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Accurate Scene Text Detection via Scale-Aware
Data Augmentation and Shape Similarity Constraint

Pengwen Dai, Yang Li, Hua Zhang, Jingzhi Li, Xiaochun Cao, Senior Member, IEEE

Abstract—Scene text detection has attracted increasing con-
cerns with the rapid development of deep neural networks in
recent years. However, existing scene text detectors may overfit
on the public datasets due to the limited training data, or generate
inaccurate localization for arbitrary-shape scene texts. This paper
presents an arbitrary-shape scene text detection method that
can achieve better generalization ability and more accurate
localization. We first propose a Scale-Aware Data Augmentation
(SADA) technique to increase the diversity of training samples.
SADA considers the scale variations and local visual variations of
scene texts, which can effectively relieve the dilemma of limited
training data. At the same time, SADA can enrich the training
minibatch, which contributes to accelerating the training process.
Furthermore, a Shape Similarity Constraint (SSC) technique is
exploited to model the global shape structure of arbitrary-shape
scene texts and backgrounds from the perspective of the loss
function. SSC encourages the segmentation of text or non-text in
the candidate boxes to be similar to the corresponding ground
truth, which is helpful to localize more accurate boundaries
for arbitrary-shape scene texts. Extensive experiments have
demonstrated the effectiveness of the proposed techniques, and
state-of-the-art performances are achieved over public arbitrary-
shape scene text benchmarks (e.g., CTW1500, Total-Text and ArT).

Index Terms—Scene text detection, arbitrary shape, text part,
global context, data augmentation, accurate localization.

I. INTRODUCTION

CENE text reading plays a significant role in many prac-

tical applications, such as scene understanding [1], image
retrieval [2], autonomous driving [3], etc. Scene text detection,
as the prerequisite of the scene text reading system, has at-
tracted increasing interests in the field of computer vision and
multimedia. With the development of deep neural networks,
many scene text detection approaches [4]-[9] are proposed.
Although some impressive results have been achieved, there
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Fig. 1: (a) Scale-aware data augmentation. Each image crop
only cares about some specific-scale scene texts (green) and
ignores other texts (red). The positive (yellow) text parts and
the negative (cyan) text parts will be considered in the training
process. These text parts are generated based on the anchors
(blue) and the scene texts. (b) Shape similarity constraint. The
generated segmentation map is encouraged to be similar to the
ground-truth mask. Best view in color.

are still several challenges for developing a robust and accurate
scene text detector.

The first challenge is the limited number of training data
on the standard benchmarks, e.g., 229 training images in
ICDAR2013 [10], 1000 training images in CTWI500 [11].
When training a deep neural network on these datasets, the
model may be overfitting. To solve this problem, one simple
strategy is to increase the number of training samples by using
data augmentation, which includes scaling, rotating, cropping
and flipping of training images. The other strategy is to employ
the synthetic data [12] to pre-train the model and then fine-
tune on the real-world training data. However, the traditional
data augmentation strategies focus on the global variations
of annotated texts, which may be failed for the local visual
variation cases. Moreover, since the synthetic data [12] is
usually large-scale (~800,000 images), pre-training on this
synthetic data is time-consuming.

The second challenge is to accurately localize the arbitrary-
shape scene text. The layout of the text line or text word
in the natural image would be arbitrary-shape, which is hard
to be accurately localized by the horizontal or multi-oriented
scene text detectors [4]-[7], [13]-[25]. To achieve accurate
localization, the regression of multiple key points [11], [26]
is introduced to fit the curved bounding boxes of scene texts,
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but their localization boundaries are sensitive to the prediction
of each key point. Moreover, there are also some solutions
[8], [9], [27]-[37] to extract the text regions by performing
pixel-wise segmentation. However, the segmentation-based
methods are difficult to separate the neighboring scene text
instances and may generate the over-segmentation or under-
segmentation, due to the local-aware cues and the no well-
defined closed geometry boundary of the scene text.

To solve the above-mentioned challenges, two novel tech-
niques are introduced. Specifically, we first design a novel
Scale-Aware Data Augmentation (SADA) strategy for the task
of arbitrary-shape scene text detection. It not only considers
the extreme variety of scales and aspect ratios of scene
texts but also regards scene text parts as new scene texts,
which makes full use of the scale variation and local visual
variation of scene texts. As illustrated in Fig. 1(a), SADA
generates a fixed-scale image crop from the input images with
different scales. In each image crop, only some specific-scale
scene texts participate in the training process. Based on these
specific-scale texts (green), their parts (yellow) are considered
to increase the positive training samples. For the scene texts
(red) that do not fall into a specific scale, their parts (cyan)
are employed to remove ambiguous negative samples. These
parts are aware of the scale of anchors (blue) and scene texts.
Since the low-resolution image crop (512 x 512) enlarges the
minibatch size and the text parts increase the diversity of
training samples, SADA can lead our model to learn more
text variations in each iteration, which will accelerate the
convergence and promote the performance of the model.

Next, to accurately localize the boundaries of arbitrary-
shape scene texts, we exploit a novel Shape Similarity
Constraint (SSC) loss function. SSC encourages the segmenta-
tion map of text/non-text generated by the deep neural network
(DNN), to be similar to the corresponding ground-truth mask,
as shown in Fig. 1(b). The advantages of SSC are that it can
capture the global context from the perspective of the loss
function, which will not introduce extra network parameters
and calculations in the inference stage. Moreover, SSC models
the global shape structures, which helps to learn discriminative
and robust feature representations.

The contributions of our work are summarized as follows:

i) We propose a scale-aware data augmentation technique,
which accelerates the training and improves the performance.

ii) A shape similarity constraint is exploited to capture
global shape structures, which is helpful to achieve more
accurate localization.

iii) Our model can detect arbitrary-shape scene texts,
and has achieved state-of-the-art performances on the public
arbitrary-shape scene text benchmarks.

The rest of the paper is organized as follows. We first
introduce the related work in Section II. Then in Section III,
the proposed method is presented in detail. In Section IV,
we conduct numerous experiments and describe experimental
results. Section V finally concludes the paper.

II. RELATED WORK

In the era of deep learning, most scene text detection
methods can be found in the recent survey [38]. These studies

are roughly divided into two mainstreams: regression-based
methods and segmentation-based methods.

For the regression-based methods, researchers [4], [13]
usually take the scene text as a special object and inherit the
frameworks of general object detection to detect the horizontal
scene text. Researchers [5], [7], [14]-[19], [23]-[25] also
propose multi-oriented scene text detection techniques, such
as rotating anchors [5], rotating the convolution filters [16],
learning the affine transformation of the bounding box [19]
and regressing the angles or corner points of inclined boxes
[18], [22]. When detecting the arbitrary-shape scene text, some
researchers further regress the locations of key points in the
bounding box [11], [26]. Besides, some methods [6], [20], [21]
first regress scene text parts, and then aggregate the detected
parts into the horizontal, multi-oriented or arbitrary-shape text
instances.

