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Abstract
Bottom up load forecasting, is a technique where
energy consumption forecasts are made on lower
spatial levels, after which the resulting forecasts are
aggregated to form forecasts of higher spatial lev-
els. With the current move to renewable energy
sources and the importance of reducing the strain
on an already congested electricity grid, accurately
forecasting both the location and time of future en-
ergy consumption has become more important than
ever. To this end, this paper analyses the impact
of applying bottom up load forecasting to differ-
ent spatial levels on the electricity grid, including
appliance, household, community and city spatial
levels. Energy consumption data for these spa-
tial levels were gathered from the 15-minute Texas
and California datasets from Pecan Street Dataport.
The results obtained in this study, suggest that en-
ergy consumption volatility at lower spacial levels
and forecast difficulty at higher spacial levels, play
an important role in the performance of applying
the bottom up load forecasting technique to energy
consumption forecasting problems.

1 Introduction
Wrong estimates for (local) energy demand or supply, can re-
sult in an imbalance in supply and demand of electricity on
the power grid. With a total energy consumption (EC) of 118
TWh, households in the Netherlands accounted for 23% of
total national EC in 2021 [1]. On the supply side, due to the
large scale movement to renewable energy sources, the en-
ergy supply has shifted from being a constant and adjustable
source, to being a fluctuating source depending on solar and
wind conditions [2]. Being able to more accurately forecast
both the location and the time of 23% of the total national
energy demand could play an important part in managing and
reducing the strain on an already congested electricity grid.

Achieving this on a smaller scale, was done in Zheng et al.
[3], in which they proposed monitoring EC on an appliance
level to help further improve the accuracy of single house-
hold EC forecasts by making use of the finer data granularity
appliance level data had to offer. Using a Persistence model,
Long Short Term Memory (LSTM) model and Kalman filter
model, Zheng et al. compared the difference in one day-ahead
building EC forecast accuracy between aggregating forecasts
of appliance EC and forecasting already aggregated appliance
EC. In their research the authors found that both the LSTM
model and the Kalman filter model gave more accurate fore-
casts by aggregating forecasts of appliance EC than forecast-
ing total household EC directly.

More recent papers have also suggested improvements
to many aspects of EC forecasting using models involving
LSTM. A model combining a convolutional neural network
(CNN) with LSTM and auto-encoders (AE) was proposed in
Rick & Berton [4] to forecast multiple time series with un-
equal lengths using a single model. Somu et al. [5] proposed
a kCNN-LSTM model for trend characterization, energy re-

lated feature identification and the modeling of temporal in-
formation in EC with which more efficient accurate energy
forecasts could be made. Jin et al. [6] addressed the issues of
data noise and high volatility in EC by combining signal spec-
trum analysis (SSA) with parallel long short term memory
(PLSTM) to achieve greater forecasting accuracy on house-
hold EC. Jin also compared the proposed model to many other
existing models used to forecast household EC among which
many models also involving LSTM models.

While past papers have made significant steps in improv-
ing the accuracy of forecasting EC of single households, the
question remains how these improvements will affect EC
forecasts on higher spacial levels, like community or city lev-
els. Predicting the EC of communities and cities by monitor-
ing the EC of every device in every household could help in
making more accurate forecasts for these higher spatial level.
This paper proposes a CNN-LSTM model that will be com-
bined with simple aggregation to answer the question of: Can
the forecast accuracy of community and city energy consump-
tion data be improved by aggregating the EC forecasts made
on lower levels compared to directly forecasting EC on com-
munity and city levels?

The rest of the paper will be organized as follows: Section
2 will explain some of the concepts used in this work. Section
3 will describe the proposed model. Section 4 will be a case
study of how the model was applied to a real dataset to gather
results. Section 5 will give the achieved results from this case
study. Section 6 will have a discussion on the model, results
and other problems encountered during the research. Section
7 will reflect on the ethical aspects and reproducibility of this
research. Finally, Section 8 will conclude the paper by sum-
marizing the research and suggesting directions for further
research.

2 Background
The model proposed in this work makes use of two types
of neural network layers, namely, Convolutional Neural Net-
work (CNN) layers and Long Short Term Memory (LSTM)
layers. These two types of layers are explained in the sections
below.

