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A B S T R A C T   

River ice is a major contributor to flood risk in cold regions due to the physical impediment of flow caused by ice 
jamming. Although a variety of classifiers have been developed to distinguish ice types using HH or VV intensity 
of SAR data, mostly based on data from RADARSAT-1 and -2, these classifiers still experience problems with 
breakup classification, because meltwater development causes overlap in co-polarization backscatter intensities 
of open water and sheet ice pixels. In this study, we develop a Random Forest classifier based on multiple features 
of Sentinel-1 data for three main classes generally present during breakup: rubble ice, sheet ice and open water, 
in a case study over the Athabasca River in Canada. For each ice stage, intensity of the VV and VH backscatter, 
pseudo-polarimetric decomposition parameters and Grey Level Co-occurrence Matrix texture features were 
computed for 70 verified sample areas. Several classifiers were developed, based on i) solely intensity features or 
on ii) a combination of intensity, pseudo-polarimetric and texture features and each classifier was evaluated 
based on Recursive Feature Elimination with Cross-Validation and pair-wise correlation of the studied features. 
Results show improved classifier performance when including GLCM mean of VV intensity, and VH intensity 
features instead of the conventional classifier based solely on intensity. This highlights the complementary nature 
of texture and intensity for the classification of breaking river ice. GLCM mean incorporates spatial patterns of 
the co-polarized intensity and sensitivity to context, while VH intensity introduces cross-polarized surface and 
volume scattering signals and is less sensitive to wind than the commonly used co-polarized intensity. We 
conclude that the proposed method based on the combination of texture and intensity features is suitable for and 
performs well in physically complex situations such as breakup, which are hard to classify otherwise. This 
method has a high potential for classifying river ice operationally, also for data from other SAR missions. Since it 
is a generic approach, it also has potential to classify river ice along other rivers globally.   

1. Introduction 

River ice breakup is a major contributor to flooding in cold regions. 
The process may lead to the formation of ice jams that obstruct the flow 
of the river and thus cause flooding. Therefore, it is important to know 
when and where ice jams form so that emergency measures can be 
taken, e.g. the construction of (temporal) levees or the evacuation of 
populated areas. It is estimated that the annual direct costs, when 
keeping inflation in mind, are C$105 million in Canada (Gerard and 
Davar, 1995) and US$215 million in the United States (Carlson et al., 
1989) alone, and that the indirect costs are even higher. Apart from the 
importance to monitor breakup occurrence, location and timing for local 

socio-economic effects, the timing is also an important factor in the 
context of global warming. For example, earlier breakup due to climate 
change has a positive feedback on Arctic sea ice melt (Park et al., 2020) 
and the intensifying hydrological cycle in polar regions (Déry et al., 
2009, Peterson et al., 2002). 

Synthetic aperture radar (SAR) enables the monitoring of the ice 
cover during breakup with a high spatial and temporal resolution. The 
backscattered signal is a function of sensor and target characteristics. 
The melt of overlying snow marks the onset of the breakup season. This 
process causes the ice to become wet and causes a distinct shift in its 
backscatter behavior. In short, it changes from being a volume scatterer 
to a single bounce scatterer because its increased wetness obstructs the 
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penetration of radar waves into the ice volume and so limits the ice 
backscattering to a process at the air-ice interface. Two principal types of 
breakup are distinguished, i.e. thermal breakups and dynamic breakups. 
Thermal breakups largely result from increasing air temperatures, which 
cause the ice to breakup apart in relatively large sheets, referred to as 
sheet ice, that remain stationary and thus melt in place. On the other 
hand, dynamic breakups are initiated by the sudden increase in the flow 
of water, which causes the ice to break apart in many small blocks, 
referred to as rubble ice. Depending on the situation, the flow moves the 
rubble ice downstream in the form of so-called ice run or the rubble ice 
may arrest at channel obstructions (e.g. sharps bends, islands, bridge 
piers) to form an ice jam. Rubble ice induces a much higher backscatter 
signal than sheet ice because its upper surface is much rougher. Van der 
Sanden et al. (2021) provide further details on the breakup process and 
its implication for the backscatter. 

