th pair in 𝐿′ by:
(1) Walking vertically upwards from 𝑣𝑚′𝑥 to 𝑣𝑖𝑥 ,𝑚′𝑥
(2) Walking horizontally rightwards from 𝑣𝑖𝑥 ,𝑚′𝑥 to 𝑣𝑖𝑥 ,𝑛′𝑥
(3) Walking vertically downwards from 𝑣𝑖𝑥 ,𝑛′𝑥 to 𝑣𝑛′𝑥

end for

Figure D.2: An example of paths produced by algorithms D.1 and D.2 on the grid gadget defined in
definition D.1.1. In this example one of the mixed pairs in 𝑀 is (2, 4′) giving rise to the blue dashed­
dotted path. Furthermore, the first unprimed pair in 𝐿 is (1, 4) and the first primed pair in 𝐿′ is (3′ , 6′),
giving rise to the green dotted path and the red dashed path respectively, meeting at 𝑣2,3′ . Note that
the 𝑥’th primed and unprimed paths always meet at the vertex 𝑣𝑖𝑥 ,𝑚′𝑥 where 𝑣𝑖𝑥 and 𝑣𝑚′𝑥 is the first
vertex in the 𝑥’th primed and unprimed pair respectively.

Now note that the for all 𝑥 ∈ [𝐾] (where 𝐾 is the length of 𝐿) we have that

𝐸(𝑃𝑖𝑥 ,𝑗𝑥) = 𝐸hor𝑖𝑥 [0,𝑚′𝑥] ∪ 𝐸ver𝑚′𝑥 [𝑖𝑥 , 𝑗𝑥] ∪ 𝐸
hor
𝑗𝑥 [0,𝑚

′
𝑥] (D.6)

𝐸(𝑃𝑚′𝑥 ,𝑛′𝑥) = 𝐸
ver
𝑚′𝑥 [0, 𝑖𝑥] ∪ 𝐸

hor
𝑖𝑥 [𝑚′𝑥 , 𝑛′𝑥] ∪ 𝐸ver𝑛′𝑥 [0, 𝑖𝑥] (D.7)
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This immediately implies that all 𝑃𝑖𝑥 ,𝑗𝑥 and 𝑃𝑚′𝑥 ,𝑛′𝑥 are mutually edge­disjoin and
moreover that no 𝑃𝑖𝑥 ,𝑗𝑥 nor any 𝑃𝑚′𝑥 ,𝑛′𝑥 share edges with any of the mixed­pair paths
𝑃𝑘,𝑙′ . This last point can be seen by noting that an unprimed vertex 𝑣𝑖 can either
be part of a mixed pair or an unprimed pair but not both at the same time (with a
similar argument for the primed vertices).

Hence we have constructed a set of edge­disjoint paths that connect all vertex
pairs. However they do not yet contain all edges in 𝐸(𝐺𝐺𝑣). It is however straight­
forward to extend the paths to include all remaining edges. To see this consider
the grid graph gadget 𝐺𝐺𝑣 and remove all edges that are contained in one of the
paths constructed above. What remains is a not necessarily connected graph 𝐺rem
of which the connected components, by construction, share a vertex with at least
one of the constructed paths. Moreover, all these graphs will be Eulerian. Now
choose for each graph 𝐺rem a Eulerian tour 𝑈 and insert it into exactly one of the
paths that shares a vertex with 𝐺rem. The resulting set of paths will still have mu­
tually edge disjoint elements (since a Eulerian tour is edge­disjoint by definition)
and furthermore the union of all the paths in the set contains all edges in the grid
graph gadget 𝐺𝐺𝑣. This completes the proof.

We will now make use of lemma D.1.2 to map instances of EDP to instances of
4­regular EDPDT. We will first construct a mapping from arbitrary demand graphs
𝐷 to demand graphs of the form 𝐾×𝑘2 . Then, to make the graph 𝐺 ∪ 𝐷 4­regular,
we replace any higher­degree vertices in 𝐺 with the grid gadget above. Using
lemma D.1.2, we can prove that this puts no restriction on the possible paths.

Theorem D.1.3. Let 𝐺 and 𝐷 be graphs such that 𝑉(𝐷) ⊆ 𝑉(𝐺) and 𝐺 ∪ 𝐷 is
Eulerian. There exist graphs 𝐺″ and 𝐷′ such that 𝐷′ = 𝐾×𝑘2 where 𝑘 = |𝐸(𝐷)|,
𝐺″ ∪ 𝐷′ is 4­regular and (𝐺, 𝐷) is a YES­instance of the EDP problem if and only if
(𝐺″, 𝐷′) is.