2.1 Convolutional Neural Network
Convolutional Neural Networks (CNNs) have been success-
fully applied to various problems, among which 2D image
recognition, load forecasting, and Non Intrusive Load Moni-
toring [7, 8, 9]. A complete CNN consists of a combination of
convolutional and pooling layers, and often terminated with
layers of fully connected neural networks.

The convolutional layers inside CNNs are used to detect
patterns with the use of filters, also called kernels. Filters are
groups of trainable weights with a particular size, that slide
over the data. The size of a filter is usually much smaller than
the size of the data which it is applied to. Each time the filter
moves, it is applied to a portion of the data. The weights of the
filter are multiplied with values in the data and the aggregate
is passed to the next layer as the feature value of that part of
the data. By how much the filter slides after each calculation,
is determined by its stride.



After the convolutional layer is applied, pooling layers are
used to reduce the dimensionality of its output. An exam-
ple of a commonly used pooling technique is Max pooling.
With max pooling, windows of a particular size, also called
its pooling size, slide over calculated features, similar to how
filters slide over data in the convolutional layer. The output
of the window, sliding over the data, is the value of the largest
feature within the window.

2.2 Long Short Term Memory
Long Short Term Memory (LSTM) is an improvement over
the Recurrent Neural Network (RNN) architecture and was
first introduced in Hochreiter et al. [10]. It can retain long
term patterns from sequential data and solves the vanishing
gradient descent problem of RNNs. This is achieved using
multiple memory cells, also called LSTM units, each contain-
ing an Input, Forget and Output gate in the form of sigmoid
functions [11]. The input gate is responsible for determin-
ing whether new data will be stored in the current cell state.
The Forget gate is used to gauge whether data from previous
LSTM unit’s cell states should be used in calculating the cur-
rent cell state. At last, the output gate decides whether to pass
the current cell state to the output of the LSTM unit.

3 Methodology
In this work, two variations of CNN-LSTM models were used
in combination with the bottom up forecasting technique, to
make forecasts for individual appliances, households, com-
munities or cities. A general overview of both models is given
in Section 3.1. The layers of both the CNN-LSTM model
with and without hyperparameters are described in Sections
3.2 and 3.3 respectively.

3.1 Model Overview
Just as in the kCNN-LSTM model proposed in [5], the input
of both models consists of historical electricity consumption
and 7 extracted timestamp features: day of the year, season,
month, day of the week, hour of the day, minute of the hour,
work or weekend day. The output forecasts from the mod-
els are aggregated using a bottom up approach, which will be
further explained in Section 4.2. The model itself was created
using the TensorFlow python library1. The code used to cre-
ate the model can be reviewed on the authors’ public GitHub
repository2.

Using the electrical consumption and 7 timestamp features,
the model creates a 12 hour forecast with a 15 minute tempo-
ral granularity based on the previous 3 days of historical elec-
tricity consumption. Temporal granularities used in related
research were also considered, among which 1 minute and
60 minutes, which where already used in Zheng et al.[3] and
Somu et al.[5] respectively. In the end the 15 minute granu-
larity was chosen over smaller temporal granularities due to
resulting in a dataset size and training time, fitting to the com-
putational resources available.

1https://www.tensorflow.org/
2https://github.com/TwanBorst/aggregation-of-ec-forecasts-

accross-spatial-levels

Although, hyperparameters are usually preferred, due to
the available training time and computational resources, a
CNN-LSTM model without hyperparameters was used for
the largest experiments. See Section 5.1, for the results of
applying this model to the complete dataset. To comprehend
the impact the lack of hyperparameters has on the end results,
a CNN-LSTM model with hyperparameters and dropout lay-
ers was also used on a smaller portion of the dataset. The
results of this experiment can be found in Section 5.2.

3.2 Base Model Layers
Due to not making use of hyperparameters, the layout of the
base CNN-LSTM model, visualized in Figure 1, is fixed. As
shown as in Table 1, the model will consist of an input layer
that takes in data with a shape of (64, 288, 8), where the di-
mensions correspond to the batch size, amount of 15 minute
data points, and the number of features. It is then followed
by a CNN layer, an LSTM layer, and two dense layers, af-
ter which it will return a result with the shape of (64, 48),
corresponding to the batch size and the number of 15 minute
forecasted data points.

