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photonic crystals

F. ALPegaianN* AND L. KuiPERS

Kavli Institute of Nanoscience Delft, Department of Quantum Nanoscience, Delft University of Technology,

Lorentzweg 1, 2628 CJ Delft, The Netherlands
*Corresponding author: f.alpeggiani@tudelft.nl

Received 13 September 2018; revised 28 November 2018; accepted 4 December 2018 (Doc. ID 345799); published 16 January 2019

Bichromatic photonic crystal structures are based on the coexistence of two different periodicities in the dielectric
constant profile. They are realized starting from a photonic crystal waveguide and modifying the lattice constant only
in the waveguide region. In this work, we numerically investigate the spectral and topological properties of bichro-
matic structures. Our calculations demonstrate that they provide a photonic analog of the integer quantum Hall state,
a well-known example of a topological insulator. The nontrivial topology of the bandstructure is illustrated by the
formation of strongly localized, topologically protected boundary modes when finite-sized bichromatic structures are

embedded in a larger photonic crystal.
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1. INTRODUCTION

The integer quantum Hall effect (IQHE) has been the source
of intense fascination since its discovery in 1980 [1]. The integer
values of the Hall conductance plateaus unveil a deep connection
between the microscopic and macroscopic worlds [2]. When par-
ticles on a plane are subject to an external magnetic field, the com-
petition between two different length scales, the lattice spacing of
the crystalline potential and the magnetic length (the radius of the
lowest-energy classical cyclotron orbit), gives rise to an intriguing
energy spectrum with self-similarity characteristics, widely known
as the Hofstadter butterfly [3]. Systems following an analogous
physics to the Hofstadter model have been realized with arrays
of microwave scatterers [4], ultracold atoms [5—7], and in Van der
Waals heterostructures [8—10]. A crucial property of the IQHE is
that the Hall conductance is a topological invariant of the system,
since its value is fully determined by the topology of the spectral
structure in momentum space [11]. For this reason, the IQHE is
an emblematic example of a topological insulator phase, ie., a
system that, albeit being insulating in the bulk, possesses topo-
logically protected conducting states on the surface [2].
Recently, topological concepts have been transferred from
the realm of electrons to that of light, and various mechanisms to
generate nontrivial topological states in photonic systems have
been put forward [12,13]. Early on, it was predicted that photonic
crystals (PhCs) could give rise to topologically protected states
when time-reversal symmetry is broken [14]. Unfortunately,
the lack of suitable nonreciprocal materials in the optical range
has restricted the experimental verification of the proposal to
the microwave regime [15]. In order to overcome such limita-
tions, efforts have been focused on systems with external temporal
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modulation [16,17], optomechanical devices [18], and photonic
analogs of the quantum spin-Hall effect [19-22]. The latter
approach has been also extended to PhC systems [23-25].

A different route to evidence nontrivial topological phases in
photonics is to investigate systems that are governed by the
Harper—Aubry—André (HAA) Hamiltonian [26,27], which is
the one-dimensional momentum-space projection of the IQHE
and which inherits its nontrivial topological properties [28—32].
This approach has been experimentally carried out with cold
atoms [33], one-dimensional PhCs with a compound unit cell
[34,35], and coupled waveguide arrays, where topological pump-
ing has been demonstrated [29,36,37]. The same concept can be
generalized to higher dimensions and used to realize an analog of
the four-dimensional IQHE [38-40].

In this work, we investigate a class of PhC-based nanostruc-
tures, called bichromatic structures, and show that they can be
used to obtain nontrivial topological properties. These structures
are based on the idea of an effective “bichromatic potential” for
light, i.e., a spatial distribution of the dielectric index character-
ized by the superposition of two different periodicities. They were
originally introduced as a strategy for realizing high-quality-factor
optical cavities [41], with quality factors on the order of 100
having been experimentally measured [42—44]. These cavities also
provide a potentially viable route for reducing the power thresh-
old of four-wave mixing and other parametric interactions [43].
Here, we theoretically demonstrate that bichromatic structures
embody the same physics of the HAA model, and, therefore,
provide a photonic analog of the IQHE. The nontrivial topology
of the optical spectrum is illustrated by the formation of
strongly localized edge states at the boundary of the system.
Thus, bichromatic structures represent a promising platform
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for investigating nontrivial states of light using state-of-the-art
PhC devices.