For the segmentation-based methods, some researchers di-
rectly segment the text regions from the entire input image.
Instead of only performing semantic segmentation for each
pixel, more excellent approaches are proposed to learn more
attributes, such as learning the link relationship among pixels
[39], predicting the text border [24], learning the geometry
attributes [7], [8], [27]-[32] of each pixel, constructing text
instance with the progressive scale expansion [9], pulling
pixels of the same text and pushing pixels of different text
instances [40], [41], and so on. Besides, some methods per-
form the segmentation only on the bounding box. Inheriting
the framework of instance-aware semantic segmentation, some
efficient methods are proposed [33]-[36] for detecting scene
text. To alleviate the labor of designing anchors, Tian et al.
[37] employ an anchor-free network to generate the candidate
boxes, and propose an iterative refinement module to obtain a
more accurate localization of the bounding box.

In addition, data augmentation is a routine operation in the
deep learning to avoid over-fitting. Besides the traditional data
augmentation strategies implemented by rotating, cropping,
translating, scaling and flipping images, some special data
augmentation methods [42], [43] are proposed for various
computer vision tasks. In the field of scene text detection,
existing methods usually utilize the synthetic data to aug-
ment the training samples. Some techniques [12], [44]-[46]
are proposed to synthesize scene text images by embedding
various texts into natural images automatically. However, the
synthetic data usually exists gaps with the real data, which can
not ensure the consistency of data distribution. So far, only a
few works [24], [47] pay attention to generating data from
existing scene text images. Zhan et al. [47] generate scene
text images by transforming the source domain to the target
domain in both appearance and geometry spaces. They exploit
a kind of generative adversarial network to achieve the cross-
domain shifts, so the generated data can still be regarded as
the synthetic data in essence. To generate real training data,
Xue et al. [24] design a bootstrapping strategy by randomly
sampling text parts and repainting the unsampled ones.

In this work, we propose a method to detect arbitrary-shape
scene texts. It is a segmentation-based method that performs
the segmentation on the bounding boxes. The proposed scale-
aware data augmentation (SADA) mechanism considers the
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Fig. 2: Overview of our architecture. In the training stage, the scale-aware data augmentation (SADA) is first employed to
generate various image crops and text parts (yellow and cyan denote the positive and negative text parts). Then, for any image
crop, the backbone network is utilized to extract features. After that, according to the extracted features, the region proposal
network (RPN) generates the proposals, which will be projected into fixed-scale features by the deformable position-sensitive
region-of-interest pooling (DPS-ROIpooling). Finally, based on the different fixed-scales features, the text proposal refinement
network (TPRN) is adopted to generate the probabilities of classes and the location offsets, while the text mask segmentation
network (TMSN) is employed to generate the text mask. Furthermore, the shape similarity constraint serves as a loss function
L. to learn the global shape structure. In the inference, the input image is directly fed into the backbone network, and the
refined proposals generated by TRPN will be fed into the TMSN to generate the segmentation mask of arbitrary-shape scene

texts. Best view in color.

specific scales and scene text parts. It can be seen as an image
cropping strategy but involves innovative designs based on
the characteristics of scene texts. Although the researchers
in [24] have utilized the text parts, our differences are that:
1) Xue et al. [24] generate image crops via a simple multi-
scale cropping strategy, while our SADA generates positive
and negative image crops based on the scale and local visual
variations of scene texts. ii) In the training process, Xue et
al. [24] employ all various-scale scene texts in each image
crop, while our SADA only cares about the specific-scale
scene texts. iii) Xue et al. [24] randomly sample text parts
and then repaint the remained ones for scene texts, while our
SADA generates text parts based on the overlaps between the
scene texts and anchors. iv) Xue er al. [24] mainly utilize
the augmentation scheme to improve the consistency of the
predicted text feature map. However, our SADA is aware
of the scene texts and anchors, which is used to increase
the number of positive training samples and decrease the
confusion of negative training samples. Furthermore, we also
propose the novel shape similarity constraint to detect more
accurate boundaries for arbitrary-shape scene text instances.

III. METHODOLOGY
A. Overview of Architecture

The architecture of our method is illustrated in Fig. 2.
Specifically, given an input image I with the height H and
the width W, we extract the representative feature maps by
using the backbone network incorporated with deformable
convolutions. Then, the feature F,4 € R X5 *D1 derived
from the stage-4 of the backbone network is fed into the region
proposal network (RPN) [48] to generate proposals. Next, the
corresponding fixed-scale feature is extracted from the stage-5
feature F,5 € RS § %P2 of the backbone network by using

the deformable position-sensitive region-of-interest pooling
(DPS-ROIpooling) [49]. Note that the learnable parameters
in the different DPS-ROIpooling modules are not shared.
Finally, the fixed-scale feature F; € RP1*P1xDs jg fed into
the text proposal refinement network (TPRN) to generate
the probabilities of text/non-text and location offsets of text,
while the fixed-scale feature Fo € RP2XP2XDs is fed into
the text mask segmentation network (TMSN) to predict the
segmentation mask. Note that the TPRN and TMSN have
the same architectures with the RCNN branch and the mask
branch in [50], respectively. Besides, in the step of training, we
utilize the scale-aware data augmentation technique to increase
the diversity of training samples, and we also employ the shape
similarity constraint to learn the global shape structures for text
and non-text.

B. Scale-Aware Data Augmentation

The scales and aspect ratios of scene texts are extremely
various, and the scene text parts can still be regarded as new
texts due to lack of well-defined closed boundaries of texts.
Based on these characteristics of scene texts, we propose the
scale-aware data augmentation (SADA) to increase the diver-
sity of training samples and facilitate the training process. The
procedure of SADA is shown in Fig. 3, which involves two
main steps: image crop generation and text part generation.

1) Image Crop Generation: We first construct the image
pyramid to generate different scales of inputs, denoted as
{S; | i=1, 2, 3}. For each scale S;, a KxXK sliding window is
used to extract the image crops C;. Furthermore, we design
a short edge range R; = [e/" e%*] of the bounding
box to determine the ground-truth boxes of participating in
the training process. These concerned ground-truth boxes are
denoted as G; for each scale. Finally, the crops are selected
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Fig. 3: Procedure of the scale-aware data augmentation. The original input image is first scaled to different-scale images. Next,
the scaled images are used to generate positive image crops. Subsequently, the text part generation module is employed to
generate positive and negative text parts. After that, the positive crops including text parts are utilized to train a region proposal
network (RPN) for generating proposals. Then, the negative image crop generation module takes the scaled images, positive
crops and proposals as inputs to obtain negative crops. Finally, we randomly sample from positive crops with text parts and

negative crops to create the network input minibatch. Best view in color.
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Fig. 4: Distribution against the number of positive training
samples in RPN. When text parts are considered, they can
generate more number of positive training samples (orange
distribution) than that without considering text parts (blue dis-
tribution). The x-axis denotes the number of positive training

samples while the y-axis is the number of image crops.

as the positive crops CY°° [51] if they cover the maximum
number of G,;. Note that a ground-truth bounding box may
be covered by multiple crops with different scales due to the
overlapping intervals in the consecutive R;. For the unselected
crops, some crops contain text-like regions. When these crops
as negative crops participate in the training, they are helpful to
improve the performance. To select these negative crops, we
perform a negative crop mining. Specifically, we first employ
the positive crops that contain text parts to train a region
proposal network (RPN) [48] for generating proposals. Then,
we remove the proposals that are completely covered by CP°
for each scale. After that, the crops are greedily selected when
they are covered by the proposals in the range R;. These
selected crops are denoted as negative crops C;“?. In the
training, these positive crops and negative crops are randomly
selected to create the network input minibatch. In experiments,
the minibatch size is set to 10. The proportion of positive and
negative crops is 4:1.

