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ABSTRACT

Injected bolted connections have been used in the Netherlands since the 1970s, initially to replace riveted
connections of steel railway bridges. More recently, structural components with different geometrical
tolerances have also been connected using injection bolts and oversize holes. The natural confinement
of a bolted connection provides support to the injected epoxy resin so that it can withstand bearing stres-
ses that are significantly higher than its uniaxial compressive strength. A recent innovation in the field of
injected bolted connections is the development of steel-reinforced resin, which consists of a skeleton of
steel particles and a conventional epoxy resin (polymer). In previous research, the steel-reinforced resin
has shown to increase the connection stiffness and decrease creep deformation significantly. In this
paper, a hybrid analytical-numerical homogenization method, which can consider the plasticity of steel
and resin, is proposed to determine the stress-strain relationship of steel-reinforced resins. The results of
the hybrid homogenization method are validated against experimental data of small-scale specimen,
subjected to compression in unconfined and confined conditions. Proposed hybrid homogenization
method is an alternative to complex multi-scaling methods and allows for quick but accurate determina-
tion of mechanical properties of steel-reinforced resins.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, a paper published by de Oliveira Correia et al. [1]
addressed the application of IBCs in renovation of bridges, pro-

Injected bolted connections (IBCs) are conventional bolted con-
nections of which the remaining bolt-to-hole clearance is injected
with an epoxy resin through a standardized, modified bolt, as illus-
trated through Fig. 1. IBCs have been used in the Netherlands since
the 1970s, initially to replace riveted connections of steel railway
bridges. Two main reasons for the use of IBCs were:

- riveting was no longer common practice;
- determination of the actual slip factor of the faying surfaces in
case of refitting with preloaded bolts is not possible.

* Corresponding author.
E-mail address: H.Xin@tudelft.nl (H. Xin).

https://doi.org/10.1016/j.conbuildmat.2018.06.111
0950-0618/© 2018 Elsevier Ltd. All rights reserved.

vided statistical analysis of fatigue experiments and identified
needs for furthers studies related to fatigue classification.

Injected bolted connections can be used for two main types of
applications: either to obtain a slip-resistant steel-to-steel connec-
tion (e.g. as an alternative to preloaded connections) [2] or to
obtain a stiff connection between components with different geo-
metrical deviations (e.g. steel and concrete) [3]. In the latter appli-
cation, oversize holes are used to allow for greater positioning
tolerances.

The epoxy resin system that is generally used in injected bolted
connections (IBCs) is the commercially available RenGel SW 404 +
HY 2404. Recent research of Koper [4]| on steel-to-steel IBCs has
indicated that this epoxy resin system performs best in comparison
to a selection of alternative resins. Wedekamper [5] investigated
the mechanical properties of this resin in detail through a series
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Nomenclature

d diameter

D damage variable

Eq Young’s Modulus of particles

E; Young’s Modulus of matrix

Eciower lower bound for Young’s Modulus of composite material
Ecupper  upper bound for Young’s Modulus of composite material
E; Young’s Modulus of resin matrix

Es Young’s Modulus of steel particle

Es . Young’s Modulus of steel-reinforced resin

he(x;,y;) total height of resin matrix in element (x;,y;)

hs(x;,y;) total height of steel particles in element (x;,y;)

hs p(x;, y;) height of the p-th steel particle in element (x;, y;)
keq(X;,y;) equivalent spring stiffness of element (x;,y;)

k:(x;,y;) spring stiffness of matrix component of element (x;, y;)
ks(x;,y;) spring stiffness of steel component of element (x;,y;)

l

length

m mass

n number of discrete elements within unit cell along x
and y axes

q number of spheres in unit cell

r sphere radius

Ug imposed longitudinal contraction of unit cell

ur(x;,y;) longitudinal contraction of resin spring in element
(*:,¥})

us(x;,y;) longitudinal contraction of steel spring in element
(xi7yj)

Vv volume

Vi volume fraction of particles

X parameter

Greek letters

Almax maximum difference between imposed and actual con-
traction of unit cell

&r(x;,y;) resin strain in element (x;,y;)

&s(x;,y;) steel strain in element (;,y;)

Ethr threshold strain after which damage develops

Vst Poisson ratio of steel-reinforced resin

O density of resin matrix

Ps density of steel particle

op stress in damaged element

Os i stress in steel-reinforced resin

a) b)

Fig. 1. (a) M20 x 50 mm ISO4017 8.8U bolt with an injection channel in the bolt head. (b) Resin-injected bolted connection with transparent plate package. The resin (blue) is
injected through a hole in the bolt head. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

of compression, tension, shear and pull-out tests. Nijgh [6] has sug-
gested reinforcing commercially available resins using steel parti-
cles in order to increase connection stiffness and to decrease
creep deformation. In this perspective, steel shot has a good poten-
tial as the reinforcing material, given that this product is widely
available on the market because of its application in steel blasting.