Our study aims to overcome three limitations of previously published 
approaches to classify the conditions of breaking river ice through 
application of radar satellite images. First, most existing approaches use 
the backscatter intensity comprised in single-polarized C-band SAR 
data—this holds true for the classification of river ice under freeze-up, 
winter, and breakup conditions (e.g. Jasek 2003; Puestow et al., 2004; 
Gauthier et al., 2010; Floyd et al., 2014; Van der Sanden et al., 2021). 
The most commonly applied polarization is Horizontal-Horizontal (HH). 
Relative to Vertical-Vertical (VV) polarized C-band (and X-band) signals, 
HH-signals are less sensitive to roughening effect of high winds on water 
(Long et al., 1996). This causes the backscatter of water to increase, 
which makes it more difficult to distinguish from ice cover. Also, the 
development of radar remote sensing for the characterization of river ice 
has largely been driven by Canadian scientists that used data from 
Canada’s RADARSAT-1 and RADARSAT-2 satellites. RADARSAT-1 
operated in the HH-polarization only. It appears, the HH-polarization 
remained the polarization of choice for later R&D with data available 
from the multi-polarization and full polarimetric RADARSAT-2 system. 
In this study, we assess and develop the utility of the European C-band 
Sentinel-1 satellite. Over our area of interest—the Athabasca River at 
Fort McMurray, Alberta, Canada (see section 2.1)—Sentinel-1 consis
tently operates in the VV- and VH-polarization. A classifier developed 
for either or both of these polarizations would improve the overall 
operational utility of radar remote sensing for river ice breakup moni
toring because each additional applicable data source will augment the 
achievable observation frequency. As a rule, cross-polarized C-band 
measurements (e.g. VH and HV) have relatively poor signal-to-noise 
ratios and are therefore less suited for application to the discrimina
tion of low backscatter targets such as wet sheet ice and calm water. 
Conversely, VH/HV signals maintain a better backscatter contrast be
tween water and ice cover under high wind than both VV- and HH- 
polarized signals. Sentinel-1’s standardized image acquisition schedule 
and cost-free data policy augment its potential benefit in support of 
operational river ice monitoring. 

In addition to single- or dual-polarized backscatter intensities, other 
SAR image features may capture information that can facilitate the 
classification of river ice cover. For example, Gauthier et al. (2006) 
showed that image texture represents a good source of information for 
the classification of river ice types that form during the freeze-up pro
cess. Features that capture image texture provide information about the 
variation in the backscatter intensity over a certain image region
—defined by the window size of the textural filter. As such, the inclusion 
of textural features in a classifier captures relationships between 
neighboring pixels, i.e. context. Similarly, Mermoz et al. (2009) and 
Lindenschmidt and Li (2018) demonstrated that polarimetric features 
can improve the understanding and classification of river ice processes 
during winter. Unlike backscatter intensity and image texture, features 
attained through the application of polarimetric decompositions capture 
information relating to scattering mechanisms, i.e. single (odd) bounce, 
volume, and/or double (even) bounce scattering. As such, polarimetric 
features hold promise for the detection of the transition from (dry) 

winter to (wet) spring conditions—a changeover that complicates the 
application of existing classification approaches. In theory, the back
scatter of winter ice should result from volume and/or double bounce 
scattering within the ice mass, and/or single bounce scattering at the ice- 
water surface. On the other hand, single bounce scattering at the air-ice 
surface governs the backscatter return signal of ice cover imaged under 
spring conditions; backscatter resulting from double bounce scattering is 
possible in the case of rubble ice. To this date, only Łoś and Pawłowski 
(2017) have published a paper addressing the use of Sentinel-1 image 
data for the classification of river ice cover. However, they dealt with ice 
under winter conditions. 

Finally, most existing approaches to classify river ice involve so- 
called unsupervised algorithms. Especially, Fuzzy-K means clustering 
has been widely used for the identification of river ice types during 
freeze-up and breakup (e.g. Chu and Lindenschmidt, 2016; Gauthier 
et al., 2006; Sobiech and Dierking, 2013; Mermoz et al., 2009). Unsu
pervised algorithms operate by grouping image pixels in a pre-defined 
number of clusters regardless of their signal range. An analyst with ac
cess to ground reference data is required to associate each cluster with a 
thematic class of interest, e.g. an ice cover type. On the other hand, 
supervised algorithms allocate image pixels according to their signal 
range to a pre-defined number of thematic classes. The developer of the 
algorithm enables it to function by establishing the link between each 
class of interest and its signal range with the help of ground reference 
data, i.e. by training the algorithm. Without ground data and analyst 
intervention, unsupervised algorithms will not produce reliable classi
fication results when one or more classes of interest are absent—unlike, 
well developed, supervised algorithms (Sobiech and Dierking, 2013; 
Van der Sanden et al., 2021). 

Supervised classifiers can be developed in many different ways, but 
the Random Forest development approach has recently proven its suc
cess in studies concerned with the classification of lake ice and sea ice (e. 
g. Dabboor et al., 2018; Hoekstra et al., 2020; Shen et al., 2017). This 
approach offers several advantages. Firstly, multiple features are easily 
accommodated and so the complementary information comprised in 
backscatter intensity, image texture, and polarimetric features is fully 
exploited. Secondly, Random Forest provides insight into feature 
importance, which can be used to better understand how the SAR signals 
interact with river ice. 

This study aims to provide insight into the utility of dual-pol 
Sentinel-1 SAR data for operational monitoring of river ice during 
breakup using Random Forest classification. Its main objective was to 
explore the potentials of intensity, pseudo-polarimetric and texture 
features for river ice classification. First, the Athabasca River test site, 
and the used data sets are presented (Section 2). Secondly, the method to 
select optimal features is discussed and the assessment of the accuracy 
used to compare the developed classifiers is explained (Section 3). 
Subsequently, the performance of different combinations of features is 
evaluated (Section 4). Then, implications of using this supervised clas
sifier for other SAR sensors and other rivers are discussed, and recom
mendations to improve the current approach are provided (Section 5). 
Finally, the importance of supervised classification for river ice breakup 
is illustrated (Section 6). 