Algorithm 1 Positive Text Part Generation

Input: The set of total anchors {a;}. The concerned ground-truth
polygons {gr} with the widths {wy} of the corresponding
bounding boxes. The thresholds 7, and 7.

Output: The positive anchor set .A. The text part set 7.

I: Set A @, T + @.
2: for V g; do

3: Generate the mask my based on gi.

4 Obtain the contour points {Xx, Y} of my.

5: for V a; do

6: Obtain (Tmin, Ymin, Tmaz> Ymaz) Of ai.

7 Set S «+ @.

8: for V (z',y') in {Xy, Yy} do

9: if Zoin < 2’ < Timae then

10: Append (z',y") to S.

11: end if

12: end for

13: Represent (Tmin, Ymin, Tmaws> Ymaz) Of S as t.
14: Compute the IOU overlap o between a; and ¢.
15: if o > 7, and 2t,,, — 2%, > Tw * @y then
16: Set A; < a;, T; < t.

17: end if

18: end for

19: end for

2) Text Part Generation: For most of the positive image
crops, they usually contain a few concerned ground-truth
boxes, which will result in generating limited positive training
samples. To increase the diversity of positive training samples,
we exploit the local visual variations of scene texts. Specif-
ically, as illustrated in Fig. 3, for each concerned ground-
truth poly (green), when the contour points are in the range
of an anchor (blue) along the x-axis, these contour points
are enclosed by a bounding rectangle (yellow), denoted as
the part-text candidate. The anchor will be regarded as the
positive training sample and the part-text candidate becomes
the positive text part, when they satisfy two conditions: i)
The IOU between the anchor and the part-text candidate is
greater than a threshold 7,. ii) The ratio between the width
of the part-text candidate and the width of the bounding box
of the ground-truth polygon is greater than a threshold 7.
In experiments, we set 7, = 0.7 and 7,, = 1/3. The whole
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process is summarized in Alg. 1. We also generate the training
samples based on the ground-truth bounding boxes in the same
way as [48]. When the number of positive training samples is
not sufficient, we will employ Alg. 1 to increase the positive
training samples, as shown in Fig. 4. Besides, to relieve
the confusion of the negative training samples, we utilize
the unconcerned ground-truth polygons (not labeled in green)
instead of the concerned ground-truth polygons, to conduct
the Alg. 1 for generating the negative text parts (cyan) and
the negative training samples (blue). These negative training
samples are ignored in the training.

C. Shape Similarity Constraint

For most scene text detection methods that perform seg-
mentation on the proposals, they employ the pixel-wise binary
cross-entropy loss, which is local-aware and lacks the global
context. To better learn discriminative representations of each
position in the segmentation map, we introduce the shape
similarity constraint (SSC) to capture the global context of
the predicted map from the perspective of the loss function.
Inspired by SSIM [52] that is originally used to assert the
image quality, our SSC is designed for arbitrary-shape scene
text detection. It not only constrains the shape similarity of
scene texts, but also constructs the shape similarity loss for
the backgrounds. Specifically, SSC can be formulated as,

C c c c
1 2-U, 00U, +¢1)(2- +e€
LSSC:721_¢(( Cp . 9 1)(C ngc 2) )7
C = (p(Uy, Uy) +¢€1)(Q, + Qf +e2)

- (1)
where C is the number of classes (text/non-text). €1 and €5 are
factors to stabilize the division with weak denominator, which
are fixed to 0.012 and 0.03% in experiments, respectively.
¢ denotes the average operation. ¢ represents the operation
formulated as,

¢(U,,Uy) = U, © Uy + Uy © Ug, (2)

where ©® represents the element-wise multiplication. In ad-
dition, Us,U; € R?*¢ denote the weighted mean maps
for the predicted and ground-truth map of the c-th
class. Q5, Qf € R**¢ are the weighted variance maps for the
predicted and ground-truth map of the c-th class. Qj,, € R**?
is the weighted covariance map between the predicted map and
the ground-truth map of the c-th class. They are calculated as,

U, =P * w, U;:Gc*w, 3)
Q,, = P0G *w—-U, Uy, 4)
Q, =P OP)*xw-TU,0U;, 3)
Q, = (G°0G°) xw - U; © Uy, (6)

where * denotes the operation of correlation. w € R**7# is the
Gaussian weighting filter with the size z, which is generated
as the same with [52]. P© € R?* is the predicted map of the
c-th class, whose element has the value of [0, 1]. G¢ € R¢x¢
is the ground-truth map of the c-th class, whose element has
the value of 0 or 1.

D. Training and Inference

Our model is trained in an end-to-end manner. The total
loss function is expressed as,

L= L’r’pn + )\lLtp'rn + )\2Ltmsn7 (N

where \; and Ao are the balance factors of the loss function,
and both of them are set to 1 in experiments. L,.,, is the loss
function of the region proposal network [48]. Ly, denotes
the loss function of the text proposal refinement network,
which is similar to the RCNN loss [48]. The difference
between them is that the former only involves two classes
(text/non-text) while the latter includes multiple classes. Ly, sn
is the loss function of the text mask segmentation network,
which is calculated as,

Ltmsn = Lmask + >\3L5867 (8)

where L5k 1S the pixel-wise mask segmentation loss [50].
L. is the loss function of the shape similarity constraint as
illustrated in the above subsection. A3 is the balance factor
between L, 45k and Lgs.. In experiment, A3 is set to 1.

In the inference, the original input image is resized into the
images with three scales {S; | i=1, 2, 3}. For each scale,
the detections are obtained from the predictions of TPRN
and TMSN as [50]. Then all the detections are aggregated
and filtered by the confidence threshold 7.. After that, the
mask-level NMS [53] is utilized to filter the overlapped
detections. Finally, we utilize the marching square algorithm
[54] to extract the contour for each detected binary mask.
Considering the shape of the extracted contour, we define it
as the polygonal bounding box. For the binary mask that may
not have a completely connected component, it will generate
multiple polygonal bounding boxes. Thus, we only keep the
polygonal bounding box with the maximum area. In the post-
processing, the mask-level NMS can effectively remove the
detected text parts contained in the detected text instance,
which will improve the precision of detection. The mask-level
NMS calculates the overlaps as the following,

O =max(A,/Aa, Ao/ Ap), 9)

where A, and A, are the areas of the detected masks a and
b. A, is the area of intersection between a and b. When O
is greater than the threshold 7,,, the detections with lower
confidences will be filtered.

IV. EXPERIMENTS

In this section, we conduct experiments to demonstrate the
effectiveness and superiority of our proposed method. We also
analyze the limitations and the runtime of our model.

A. Datasets and Evaluation Protocols

CTW1500 [11] is an arbitrary-shape scene text dataset,
including horizontal, multi-oriented and curved scene texts.
This dataset consists of 1,000 images for training and 500
images for testing. The annotation is mainly line-level and
labeled by a polygon with 14 key points.