The CNN layer consists of a 1 dimensional convolutional
layer followed by a 1 dimensional max pooling layer with a
pooling size of 2. The convolutional layer is made up of 64
filters, a kernel size of 2, a stride of 1, 0-padding that cor-
responds to the TensorFlow option ”same”, and a Relu ac-
tivation function. These parameters performed well in the
very similar kCNN-LSTM model from [5], which is why they
were also chosen for this model. Other than in [5], where the
amount of convolutional networks varied between one and
three, our model was restricted to having one convolutional
network in order to reduce training times.

Followed by the convolutional network, is an LSTM layer.
The LSTM layer is built using 64 units and uses a tanh ac-
tivation function. This is similar to the model proposed in
Somu et al. [5], with the only difference that the authors in
this paper made the amount of LSTM layers variable between
1 and 3 using a hyperparameter. Just like with the amount of
convolutional networks, in order to reduce training times, the
amount of LSTM layers used for the CNN-LSTM model was
kept at one.

Lastly, the result from the LSTM layer is passed to the two
dense layers of 32 and 48 neurons respectively. This is dif-
ferent from the one dense output layer approach used in [3, 8,
6], but similar to the two dense layers used in Somu et al. [5].
The output of the last dense layer is the output of the model,

Figure 1: Base CNN-LSTM model



Layer Parameter Values

InputLayer shape (288, 8)
Conv1d & MaxPooling1d layers 1

filters 64
kernel 2
stride 1
pool size 2

LSTM layers 1
units 64

Dense 1 units 32
Dense 2 units 48
Optimizer Adam

Table 1: Model parameters for base CNN-LSTM model

which represents 12 hours of energy consumption data with a
15 minute temporal granularity.

3.3 Hyperparameter Model Layers
The CNN-LSTM model with hyperparameters’ input and out-
put is identical to that of the base CNN-LSTM model. The
main differences between the models lies in the inclusion of
hyperparameters, which allows this model to be more flexible
with the composition of its layers. As visualized in Figure 2,
another difference compared to the base CNN-LSTM model,
is that this model contains a dropout layer after both the CNN
and LSTM networks.

Table 2 lists the possible hyperparameter values available
to the model. The optimization of these hyperparameters
is done individually for each appliance, household, com-
munity or city using the Hyperband algorithm [12]. The
Conv1d filters parameter is decides the amount of filters in
the first Conv1d layer, consecutive Conv1d layers have half
the amount of filters as the one before it.

Figure 2: CNN-LSTM model with hyperparameters and dropout
layers

Layer Parameter Values

InputLayer shape (288, 8)
Conv1d & MaxPooling1d layers interval=[1, 3], step=1

filters interval=[16, 128], step=2,
sampling=’log’

kernel 2
stride 1
pool size 2

Dropout 1 rate 0.25
LSTM layers interval=[1, 3], step=1

units interval=[16, 128], step=2,
sampling=’log’

Dropout 2 rate 0.25
Dense 1 units interval=[16, 64], step=2,

sampling=’log’
Dense 2 units 48
Optimizer Adam

Table 2: Model parameters for extended CNN-LSTM model

4 Experimental Setup
4.1 Dataset
The two datasets that were used in this work came from the
15-minute residential energy data from Pecan Street Data-
port3. They both contain 15-minute timestamped appliance
level energy data, total grid energy data, and other non en-
ergy related information. The first dataset contains 1 year
of data for 25 household located in the state of Texas start-
ing from the 1st of January 2018. The second dataset also
contains 1 year of data for 23 households located in the state
of California with starting dates varying between 2014 and
2018. Before the two datasets can be merged and applied to
the model, some preprocessing is required. To limit the train-
ing time, only data from June, July and August was used,
irrespective of the year in which it was recorded. Households
that did not have data within this period where excluded from
the final dataset.

Electricity consumption data from different years can have
different usage patterns, due to among others, differences in
climate, available technology or energy prices. On a house-
hold scale the difference in years plays no role, since data ag-
gregated to this level will all have happened at the same time.
On a community or city scale on the other hand, aggregating
data coming from different years is no longer guaranteed to
be representative to the real world.