2. Study area and data 

2.1. Study area 

The Athabasca River is one of Canada’s longest rivers, which origi
nates in a large icefield of the Rocky Mountains located along the bor
ders of British Colombia and Alberta, and then travels 1538 km through 
the province of Alberta to eventually discharge in Lake Athabasca. 
Figure 1 shows the section of the Athabasca River near Fort McMurray 
that was selected for this study. The station numbers displayed on the 
river indicate distance in kilometers measured upstream from the mouth 
of the Athabasca River. The selected reach is about 160 km long and 
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extends from the House River (km 445) to approximately 10 km 
downstream of the Clearwater River (km 285). The studied river stretch 
is particularly prone to ice jam flooding during the breakup season, with 
regular flooding events dating back to the 1870’s when the area was first 
settled. 

Breakup in this reach of the Athabasca River has a consistent pattern, 
even though the timing and the magnitude of the events vary from year 
to year. In spring, when temperatures rise and precipitation and snow
melt runoff increase, the deterioration of the ice cover starts upstream 
(southwest) and progresses downstream (northeast). Rubble ice accu
mulations develop mainly at the locations of the numerous rapids. The 
release of such accumulations causes waves, which may create more ice 
blocks that extend the existing small ice jams. Eventually, the weight of 
the ice jams located at the rapids is larger than the resisting force 
resulting in a sequence of ice runs and ice jams. Downstream of Fort 
McMurray, several small islands, a meander in the river and an abrupt 
decrease in river slope greatly increase the risk of ice jamming and 
flooding. The inflow from the Clearwater River provides an additional 
source of ice and water. The ice jams obstruct the water flow of the 
Clearwater and Athabasca River, leading to increasing water levels up
stream and pose flood hazard to the city of Fort McMurray (She et al, 
2009; Lindenschmidt and Li, 2019). Significant floodings of Fort 
McMurray have occurred as a result of this breakup pattern (for example 
in 1977, 1997 and 2020). 

2.2. Synthetic Aperture Radar data 

To develop a supervised classifier, SAR images during the 2018-2019 
and 2019-2020 breakup of the Athabasca River were acquired (Table 1). 
SAR images were selected from start to end date of the breakup season, 
which was identified based on meltwater on the ice visible on reference 
data (Section 2.3). Sentinel-1 data are provided free of charge through 
the Copernicus programme of the European Space Agency. 

The Sentinel-1 mission is a constellation of two polar-orbiting sat
ellites launched in April 2014 - Sentinel-1A - and in April 2015 - 
Sentinel-1B. The Interferometric Wide swath (IW) acquisition mode was 
used, which captures the entire study area with its 250 km swath. The 
IW data products have a 5 m range by 20 m azimuth spatial resolution 
and dual-polarization capabilities (VV and VH) over the studied region. 
The used images have incidence angles ranging from 29◦ to 46◦. We used 
the Level-1 Single-Look-Complex (SLC) data, as phase information is 

preserved (necessary for pseudo-polarimetric computations) and control 
over the entire preprocessing scheme is possible. 

2.3. Reference data 

Because of the ongoing risk of ice jam flooding in Fort McMurray, 
Alberta Environment and Parks (AEP) has an annual river ice monitoring 
and observation programme for the Athabasca River upstream of Fort 
McMurray (Sun et al., 2015). The on-site measurements by permanent 
cameras and observation flights operated and conducted by AEP were 
used as reference data for training and validation of sample areas. To 
ascertain or complement when AEP observations were unavailable, also 
Sentinel-2 data were used as reference data to differentiate between 
presence of either sheet or rubble ice cover and open water conditions. 

The time difference between SAR images and reference data ranged 
from 3 hours to 1.5 days. The AEP ice progression maps and observation 
reports were mainly used as reference data when the time differences 
between the SAR acquisitions and flights were small, a few hours. 
However, through personal communication with the river ice experts of 
AEP, it could be confirmed that for some dates certain ice stages were 
stationary for a longer period of time. This enabled the use of AEP 

Figure 1. The study reach of the Athabasca River (km 285 – 445). The river flows from south-west to north-east. Due to the complex channel conditions in this reach 
of the Athabasca River, it is highly susceptible to ice runs and ice jams during the breakup season. 

Table 1 
List of Sentinel-1 SAR scenes used in this work. The last column specifies the 
present ice stages on the SAR image based on AEP observation reports of the 
corresponding dates.  