Total-Text [55] is also an arbitrary-shape scene text dataset,
in which the training set has 1,255 images and the testing set
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6
TABLE I
ABLATION STUDIES OF SADA AND SSC ON THE DATASET CTWI500.
10U@0.5 10U@0.7 Training ]
Method R(%) P %) F % | R(%) P %) F (%) time 80
MaskRCNN-alt [50] | 84.2 809 825 | 696 710 703 | ~ I0h
Baseline 77.2 81.5 79.3 64.0 67.5 65.7 > 30h
Ours (+SADA) 813 862 837 | 680 721 700 | ~4h
Ours (+SADA+SSC) | 817 872 844 | 700 747 723 | ~45h <707
@
TABLE II z
COMPARISONS BETWEEN SADA AND OTHER DATA AUGMENTATION 3 60 -
STRATEGIES. THE EXPERIMENTS ARE CONDUCTED ON CTW1500. £
I0U@0.5 Training
Data Method R %) P @%) F @ Time 0 — our
Synthetic SynthText [12] 83.9 81.4 82.6 > 100h —— Ours (w/o SSC)
Bootstrapping [24] 82.5 80.6 81.5 ~ 10h —— Baseline
SNIPER [51] 80.0 84.8 82.3 ~ 4h —— MaskRCNN-alt
Real TDA-S 772 815 793 > 30h 401 : : : : : : : :
ca TDA-R 75.9 80.4 78.1 > 30h 0 25 50 75 100 125 150 175 200
TDA-C 821 773 797 ~ 3h #Epochs
Our SADA 813 863 837 ~ 4h Fig. 5: Comparisons of the changes in F-measure against the

has 300 images. All text instances are annotated by a world-
level polygon with the unfixed number of key points.

ArT [56] is a larger arbitrary-shape scene text dataset. There
are 10,166 images in total, including 5,603 training images
and 4,563 testing images. The location of the scene text is
annotated by the unfixed number of key points. This dataset
not only contains English scene texts, but also involves lots of
Chinese scene texts like that in RCTW-17 [57].

ICDAR2015 [58] is a multi-oriented scene text dataset. It
contains 1,000 training images and 500 testing images. The
annotation of each text in the image has 8 coordinates to en-
close the text in a clockwise way, which makes the annotation
word-level and polygonal.

ICDAR2013 [10] is a horizontal scene text dataset, which
only contains horizontal or nearly horizontal text instances. In
this dataset, there are 229 training images and 233 testing im-
ages. The word-level ground-truth bounding box is annotated
by the top-left and bottom-right points.

COCO-Text [59] is the largest dataset for the localization
task of the Latin scene text currently. The whole dataset
contains 63,686 images with more than 17k text instances,
in which 43, 686 images are selected as the training set, while
10,000 images serve as the testing set and the rest is used
for the validation. The annotation has two types, which are
similar to that of ICDAR2015 and ICDAR2013.

To evaluate the detection performances on CTW1500, ArT,
ICDAR2015, and COCO-Text, we follow the IOU protocol
provided in [11], [56], [58], [59], respectively. When evalu-
ating on ICDAR2013, and Total-Text, the DetEval protocol
provided in [10], [55] is employed.

B. Implementation Details

In experiments, we have fixed K, S, Dy, Ds, D3, p1,
p2, d and z to 512, 16, 1024, 2048, 256, 7, 14, 28 and 3,
respectively. The base scales and aspect ratios of the anchors
are set to (4, 6, 8, 10) and (0.5, 1, 2), respectively. In
the step of training, we empirically set the resized scales
{S; | i=1, 2, 3} to {(512, 512), (800, 1280), (1400, 2000)}
and the minimum edge ranges {R; | =1, 2, 3} to {(0,
100), (30, 160), (120, +o0)}. The parameters of the backbone

training epoch on the dataset CTW1500. The dashed lines
denote the expected changes. Best view in color.

network (ResNet-101) are initialized by the public model pre-
trained on Openlmage [60]. The parameter initialization of the
deformable convolution and DPS-ROIpooling is the same as
that in [49]. The parameters in other layers are initialized as
those in [50]. The whole model adopts an end-to-end training
strategy, which is trained for 6 epochs. The learning rate is
initially fixed to 0.015 and multiplied by 0.1 after 5 epochs.
Other hyper-parameters in the framework are following those
settings in [51]. In the testing, {S; | i=1, 2, 3} are set to
{(400, 600), (600, 800), (1000, 1400)} for CTW1500, Total-
Text and ArT, and {(400, 600), (800, 1200), (1400, 2000)} for
ICDAR2013, ICDAR2015 and COCO-Text. The confidence
threshold 7. is set to 0.9 for CTW1500, Total-Text, ArT
and ICDAR2013, and 0.65 for ICDAR2015 and COCO-Text,
which are tuned by grid search on the training set as [8].

To compare with previous methods as fair as possible, we
modify our model from four aspects. Firstly, we use ResNet-
50 pre-trained on ImageNet [61] as the backbone instead of
ResNet-101 pre-trained on Openlmage [60]. Secondly, we
replace the deformable convolution with the standard con-
volution and the deformable position-sensitive ROI pooling
with the ROIAlign [50]. Thirdly, we integrate the pyramid
feature network (FPN) [62] into our model like that in Mask-
RCNN [50], in that most existing methods also use FPN (or
FPN variants). Finally, we only utilize a single scale in the
inference. The testing scale is set to (600, 800) for CTW 1500,
Total-Text and ArT, to (1200, 2000) for ICDAR2015, and to
(960, 1400) for ICDAR2013 and COCO-Text.

The proposed method is implemented based on the MXNet
[63] framework. All experiments are carried out on a work-
station with a 1.70 GHz Intel(R) Xeon(R) E5-2609 CPU, an
NVIDIA GTX 1080Ti GPU, and 64G RAM.

C. Exploration of Proposed Modules

1) Baseline settings: The baseline is designed based on our
proposed framework without the scale-aware data augmenta-
tion (SADA) and shape similarity constraint (SSC). The multi-
scale training strategies and the training hyper-parameters
follow the baseline settings in [33]. Specifically, the short
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TABLE III
INFLUENCES OF GAUSSIAN FILTER SIZE IN SSC. THE EXPERIMENTS ARE
CONDUCTED ON THE DATASET CTW1500.

I0U@0.7

Method R %) P %) F %)
w/o SSC 68.0 72.1 70.0
SSC (z=3) 70.0 74.7 72.3
SSC (z=7) 68.2 74.9 71.4
SSC (z=11) 68.4 71.9 70.1
SSC (z=17) 68.9 71.7 70.3
SSC (z=23) 68.9 72.5 70.7
SSC (z=27) 68.6 73.2 70.8
SSIM Loss 69.0 73.0 71.0
Dice Loss 69.3 73.9 71.5

edges of the training images are randomly resized to three
scales (640, 720, 800), and then each image is randomly
flipped with a probability of 0.5. The whole model has been
trained for 200 epochs in an end-to-end manner. The learning
rate multiplies 0.1 after 180 epochs. We also train Mask-
RCNN [50] that incorporates the feature pyramid network
(FPN) [62] and utilizes the alternate training manner (denoted
as ‘MaskRCNN-alt’). Both RPN-1 and RPN-2 are trained
for 6 epochs. Both MRCNN-1 and MRCNN-2 are trained
for 12 epochs. The learning rate is multiplied by 0.1 after
5 and 11 epochs for RPN and MRCNN. The backbone also
employs ResNet-101, which is initialized by the model pre-
trained on the dataset Openlmage as well. The other hyper-
parameter settings also follow the baseline settings in [33]
for better detecting scene text. When testing, the scales of the
input image are also the same as ours.

