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Chapter 1 - Introduction  

Self-driving vehicles possess distinctive characteristics that could change the way we use road 

infrastructure and the way we travel, and they present themselves with a unique set of 

opportunities and challenges. Which role self-driving vehicles could play one day depends on 

multiple stakeholders, among which: potential users, policymakers and, in case self-driving 

vehicles are not privately owned, the operator of transport services deploying self-driving 

vehicles in this thesis. It is analysed how the rules these stakeholders might set will shape the 

use and impacts of such vehicles. In particular, the focus is put on shared automated vehicles 

used to provide on-demand transport services.  

 

The remainder of this chapter is organized as follows: In section 1.1, the concept of Shared 

Automated Vehicles is presented, followed by a discussion of current planning principles for 

centrally dispatched on-demand transport services (section 1.2). In section 1.3, the research 

objectives and research scope are outlined, followed by a section describing the research 

approach in brief (section 1.4). The main scientific and societal contributions are sketched in 

section 1.5. An outline of the dissertation and a short description of each chapter are presented 

in section 1.6. 

1.1 Shared Automated Vehicles 

Currently, privately owned cars are in use during less than 10% of their lifespan; the rest of the 

time they remain idly parked (Shoup, 2018). This creates serious issues in places where 

competition for space is fierce and land prices are high, such as cities and urban agglomerations 

(Mingardo, van Wee, & Rye, 2015). Car sharing is often seen as a solution to these problems, 

as the sequential sharing of vehicles would increase the vehicles’ efficiency of use and might 

encourage users to not privately own a car (Nijland & van Meerkerk, 2017; Schmöller, Weikl, 

Müller, & Bogenberger, 2015). An elaborate overview of the different forms of sharing 

vehicles, and their underlying business models, can be found in Stocker and Shaheen (2016). 

The term “car-sharing” is today commonly used for forms of transport in which vehicles are 

shared sequentially, but is sometimes also applied to forms of transport in which vehicles are 
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shared simultaneously, such as car-pooling or ride-hailing services (Drut, 2018; Winter, Cats, 

Martens, & van Arem, 2017). In the remainder of this thesis, the concept of “shared vehicles” 

is used for transport services in which vehicles are shared sequentially, and not simultaneously. 

 

The acceptance of car-sharing gained momentum after developments in communication 

technologies enabled easy access to car-sharing systems via the smartphone (Mounce & Nelson, 

2019), which can be seen from the exponential growth of car-sharing users in the last years. In 

Germany, for example, has the number of car-sharing users increased from 137,000 in the year 

2009 to 2,460,000 in the year 2019 (statista, 2019). In the same time span grew the number of 

car-sharing vehicles from 1,832 to 51,149 in the Netherlands (KpVV CROW, 2019). Factors 

that influence the acceptance of car-sharing services are the size of the operational area, the 

price of the service, the fleet size and the resulting availability of vehicles, and the relative ease 

of parking car-sharing vehicles (Dowling & Kent, 2015; Kang, Hwang, & Park, 2016; Millard-

Ball, Murray, Ter Schure, Fox, & Burkhardt, 2005; Paundra, Rook, van Dalen, & Ketter, 2017). 

Despite their increasing popularity are car-sharing services still small in the field of urban 

transport (Greenwald & Kornhauser, 2019), e.g. in the Netherlands, the current number of car-

sharing vehicles is only 0.6% of the total fleet of all passenger cars in the country, which 

comprises 8,5 million vehicles (Centraal Bureau voor de Statistiek (CBS), 2019). This might 

change, however, once the technology for vehicle automation has progressed enough to offer 

car-sharing services with self-driving vehicles. The path towards this development is sketched 

in the following. 

 

The technology for automating vehicles has matured enough to conduct trials and pilot studies 

with driverless vehicles around the world (Sperling, van der Meer, & Pike, 2018). Self-driving 

vehicles, also referred to as fully automated or autonomous vehicles, are expected to bring many 

benefits: they promise to be safer, improve network flow, unburden all passengers from the task 

of driving, grant more mobility-independence to people without driving licences and can be 

operated much cheaper than chauffeur-bound vehicles (Brown & Taylor, 2018; Greenwald & 

Kornhauser, 2019; Harper, Hendrickson, & Samaras, 2018; Regional Plan Association (RPA), 

2017; Sperling et al., 2018). Self-driving vehicles possess the highest degree of automation 

(level 4 and 5 in the SAE classification1) and therefore do not require any intervention from a 

human driver. Level 4–vehicles are capable of performing all driving tasks in most, but not all 

conditions (e.g only on selected roads, with low driving speeds, or in favourable weather 

conditions), while level 5-vehicles can perform all driving tasks in all conditions (SAE 

International, 2018). In both cases is an intervention by a human driver in in theory possible, 

which is however not the case of the transport service envisioned in this thesis. Passengers of 

this transport service are not required to intervene at any point, which makes the provided 

transport service universally accessible. These levels of vehicle automation are achieved by 

equipping a vehicle with a combination of on-board sensors (e.g. radar, GPS, LIDAR, 

odometry) mapping the surroundings of the vehicle, advanced control systems processing the 

sensory information and vehicle communication systems that can transmit and receive 

information to and from other vehicles (V2V), infrastructural entities (V2I), or generally any 

entity that can participate in this exchange of information (V2X). This intensive communication 

between moving objects (the vehicle) with other moving objects and their static environment 

requires a highly connected environment aligned with the technical needs of level 4- or 5-

vehicles. A vision of how the physical road environment for such vehicles could look like is 

                                                        
1 SAE International is an U.S. based professional association developing industry standards. The SAE 
classification of standardized levels of driving automation, last updated in the year 2018, are currently 
a leading standard used to describe the different levels of automated vehicles. 
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described in (Farah, Erkens, Alkim, & van Arem, 2018). Whether self-driving vehicles will be 

a common sight in the near future depends on many factors, including further technological 

improvements, political considerations, legal agreements, the costs of the technology and the 

infrastructure they require, the success of the current pilots as well as the acceptance of such 

vehicles by the broader public (Greenwald & Kornhauser, 2019; Regional Plan Association 

(RPA), 2017; Sperling et al., 2018).  

 

One possible way in which self-driving cars might be introduced first is as shared automated 

vehicles (SAV), also referred to as automated taxi or aTaxi (Greenwald & Kornhauser, 2019) 

or robotaxi (Nunes & Hernandes, 2019). SAV are commonly described as driverless vehicles 

operated as an on-demand public transport service. The travel experience for the users of such 

services will be similar to the one associated today with a trip in a taxi or a ride-hailing vehicle, 

with the exception that no human driver is involved – the service provided by SAV can thus be 

regarded as a sort of cross-over between car-sharing and ride-hailing services (Stocker & 

Shaheen, 2017).  

 

SAV are believed to overcome obstacles linked to both, traditional car-sharing and to automated 

vehicles (Brown & Taylor, 2018; Fagnant & Kockelman, 2015; Stocker & Shaheen, 2017). The 

operation of conventional vehicles in a shared manner has several shortcomings that become 

obsolete if operating the same service with automated vehicles, and in return problems currently 

associated with the introduction of automated vehicles can be overcome by using them in a 

shared manner. How vehicle sharing and vehicle automation can profit from each other is 

described in the following. A visualisation of the key points illustrating the synergies between 

the concept of vehicle sharing and the technology of vehicle automation is shown in Figure 1.1. 

 

One of the main issues regarding the efficiency of car-sharing services operated with non-self-

driving vehicles is, that the vehicles have to be located within walking distance of their potential 

users (Krueger, Rashidi, & Rose, 2016b). Relocating idle vehicles is thus essential to the 

operation of car-sharing services, and can either be tackled by giving financial incentives to the 

customers to park the vehicles close to expected future demand hot-spots or by employing 

drivers that move the vehicles accordingly (Angelopoulos, Gavalas, Konstantopoulos, 

Kypriadis, & Pantziou, 2018; Ferrero, Perboli, Rosano, & Vesco, 2018; Weikl & Bogenberger, 

2013). Both options are costly and not necessarily efficient approaches, which can be overcome 

if vehicles could simply drive themselves to the desired parking location. Another advantage of 

employing self-driving vehicles is, that everybody could make use of car-sharing services, and 

not just people who legally can, and actually want to, steer a car. These aspect has been shown 

to be an important reason for using ride-hailing services (Young & Farber, 2019). However, 

ride-hailing transport services bring their own set of problems, which can again partly be solved 

by employing automated vehicles. This would solve issues such as undesired driver conduct 

and non-cooperative behaviour between the vehicles due to the need of drivers to maximise 

their individual turnover instead of contributing to a system optimum (Cetin & Deakin, 2019).  

 

For the above-mentioned reasons of operational and cost efficiency as well as issues linked to 

individual driver needs and driver conduct, major players in the business of ride-hailing services 

are reportedly currently pushing the development of self-driving vehicles (Conger, 2019; Ruehl, 

2019; Somerville, 2018), in the hope that soon it could be possible to operate their fleets with 

self-driving vehicles. 
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Figure 1.1: Synergies between shared vehicles and automated vehicles when operated as SAV 

An example of the issues linked to automated vehicles, which can be overcome by operating 

them as a shared service, are the high investment costs for such vehicles. Especially in the early 

phase of selling this new technology, the costs for self-driving vehicles will be substantially 

higher than for vehicles with lower levels of automation (Regional Plan Association (RPA), 

2017; S. Shaheen, 2018; Sperling et al., 2018; Stocker & Shaheen, 2017). This could become a 

real obstacle to the introduction of self-driving vehicles. What adds up to this is, that current 

cars have a lifespan of at least 15 years (Litman, 2014), meaning that even decades after the 

technology for self-driving vehicles comes on the market, there will be still vehicles with no or 

low-level automation driving around (unless regulation blocks this). The slow start foreseen for 

fully automated vehicles can be a real hindrance for their success, as they perform best in an 

environment in which they have to interact as little as possible with road users that are not 

connected to the information-sharing infrastructure used by self-driving vehicles (Elliott, Keen, 

& Miao, 2019; Vahidi & Sciarretta, 2018; Ye & Yamamoto, 2019). The success of self-driving 

vehicles therefore also depends on how fast they can dominate the market and profit from fleet 
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connection and cooperation. This is where the sharing aspect comes into play: by being operated 

as a shared transport service, the high asset costs of automated vehicles become a minor issue 

(Stocker & Shaheen, 2017) and by being operated as a public transport service, the replacement 

cycle for private vehicles also does not play a role anymore. Also updates in the hard- and 

software of such vehicles are easier to implement if the vehicles are owned by one fleet operator. 

So by introducing large fleets of SAV, the delicate introductory phase of operating automated 

vehicles in mixed traffic can be cut short. Furthermore can investment costs for such vehicles 

decrease when placing large orders for SAV, as economy-of-scale effects come into play and 

developments in research and production get further stimulated. 

 

The strong synergies between vehicle sharing and vehicle automation allow making the 

assumption that SAV might become one of the first forms in which we encounter self-driving 

vehicles (Stocker & Shaheen, 2017). At this point, however, no clear picture can be drawn of 

what such vehicles would look like, how exactly they would be operated or how we would be 

using them. Would users be willing to share such vehicles simultaneously? Would their service 

be operated as a tendered one? Would there be only one centrally dispatched fleet or would 

there be several fleets operated in direct competition with each other? These and related 

questions would directly affect ridership for SAV, and thereby could alter our mobility patterns, 

but also on the longer-term private car ownership levels and spatial needs for mobility services. 

For this reason, the study of, and preparation for, the possible introduction of such services has 

recently been put on the agenda of researchers as well as transport authorities and urban 

planners. 

1.2 Planning for Centrally Dispatched On-Demand Transport 

Services  

Transport planning authorities currently have to react to the opportunities and challenges of 

new on-demand transport services such as ride-hailing or free-floating car sharing (Cetin & 

Deakin, 2019), and should SAV become a reality, they will have to adapt their policies for such 

services again. Currently, free-floating car-sharing services are welcomed in many cities around 

the world. This means that transport planners actively seek contact with providers of such 

services and often provide benefits in the form of dedicated parking space for the car-sharing 

vehicles, promotion of the services or even official introduction of such cars as part of the public 

transport system (Dowling & Kent, 2015; Le Vine & Polak, 2019; S. A. Shaheen, Cohen, & 

Martin, 2010). Ride-hailing services, on the other hand, are met with more scepticism, as these 

threaten the established taxi companies and public transport services (Circella & Alemi, 2018; 

Flores & Rayle, 2017; Hall, Palsson, & Price, 2018) and can cause, if introduced in an 

unregulated manner, issues in traffic flow (Circella & Alemi, 2018), a decrease in passenger 

safety (Harding, Kandlikar, & Gulati, 2016) and an increase in overall vehicle-miles travelled 

(Circella & Alemi, 2018). For this reason, ride-hailing services have been banned or restricted 

in numerous cases. In other places, however, ride-hailing companies have reportedly been asked 

to fill the gaps in public transport provision with their transport services in the form of public-

private partnerships (Kim, 2019; Span, 2019).  

 

To ensure that the process of introducing SAV is smoother and more sustainable than the one 

of ride-hailing services, it is crucial to provide planning authorities with information about 

potential impacts, benefits and issues, as well as indications of how the introduction of such 

services can be managed and regulated in a beneficial manner. Currently, policymakers and 

transport authorities are generally not very familiar with on-demand public transport services 



6                                                                                               Providing Public Transport by Self-Driving Vehicles 

on a larger scale. Therefore, it can be expected that in an early phase of the introduction of 

SAV, policies for them will not be all-encompassing. A potential solution to this can be to 

introduce something policymakers are already familiar with today, namely parking policies 

(Guerra & Morris, 2018). A further benefit of shaping the introduction of SAV by parking 

policy is that any efforts taken by a municipality or other planning authority into this direction 

would also not be wasted if vehicle automation would come much later than expected, or not at 

all, as it has the potential to be applied to any form of on-demand transport services (Guerra & 

Morris, 2018).  

1.3 Research Objectives and Research Scope 

This thesis contributes to the research field that describes and assesses the possible impacts of 

the introduction of large fleets of shared automated vehicles. The scope of this thesis includes 

the analysis of user preferences for self-driving vehicles deployed in public transport services, 

the assessment of relocation strategies which could be used to place idle SAV in the network 

by fleet manager, as well as the analysis of the effects of dedicated parking management 

strategies issued by a transport authority or municipality. These aspects are addressed in three 

separate parts in this thesis, which describe aspects of user preferences, fleet operations and 

parking management for SAV (Figure 1.2). In particular, the following overarching research 

questions are addressed: 

  

(1) Who might use self-driving vehicles deployed in road-bound public transport services 

(automated buses or SAV) and what influences the choices for or against using such 

services? 

(2) What role can relocation of idle vehicles play in the operation of SAV?  

(3) How can parking management effectively shape the way SAV perform in our cities?  

 

 

Figure 1.2: Core topics addressed in this thesis: user preferences, fleet operation and parking 

management for SAV 

In this thesis, a scenario is envisioned, in which SAV provide on-demand public transport 

services for which the following holds: The vehicles are self-driving, so no human intervention 

is required. The vehicles are sequentially shared, users are thus directly transported from their 

pick-up location to their destination. The vehicles are centrally dispatched and all vehicles 

belong to one fleet, which is controlled by one fleet manager. There is hence neither a 

competitive element between the individual vehicles nor does the fleet manager have to make 

operational choices regarding competing fleets.  
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1.4 Research Approach 

The research questions posed in the previous section are addressed in three main research steps, 

for which the following research approaches were applied: 
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(1) To address the first main research question, discrete mode-choice 

models have been estimated based on data collected in stated-choice 

experiments featuring automated vehicles employed as public 

transport services, either in form of self-driving buses or shared 

automated vehicles. The discrete choice models are estimated as 

mixed logit models with latent factors and as nested logit models with 

latent classes. Based on these models, potential user groups can be 

identified and classified. A more detailed description of the methods 

applied to determine user preferences for SAV are provided in 

chapter 2 and chapter 3.  
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(2) To address the second and third main research question, a model 

which captures the behavioural response to the introduction of a fleet 

of shared automated vehicles as well as the introduction of parking 

policies has been developed. This model has been used as the basis 

of a large-scale agent-based simulation model (using the MATSim 

framework), which has been deployed and extended for the purpose 

of analysing relocation strategies for idle SAV, both with and without 

constraints on parking space. The simulation model has been set up 

for a case study based on the city of Amsterdam. A detailed 

description of the model, the case study and the used parameters for 

the underlying behavioural model is provided in chapter 5. 
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(3) To address the third research question, a scenario-based analysis 

of parking policies for shared automated vehicles has been carried 

out. Based on the model and case study described above, selected 

parking management strategies are analysed regarding their impact 

on service efficiency, service externalities and service provision 

equity (see chapter 6) and briefly compared with the findings for the 

relocation strategies analysed in chapter 5.  

The impact of the service offered by SAV is measured in four main categories: 

 

 Service preference: The preference towards the transport services offered by on-demand 

self-driving vehicles is measured in regard to the associated costs, waiting times, in-

vehicle times and operational parameters such as the presence of a steward. 

 Service efficiency and service effectiveness: These aspects are mainly analysed in 

regard to passenger waiting times and vehicle utilisation rate with respect to empty 

driven mileage and idle parking.  

 Service externalities: The negative externalities are evaluated by total vehicles-

kilometres-travelled (VKT) as a proxy for polluting effects and possible safety 

implications, and by the average driving speed as a proxy for congestion levels. 

 Service provision equity: The equity of the service is depicted in the light of passenger 

waiting time distribution for all users as well as spatially on a zonal level.  
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1.5 Main Contributions 

In this section, the main scientific and societal contributions of this thesis are briefly 

highlighted. 

1.5.1 Scientific Contributions 

(1) Estimating a discrete choice model capturing the choice between regular buses and 

automated buses (chapter 2): the model suggests that current users of public transport 

services are not inclined to switch to automated buses if these do not substantially 

improve the provided service. In this particular case, the study participants did neither 

appreciate surveillance measures in the automated bus nor did they prefer the automated 

bus being operated in a demand-responsive manner. These findings stress the 

importance to learn more about attitudes towards new modes, and how these might 

change over the course of time. 

 

(2) Estimating a discrete choice model capturing the choice between, among others, taxis 

and SAV (chapter 3): including taxis to the choice set that also includes SAV allows to 

directly distinguish between the influence of vehicle automation for SAV and the 

demand-responsive properties of the service offered by SAV. This set-up helps to gain 

more understanding of the perception of the properties linked to the service operation 

and properties of the vehicles themselves.  

 

(3) Assessing vehicle relocation heuristics simulated for SAV, and how their performance 

is analysed (chapter 4 and chapter 5): This assessment shows the impact vehicle 

relocation can have on the performance of vehicle dispatching, as well as on vehicle-

kilometres-travelled. It furthermore reveals that the scientific discussion of vehicle 

relocation mainly centres around service efficiency, neglecting in parts service 

externalities as well as service equity. 

 

(4) Holistic analysis of vehicle relocation heuristics for SAV (chapters 4, 5 and 6): Various 

relocation strategies are formulated, simulated in an agent-based model and analysed in 

regard to the service efficiency and effectiveness, its external effects and service 

provision equity. Looking at the outcome of simulation studies in regard to these diverse 

indicators allows drawing a more complete picture of the impact of idle vehicle 

relocation and vehicle parking.  

1.5.2 Societal and Practical Contributions 

(1) Identifying user classes and potential early adopters of automated on-demand transport 

services among commuters (chapter 2 and 3): Identifying these groups can be useful for 

developing business strategies for companies interested in providing transport services 

operated with automated vehicles.  

 

(2) Quantifying the necessary price drop or speed gain for automated buses to be more 

popular than current buses (chapter 2): These break-even points are determined by 

applying the estimated discrete choice models to the collected data set. This can support 

the formulation of operational goals for potential transport services using automated 

buses. 
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(3) Comparing re-active and pro-active relocation strategies for SAV in regard to service 

effectiveness and efficiency (chapters 4 and 5): This comparison indicates that operators 

of on-demand transport services, operated with automated vehicles or not, are well-

advised to spread out idle vehicles through the network. In regard to increasing service 

efficiency, and in some cases even in regard to reducing average passenger waiting 

times, this strategy outplays those solely relying on demand-anticipation. 