Local date Local time Orbit Sensor Ice stages 

12-Mar-2019 07:45 Asc S1-B Sheet ice 
16-Mar-2019 19:15 Des S1-A Sheet ice 
24-Mar-2019 07:45 Asc S1-B Sheet ice 
28-Mar-2019 19:15 Des S1-A Sheet ice 
5-Apr-2019 07:45 Asc S1-B Sheet ice 
9-Apr-2019 19:15 Des S1-A Sheet ice, open water 
17-Apr-2019 07:45 Asc S1-B Rubble ice, sheet ice, open water 
21-Apr-2019 19:15 Des S1-A Rubble ice, sheet ice, open water 
30-Mar-2020 07:46 Asc S1-B Sheet ice 
3-Apr-2020 19:15 Des S1-A Sheet ice 
11-Apr-2020 07:46 Asc S1-B Sheet ice 
15-Apr-2020 19:15 Des S1-A Sheet ice 
23-Apr-2020 07:46 Asc S1-B Sheet ice 
27-Apr-2020 19:15 Des S1-A Rubble ice, sheet ice, open water 
5-May-2020 07:46 Asc S1-B Open water  
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monitoring data, also when time differences were larger, for example 
one day. 

3. Method 

Figure 2 illustrates the overall image processing methodology of 
river ice during breakup. The Sentinel-1 SLC SAR images were prepared 
for classification using three different preprocessing schemes with ESA’s 
Sentinel Application Platform (SNAP) software (version 7.0). This study 
assessed different realizations of Random Forest classifications, that 
combined intensity, pseudo-polarimetric, and texture features. 

The code, model and detailed workflow to perform river ice classi
fications (1) using the developed classifier and (2) by building a new 
Random Forest classification (for other SAR sensors or other rivers) are 
available on the GitHub repository at link: https://github.com 
/SdeRodaHusman/remotesensing-of-river-ice. 

3.1. Image preprocessing and feature extraction 

During preprocessing, Sentinel-1 Level-1 SLC products were con
verted to images representing a series of descriptive features that were 
subsequently applied to train a Random Forest classifier. The features 
computed relate to three different sources of information: backscatter, 
backscatter phase, and image texture. The backscatter intensity in the 
VV and VH polarization were computed according to the first pre
processing procedure. The second diagram provided H-A-α pseudo- 

polarimetric decomposition parameters (Cloude and Pottier, 1997). 
The texture scheme provided information about the spatial distribution 
of the backscatter, expressed as Grey Level Co-occurrence Matrix 
(GLCM) features (Haralick and Bryant, 1976). 

The settings for Calibration, Speckle filtering, H-A-α decomposition 
and Image texture are discussed below. The default settings in SNAP 
were used for the other preprocessing steps. 

In the intensity and pseudo-polarimetric schemes the digital pixel 
values were converted to the gamma nought (γ0) calibrated product. 
Gamma nought is less sensitive to variations of the incidence angle, 
compared to radar backscattering coefficients like sigma nought and 
beta nought (Raney, 1998). In the polarimetric scheme a complex output 
was selected, because polarimetric phase information should be pre
served for the computation of the decomposition parameters. 

The equivalent number of looks (ENL) of Sentinel-1 SLC images 
corresponds to 1. After preprocessing an ENL around 10 is desired, 
because this results in a balanced trade-off between noise and resolution 
(Van der Sanden et al., 2021). To reach an ENL of 10, a two-step 
approach was used, consisting of multilooking and speckle filtering. 
Multi-look of four at the range and one at azimuth was applied, resulting 
in near square-sized pixels with 15 meters pixel spacing. Speckle 
filtering was performed with the gamma-maximum-a-posteriori (MAP) 
filter (Lopes et al., 1993) with window size 3 x 3. 

Polarimetric decomposition provides information about the scat
tering mechanisms from a target. Since the images used in this study are 
not quad-polarized, a modified version of the H-A-α decomposition was 

Figure 2. Process diagram of the river ice classification.  
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applied (Cloude and Pottier, 1997; Cloude, 2007). Based on visual 
comparisons, a window size of 7x7 was found to be optimal in 
discriminating the studied ice stages. 

The texture features were calculated based on the Grey Level Co- 
occurrence Matrix (GLCM), which quantifies how frequent different 
combinations of pixel grey levels occur in the filter window (Haralick 
and Bryant, 1976). To allow for the comparison of texture over the entire 
breakup season, the data were normalized, from 0 to 255, by linear 
scaling between the lowest and highest backscatter values detected over 
the entire breakup season. The statistic group features (GLCM mean, 
GLCM variance and GLCM correlation) were computed on VV in
tensities. After some tests, a window size of 11 x 11 and displacement of 
2 were selected. 

3.2. Image classification 

Random Forest classification was performed using the sklearn pack
age in Python. Random Forest is an ensemble classifier consisting of a 
collection of tree-type classifiers. In the training process, the Random 
Forest creates multiple classification and regression trees, each of which 
is trained on a different bootstrap sample by randomly resampling the 
original training sample with replacement. During classification, each 
tree votes for the predicted class, and a pixel is labeled with the class 
having the most votes. In this research, the Random Forest algorithm 
was applied for different combinations of input features. 