The material behaviour of reinforced resin depends on the type
of resin, type of the reinforcing material and the volume fraction
thereof. It is important to adopt a multi-scale analysis to determine
the mechanical properties of the steel-reinforced resin. Generally,
multi-scale homogenization methods are subdivided into analyti-
cal and numerical methods. After decades of effort, several analyt-
ical methods of continuum micromechanics have been developed,
including Voigt’s model [7], Reuss’ model [8], Vanishing Fiber
Diameter (VFD) model [9], Composite Cylinder Assemblage (CCA)
model [10,11], Hashin-Shtrikman Bounds [12,13], Self-Consistent
Schemes [14,15] and the Mori-Tanaka Method [16,17]. The unit
cell complexity and non-linear behaviour of the constituent mate-
rials make the analytical micromechanics methods cumbersome
for non-linear predictions. Compared with analytical microme-
chanics formulations, numerical homogenization simulations can
accurately consider the geometry and spatial distribution of the
phases, and can also accurately estimate the propagation of
damage to predict the failure strength [18]. Macroscopic material

properties of the composites can be determined by means of
numerical modelling of deformation and failure of the assumed
microstructural model, which is considered through a representa-
tive volume element (RVE). A downside of numerical homogeniza-
tion methods is that they are computationally expensive, as
frequently reported in the literature [19,20,21]. A combination of
analytical micromechanics methods and numerical homogeniza-
tion methods is expected to consider the complexity of constituent
materials and spatial distribution of phases in a unit cell, at little
computational cost.

The goal of this paper is to demonstrate a hybrid analytical-
numerical homogenization method, which is less mathematically
strict compared to traditional homogenization methods, but can
be effectively used to determine the compressive stress-strain rela-
tionship of steel-reinforced resins. The hybrid homogenization
model is validated against experimental data obtained from a
small-scale specimen, subjected to compression in confined and
unconfined conditions. In addition, an analytical method is derived
to determine the degree of confinement and it is investigated
which parameters have the largest influence on the apparent lon-
gitudinal Young’s Modulus. Finally, conclusions are drawn on the
effectiveness of the reinforcing particles through a parameter
study on the effects of the steel volume fraction on the Young's
Modulus of the composite material.
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2. Methodology
2.1. Hybrid homogenization method

Theoretical upper and lower bounds of Young's Modulus of
two-phase composite materials are respectively defined by Egs.
(1) and (2). The upper bound for the Young’'s Modulus is based
on the assumption that the constituent materials are oriented in
the direction of loading (Voigt model [7]), whereas for the lower
bound it is assumed that these are oriented perpendicular to the
direction of loading (Reuss Model [8]).

Vi 11—V
Ec.lower = (_f+ E2 f)

E,
Ec,upper = Vf -E1 + (1 - Vf) -E;

(1)

(2)

In Egs. (1) and (2), Vrand 1 — V; denote the volume fractions of
materials with Young’s Modulus E; and E,, respectively. Given that
in steel-reinforced resin neither the assumptions from the Voigt or
Reuss models are fulfilled, it follows that actual Young’s Modulus
must be in between the upper and lower bounds. To determine
the actual stress-strain relationship of steel-reinforced resin, a
hybrid (analytical-numerical) homogenization method is
developed.

A three-dimensional unit cell with a certain dispersion of rein-
forcing shot particles is assumed to represent the actual packing of
the spheres in a connection or specimen. The dispersion of spheres
is assumed to be in the form of a body-centred cubic packing (see
Fig. 2), as frequently adopted in literature. Given the volume frac-
tion Vyof reinforcing spherical particles and the number of spheres
q in the unit cell, the sphere radius r can be determined by Eq. (3).

13V
"~\oan ®)
w:% (4)

The volume fraction of the reinforcing particles can be deter-
mined by Eq. (4), in which m and V represent the mass and volume
of the specimen, respectively, and p, and p; denote the density of
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the matrix (resin) and particles (steel spheres), respectively. For a
Body-centred cubic packing, g =2 and the maximum volume frac-
tion of spheres is approximately 68%.