2. HARPER-AUBRY-ANDRE MODEL

The IQHE represents one of the simplest examples of a topologi-
cal insulator. Although the bulk material is insulating, conduction
is allowed along the boundaries of a finite-sized sample. The exist-
ence of the conducting edge states is protected against deforma-
tions of the Hamiltonian (due to, for instance, disorder) by the
conservation of a topological invariant, on condition that these
deformations do not close the bulk bandgap [2].

In this section, we summarize some important results on the
IQHE [2,11,29]. In a typical description, nonrelativistic spinless
particles (with charge -¢) moving on a two-dimensional square
lattice in the presence of a homogeneous magnetic field H are
considered. The magnetic field is directed perpendicularly to
the lattice plane. We indicate with y,,,, the Wannier wavefunc-
tion centered at the lattice site (x,y) = (na, ma), with a being
the lattice constant. The Schrodinger equation for the particles
reads [3]

t(l//n+l,m + l//ﬂ—l,m) + t,(eizﬂﬁ”l//n,nﬂ»l + e—iZﬂ/}’n

ll/n,m—l) = 5U/n,m)
(1)

where & is the energy eigenvalue, 7 and ¢’ the hopping terms along
the x and y axes, respectively, and f = e’ H /(2zhc). When the
particles hop along the y axis, they acquire the additional phase
term 27fn, which originates from the Peierls substitution with
the vector potential A = (0, Hx,0)”. It is essential to note that
the phase term is proportional to 7, and, therefore, breaks the
original periodicity along the x axis.

The properties of the solutions of Eq. (1) have been the subject
of extensive investigation [3,11,28-32,45]. Equation (1) gives rise
to a set of bands (@ = 1, 2, ...), each associated with a topological
invariant, the Chern number:

1
Ca = dk 1 Clk2 |:

2ri MBZ

0A; (k) A, (k)} o

Ok, Ok,
where A;(k) = (y,(k)|0/0k;|w,(k)) is the Berry connection,

and the integral is performed over the magnetic Brillouin zone,
a modification of the standard Brillouin zone that accounts for the
presence of the magnetic field [11,46]. The existence of the Chern
number imparts a topological structure onto the spectrum, which
unveils itself when two different topological phases enter in con-
tact. In this case, topologically protected edge states are formed,
which are spatially localized at the boundary between the two
different phases [28,29,37]. An example of this effect can be
observed at the edges of the sample, when the system is in a
nontrivial topological phase (C, # 0).

It is straightforward to prove that by Fourier transforming the
wavefunctions of Eq. (1) along the y axis, the following equivalent
equation is obtained:

t(l//nJrl + l//n—l) + 2t COS(Zﬂ-ﬂn + ¢)U/n = gl//n) (3)

with ¢ = kya. Equation (3) describes a one-dimensional chain
of interacting particles in the presence of a periodic potential
and it is usually called the HAA model [26,27]. As it has
been recently demonstrated in pioneering works [28,29], every
one-dimensional physical system that is described by the model
in Eq. (3) inherits the nontrivial topological properties of the
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Fig. 1. Schematics of a standard PhC-slab waveguide (a) and a bichro-
matic PhC structure (b). In the bichromatic structure, the separation be-
tween the reduced-radius holes is modified to the value " = (¢/p)a (a is
the lattice constant). In the example, ¢ = 5 and p = 6. The solid lines
mark the boundaries of the unit cells along the x axis. The dashed lines in
(b) delimit the one-dimensional lattice sites inside the supercell.