Based on the reference data described in Section 2.3, sample areas 
were created for rubble ice, sheet ice, and open water. The goal of 
sample area selection was twofold: i) to analyse the feature behavior per 
ice stage to gain a profound understanding of the river ice processed 
during breakup, and ii) to assess the accuracy of the classification 
results. 

Sample areas of 100 pixels (or 1000 ENL) were selected manually 
over homogenous areas. A total of 210 sample regions were created, a 
third of them corresponding to rubble ice, a third to sheet ice and a third 
to open water. Per ice stage, 70% of the sample areas were used for 
training and 30% for validation of the developed classifiers. 

All sample area pixels included values for intensity features VV and 
VH, polarimetric pseudo-decomposition parameters Alpha, Anisotropy 
and Entropy and texture features GLCM mean, GLCM variance and GLCM 
correlation. However, a Random Forest model becomes increasingly 
complex with an increasing number of features. In practice, not every 
feature carries information that is useful for discriminating ice stages. 
Some features are either redundant or irrelevant and hence can be 
removed. By only selecting important features, a model becomes easier 
to interpret, overfitting is suppressed, and the computational costs and 
time required to train the model are reduced. 

Classifiers were developed for seven combinations of feature classes 
(Int, Pol, Tex, IntPol, IntTex, PolTex, IntPolTex) were Int stands for in
tensity features, Pol for pseudo-polarimetric features and Tex for texture 
features. For each classifier the optimal features were selected using two 
steps. First, the Recursive Feature Elimination (RFE) with Cross- 
Validation technique was applied to identify the importance of each 
feature. The first step of RFE was to divide the training data into 10 
randomly divided subsets, also known as cross-validation folds. By using 
this approach, the validation data was a truly unseen data set for testing 
the final model (Cawley and Talbot, 2010). Next, for each subset the 
performance of a Random Forest model was evaluated, and the impor
tance of each feature was computed. The least important features were 
removed. Then the Random Forest model was re-built and importance 
scores were computed again (Kuhn and Johnson, 2019). Second, the 
correlation between each feature was determined by computing a cor
relation matrix. To find the optimal combination of features for all the 
classifiers listed before, first the feature with the highest RFE importance 
score was selected, other features of classes of interest were only 
included when its correlation was higher than -0.85 or lower than 0.85. 

After the extraction and selection of the most important, 

uncorrelated features, hyperparameters were tuned to optimize the 
performance of the Random Forest model. Four hyperparameters were 
adjusted one by one, that is (1) the number of trees in the forest of the 
model (n_estimators), (2) the maximum depth of each tree (max_depth), 
(3) minimum number of samples required to split an internal leaf node 
(min_samples_split) and (4) minimum number of samples required to be at 
a leaf node (min_sample_leaf). Validation curves were plotted to show the 
influence of a single hyperparameter on the training score and the 
validation score. A total number of 46 estimators, a maximum depth of 
13, a minimum sample split of 2, and minimum sample at a leaf of 1 
were found to be optimal. Then, seven Random Forest classifications 
were performed using the optimal hyperparameters and a combination 
of features. 

3.3. Accuracy assessment 

Accuracy assessment was conducted for the validation sample areas. 
We examined three commonly used evaluation indices, confusion matrix, 
overall accuracy, and Cohen’s Kappa coefficient. The confusion matrices 
were obtained by comparing the classification results with the actual 
labels based on the reference data. The diagonal elements of the 
confusion matrix provide overall accuracy, where the Kappa coefficient 
takes all the elements in the confusion matrix into account. The Kappa 
coefficient (Cohen 1960), and its estimated standard deviation (Fleiss 
et al. 1969), were calculated for each confusion matrix to evaluate the 
agreement between the classification results and the reference data. 

In this study, intensity, pseudo-polarimetric and texture features 
were combined to find the optimal Random Forest classifier for river ice 
breakup. Hypothesis testing was used to examine whether one classifier 
performed significantly better than another one. The Kappa coefficient 
and its standard deviation were used to construct a hypothesis test to 
identify significant differences between classifiers. The test statistic ΔK̂ 
is given by 

ΔK̂ =
|K̂A − K̂ B|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

A + σ2
B

√

where K̂ is the Kappa coefficient, σ2 its corresponding variance and A 
and B represent the two classifiers that are compared (Bishop et al., 
2007; Congalton et al., 1983). In this study a confidence level of 95% 
was used, meaning two classifiers may be considered significantly 
different when ΔK̂ > 1.96 (Benson and DeGloria, 1985). 

4. Results 

Figure 3 presents the normalized feature importance of the Random 
Forest classification and the overall accuracy depending on the number 
of features selected. The Random Forest classification with all features 
was selected to investigate the relative importance of each feature for 
river ice classification. Figure 3 clearly demonstrates that features from 
all feature classes (intensity, pseudo-polarimetric, texture) are impor
tant for river ice classification. GLCM mean, pseudo-anisotropy, and VH 
intensity were found to have the highest feature importance. Pairwise 
correlation between features had been considered, as RFE with cross- 
validation identifies the optimal features by eliminating the redundant 
features during the cross-validation phase. This explains the relatively 
low feature importance of the VV intensity, which was 92.0% correlated 
to GLCM mean. 