To validate the assumption that a body-centred cubic packing of
spheres is representative for the actual dispersion of spheres in
steel-reinforced resin, a larger cell with more spherical particles
is considered. Several methods are available in literature that are
capable of randomly distributing spherical particles, e.g. the Drop-
ping and Rolling Method [22], the Optimized Dropping and Rolling
Method [23] and the Gravitational Sphere Packing Method [24]. All
aforementioned models require the definition of several algo-
rithms, e.g. to determine if spheres are touching, whether the posi-
tion of the sphere is stable, how a stable sphere positon can be
achieved, etc. To simplify the generation of a random-packed
sphere skeleton, the gravity principle of the Gravitational Sphere
Packing Method is utilized, but the dropping of, and interaction
between, spheres is proposed to be solved using 3D simulation
software. The simulation package Blender [25] is used to automat-
ically solve all contact and other interaction phenomena. A large
number of identical spheres is generated and dropped into a rect-
angular container, the result of which is shown in Fig. 3. The
remaining voids are assumed to be filled with resin. The mechan-
ical behaviour of the generated 3D sphere skeleton is analysed
using the same method as for the unit body-centred cubic cell. This
method is outlined in the following. The Young’s Modulus of steel-
reinforced resin based on the generated sphere skeleton is deter-
mined over the entire skeleton height (~15 mm) for various
cross-sectional dimensions within the 6 mm by 6 mm skeleton
cross-section. This variation in cross-sectional dimensions is car-
ried out is to obtain insight in the influence of boundary conditions
on the Young’s Modulus.

The unit cell is subdivided into n by n (=n?) equally sized ele-
ments in the x-y plane, see Fig. 3. Based on the assumed volume
fraction and dispersion of the reinforcing spheres, the total height
of the reinforcing spheres for each of the n? elements on the x-y
plane can be determined by Eq. (5). The remainder of the unit cell
is then assumed to be filled with resin, therefore the height of the
resin can be determined by Eq. (6).

q

hs(xi,y;) = Zhs.p(xian) (3)

p=1
| 8
i A
o
! ! hs,1(xi, ¥§)
P
... Y- E he(xi, ;) k
bo-i--] | :
1 1
1 1
] ]
P 4
: : he(xi, y)) A
1 1
1 1
] ]
.
L@ i....Y E | hsxiuy) ks
I...‘.....]‘.. s s(Xi, Yj
1 1
P
: : hs.Z(Xr-yl)
1 1
:‘= v
<> WA

1/n 1/n

Fig. 2. Left: Body-centered cubic arrangement of reinforcing steel spheres, indicating a discrete element with size 1 x 1/N x 1/N within the unit cell. Middle: cross-sectional
view at the center of the discrete element. Right: conversion of the discrete element into a set of two serial springs.
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b)

Fig. 3. (a) Simulation using Blender [25], in which spheres of equal size are dropped
from a stock into a rectangular box, the software automatically detects and solves
contact and other interaction phenomena. (b) Generated skeleton of spheres.

a)

he(xi,y;) = 1 = hs(xi,y;) (6)

The resin and steel are modelled as two springs in series for
each of the n? elements, see Fig. 2. The spring stiffness of the steel
and resin parts in each element can be determined by Egs. (7) and
(8), respectively.

E- L

ks(xi,y;) = W ’
E.-L

ke(xi,y;) = W;j) .

In Egs. (7) and (8), Es and E, respectively denote the Young's
Modulus of the steel and resin. The equivalent spring stiffness of
these two springs in series is given by Eq. (9). The Young’s Modulus
of the steel-reinforced resin can be computed by summing the
equivalent spring stiffness of all n? elements, as expressed through
Eq. (10).

ke (%i,¥;) - ks (%i,¥;)

keq(th’j) = kr(xi7yj) T ks(xhyj) 9)
Es+r: Z keq(xivyj) (10)
s

The non-linear behaviour of each of the constituent materials
can be implemented to determine the non-linear branch of the
stress-strain relationship of the two-phase material. An axial
deformation ug is applied to each element within the unit cell. A
trial solution of the deformation of the resin in each of the n? ele-
ments is assumed, e.g. through the analytical solution for the
linear-elastic stage, as defined in Eq. (11). The strain in the resin
layer can then be computed through Eq. (12), based on which
the corresponding stress o&(x;,y;) can be derived through its
stress-strain curve.

Ug
Uur(X:,¥;) T k) (11)
T+ ewm
Uy
& (X, = e (x.5)) .

Based on the determined stress o(x;, y;), the deformation of the
steel us(x;,y;) can be computed via its stress-strain curve and Eq.
(13).