2) The influence of SADA: In Table I, IOU@0.5 and
IOU@0.7 denote the evaluation protocols [11] where the IOU
overlap threshold is set to 0.5 and 0.7. Experimental results
have shown that, compared with the baseline, our SADA has
a significant improvement of 4.7% and 4.4% in Precision and
F-measure, under IOU@(.5. When using a stricter evalua-
tion protocol IOU@O0.7, the Precision and F-measure have
still increased by 4.6% and 4.3%. When comparing with
MaskRCNN-alt [50], SADA also achieves better Precision
(+5.3%) and F-measure (+1.2%) under IOU@0.5. The Recall
of MaskRCNN:-alt is higher than our model with SADA, which
mainly benefits from the influence of feature pyramid network
(FPN) [62]. Besides, our method only costs about 4 hours to
train the model in an end-to-end manner, which is obviously
superior to the baseline. Fig. 5 also reveals that our model can
achieve faster convergences and better performances. There
are two reasons for this: i) SADA generates the image crops
with lower resolutions to create the minibatch. These image
crops can enlarge the minibatch size and discard some useless
background regions in the original images. ii) SADA considers
specific-scale scene texts in each image crop and makes full
use of the valid text parts, which help to learn the diversities
of training samples in each iteration.

To further verify the superiority of SADA, we compare
it with the specially-designed data augmentation techniques
achieved by the synthetic data and the real data. Some excel-
lent researches [12], [45]-[47] devote to synthesizing scene
text images. We just use the synthetic dataset SynthText [12]
to pre-train our model one epoch as most existing methods,
and then fine-tune on CTW1500. As shown in Table II, the

@ o)
Fig. 6: Examples of qualitative comparisions without SSC (a)
and with SSC (b). Red denotes the detection result. Green is
the ground-truth.

experimental results indicate that our SADA can achieve better
performance, and especially save much training time. When
comparing with [24] that augments training samples with real
text parts, our SADA has improved the Precision of 5.7%
and F-measure of 2.2%, respectively, as presented in Table II.
When comparing with [51] that utilizes the real data to perform
the efficient multi-scale training, the experimental results in
Table II also show that our SADA works better in performance.

In addition, the traditional naive data augmentation tech-
niques will also generate real data. Here, we mainly explore
three kinds of traditional data augmentations through randomly
scaling, rotating and cropping images (denoted as TDA-S,
TDA-R and TDA-C), respectively, in that they can also affect
the scales of scene texts. TDA-S is actually our baseline, which
resizes the short edges of images to three scales (640, 720,
800). TDA-R randomly rotates the image from 0° to 360°
with the interval of 10°. TDA-R only uses the single scale
(600, 1000), which denotes the short edge is set to 600 while
the long edge is not more than 1,000. Other settings of TDA-
R follow those in TDA-S. TDA-C randomly crops the image
with a single scale (600, 1000) into 512x512 patches like
that in our SADA. The difference is that TDA-C allows all
scene texts in each image crop to participate in the training.
TDA-C trains 12 epochs and decays the learning rate by
0.1 at 10 epochs. All methods will randomly flip training
images with a probability of 0.5. As shown in Table II, our
SADA is significantly superior to TDA-S and TDA-R in both
performance and training time. Although TDA-C can achieve
faster convergence than our SADA, it is less effective than
ours in performance (79.7% vs. 83.7%).

3) The influence of SSC: As shown in Table I, after
SSC is incorporated with SADA to train the model, it can
localize the scene text more accurately. Under the evaluation
protocol IOU@0.7, it promotes 2.0%, 2.6% and 2.3% in terms
of Recall, Precision and F-measure, respectively, compared
with SADA. It also achieves the improvements of 1.0% and
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TABLE IV
F-MEASURE (%) UNDER DIFFERENT OVERLAP THRESHOLDS. THE
EXPERIMENTS ARE CONDUCTED ON CTWI1500. 1 DENOTES THE RESULTS
FROM [34]. VALUES COLORED IN RED INDICATE THE DROPS VERSUS THE
PERFORMANCE UNDER I0U@0.5.

10U
Method 03 056 07 08
CTD-CLOC [11] T 73.4 64.3 (o1 46.6 (1265) 19.5 (539
Mask-TTD [34] 79.4 71.3 wsn 59.5 1199 35.3 (a4
Ours 84.4 81.0 134 72.3 (12 49.8 (1346
TABLE V

INFLUENCE OF BACKBONE. THE EXPERIMENTS ARE CONDUCTED ON THE
DATASET CTW1500.

10U@0.5
Backbone R@ P %) T @&
Res101 (Openlmage) 81.7 87.2 84.4
Res101 (ImageNet) 81.2 86.5 83.8
Res50 (ImageNet) 80.7 85.4 83.0
Res50 (ImageNet) w/o Deform 79.5 86.0 82.6
Res50-FPN (ImageNet) w/o Deform 80.4 86.2 83.2

0.7% in Precision and F-measure under IOU@0.5. When
comparing with MaskRCNN-alt, our method has significantly
improved the Precision of 6.3% and 3.7% under IOU @0.5 and
I0U@0.7, respectively. In SSC, different Gaussian weighting
filter size z captures various contexts for each spatial position,
which will affect the boundary localization of scene texts.
As shown in Table III, when z = 3, it achieves the best
F-measure under IOU@0.7. The reason may be ascribed that
the Gaussian filter is more capable of learning the boundary
information when z is fixed to 3. Besides, SSC models the
global shape structure of scene texts and backgrounds. It can
effectively avoid detecting the text parts of the entire scene
text and complex backgrounds, and relieve the false negatives.
The qualitative detection results with and without SSC are
presented in Fig. 6.

When our model employs the original SSIM loss used in
BASNet [64] for high-quality salience object segmentation,
the experimental results in Table III show that it will decrease
by 1.0%, 1.7% and 1.3% in Recall, Precision and F-measure,
respectively, compared with our SSC. It is because SSC can
capture the shape structures of both scene texts and back-
grounds under dual supervisions. Besides, when training in
an end-to-end manner, the gradient of SSC will also affect
the learning of localization of proposals. We further utilize
the dice loss as [9] instead of our SSC to learn global-aware
scene text boundaries in our model. Experimental results also
demonstrate the effectiveness of our SSC, as shown in Table
III. It is because our SSC is sensitive to the change of the scene
text boundaries when a scene text is predicted as multiple text
parts, but the dice loss is not aware of such changes when the
text parts are very near.

Different from our SSC that purses more accurate local-
ization of arbitrary-shape scene texts from the perspective of
the loss function, Mask-TTD [34] exploits a tightness prior
and the text frontier learning to enhance the pixel-wise mask
prediction. However, as shown in Table IV, our SSC can
achieve better performance under stricter overlap thresholds.
When the overlap threshold ranges from 0.5 to 0.8, the drops
of F-measure for our SSC are also lower.