In the second preprocessing step, households where as-
signed to communities of 5 houses each. For every house-
hold, both a city and a state is given. In order to still be able
to use the dataset, communities where added to the dataset.
This was done by grouping the households by city and sort-
ing them based on their unique dataid. Next households were
grouped in groups of five, going from the lowest dataid to
highest. Households that where left over and did not have
a community assigned, where dropped from the dataset. A
community size of 5 was chosen to have a similar amount of
houses inside each community as communities within each
city.

3https://dataport.pecanstreet.org



Appliance Household Community City

Mean EC 0.080 1.017 5.084 22.879
Mean EC SD 0.175 1.270 4.309 16.168

Entities in level 619 45 9 2

Table 3: Mean Energy Consumption and mean standard deviation of
Energy Consumption per spatial level from the combined dataset of
Pecan Street Dataport

The third preprocessing step entailed removing outliers and
dealing with gaps in the data. Removing outliers was done
using the ”Three sigma rule of thumb”, where any value that
is more than 3 standard deviations away from the mean is
removed. Filling in the remaining gaps is done by repeating
the last seen value for at most 5 times. After this all values
that remain empty are set to 0.

The fourth preprocessing step, involved aggregating the EC
data from appliances to their corresponding households, com-
munities and cities as visualized by Figure 3, after which they
would all be stored separately from each other. Aggregating
the data had to be done, since total EC data for communi-
ties or cities was not present in the original dataset. The total
household grid EC data was available for some of the house-
holds, which differed from the aggregated appliances by at
most 1kWh. In order to stay consistent however, aggregated
appliance EC data was used as the ground truth for the house-
hold spatial level as well. Statistics for mean EC and mean
standard deviation of EC is shown in Table 3 for each spatial
level.

Figure 3: Visualization of aggregating and forecasting across spatial
levels

Finally, the 7 timestamp features required by the model,
as described in Section 3, where extracted from the original
data, after which a copy of the data was normalized. This
meant parsing the timestamp field for every EC data point of
every appliance and replacing it with the equivalent 7 times-
tamp features. Once every data point contained the 8 features
it required, a normalized copy of the data was made, where

every feature column was scaled between 0 and 1 using min-
max-normalization, which is described by Equation 1.

f(xi) =
xi −min(x)

max(x)−min(x)
(1)

4.2 The aggregation network
This work proposes to make short term load forecast of the
energy consumption of higher spatial levels, like communi-
ties or cities, using a bottom up approach, similar to what has
been done in [3] on a household level and in [13] on a sub-
station level. With this bottom up approach, energy forecasts
are made on one of the lower spatial levels using a CNN-
LSTM model, after which they are aggregated to a higher
spatial level. This is similar to how the EC data was aggre-
gated in the previous section and was visualized by Figure
3.

In order to determine whether forecasting from a partic-
ular spatial level is better or worse compared to forecasting
from a higher spatial level, models were not only trained for
appliances, but also for households, communities and cities.
Forecasts from the models of each layer were then aggregated
to all of the spatial levels above the already forecasted layer.
As an example, forecasts from models made for appliances
would be aggregated to their respective households, com-
munities, and cities, while forecasts from household models
where aggregated to communities and cities.

All aggregation steps in this work were done using simple
addition, therefore no weights where used. Adding weights to
the aggregation network could have resulted in more accurate
results, however this would have made the implementation
of the network a lot more complex, while also increasing the
the time required to train and test the network including the
models in it.

4.3 Training & Testing
With the model and the aggregation network complete, the
last step is running the experiments. In all experiments, mod-
els are trained on the training set and evaluated on the test
set. Evaluation on the test set happens both individually, as
well as combined with the other models of its layer within the
aggregation network, using the Mean Absolute Error (MAE)
as the loss function. The used data is always split into a train
and a test set, and depending on the model being used, an ad-
ditional validation set is cut from the train set. The complete
training data, including a possible validation set, has a train
test data point ratio of 4:1 and no overlap between the win-
dows of the train and test sets. Generating the model input
and output was done using two sliding windows, both having
a step size of 1. The windows used for model input contained
8 features for each of the 288 normalized input data points.
The output windows where made out of 48 non normalized
EC values. In total three experiments were done.