 

(4) Determining the impact of parking management strategies for SAV on their service 

performance (chapter 6): Spreading idle vehicles throughout the network can also be 

achieved by restricting dedicated parking facilities. The impact of such parking 

management strategies is analysed in a holistic way, showing how parking policies for 

SAV could potentially impact the performance of such on-demand transport services, 

as well as external effects and aspects of service provision equity. Such analyses can 

empower transport authorities or municipalities to take a more active role in shaping the 

role SAV can play in the urban transport system.  

1.6 Outline of the Dissertation  

The thesis is based on five papers, which are grouped into three main sections, as shown in 

Figure 1.3, each addressing one of the aspects shown in Figure 1.2. Part I, consisting of chapters 

2 and 3, analyses mode choice behaviour in an era of on-demand public transport services. Part 

II, consisting of chapters 4 and 5, sheds light on the role of vehicle relocation in the operation 

of a fleet of SAV. Part III, consisting of chapter 6, proposes parking management strategies that 

can be applied to SAV in order to strengthen its efficiency while guaranteeing sufficient service 

provision equity as well as containing negative externalities of the service. Finally, findings are 

summarized and discussed in the concluding chapter. A visualisation of this structure is shown 

in Figure 1.3. In the following, a brief summary of each chapter is given. 

 

Chapter 2: Taking the Automated Bus: A User Choice Experiment 

In this chapter, a first step is taken towards determining who might be the early adaptors of on-

demand public transport service operated by buses. On the occasion of a pilot study conducted 

in the border region between Germany and the Netherlands with automated buses, a mode 

choice experiment has been conducted among regular public transport users in both countries. 

Based on this, a discrete choice model was estimated, which includes the captured attitudes of 

the participants towards trusting automated vehicles as well as their general interest in 

technology. This chapter highlights the interrelations between the specifics of the service 

operation and the acceptance of the service.  

 

Chapter 3: Identifying User Classes for Shared Mobility Services 

Based on:  

Winter, K., Wien, J., Molin, E., Cats, O., Morsink, P., van Arem, B. (2019). Taking the Automated Bus: A 

User Choice Experiment. 6th IEEE International Conference on Models and Technologies for Intelligent 

Transportation Systems, MT-ITS 2019 - Proceedings 

Based on:  

Winter, K.; Cats, O.; Martens, K.; van Arem, B. Identifying User Classes for Shared and Automated Mobility 

Services. Under Review. 
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The insights on the interrelation between the mobility service and the mobility choices are 

further strengthened in this chapter by presenting a second discrete choice model, which 

includes, among others, the choice options between free-floating car-sharing, SAV, and taxi. 

While these transport modes have similar characteristics in the way they are operated, they are 

perceived differently by potential user groups. The estimated model is primarily used to 

distinguish the potential early adopters of SAV. The formulation of the behavioural model used 

for the simulation of a transport service operated by SAV in the following part draws on the 

insights gained in this chapter.  

  

Chapter 4: Impact of Relocation Strategies for a Fleet of Shared Automated Vehicles on 

Service Efficiency, Effectiveness and Externalities 

In the second part of the thesis, the focus is put on the operation of SAV, in particular how the 

relocation of idle vehicles can strengthen the efficiency and effectiveness of the service they 

provide. In this chapter, the model used to simulate the service operation of SAV, as well as the 

model capturing the users’ response towards the performance of the SAV, is first introduced. 

For a small grid network, various relocation strategies for idle vehicles are tested. In this stage, 

no parking constraints or regulations are applied yet. This small-scale experiment, testing 

vehicle relocation strategies, provides initial evidence that positioning idle vehicles close to 

demand hot-spots is outperformed by strategies spreading out vehicles more evenly in the 

network. This finding strengthens the notion that regulating SAV can be beneficial not just for 

the users, but also for the service provider. 

 

Chapter 5: Relocating Shared Automated Vehicles Under Parking Constraints: Assessing 

the Impact of Different Strategies for On-Street Parking 

What has been applied on a small scale in the previous chapter is confirmed for a much larger 

case study based on the city of Amsterdam in chapter 5. In this chapter, the relocation strategies 

are simulated in a network with limited parking facilities, now bringing into play the same 

constraints on parking space we see in the real world. The analysis of the service performance 

is extended in this chapter by including service provision equity. This holistic analysis serves 

as a basis for the parking management strategies devised for SAV in the following chapter.  

 

Chapter 6: Parking Space for Shared Automated Vehicles: Why Less Can Be More 

In this chapter selected dedicated parking management strategies for SAV are formulated and 

simulated. Encouraged by the finding from the previous chapters, that unregulated positioning 

of idle vehicles close to demand hot-spots is undesirable, the parking restrictions are formulated 

Based on:  

Winter, K., Cats, O., Martens, K., van Arem, B. (2017). Impact of Relocation Strategies For a Fleet Of 

Shared Automated Vehicles On Service Efficiency, Effectiveness and Externalities. 5th IEEE International 

Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017 - Proceedings 

Based on: 

Winter, K., Cats, O., Martens, K., van Arem, B. Relocating Shared Automated Vehicles Under Parking 

Constraints: Assessing the Impact of Different Strategies for On-Street Parking. Under Review. 

Based on:  

Winter, K., Cats, O., Martens, K., van Arem, B. Parking Space for Shared Automated Vehicles: Why Less 

Can Be More. Under Review. 
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in such a way that they counteract demand-anticipatory relocation. It is shown that parking 

management can be a robust means to improve the performance of SAV, reduce undesired 

externalities and improve the service provision equity, both on a city-wide level, as well as for 

specific areas in the city. However, a comparison between the intrinsic formulation of relocation 

strategies as simulated in the previous chapters and the externally imposed parking management 

measures discussed in this chapter shows, that the former is more effective.  

 
 

 

Figure 1.3: Structure of the dissertation  
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Part I – User Preferences 

People’s travel behaviour can be described as a series of choices: Where do I want to go? When 

do I want to leave here? When do I want to arrive there? Which mode of transport do I want to 

use? Which route shall I choose? Normally we are not making all these choices consciously 

every time we take a trip, as over time we develop preferences and habits that effectively reduce 

our perceived choice set to a limited number of options. We tend to travel the same way every 

time, especially for trips we perform often, such as commuting to work or heading out for our 

daily shopping. Analysing user preferences for SAV today can provide insight into what new 

habits might be formed if new transport options provided by such vehicles are introduced in the 

future.  

 

In this part of the thesis, we determine to what degree automated vehicles providing public 

transport services could become the preferred options for such habitual trips. In particular, we 

focus on the mode choice preferences of commuting trips in two specific situations: 

 

(1) automated buses providing partially on-demand transport service in a suburban context 

(Chapter 2) and 

(2) shared automated vehicles operating fully on-demand in an urban environment (Chapter 3). 

 

We described what kind of services such vehicles could provide and asked people about their 

preferences towards such services by conducting surveys. Based on these stated-preference 

experiments, discrete choice models are estimated, which can be used to characterize the 

possible mode choice behaviour in an era when automated vehicles are employed for public 

transport services.  
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Chapter 2 - Taking the Automated Bus: A User 

Choice Experiment 

Abstract 

At the brink of the introduction of self-driving vehicles, only little is known about how potential 

users perceive them. This is especially true for self-driving vehicles deployed in public transport 

services. In this study, the relative preferences for a trip with a self-driving bus are assessed 

compared to a trip with a regular bus, based on a stated preference experiment. Based on the 

responses of 282 respondents from the Netherlands and Germany, a discrete choice model is 

estimated as a Mixed Logit model including attitudes towards trust in self-driving vehicles and 

interest in technology. The results show that currently public transport passengers prefer the 

self-driving bus over the regular bus only for short trips. This is due to the finding that the value 

of travel time is about twice as high for the self-driving bus as for the regular bus for a short 

commuting trip. Findings from this study further suggest that the popularity of self-driving 

buses decreases with the presence of a human steward on-board, or if they are operated as a 

demand-responsive service with fixed routes. People who currently show a strong interest in 

technology or trust in automated vehicle technology perceive the self-driving buses better than 

others. The trust-effect is especially strong for women. In general, men are found to be more 

inclined to choose the self-driving bus than women. Preferences towards automated public 

transport services are expected to evolve along with the transition from demonstration pilots to 

their deployment in regular operations.  

2.1 Introduction 

Automated vehicles (AVs) are becoming increasingly accessible to the public and first trials 

with self-driving vehicles are made around the globe. Self-driving vehicles could provide 

benefits in the efficiency of use of resources, as well as reduced road congestion (Haboucha, 

This chapter is based on: Winter, K., Wien, J., Molin, E., Cats, O., Morsink, P., van Arem, 

B. (2019). Taking the Automated Bus: A User Choice Experiment. 6th IEEE International 

Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 

2019 - Proceedings 
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Ishaq, & Shiftan, 2017). Furthermore, they might increase the mobility of people without a 

driver’s license and they can contribute to improved road safety (Fagnant & Kockelman, 2015; 

Haboucha et al., 2017). However, these advantages might lead to increase car travel and 

consequently to an increase in the total vehicle miles travelled contributing to more congestion 

(Fagnant & Kockelman, 2015). For this reason, it is important to follow closely the way 

automated vehicles are employed and used, as only with this knowledge the introduction of 

automated and self-driving vehicles can be guided successfully.  

 

A concept that could diminish the detrimental effects of an increasing use of motorized vehicles 

due to vehicle automation could be to use self-driving vehicles to enhance the service on public 

transport lines or to complement public transport in last-mile solutions (Krueger et al., 2016b; 

Nordhoff, van Arem, & Happee, 2016). In addition, by introducing self-driving pods or buses, 

public transport services could provide more flexible on-demand services, as the costs of 

operating such services are expected to be considerably lower when operated by self-driving 

vehicles.  

 

User demand for the self-driving vehicle is a prerequisite for its successful implementation 

(Nordhoff et al., 2016). Currently, travellers do not seem to embrace self-driving vehicles yet 

(Haboucha et al., 2017; Yap, Correia, & van Arem, 2016). Integrating automated driving and 

public transport could be key to the development of automated vehicles (Nordhoff et al., 2016). 

However, only little is known regarding the travellers’ preferences and attitudes in regard to 

self-driving vehicles within a public transport system (Dong, DiScenna, & Guerra, 2017; 

Krueger, Rashidi, & Rose, 2016a; Nordhoff et al., 2016; Yap et al., 2016). 

 

This study addresses this open research gap by assessing the preferences of public transport 

passengers in regard to a self-driving bus for an urban commute trip. By having conducted a 

stated choice experiment, this study sheds light on passengers’ preferences towards self-driving 

buses and how they trade-off travel time and travel cost linked to using a self-driving bus.  

 

The remainder of this paper is structured as follows: in section 2.2, a review on previous stated 

choice experiments featuring self-driving vehicles is given. In section 2.3, a brief description 

of the pilot test with a self-driving bus, on which this study is based, is given. The methods used 

to investigate the public transport passengers’ preferences for a self-driving bus is presented in 

section 2.4. In section 2.5, the conducted survey and the collected sample are discussed. At last, 

the conclusions and recommendations for further research are presented in section 2.6.  

2.2 Literature Review 

Complimentary to existing public transport modes, automated vehicles could be deployed as 

self-driving buses, which could benefit public transport in its efficiency of the operations, traffic 

safety and lower its costs (Dong et al., 2017).  

 

To be able to assess passenger preferences towards self-driving vehicles, the behaviour of 

passengers needs to be inferred and analysed. Since self-driving vehicles are currently not a 

common mode to travel, primary sources of information on passenger preferences are stated 

preference experiments. In these experiments, observable factors are used which represent 

attributes describing alternatives, such as travel time and travel costs. An overview of conducted 

stated choice experiments featuring self-driving vehicles is presented in (F. Becker & 

Axhausen, 2017; Gkartzonikas & Gkritza, 2019). These overviews, however, do not hold 
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insights on the perception of self-driving buses in particular. In an early stated preference study 

introducing AV used for public transport services, it has been found that people are in general 

more worried about larger self-driving vehicles such as self-driving buses than smaller self-

driving vehicles, such as self-driving taxis (Schoettle & Sivak, 2014). Findings from stated 

preference experiments featuring shared automated vehicles (SAV) can therefore not directly 

be put on a level with preferences for self-driving buses. As there are however only very few 

studies on specifically the perception of self-driving buses, this literature review includes also 

findings on AV introduced in stated preference studies in a broader sense.  

 

Past findings on the relative preferences for self-driving vehicles over other modes offer 

inconclusive and sometimes contradictory results: people were found to prefer self-driving 

buses over conventional minibuses (Alessandrini et al., 2017), but also have shown to prefer 

the conventional car and bus over a self-driving vehicle as egress mode (Yap et al., 2016) and 

rather choose their usual (non-automated) mode over a self-driving vehicle for their reference 

trip (Krueger et al., 2016b). Looking a bit more into detail into the preferences towards 

automated vehicles, it has been reported that young people, in particular men and people with 

a positive attitude towards environmental concerns, tend to be more favourable towards self-

driving vehicles (F. Becker & Axhausen, 2017; Gkartzonikas & Gkritza, 2019; Haboucha et 

al., 2017; Krueger et al., 2016b; Kyriakidis, Happee, & de Winter, 2015; Nazari, Noruzoliaee, 

& Mohammadian, 2018; Payre, Cestac, & Delhomme, 2014; Piao et al., 2016). Also public 

transport passengers and people without a car or drivers’ licence are significantly more positive 

towards shared self-driving vehicles than those currently relying on a private car (Liljamo, 

Liimatainen, & Pöllänen, 2018; Nazari et al., 2018). Additionally, the preference for self-

driving vehicles is strongly influenced by the level of trust in self-driving vehicles 

(Gkartzonikas & Gkritza, 2019; Nordhoff et al., 2016; Yap et al., 2016). People tend to trust 

self-driving vehicles in controlled environments more than in mixed traffic (Alessandrini et al., 

2017).  

 

In one of the first studies on the position of the self-driving vehicle in the public transport market 

(Yap et al., 2016), the authors assumed, based on findings in (Fagnant & Kockelman, 2015; 

Krueger et al., 2016b), that travellers would be willing to pay less for reducing travel time than 

in conventional egress modes, like the bus. However, they found the willingness to pay for a 

reduction of in-vehicle time for a self-driving vehicle to be higher than for conventional buses 

and cars. Reasons for this could be that people might not value the advantage of performing 

other activities while travelling or that they might feel uncomfortable travelling in a self-driving 

vehicle because of a lack of trust in the technology (Yap et al., 2016).  

 

These results were contradicted by the findings from a stated preference experiment conducted 

to explore how people experience a trip with a self-driving vehicle compared to a regular car 

(Correia, de Looff, van Cranenburgh, Snelder, & van Arem, 2019). In this study, it was found 

that the value of travel time is lower for a self-driving vehicle with an office interior than the 

conventional car. This result corroborates the expectations that people are willing to work in a 

self-driving vehicle (Correia et al., 2019).  

 

Considering trust in self-driving vehicles, the presence of a steward monitoring the bus 

movements showed a higher intentional usage, suggesting that trust is higher when a steward 

is present (Dong et al., 2017; Piao et al., 2016). Moreover, the ability to communicate with the 

bus operator might improve passenger preferences for self-driving buses, for example, with a 

communication system for information and remote supervision (Dong et al., 2017; Nordhoff, 

de Winter, Kyriakidis, Van Arem, & Happee, 2018).  
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Other attitudes that showed a positive effect on the intention to use self-driving vehicles are the 

perceived convenience of the self-driving bus and a general interest in technology (Correia et 

al., 2019; Haboucha et al., 2017).  

 

Overall the understanding about if, and under what conditions, people would appreciate the 

introduction of self-driving buses is very limited. To the best of the authors’ knowledge, there 

is currently no discrete choice model available that features self-driving buses as a mode choice 

option. In the course of a pilot test with an automated bus, this study presents a discrete mode 

choice model capturing the choices between a self-driving bus and a regular bus in a situation 

similar to the one in the pilot region.  

2.3 Testing the Self-Driving Bus in a Pilot Study  

This study is part of a pilot study testing the implementation of a self-driving bus as a border-

crossing public transport service. The pilot study will be set up in the border region between 

the Netherlands and Germany, connecting the campus of a university in the city of Aachen on 

the German side and the municipality of Vaals on the Dutch side. The self-driving bus will be 

operated as a dispatched-on-demand service with a fixed route, allowing passengers to request 

its service. The pilot study is planned to start in fall 2019 (I-AT Interreg Automated Transport, 

2019). The pilot study is a follow-up to the WEpods project conducted in the year 2016 (Winter, 

Cats, Correia, & van Arem, 2018). 

2.4 Choice Experiment and Model Estimation  

Since the self-driving bus is currently not a common alternative within the public transport 

sector, passenger choices cannot be observed yet. Therefore a stated choice experiment has 

been conducted in order to gain a better understanding of the preferences of public transport 

passengers in regard to self-driving vehicles, based on which a Mixed Logit discrete choice 

model is estimated. In the model, attitudes towards self-driving buses are included.  

2.4.1 Choice Experiment: Trip Purpose, Mode Alternatives and Their Attributes 

For this study, a hypothetical commuting trip from home to a work or study location is described 

in the choice experiment. For this trip, respondents can choose between three mode alternatives: 

(1) The first alternative describes a regular bus service, based on the current bus services 

available in the region of the planned pilot described in section 2.3. (2) The second alternative 

is a self-driving bus, differing from the regular bus only in not having a driver and being small 

in size, and thus having fewer seats. (3) The third option is an opt-out alternative, which was 

added in order to increase the realism of the experiment. The opt-out option is phrased as “I 

would choose for another alternative”, and thus represents any alternative the respondent can 

imagine beyond the previous two alternatives.  

 

The regular and self-driving buses are described by the attributes travel time, travel costs and 

waiting time. The presented attribute levels were based on the current bus line operating in the 

pilot area and represent a bus trip of approximately 3 kilometres in a (sub-)urban area. Two 

additional attributes for the self-driving bus are considered: (1) ‘Surveillance and information’ 

pertains to the presence of either a steward, an interactive screen for communication with the 

bus operator and a visualisation of what the sensors and cameras of the self-driving bus are 
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detecting, or no extra surveillance. (2) The attribute ‘Service’ defines the operation of the self-

driving bus either as a scheduled service or an on-demand service with fixed routes. Table 2.1  

provides an overview of the attributes and attribute levels considered in the stated choice 

experiment. 

Table 2.1: Overview of Attributes and Attribute Levels 

2.4.2 Choice Set 

The design of the choice sets is based on an orthogonal fractional factorial design, derived with 

the software NGENE (ChoiceMetrics, 2018). This design allows selecting a subset of all 

possible choice situations. The design features 24 choice sets, which are blocked in four blocks. 

Each respondent is thus faced with six choice sets.  

2.4.3 Attitudes 

To explore if attitudes towards the self-driving vehicle influence the choices made by the 

respondents in this experiment, a set of attitudinal statements has been included in the survey, 

see Table 2.2  

Table 2.2: Statements Included in the Survey 

Variable  Trust in self-driving vehicles  
TRUST_1 I believe a self-driving vehicle would drive better than the average human driver.  

TRUST_2 I am afraid that the self-driving vehicle will not be fully aware of what is happening around it.  

TRUST_3 I think that the self-driving system offers more safety than manually driving.  

TRUST_4 I would entrust the safety of a close relative to a self-driving vehicle.  

TRUST_5 I think that the self-driving bus is only safe when a steward is present.  

Variable  Technology interest  
TI_6 I try new products before others do.  

TI_7 I am excited by the possibilities offered by new technologies.  

TI_8 I have little to no interest in new technology.  

TI_9 New technologies create more problems than they solve.  

Variable  Convenience  
CONV_10 Self-driving vehicles will make life easier.  

CONV_11 The best part of the self-driving bus is that it can be requested on demand.  

CONV_12 I think that using the self-driving bus is more convenient than using regular buses.  

Variable  Vehicle characteristics  
CHAR_13 I would feel more comfortable in a self-driving bus with several passengers than with a few 

passengers. 

CHAR_14 An interactive screen is a good replacement for a bus employee in the self-driving bus. 