Us(Xi,¥;) = &(xi, ;) - hs (X1, ¥5) (13)

The total actual deformation then amounts to
Ur(Xi,¥;) + Us (X1, ¥;)- Iteration is carried out until the difference
between the applied deformation and actual deformation is suffi-
ciently small:

o — [ue(Xi, ¥;) + s (X0, )] | < |Atma| (14)

When Eq. (14) is valid, the stress a(x;, y;), for that particular ele-
ment is recorded. After iterating for all of the n? elements, the
stress and strain of the two-phase material can be determined by
Egs. (15) and (16), respectively.

1 n n
0-S+l‘:ﬁ'zzo-(xl’1yj) (15)
j=1 i=1
Er=1U (16)

Carrying out above procedure for a sufficient number of defor-
mations ug, the stress-strain curve of the steel-reinforced resin

Inputvolume fraction
of steel spheres

v

Inputsphere dispersion

Input stress-strain curves
for resin and steel

Prescribe axial
deformation of unit cell

Determine average
stress of all N elements

True

False

A

Assume trial solution for
Lo S <
deformation in resin in element N

v

Calculate resin strain and
determine corresponding stress

v

Calculate steelstrain based on
determined stress

v

| Calculate steeldeformation |

Determine strain of
unit cell

Output the
obtained point
in the stress-
strain diagram

End

Steel deformation + resin
deformation = prescribed
deformation?

False

Fig. 4. Flowchart of the hybrid homogenization model for the determination of a
point on the stress-strain curve of steel-reinforced resin. Repetition of the process
for multiple prescribed axial deformations provides the complete stress-strain
curve.
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can be derived. The process of the determining a point in the
stress-strain curve of steel-reinforced resin is clarified through
the flowchart illustrated in Fig. 4.

2.2. Unconfined specimen

To validate the aforementioned approach, a series of compres-
sion tests on cylindrical specimen is conducted in unconfined con-
dition. A load is applied using a stroke-controlled regime at a speed
of 0.01 mmy/s. Two Ono Sokki GS-551 linear gauge sensors with a
range of 0.001-5 mm were used to measure the axial deformation
of the specimen.

An overview of the experimental test specimens is given
through Table 1. The experimental set-up is illustrated through
Fig. 5.

RenGel SW 404 with hardener HY 2404 was used as the epoxy
resin since its use in IBCs is well-established in the construction
industry. Earlier work of Koper [4], Nijgh [6] and Wedekamper
[5] indicate that the spread in mechanical properties is sufficiently
small to justify a limited number of material tests.

Reinforcing particles were chosen as steel shot S330
(Dnom = 0.84 mm) complying with standards SAE ]J872 [26] and
J444 [27]. The target was to achieve a loose random packing by
pouring the spheres into a mould, which generally corresponds
to a fraction of steel shot of approximately 60%.

The aspect ratio I/d is chosen such that the effect of interface
friction on the Young’s Modulus is sufficiently small (<2%) accord-
ing to the theory of Williams & Gamonpillas [28]. Given that the
specimens are unconfined, the prediction for the stress-strain
curve of steel-reinforced resin is exactly conform Eqs. (15) and
(16).

One resin and one steel-reinforced specimen have been instru-
mented with strain gauges in axial and tangential directions to
determine the Poisson ratios. The prediction of the Poisson ratio
is complex for two-phase composite materials since the Poisson
ratio of the composite is not only bounded by the Poisson ratio
of the constituent materials. Several methods and theories have
been derived, e.g. by Zimmerman [29] focusing on stiff spherical

Table 1
Test matrix of small-scale specimen.

Nominal geometry Number of tests

Resin Steel-reinforced resin
Unconfined ©26.3 mm x 50 mm 5 5
Confined @22 mm x 22 mm 5 5

Fig. 5. Unconfined resin specimen in the experimental set-up of the compression
test.

inclusions in a relatively compliant matrix. Hsieh & Tuan [30] have
derived a model for two-phase composites, in which the Poisson
ratio of the composite material is derived by Egs. (17) and (18).
In these equations, v denotes the Poisson ratio and subscripts s
and r relate to particle (steel) and matrix (resin) properties, respec-
tively. The model of Hsieh & Tuan [30] is implemented in each of
the n? elements to obtain the homogenized (averaged) Poisson
ratio of the unit cell.
[(1=v)Er — (1 = v)Es](1 = V) + (ve(1 = V§)Eg + Vs VEE)X

v =
sHr 2(VsEr — viEo)(1 — V) + (1 — V)Es + VEENX

(17)

(1= v)EVs + (1 — v)E(1 - Vy)

X= (viEs = VeE)V;

(18)

2.3. Confined specimen

In addition to the unconfined specimen series, also tests are car-
ried out on confined specimen. The composition of these specimen
and the testing protocol is identical to that of the unconfined spec-
imen, only the specimen dimensions differ (see Table 1).