The first experiment made use of the base model. In this
experiment models were trained and evaluated for every ap-
pliance, household, community, and city. All the models were
trained for 25 epochs, with a batch size of 64. The batch size
and number of epochs were chosen in such a way that the



training and testing of appliance models was feasible within
the timeframe of this research.

A second experiment, used the same base model as used
in the first experiment, but this time trained for 100 epochs
on all households, communities, and cities. The purpose of
this experiment was to determine the impact of the amount of
epochs used for training on the final results. Similar to the
first experiment a batch size of 64 was used.

Finally, the third experiment compared the performance of
the base CNN-LSTM model, with the performance of the hy-
perparameter version , on 3 households and their appliances.
For this experiment the same amount of epochs was chosen
as in the first experiment. The small sample size was cho-
sen out of necessity, due to the amount of time required for
hyperparameter tuning.

In total 779 models where trained and tested over all ex-
periments. The computational environment used for training
and testing consisted of three systems, of which the RAM and
CPU specifications can be found in Appendix A Table 8.

5 Results
After creating, training, and testing the models, this section
describes the achieved results. The tables in this section show
the mean, as well as the standard deviation, for the MAE met-
rics recorded during the evaluation of the trained models on
the combined dataset. Next to being evaluated individually,
the trained models were also evaluated after every aggrega-
tion step to a higher spatial level in the aggregation network.
The metrics on the diagonal of every table in this section orig-
inated from the individual evaluations of the models and serve
as the baseline performance for the metrics above the diag-
onal, coming from the aggregation step evaluations. Both
the a base model, without hyperparameters, and the upgraded
model, with hyper parameters and dropout layers, were eval-
uated.

5.1 Base Model Results
As stated in Section 4.3, the base model was first trained for
25 epochs on every appliance, household, community, and
city in their respective spatial levels. Lower spatial levels
were then aggregated to the city spatial level and test results
were gathered after each aggregation step. Table 4 shows
the mean and standard deviation of the MAE obtained by the
models.

Forecasted
On

Aggregated To

Appliances Households Communities Cities

Appliances 0.067 0.697 2.332 8.837
Households - 0.692 2.090 6.917

Communities - - 2.009 5.734
Cities - - - 6.411

(a) Mean of MAE

Forecasted
On

Aggregated To

Appliances Households Communities Cities

Appliances 0.038 0.284 0.769 2.740
Households - 0.268 0.633 2.181

Communities - - 0.595 1.774
Cities - - - 1.897

(b) Standard deviation of MAE

Table 4: Evaluation of base model, trained for 25 epochs on the
appliance, household, community and city spatial levels

What can be observed from the tables above is that, overall,
aggregating to one spatial level higher than the spatial level
of the original forecasts, obtains a similar, all be it slightly
worse, mean and standard deviation as forecasting on that
higher spacial level directly. The only exception to this ob-
servation is aggregating community level forecasts to a city
level, for which the metrics are highlighted with a box. Here
an 11% reduction in mean MAE is observed compared to the
baseline, while maintaining a similar standard deviation.

Going from one to two or more spacial levels above the
original forecasts, model performance is worse in all cases
with respect to the mean MAE compared to the baseline fore-
casts. Aggregating from an appliance to a city spacial level
performs the worst, with a 38% increase in mean MAE com-
pared to forecasting on a city level directly. Standard devia-
tion also remains larger compared to directly forecasting EC.

As an additional verification, Table 5 shows the mean and
standard deviation of the MAE metrics gathered while eval-
uating the same model trained for 100 epochs instead of 25.
Due to the quadrupled training time, the model was only eval-
uated on the household, community and city spacial levels.



Forecasted
On

Aggregated To

Households Communities Cities

Households 0.697 1.985 5.641
Communities - 1.967 4.968

Cities - - 5.347

(a) Mean of MAE

Forecasted
On

Aggregated To

Households Communities Cities

Households 0.276 0.582 1.555
Communities - 0.570 1.465

Cities - - 1.573

(b) Standard deviation of MAE

Table 5: Evaluation of base model, trained for 100 epochs on the
household, community and city spatial levels

The most notable difference between training the base
model for both 25 as well 100 epochs can be seen in the last
column of Table 5. Comparing the baseline performance be-
tween 25 and 100 epochs, the models trained on the house-
hold spacial level see no improvements regarding the mean or
standard deviation of MAE. Community spacial level models
also perform similar in mean MAE, but have a slight decrease
in standard deviation. On a city spacial level however, both
the directly forecasted baseline as well as the aggregated fore-
casts perform better. Aggregating the community level fore-
casts to a city level, using models trained for 100 epochs, both
the mean as well as the standard deviation of the MAE met-
ric were lower than the baseline performance metrics. Going
from household to city spacial levels, the mean MAE is still
slightly worse than the baseline performance, but standard de-
viation has become better, all be it by a very small margin.