4) The influence of backbone: To better analyze the per-
formance of our proposed method, we further utilize different

TABLE VI
QUANTITATIVE COMPARISONS AMONG DIFFERENT NMS TYPES IN THE
POST-PROCESSING. THE EXPERIMENTS ARE CONDUCTED ON CTWI1500.

TOU@05

NMS Type @y P @ F %)
BNMS 508 853 830

SMNMS | 823 851 837
MNMS | 817 872 844

backbones to evaluate our model. As shown in Table V, when
we utilize the ResNet-101 pre-trained on Openlmage [60] as
the backbone, our method achieves the improvements of 0.5%,
0.7% and 0.6% in terms of Recall, Precision and F-measure,
respectively, compared with that pre-trained on ImageNet [61].
When ResNet-50 pre-trained on ImageNet is employed as the
backbone, it will decrease the Recall of 0.5%, Precision of
1.1% and F-measure of 0.8%, respectively, compared with
ResNet-101 pre-trained on ImageNet. After we replace the
deformable convolution with the standard convolution and the
deformable position-sensitive ROI pooling with the ROIAlign
[50], our model has achieved the Recall of 79.5%, Precision
of 86.0% and F-measure of 82.6%, respectively. Further, we
integrate the pyramid feature network (FPN) [62] with the
backbone like that in Mask-RCNN [50] and only use a single
scale in the inference. In Table V, the experimental results
indicate that FPN can boost the F-measure of 0.6%, which
is better than the multi-scale testing strategy for detecting
different-scale scene texts.

5) The influence of mask-level NMS: Since the text parts
participate in the training, our model will also detect some
text parts. To filter such redundant text parts, we utilize the
mask-level NMS (MNMS), which is superior to the the box-
level NMS (BNMS) [48] and standard mask-level NMS (S-
MNMS) [50]. As shown in Table VI, the quantitative results
have demonstarted that S-MNMS and MNMS can effectively
improve the Recall, compared with BNMS. It is because
BNMS will filter the highly-overlapped axis-aligned bounding
boxes even though their corresponding masks are separated,
which is illustrated in the first and second row of Fig. 7.
Besides, as shown in Table VI, MNMS mainly increases the
Precison, compared with BNMS and S-MNMS. It can be
ascribed to the reason that MNMS is effective in removing the
detected text parts in the whole text instance. Three samples
in Fig. 7 also qualitatively illustrate the superiority of MNMS.

D. Generalization Ability

To verify the robustness in generalizing to unseen datasets,
we adopt the cross-dataset evaluation rules as existing meth-
ods. That is, we evaluate our model by training on one dataset
and testing on another dataset. We divide these evaluations
into three situations.

The first is evaluating the generalization abilities be-
tween arbitrary-shape text datasets (CTW1500 and Total-Text).
Specifically, we train our model on the training set of
CTWI1500 and then test our model on the testing set of
Total-Text, or our model is trained on the training set of
Total-Text and then tested on the testing set of CTWI500.
We adopt two evaluation protocols IOU@0.5 and DetEval as
[35] for comprehensive evaluation. As shown in Table VII,
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TABLE VII
EXPLORATION OF GENERALIZATION ABILITY BETWEEN THE ARBITRARY-SHAPE SCENE DATASETS. 1 DENOTES THE RESULTS FROM [35]. * MEANS
MULTI-SCALE TESTING RESULTS.

Training set — Testing set
Detector CTWI1500 — Total-Text Total-Text — CTW1500
ToU@QO0.5 | DetFEval ToUQO0.5 | DetFEval
R(%) P(%) F(%) R(%) P%) F%) | R(%) P%) F%) R%) P(%) F(%)
CTD-TLOC [11]f 259 42.5 322 34.5 44.1 38.7 50.5 37.4 43.0 42.9 44.1 43.5
TFE-PRPA-BCTS [35] 31.0 55.5 39.8 47.2 66.6 55.2 57.8 35.1 43.6 65.5 62.1 63.7
Ours (Res50-FPN-ImageNet) 32.6 57.1 41.5 66.7 71.2 68.9 56.2 36.7 444 67.2 68.1 67.6
Ours (Res101-Openlmage)* 34.2 59.0 43.3 68.9 74.8 71.7 57.5 37.9 45.7 70.5 72.1 71.3
TABLE VIII

Fig. 7: Qualitative detection results from different NMS types.
(a) Box-level NMS. (b) Standard Mask-level NMS. (c) Mask-
level NMS used in our method. Green denotes the ground-
truth. Red is the detection result.

our method achieves excellent generalization performances,
which significantly outperform the generalization abilities of
the pioneering arbitrary-shape detector CTD-TLOC [11].

The second is evaluating the generalization abilities between
the arbitrary-shape text dataset (Total-Text) and the multi-
oriented text dataset (ICDAR2015). Specifically, we train our
model on the training set of Total-Text and then test our model
on the testing set of ICDAR2015. Meanwhile, our model is
also trained on the training set of ICDAR2015 and then tested
on the testing set of Total-Text. As shown in Table VIII, the
generalization ability of our model is superior to all other well-
known detectors.

The third is that our model is first trained on the training
set of the multi-oriented text dataset ICDAR2015, and then
is tested on the testing set of the horizontally-oriented text
dataset COCO-Text'. As illustrated in Table IX, compared
with most excellent detectors, our model has achieved better
generalization performance. Although Mask-TextSpotter [36]
adopts the synthetic data [12] to pre-train the model, utilize
more real-world data to fine-tune the model and integrate the
recognition network to promote the detection performance,
the F-measure of our model just has decreased by 0.1% in
a single-scale testing.

1COCO-Text has two annotation types, but it utilizes the annotations like
ICDAR2013 when evaluating the performance of the model. Therefore, we
take this dataset as a horizontally-oriented scene text dataset here.

EXPLORATION OF GENERALIZATION ABILITY BETWEEN THE
ARBITRARY-SHAPE SCENE TEXT DATASET Total-Text AND THE
MULTI-ORIENTED SCENE TEXT DATASET ICDAR2015. + DENOTES THE
RESULTS FROM ([8]. * MEANS MULTI-SCALE TESTING RESULTS.

Training set — Testing set
Detector ICDAR2015 —Total-Text | Total-Text — ICDAR2015
DetFEval ToU@QO0.5
R(%)  P(%) F(%) R(%) P(%) F(%)
SegLink [20] 332 35.6 34.0 - - -
EAST [7] t 43.1 49.0 459 - - -
PixelLink [39] { 52.7 535 53.1 - - -
TextSnake [8] 67.9 61.5 64.6 - - -
TextField [28] 65.2 61.5 63.3 66.0  77.1 71.1
PAN [41] 57.8 72.0 64.1 65.5 7.6 71.1
Ours (Res50-FPN-ImageNet) | 56.5 79.2 66.0 70.3 75.6 72.9
Ours (Rest101-Openlmage)* 58.2 81.5 67.9 72.7 71.5 75.0
TABLE IX

EXPLORATION OF GENERALIZATION ABILITY FROM THE MULTI-ORIENTED
SCENE TEXT DATASET ICDAR2015 TO THE HORIZONTALLY-ORIENTED
SCENE TEXT DATASET COCO-Text. * INDICATES MULTI-SCALE TESTING
RESULTS. A DENOTES TRAINING ON COCO-Text.