CHAR_15 I would feel more comfortable in a self-driving bus than in a regular bus.  

 

The respondents were asked to rate their level of agreement with these statements using a five-

point Likert scale. The provided statements are derived from variables that were found to 

Travel time Travel costs Waiting time Surveillance & 

Information 

Service 

7 min €1,00 2 min Standard Scheduled 

10 min €1,60 4 min Interactive screen On-demand 

13 min €2,20 6 min Steward -- 

16 min €2,80 8 min -- -- 
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significantly influence the choice behaviour in regard to self-driving vehicles in previous 

research (Haboucha et al., 2017; Madigan et al., 2016; Payre et al., 2014). Based on the 

statements, attitudinal factors are formulated, which are included in the model as described in 

the following. The attitudinal factors are incorporated as mean sum scores for each individual 

into the discrete choice model. 

2.4.4 Specification of the Mixed Logit Model 

Based on the results from the stated choice experiment and the determined attitudinal factors, a 

discrete choice Mixed Logit model is estimated. From the various models estimated, only the 

one with the highest explanatory power is hereby presented. The model describes the perceived 

utility 𝑈𝑖 of a mode alternative 𝑖, which is described in equation 2.1. This model includes 𝛽𝑥, 

which is the vector estimating the taste parameters associated with the attributes of alternative 

𝑖 and 𝑥𝑖, which is a vector that contains the attribute levels of alternative 𝑖. In addition, 𝛽𝜏 is the 

vector that reflects the importance of the socio-economic variables 𝜏𝑠 of individual 𝑠.The model 

also includes factors representing the respondents’ attitudes, as described in the previous 

section. Mean sum scores represent the attitudinal factors for each individual 𝑠 and are 

represented by the vector 𝜑𝑠, which contains the parameters that estimate the marginal utility 

of the attitudinal factors. Finally, 𝜀𝑖 is the independent and identically distributed (i.i.d.) error 

term capturing the unobserved part of the utility 𝑈𝑖. 
 

𝑈𝑖 =  𝛽𝑥𝑥𝑖 +  𝛽𝜏𝜏𝑠 + 𝛽𝜑𝜑𝑠 +  𝜀𝑖 (2.1) 

2.4.5 Model Application  

Based on the estimated discrete choice model, the choice probabilities for the collected sample 

are approximated in a model application. For this, a Monte Carlo simulation based on 1000 

draws from the estimated distributions for the estimated values for travel time and travel costs 

is performed. This approach is not interpreted as a forecast for a future modal split, but is rather 

used for determining the threshold values for travel times and travel costs for the self-driving 

bus in order to become a competitive alternative to the regular bus.  

2.5 Results and Discussion 

2.5.1 Sample Description 

The survey was distributed through several online platforms, both in Dutch and German. In 

particular, citizens from the pilot region were invited to participate on the website of the 

municipality of Vaals and the municipality of Aachen. In total, the answers of 282 participants 

are included for the model estimation. See Table 2.3 for an overview of the sample 

characteristics in detail. All respondents use public transport at least once a year, with a share 

of 71.6% using public transport every week. In regard to the gender of the public transport 

passengers, the sample is comparable with the Dutch and German average of public transport 

passengers (Bundesministerium fuer Verkehr und digitale Infrastuktur, 2018; Centraal Bureau 

voor de Statistiek (CBS), 2018b). Young people and people with higher education are 

overrepresented compared to the Dutch and German average general population. This has to do 

with the primary respondent groups targeted with the survey, namely students and employees 

of the university campus in Aachen, who are commuting between the municipality of Vaals and 
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the campus. Having captured many students also explains the overrepresentation of people with 

a low income. 

Table 2.3 Sample Characteristics 

2.5.2 Factor Analysis 

From the responses to the statements shown in Table 2.2, attitudinal factors are derived by 

performing an exploratory factor analysis. With the factor analysis, the statements are grouped  

based on the underlying pattern of correlations within the statements. This allows reducing the 

number of variables introduced to the choice model by replacing the full set of statements with 

a few factors that explain most of the observed variance. The results of the factor analysis are 

shown in Table 2.4.  

 

Socio-economic variable Category Sample [in %] 

Gender 
Female 48.9 

Male 51.1 

Age 

18 - 24 years 37.2 

25 - 34 year 39.4 

35 - 49 year 13.1 

50 - 64 year 9.9 

> 64 year 0.4 

Education 

Low 1.1 

Middle 8.5 

High 90.4 

Employment 

Full time 45.0 

Part time 16.7 

Student 36.2 

Jobless 1.8 
 Retired 0.4 

Income 

< € 10.001 30.1 

€10.001 - €20.000 7.8 

€20.001 - €30.000 20.9 

€30.001 - €40.000 13.8 

€40.001 - €50.000 8.5 

> € 50.000 6.7 

No information 12.1 

Public Transport Usage 

(almost) Every day 15.6 

5 days a week 16.0 

4 days a week 13.1 

3 days a week 11.0 

2 days a week 11.0 

1 day per week 5.0 

A few times per month 11.7 

One time per month 5.7 

A few times per year 11.0 

Country of Residence 
The Netherlands 84 

Germany 16 
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The factor analysis has been performed step-wise, resulting ultimately in a 2-factor solution, 

incorporating 10 out of the original 15 variables. The other five variables were excluded, as 

they showed a communality lower than 0.25 and factor loadings of less than 0.5. A simple 

structure for the factors is reached by performing a VARIMAX rotation. A similar outcome is 

found for a skewed rotation. However, the interpretability of the VARIMAX rotation and its 

replicability make this rotation the preferred one and is thus selected in this case. 

Table 2.4: Estimation results rotated factor matrix (Factor loadings <0.3 are not shown)  

Variable 

Factor 1: 

“trust in self-driving 

vehicles” 

Factor 2: “interest in 

technology” 
Communality 

TRUST_3 0.791  0.663 

TRUST_1 0.742  0.577 

TRUST_4 0.716  0.562 

TRUST_2 0.670 -- 0.485 

CHAR_15 0.578  0.416 

TRUST_5 0.506  0.303 

TI_7  0.916 0.898 

TI_8  0.658 0.442 

TI_6 -- 0.498 0.329 

TI_9  0.451 0.250 

 

The first of the derived factor can be described as ‘trust in self-driving vehicles’, as it includes 

variables that describe attitudes towards safety and performance of the self-driving bus. The 

leading statement for this factor is “I think that the self-driving system offers more safety than 

manual driving”. The second factor describes the general ‘interest in technology’ of the 

respondents, dominated by the statement “I am excited by the possibilities offered by new 

technologies”. The variables TI_6 and TI_9 have low factor loadings (below 0.5). However, 

they are included in the second factor as they fit the interpreted factor and do not have high 

double loadings. The reliability of the extracted factors is analysed in regard to how close the 

variables of one factor are related, indicated by the tau-equivalent reliability (Cronbach’s 

alpha). The factor ‘trust in self-driving vehicles’ has a value of 0.84, the factor ‘interest in 

technology’ has a value of 0.75, therefore both factors have a high internal consistency.  

2.5.3 Discrete Choice Model 

The best discrete choice model for the collected sample is derived by estimating a Mixed Logit 

model correcting for panel effects, including a nesting effect for the two buses and taking 

possible taste heterogeneity into account for the alternative specific constants and the travel 

time parameters. The model is estimated with 1000 Halton draws from a normal distribution, 

which gives stable parameter results. Table 2.5 shows the estimation results of the discrete 

choice model. 

Unobserved Factors 

A significant nesting effect is found in the estimation (𝜎 nesting effect = -4.88 [p < 0.01]), 

implying that the self-driving bus and regular bus have common unobserved factors in contrast 

to the third alternative, representing all other possible travel options combined. 
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The alternative specific constants of the regular bus Constant REB (11.8 [p < 0.01]) and self-

driving bus Constant SDB (10.2 [p < 0.01]) show that the bus alternatives are preferred over 

the option to choose any other mode. The difference between Constant REB and Constant SDB 

is statistically not significant, which indicates that there is no difference in the unobserved 

preferences within the population based on the data. The standard deviations for the alternative 

specific constants, however, show that there is significant individual specific taste heterogeneity 

in the perceived utility of the self-driving bus and the regular bus. The standard deviation (σ 

constant SDB = 0.71) is significant for the self-driving bus with p-value < 0.01. The standard 

deviation of the regular bus (σ constant REB = 0.57) is also considered significant with a p-

value of 0.07.  

Table 2.5: Estimation results discrete choice model 

 

Parameter 
Mixed Logit model with nesting effect and taste 

heterogeneity 
p-value 

𝜎 nesting effect -4.88 *** 0.00 

𝛼𝑖   

Constant REB 11.8 [10.7, 12.9] *** 0.00 

Constant SDB 10.2 [8.8, 11.6] *** 0.00 

𝜎 constant REB 0.57 * 0.07 

𝜎 constant SDB 0.71 *** 0.00 

𝛽𝑥   

Travel cost REB -1.8 *** 0.00 

Travel cost SDB -2.08 *** 0.00 

Travel time REB -0.15 [-0.27, -0.04] *** 0.00 

Travel time SDB -0.37 [-0.46, -0.27] *** 0.00 

𝜎 travel time REB 0.06 *** 0.00 

𝜎 travel time SDB 0.05 *** 0.00 

Waiting time REB -0.26 *** 0.00 

Waiting time SDB -0.19 *** 0.00 

DRT service SDB -0.37 ** 0.02 

Steward SDB -0.30 ** 0.01 

Interactive SDB 0.04 0.68 

𝛽𝜏   

Female REB 0.74 ** 0.04 

PT every month SDB 0.22 0.14 

Pilot provinces SDB 0.07 0.51 

𝛽𝜑   

Tech. interest (TI) SDB 0.35 ** 0.04 

Trust in AVs SDB 0.96 *** 0.00 

Female TI SDB -0.11 0.41 

Female AV trust SDB 0.40 *** 0.01 

No. parameters 23  

Initial log-likelihood -1858.85  

Final log-likelihood -964.39  

Adjusted ρ2 0.469  
*** = significant at a 99% CI; ** = significant at a 95% CI; * = significant at a 90% CI; 

[..] interval estimate from standard deviation 𝜎; 

REB = Regular bus; SDB = Self-driving bus 
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Travel Time and Travel Cost 

The marginal utility of the travel cost for the self-driving bus (-2.08 [p = 0.0]) is more negative 

than for the regular bus (-1.8 [p = 0.0]). The mean parameter for the marginal utility of travel 

time on a self-driving bus (-0.37 [p < 0.01]) is significantly more negative than the one for the 

regular bus (-0.15 [p < 0.01]). This means that the time spent while travelling in a self-driving 

bus has a lower perceived utility than time spent travelling in the regular bus. The standard 

deviations for the mode-specific travel times are significantly different from zero. This means 

that there is individual-specific taste heterogeneity for travel times. Based on the parameters for 

travel time and travel costs, the value of travel time (VOTT) is estimated, which reflects the 

willingness to pay for travel time reduction. For the regular bus, a mean VOTT of €5.13 per 

hour is estimated, the one for the self-driving is €10.59 per hour (see Table 2.6). These two 

values lie in the expected range, given that the current VOTT for travelling in a regular bus in 

the Netherlands ranges between €7.75 and €10.50 per hour (Kouwenhoven et al., 2014). The 

results for the VOTT values show that respondents would pay more than double the marginal 

costs for reducing marginal in-vehicle time spent in a self-driving bus in comparison to a regular 

bus. This result is in line with findings on how much people would pay for savings in marginal 

in-vehicle time for public transport in comparison to self-driving vehicles as egress modes 

(Haboucha et al., 2017; Yap et al., 2016). 

Table 2.6: VOTT estimates and Standard Deviations [€/hour]  

Alternative Mean VOTT  

[per hour] 

Standard deviations 

VOTT [per hour] 

95% confidence 

interval 

Self-driving bus € 10.59 € 1.38 [€ 7.87, € 13.30] 

Regular bus € 5.13 € 1.94 [€ 1.32, € 8.94] 

Waiting Times and Service Specifications 

Waiting time for the self-driving bus (-0.19 [p < 0.01]) is valued less negative than the waiting 

time associated with the regular bus (-0.26 [p < 0.01]). The disutility of waiting time is 

perceived about four times larger than the disutility for travel times. The interpretation of the 

values for waiting time for the self-driving bus is however difficult, as it combines the waiting 

time for the schedule-bound service and for the demand-responsive service. Understanding how 

passengers perceive waiting times for flexible dispatching transport services will be an 

important step for implementing these kinds of services successfully. 

 

The on-demand service decreases the perceived utility of the self-driving bus (-0.37 [p < 0.05]), 

travellers prefer a scheduled-based service over the flexible one. An explanation for this 

observation could be that an on-demand service requires the extra effort of the traveller, who 

has to actively send a request in order to make use of the service. This finding is specific to the 

formulation of the route-based demand-responsive service and does not allow drawing 

conclusions on the perceived utility of fully flexible services. 

Surveillance on the Self-Driving Bus 

Regarding the surveillance present in a self-driving bus, respondents prefer to have no extra 

surveillance on-board the self-driving bus. The presence of a steward is found to reduce the 

perceived utility (-0.30 [p < 0.05]), whereas the interactive system is not significantly different 

from zero (0.04 [p=0.68]). This outcome contradicts the findings reported in previous studies 

(Dong et al., 2017; Piao et al., 2016). The differences in outcome may be caused by the way 

data has been gathered: in this study, surveillance was presented as one attribute among other 

attributes such as travel times and travel costs, while in the previous studies respondents were 
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directly asked about their preferences for using a self-driving bus with or without an employee 

present. This could be an indication that in the trade-offs made during the choice processes 

captured in this study, surveillance is regarded as less important compared to the other attributes 

and therefore has a lower impact on the choices made. It could also be that the respondents 

might not have understood the attribute, as it is part of an unfamiliar alternative. In regard to 

the steward, it could be that the respondents dislike the presence of extra surveillance personnel, 

as this can cause the feeling of being watched. Another explanation could be that the extra 

surveillance might be perceived as a compensation for possible unreliable technical 

shortcomings of the self-driving bus. This opens a research gap, which is particularly relevant 

to the success of future trials with self-driving buses and their accompanying policies. 

Socio-Economic Factors and Attitudes  

A detailed investigation of the results reveals that gender influences the choice made in the 

experiment. The indicator variable Female REB (0.74 [p < 0.05]) shows that women have a 

stronger preference for the regular bus than men. Conversely, it has been shown that male 

respondents are more likely to opt for the self-driving bus than female ones. This difference 

between men and women is in line with previous studies that showed that women have a less 

favourable attitude towards self-driving vehicles than men (Haboucha et al., 2017; Kyriakidis 

et al., 2015; Piao et al., 2016; Yap et al., 2016). Moreover, the attitudinal factor of “trust in self-

driving vehicles”, which relates to the safety and performance perception of a self-driving bus, 

has a larger impact on the choices made by women than men. The interaction variable of trust 

in AVs and gender shows a positive value (0.04 [p < 0.01]), indicating that the trust in the 

automated vehicles has a stronger effect on the preference for the self-driving bus among 

women than among men. 

 

In regard to the frequency in public transport use, we find that respondents who use public 

transport services once per month or more perceive the utility of travelling in a self-driving bus 

higher than those using public transport less frequently. However, the parameter is only 

significant at the 85% confidence interval, which might be due to the small share of only 11% 

of the respondents who use public transport services less than once per month. This outcome is 

in line with previous findings that people who travel with public transport services at least once 

a month show a more positive attitude towards self-driving vehicles (Liljamo et al., 2018).  

 

Given that the survey with the choice experiment has been distributed often with a link to the 

upcoming pilot trial, it is tested whether people living within the region where the pilot test will 

take place have a different perceived utility than those living elsewhere. The parameter that 

corresponds with the respondents living in the pilot region shows a positive influence on the 

utility of the self-driving bus (0.07 [p = 0.51]), however, it is highly insignificant. Therefore it 

is concluded that having distributed the survey together with the information that a respondent 

potentially might be affected by the upcoming pilot trial has not influenced the results 

significantly. We also find no differences between German and Dutch participants.  

 

Additionally, the general attitude “interest in technology” affects the perceived utility of a self-

driving bus positively (0.35 [p < 0.05]), but less so than the attitude “trust in self-driving 

vehicles” (0.96 [p < 0.01]). No significant differences between men and women are found for 

the factor capturing interest in technology, while the factor capturing trust is influenced by 

gender. The impact of trust is especially important for women. As can be expected, having 

generally a high interest in technology and trusting self-driving vehicles have both a positive 

effect on the choice for a self-driving bus.  
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Model Application 

The estimated values for travel time and travel costs have been used in a Monte Carlo simulation 

to approximate the choice probabilities for the collected sample based on 1000 draws from the 

estimated distributions for the results described in Table 2.5. Based on this, the threshold value 

for travel times and travel costs is determined for two selected scenarios, which are based on 

the two bus lines currently operating in the pilot region: (1) The “longer trip”, based on a trip 

with the regular bus which has a fare of € 2.70 and a travel time of 14 minutes. If the self-

driving bus would have the same attribute levels, about 28% of the respondents would opt for 

the self-driving bus and about 57% of the respondents would opt for the regular bus, while 15% 

would prefer the option to choose any other mode. The break-even point in modal shares 

between the two buses could be reached by either reducing the fares of the self-driving bus to 

€2.20 (Figure 2.1a), or reducing its travel time to 11 minutes (Figure 2.1b), while keeping the 

respective other attribute at the same level as the regular bus. (2) The “shorter trip”, based on a 

trip with the regular bus which has a fare of € 1.50 and a travel time of 7 minutes. If the self-

driving bus would have the same attribute levels, 62% of the respondents would opt for the self-

driving bus and 34% would opt for the regular bus, while 4% would prefer the option to choose 

any other mode. The break-even point in modal shares between the two buses is reached by 

either increasing the fares of the self-driving bus to €1.90 (Figure 2.1a), or increasing its travel 

time to 9.2 minutes (Figure 2.1b), while keeping the respective other attribute at the same level 

as the regular bus.  

 

This application of the model illustrates that in the choice situation discussed in this paper, the 

self-driving bus is more competitive on shorter trips than on longer ones, which would make it 

ideal for feeder services or short-distance connections in urban settings. If the self-driving bus 

is supposed to provide its services also on longer trips, reduced fees would be required in order 

to turn it into an attractive alternative. Offering such a cost reduction for longer trips is not 

unrealistic since it is expected that in the future the operating costs of self-driving buses could 

fall below the ones of regular buses due to reduced personnel costs.  

2.6 Conclusion 

The aim of this study is to shed light on the preferences of public transport passengers in regard 

to self-driving buses. A stated choice experiment has been conducted in order to capture the 

choice behaviour along with certain attitudes towards self-driving vehicles and technology for 

an urban commuting trip. Based on this experiment, a discrete choice model in the form of a 

Mixed Logit model is estimated in order to assess the relative preferences. 

 

Overall, it can be concluded that in the specific choice situation presented to the participants, 

the self-driving bus is preferred over the regular bus only for shorter trips, while the regular bus 

is preferred for longer trips. Travellers are found to perceive the travel time in a self-driving 

bus worse than in a regular bus, and thus they are willing to pay more for saving travel time 

while travelling in a self-driving bus. The value of travel time for the self-driving bus has been 

found to be more than twice as high as the one for the regular bus. 
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Figure 2.1: Choice probabilities for the automated bus (yellow), regular bus (red) and other 

alternatives (turquoise) for different (a) travel fares and (b) travel times for the self-driving bus for 

two scenarios. The break-even points are marked by a dotted line. 

 

Based on the findings in this choice experiment, it can be concluded that in order to increase 

the perceived utility of travelling in a self-driving bus, the attention has to be given to the 

following two operational decisions: (1) operating the self-driving bus as a scheduled-based 
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service and not as a flexible dispatching transport service with fixed routes has shown to 

increase the perceived utility of the self-driving bus and (2) installing an interactive surveillance 

systems or introducing human stewards onboard has shown to decrease the perceived utility. 