5.2 Model Comparison Results
To verify whether the lack of hyperparameters played an im-
portant role in the results of Table 4, a new CNN-LSTM
model including hyperparameters and dropout layers was
trained for 25 epochs on 3 households and their appliances.
Table 6 contains the evaluation results of the models trained
with hyperparameters, while Table 7 contains the evaluation
results of the same three houses, trained for the same amount
of epochs, but without hyperparameters or dropout layers.

Forecasted
On

Aggregated To

Appliances Households

Appliances 0.094 1.106
Households - 1.067

(a) Mean of MAE

Forecasted
On

Aggregated To

Appliances Households

Appliances 0.053 0.345
Households - 0.340

(b) Standard deviation of MAE

Table 6: Evaluation of model with hyperparameters and dropout
layers, trained for 25 epochs on households 661, 1642, and 2335,
including their appliances

Forecasted
On

Aggregated To

Appliances Households

Appliances 0.094 1.106
Households - 1.067

(a) Mean of MAE

Forecasted
On

Aggregated To

Appliances Households

Appliances 0.053 0.345
Households - 0.340

(b) Standard deviation of MAE

Table 7: Evaluation of base model, trained for 25 epochs on house-
holds 661, 1642, and 2335, including their appliances

As can be seen from the tables above, the achieved results
are identical to each other. Although these results are based
on a small sample size, the results give us an indication that
the addition of different hyperparameters does not improve
the performance of the model when the bottom up strategy
is applied to the appliance spatial level. Whether this is the
same for higher spatial levels and whether the same results
are found on a larger sample size, requires further research.

6 Discussion
6.1 Volatility of the data
The results, shown in Section 5, where not the same positive
results as initially expected. The initial hypothesis was that
applying the CNN-LSTM model with a bottom up approach,
would lead to a more accurate forecast compared to directly
forecasting the aggregated EC. A likely cause for the similar,
though still slightly worse performance of aggregating fore-
casts from appliance and household levels to higher spatial
levels, is the volatility of EC on lower spatial levels. Similar



results were also encountered in Zheng et al. [3], where ap-
plying the same technique to the UK-dale dataset resulted in
a 16% increase in forecast error.

Aggregating community EC forecasts to the city spatial
level however, did result in more accurate forecasts. While
the community level EC is more volatile than the city level
EC, the city level EC is comprised of considerably more dis-
tinct EC patterns compared to community level EC. The au-
thors hypothesis is that, the reduction in both the volatility on
one side and the amount of distinct EC patterns on the other,
led to community EC being a less complicated pattern to pre-
dict than city EC, thereby reducing the forecast error.

Reducing the volatility of the EC for the current dataset
could be achieved by utilizing interpolation to fill in missing
data. As discussed in Section 4.1, this work prolongs the last
seen EC for a short time, after which the EC is set to zero.
This approach leads to sharp, harder to predict, drops in EC,
which would be solved by applying interpolation instead.

To be able to draw conclusions for whether or not to use
the bottom up approach in order to improve EC forecasts on
different spatial levels, further research is required. Both the
use of a larger variety of datasets and the application of differ-
ent models, more suitable for forecasting volatile data, could
help in getting a better understanding of the possible benefits
and drawback of the bottom up approach.

6.2 Real world application
Although, aggregating community level forecasts to a city
spatial level, showed improvements for both mean and stan-
dard deviation of MAE, these improvements have not yet
been seen on other spatial levels. In the current state, the pro-
posed model combined with the aggregation network is only
useful as a proof of concept. Thus far, the model has shown
sub-optimal performance on a limited number of datasets.
This, together with the increased amount time and computa-
tional power associated with monitoring and modeling each
appliance individually, makes it hard to recommend this ap-
proach for real electricity grid application.