IQHE. Notably, the existence of nontrivial Chern numbers
and topologically protected edge states is not a property of the
Hamiltonian for a single realization of the one-dimensional sys-
tem, but of the entire set of one-dimensional Hamiltonians
spanned by the phase shift ¢p. The phase ¢ of the periodic modu-
lation of the potential accounts for the momentum along the
geometrical dimension that was lost when moving from a two-
dimensional to a one-dimensional system.

3. BICHROMATIC PHOTONIC CRYSTALS

The bichromatic PhC structures that we study in this work are
based on the superposition of two different periodicities in the
dielectric index profile. This concept can be realized in practice
by starting from a standard PhC waveguide and modifying the
lattice constant only in the waveguide region, from the original
value 4 to a modified value 2" (Fig. 1).

We are interested in the electromagnetic eigenmodes, i.e., the
solutions of the second-order eigenvalue equation for the

magnetic field [47]

1 ?
Vx| —VxH(r)| =—H(r). (4)
|:€(r) } c?

We solve Eq. (4) using a guided-mode expansion method, where
the magnetic field is expanded onto the basis of guided modes
of a homogeneous dielectric slab with an effective dielectric
index [48] (see Supplement 1). In this way, the complexity of
the calculation is effectively reduced from a three-dimensional
to a two-dimensional problem. Although this method is intrinsi-
cally approximate, since it neglects the interaction with the
continuum of radiating modes, its efficacy for the study of PhC
structures is supported by a large body of work [48-52].

The starting point for realizing bichromatic structures is a
PhC waveguide. We consider a PhC slab with a triangular lattice
of holes (with lattice constant a) patterned in a suspended high-
refractive-index membrane. In this work, we will consider only
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Fig. 2. (a) Frequency dispersion of two different configurations of a
PhC waveguide (see insets), as a function of the wavenumber along
the propagation direction. The solid and dashed lines represent modes
where H , is even or odd by reflection along the y axis, respectively. The
shaded regions illustrate the approximate boundaries of the original PhC
bandgap. (b) Intensity profiles of the /,, E,, and £, components of the
field for the even modes in the two different configurations. The fields are
computed at the edge of the first Brillouin zone (£ = 7/a).

TE-like modes, for which a bandgap opens in the spectrum [47].
For the sake of illustration, we assume a silicon membrane
(e = 12) of thickness # = 0.5z and with hole radius » = 0.3a4.
The waveguide (linear defect) is realized by reducing the radius
of the holes in a single row to the value ,, = 0.18« [Fig. 1(a)]. In
this way, additional waveguide modes appear inside the original
PhC bandgap. In Fig. 2(a), we plot the frequency dispersion of the
waveguide modes for two different configurations: one in which
the reduced-radius holes follow the pattern of the triangular
lattice (blue curves; see inset), and another in which they are glob-
ally shifted by half lattice constant (green curves; see inset). For
both configurations, we observe two different TE-like modes.

(a) B=5/6

These modes can be classified according to the even (solid curves)
or odd (dashed curves) mirror-symmetry of the A, field with re-
spect to the xz plane. Note that the families of modes cannot
couple with each other as long as the dielectric profile remains
symmetric along the y axis. In the following, we will focus only
on the even modes, which span the largest extension of the origi-
nal PhC bandgap. The intensities of the electric and magnetic
fields for the even modes of both configurations are illustrated
in Fig. 2(b) for the wavenumber # = 7/a. It is interesting to note
that the field profile is very similar in the two different configu-
rations. However, in the shifted-row configuration, there is a
larger fraction of the electric field intensity localized in the silicon
region. This fact corresponds to a more energetically favorable
configuration, which results in globally lower modal frequencies,
as shown in Fig. 2(a). Furthermore, the dispersion of the even
mode for the shifted-row configuration has a higher curvature
at the band edge than the standard configuration. This behavior
can be interpreted in terms of a smaller “effective mass” for the
waveguide modes in the shifted-row configuration.