ICDAR2015 — COCO-Text
Detector ToUQO.5

R(%) P(%) F(%)
EAST [7] 324 50.4 39.5
SSTD [22] 31.0 46.0 37.0
WordSup [25]* 30.9 452 36.8
RRD [16] 57.0 64.0 61.0
TextBoxes++ [18]A* 56.7 60.9 58.7
Mask-TextSpotter [36] 58.3 66.8 62.3
PS-COI [32]A 39.0 61.0 47.0
Ours (Res50-FPN-ImageNet) 57.2 68.1 62.2
Ours (Res101-Openlmage)* 59.1 70.3 64.2

E. Comparisons with Related Methods

Comparisons On CTW1500: As shown in Table X, when
not using the synthetic text dataset SynthText [12] to pre-train
the model, our model with single-scale testing is superior to
all state-of-the-art methods. Compared with existing methods
that employ SynthText, our model is still better than most
of them. We further utilize the ResNet-101 pre-trained on
Openlmage as the backbone and multi-scale testing strategy,
our method can achieve better performance. The qualitative
detection results are presented in the first row of Fig. 8.

Comparisons On Total-Text: As shown in Table XI, the
Recall of our proposed method outperforms the state-of-the-art
methods that do not pre-train on the synthetic dataset SynthText
[12]. Specifically, our model improves the Recall of 1.8%
compared with the detector PAN [41] in a single-scale testing.
When we utilize ResNet-101 pre-trained on Openlmage to
initialize our model and test the model using multiple scales,
our method also works better than other methods that use
multi-scale testing strategies and pre-train on SynthText. The
second row of Fig. 8 shows the qualitative detection results.

Comparisons On ArT: For this dataset, we submit our
detection results to the website and evaluate our proposed
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TABLE X
COMPARISONS WITH RELATED WORKS ON CTWI1500. ‘Using SynthText’
MEANS USING THE SYNTHETIC DATASET TO PRE-TRAIN THE MODEL. THE
UNDERLINED AND THE BOLD DENOTE THE OPTIMAL VALUES AMONG

TABLE XII
COMPARISONS WITH RELATED METHODS ON THE DATASET ArT. 1 MEANS
THE EVALUATION RESULTS FROM THE COMPETITION LEADERBOARD
ABOUT ARBITRARY-SHAPE SCENE TEXT DETECTION [56].

THE METHODS PRE-TRAINED WITH AND WITHOUT USING ‘SynthText’. * TOU@0E
INDICATES MULTI-SCALE TESTING RESULTS. Detector R P @) F @
Method Publication ¢ Using gy P F (%) MSR [29] f 0.46 0.55 0.50
ynthText .
TextSnake [8] ECCV'138 N 853 619 756 TextCohesion 43.7 68.1 532
PSENet [9] CVPR’19 Vi 797 848 822 TMIS 53.5 86.2 66.0
MSR [29]* 1JCAT'19 v 78.3 85.0 81.5 MFTD ¢ 63.1 72.1 67.3
CRAFT [27] CVPR’19 Vi 811 860 835 CCISTD + 60.7 81.2 69.5
PAN [41] ICCV’ 19 Vi 812 864 837
LOMO [37]* CVPR’19 Vv 76.5 85.7 80.8 CR/S}?TQ[;] t ggg g;g ;gg
SAE [40] CVPR’19 Vi 778 827  80.1 : : :
SAST [30]* MM’19 Vi 817 812  8L5 CLTDR 65.9 82.6 733
ICG [21] PR’19 Vi 798 828 813 Ours (Res50-FPN-ImageNet)  63.0 81.3 741
TextField [28] TIP’19 Vv 79.8 830 814 Ours (Res101-Openlmage)* 69.5 83.3 75.8
ATRR [26] CVPR'I9 x 802 801  80.1
PAN [41] ICCV'19 x 717 846 810
CTD-CLOC [11] PR’19 x 698 774 734 TABLE XIII
AB-LSTM [31] TOMM’ 19 9 36 830 823 COMPARISIONS WITH RELATED WORKS ON ICDAR2015. ‘Using SynthText
Mask-TTD [34] TIP’20 x 790 797 794 MEANS USING THE SYNTHETIC DATASET TO PRE-TRAIN THE MODEL. THE
Ours (Res50-FPN-ImageNeD) — < S04 862 832 UNDERLINED AND THE BOLD DENOTE THE OPTIMAL VALUES AMONG
Ours (Res101-Openlmage)* — X 81.7 87.2 84.4 THE METHODS PRE-TRAINED WITH AND WITHOUT USING ‘SynthText’. *
INDICATES MULTI-SCALE TESTING RESULTS.
TABLE XI Method Publication . OS"  R(%) P (%) F (%)
COMPARISONS WITH RELATED WORKS ON Total-Text. ‘Using SynthText i i SynthText
MEANS USING THE SYNTHETIC DATASET TO PRE-TRAIN THE MODEL. THE Seglink [20] CVPR'17 v 768 731750
UNDERLINED AND THE BOLD DENOTE THE OPTIMAL VALUES AMONG ngrcd:;zr[fls;ﬁ é(ixcp\él]; y Z;‘g Jop Zﬁg
THE METHODS PRE-TRAINED WITH AND WITHOUT USING ‘SynthText’. * RRD [16]* CVPR'IS Y 200 850 sis
INDICATES MULTI-SCALE TESTING RESULTS. TextSnake (8] ECCV1s Y S04 819 826
. Using 0 o 0 TextBoxes++ [18]* TIP'18 78.5 87.8 82.9
Method Publication g iy R (0) P o) F(%) SPCNet [33] AAAT'19 \\? 858 887 872
TextSnake [8] ECCV'I8 V4 745 827 184 PSENet [9] CVPR’19 Vi 852 893 872
Mask-TextSpotter [36] TPAMI’ 19 Vi 754 818 785 PAN [41] ICCV'19 Vi 819 840 829
TextField [28] TIP’19 Vi 799 812 806 SAST [30]* MM’ 19 Vi 873 876 874
ICG [21] PR'19 Vi 80.9 821 815 SAE [40] CVPR’19 Vi 850 883 866
MSR [29]* IICAT'19 Vi 748 838 790 MSR [29]* LICAI'19 Vi 784 866 823
SPCNet [33] AAAI'19 Vi 828 830 829 TextField [28] TIP’19 N 80.5 843 824
LOMO [37]* CVPR’19 Vi 793 876 833 EAST [7]F CVPR'I7 x 783 833 807
PSENet [9] CVPR’19 Vv 78.0 84.0 80.9 DeepReg [23] ICCV’17 X 80.0 82.0 81.0
SAST [30]* MM’19 v 755 856 802 PixelLink [39] AAAT18 x 827 829 823
PAN [41] ICCV’19 v 81.0 893 850 ITN [19] CVPR’18 x 741 857 795
TFE-PRPA-BCTS [35] TMM’20 v 786 846 815 VIS [45] ECCV'18 x 772 811 819
DeconvNet-Text [55] ICDAR' 17 X 330 440 360 RRPN [5] TMM' 18 x 730 820 770
ATRR [26] CVPR’19 x 762 809 785 GA-DAN [47] ICCV'19 x 81.6 856 835
PAN [41] ICCV’ 19 x 794 880 835 PAN [41] ICCV’19 x 819 840 829
CTD-CLOC [11] PR’19 X 71.0 74.0 73.0 Ours (Res50-FPN-ImageNet) — X 81.3 87.2 84.1
AB-LSTM [31] TOMM’19 X 782 78.9 78.5 Ours (Res101-OpenImage)* — X 82.6 88.8 85.6
TFE-PRPA-BCTS [35] TMM’20 x 747 835 789
Mask-TTD [34] TIP'20 x 745 791 767
Ours (Res50-FPN-ImageNet — X 81.2 85.4 83.2 . .
Ours ((Reslm,openln;gage)*) _ x $2.6 867  84.6 As shown in Table XIV, when using the ResNet-101 pre-