The specimens are passively confined through the use of a @30
mm x 50 mm S235 steel tube with a wall thickness of 4 mm. The
load is transferred from the jack to the specimen through a @22
x 40 mm solid cylinder with a snug fit in the steel tube.

Previously, Nijgh [6] has shown that the apparent longitudinal
Young’s Modulus E.j00%x increases significantly with the Poisson
ratio v under on the assumption of perfect confinement conditions,
as expressed through Eq. (19).

Ecioonxs  1-v

E 1-v-212

An analytical relationship is derived to take into account that
lateral expansion is not fully restrained in the current specimen
design. Based on Hooke’s law and the definition of hoop strain
(Eq. (20)) for thin-walled cylinders, the apparent longitudinal
Young’s Modulus E., of partially confined materials can be
expressed through Eq. (21), using that &y, = €, = €peop. In Eq. (21),
deyi, tey and E, denote the average diameter (dqy=d — t), wall
thickness and Young’s Modulus of the confining cylinder,
respectively.

(19)

1 voudey
ghoop B 7Ecyl 2’-Lcyl (20)
Eex { 1 ]
——=max|—————,1 (21)
02 (Edey)—2Ecy1)
£ - tcylEc;/,]]‘(V’]y)] +1

Eq. (21) goes to the analytical upper bound solution of the
apparent longitudinal Young’s Modulus E. 1goxx for d — 0 and/or
t — oo and to the Young’s Modulus of the unconfined material for
t - 0 and/or d — oo. Fig. 6 illustrates the effect of the thickness
and diameter on the apparent Young’s Modulus E., for E = 5.64
GPa, v=0.315and d=26 mm. The apparent Young's modulus
increases progressively with an increase in the Poisson ratio,
whereas the confinement conditions itself have a less dominating
effect in case of materials with a relatively low Young’s Modulus,
as illustrated through Fig. 7. The properties of the confining cylin-
der can compensate for each other, i.e. a confining cylinder with a
tey=4 mm and E., =210 GPa provides confinement equally well
as a cylinder with tey; =8 mm and Ecy; = 105 GPa.

The non-linear behaviour of the confined specimen is not con-
sidered analytically, since this occurs at stress ranges in which



M.P. Nijgh et al./Construction and Building Materials 182 (2018) 324-333 329

Fig. 6. Effect of confinement on the apparent Young's Modulus for E = 5.64 GPa,
v=0.315 and d.y = 26 mm and a confining cylinder with certain wall thickness t.
and Young’s Modulus E.,. Marker indicates the conditions under which the
confined resin specimen were tested.

the confining cylinder starts yielding. Therefore, only prediction of
the Young’s Modulus is made based on Eq. (21).

3. Experimental results and analysis
3.1. Unconfined specimen

The engineering stress-strain curves for unconfined resin and
steel-reinforced resin are illustrated through Figs. 8 and 9, respec-
tively. The Young’s Modulus and strength of these specimen are
summarized in Table 2 and Table 3, respectively. Representative
determination of Young’'s Moduli was done over an interval of
40 MPa (approximately one-third of the stress at the onset of
non-linearity for unconfined specimen) for which the slope of the
curve is largest, to avoid influence due to accuracy of recorded
data.

The Poisson ratios of the resin and steel-reinforced resin are
determined as 0.315 and 0.22, respectively.

The approximated bi-linear stress-strain curve of the uncon-
fined resin is used as input for the hybrid homogenization
model that was developed to predict the stress-strain relation-
ship for unconfined steel-reinforced resin. The experimental as

—— E =5.64 GPa ; deyiltey = 10
==- E=5.64 GPa; dcltey; = 8
—:- E=5.64 GPa; deltey =6
----- E = 5.64 GPa ; deyiltey = 4
E = 15.7 GPa ; deyiltey; = 10
E = 15.7 GPa ; deyiltey = 8
E =15.7 GPa ; deyiltey = 6
E =15.7 GPa ; deyiltey = 4

1.00 +— T T :
0.0 0.1 0.2 0.3

Poisson ratio (-)

0.4 0.5

Fig. 7. Apparent Young’s Modulus as a function of material Young’s Modulus and ratio of cylinder diameter over wall thickness. It is assumed that Young’s Modulus of the

cylinder is 210 GPa.