However, the perception of self-driving buses operating flexibly also in regard to their routes 

and stop locations has not been examined in this research. Furthermore, the results for the on-

board surveillance are not fully in line with the expectations for self-driving buses: It is currently 

a legal requirement in the Netherlands and Germany to have a steward on board of a self-driving 

bus and previous studies have shown that passengers are also in favour of a steward being 

present. That the results of this experiment draw an unexpected picture in regard to demand-

responsiveness and on-board surveillance stresses the importance of performing further 

research into these subjects.  

 

Concerning potential early adaptors and future user groups, it can be concluded that, in general, 

men have a higher inclination to opt for a self-driving bus than women. Also having a general 

interest in technology and having a trusting attitude towards self-driving vehicles increases the 

probability of opting for the self-driving bus over the regular bus. The latter is especially true 

for women, for whom the influence of the trust attitude is particularly strong. Respondents 

travelling by public transport services more than once a month also have shown a higher 

probability of opting for the self-driving bus than those using public transport services less 

often. To further investigate potential user groups and causal relationships with attitudinal 

factors, it would be worthwhile to extend the model estimation of the choices for self-driving 

buses with an integrated choice and latent variable model.  

 

This study is performed at the brink of the start of a pilot test with self-driving buses in the 

border region between the Netherlands and Germany. The findings from the conducted stated 

choice experiment allow sharpening our understanding of the preferences in regard to self-

driving vehicles used for public transport services. However, it has been shown that in stated 

choice experiments respondents are inclined to choose for the alternative they are familiar with 

(Ben-Akiva, McFadden, & Train, 2019), which could have influenced the outcome of the 

choice experiment featuring the self-driving bus as an unknown alternative. Thus, an even better 

understanding could be gained by also collecting data from observed choices during the pilot 

trial and by performing a second stated choice experiment after the introduction of self-driving 

buses tested in the pilot trial. This would allow detecting any changes in preferences of self-

driving buses caused by an increasing degree of familiarity with these kinds of vehicles. 
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Chapter 3 - Identifying User Classes for Shared and 

Automated Mobility Services  

Abstract 

New forms of shared mobility such as free-floating car-sharing services and shared automated 

vehicles have the potential to change urban travel behaviour. In this paper, we identify potential 

user classes for these new modes. For this, a stated choice experiment on mode choice among 

a sample of the Dutch urban population has been conducted, which features free-floating car-

sharing and shared automated vehicles next to private vehicles, bus, and taxi. The experimental 

design allows disentangling the effects of vehicle ownership, vehicle sharing, and vehicle 

automation on the perceived utility of these modes. Latent class choice models were estimated 

to capture the heterogeneity in these preferences among the respondents. The most explanatory 

mode choice model is obtained by estimating a 3-class nested logit model capturing the impact 

of vehicle ownership. The results show that higher educated and more time-sensitive 

respondents are more inclined than others to favour the (automated) car-sharing options. By 

simulating a scenario that directly compares car with free-floating car-sharing and taxi with 

shared automated vehicles, a migration analysis has been performed. This analysis shows that 

the preferences towards shared automated vehicles and free-floating car-sharing is highest for 

those currently combining car and public transport for their commute. Commuters using the car 

showed a high preference towards free-floating car-sharing, in particular as for the latter no 

parking fees are issued. Respondents currently commuting by public transport showed the 

lowest preference for the new modes. 

3.1 Introduction 

The progress in the development of new vehicle technology and digital communication 

technology is leading to the emergence of new types of vehicles and mobility services. Two 

drivers of the possible diversification of mobility enabled by these developments are vehicle 

automation and urban vehicle sharing (Greenwald & Kornhauser, 2019). With the development 

This chapter is based on: Winter, K.; Cats, O.; Martens, K.; van Arem, B. Identifying User 

Classes for Shared and Automated Mobility Services. Under Review.  
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of vehicle automation progressing rapidly and shared mobility gaining market shares, the 

question arises how the broad implementation of such concepts may change the transport 

service landscape. Car-sharing is mainly popular in Europe (S. Shaheen, Bansal, Chan, & 

Cohen, 2017), while ride-sourcing has considerable growth rates around the globe (Jin, Kong, 

Wu, & Sui, 2018). Nevertheless, both of these forms of shared mobility are still confined to 

niche markets and, with the exception of a few locations, are not available in large-scale systems 

with high coverage or accessibility. For this reason, such services are, so far, mainly used by 

quite specific user groups: e.g. for car-sharing systems in Europe it has been shown that these 

are mainly used by young people living in cities, mainly men and people with a higher education 

level (H. Becker, Ciari, & Axhausen, 2017). Similar characteristics were found for the users of 

ride-sourcing services (Young & Farber, 2019). These characteristics are often associated with 

so-called “early adopters” of such new mobility services (Alemi, Circella, Handy, & 

Mokhtarian, 2018).  

 

How travel behaviour of other groups might change in the light of new shared mobility services 

available on a large scale remains uncertain, as long as these services do not have high coverage. 

The primary sources of information on traveller’s choices for these new mobility services are 

therefore still stated preference experiments. This study contributes to building up a better 

understanding of the potential migration from the current modes to the new, shared transport 

services enabled by the developments in digital communication technology. In particular, a 

mode choice model is estimated that includes current motorized modes as well as Free-Floating 

Car-sharing (FFCS) and Shared Autonomous Vehicles (SAV). In contrast to station-based car-

sharing, there is no designated infrastructure linked to this form of mobility and users can freely 

choose their departure time as well as their destination (Ferrero et al., 2018). SAV can be 

described as a form of FFCS, in which vehicles travel autonomously, i.e. with no driver on 

board, transporting at least one passenger to its final destination. The required level of driving 

automation of such vehicles, therefore, has to be level 4 or 5 (SAE International, 2018). For 

FFCS and SAV, the act of vehicle sharing is a sequential one, as a ride is not shared with 

unknown passengers. These modes offer therefore the same level of privacy as the private car. 

SAV bear a resemblance to current taxi services and ride-sourcing services in the way they are 

operated and are thus also referred to as autonomous taxis or aTaxi (Greenwald & Kornhauser, 

2019).  

 

The number of stated-choice experiments comparing free-floating car-sharing with other 

motorized modes is not large, and the findings of these studies are not always consistent: while 

some examples show that older people are more likely to choose one-way car-sharing than 

younger ones (de Luca & Di Pace, 2014; Yoon, Cherry, & Jones, 2017), shows the majority of 

stated-preference experiments that it is the younger ones who are most likely to switch to such 

car-sharing services. As summarized by Spurlock et al. (2019), the most commonly observed 

user characteristics for shared mobility services are, that they are younger, richer, more 

educated and have fewer children than the average population. 

 

In the overview of the first stated choice experiments featuring automated vehicles (F. Becker 

& Axhausen, 2017; Gkartzonikas & Gkritza, 2019), it becomes apparent that only a few of these 

studies focus on the automated vehicle as a shared mode. In a stated choice experiment 

conducted among an Australian online panel, sequentially shared and simultaneously shared 

automated vehicles showed to be perceived as two distinctive modes by the participants, with 

a strong preference for sequentially shared SAV over simultaneously shared SAV (Krueger et 

al., 2016b). Conversely, a stated choice experiment conducted among a German online panel 

found that the simultaneously shared SAV is preferred over the sequentially shared one 
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(Kolarova, Steck, Cyganski, & Trommer, 2018) – the authors suggest that this could be 

attributed to the lower costs associated with the simultaneously shared option. In regard to 

potential early adopters of SAV, the following demographics have been found to describe 

people with a higher preference for SAV: people currently using public transport or using 

multiple modes frequently (Krueger et al., 2016b), younger people (Haboucha et al., 2017; 

Krueger et al., 2016b), men (Haboucha et al., 2017) and people with a higher income or a higher 

degree of education (Bansal, Kockelman, & Singh, 2016; Barbour, Menon, Zhang, & 

Mannering, 2019; F. Becker & Axhausen, 2017; Haboucha et al., 2017). In regard to the current 

commuting behaviour, it has been shown that people currently commuting long distances by 

car and those who experience usually short parking-search times are less likely to use shared 

automated vehicles (Barbour et al., 2019). 

 

Estimating mode choice models for mode alternatives that are not widely available or do not 

exist yet remains a challenge. However, the need for models incorporating shared (automated) 

mobility services is rising with their rapid introduction. But a conclusive picture on mode choice 

in the era of (automated) car-sharing cannot be drawn at this point, as any conducted mode 

choice experiment featuring these mode alternatives is merely a snapshot in time of the current 

perception of these modes. It remains therefore important to conduct such experiments 

continuously over time, as well as for the different operational specifications of shared 

(automated) mobility services, different regions, different trip purposes and combinations of 

mode choice options. This research contributes to these efforts by conducting a mode choice 

experiment featuring a combination of shared mobility options that has not been tested so far. 

The experimental design, detailed in the following section, allows disentangling various 

features related to new mobility services. The focus of the analysis is put on the differences in 

mode preference, or taste heterogeneity, in order to identify potential user classes for these 

modes. Our attention is, in particular, turned to the current mode choice as a predictor.  

 

The remainder of this paper is structured as follows: The methodological specifications of the 

stated choice experiment are shown in section 2. In section 3, a latent class choice model for 

mode choice preferences is described and the estimated results are presented and analysed. In 

section 4, the results are discussed and an outlook on further research needs is given. 

3.2 Stated Choice Experiment 

In order to determine how mode choice behaviour could change with the introduction of Free-

Floating Car-sharing (FFCS) and Shared Autonomous Vehicles (SAV), we conducted a stated 

choice experiment. For this, an online survey was distributed, using the online survey software 

Collector. Participants were asked to make a choice between various mode choice options in 9 

choice situations. Additionally, socio-economic parameters have been collected on an 

individual and household level, as well as the participants’ familiarity with car-sharing and ride-

sourcing services. 

3.2.1 Description of the Choice Situation 

For the choice experiment, a trip was described as a commuting trip to a fictitious workplace 

or educational institution in the respondents’ home town. The trip distance was set to be 

approximately 8 kilometres. This is just above the threshold value of 7.5 kilometres, below 

which the bike is the most preferred mode in the Netherlands and above which more than three-

quarters of all trips are performed by car (Ministry of Transport Public Works and Water 
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Management, 2009). This trip length has been selected in order to be able to analyse the 

preference of SAV as an alternative to private cars in an urban commute. The choice experiment 

refers to commuting, as it is an important trip purpose in the Netherlands (and elsewhere), in 

particular during rush hours (Hoogendoorn-Lanser, Schaap, & OldeKalter, 2015). 

 

In each choice situation, five travel mode alternatives were presented to the participants: 

privately owned vehicles (car), free-floating car-sharing (FFCS), taxis (taxi), a direct bus line 

(bus) and shared automated vehicles (SAV). Respondents were familiarised with the concepts 

of FFCS and SAV by providing the descriptions shown in Figure 3.1. They were free to choose 

any mode option irrespective of their current situation in terms of car ownership and driving 

license possession. 

3.2.2 Design of Stated Choice Experiment 

Following the argumentation of Walker et al. (2017), an orthogonal design has been selected as 

the most suitable layout of the stated choice experiment. The design was generated using 54 

choice tasks, blocked in six groups by using the software Ngene. The five mode-alternatives 

are characterized by six attributes, each with three levels (Table 3.1). The attribute levels in 

terms of travel time and travel costs were chosen to be similar to travel times and costs Dutch 

commuters commonly experience.  

Table 3.1: Mode Attributes and Attribute Levels as Included in the Choice Experiment 

 car FFCS bus taxi SAV 

Travel costs [in Euro] 1.2; 2.4; 3.6 1.2; 2.4; 3.6 1.2; 2.4; 3.6 3.6; 4.2; 4.8 2.4; 3.6; 4.8 

Parking costs 

[in Euro] 
0; 2.5; 5 N.A. N.A. N.A. N.A. 

Access and Egress 

Time [in min] 
2; 4; 6 6; 10; 14 2; 6; 10 N.A. N.A. 

Waiting Time [in min] N.A. N.A. 1; 4; 7 1; 4; 7 1; 4; 7 

In-Vehicle Time 

[in min] 
15; 20; 25 15, 20, 25 20; 25; 30 15; 20; 25 15; 20; 25 

Parking search Time 

[in min] 
1; 4; 7 1; 4; 7 N.A. N.A. N.A. 
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3.3 Results 

3.3.1 Description of the Choice Situation 

The stated choice experiment has been conducted in April 2016 among 840 members of an 

online panel (data set available at: http://doi.org/10.4121/uuid:4ac4d7b7-c8b0-42ec-a096-

55a4f1837585). The participants were older than 18 years old and originated from the four 

largest cities of the Netherlands (Amsterdam, The Hague, Rotterdam, and Utrecht). In order to 

capture the commuting population, only respondents studying or working more than 12 hours 

per week (employed, self-employed or as volunteers) were included. After excluding 

inconsistent answers, the final data set has been reduced to 796 responses (95% of the total 

sample). This sample size is representative of the working population of the four cities, which 

has a population size of 1,119,300 (Centraal Bureau voor de Statistiek (CBS), 2018b) on a 

confidence interval of 99% and a margin of error of 5%. The main characteristics of the 

respondents in this data set are presented in Table 3.2. 

Table 3.2: Main Socio-Demographic Characteristics of Respondents 

Characteristic Total number (percent) [class] 

Respondents: 796 

Mean age (standard deviation): 41.78 (14.1) 

Respondents per age classes (in percent) 

[class]: 

204 (25.6%) [18-29]; 168 (21.1%) [30-39]; 153 

(19.1%) [40-49]; 159 (20.0%) [50-59]; 112 

(14.1%) [60-80] 

Gender: male; female (in percent): 399 (50. 1%); 397 (49.9%) 

Driving license holder (in percent): 684 (85.9%) 

Uber user and/or chauffeur (in percent): 97 (12.2%) 

Highest level of education (in percent) [class]: 

108 (13.6%) [Primary school and lower 

education]; 317 (39.8%) [High school or mid-

level education]; 370 (46.5%) [higher education] 

Household with children (in percent): 215 (27.1%) 

Household has access to at least one vehicle; 

and more than one vehicle (in percent): 
598 (75.1%); 168 (21.1%) 

Yearly household income (in percent) [class]: 

191 (24.0%) [0-30,000 Euro]; 321 (40.3%) 

[30,000-60,000 Euro]; 150 (18.8%) [more than 

60,000 Euro]; 134 (16.8%) not reported 

Households with at least one household 

member subscribed to a car-sharing service in 

general and to a free-floating car-sharing 

service in particular (in percent): 

76 (9.1%) [Car-Sharing in general]; 24 (3.1%) 

[Free-Floating Car-Sharing] 

 

The distribution of gender, income, and access to at least one vehicle per household are all 

similar to the Dutch national average (Centraal Bureau voor de Statistiek (CBS) 2016; CBS 

2015). The sample distribution does however not represent the national modal share for 

commuters. Around 60% of all workers commute by private car in the Netherlands (Centraal 

Bureau voor de Statistiek (CBS), 2018a), while the share of commuters using (partly) public 

transport lies around 13% (Heinen, Maat, & van Wee, 2013). The findings in the collected 

sample differ in this, as only 29% of the respondents indicated that they exclusively commute 
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by car, while 35% of the respondents indicated that they commute (partly) by public transport, 

as shown in Figure 3.2. 

 

 

Figure 3.2: Commuting modal split of the collected sample (left) and the Dutch average (right) 

3.2.3 Mode Choice Model Estimation  

We estimated the model as a nested logit model with latent classes. For the mathematical 
formulation of such a hybrid choice model, we point to the work of Wen et al. (2012). This model 
has been selected for two reasons: (1) the modes presented in the choice experiment share 
unobserved attributes and (2) a strong heterogeneity in taste has been observed among the 
respondents. The implications of this are discussed in the following. 

Introducing Nested Logit Models to Account for Shared Unobserved Attributes 

To account for unobserved correlations related to the dimensions between the mode 

alternatives, we estimated nested logit (NL) models for various nesting structures related to car 

ownership, vehicle automation, the level of privacy in the vehicle, driving tasks and the demand 

responsiveness of a mode. The lowest log-likelihood values and minimum Bayesian 

Information Criterion (BIC) values were obtained for the nested logit model taking car 

ownership into account, corroborating the findings in Haboucha et al., (2017). The log-

likelihood ratio test shows a significantly better modal fit on a 99.9% confidence level for this 

model, and all nest coefficients lie within the required range [0,1]. Conceptually, this model 

takes into account that the mode option car is privately owned, while FFCS, taxi, bus, and SAV 

are shared modes.  

Introducing Latent Classes to Account for Decision Rule Heterogeneity 

In the collected response set, 24% of all respondents selected exclusively one mode throughout 

all nine choice questions. A large share of respondents showing lexicographic preferences is 

not an uncommon observation in stated choice experiments with labelled alternatives, 

especially in the presence of new or unknown alternatives. Comparable stated-choice 

experiments have shown before that approximately a quarter of the respondents are non-traders 

(see e.g. Ciari & Axhausen, 2012; Haboucha et al., 2017). Introducing latent classes to the 

model is an appropriate means to capture non-trading behaviour (Bahamonde-Birke & Ortuzar, 

2015).  

 

A three-class model has been selected, based on its fitting statistics and its meaningful and 

significant nesting and class membership parameters. The class membership is characterized 

by four categories: age group (below or above 40), education (low and mid-level education or 

high-level education), currently commuting by private vehicle, and not public transport (true or 
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false) and currently commuting by public transport, and not a private vehicle (true or false). 

Introducing these nested classes further improves the model fit of the nested logit model on a 

99.9% confidence level for the log-likelihood ratio test, and the BIC value of the model with 

latent classes is significantly lower (Δ-BIC= 442). 

Estimated Parameters Values 

The nested logit model with latent classes was estimated with the dedicated software 

BIOGEME (Bierlaire, 2003), using the optimization algorithm “BIO” intrinsic to the software. 

The estimated parameter values for the panel response set collected from 796 respondents (7164 

total number of observations) are shown in Table 3.3. The model consists of 41 variables, has 

a rho-square value of 0.32 and a final log-likelihood of -7769.  

Table 3.3: Estimated coefficients, class membership parameters and nesting parameters 

Class  

(class-membership 

probability in %) 

Class 1 (62.9 %): 

“Brisk Sharers” 

Class 2 (20.26 %): 

“Public Transport 

Enthusiasts” 

Class 3 (16.79 %): 

“Car Captives” 

Utility Coefficients 

value [p-value]: *** = significant at 99% CI, ** = significant at 95% CI, * = significant at 90% CI 

N.A.: not applicable, constrained by specification 

ASCFFCS 1.09 [0.00]*** 1.18 [0.00]*** -2.85 [0.00]*** 

ASCPT 0.816 [0.00]*** 1.61 [0.00]*** -2.71 [0.00]*** 

ASCSAV 1.30 [0.00]*** 1.22 [0.00]*** -2.92 [0.00]*** 

ASCtaxi 1.21 [0.00]*** 1.23 [0.00]*** -2.63 [0.00]*** 

 

βcost_parking -0.272 [0.00]*** -0.278 [0.00]*** -0.127 [0.06]* 

βcost -0.218 [0.00]*** -0.147 [0.03]** -0.010 [0.40] 

 

βwalk -0.02 [0.00]*** N.A. -- N.A. -- 

βwait -0.028 [0.00]*** N.A. -- N.A. -- 

βIVT,FFCS -0.025 [0.00]*** 

-0.005 [0.09]* -0.02 [0.41] 
βIVT,SAV -0.025 [0.00]*** 

βIVT,taxi -0.031 [0.00]*** 

βIVT,bus -0.012 [0.00]*** 

βIVT,parking_search -0.011 [0.01]** -0.068 [0.00]*** N.A. -- 

Class Membership  

value [p-value]: *** = significant at 99% CI, ** = significant at 95% CI, * = significant at 90% CI 

intercept δ 0.00 (fixed) -0.69 [0.00]*** -1.68 [0.00]*** 

18 to 39 years old 0.00 (fixed) -1.28 [0.00]*** -0.992 [0.00]*** 

high education 0.00 (fixed) 0.11 [0.63] -0.517 [0.03]** 

currently private car for 

commuting  
0.00 (fixed) -1.79 [0.00]*** 1.77 [0.00]*** 

currently public transport for 

commuting  
0.00 (fixed) 1.09 [0.00]*** -0.65 [0.23] 

Nest Coefficients 

scale parameter [p-value]: *** = significant at 99% CI, ** = significant at 95% CI, * = significant at 90% CI 

μ1 1.00 (fixed) 1.00 (fixed) 1.00 (fixed) 

μ2 3.91 [0.00]*** 6.90 [0.04]** 4.55 [0.37] 

The parameter for modes that are not privately owned has a scale parameter of μ2 = 3.91, leading to a nest 

coefficient of μ/μ2 = 1/3.91= 0.26 for Class 1, and to nest coefficients of 0.15 and 0.22 for Class 2 and Class 3, 

respectively. For all classes, the nest coefficient lies thus between 0 and 1, which is a requirement for a valid 

nesting structure. 
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Figure 3.3: Class membership probability per included socio-economic variable  

The probabilities of belonging to a class are distributed in the following way: 63% for Class 1, 

20% for Class 2 and 17% for Class 3. In Figure 3.3, the composition of the three classes in 

regard to the socio-economic categories is shown in comparison to the sample average. The 

underlying colour scheme indicates the class deviation from the sample average, with red 

showing an underrepresentation and blue an overrepresentation compared to the sample average 

within one socio-economic category.  