Figure 4 shows the boxplots of four of the studied features, divided 
into the three ice stages. As expected, for rubble ice the largest VV and 
VH intensities are found. Due to the roughness of the surface, both the 
co- and cross-polarized channels show a high backscatter. Open water 
has a low VV and VH backscatter. The smooth water surface behaves like 
a mirror, and since no small incidence angles were used in this study, 
this results in specular reflection directed away from the sensor. Sheet 
ice has the largest range of VV and VH backscatter values. The sample 
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areas at the beginning of the breakup season show high values. Volume 
scattering is enhanced, because the dielectric constant is low, leading to 
penetration through the ice cover. When the melt starts, the volume 
scattering is impeded and specular reflection dominates, resulting in low 
VV and VH intensities. 

The highest GLCM mean values are found for rubble ice, due to the 
homogeneity in high backscatter over these rough surfaces. Open water 
shows spatially consistent low backscatter, resulting in the low GLCM 
mean values. Again, the texture of sheet ice differs throughout the 
breakup season. Sheet ice in the early phase of the breakup season has a 
uniform, high backscatter, which results in a high GLCM mean value. 
Later in the season, when it starts to melt, lower GLCM mean values are 
found. However, the backscatter pattern is less uniform than for open 
water, with larger variability in backscatter over the melting area. Hence 
slightly higher GLCM mean values are found for sheet ice under melting 
conditions than for open water. 

Anisotropy provides information on the relative importance of sec
ondary scattering mechanisms, which can be single bounce, volume, or 

double bounce scattering. However, since only dual-polarized signals 
were studied, only pseudo-polarimetric decomposition parameters were 
computed. Therefore, the pseudo parameters have no explicit physical 
interpretation. However, the pseudo-anisotropy feature was found to 
help distinguishing open water from the other ice stages. 

Given the results obtained from the feature importance analysis and 
the pairwise correlation between features, the most important and non- 
correlated features were extracted. Table 2 shows the different classi
fiers that were built, where Int represents the intensity features, Pol the 
polarimetric features, and Tex the texture features. The overall accuracy 
of the Int-classifier was 83.3%, and the overall accuracy of the classifier 
that performed best, the IntTex-classifier, was 86.8%. 

Table 3 shows the confusion matrices of the Int- and IntTex-classi
fiers. Even though the IntTex-classifier using Sentinel-1 data lead to a 
significantly higher classification accuracy (Kappa = 0.805) than the Int- 
classifier (Kappa = 0.750), confusion between sheet ice and open water 
(omission error of 10%) and sheet ice and rubble ice (omission error of 
16%) remain a source of uncertainty for the ice classification. Most 

Figure 3. Recursive Feature Elimination with Cross-Validation (RFECV) to find optimal features for Random Forest classification.  

Figure 4. Boxplots of (A) VV intensity, (B) VH intensity, (C) GLCM mean – VV, (D) Pseudo-Anisotropy features.  
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confusion between sheet ice and rubble ice took place during the 
morning observations, when refreezing of meltwater is probable due to 
colder temperatures overnight. On the other hand, under melting con
ditions sheet ice and open water can be confused, due to low back
scattering values from both ice stages. 

Figure 5 (a and b) illustrates the VH intensity and GLCM mean 
feature for three SAR images, just before, during and after an ice jam 
event during breakup season 2019-2020. Figure 5 (c) shows the classi
fication maps of the IntTex-classifier during that period, combined with 
an ice progression map in Figure 5 (d) and a visual assessment in 
Figure 5 (e). Most classification results are comparable to reference data. 
However, some of the pixels in the upstream part of the river of the 
Sentinel-1 image of 5 May 2020 may have been misclassified as sheet 
ice. This might be caused by wind speeds that result in a rough surface in 
this east-west part of the river. Classified Sentinel-1 images later in May 
result in open water pixels in this stretch of the river, which indicates 
that also for this smaller east-west oriented part of the river the classifier 
is able to generate accurate classification maps. 

Figure 5 clearly indicates the added value of GLCM mean, when 
distinguishing water and ice. The sheet ice patches are captured by the 
texture features. The preprocessed Sentinel-1 images have a pixel 
spacing of 15 m x 15 m, resulting in a window of 165 meters for the 
computation of the texture features. 

5. Discussion 

Our results reveal that the developed classifier provides a promising 
means to distinguish river ice during breakup. This analysis overcomes 
many of the current limitations that exist in river ice classification by 
creating a supervised classifier based on multiple features from Sentinel- 
1 data. 