160 ,,J e URL
1 R L aiing U-R2
1ag ",A.mm,.;::a-'&‘w —-- U-R3
g - U-R4
120 /0“5’# —:- U-R5
;_ﬂ? 100 - ,{_ ; === Unconfined resin approximation
= 2
0 80 A i
o
& 601§
40 A /l
20 1 i
0 T T T T
0.00 0.02 0.04 0.06 0.08 0.10
Strain (-)

Fig. 8. Stress-strain curve for unconfined resin specimen.
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Table 2
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o0 e I Y (R B CR Analytical model - No Damage
140 4 S R NN N U —— Analytical model - Damage
[ Y N —-— Upper bound (Voigt)
1201 : ----- Lower bound (Reuss)
i —-- U-SR1
S 100 A , U-SR2
s I —-- U-SR3
w 807l U-SR4
o i —-- USR5
& 601l —=- Unconfined resin approximation
|
40!
|
204
0 7’
0.000 0.005 0.010 0.015 0.020 0.025 0.030
Strain (-)

Fig. 9. Experimental and theoretical stress-strain curves for unconfined steel-reinforced resin.

Results for unconfined resin specimen.

Specimen Young’s Modulus™ (GPa) Strength (MPa)
U-R1 5.30 171.7

U-R2 6.15 168.9

U-R3 5.83 173.2

U-R4 5.45 168.7

U-R5 5.49 166.6

Mean 5.64 169.8

S.D. 0.34 2.62

" Determined in the range 20-60 MPa.

Table 3

Results for unconfined steel-reinforced specimen.

well as the predicted engineering stress-strain curves for the
unconfined steel-reinforced resin specimen are illustrated
through Fig. 9.

The density of each steel-reinforced specimen was determined,
as well as the separate densities of the resin and shot. On average,
it was found that p, = 1.86 g/cm?, p; = 7.49 g/cm? and V= 60%. The
density and bulk density of the shot according to the supplier [31]
is 7.4 g/cm> and 4.4 g/cm?, respectively, leading to a volume frac-
tion of 59.5%, which is consistent with the volume fraction
obtained in the specimen.

3.2. Confined specimen

The engineering stress-strain curves for the confined resin and
steel-reinforced resin specimen are illustrated through Figs. 10
and 11, respectively. The Young’s Modulus of these specimen are

Specimen Young’s Modulus™ (GPa) Strength (MPa)
U-SR1 15.9 118 summarized in Tables 4 and 5. Representative determination of
U-SR2 16.3 119.5 Young’s Moduli was done over an interval of 60 MPa (approxi-
U-SR3 155 124.1 mately one-third of the stress at the onset of non-linearity for con-
U-SR4 156 1221 fined resin specimen) for which the slope of the curve is largest, to
U-SR5 15.1 118.0 . . .
avoid influence due to accuracy of recorded data. The non-linearity
Mean 157 1203 in the stress-strain diagram for the confined specimen is due to the
S.D. 0.41 2.72 L -
yielding of the confining steel tube. Therefore the stress at the
Determined in the range 40-80 MPa. onset of non-linearity is a lower bound value.
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Fig. 10. Experimental stress-strain curves for confined resin, including prediction for Young’s Modulus based on analytical model.
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Fig. 11. Experimental stress-strain curves for confined steel-reinforced resin.

Table 4
Results for confined resin specimen.

Specimen Young's Modulus (GPa)
C-R1 7.2

C-R2 7.5

C-R3 6.6

C-R4 8.6

C-R5 7.9

Mean 7.6

S.D. 0.76

" Determined in the range 100-160 MPa.

Table 5
Results for confined steel-reinforced specimen.

Specimen Young's Modulus (GPa)
C-SR1 154

C-SR2 20.0

C-SR3 189

C-SR4 17.9

C-SR5 16.1

Mean 17.6

S.D. 1.9

" Determined in the range 150-210 MPa.

4. Discussion
4.1. Unconfined specimen

The Young’s Modulus of the unconfined resin specimen shows
little variation between different specimen (COV 6%). In addition,
the stress at the onset of non-linearity and the maximum stress
does not vary significantly either. The nominal strain at failure is
in the range of 20%, indicating that the material is highly ductile.
Prior to failure, longitudinal and diagonal cracks developed in the
specimen. Final failure occurred through explosive spalling along
these cracks, as illustrated through Fig. 12.