The variation in the dispersion of the waveguide modes
with the global shift of the linear defect plays a central role for
understanding the behavior of the bichromatic PhC structures.
Bichromatic structures are realized by starting from the PhC
waveguide that we just described and modifying the distance be-
tween the reduced-radius holes along the x axis, from the original
value a to a different value 4" [Fig. 1(b)]. The crucial parameter is
the ratio # = 4’ /a. Here, we consider structures with f§ a rational
number, ie., f = q/p, with p and g coprime integer numbers.
These structures are effectively periodic along the x axis with a
supercell of size L, = ga. Inside the supercell, there are p
reduced-radius holes. The supercell boundaries for an illustrative
system with f = 5/6 are indicated in Fig. 1(b). The behavior for
irrational values of # can be inferred from the limit of a series of
commensurate structures with increasingly large supercells.

In Figs. 3(a)-3(c), we plot the modal frequencies (blue dots)
of the y-even TE-like electromagnetic modes for several bichro-
matic structures with various values of f, as a function of the
one-dimensional wavevector along the x axis, 4. Each plot displays
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Fig. 3. Frequency dispersion of the y-even TE-like modes for three different examples of bichromatic structures: (a) S = 5/6 = 0.83,
(b) p=7/8=10.875, (c) f =9/10 = 0.9. The dispersion is plotted inside one-half of the first Brillouin zone associated with the one-dimensional
supercell. The dots represent the frequency eigenvalues computed with the guided-mode expansion method, whereas the solid lines are the eigenvalues of
the model in Eq. (6), with the parameters in Egs. (7) and (8). (d)—(f) Intensity of the magnetic field inside the supercell, for the three modes tagged in

panel (a) at £ = 7/L,.
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one half of the one-dimensional Brillouin zone, whose absolute
size is defined according to the effective supercell of the system
[-7/(ga) < k < 7/(ga)] and, therefore, varies for each example.
In all cases, however, we observe a striking difference with respect
to the periodic waveguide in Fig. 2. Instead of a continuous
dispersion, we recognize a set of electromagnetic minibands,
all lying inside the bandgap of the original PhC slab. The number
of the minibands depends on the size of the effective supercell,
and, ultimately, on the integer 4.

The origin of this behavior lies in the HAA model. As illus-
trated in Fig. 1(b), every lattice site inside the supercell realizes a
different local configuration for the one-dimensional waveguide,
which interpolates between the two limiting cases considered in
Fig. 2. Therefore, the waveguide mode will experience a different
effective potential and mass at every lattice site. It is natural, then,
to expand the magnetic field over a set of Wannier functions
centered at the lattice-site positions x = na (n = 1,2,...,¢),
ie, H(r) = > ,c,H,(r) [41]. In the nearest-neighbor approxi-
mation, the eigenvalue problem in Eq. (4) reduces to that for a
one-dimensional chain of g interacting particles:

0)2
C_zcn = ann +]ncn+l +]7171Cn—1’ (5)

with site-dependent potential and hopping terms (V, and /,,
respectively). We assume periodic boundary conditions at the
two ends of the finite-sized chain with the Bloch wavenumber
k, -7/ (ga) < k < 7/(ga). In addition to the original periodicity
in a, which is implicit in the chain model, the system possesses
the additional periodicity 2" = (¢/p)a. We account for this addi-
tional periodicity through modulation of the potential and
hopping terms. The fundamental harmonic in the Fourier expan-
sion of a real-valued function of period &' is proportional to
cos(2mx/a’ + ¢) = cos(2rnp/q + ¢). We expect that, for val-
ues of the ratio f = 4'/a close to unity, the effect of the additional
periodicity will be a smooth modulation. Therefore, we neglect
higher-order harmonics and, for simplicity, we assume that both
the potential and the hopping terms have the same phase. The
range of validity of this model for the parameter f will be dis-
cussed later. In this way, the eigenvalue problem takes the form
of the generalized one-dimensional HAA model [30]:
2
Cj—zcn =[V+ V' cosQapn/q+ ¢y)c,