 

Not just the mode preference, as discussed in section 3.2.2, but also the sensitivity to cost and 

travel time can be the reason for discontinuous decision making. Respondents who have a larger 

probability to fall into Class 1 and Class 2 are more cost-sensitive than those with a larger 

probability to fall into Class 3. By modelling latent classes, these sorts of lexicographic 

preferences are captured to some extent. Based on these observations and the class mean values, 

the following class descriptions are made: 

 

 “Brisk Sharers” (Class 1): This majority group (57%) prefers shared modes over private 

cars, as indicated by the strong and positive alternative specific constants (ASC) for all 

shared modes. Brisk Sharers show a much stronger sensitivity towards an increase in 

travel time than Public Transport Enthusiasts (class 2). Brisk Sharers have a higher 

likelihood to be younger than 40 years old.  

 

 “Public Transport Enthusiasts” (Class 2): This group is the second largest group 

(20.3%) and represents individuals who currently tend to commute by public transport, 

and not by private car. They show a higher disutility towards parking costs, but have a 

lower value of travel time changes and are less sensitive to changes in in-vehicle-time 

than Brisk Sharers. Theyshow an equally strong preference for shared modes in contrast 

to the private car. Public Transport Enthusiasts have a higher likelihood to be older than 

40 years old. 

 

 “Car Captives” (Class 3): This small group (16.8%) consists of individuals who 

currently commute by private car. This group shows a strong preference towards the 

private car in the choice experiment as well, as indicated by the strong negative ASC 
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for all shared modes. Car Captives are non-traders who can be characterized as mode-

captives favouring private cars. In terms of their socio-economic profile, they tend to be 

older and less educated than the sample average. 
 

As can be seen in Table 3.3, not all variables presented in the mode choice experiment were 

included in the final model, in particular the in-vehicle-time for the private car proved to be 

insignificant, and showed an unexpected positive sign. This variable has been excluded from 

the model under the consideration that the preference for travelling in private cars is captured 

in the strong values for the alternative specific constants (ASC) present in all three classes. 

These indicate that participants disregarded to a certain extent other parameters detailing the 

trip presented to them in the choice experiment. This is true in particular for the class of the Car 

Captives, for which also the coefficient for the in-vehicle-time and the travel costs are not 

significant. This class mainly captures respondents with lexicographic preferences making 

choices irrespective of the attributes and attribute levels, as discussed in the previous section.  

 

Travel Costs and Parking Costs 

No significant difference could be observed for the perception of travel costs for the different 

modes, and therefore the coefficient for the travel costs is modelled as a mode-generic one in 

all classes. The cost of parking, which only occurred in the case of the private car, is penalized 

in all three classes stronger than the cost of travelling. This is particularly true for the class of 

the Car Captives, for which this parameter has proven to be the only one out of the parameter 

set detailing the trip, to significantly have impacted the choices.  

 

Travel Time 

In terms of time-related parameters, the Brisk Sharers perceive a significant difference between 

the in-vehicle time for the different shared modes. This class penalizes spending time travelling 

in the bus the least, followed by the in-vehicle-times in SAV and FFCS, the lowest preference 

is shown for the in-vehicle time spent in taxis. The strong difference in the preference for SAV 

and taxi is also present in the alternative specific constants ASCtaxi and ASCSAV. This reveals the 

perception of the utility of vehicle automation in itself, as taxi and SAV have been presented to 

be equal in regard to the service they provide apart from one being a self-driving vehicle and 

the other being driven by a taxi-chauffeur. The class of Brisk Sharers prefers travelling in the 

self-driving vehicle, with the difference in preference being mainly captured in the alternative 

specific constants and thus not only relating to the time spent in the vehicle.  

 

Differing from the other two classes, the Brisk Sharers also consider the access/egress walking 

time and waiting time in their choice, which is in this class generally penalized slightly stronger 

than the in-vehicle-time spent in the shared modes. For the classes of the Public Transport 

Enthusiasts and the Car Captives, a mode generic coefficient for all shared modes proved to be 

the most descriptive. It is remarkable that, even while the in-vehicle time does not majorly 

influence the mode choice behaviour of the Public Transport Enthusiast, there is a strong 

aversion towards the time spent searching for a parking spot. 

3.3.3 Model Application: Modal Migration Analysis 

In order to get a better understanding of the estimated mode choice preferences per class, the 

model is applied to a specific scenario by simulation (based on 10,000 draws). In this scenario, 

the attribute levels have been set equal for car and FFCS, as well as for taxi and SAV, to allow 

a direct comparison between these modes respectively. The applied values are shown in Table 

3.4. 
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The obtained modal shares shown in Table 3.4 are explored in more detail in a migration analysis, 
showing the choice probabilities itemized for the current commuting modes used by the 
participants of this study. In figure 3.4, the migration flows are shown from the current modes (left) 
to the mode choices based on the estimated model applied to the scenario (right). The width of 
each flow towards a mode is directly proportional to the estimated probability for a commuter 
group to choose this mode. So it can be seen that the largest contribution to the estimated modal 
share of private cars stems from commuters also currently using a private car, which have an 
estimated probability of 30% to choose a private car in this scenario. Similarly, the largest 
contribution to the estimated modal share of the bus stems from current public transport users, 
with an estimated probability of 37% of choosing public transport. Respondents indicating that 
they currently commute by combining private car and active modes (walk, cycle) show the same 
mode choice probabilities as those indicating to commute only by car. 

Table 3.4: Attribute levels applied in the scenario and resulting choice probability per mode 

 car FFCS bus taxi SAV 

Travel cost [in Euro] 2.4 2.4 2.4 3.6 3.6 

Parking cost [in Euro] 0 N.A. N.A. N.A. N.A. 

Access/Egress time [in minutes] 6 6 6 N.A. N.A. 

Waiting time [in minutes] N.A. N.A. 4 4 4 

In-vehicle-time [in minutes] 20 20 20 20 20 

Parking-search time [in minutes] 1 1 N.A. N.A. N.A. 

 ↓ ↓ ↓ ↓ ↓ 

Estimated Choice Probability 24% 21% 25% 14% 16% 
 
 

 

Figure 3.4: Estimated mode migration patterns: current (left) and estimated (right) market shares per 

commuting mode(s) 

 
The model allows taking a closer look at the effect of vehicle sharing and vehicle automation, by 
directly comparing car with FFCS and taxi with SAV respectively. Those currently commuting by 
combining car and public transport have an estimated probability of 18% to choose SAV, which is 
a higher probability than in other commuter groups. Those currently commuting by public 
transport have the lowest probability of choosing SAV (14%). When comparing the choice 
probabilities of SAV and taxi, it can be seen that all commuter groups, except those using mainly 
the car, clearly favour SAV over taxi. The probability for choosing FFCS is for all commuters higher 
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than for SAV, ranging from 18% for public transport users and 22% for those currently taking the 
car or combing car and walking/cycling. The latter group has an equal preference for car and FFCS. 
However, for all other groups is the preference for FFCS much stronger than the one for car, the 
strongest difference can be observed for those currently combing the car and public transport for 
commuting.  

3.4 Discussion and Conclusion 

Currently, on-demand transport services are labour-cost intensive and therefore provided mainly 
to the elderly, passengers with special needs or in rural areas. With the introduction of digitalized 
mobility forms and services, on-demand transport can be offered on a larger scale against limited 
costs, expanding the pool of potential users. In this paper, it is analysed how the introduction of 
free-floating car-sharing and shared automated vehicles on a large-scale could change mode 
preferences for different user groups.  

3.4.1 Preferences for Shared (Automated) Modes  

While stated choice experiments are an opportunity to capture preferences about novel 
alternatives, they bear the risk that uncertainty, expectations and current risk perception are 
influencing the choices made and respondents might develop a different attitude towards these 
modes once they become more familiar with them (Krueger et al., 2016b). Therefore, the outcome 
of this experiment can only be an indication of the current perception of the utility of the new 
modes, and not a forecast of mode preference once the presented modes might become broadly 
available. Bearing this in mind, the results of the analyses offer the following insights in terms of 
the perception of shared and shared automated vehicles: 
 

 Car commuters are open for using shared mobility services providing a similar 

experience to their current mode, but they are not charmed by vehicle automation. 

The findings of the migration analysis suggest that commuters who currently mainly 

use a private car show a high preference for FFCS. The migration to FFCS from this 

group can be further amplified when charging parking fees (which are not included in 

the simulated scenario), considering that the class of Car Captives shows a strong 

aversion towards parking costs.  

Commuters taking the car show a lower preference for the other modes of shared 

mobility included in the choice experiment. This group perceives the utility of SAV 

marginally lower than the utility of taxi, indicating this group does not see vehicle 

automation to be an added value in itself. Car Captives have been found before to be 

less likely to switch to SAV (Haboucha et al., 2017). 

 

 Commuters currently combining car and public transport are the most 

enthusiastic about shared (automated) mobility services. 
Commuters currently opting for a combination of car and public transport for their 

commute are the most enthusiastic about FFCS and SAV. This group shows the strongest 

preference towards these modes and also shows the strongest difference in the perceived 

utility between car and FFCS, and the second-strongest difference in the perceived 

utility between taxi and SAV. This indicates that the added value of the new shared 

(automated) mobility service is the strongest for this group. A possible reason for this 

could be that this group has mobility needs that are neither met by a car or public 

transport services alone, and that FFCS and SAV are perceived to close this gap by 

combining the advantages of a car and public transport services. 
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 Public transport users are the least impressed with on-demand shared (automated) 

mobility services. 
For commuters currently using public transport, the introduction of shared automated 

vehicles increases the perceived utility for on-demand door-to-door services, as for this 

group a higher probability for choosing SAV than for choosing taxi has been estimated. 

However, no other group has lower mode choice probabilities for FFCS and SAV than 

this group. The latent class analysis shows that Public Transport Enthusiasts have a 

higher probability to feature older respondents and respondents having a lower level of 

education, and captures those that are more cost-averse rather than time-loss-averse. 

This group of people has been found before to be less likely to opt for automated 

vehicles (Gkartzonikas & Gkritza, 2019). 

 

 Young and time-sensitive commuters are the most appreciative of vehicle 

automation. 

The class of participants showing the greatest enthusiasm for FFCS and SAV are 

captured in the class of the Brisk Sharers (63% of the sample), who also show a strong 

preference for travelling in SAV over taxi. This class is characterised by being younger 

and more educated than the sample average.  

 

 Commuters currently cycling or walking see an added-value in vehicle automation. 

The group of commuters currently walking or cycling to work shows the strongest 

difference in the perception of SAV and taxi. It should be noted that the mode choice 

experiment did not incorporate active mode options and thus forced this group to select 

exclusively between motorized modes. The estimated model therefore merely captures 

the difference in mode perceptions between the included modes, and not the perceived 

utility in relation to the modes this group is currently using.  

 

The findings in this study largely corroborate the image of the “early adopters” of shared 

(automated) vehicles sketched in previous studies, as summarized in the introduction. The main 

difference is that in this study neither gender nor the number of children significantly improved 

the clustering of the observed choices. Instead, the current mode choice showed to be a more 

reliable predictor for the collected sample. Different from Krueger et al. (2016), the public 

transport users included in our study showed the lowest preference for SAV. In fact, survey 

respondents who combine public transport use and private car for their commuting trips showed 

the highest preference for SAV, as well as for FFCS. Indeed, our study showed that multi-modal 

commuters and those using active modes (walking or biking) have the highest preference for 

the new modes. Therefore we suggest adding these characteristics to the image of an “early 

adopter” of shared (automated) mobility services.  

3.4.2 Policy Implications 

The discussion around the description of the “early adopter” of new digitalized mobility forms 

and services does not include consequences for “late adopters”. From the results of this study, 

as well as the findings in similar studies, it can be deduced that such modes primarily meet the 

travel needs of a group that currently already has a high degree of flexibility in mode choices, 

while those currently dependent only on a private car or on public transport show the lowest 

preferences for the on-demand transport services included in the choice experiment. The 

potential added value of FFCS and SAV differs for these two distinct groups. Car users, even 

if they are captive users, typically already have a fast and comfortable mode at their disposal. 
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For this group, the study points to a clear trigger that could support the switch from using the 

private car to shared options: the “nuisance of parking”. Both the time having to spent on 

searching a parking spot and the costs of parking influenced the expressed mode preferences 

significantly. Ambitious urban parking management that makes room for shared mobility 

services and limits (free) parking possibilities for private cars has thus the potential to play an 

important role in making the shared services a success story, also among this user group. 

Research corroborates this, as a number of studies show that parking availability and costs are 

prime factors influencing the use of car-sharing systems (Ferrero et al., 2018) and parking 

search time impacts the willingness to use shared automated vehicles (Barbour et al., 2019).  

 

The situation for the second group, consisting of public transport users, is quite different, 

however. These respondents showed the lowest preference for the new transport modes in our 

study. This may in part be because of a general satisfaction with the quality of public transport 

or it may be because of the costs related to new digitalized mobility forms. If the latter is the 

case, it implies that such new modes will do little to enhance the choice set for this user group 

or for enhancing the ease with which they can get around. This raises concerns, as it is especially 

the group of public transport dependents who are at risk of transport poverty. Policy 

interventions that reduce the costs of using FFCS and SAV may thus be necessary if these new 

mobility forms are to enhance the inclusiveness of the transport system.  

3.4.3 Study Limitations and Outlook  

The limitations of this study are primarily related to the inclusion of unknown alternatives in 

the choice experiment, potentially leading to a hypothetical bias in the context of estimating the 

willingness-to-pay. The estimated model therefore only offers a first step in quantitatively 

analysing current preferences towards FFCS and SAV, but does not represent a full mode 

choice model for an era where these modes might become widely available. The choice 

experiment has been complex in the compositions of the choice alternatives, so various 

important aspects could not be included in order to not burden the respondents with an overload 

of information and options. Future studies could extend the scope of this experiment in terms 

of additional mode alternatives, trip purpose, and trip distance. It would be particularly 

important to consider slow modes as part of the choice-set in order to see the difference in 

perception of the new shared (automated) modes and walking and cycling. Also the important 

factors waiting time and travel time reliability were not included in the choice experiment. 

These could, however, prove to be quite influential for the perceived utility of FFCS and SAV, 

since for these modes a new dimension is added in this respect, namely the uncertainty of 

vehicle availability. Finally, future work could address the issue of the dominant alternative 

specific constants by including additional factors explaining the preference towards FFCS and 

SAV, such as trust in the new technology or the concept of reliability in regard to on-demand 

transport services.  

 

The results presented in this study allow examining how different user groups currently 

perceive free-floating car-sharing and shared automated vehicles for commuting purposes. It is 

likely that mode perception changes with the level of familiarity with it, therefore it will be 

necessary to continuously update mode choice preference of the different user groups towards 

new forms of shared mobility along with their introduction to the market. A series of attitudinal 

questionnaires accompanying gradually the introduction of the new vehicle technology and 

related new mobility services will allow future studies to monitor how the perceived utility of 

the new modes evolves over time with the increasing availability of large-scale free-floating 

car-sharing systems and shared automated vehicles. 
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Part II – Fleet Operation 

For a long time, the transport market recognized three major categories of transport modes: (1) 

active modes such as walking or cycling, (2) public transport modes such as buses or trains and 

(3) private motorized modes such as cars or motorcycles. Lately, new forms of transport 

technologies and transport services have been emerging which blur the lines between these 

three categories. Enabled by striking developments in communication technologies, these new 

modes and transport services aim at providing faster and more convenient transport tailored to 

the individual needs and preferences of their customers. Examples are all forms of so-called 

“shared mobility” – comprising electric kick-scooters, bikes, cars, motor scooters and ride-

hailing services – as well as smart cards used in public transport services, real-time travel 

information services or mobility-as-a-service (MaaS) concepts. All these new mobility options 

cater to users who value flexibility. The selling point of such flexibility-oriented services is, 

that by switching from “owning” to “using”, one does not have to worry about the 

responsibilities that come with possession – such as investment costs, insurances, maintenance 

– while getting the same, or even better, transport services than those privately owning such 

means of transport.  

 

Operating mobility services that do not require private vehicles is traditionally the domain of 

public transport authorities. However, when it comes to providing services that adapt flexibly 

to the transport needs of the users, public transport authorities have little experience. Planning 

paradigms for flexible mobility services are therefore often developed from the point of view 

of private operators, focusing mainly on service efficiency and profit maximization. In this 

thesis, a future is envisioned in which also public transport authorities have flexible mobility 

services in their portfolios, made financially feasible by employing self-driving vehicles. The 
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analysis of service performance, therefore, includes next to the efficiency of the service 

operation also the service provision equity and service externalities. In the following chapters, 

we simulate the operation of a centrally dispatched fleet of shared automated vehicles. In 

particular, we focus on the operational decision of where to place idle vehicles during the day. 

Various relocation strategies are tested for a small case study without constrained parking 

facilities (Chapter 4) and a larger case study, based on the city of Amsterdam, in which 

dedicated parking facilities are limited (Chapter 5).  
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Chapter 4 - Impact of Relocation Strategies for a 

Fleet of Shared Automated Vehicles on Service 

Efficiency, Effectiveness and Externalities 

Abstract 

The introduction of taxi-like transit services operated by shared automated vehicles comes into 

sight with the development of vehicle automation. In this paper, the operation of such a service 

is simulated for a generic grid network in order to determine the impact of different relocation 

strategies for idle vehicles on passenger waiting time, empty mileage and parking needs. The 

tested strategies consist of remaining idle at the latest drop-off location, returning to the initial 

position, relocating to a random location, relocating according to anticipated demand or 

relocating to a zone with a low vehicle supply. For the simulated case study, remaining idle 

outperformed the other relocation strategies in terms of service efficiency and service 

effectiveness, while the strategy of evenly or randomly dispersing vehicles over the network 

lead to the largest reduction of the number of parked vehicles per link, and the strategy of 

anticipating demand to the largest reduction of deadheading mileages. 

4.1 Introduction 

With the technology of vehicle automation progressing fast, the question arises on how the 

introduction of automated vehicles (AV) could impact traffic and mobility taken as a whole. 

Various studies depict the introduction of AV as an opportunity to offer a new demand-

responsive mobility service consisting of a large fleet of shared automated vehicles (SAV), 

operating a taxi-like service in urban areas (Azevedo et al., 2016; Cyganski, 2016; Fagnant & 

Kockelman, 2014). As automated vehicles are not commercially available yet, no SAV service 

is operational yet. For this reason, all analysis of SAV is performed based on modelling SAV. 

Especially suitable for simulating the process of real-time vehicle assignment to passenger 

requests and passenger acceptance of SAV services, which neither follow schedules nor can 

This chapter is based on: Winter, K., Cats, O., Martens, K., van Arem, B. (2017). Impact of 

Relocation Strategies For a Fleet Of Shared Automated Vehicles On Service Efficiency, 

Effectiveness and Externalities. 5th IEEE International Conference on Models and 

Technologies for Intelligent Transportation Systems, MT-ITS 2017 - Proceedings 
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guarantee transport security like privately means of transport such as car or bike, are agent-

based models (Maciejewski, Bischoff, & Nagel, 2016). When simulating the operation of SAV, 

a main focus lies on the dispatching process and the fleet size determination (Maciejewski et 

al., 2016; R. Zhang, Rossi, & Pavone, 2016). 