⋄
b b

b b

b

bb

b

b b

b b

b b

b b

b

b

b

bb

b

b

b

b b

b b

b b

b b

b

b

b

bb

b

b

b

D G G ∪D

G′
∪D′

G′D′

b

b

b

b

b

b

b

b

b

b

Figure D.3: An example showing the mapping from an instance (𝐺, 𝐷) of EDP to an instance (𝐺′ , 𝐷′) of
EDPDT. Black solid edges are edges from 𝐺 or 𝐺′ and red dashed edges are edges from 𝐷′.
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Proof. To prove the theorem we will construct an explicit mapping from the graphs
(𝐺, 𝐷) to (𝐺″, 𝐷′). We do this in two steps: (1) map (𝐺, 𝐷) to (𝐺′, 𝐷′) where 𝐷′ =
𝐾×𝑘2 but 𝐺′ ∪ 𝐷′ is not necessarily 4­regular and (2) map (𝐺′, 𝐷′) to (𝐺″, 𝐷′) such
that 𝐺″ ∪ 𝐷′ is 4­regular. The first mapping is visualized in fig. D.3 and formalized
in eqs. (D.9) to (D.12). Informally, we replace each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸(𝐷) in the
graph 𝐺 ∪ 𝐷 with the following gadget

bb b b b bu v

x
′u

e
x
u

e
x
′v

e
x
v

e

. (D.8)

where 𝑥𝑢𝑒 , 𝑥′𝑢𝑒 , 𝑥′𝑣𝑒 and 𝑥𝑣𝑒 are all new vertices. Note that we label the vertex closer
to the corresponding vertex 𝑢 in the edge 𝑒 without the prime and the further one
with a prime. Formally, we define 𝐺′ to be

𝑉(𝐺′) = 𝑉(𝐺) ∪ ( ⋃
𝑒=(𝑢,𝑣)∈𝐸(𝐷)

{𝑥𝑢𝑒 , 𝑥′𝑢𝑒 , 𝑥′𝑣𝑒 , 𝑥𝑣𝑒 }) (D.9)

𝐸(𝐺′) = 𝐸(𝐺) ∪ ( ⋃
𝑒=(𝑢,𝑣)∈𝐸(𝐷)

{(𝑢, 𝑥𝑢𝑒 ), (𝑥𝑢𝑒 , 𝑥′𝑢𝑒 ), (𝑥𝑢𝑒 , 𝑥′𝑢𝑒 ), (𝑥𝑢𝑒 , 𝑥′𝑢𝑒 ),

(𝑥′𝑣𝑒 , 𝑥𝑣𝑒 ), (𝑥′𝑣𝑒 , 𝑥𝑣𝑒 ), (𝑥′𝑣𝑒 , 𝑥𝑣𝑒 ), (𝑥𝑣𝑒 , 𝑣)}). (D.10)

Note that we have added the edges (𝑥𝑢𝑒 , 𝑥′𝑢𝑒 ) and (𝑥′𝑣𝑒 , 𝑥𝑣𝑒 ) three times. We now
define the new demand graph 𝐷′ as

𝑉(𝐷′) = ⋃
𝑒=(𝑢,𝑣)∈𝐸(𝐷)

{𝑥′𝑢𝑒 , 𝑥′𝑣𝑒 } (D.11)

𝐸(𝐷′) = ⋃
𝑒=(𝑢,𝑣)∈𝐸(𝐷)

{(𝑥′𝑢𝑒 , 𝑥′𝑣𝑒 )} (D.12)

Note that 𝐷′ = 𝐾×𝑘2 . Note also that 𝐺′ ∪𝐷′ is still Eulerian. However it is in general
not 4­regular.

Now let 𝑁 be the set of vertices of 𝐺′ ∪ 𝐷′ of degree different than 4. Note
that, by construction 𝑁∩𝑉(𝐷′) = ∅. That is, all vertices of degree other that 4 are
exclusively vertices in 𝐺′. We will from 𝐺′ construct a graph 𝐺″ such that 𝐺″ ∪ 𝐷′
is 4­regular. For every vertex in 𝑁 which has degree 2, we simply add a self­loop
to the vertex, making the vertex have degree 4 without changing any connectivity.
Furthermore, for every vertex 𝑣 ∈ 𝑁 with degree larger than 4, we replace it by the
grid graph gadget 𝐺𝐺𝑣 as defined in definition D.1.1, attaching the edges incident
on 𝑣 to the vertices 𝑣1, … 𝑣𝑛 , 𝑣1′ , … , 𝑣𝑛′ (where 𝑛 = deg(𝑣)/2) in the grid graph
gadget. Note the graph 𝐺″ ∪ 𝐷′ obtained after this procedure is 4­regular.

To prove the theorem we now need to show that (𝐺, 𝐷) is a YES­instance to
EDP if and only if (𝐺″, 𝐷′) is a YES­instance. Again, we will do this in two steps: (1)
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first show that (𝐺, 𝐷) is a YES­instance if and only if (𝐺′, 𝐷′) is and (2) show that
(𝐺′, 𝐷′) is a YES­instance if and only if (𝐺″, 𝐷′) is.