+[J + ] cos2rpn/q + ¢))le,s
+[J + ] cosQap(n-1)/q+ ¢))lc,1. (6)

This model represents a straightforward generalization of the
“diagonal” one in Eq. (3). As for the Hamiltonian in Eq. (3),
it is possible to identify a two-dimensional ancestor system whose
topological properties are inherited by the one-dimensional
model. In the case of the generalized HAA model, the ancestor
system is a different version of the IQHE in Section 2, where
nonrelativistic particles hop on a square lattice in the presence
of a perpendicular magnetic field. In addition to nearest-neighbor
coupling terms, next-nearest-neighbor coupling terms are in-
cluded, as well [53]. Therefore, the generalized HAA model is
characterized by topological properties equivalent to the diagonal
one [29,30].

We observe that it is possible to accurately fit the frequency
dispersion of bichromatic structures within a simple version of the
generalized HAA model where only the off-diagonal modulation

is present (V' = 0). The results of this fit are shown by the red
lines in Figs. 3(a)-3(c). The fitting parameters will be discussed
below. It is noteworthy that this simple model correctly reprodu-
ces the number of minibands, their relative energy separation, and
their main curvature. The decrease in accuracy for higher frequen-
cies is likely due to the hybridization with the continuum of
modes above the PhC bandgap. The choice of the fitting param-
eters is likely not unique, and a comparable or even better agree-
ment with the full-wave simulations might be obtained by
including higher-harmonic modulation terms and higher-order
hopping constants in the HAA model in Eq. (6). However,
the increased complexity goes beyond the scope of the present
analysis, which is to provide a minimal model for understanding
the topological behavior of bichromatic structures. In particular,
our results confirm that bichromatic structures provide a practical
realization of the HAA model. Therefore, in light of our previous
discussion, they can be thought to represent a photonic analog of
the IQHE.

The electromagnetic modes of bichromatic structures can be
interpreted as “Landau levels” for an effective two-dimensional
system. The ratio f = 4'/a then plays the role of the effective
magnetic flux. This interpretation is supported by the field pro-
files of the electromagnetic modes, a selection of which is illus-
trated in Figs. 3(d)-3(f). The lowest-frequency mode [Fig. 3(f)] is
strongly localized around the most energetically favorable PhC
waveguide configuration. Higher-frequency modes have a larger
effective volume and stretch towards the edges of the supercell.
Note that in the limit # <1, i.e,, ¢ S p and g,p > 1, the size
of the supercell might become comparable with the actual size
of the sample. In this case, owing to their mostly flat dispersion
[sce Figs. 3(a)-3(c)], the lowest-order electromagnetic Bloch
modes effectively become localized nanocavity modes, with a field
distribution similar to the one in Fig. 3(f). The initial theoretical
investigation of bichromatic structures [41] and recent experi-
mental works [42—44] have been mostly focused only on this sub-
set of electromagnetic modes, treated as localized cavity states.

4. SPECTRUM OF BICHROMATIC STRUCTURES

One of the most intriguing properties of the spectrum of bichor-
matic structures for rational f§ is that the number of minibands
is determined by the integer denominator ¢. In the HAA model in
Eq. (6), the actual number of solutions is exactly given by 4.
In the case of bichromatic structures, however, the actual number
of accessible solutions is reduced to the ones lying inside the
bandgap of the embedding PhC. In both cases, since a small
change in f# can produce a huge variation in ¢, the number of
minibands wildly fluctuates as a function of S.