model online. As shown in Table XII, when using the ResNet-
50 pre-trained on ImageNet as our backbone and integrating
the feature pyramid network (FPN) [62], our method achieves
the Recall of 68.0%, Precision of 81.3% and F-measure of
74.1% in a single-scale testing, which outperforms all other
arbitrary-shape detectors listed in Table XII. When we employ
a stronger backbone (ResNet-101 pre-trained on Openlmage)
and use the multi-scale testing strategy, our model achieves
the best Precision and F-measure.

Comparisons On ICDAR2015: In Table XIII, without uti-
lizing SynthText [12] to pre-train the model, our method can
achieve the best performance when adopting a single-scale or
multi-scale testing strategy. Besides, our model using ResNet-
101 pre-trained on Openlmage as backbone also outperforms
most well-known multi-oriented detectors (e.g.,EAST [7],
RRD [16] and TextBoxes++ [18]) in a multi-scale testing
strategy. The third row of Fig. 8 shows the qualitative detection
results of our method.

Comparisons On ICDAR2013: Similar to PixelLink [39],
we utilize the model trained on ICDAR2015 to initialize our
model, and then fine-tune on the training set of /ICDAR2013.

trained on Openlmage and the multi-scale testing strategy,
our method achieves the best-second performance among the
methods that do not utilize the SynthText [12] to pre-train the
model. Although the performance of FEN [13] is superior to
ours, it utilizes the self-collected data to train the model. In
addition, FEN [13] is designed to detect the horizontal or
nearly-horizontal scene text, but our method can detect the
arbitrary-shape scene text. In Fig. 8, the fourth row displays
the qualitative detection results of our model.

F. Runtime Analyses

In the inference stage, the runtime of our method is mainly
influenced by the network inference and post processing.
For different datasets CTW1500, Total-Text, ICDAR2015 and
ICDAR2013, the scale of the input image and the number of
text instances will lead to different runtime, as shown in Table
XV. We calculate the average time per image in each dataset
based on a workstation with one NVIDIA GTX 1080Ti GPU
and the Intel i7 CPU. Besides, we do not utilize any parallel
procedures to accelerate the post processing. The reported
runtime in Table XV has shown that our model can detect
the arbitrary-shape scene texts in decent runtime.

1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 06,2021 at 19:28:26 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3073575, IEEE
Transactions on Multimedia

11

hatikforschunc

" n Deutschlang

Fig. 8: Qualitative detection results of our method. The row from top to bottom denotes the detection results on CTW1500,
Total-Text, ICDAR2015 and ICDAR2013, respectively. Red is the detection result. Green represents the ground-truth.

TABLE XIV
COMPARISONS WITH RELATED WORKS ON ICDAR2013. ‘Using SynthText’
MEANS USING THE SYNTHETIC DATASET TO PRE-TRAIN THE MODEL. THE
UNDERLINED AND THE BOLD DENOTE THE OPTIMAL VALUES AMONG
THE METHODS PRE-TRAINED WITH AND WITHOUT USING ‘SynthText’. *
INDICATES MULTI-SCALE TESTING RESULTS.

Using

Method Publication SynthText R (%) P (%) F (%)

TextBoxes [4]* AAAI'17 VA 83.0 89.0 86.0

SegLink [20] CVPR’17 v 83.0 87.7 85.3

TextCorner [17]* CVPR’18 VA 84.4 92.0 88.0

TextBoxes++ [18]* TIP’18 v 86.0 92.0 89.0

SPCNet [33] AAAT' 19 v 90.5 93.8 92.1

CTPN [6] ECCV’16 X 83.0 93.0 87.7

DeepReg [23] Iccv’17 X 81.0 92.0 86.0

SSTD [22] Iccv17 X 86.0 89.0 88.0

TSM [14] TMM’17 X 67.0 81.0 73.0

FEN [13]* AAAT'18 X 90.0 94.7 92.3

PixelLink [39]* AAAT' 18 X 87.5 88.6 88.1

SSFT-DLRC [15] TMM’18 X 86.1 91.1 88.5

Ours (Res50-FPN-ImageNet) — X 85.1 89.8 87.4

Ours (Res101-Openlmage)* — X 86.2 91.1 88.6
TABLE XV

RUNTIME OF THE PROPOSED METHOD. THE RUNTIME IS ACQUIRED WITH
A SINGLE NVIDIA GTX 1080Ti GPU.

Dataset Network inference Post processing
CTWI1500 1.61s 0.09 s
Total-Text 131s 0.16 s
ICDAR2015 1.36 s 0.12 s
ICDAR2013 1.46 s 0.17 s

G. Limitations

Our proposed method is capable of working well in many
challenging scenarios, but there are still some failure cases.
Firstly, although the mask-level NMS is successful in remov-
ing the detected text parts in the text instance, it fails to
remain the valid text instances when the overlaps between
text instances are large. As shown in Fig. 9 (a), the text

(a) (b) T ©

Fig. 9: Failure samples. Top samples are from the dataset
CTWI1500. Bottom samples come from the dataset Total-Text.
Red denotes the detection result. Green is the ground-truth.

instances (cyan) are filtered. Secondly, some extremely low-
contrast scene texts are not detected, as shown in Fig. 9 (b). It
is because the low-contrast scene text instances in the training
set are rare, which is not helpful to the learning of deep
neural networks. Although our data augmentation technique
can increase the training samples, it focuses on the scales and
hardly increases the low-contrast training samples. Besides,
the examples in Fig. 9 (c) have illustrated that some very text-
like backgrounds will not be filtered by our model. It may
be ascribed that our model cannot learn the text-like patterns
well. This flaw may be relieved by the hard example mining
or the recognition network.
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V. CONCLUSION

In this paper, we have presented an end-to-end trainable
framework to detect the arbitrary-shape scene text. In the
framework, a novel scale-aware data augmentation technique
is proposed to increase the diversity of training data, for faster
convergence and better performance. Meanwhile, a novel
shape similarity constraint is introduced to generate a more
accurate localization for the arbitrary-shape scene text. These
two proposed techniques can be seamlessly integrated into the
training. Extensive experiments conducted on several public
benchmarks have demonstrated the effectiveness, superiority
and generalization ability of our proposed method. In the
future, we are interested in improving the inference time of our
proposed model and incorporating the scene text recognition
network with our detection architecture for the end-to-end
arbitrary-shape scene text spotting.
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