 

By constraining the waiting time under the condition that all, or most, requests should be served, 

the fleet size is deduced from peaks in demand, which results in an over-supply of vehicles in 

low-demand periods. This over-supply of vehicles leads to idle vehicles, which have to be 

managed in order to improve the efficiency of a SAV service and avoid undesired external 

effects. Research on the relocation or rebalancing strategies for SAV services can borrow to a 

certain extent from findings on relocation strategies for taxi fleets. Two main strategies for 

positioning idle taxis awaiting new passenger requests are applied in the field of taxi operation: 

strategic repositioning or empty cruising (Wong, Szeto, & Wong, 2014). The latter is 

unfavourable from a societal perspective due to its negative external effects of inducing 

additional traffic (Cai et al., 2016), which contributes to congestion and increases the emission 

of noise and greenhouse gases. In terms of strategic repositioning, taxis currently are often 

legally bound to await new passenger requests at designated taxi stands, a practice that might 

become obsolete with the introduction of SAV. Different to current taxis, SAV services can be 

designed so that there is no competition between the individual vehicles for serving passenger 

requests, as SAV can be programmed to comply fully to the orders of the central dispatcher (R. 

Zhang et al., 2016). This advantage allows developing strategies beyond the ones for 

conventional taxis on how and where idle SAV are relocated in cities.  

 

Relocation or rebalancing strategies featured in simulations of fleets of centrally dispatched 

vehicles providing a demand-responsive taxi-like service include the strategy of remaining at 

the last drop-off location (Fagnant & Kockelman, 2014; Maciejewski et al., 2016), move to 

meet excepted future demand (R. Zhang et al., 2016) or move to balance vehicle supply in the 

network (Azevedo et al., 2016; Fagnant & Kockelman, 2014; R. Zhang et al., 2016). In all these 

studies parking space is considered to be unlimited. 

 

In this paper, we study the impact different relocation strategies for idle SAV have on the 

service efficiency in terms of passenger waiting times, service effectiveness in terms of vehicle 

utilization and on external effects such as the consumption of parking facilities or additionally 

driven mileage due to empty relocation trips (i.e. deadheading). These issues are addressed by 

simulating the service of a fleet of SAV on a generic grid network. The vehicles are assigned 

to requests and relocated by a central dispatching centre. 

 

In the following, the relocation strategies are described in more detail, followed by a description 

of the key performance indicators used to measure the impact of the strategies. Also the 

simulation environment and the used case study are described. This is followed by an analysis 

of the results for the different relocation strategies. The paper is concluded with a discussion of 

the results.  

4.2 Methodology 

4.2.1 Relocation Strategies  

In this paper, five relocation strategies are tested in terms of their impact on service quality and 

external effects. Relocation is applied after a vehicles has served a passenger request and no 
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further passenger requests await being assigned to a vehicle. Relocating vehicles are not 

assigned to newly incoming requests. Vehicles are only relocated after they have served their 

first request in order to avoid unnecessary relocation actions before the start of service 

operations. The five tested relocation strategies are described in the following: 

 

For the strategy Remaining Idle, vehicles remain idle on the link (i.e. road segment) next to the 

drop-off location until they are assigned to their next request. The strategy Random Shuffle 

moves vehicles to an arbitrary link in the network, where they remain idle until assigned to their 

next request. For the strategy Rebounding, vehicles move to their original location, which can 

be depicted as an on-street depot or taxi stand. Once a vehicle has arrived at its original location, 

it awaits being assigned to its next request. For the strategy Demand Anticipation, vehicles 

move to a link on which future requests are anticipated. In this paper, it is assumed that 

passenger demand distribution is known a-priori. The demand is anticipated by drawing 

randomly from a set of pick-up locations of all requests being launched within the next 30 

minutes, so that each link gets chosen based on its actual probability of occurring as a pick-up 

link within the next half hour. For the strategy Even Dispersal, vehicles move to a random link 

situated in the zone with lowest ratio of idle vehicles per link. If more than one zone fulfils this 

profile, the vehicle moves to a random one out of these zones. The centre link of a zone can be 

depicted as an on-street depot or taxi stand. To avoid artificially increase the number of parked 

vehicles per link due to the assignment process, the vehicles currently heading to a zone as part 

of the relocation of empty vehicles are added to the count of idle vehicles per zone. 

4.2.2 Key Performance Indicators 

The impact of the above-described relocation strategies on service quality and externalities is 

tested for the following key performance indictors (KPIs): Service effectiveness is measured in 

terms of the average passenger utility based on their experienced travel attributes, determined 

as in (Nagel, Kickhoefer, Horni, & Charypar, 2016), and passenger waiting time in minutes are 

used. In order to measure service efficiency, the share of time vehicles are in use, thus not idle, 

and the fleet average of the share of deadheading time are determined. The latter is defined as 

the share of the overall driving time, which includes the time a vehicle serves passenger requests 

(occupied driving time, pick-up and drop-off time) and the time vehicles are deadheading, i.e. 

driving emptily (approaching a request, relocating). The undesired service externalities are 

measured in terms of the average empty driven mileage per vehicle, the maximum number of 

idle vehicles per link (link occupancy), and the total duration of vehicles remaining idle on a 

link during peak hours. 

4.2.3 Simulation Environment 

To determine the impact of relocation strategies on the performance of a centrally operated fleet 

of SAV, the operation of such a fleet is simulated in the agent-based simulation model MATSim 

based on the standard Dynamic Transport Services module (Maciejewski, 2016). Vehicles and 

travellers are modelled as dynamic agents: vehicles perform tasks according to their individual 

schedules, which is constantly updated by the dispatcher, while travellers can deviate from their 

original travel plan at every simulation time step. Each simulation run corresponds to a whole 

day. While the agents evolve in their decision making from day-to-day in order to optimize 

their choices, there is no learning process for vehicles or the vehicle dispatcher. Only one 

dispatching strategy, including a relocation strategy, is applied per simulation run. To reduce 

computational effort, the central vehicle dispatcher is updated only every 30 seconds. 

Passengers adapt their plans based on a scoring strategy based on comparing the utility of 
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various plans, the current standard scoring function in MATSim is the Charypar-Nagel Utility 

Function (Nagel et al., 2016). The routing strategy of the vehicles is performed by a least-cost 

path search, with costs being determined based on a combination of travel time and travel 

distance. For dispatching the vehicles, i.e. assigning vehicles to passenger requests, various 

strategies are available, in this paper a strategy adapting to over- and undersupply of vehicles, 

referred to as Rule-Based (Maciejewski et al., 2016), is applied. Throughout the simulations, 

the travel demand and the vehicle fleet in size and composition remains a static input. The 

advantages of MATSim are a fast computational speed and, particularly important for 

modelling demand-responsive transport, a strong behavioural model underpinning passengers 

travel choices (Maciejewski et al., 2016). 

4.2.4 Case Study 

Scenario Description 

As a testbed for relocation strategies for SAV, the operation of 25 vehicles in a grid-network 

consisting of 62 nodes connected in two directions by equal links of a length of 600 meters is 

simulated. The free-speed per link, and thus the maximal speed of the SAV, has been set to 15 

km/h in order to mimic urban traffic conditions. Due to the limited number of simulated 

vehicles, congestion effects are not observed and travel times are not stochastic. The grid-

network has been divided in quadratic zones (1500 x 1500 meters) in order to mimic city 

quarters. The fleet size has been determined so that in average requests can be served within 

five minutes given the above-described scenario. The fleet size is not subject to an optimization 

process and is given as an input to the simulation. The vehicles are initially randomly distributed 

over the network, starting at the same link in each iteration. 

 

The operation of the SAV is described by the following setting: after a request has been 

launched, a vehicle is assigned to that request based on the rule-based algorithm described in 

(Maciejewski et al., 2016). The pick-up time per customer is set to 2 minutes, the drop-off time 

is set to 1 minute. The vehicles are routed according to the A* algorithm inherent to MATSim.  

 

The demand for which the operation of the SAV is simulated, is generated in such a way that it 

mimics urban travel demand. The demand profile was created as described in the following: 

Each travelling agent performs two trips, going from home to work and back, by using a SAV. 

The morning peak is generated over four hours (between 6.00 a.m. and 10 a.m.) with a normal 

distribution and a standard deviation of 30 minutes. The evening peak is generated by adding 

per agent to the individual departure time from home in the morning a working time of seven 

hours in addition to a random component, which is distributed over two hours, with a standard 

deviation of one hour. The result of these assumptions is that in the morning a sharper peak in 

demand is modelled than in the evening (Figure 4.1). This allows observing the system 

performance in two differing demand conditions. In terms of spatial distribution, two typical 

urban settings are mimicked, in which home locations are situated on the more outwards links, 

while work locations are located in the centre of the network (Figure 4.2). In the first case, the 

home and work locations are evenly distributed among the two areas. In the second case, an 

off-centered demand is generated: the links on the left side of the grid network, framed by the 

black rectangle in Figure 4.2, are twice as likely to be a home or work location as the links in 

the right side. 
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Figure 4.1: Simulated Demand in the morning peak (left) and evening peak (right) 

 

 

 

Figure 4.2: Spatial situation of the home locations (light gray) and the work locations (dark grey) in 

the grid network. In the case of off-centered demand, the likelihood of a link being home/work location 

is twice as high in the black rectangle 

Simulation Settings 

Travelling agents in MATSim select the plan for the next simulated day based on the 

performance of previous plans (Nagel et al., 2016). The memory of each agent is set to 

maximum 5 iterations, or simulated days. In the beginning, agents can shift their departure time 

for each trip for up to 15 minutes earlier or later than the initial departure time. This adaptation 

of plans is set to occur in 10% of all cases within the first 80% of all iterations. Within the last 

20% of the iterations, no adaptation is possible anymore in order to achieve a fixed choice set 

needed for a stable outcome for the choice estimation.  

 

For each relocation strategy, 150 iterations, or simulated days, have been performed in order to 

ensure that a stable plateau for the average score of the passenger plans has been reached. The 

comparison between the different strategies in terms of the KPIs is always performed for the 

150th simulation run. The strategies Random Shuffle, Demand Anticipation and Even Dispersal, 

involve stochastic components in selecting the destination of relocating vehicles. Therefore 

multiple simulation runs have been performed for these strategies, and all following results are 

an average of these multiple runs. The number of required runs N(m) has been determined for 

the standard deviation 𝑆𝐷(𝑚) of the KPIs, as described in Equation 4.1, based on m initial 

simulation runs, with the one leading to the largest number of runs being the decisive one: 

𝑁(𝑚) =  
𝑆𝐷(𝑚)∗𝑡

𝑚−1,
1−𝛼

2

�̅�(𝑚)∗𝜖
 (4.1) 

 

where �̅�(𝑚) is the estimated mean, 𝜖 is the accepted percentage error of �̅�(𝑚) and α is the level 

of significance. In all cases, the passenger wait time is the decisive KPI. Based on m = 10, 𝜖 = 

0.1 and α = 0.1, this results in 3 to 7 simulation runs per scenario.  
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4.3 Results 

The outcome for the KPIs under the different relocation strategies is presented in average values 

(Table 4.1) and is discussed in more detail in the following. 

Table 4.1: Average results of the relocation strategies 

Centred Demand 
Remaining 

Idle 

Random 

Shuffle 
Rebounding 

Demand 

Anticipation 

Even 

Dispersal 

Passenger Utility 136.97 136.85 136.89 136.88 136.85 

Average waiting 

time [min] 
3.67 4.22 4.01 4.05 4.14 

Average time share 

non-idleness [%] 
25.41 28.70 28.77 28.45 28.90 

Average time share 

deadheading [%] 
39.06 48.77 48.82 47.96 49.23 

Average 

deadheading 

mileage per vehicle 

[km] 

24.28 35.95 35.83 34.71 36.56 

Average duration of 

idle stays during 

peak-hours [min] 

4.32 3.58 3.26 3.45 3.54 

Off-Centred 
Demand 

Remaining 

Idle 

Random 

Shuffle 
Rebounding 

Demand 

Anticipation 

Even 

Dispersal 

Passenger Utility 137.04 136.90 136.90 136.93 136.89 

Average waiting 

time [min] 
3.45 4.14 4.13 4.01 4.20 

Average time share 

non-idleness [%] 
25.29 28.30 28.60 28.13 28.85 

Average time share 

deadheading [%] 
39.95 49.22 48.99 48.32 50.24 

Average 

deadheading 

mileage per vehicle 

[km] 

24.41 35.94 35.26 34.64 36.02 

Average duration of 

idle stays during 

peak-hours [min] 

3.52 4.30 3.53 3.91 3.97 

4.3.1 Passenger Utility and Passenger Waiting time 

The passenger utility reflects how close to his/her desired plan an agent could perform his daily 

activities. It can be seen from the results presented in Table 1, that the various relocation 

strategies had only a negligible impact on the passenger utilities for the simulated case studies. 

This has to do with the simplicity of the simulated scenarios, in which departure time could be 

altered. Location or mode choice were not simulated, which naturally leads to little variance in 

the performed plans and thus also in passenger utility. The here presented passenger utilities 

should thus not be considered as the actual utility for passengers making use of SAV, but solely 
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as a reflection on the effectiveness of the service provided under the different relocation 

strategies.  

 

It can be concluded that the various relocation strategies play only a minor role in the case 

studies for the overall service. The reason for that lies in the, compared to the overall travel 

time of the agents, short average waiting times (Table 4.1). The average travel time per 

passenger for the centred demand is 13.52 minutes, for the off-centred demand 13.43 minutes. 

This includes 2 minutes pick-up time and 1 minute drop-off time. 

 

 

 

Figure 4.3: Average waiting times per hour per passenger for the centered demand (top) and the off-

centered demand (bottom) 

 

The tested relocation strategies have a great impact on service efficiency, as can be seen in the 

differences in average waiting time (Table 4.1). These differences are especially large for the 

off-centred demand, with Even Dispersal leading to an average waiting time 20% higher than 

the one for Remaining Idle. The reason for the short waiting times in case of Remaining Idle 

lies in the nature of the simulated demand: as each agent performs only two activities per day, 

it is favourable to remain close to the main drop-off areas. Therefore the more interesting 

comparison can be made among the strategies actually relocating vehicles: the strategies 

Rebounding and Demand Anticipation lead to the lowest waiting times for the centred demand 

and Demand Anticipation also in the case of off-centred demand. This is an expected outcome, 
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as the relocation according to future demand has the pronounced aim to reduce waiting times, 

which is in particular advantageous if demand is not evenly distributed in the network. The 

worst performance in terms of waiting time is observed for the relocation strategy Random 

Shuffle for the centred demand (Table 4.1), which shows that for the simulated scenario any 

relocation strategy with a rationale more pronounced than a random relocation increases service 

effectiveness. The strategy Even Dispersal leads to the longest passenger waiting times in case 

of off-centred demand (Table 4.1). This is again a result of the nature of the demand favouring 

relocation strategies positioning vehicles as close as possible to the main drop-off locations, 

which stands in contrast to the rationale behind the Even Dispersal strategy which strives at 

service provision equity. However, it can be observed that in the abate of a demand peak it can 

be advantageous to distribute vehicles as evenly as possible over the network in case of off-

centred demand (Figure 4.3, bottom). 

 

As can be seen in Figure 4.3, the average waiting times are higher in the morning peak than in 

the evening peak. This is an expected outcome, as the demand per minute is highest in the 

morning peak. It can also be observed that the proactive relocation strategies outperform the 

Remaining Idle strategy in the phase of abate of the morning peak (between 10:00 and 11:00 

a.m.). This is an indicator that vehicle relocation strategies become in particular valuable in 

low-demand phases following high-demand phases. This becomes especially apparent when 

the demand is not evenly spread (Figure 4.3, bottom graph). In these periods the strategy 

Demand Anticipation and, in the particular case of the simulated demand also Rebounding, lead 

to the lowest waiting times. 

4.3.2 Driven Mileage and Vehicle Utilisation 

In terms of efficiency, again the strategy of Remaining Idle outperforms the strategies relocating 

vehicles for the simulated demand, for the same reasons as discussed above. When not 

relocating idle vehicles, about 10 driven kilometres per vehicle could be saved in the simulated 

case studies, and about 22% lower percentage (about 10 percentage points) of the deadheading 

time of the overall driving time (Table 4.1). This leads to a decrease of overall vehicle use time 

by 5% (about 3 percentage points) compared to the strategies relocating vehicles. 

 

Among the strategies relocating vehicles, the strategy of Demand Anticipation performs best in 

terms of deadheading mileage, since fewer, and shorter deadheading trips are needed when 

locating idle vehicles at or close to future pick-up locations. The worst performance in terms of 

deadheading occurs for the strategy Even Dispersal, for both centred and off-centred demand 

(Table 4.1). This is the result of spreading the vehicles spatially as much as possible. As can be 

seen in Figure 4.4, in case vehicles are relocated, the most deadheading miles are performed 

after a demand peak. This reflects that relocation is only performed in times of low demand, 

while in times of high demand and no demand vehicles are actively in use or remain idle at their 

assigned parking location, respectively. This finding is supported by the observation that during 

the more spread out demand during the evening peak hours, more deadheading miles are 

performed than during the more concentrated demand in the morning peak hours. 
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Figure 4.4: Average deadheading-km per hour per vehicle for the centered demand (top) and the off-

centered demand (bottom) 

 Centred Demand – home 
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Figure 4.5: Daily maximum number (blue) and second highest number (red) of idle vehicles per link in 

the home area (left) and the work area (right) for the centered demand (top) and off-centered demand 

(bottom) 
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4.3.3 Link occupancy and Parking Turnover Rate 

The consumption of space in the network by idle vehicles is a negative externality, as the 

simulated idle vehicle represents occurrences of urban on-street parking. Idle stays are analysed 

in the following in terms of link occupancy by parked vehicles and turnover rates. High numbers 

of idle vehicles per link is an undesired effect, as it indicates a local peak in spatial consumption 

by idle vehicles. In urban settings, high link occupancy by parked vehicles reduces the 

accessibility of facilities close to links where it occurs (Pierce & Shoup, 2013). Therefore, a 

relocation strategy is considered favourable when leading to as little idle vehicles per link as 

possible. 

 

As can be seen in Figure 4.5, in case of the centred demand the strategy Remaining Idle leads 

to the maximum number of parked vehicles per link in our case study. Random Shuffle, 

Rebounding and Even Dispersal lead to the least amount of parked vehicles due to the effective 

rationale behind these three strategies to spread out the vehicles as much as possible in the 

network. For the case of Rebounding, this is only true for the particular simulated case study 

where a maximum of two vehicles is initially parked per link. The strategy Demand 

Anticipation leads to more vehicles parked per link, as the demand simulated in this case study 

is concentrated in particular areas, which increases the likelihood of high link occupancy by 

parked vehicles in these areas. In the case of off-centred demand, this effect is even stronger, 

which makes Demand Anticipation the least favourable relocation strategy in terms of the link 

occupancy by parked vehicles. 

 

Next to the spatial component also the temporal component plays a role in determining parked 

idle vehicles. A relocation strategy is considered favourable when leading to a higher 

throughput of idle vehicles per link, thus to higher turnover rates. Higher turnover rates are 

beneficial as they allow more vehicles to use on-street parking facilities and thus increase again 

accessibility (Pierce & Shoup, 2013). The comparison of the average duration of idle stays 

during peak-hours, as indicated in Table 4.1, shows that Remaining Idle leads to the longest 

idle times for the centred demand as vehicles are not performing any relocation tasks and spend 

any idle time waiting for future requests parked. This can also be observed among the relocating 

strategies, where those performing the least deadheading tasks have the longest overall idle 

times. For all relocation strategies, it is observed that the largest number of idle stays has a 

duration of 30 seconds or less (Remaining Idle: around 55% of all stays, all other strategies: 

around 80%), which can in the following be neglected as they are a result of the simulation 

settings of updating the vehicle dispatcher only once every 30 seconds. Also not included are 

the idle times before, between and after the peak-hour demand specific to this case study.  