Motivated by these considerations, we investigate the spec-
trum of bichromatic structures as a function of . The results of
full-wave electromagnetic simulations are summarized in Fig. 4.
The blue dots in Fig. 4(a) represent the eigenfrequencies of the
Bloch modes at # = /L, for the rational values of f = 4'/a =
q/p (¢ < 30). The intricate structure of the spectrum bears a
striking resemblance to the well-known Hofstadter’s butterfly
[3]. Such similarity is not surprising, as the Hofstadter’s butterfly
illustrates the spectrum of the original HAA model in Eq. (3).
However, in order to accurately describe the spectrum of bichro-
matic structures, we have to take into account some additional
physical effects. In fact, by changing the value of the ratio f,
the air—dielectric fraction of the linear defect and the magnitude
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Fig. 4. (a) Spectrum of bichromatic structures as a function of
P = a'/a, computed at the band-edge point # = z/L,. The blue dots
are the results of a full-wave (FW) simulation with the guided-mode ex-
pansion method, whereas the orange dots are computed from the model
in Eqgs. (6)—(8). The latter are also depicted in panel (c), over a broader
frequency range (the shaded region corresponds to the original PhC
bandgap). For comparison, panel (b) illustrates the spectrum of the
model in Eq. (6) assuming that the parameters are constant over the range
of variation of f.

of the nearest-neighbor hopping are also altered. These effects
can be accounted for in the model in Eq. (6) by assuming
p-dependent parameters V(f3), /(f), and J'(B). We find that
the guided-mode simulation results in Fig. 4(a) can be fitted with
the model in Eq. (6) and the linear-dependent parameters

2V =530 - 1.308, V' =0, 7)

2] = 1.03 - 0.66p, 2] =179 - 1.73p. (8)

These parameters are specific to the present choice of the PhC
geometry and are governed by the effective potential and effective
mass of the photons in the waveguide. However, the justification
of the HAA model lies in the coexistence of different periodicities.
Therefore, we expect that the same model will describe bichro-
matic structures with different geometrical configurations, albeit
with different sets of parameters. Further details about the fitting
procedure are presented in Supplement 1.

The effect of the additional f-dependence of the parameters
can be understood by comparing Figs. 4(b) and 4(c). In Fig. 4(b),
we show an example of the spectrum in Eq. (6) for constant
parameters [corresponding to the values in Eqgs. (7) and (8) for
B = 1], resulting in a highly symmetric structure. Note that
the spectrum in Fig. 4(b) has a different structure than the origi-
nal Hofstadter’s butterfly [3], since it has been calculated for
a modulation in the off-diagonal terms of the HAA model
(ie, V' =0 and /' #0), rather than for the diagonal terms
(ie., /' =0 and V' # 0). The additional f-dependence of the
parameters induces a deformation in the spectral structure, which
is illustrated in Fig. 4(c). The same spectral points are depicted
by the orange dots in Fig. 4(a), in order to allow for an easier

comparison with the full-wave simulation data. We find good
agreement with the HAA model in the approximate range
0.75 5/ 50.96. The agreement deteriorates for lower values
of f. This effect is likely due to the increased deviation of the
local field profile from that of the original waveguide in Fig. 2,
reducing the validity of the tight-binding model in Eq. (6) for
the description of these realizations of the photonic system.

These results confirm the existence of a range for the parameter
p = a’'/a where bichromatic PhC structures truly embody the
physics of the HAA model, providing a photonic analog of a topo-
logical insulator. The additional f-dependence of the parameters
of the model can be interpreted as a dependence of the potential
and hopping terms on the effective magnetic field, inducing
a deformation in the spectrum with respect to the original
Hofstadter’s model [3]. Similar spectral deformations have also
been found for realistic condensed-matter systems, due to, for
instance, diamagnetic effects [54].