1. We now prove that (𝐺′, 𝐷′) is a YES­instance of EDP if and only (𝐺, 𝐷) is.
First assume (𝐺, 𝐷) is a YES­instance of EDP. This means there exists for each
𝑒 = (𝑢, 𝑣) ∈ 𝐸(𝐷) a path 𝑃𝑒 on 𝐺 that begins and ends at the vertices 𝑢, 𝑣 such
that all paths 𝑃𝑒 are mutually edge­disjoint. Now, for each 𝑒 ∈ 𝐸(𝐷) define
the path 𝑃′𝑒 on 𝐺′ as

𝑃′𝑒 = 𝑥′𝑢𝑒 𝑥𝑢𝑒 𝑥′𝑢𝑒 𝑥𝑢𝑒 𝑢𝑃𝑒𝑣𝑥𝑣𝑒𝑥′𝑣𝑒 𝑥𝑣𝑒𝑥′𝑣𝑒 (D.13)

where we have omitted writing out the edges that the path traverses for
clarity. For a visual aid refer to eq. (D.8) where we instead of starting the
path at 𝑢 as in 𝑃𝑒 we start at 𝑥′𝑢𝑒 , traverse the edge (𝑥𝑢𝑥 , 𝑥′𝑢𝑒 ) back and fourth
three times and then move to 𝑢 using the edge (𝑥𝑢𝑒 , 𝑥′𝑢𝑒 ). From 𝑢 the path
𝑃′𝑒 is the same as 𝑃𝑒 and when arriving at 𝑣 we instead end at 𝑥′𝑣𝑒 similarly
to how we started at 𝑥′𝑢𝑒 . Thus 𝑃′𝑒 is a path connecting the vertices 𝑥′𝑢𝑒 , 𝑥′𝑢𝑒 .
Note that by definition (𝑥′𝑢𝑒 , 𝑥′𝑢𝑒 ) is an edge in the demand graph 𝐷′ (precisely
corresponding to the edge (𝑢, 𝑣) ∈ 𝐷). The paths 𝑃′𝑒 are also mutually edge­
disjoint, since the paths 𝑃𝑒 are. Hence (𝐺′, 𝐷′) is a YES­instance.
For the other direction, assume that (𝐺′, 𝐷′) is a YES­instance of EDP and thus
that there exists edge­disjoint paths 𝑃′𝑒 connecting the vertices 𝑥′𝑢𝑒 , 𝑥′𝑣𝑒 for all
𝑒 = (𝑥′𝑢𝑒 , 𝑥′𝑣𝑒 ) ∈ 𝐸(𝐷′). One can then see that 𝑃′𝑒 is either of the form as in
eq. (D.13) or as

𝑃′𝑒 = 𝑥′𝑢𝑒 𝑥𝑢𝑒 𝑢𝑃𝑒𝑣𝑥𝑣𝑒𝑥′𝑣𝑒 . (D.14)

This means that the associated path 𝑃𝑒 forms a path between 𝑢 and 𝑣 in 𝐺
for all 𝑒 =∈ 𝐸(𝐷′). Furthermore, since all 𝑃′𝑒 are pairwise edge­disjoint, so
are the 𝑃𝑒. Hence (𝐺, 𝐷) is also a YES­instance of EDP.

2. Next we argue that (𝐺′, 𝐷′) is a YES­instance of EDP if and only if (𝐺″, 𝐷′)
is. If (𝐺″, 𝐷′) is a YES­instance of EDP then so is (𝐺′, 𝐷′), since any edge­
disjoint paths passing through a grid graph gadget 𝐺𝐺𝑣 can also be made into
edge­disjoint paths passing through the vertex 𝑣. Hence assume that (𝐺′, 𝐷′)
is a YES­instance of EDP. Note that the only difference between (𝐺′, 𝐷′) and
(𝐺″, 𝐷′) is the replacement of vertices 𝑣 ∈ 𝑁 with the grid graph gadget 𝐺𝐺𝑣.
Moreover recall that 𝑁 ∩ 𝑉(𝐷′) = ∅. Finally, by lemma D.1.2, we know that
any deg(𝑣)/2 paths passing through a vertex 𝑣 can be mapped to deg(𝑣)/2
paths passing through 𝐺𝐺𝑣, and that these paths are mutually edge­disjoint
and use all edges in 𝐺𝐺𝑣. This implies that if (𝐺′, 𝐷′) is a YES­instance of EDP,
then so is (𝐺″, 𝐷′). This proves the theorem.

We can now prove corollary 8.3.4.1.
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Proof of corollary 8.3.4.1. Theorem D.1.3 states that there exists a many­one re­
duction from Eulerian EDP to 4­regular EDPDT. Furthermore, this reduction consists
of constructing the graphs (𝐺″, 𝐷′) from the graphs (𝐺, 𝐷) by the explicit rules in
eqs. (D.9) to (D.12) and by replacing vertices of degree more than 4 with the grid
graph gadget, which is clearly polynomial. This shows that 4­regular EDPDT is NP­
Hard. Since any instance of 4­regular EDPDT is also an instance of the general EDP
which is in NP, also 4­regular EDPDT is in NP and thus NP­Complete.
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