 

As shown in Figure 4.6, idle stays longer than 10 minutes range between 7% (Rebounding) of 

the stay tasks to 11% (Remaining idle). Only for the strategies Remaining Idle and Random 

Shuffle are noteworthy differences between the centred and off-centred demand case studies 

observed in terms of idle stay durations: for Remaining Idle the total number of idle stays during 

peak hours increases by 20% because fewer requests could be directly dispatched within 30 

seconds. This increases the share of stays not longer than 5 minutes from 72% to 84%. For 

Random Shuffle, the duration of the average idle stay task increases by 20%, mainly due to an 

increase in stay task with a duration longer than 10 minutes (from 8% to 12% of all peak-hour 

stays). Overall, the strategies Rebounding and Demand Anticipation showed to be the most 

favourable strategies in terms of parking turnover rates. 
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Centred Demand 

 
 

Off-Centred Demand 

 

Figure 4.6: Frequency of idle stays per idle time in minutes for the centered demand (top) and the off-

centered demand (bottom) 

4.4 Discussion and Conclusion 

The simulation of the operation of SAV with five different relocation strategies for idle vehicles 

in a simple case study allows quantifying the advantages and disadvantages of each strategy in 

terms of service efficiency, effectiveness and undesired externalities. The results of this study 

must be put into context with the simulated demand, which mimics rudimentarily urban travel 

demand flowing in and out of the city centre during morning and evening peak hours. In this 

setting, the strategy of Remaining Idle, for which no vehicles are relocated, has proven to be 

the most efficient in terms of passenger waiting time and most effective in terms of vehicle 

utilization and deadheading time. However, when it comes to the link occupancy by parked 

vehicles and parking turnover rates, this strategy was found to be the worst performer among 

those examined. Similar observations can be made for the strategy Demand Anticipation, which 

in the particular case study has effectively a similar effect as exhibited by Remaining Idle. In 

contrast, strategies aiming at distributing vehicles more evenly over the network show lower 

service efficiency and effectiveness because vehicles relocate more often and for longer 

distances, but reduce vehicle bunching and show higher parking turnover rates. Among the 

latter, the strategy Rebounding proved to deliver the best results for all KPIs. This is, however, 

an outcome very specific to the case study, where all vehicles where initially randomly 

distributed over the network. A future study may test the effect of more bundled depots or taxi 

stands on the performance of the proposed strategies. 

 

The simulation of the operation of a fleet of SAV with relocation strategies presented in this 

paper is very generic and the results concerning the performance of the strategies cannot be 

generalized. Major shortcomings are the neglect of stochasticity in traffic conditions and 

demand, the limitless capacity of links to store idle vehicles, which fails to represent the 

pressure on urban parking facilities and the resulting parking search induced traffic and 

prolonged travel times. It may also be questioned whether emptily relocating vehicles can be 

instantly made available to be assigned to future requests. Additionally, the strategies Demand 

Anticipation and Even Dispersal have been simulated in a simplified manner by including 

random components and not seeking the optimal relocation strategy per vehicle. Furthermore, 
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a combination of relocation strategies rather than the exclusive deployment of a selected 

strategy could yield great improvements. These shortcomings stress the importance for future 

research on relocation strategies of SAV, especially for more refined scenarios, in terms of 

describing the operation of SAV as well as simulating the service in a less generic setting. With 

more experiences gained in terms of vehicle automation, it will be especially important to 

analyse the user perception and demand of SAV services, and to determine new mobility choice 

patterns, e.g. mode choice or destination choice, resulting from large-scale demand-responsive 

services operated by automated vehicles. 

 

The operation of a large fleet of vehicles offering on-demand transportation service is impacted 

by the applied relocation strategy for idle vehicles, as shown in this study. The question on what 

best to do with such vehicles is often not thoroughly analysed in studies simulating large-scale 

taxi-like services, though it can have considerable effects on service efficiency, effectiveness 

and undesired externalities. With the spread of unregulated taxi-services such as provided by 

the company Uber and the prospect of the introduction of large fleets of demand-responsive 

services operated by AV, this question becomes increasingly important and should be analysed 

in more depth in order to ensure a successful introduction of the new demand-responsive urban 

mobility services. 
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Chapter 5 - Relocating Shared Automated Vehicles 

Under Parking Constraints: Assessing the Impact of 

Different Strategies for On-Street Parking  

Abstract 

With shared mobility services becoming increasingly popular and vehicle automation 

technology advancing fast, there is an increasing interest in analysing the impacts of large-scale 

deployment of shared automated vehicles. In this study, a large fleet of shared automated 

vehicles providing individual rides to passengers is introduced to an agent-based simulation 

model based on the city of Amsterdam, the Netherlands. The fleet is dimensioned for a 

sufficient service efficiency during peak-hours, meaning that in off-peak hours a substantial 

share of vehicles is idle, requiring vehicle relocation strategies. This study assesses the 

performance of alternative relocation strategies for on-demand passenger transport under 

constrained curbside parking capacity. Three zonal pro-active relocation heuristics are tested: 

(1) demand-anticipation, (2) even supply dispersion and (3) balancing between demand and 

supply of vehicles. The strategies are analysed in regard to service efficiency (passenger waiting 

times, operational efficiency), service externalities (driven mileage, parking usage) and service 

equity (spatial distribution of externalities and service provision). The demand-anticipation 

heuristic leads to the highest average waiting times because vehicles bunch around hotspots of 

demand. This results in an uneven usage of parking facilities, resulting in local shortages of 

parking spaces. The most favourable results in regard to service efficiency and equity are 

achieved with the heuristics balancing demand and supply, at the costs of higher driven mileage 

due to the relocation of idle vehicles. These results open up opportunities for municipalities to 

accompany the introduction of large fleets of shared automated vehicles with suitable curbside 

management strategies that mitigate undesired effects. 

 
 

This chapter is a revised version of: Winter, K., Cats, O., Martens, K., van Arem, B. 

Relocating Shared Automated Vehicles Under Parking Constraints: Assessing the Impact of 

Different Strategies for On-Street Parking. Under Review.  

 



58                                                                                               Providing Public Transport by Self-Driving Vehicles 

5.1 Introduction 

The development of technology for automatically driven vehicles is progressing fast. This raises 

not only questions about the impact of fully automated vehicles (AV) on future mobility and 

traffic patterns, but also on their impact on the existing infrastructure. High degrees of vehicle 

automation allow the introduction of vehicles that drive autonomously, which can thus be 

shuffled from one place to another without having a human on-board. This opens up new 

opportunities in the field of car-sharing, in which currently one of the main challenges is to 

balance the supply of car-sharing vehicles with the demand for them. In this paper, we analyse 

the performance of a large fleet of shared automated vehicles (SAV). Such cooperative fleets 

bring new challenges to the operators and regulators of such mobility services, as they neither 

follow fixed schedules nor fixed routes. One of these challenges is the question, how to deal 

with idle vehicles whose services are currently not required. This is especially a pressing issue 

in off-peak hours, when larger number of idle vehicles need to be managed. The focus of this 

study is put, in particular, on strategies for relocating idle SAV, and how these influence the 

performance of the transport service offered by SAV, as well as the consumption of parking 

space and the overall mileage driven by the SAV. The constraints caused by the scarcity of 

parking space is an issue often overlooked in past studies simulating the operation of SAV or 

similar on-demand transport services with unlimited parking facilities, despite the substantial 

impact such constraints have on the performance of such a service.  

 

The SAV transport service in this paper is envisioned as an on-demand transport service 

operated by a fleet of automated vehicles that require no human intervention (level 5 

automation; or level 4 automation if only operated on a selection of suitable roads). In countries 

with high labour cost, on-demand systems are currently either highly subsidized (and often 

limited to users with special needs or those living in remote areas) or expensive (and primarily 

used by strong socio-economic groups), with operating costs often more than three times higher 

than for schedule-based transit services (J. M. Anderson et al., 2014; Wright, Emele, Fukumoto, 

Velaga, & Nelson, 2014). By deploying AV, flexible door-to-door services could be 

implemented on a larger scale at much lower costs, which could become an important 

enrichment of the current schedule-bound public transit services. Another advantage of SAV 

is, that - differing to on-demand transport services operated by human drivers (e.g. ride-

sourcing) - vehicles can be programmed to fully comply with the central dispatcher’s orders 

and can relocate themselves accordingly (R. Zhang et al., 2016), and that vehicles belonging to 

the same fleet are not competing against each other for revenue. The results of the model 

analysis in this study would also hold for any non-automated on-demand transport service 

strictly following the advice of the central dispatcher.  

 

For an on-demand system operated by SAV to have sufficient spatial coverage and level-of-

service, large fleets of AV have to be employed, as various simulation studies have shown 

(Alonso-mora, Samaranayake, Wallar, Frazzoli, & Rus, 2017; Bischoff & Maciejewski, 2016; 

T. D. Chen, Kockelman, & Hanna, 2016; International Transport Forum, 2015). In these 

studies, thousands of shared AVs have been introduced to serve demand in large cities. Their 

search for the appropriate fleet sizes is mainly driven by targets concerning the level of service, 

most commonly expressed in passengers’ waiting times and/or trip times, either as an average 

or in terms of a minimum level of service. By setting these kinds of boundary conditions, fleet 

sizes are dimensioned to cater for the maximum demand occurring during peak hours. 

Consequently, there will be idle vehicles during off-peak hours, which can either be “stored” 

on the road network by letting the vehicles cruise empty or park on on-street parking facilities, 

or be sent to off-street parking facilities (depots). The problem of the relocation of idle vehicles 
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in the operation of large fleets of vehicles is one of the central challenges and a potential barrier 

for the introduction of large-scale shared on-demand transport services, be it for conventional 

taxi services or services operated by SAV (Babicheva, Burghout, Andreasson, & Fail, 2018; 

Dandl & Bogenberger, 2019; Sayarshad & Chow, 2017; Winter, Cats, van Arem, & Martens, 

2017).  

 

In this paper, idle vehicle relocation is not regarded solely as a supporting step to an efficient 

vehicle dispatching, but also as a means to manage idle vehicles not in use according to 

principles reflecting all stakeholders’ interests. With this vision on vehicle relocation, we move 

from the question on where to simply “store” idle vehicles on to the question, how vehicle 

relocation can effectively improve the service operation of a fleet of vehicles while mitigating 

undesired external effects caused by the service. In particular, the performance of three 

heuristics for the proactive relocation strategies Demand Anticipation, Supply Anticipation and 

Demand-Supply Balancing is tested. These relocation strategies are compared in three aspects 

for selected key-performance indicators: (1) performance of the SAV system, (2) external 

effects and (3) service equity provided by the SAV system. The relocation strategies are 

simulated for this analysis in an agent-based simulation model of a large-scale case study based 

on the city of Amsterdam, the Netherlands. The main contributions of this study can be 

summarized by the following: 

 

 Comparison of three pro-active relocation heuristics for shared automated vehicles 

under parking constraints. 

 Introducing a fleet of shared automated vehicles into an agent-based model for a large-

scale case study based on the city of Amsterdam.  

 Holistic impact analysis of SAV in regard to service efficiency, service provision equity, 

and service externalities.  

 

The remaining of this paper is structured as follows: In section 5.2, the problem of vehicle 

relocation for shared automated vehicles is described in more detail and approaches to this 

problem as described in the literature are discussed, and the three relocation strategies tested in 

this study are defined. In section 5.3, the modelling environment, the description of the network, 

the demand and the supply for SAV are described. In section 5.4, the simulation results are 

presented and analysed according to the impact criteria stated above. The paper is concluded 

with section 5.5, which provides a discussion of the results and an outlook on future research.  

5.2 Relocating Shared Automated Vehicles 

5.2.1 Problem Description  

In Figure 5.1, a schematic overview is given of the chain of operations necessary for the 

deployment of SAV: vehicle dispatching, vehicle routing, and vehicle relocating. Vehicle 

routing and vehicle dispatching are integral steps of the operation of SAV. Vehicle relocation, 

however, is an optional step, as it can be alternatively decided to only move the vehicle from 

its latest passenger drop-off location to the next passenger pick-up location once the vehicle has 

been dispatched to a new request (which can occur instantly in case there is a queue of unserved 

requests). However, adding the additional step of relocating the vehicle to a strategically chosen 

parking location can potentially improve the overall performance and level-of-service. 

Furthermore, it would also be essential for operating real-world SAV systems due to limited 
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parking facilities in urban environments. This is especially true in times where there is little 

demand for the service, e.g. during off-peak hours, which results in an oversupply of vehicles.  

 

 

Figure 5.1: Chain of problems for operating an on-demand transport service: dispatching, routing 

and relocating 

 

The relocation of idle vehicles has been described by the Empty Vehicle Redistribution 

Problem, which falls in the category of Vehicle Routing Problems, a subcategory of the 

Travelling Salesman Problem (Babicheva et al., 2018). Idle vehicle relocation has also been 

described as the Idle Vehicle Propositioning Problem, as a subcategory of Facility Location 

Problems (Sayarshad & Chow, 2017). These problems are NP-hard and are notoriously difficult 

to solve, especially in dynamic settings. For this reason, applying heuristics for the dispatching 

and relocation of vehicles in large cooperative fleets is the most common approach in simulation 

studies of large-scale on-demand transport systems.  

5.2.2 Network 

A directed graph 𝐺(𝑉, 𝐸) is used for representing the dynamic transport service network with 

𝐸 being a set of arcs (edges) and 𝑉 being a set of vertices. Each vertex 𝑣 represents an 

intersection between arcs and each arc e is described by its characteristics: link length, the 

maximum allowed driving speed, free flow capacity and the maximum parking capacity 

denoted by 𝜅𝑒
𝑚𝑎𝑥. At a discrete moment in time 𝜏, the time-dependent variables of current 

driving speed and the current free parking capacity 𝑐𝑒(𝜏) describe the state of the arc. 

Furthermore, 𝑍 denotes a set of zones, described by the set of arcs present in that zone 𝐸𝑧 and 

the time-dependent variables of the current free parking capacity of all arcs in zone z, 𝑐𝑧(𝜏) =
∑ 𝑐𝑒(𝜏)𝑒∈𝐸𝑧

. 

5.2.3 Demand for SAV 

The demand for SAV has been modelled based on the general population dynamics implemented 
in MATSim (see Nagel et al. 2016). In MATSim, travellers follow a daily plan, which consists of a 
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set of activities that they want to perform. For each activity, the location is known, as well as the 
desired start and end times and the mode the agents intend to use to reach the activity. Each 
traveller memorizes a set of these plans, for which the plans can vary in activity start and end times, 
modal choices or route choices, but always show the same sequence of activities. In the course of a 
repeated simulation of the same day, agents can try out different plans and improve parts of the 
plans according to predefined behavioural strategies also known as ‘innovation rules’. The plan 
selection is based on the concept of utility maximisation, as performing an activity and travelling 
towards an activity are scored based on their perceived utility. The repeated plan innovation and 
plan selection in the face of the resulting traffic states leads to an optimization of the agents’ plans 
through the co-evolutionary search for the resulting equilibrium (Balmer & Rieser, 2009), which is 
de facto also leading to a user equilibrium on the road network. 

 

The demand for SAV is expressed in the form of individual requests. Each individual request 

𝑞 ∈ 𝑄 is launched by an agent at time step 𝜏 at a pick-up (origin) location on an arc 𝑒𝑞
𝑜, where 

𝑄 is the set of all travel requests for SAV rides in the network under consideration. Information 

concerning the downstream drop-off location of a request is not used during the vehicle 

dispatching and relocating process. All requests that are not yet dispatched or are in the process 

of being dispatched are stored in the time-dependent set of open requests 𝑄(𝜏). 

5.2.4 Supply of SAV 

Each SAV follows, similarly to the travellers, a schedule for the whole day, which is imposed 

on it by a central dispatcher. In contrast to the travellers, who update their plans from day to 

day, the vehicles’ schedules are updated within each simulated day in response to passengers’ 

requests.  

 

The SAV are stored in a set of vehicles 𝐾. Each vehicle 𝑘 ∈ 𝐾 is described by its length, the 

maximum vehicle speed, its current location denoted by 𝑒𝑘(𝜏) and its current dispatching status. 

Vehicles are grouped in subsets according to their dispatching status: the subset 𝐾𝑠𝑒𝑟𝑣𝑒(𝜏), in 

which all vehicles currently assigned to dispatch a request (and are therefore moving – either 

empty towards a pick-up point or with a passenger on-board heading towards the drop-off 

location) are stored, and the subset 𝐾𝑖𝑑𝑙𝑒(𝜏), in which all idle vehicles currently not assigned 

to dispatch a request are stored. The latter has a subdivision, the set of vehicles that are not in 

use and relocating according to one of the relocating strategies 𝐾𝑟𝑒𝑙𝑜𝑐(𝜏) and the vehicles that 

are idle and parked 𝐾𝑝𝑎𝑟𝑘(𝜏). Relocating vehicles are, despite being on the move, considered 

to be idle and can at any moment be diverted from their relocation path in order to serve an 

incoming request. It holds that 𝐾𝑠𝑒𝑟𝑣𝑒(𝜏)  ∪  𝐾𝑖𝑑𝑙𝑒(𝜏) = 𝐾 and that 𝐾𝑟𝑒𝑙𝑜𝑐(𝜏) ∪  𝐾𝑝𝑎𝑟𝑘(𝜏) =
𝐾𝑖𝑑𝑙𝑒(𝜏) since these sets are mutually exclusive and collectively exhaustive.  

5.2.5 Vehicle Relocation Heuristics  

In regard to the transport service provided by the SAV envisioned in this study, many parallels 

can be drawn between SAV and the current taxis, which also provide on-demand transport 

services. For this reason, we include in the review of relocation strategies for SAV also the 

strategies applied to taxis today. There are multiple heuristic vehicle relocation strategies for 

vehicles of on-demand services, which can be divided into two groups: reactive and proactive 

relocation strategies (Babicheva et al., 2018). Reactive relocation means that vehicles relocate 

only upon passenger request, while proactive relocation strategies relocate vehicles in 

anticipation of future demand and/or supply states. In the latter case, the step of relocating and 

dispatching are interconnected. The different strategies differ also in regard to their overall goal: 
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while some aim at increasing the chance for an individual vehicle to be dispatched to requests 

as often as possible, others are designed to improve the overall service of a fleet, to reduce 

undesired externalities or to support scheduled public transport services in regions with 

underdeveloped coverage, e.g. when used as last-mile service.  

 

Two reactive relocations strategies can be distinguished: parking and cruising. Reactive 

strategies applying “parking” either park idle vehicles at their last drop-off location, which in 

the following we refer to as the strategy Remain, or send them to a taxi stand or depot. Though 

the reactive relocation strategy of parking at the last drop-off location is not commonly observed 

in the operation of demand-responsive transport services, it is often selected as a default option 

in simulation studies featuring SAV or similar on-demand transport services (Bailey & Clark, 

1992; Ben-Dor, Ben-Elia, & Benenson, 2019; Bierlaire, 2006; Fagnant & Kockelman, 2014; 

Maciejewski et al., 2016; Winter, Cats, van Arem, et al., 2017), implicating that idle vehicles 

park at the last drop-off location regardless of parking (capacity) constraints. The relocation 

strategy of Cruising is a phenomenon that can be observed in the real world when drivers of 

on-demand transport services are searching for potential customers while avoiding parking 

search and possible parking fees, as is the case for regular taxis, ride-hailing services and many 

para-transit services in the Global South (D. N. Anderson, 2014). Idle cruising increases the 

driven vehicle mileage and, by this, can contribute to congestion effects, increased fuel 

consumption or energy usage and increased emissions. This strategy has been included in 

simulation studies (R. Zhang et al., 2016), mainly as a means for benchmarking proposed 

proactive relocation strategies in regard to driven mileage and service efficiency.  