5. TOPOLOGICAL EDGE STATES

As we summarized in Section 2, the HAA model is characterized
by topologically nontrivial energy bands, each of which can
be associated with a topologically invariant Chern number
[2,11,45]. For instance, in the case # = 5/6, we calculate from
the model in Eq. (6) that the Chern numbers associated to
the bands are C;, =C, =C4=Cs=1, and C3 = -4 (with the
index running from low to high energies) [46]. Similarly, the
Chern numbers for the other two examples in Fig. 3 are C; = -6
and Cs = -8 for f=7/8 and p =9/10, respectively, with
C, =1 for the remaining bands. As originally demonstrated in
Refs. [28,29], a compelling manifestation of the topological struc-
ture of the HAA model is the formation of edge states between
two spadially distinct topological phases. For instance, these edge
states appear at the boundaries of the HAA system when it is en-
closed in a topologically trivial medium. Although the HAA model
is one dimensional, the existence of nontrivial Chern numbers is
justified because the HAA model is the Fourier-space projection of
the Hamiltonian of the two-dimensional IQHE (Section 2). The
phase of the modulation, ¢ = /eya in Eq. (3), plays the role of the
momentum along the second geometrical dimension [29].

We consider a large, yet finite-sized, sample of a bichromatic
structure, which encompasses a number of periodic repetitions of
the bichromatic supercell. This finite-sized extent of the bichro-
matic system is embedded inside a larger PhC slab, which plays
the role of a topologically trivial region. For illustration, in Fig. 5,
we summarize the results for the case ff =5/6. We assume
N, = 8 periodic repetitions, implying a total number N, = 48
of reduced-radius holes, which are illustrated by red circles in the
outline of the dielectric profile in Fig. 5(c). The remaining stan-
dard-radius holes are represented by the green circles. In order to
demonstrate the presence of edge states, an “artificial dimension”
is needed to account for the additional geometrical dimension
that is lost when we move from the two-dimensional IQHE
[Eq. (1)] to the one-dimensional HAA model in Egs. (3) and
(6). As we discussed beforehand, this lost geometrical dimension
is mapped onto the global phase shift of the periodic potential
modulation. In our photonic realization of the HAA model, this
parameter corresponds to the global spatial displacement A of the
line of reduced-radius holes with respect to the surrounding PhC.
The geometrical meaning of the global displacement A is high-
lighted in the close-up in Fig. 5(c).
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Fig. 5. (a) Full-wave calculation of the frequency eigenvalues of a finite-sized bichromatic structure as a function of the spatial displacement A. We
assume f# = 5/6 and a finite-sized extent of N, = 8 repetitions of the bichromatic supercell. (b) Eigenvalues of a finite-sized chain of particles following
the HAA model of Egs. (6), (7), and (8) for the same parameters, as a function of the phase shift ¢;. (c) Schematics of the dielectric profile of the structure
being simulated. The holes with radius 7 = 0.3z are represented in green, whereas those with r,, = 0.184 are shown in red. The close-up illustrates the
effect of the global displacement A. (d)—(i) Intensity of the magnetic field for various modes tagged in panel (a).

We calculate the eigenvalues of the finite-sized system in
Fig. 5(c) as a function of the displacement A. The eigenvalue
frequencies are displayed in Figs. 5(a). Most of the eigenfrequen-
cies lie inside the minibands investigated in Section 3 [compare
Fig. 3(a)], as expected for a finite-sized section of a periodic
system. The corresponding eigenmodes are delocalized all over
the bichromatic region, as shown, for instance, by the intensity
profiles in Figs. 5(d) and 5(e), which illustrate examples of Bloch
modes from the first and the second band, respectively.

However, an eye-catching feature is the presence of additional
modes that cross the gaps among the minibands. The nature of
these modes is immediately clear by looking at the intensity pro-
file of the magnetic field, which is displayed in Figs. 5(f)-5(i) for
some selected values of A. The modes are strongly localized at the
edges of the finite-sized extension of the bichromatic structure.
This behavior indicates that they are the photonic analog of
the edge states that originate in the HAA model due to bulk-edge
correspondence. In Fig. 5(b), we plot the spectrum of a finite-
dimensional chain of particles following the HAA Hamiltonian
in Eq. (6). The agreement with the full-wave simulation results
for the bichromatic structure [Fig. 5(a)] is compelling, further
supporting the physical analogy between the two systems. The
relation with the edge states of the IQHE can be grasped by
looking at the effective “group velocity” for the variable A,
i.e., dw/0dA. In light of Section 2, this quantity is the analog
of the group velocity along the y axis for the particles,
i.e., 0€/0k,. Therefore, the sign of the group velocity represents
the direction of motion of a flux of particles moving along a finite-
sized two-dimensional stripe of material. As shown in Fig. 5(a),
the effective group velocity is positive for edge states localized at
the right of the sample, and vice versa. Thus, the states at the two