The results showed that including features other than solely in
tensity, significantly increases classification results. We analyzed the 
performance of three classes of features, i.e. intensity, polarimetric and 
texture features, for river ice classification. Intensity and texture fea
tures result in a highly positive impact on classification accuracies, 
whereas the impact of polarimetric features is limited. Especially the 
GLCM mean texture feature is beneficial during breakup, because it 
detects the patches that are formed during breakup. Polarimetric 
decomposition parameters are more promising for ice classification 
during winter (Mermoz et al., 2009; Lindenschmidt and Li, 2018) than 
during breakup. This can be explained by a transition in scattering 
mechanisms. When spring arrives, mostly odd bounce scattering - at the 
air-ice surface - dominates the backscatter signal, instead of a combi
nation of volume scattering - within the ice mass - and odd bounce 
scattering - at the ice-water surface - during winter. We hoped that 
polarimetry would allow us to detect the transition from winter to 
spring, but we did not find evidence for this. More research is needed to 
study this for fully polarized data, which might contain more insight 
than the dual-polarized data used in this study. 

The developed classifier with best performance used a combination 
of the GLCM mean texture feature and VH intensity. Rubble ice has high 
GLCM mean and VH intensity values, because of the homogenously high 
VV backscatter and a large amount of depolarization. The GLCM mean of 
sheet ice is consistently lower than for rubble ice. Depending on the 
advancement of the melting process, the VH intensity of sheet ice can be 
high or low. Open water has a low GLCM mean and low VH intensity 
signal, because much of the signal is reflected of its smooth surface in the 
form of specular reflection. A great advantage of GLCM mean compared 
to the commonly used VV intensity, is the sensitivity to spatial context. 
Texture features consider the spatial relationship between VV intensity 
pixels, which is beneficial for classification since river ice has specific 
spatial patterns. However, further research should focus on the optimal 
settings of GLCM features, which depend on the spatial resolution and 
river dimensions. 

This paper introduces the first river ice breakup classifier based on 
Sentinel-1 data. The developed classifier is highly beneficial for moni
toring purposes, because of the good classification results and Sentinel- 
1’s great accessibility. Although developed for dual-polarized Sentinel-1 
data, this method could also be applied to other rivers and SAR sensors. 
On the GitHub repository, a roadmap following two paths is provided. 
Following the first path, our developed classifier can be implemented for 
classification of river ice breakup using Sentinel-1 data. However, for 
SAR sensors that are differently polarized or rivers with other breakup 
patterns (for example due to a different climate, orientation, surround
ing) it is recommended to create a separate training data set. Conse
quently, the second path leads to the development of a new Random 
Forest classifier. For this approach, new sample areas should be 
collected for each ice stage based on reference data. This was tested for 
breakup observations of the Athabasca River from RADARSAT-2 (2018- 
2019) and RADARSAT Constellation Mission (2019-2020). Random 
Forest classification of intensity, polarimetric and texture features 
resulted in a 91.2% (Kappa = 0.867) classification accuracy from 
RADARSAT-2 data and a 91.0% (Kappa = 0.865) accuracy from RCM 
data, showing the potential of the implementation of the proposed 
method on a larger scale. 

Even though the developed supervised classifier results in high 
classification accuracy, different ice stages (e.g., open water and sheet 
ice covered by wet snow) with similar feature characteristics remain a 
challenge, albeit less of a challenge after inclusion of texture features. 

Table 2 
Hypothesis test comparing the performance of Random Forest classifications 
using different combinations of features to the Int-classifier. Note that for the 
classification results that are significantly different (accuracies at 95% confi
dence level, shown in bold), ↓ and ↑ indicate that the classifier performance is 
worse or better than the Int-classifier, respectively.  

Classification Kappa coefficient (κ) Hypothesis test 
(compared to Int)  

Kappa Variance 
(10-4) 

Int 
Features: VV, VH 

0.750 0.513 - 

Pol 
Features: Pseudo-Anisotropy 

0.650 0.657 ↓ 9.222 

Tex 
Features: GLCM mean 

0.761 0.483 1.177 

IntPol 
Features: VV, VH, Pseudo- 
Anisotropy 

0.784 0.457 ↑ 3.528 

IntTex 
Features: VH, GLCM mean 

0.805 0.421 ↑ 5.719 

PolTex 
Features: Pseudo-Anisotropy, 
GLCM mean 

0.770 0.476 ↑ 2.062 

IntPolTex 
Features: VH, Pseudo- 
Anisotropy, GLCM mean 

0.787 0.454 ↑ 3.814  

Table 3 
Confusion matrices of Int- and IntTex-classifiers.  