The unconfined steel-reinforced specimen show a significantly
higher Young’s Modulus (+178%) than the resin itself. The variation
of the Young’s Modulus for these specimen is in the same order of
magnitude as the resin specimen (COV 3%). The ductility of the
two-phase composite material is significantly decreased, with
failure initiating through the formation of shear cracks at an

Fig. 12. Typical failure modes for resin (left) and steel-reinforced resin (right).

average stress level of 120.3 MPa. The typical pattern of shear
cracks is illustrated through Fig. 12.

The hybrid homogenization method developed to describe the
behaviour of steel-reinforced resin overestimates the Young's
Modulus by 5.7% as 16.6 GPa using the body-centred cubic unit
cell. For the larger cell with a random sphere disposition, the aver-
age Young's Modulus for the steel-reinforced resin was determined
as 16.7 GPa, with a coefficient of variation of 3% (originating from
multiple subsamples within the larger cell). The average Young's
Moduli based on two volumes of a (unit) cell chosen to evaluate
the effect of sphere disposition do not vary significantly (differ-
ence < 1%). Therefore the assumption that a body-centred cubic
packing of spheres is representative for the actual dispersion of
spheres in a large volume of steel-reinforced resin is validated.

One of the reasons for the difference between actual and pre-
dicted Young’s Modulus could be that the reinforcing spherical
particles are not completely solid. According to SAE J827 [26],
imperfections such as voids, shrinkage, cracks and deviations in
particle shape are accepted to a certain extent. For example, no
more than 10% of the particles may contain an internal hole that
is larger than 10% of the cross-sectional particle area. Also, no more
than 10% of the particles may contain an internal cavity as a result
of shrinkage that is larger than 40% of the total area. The proposed
hybrid homogenization model is adjusted such that the void/cavity
in each particle can be included. Fig. 13 shows the Young’s Modu-
lus of the composite material as a function of the size of the rela-
tive area of the void/cavity within the particle, under the
assumption that such defects always occur at the particle centre
and have mechanical properties equal to that of the resin. From
Fig. 13 it can be seen that such defects have the ability to decrease
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Fig. 13. Young’s Modulus of steel-reinforced resin based on hybrid homogenization
method as a function of the ratio of void area over total cross-sectional area.
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Fig. 14. Relative Young’s Modulus of steel-reinforced resin as a function of void
area ratio and Young’s Modulus of resin.

mechanical properties to a level that was observed during the com-
pression tests, i.e. with an average void with an area of approxi-
mately 7.5% of the cross-sectional particle area. This ratio of area
corresponds to a void to particle volume ratio of (only) 2.1%.

The Young’s Modulus of steel-reinforced resin as a function of
the volume fraction is illustrated through Fig. 14, for resins with
Young's Moduli of E; = 2 GPa and E, = 10 GPa and considering vari-
ous ratios of the void area over total cross-sectional particle area.
The chosen range of Young’s Moduli is considered represent upper
and lower bounds of Young’s Moduli of (epoxy) resins. The relative
increase in Young’s Modulus due to the reinforcing particles does
not vary significantly with Young’s Modulus of the resin itself,
nor with the ratio of void area over total cross-sectional particle
area. From Fig. 14 it can be derived that, for steel-reinforced resin,
the Young’s Modulus is 240-310% of that of the conventional,
unreinforced resin at a typical bulk volume fraction of 60%.

The descending branch of the stress-strain curve for the uncon-
fined steel-reinforced specimen can be modelled using a phe-
nomenological approach. The shear cracks indicate that the
deformation of neighbouring elements is incompatible, e.g. due
to the difference in lateral expansion. A simplified phenomenolog-
ical damage model is derived that is based on each element indi-
vidually. Given that the shear damage does not occur in resin
alone, it logically follows that the damage model parameter D is

0.5
—:=— Zimmerman (1994)
—e— Homogenization through Hsieh & Tuan (2005)
0.4 —e— Experiment
£ 0.31
£
c
o
9 0.2
)
o
0.1
0.0 T T T T ; '
0.0 0.1 0.2 0.3 0.4 0.5 0.6
720

Fig. 15. Relationship between Poisson ratio and volume fraction of steel shot
according to Zimmerman [29] and Hsieh & Tuan [30] for steel-reinforced resin. It is
assumed that »;=0.3 and 2, =0.315 (as determined experimentally).

a function of the strain of the resin and steel as expressed by Eq.
(22) provided that &> 0. The stress in a damaged element is
assumed to decrease by a factor (1-D) to op, see Eq. (23).

D :f(8r785) (22)

op=(1-D)- ¢ (23)

The difference in strain between resin and steel is assumed to
cause material damage if a certain threshold Agy,, is exceeded,
as expressed through Eq. (24). For simplification, it is assumed that
the damage fully develops once the threshold is exceeded.