opposite edges can be associated with effective currents of particles
flowing in opposite directions. Note that the exact same result
applies to the case A < 0 (which is the mirror symmetric situation
along x), since both the effective group velocity and the position
of the edge states are reversed.

The two lowest-frequency minibands in Fig. 5(b) have the
same Chern number (C; = C, = 1), which is different from
the Chern number of the higher-frequency band (C; = -4).
Therefore, we expect that the edge states will connect the two
lowest bands with the upper one. This behavior is indeed sug-
gested by the intensity distribution of the edge modes. The edge
states in Figs. 5(g) and 5(i) have a similar profile, despite lying in
different minigaps. In both cases, the field profile along the y axis
resembles the one of the lowest-frequency miniband [compare
Fig. 5(d)] and considerably differs from that of the edge state
in Fig. 5(h), which is more similar to the second miniband
[Fig. 5(e)]. Thus, the properties of the edge modes reflect the
global topology of the bandstructure.

The results presented in this section refer to a system with
P = 5/6. We have also computed the spectrum of finite-sized
bichromatic structures with different values of f, observing in
all cases the formation of the strongly localized modes at the edges
of the structures. Similar to the present example, these modes lie
inside the minigaps and appear for specific values of the displace-
ment A. Additional spectra for different values of /3 are presented
in Supplement 1.

6. CONCLUSION

In this work, we theoretically demonstrate that bichromatic PhC
structures possess nontrivial topological properties. These properties
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originate from the fact that bichromatic structures provide a reali-
zation of the HAA model and, therefore, they also exhibit a
photonic analog of the integer quantum Hall state, a well-known
example of a topological insulator. The nontriviality of the band-
structure topology is evidenced by the formation of spatially local-
ized edge modes when a finite-sized bichromatic structure is
embedded in a larger PhC. These electromagnetic modes are analo-
gous to the topologically protected edge states of the IQHE.

There is an important difference between bichromatic struc-
tures based on PhC waveguides and other optical realizations
of the HAA model, such as coupled-waveguide arrays or one-
dimensional PhCs with a compound unit cell. In these systems,
a set of parameters (for instance, the widths and positions of the
waveguides, or the thicknesses of the layers in the compound unit
cell) needs to be tuned in order to construct a specific form of the
effective potential [34,38]. In bichromatic PhC structures, how-
ever, the modulations of the effective potential and mass are not
explicitly constructed by tuning a set of parameters, but they nat-
urally emerge from the spatial superposition of two different
periodicities. In this sense, bichromatic structures are character-
ized by a single essential degree of freedom, the ratio f between
the two periodicities. Additional design parameters, as those re-
lated to the bulk PhC or the waveguide geometry, are not crucial
for the realization of the HAA model. Indeed, starting from a
different PhC waveguide configuration, as done, for instance,
in Ref. [43], will result in similar modulation of the effective
potential for light, provided that two competing periodicities
are present in the system.

For these reasons, bichromatic structures represent a promis-
ing platform for visualizing topological effects in PhC systems.
For instance, bichromatic structures could serve as a basis for real-
izing topological pumping of light [38] across a photonic device.
Moreover, the concept can be generalized to investigate nontrivial
states of light in higher dimensions [38—40] or in the presence of
time-modulated optical properties, for instance, in optomechan-
ical or nonlinear systems.
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