Sentinel-1 (Int) | VV, VH Sentinel-1 (IntTex) | VH, GLCM mean 
(VV) 

Actual 
class 

Predicted class Actual 
class 

Predicted class  

Ice 
jam 

Sheet 
ice 

Open 
water 

Ice 
jam 

Sheet 
ice 

Open 
water 

Ice jam 0.92 0.08 0.00 Ice jam 0.90 0.10 0.00 
Sheet 

ice 
0.16 0.67 0.17 Sheet 

ice 
0.16 0.74 0.10 

Open 
water 

0.00 0.13 0.87 Open 
water 

0.00 0.06 0.94  
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Temporal patterns could further improve classification results, as was 
proposed by Van der Sanden et al. (2021) as well. Figure 6 shows the 
typical backscatter behavior over one breakup season, subdivided into i) 
thermal breakup and ii) dynamic breakup patterns. Depending on the 
nature of the breakup, two or three peaks in backscatter can be expected, 
for thermal and dynamic breakups, respectively. For both breakup 
processes, the pre-breakup phase starts with high backscatter signals in 
winter conditions (Figure 6-1), which reduces due to melt of snow and 

ice (Figure 6-2 and 6-3). Subsequently, the backscatter increases again, 
due to enhanced roughness of the ice cover’s surface because of melt
water drainage (Figure 6-4). Then the thermal and dynamic breakup 
paths separate. A thermal meltout decreases the backscatter in case of a 
thermal breakup (Figure 6-6a and 6-7), whereas ice jam formation leads 
to an increased backscatter in a dynamic breakup (Figure 6-5), followed 
by an ice run (Figure 6-6b) and/or melt of the grounded rubble ice 
(Figure 6-6a and Figure 6-7). The presented typical temporal backscatter 

Figure 5. Classification results of IntTex-classifier just before, during and after an ice jam event in 2020. Image (a) and (b) show the feature values of VH intensity 
and GLCM mean based on VV, respectively. Image (c) shows the classification results combined with an ice progression map in image (d). Image (e) shows reference 
data for four locations, indicated with [1], [2], [3] and [4] labels in image (c). 
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patterns could potentially be exploited to improve classification accu
racies. As an example, Markov chains have already proven their value in 
the application of SAR images for flood mapping (e.g. Martinis and 
Twele, 2010) and land cover mapping (e.g. Hagensieker et al., 2017). 
This temporal pattern recognition technique exploits observations 
relating to past events to predict future events and their observational 
characteristics. A study to further assess and develop the utility of 
Markov chains for the classification of breaking river ice by means of 
SAR images is recommended. 

6. Conclusion 

In this article, a classification approach was proposed which ad
dresses (1) the potential of a multi-feature approach for river ice clas
sification, (2) the lack of a Sentinel-1 classifier, especially during 
breakup, and (3) the problem of poor accuracies when not all water and 
ice stages are present, which applies to unsupervised classification. This 
study therefore focused on the use of different features for a supervised 
classification using Sentinel-1 data. The results demonstrate that mul
tiple features enhanced river ice cover information and, accordingly, the 
classification accuracy. Based on the integration of feature importance 
analysis and pair-wise correlation, a high classification accuracy of 
86.83% was attained using a combination of GLCM mean of VV, and VH 
intensity features. This represents a significant overall improvement of 
3.35% for classification using only intensity features. The results show 
that the inclusion of texture features augment sheet ice versus water 
discrimination, providing additional information unavailable from 
backscatter intensity. 

In this article, Sentinel-1 data was used to classify the breakup season 
of 2018-2019 and 2019-2020 of the Athabasca River. The Random 
Forest approach was also tested on two other SAR missions, which 
resulted in overall accuracies over 85% for both missions. The developed 
method is flexible, and allows for adding different features or using 
other classifiers than Random Forest. Therefore, it is expected that this 
supervised approach will get further attention in future studies. 
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Figure 6. Illustration of VV backscatter over one breakup season, divided into thermal breakup (red) and dynamic breakup (blue). The main backscatter signatures 
both start with high backscatters due to volume scattering in winter conditions (1). When temperatures start to rise the backscatter typically decreases (2, 3), 
followed by a jump in the backscatter induced by the rougher surface resulting from the penetrated snow melt (4). In case of a dynamic breakup, ice jams lead to a 
high backscatter signal (5), while during a thermal breakup the ice slowly decays leading to a smaller returned signal (6). When the river is free of ice, a low 
backscatter is observed (7). 
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Łoś, H., Pawłowski, B., 2017. In: September). The use of sentinel-1 imagery in the 
analysis of river ice phenomena on the lower vistula in the 2015–2016 winter 
season. IEEE, pp. 1–5. 

Martinis, S., Twele, A., 2010. A hierarchical spatio-temporal Markov model for improved 
flood mapping using multi-temporal X-band SAR data. Remote Sensing 2 (9), 
2240–2258. 

Mermoz, S., Allain, S., Bernier, M., Pottier, E., Gherboudj, I., 2009. Classification of river 
ice using polarimetric SAR data. Canadian Journal of Remote Sensing 35 (5), 
460–473. 

Park, H., Watanabe, E., Kim, Y., Polyakov, I., Oshima, K., Zhang, X., Yang, D., 2020. 
Increasing riverine heat influx triggers Arctic sea ice decline and oceanic and 
atmospheric warming. Science advances 6 (45), eabc4699. 

Peterson, B.J., Holmes, R.M., McClelland, J.W., Vörösmarty, C.J., Lammers, R.B., 
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