1, if |& — &] = |ém| and & >0

24
0, otherwise 24

D(er, &) = {

The constant A&y, is determined through fitting as A&g,, = 0.07.
The predicted stress-strain curve of the composite material includ-
ing damaged material behaviour is illustrated through Fig. 9.
Although the proposed damage model may not be fully physically
explainable, it indicates that the damage is dependent on the strain
difference. Since in the actual application this damage phe-
nomenon is not observed due to strong confinement conditions,
the damage model is not extensively expanded.

The experimentally established Poisson ratio of 0.22 for steel-
reinforced resin could not be replicated analytically, neither by
the model of Zimmerman [29] (v = 0.265 see Fig. 15), nor through
the model of Hsieh & Tuan [30] (#=0.097, see Fig. 15) that was
implemented in the hybrid homogenization method. Deviation
between predictions and experimental value is not surprising,
given the wide bounds that exist in literature for the Poisson ratio
of two-phase composites and that determination of the Poisson
ratio of two-phase composite materials is an often-neglected issue
[30]. As a safe approximation, a Poisson ratio of 0 may be adopted
in combination with a Young’s Modulus based on unconfined (con-
servative approximation) or confined (realistic approximation) test
results

5. Confined specimen

The confined resin specimen showed an increase in (apparent)
Young’s Modulus of 35% that matched well with the prediction
based on the analytical model (+36%), as illustrated through
Fig. 6. The same goes for the increase in apparent Young’s Modulus
of +12% for confined steel-reinforced resin specimen compared to a



M.P. Nijgh et al./Construction and Building Materials 182 (2018) 324-333 333

prediction of a 10.3% increase. The coefficient of variation for the
confined specimen is approximately 10%, and is larger than that
of the unconfined specimen (3-6%). A possible explanation for this
increase is that the coefficient of variation is influenced by the
uncertainties that exist within the confining cylinder, i.e. its thick-
ness and Young’s Modulus.

Due to the confinement, the specimen could withstand signifi-
cantly higher stresses and strains than specimen in unconfined
condition. The non-linear branch of the stress-strain curve is due
to yielding of the confining cylinder: this leads to the situation
where the resin is no longer restrained to lateral deformation.
The complex behaviour in this phase (yielding of cylinder, and con-
sequently reduction of confinement) makes it difficult to distin-
guish between the different phenomena (yielding of cylinder and
non-linear behaviour of specimen). Therefore, it is recommended
to repeat the series of confined tests using thicker and stronger
steel cylinders, in order to capture the true non-linear specimen
behaviour. It is the specimen behaviour that will govern the beha-
viour in real applications, since generally the (steel-reinforced)
resin is in a bolt hole which has a relatively large edge and pitch
distances and thus yielding of the confining element is not
relevant.

6. Conclusion
The main outcomes of the discussion above are as follows:

e The stress-strain relationship of steel-reinforced resin could be
predicted well using the derived hybrid homogenization model.
The mean difference between experimental and theoretical
Young's Modulus is less than 6%.

e The gravitation principle of Gravitational Sphere Packing
Method was combined with 3D simulation software, to gener-
ate random sphere distributions. This combined method does
not require user-defined algorithms to deal with contact inter-
actions and is therefore straightforward to implement.

e Using random sphere dispositions generated through the
method outlined above, it was proven that the Young’s Modulus
of steel-reinforced resins with randomly distributed, equally
sized spheres can be accurately predicted (difference < 1%)
using a sphere disposition based on a body-centred cubic
packing.

e The Young’s Modulus of steel-reinforced resin is approximately
140-210% higher than that of non-reinforced resin for a typical
bulk volume fraction (60%) of reinforcing steel spheres.

e The positive effects of confinement on the mechanical proper-
ties (increase in stiffness and strength) increase rapidly with
increasing Poisson ratio. The boundary conditions (diameter,
thickness, Young’s Modulus of the confining cylinder) have a
less pronounced effect for decreasing Young’s Moduli of the
confined material.

e The Poisson ratio of steel-reinforced resin could not be deter-
mined with sufficient accuracy using two existing analytical
models - more in-depth research is required to make an accu-
rate prediction of the Poisson ratio of steel-reinforced resins.

Further research

Present model could further be extended, e.g. by including a
(pressure-dependent) yield criterion to obtain a non-linear predic-
tion for the confined specimen or by including the creep deforma-
tion of the resin to capture the effective mechanical properties on
the long term.
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