Furthermore, the assumptions that every electrical appli-
ance or system is monitored and that the total EC is the same
on every spatial level, do not carry over well to real world use
cases. This simplification made it possible to design a less
complex aggregation network, but is not an accurate reflec-
tion of the real world. Applied to the actual electricity grid,
the aggregation network has to be able to deal with trans-
mission losses and electricity consumers/sources that are not
individually monitored, which is not possible with the current
model and aggregation network.

Lastly, the performance of the aggregation network on dif-
ferent community sizes and more complex grid layouts is not
yet known. For this work, a community size was chosen that
provided a good middle ground between the amount of house-
holds inside a community and the amount of communities in
the dataset. In the real world however, communities don’t
necessarily consist of the same number of households or grid
layouts. How different grid layouts and community sizes will
affect the proposed bottom up approach, requires further re-
search.

7 Responsible Research
The bottom up approach, proposed in this work, can makes
use of the energy consumption data of appliances inside a
household, which is highly sensitive personal data to the
members of that household. Following the responsibility
principle as outlined in the Netherlands Code of Conduct4,
the privacy impact of this research should be minimized
wherever possible. To that end, appliance models should
be trained locally and neither the appliance model, the data
used for training, nor non-aggregated forecasts generated by
these models, should ever be able to leave the household it-
self. Additionally, to preserve the anonymity of participating
households, household forecasts should be aggregated with
data from other households as early as possible, after which
the original forecasts should be forgotten.

Another principal from the Netherlands Code of Conduct is
honesty. Although the found results have not been as positive
as initially expected, with responsible research practices in
mind, the authors still found it import to publish the achieved
results as is. No test results or spatial levels were adjusted or
left out due to resulting in negative results.

Finally, the authors of this work tried to work as transpar-
ent as possible. In an effort for this research to be easily re-
producible all experiments were carried out as described in
Section 4. Additionally, the code used for the experiments
was made open source and published to GitHub5.

8 Conclusions and Future Work
In this work, a comparison of the energy consumption fore-
casting performance of applying the bottom up strategy to
different spatial levels was made. Considered in this work
were appliance, household, community, and city spatial lev-
els. A CNN-LSTM model was used to generate energy con-
sumption forecasts of lower spatial levels, which where then
aggregated to higher spatial levels by a forecast aggregation
network. A combination of both the California and Texas 15-
minute temporal granularity datasets from Pecan Street Data-
port was used for this.

In total three experiments were done. In the first, a basic
CNN-LSTM model without hyperparameters was applied to
all spacial levels and trained for 25 epochs. The second ex-
periment used the same model, trained for 100 epochs, but
applied it only to the three highest spatial levels. Lastly, the
third experiment applied a CNN-LSTM model with a large
amount of hyperparameters and dropout layers, trained for
25 epochs, to 3 households and their appliances.

Results from these experiments showed that aggregating
appliance and household energy consumption forecast led to
a worse forecast accuracy compared to directly predicting the
energy consumption of higher spatial levels. Aggregating
community level forecasts to a city level did result in more ac-
curate forecasts compared to directly forecasting the energy
consumption of cities. The authors hypothesised that this re-

4https://www.nwo.nl/en/netherlands-code-conduct-research-
integrity

5https://github.com/TwanBorst/aggregation-of-ec-forecasts-
accross-spatial-levels



sult was caused by the reduced volatility of energy consump-
tion at the community level, compared to lower levels, and
the reduction of the amount of distinct energy consumption
patterns in the signal, compared to higher spatial levels.

Further research is needed to determine whether this hy-
pothesis also holds for other datasets, particularly datasets
showing different degrees of volatility to the volatility dis-
played by the datasets used in this work. Alternatively, fur-
ther research could focus on the effects of applying different
models to the bottom up approach, that are better or worse
than the CNN-LSTM model in forecasting volatile data.
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A Computational Environment

Type CPU RAM

System 1 Desktop AMD Ryzen 5 5600X 32GB
System 2 Laptop Intel i7 12700H 32GB
System 3 Laptop Intel i9 8950HK 32GB

Table 8: Hardware specifications for systems in computational envi-
ronment
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