 

In this study, vehicles are assigned to incoming requests according to the “rule-based” 

dispatching strategy described in (Maciejewski & Bischoff, 2015; Maciejewski et al., 2016). In 

times of oversupply of vehicles, this dispatching strategy assigns the nearest vehicle to customer 

requests in a first-in-first-out (FIFO) order of the requests, and in times of undersupply of 

vehicles assigns the next idle vehicle to the closest open customer request. In case no open 

requests remain to be dispatched, the vehicles stay idle at the drop-off location of the last request 

they have been serving, the relocation strategy applied by default in the “rule-based” 

dispatching strategy is thus Remain. The Remain strategy does not take into account that in the 

real world, parking space and road space are limited resources. Letting vehicles simply wait at 

their latest drop-off location is hence an unrealistic representation of the operation of SAV or 

other comparable mobility services. We therefore consider three more advanced relocation 

strategies taking parking constraints into account, which we referred to as (1) Demand 

Anticipation, (2) Supply Anticipation and (3) Demand-Supply Balancing2. A detailed 

description of these strategies as used in this study and as found in the literature is provided in 

the following sections. The three strategies used in this study are composed of simple heuristic 

building blocks (described in pseudo-code in Figure 5.2), making them comparable and 

traceable. The first strategy aims at placing idle vehicle close to future demand, the second 

strategy aims at distributing idle vehicles throughout the network and the third strategy aims at 

meeting both goals of the previous strategies by mitigating future demand-supply deficits. All 

strategies are put into action on a zonal level. 

 

The relocation of an idle vehicle k is performed in all cases when there is no pending unassigned 

request and the vehicle in question has been serving a passenger request in the previous time 

step and is currently idle. The relocation strategy determines the vehicle destination link so that 

                                                        
2 Not all relocation strategies that were simulated, are presented in this chapter. In the Appendix, a  
complete overview over all simulated relocation strategies with a brief description is presented. 
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it moves from its current location 𝑒𝑘(𝜏) to the selected destination arc 𝑒𝑘
𝑑. The three pro-active 

relocation strategies analysed in this paper are based on predictions of future demand and supply 

per zone, for which a rolling horizon time 𝛼ℎ is defined, where 𝛼 is a parameter that sets the 

number of horizon windows considered, each of which is ℎ minutes long. For reasons of 

simplicity, we make usage of our full knowledge about future requests, the expected future 

demand is thus the true demand based on the agents’ plans,  and not an estimation thereof. The 

results for this strategy, therefore, are an overestimation of the performance of this relocation 

strategy, which in reality will be subject to prediction errors.  

 
if 𝑘 ∈ 𝐾𝑖𝑑𝑙𝑒 (𝜏) ⋀ 𝑘 ∈ 𝐾𝑠𝑒𝑟𝑣𝑒 (𝜏 − 1) ⋀ Q(τ) =  ∅ , 
 

// for the search of potential zones of destination, only include those with free parking available  
Zp  = {z ∈ Z |cz(τ)  >  0}  

 
Case “Demand Anticipation”: 

// determine set of potential zones of destination  
if max

z ∈ Z
 |Qz[τ, τh +  αh]| > 0 

for i = 1 to ζ  
zi = argmax

z ∈ 𝐙𝐩

(|Qz[τ, τh +  αh]| )  

Z′  ∪ {zi} 
Zp ∶= Zp\Zi 

z∗ = argmin
z ∈ 𝐙′

(d(ek(τ), ez)) 

Otherwise 
// determine closest zone with free parking available 
z∗ = argmin

z ∈ Zp

(d(ek(τ), ez) ) 

Case “Supply Anticipation”: 

if max
z ∈ Z

 |𝐾𝑧
𝑝𝑎𝑟𝑘[𝜏, 𝜏ℎ +  𝛼ℎ]| > 0  

for i = 1 to ζ  
Z′  ∪ {zi} 
Zp ∶= Zp\Zi 

z∗ = argmin
z ∈ 𝐙′

(d(ek(τ), ez)) 

Otherwise 
// determine closest zone with free parking available 

z∗ = argmin
z ∈ Zp

(d(ek(τ), ez) ) 

Case “Demand-Supply Balancing”: 

if max
𝑧 ∈ 𝑍

(|𝑄𝑧[𝜏, 𝜏ℎ +  𝛼ℎ]| − |𝐾𝑧
𝑝𝑎𝑟𝑘[𝜏, 𝜏ℎ +  𝛼ℎ]| ) > 0 

for i = 1 to ζ  

zi = argmax
z ∈ 𝐙𝐩

(|𝑄𝑧[𝜏, 𝜏ℎ +  𝛼ℎ]| − |𝐾𝑧
𝑝𝑎𝑟𝑘[𝜏, 𝜏ℎ +  𝛼ℎ]|) 

Z′  ∪ {zi} 
Zp ∶= Zp\Zi 

z∗ = argmin
z ∈ 𝐙′

(d(ek(τ), ez)) 

Otherwise 
// determine closest zone with free parking available 
z∗ = argmin

z ∈ Zp

(d(ek(τ), ez) ) 

// determine arc on which relocating vehicle will park 
ek̃ = argmax

e ∈ Ez∗

(|ce(τh +  αh)|) 

Figure 5.2: Pseudo-code for the relocation strategies simulated in this study 
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Relocation Strategy “Demand Anticipation”  

Demand-anticipatory strategies relocate vehicles to places where high demand for their services 

is expected in the near future. They can be observed in the real world where on-demand services 

are not strictly regulated and drivers have to compete for customers. As drivers typically lack 

information on (future) demand, this can lead to many vehicles heading to the same high 

demand locations, causing an imbalance in the supply of vehicles, which can lead to overall 

lower system performance, lower service availability in some areas, undesired bunching of 

vehicles in the network and an increase in driven mileage (D. N. Anderson, 2014; Cetin & 

Deakin, 2019; Sayarshad & Chow, 2017; Zheng, Rasouli, & Timmermans, 2018).The 

simulation of demand anticipatory strategies are either based on the assumption of full 

knowledge of the future demand (Hörl, Ruch, Becker, Frazzoli, & Axhausen, 2019; Winter, 

Cats, van Arem, et al., 2017; R. Zhang et al., 2016), or at least of the expected arrival rates 

(Sayarshad & Chow, 2017; R. Zhang et al., 2016), or aim at modelling the risk-taking 

preferences of the operator (van Engelen, Cats, Post, & Aardal, 2018). The quality of the 

forecast of demand for SAV depends on the aggregation level of the spatio-temporal demand 

forecast. A framework for tackling this problem is presented in Dandl et al. (2019), showing 

that using more aggregated zoning (edge length of 2.5 km) reduces empty mileage and hence 

improves the service provided by SAV. 

 

For the strategy Demand Anticipation, as formulated in this study, expected future requests are 

determined per zone for the time span between 𝜏 and 𝜏 +  𝛼ℎ, and are stored in the temporary 

set of cumulative open requests 𝑄[𝜏, 𝜏 +  𝛼ℎ]. From the set of ζ zones with the largest amount 

of open request, the zone z* closest to the current position of the vehicle 𝑒𝑘(𝜏) is chosen, under 

the condition that at there is currently at least one free parking spot available in that zone (see 

Figure 2). The distance 𝑑 to the zone is measured from the current location of the vehicle 𝑒𝑘(𝜏) 

and the arc closest to the centre of a zone, 𝑒𝑧. Within the selected zone, the arc with the largest 

number of free parking spots at the time step 𝜏 +  𝛼ℎ in that zone is selected to be 𝑒�̃�. The 

vehicle will relocate to the pick-up location of that request and park there upon arrival. To 

ensure that this will be possible, a parking spot is reserved on arc 𝑒𝑞
𝑜 at the time of the selection 

of the location, to which the vehicle will relocate to. 

 

In case that the pick-up location of none of the requests in 𝑄[𝜏, 𝜏ℎ +  𝛼ℎ] is in a zone with a 

residual parking capacity, the vehicle will park in the zone closest to the vehicle with free 

parking. Again, the arc with the largest number of free parking spots at the current time step 𝜏 

in that zone is selected to be 𝑒�̃�. 

Relocation Strategy “Supply Anticipation”  

Another proactive relocation strategy is the anticipation of the vehicle supply in the network. 

This strategy aims at spreading out idle vehicles evenly over the system. This can improve the 

overall service performance and contributes to service availability in areas with low demand. 

Supply-anticipatory strategies require fleet regulation, as it hinders the direct competition 

between the drivers in one fleet. Taxi services with a larger fleet can be regulated according to 

this strategy by distributing taxis over different taxis stands. For on-demand transport services, 

this strategy has been simulated mostly on a zonal level (R. Zhang et al., 2016). 

 

The strategy Supply Anticipation aims at an even dispersal of vehicles across the network based 

on the amount of available parking spots in the zones. For the time span between the current 

time step 𝜏 and the horizon time 𝜏 +  𝛼ℎ , the expected number of parked idle vehicles per zone 

𝐾𝑧
𝑝𝑎𝑟𝑘[𝜏, 𝜏 +  𝛼ℎ] is estimated, based on vehicle schedules and the current traffic state. Future 



Chapter 5 – Relocating Shared Automated Vehicles Under Parking Constraints  65                                                        

 

scheduling decisions are not considered in this process. From the set of ζ zones with the least 

amount of parked vehicles expected at 𝜏 +  𝛼ℎ, the zone z closest to the current position of the 

vehicle is chosen, under the condition that there is currently at least one free parking spot 

available in that zone, as formulated in Algorithm 2. Within that zone, the arc with the largest 

number of free parking spots at the time step 𝜏 +  𝛼ℎ in that zone is selected to be 𝑒�̃�. Again, a 

parking spot for the vehicle is immediately reserved on that arc.  

Table 5.1: Overview of the proactive idle vehicle relocation heuristics applied in simulation studies of 

fleets of on-demand transport and the Key Performance Indicators used to analyse them.  

Study Applied Relocation Strategy 

Service 

Efficiency 

Indicators 

Service 

Externality 

Indicators 

Service 

Equity 

Indicators 

Azevedo et 

al. 2016 

Demand-Supply Balancing: 

Relocating of vehicles between 

stations to balance out supply and 

demand 

Average passenger 

waiting time per 

person-trip 
-- -- 

Babicheva 

et al. 2018 

Demand Anticipation: Relocating of 

vehicles based on current and future 

demand at pick-up stations 

Demand-Supply Balancing: 

Reducing vehicle surplus or deficit 

at pick-up stations 

Average and 

maximal passenger 

time per person-

trip; total vehicle 

run-time  

-- -- 

Bischoff 

and 

Maciejewski 

2016 

Supply anticipation: Hourly 

rebalancing of vehicles at pick-up 

stations based on anticipated supply 

deficit while minimizing costs of 

rebalancing trip 

Average passenger 

waiting time per 

person-trip;  

Average vehicle 

utilisation (in 

hourly time 

shares) 

-- -- 

van Engelen 

et al. 2018 

Demand-Supply Balancing: 

Rebalancing of vehicles to balance 

out supply and demand 

Average passenger 

waiting time per 

person-trip 

Vehicle-Miles 

travelled (VMT); 

 

Percentage 

of rejected 

requests 

Fagnant and 

Kockelman 

2014 

Demand-Supply Balancing: 

Simulation of 4 strategies spreading 

idle vehicles out either according to 

“block balance” or move excess idle 

vehicle (any more than 2 per zone) 

to relocate to zones unoccupied by 

idle vehicles 

Average passenger 

waiting time per 

person-trip;  

Average vehicle 

utilisation (in 

VMT) 

 

Vehicle-Miles 

travelled (VMT); 

VMT caused by 

induced demand; 

Number of warm 

and cold starts 

per person-trip 

and per day 

-- 

(Hörl et al., 
2019) 

Demand Anticipation: optimized 
relocation under full knowledge 
of future demand based on 
feedforward fluidic optimal 
rebalancing algorithm 
Supply & Demand Anticipation: 
Even distribution of vehicles 
during off-peak hours and 
demand anticipatory relocation 
during peak hours based on 
adaptive uniform rebalancing 
algorithm 

Passenger 
waiting time per 
person-trip; fleet 
utilisation (active 
time per vehicle, 
empty mileage 
per vehicle); 
occupancy, 
operating time 

Average speed, 
trip length per 
passenger  

-- 

Sayarshad 

and Chow 

2017 

Demand-Supply Balancing: 

Simulation of a heuristics using 

queuing-based approximation on a 

zonal level, solved by Lagrangian 

decomposition 

User cost and 

system cost 

measured in 

waiting time 

-- -- 
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Winter et al. 

2017 

 

Supply Anticipation: Based on 

heuristic to balance supply on a 

zonal level 

Demand Anticipation: Based on 

heuristic to anticipate demand on  

Average passenger 

waiting time per 

person-trip;  

Average vehicle 

utilisation (in time 

shares) 

Maximum 

parking demand 

per link; 

average parking 

duration 

-- 

Zhang et al. 

2015 

Demand-Supply Balancing: Idle 

vehicles cruises for a couple of 

minutes in area with highest 

demand-supply deficit before 

parking there 

Average passenger 

waiting time per 

person-trip 

Average parking 

demand per SAV 

and daily parking 

demand of the 

total fleet 

Spatial 

distribution 

of parking 

demand 

Zhang and 

Pavone 

2016 

Demand-Supply Balancing: balance 

demand and supply per pick-up 

stations determined by k-means 

clustering 

-- 

Congestion 

effects 
-- 

Zhang et al. 

2016 

Cruising: Simulation of 1 algorithm 

randomly cruising idle vehicles; 

Demand Anticipation: 5 demand-

anticipatory algorithms 

Average passenger 

waiting time per 

person-trip 
-- -- 

Relocation According to “Demand-Supply Deficit Minimization”  

A third proactive strategy combines both perspectives by balancing demand and supply, which 

aims at balancing the anticipated demand and vehicle supply throughout the service area in 

order to ensure a high service efficiency. The implementation of this strategy requires fleet 

regulation in order to guarantee that drivers relocate to locations that are sub-optimal from the 

driver perspective, but optimal from the system perspective. Various heuristics and 

optimization approaches aiming at balancing the supply and demand have been simulated, most 

commonly either for pick-up stations or on a zonal level (Azevedo et al., 2016; Fagnant & 

Kockelman, 2014; Fagnant, Kockelman, & Bansal, 2015; Sayarshad & Chow, 2017; R. Zhang 

& Pavone, 2016; W. Zhang et al., 2015). 

 

The strategy of Demand-Supply Deficit Minimization applied in this study is a combination of 

the two previous relocation strategies. Idle vehicles are sent towards the zone with the highest 

supply deficit in relation to anticipated demand. This deficit is defined as the number open 

requests occurring between the current time step 𝜏 and the horizon time 𝜏 +  𝛼ℎ in zone z, and 

the number of idle vehicles at 𝜏 +  𝛼ℎ in that zone, similar to the “balance value” applied in 

(W. Zhang et al., 2015). The zonal demand-supply deficit is based on the simplifying 

assumption that open requests located in zone z are dispatched to idle vehicles located within 

the same zone. This assumption is used in devising the relocation strategy and has no impact 

on the actual request-vehicle matching by the dispatcher at time step 𝜏 +  𝛼ℎ.  

 

To determine the deficit value, the number of potentially available vehicles is subtracted from 

the number of open requests for each zone. Out of the set of ζ zones with the largest predicted 

vehicle deficit, thus with the highest deficit value, at time step 𝜏 +  𝛼ℎ, the one closest to the 

current vehicle location 𝑒𝑘(𝜏) is assigned as the destination zone 𝑧∗ for the relocating vehicle. 

In case that no zone is predicted to have a vehicle deficit at 𝜏 +  𝛼ℎ, the vehicle will relocate 

within zone 𝑧𝑘 in which it is currently located. Within the target destination zone for relocation, 

the arc with the largest number of free parking spots in that zone is selected to be 𝑒�̃�, as 

formulated in Algorithm 3. Again, a parking spot for the vehicle is reserved immediately on 

that arc. In case that none of the arcs in that zone has residual parking capacity, the vehicle is 

parked in the closest zone with free on the arc with the largest number of free parking spots at 

the current time step 𝜏.  
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5.2.6 Performance and Level-of-Service Synthesis 

There are several ways of assessing the performance of a relocation strategy, as shown in the 

overview of relevant literature in Table 1. Which strategy might be chosen depends on the 

objective that is formulated for services operated by the SAV. Different perspectives may be 

considered by the various stakeholders, such as the fleet operator, customers, municipalities 

tendering the on-demand transport services, other road users and residents of the city where 

such services are operated. The relocation of vehicles impacts the service efficiency, but also 

service externalities and service equity. Service efficiency can be defined from a user 

perspective (e.g in terms of average passenger waiting times per passenger trip) or from a 

supplier perspective (e.g. in terms of the ratio of vehicle–kilometres-travelled (VKT) without 

passengers on-board over the total VKT). The externalities of a service operated by SAV are 

the costs and benefits that affect those not making use of the service, which can be for example 

its contribution to congestion, undesired environmental effects or the use of public parking 

facilities. The equity dimension relates to the distribution of benefits and costs of the service 

over different population groups, notably as varying in their residential location. In terms of 

benefits, it relates to the variation in service quality as defined for instance in waiting times. In 

terms of costs, it relates to the distribution of congestion or the spatial pattern of the use of 

parking facilities. Table 5.1 provides a brief overview of simulation studies of on-demand 

transport fleets, the applied relocation strategies in these studies, and the key performance 

indicators employed in the assessment of the simulation results.  

5.3 Case Study Application 

As a simulation environment, the agent-based model MATSim has been used (Horni, Nagel, & 

Axhausen, 2016). The operation of the SAV has been simulated by applying the Dynamic 

Transport Services module of MATSim (Maciejewski, 2016). To analyse the impact of vehicle 

relocation strategies on the performance of SAV, the operation of SAV is simulated for a case 

study centred around the city of Amsterdam. The road network has been retrieved from 

openstreetmap.org (OpenStreetMap Contributors, 2018), by superposing a coarser network of 

arterial roads in the metropolitan area with a more detailed network within the city boundaries 

(Figure 5.3a). For analysing the spatial impacts of the different relocation strategies, the 

municipal area has been divided into zones based on the 4-digit postal codes, resulting in 82 

zones, as shown in Figure 5.3b. The zones used for the relocation strategies are thus not equal 

in terms of size, population, and parking facilities. However, also the current parking zone in 

the city of Amsterdam is based on the 4-digit postal code division for residential on-street 

parking, and on a clustering of 4-digit postal codes, grouped to 21 different parking zones, for 

general on-street parking. For this reason, we use the zonal division by 4-digit postal codes as 

an input parameter to our simulation study as well. 

 

In the following, we describe in more detail the set-up of the simulated scenario, in particular 

in regard to the simulated agents, their behaviour and their usage of SAV. An overview of all 

specifications of the Amsterdam scenario is shown in Table 5.3.  
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Figure 5.3: a) Network, b) zones, c) parking spots d) and initial parking location of the SAV, as well 

as of the simulated case study of Amsterdam, as well as the e) number of passenger pick-up requests of 

the simulated day per zone and f) passenger pickup requests per hour (each layer represents a zone). 

 

a. network with arterial roads covering the 

greater metropolitan area 

 b. network covering the city of Amsterdam and 

the zonal division (red) of the city of 

Amsterdam based on 4-digit postal codes 

 

 

 

c. location of the parking facilities 
 

d. initial parking positions of the SAV 

 

 

 

e. passenger pick-up requests per zone per day 
 

f. passenger pick-up requests per hour 
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Table 5.2: The ‘Amsterdam MATSim-Scenario’ at a glance. 

1. Network & Geography 

Number of simulated agents (represented by 20%) 767,495 

Network: number of links 31,131 

Network: number of nodes  17,385 

Area size: greater metropolitan area [in km2] 50,888 

Area size: core city (= service area of the SAV) [in km2] 211 

Number of zones covering the core city (= service area of the SAV) 82 

2. Specified Behavioural Model of the MATSim Agents phase 1 phase 2 final run 

routing algorithm Dijkstra 

coefficient for the utility of performing an activity (𝛽𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 16.25 

coefficient for arriving late is weighed (𝛽𝑙𝑎𝑡𝑒_𝑎𝑟𝑟𝑖𝑣𝑎𝑙) -48.75 

maximum plan memory of agents 5 3 1 

fraction of iterations after which plan innovation is disabled and score 

convergence is enabled [in %] 

85 100 100 

plan selection based on utility model [in %] 70 70 90 

plan innovations based on re-routing for car trips [in %] 10 5 5 

plan innovations based on changed departure time (±15 minutes) [in %] 5 5 5 

plan innovations based on changed single trip modes [in %] 10 10 0 

plan innovations based on changed sub-tour modes [in %] 5 10 0 

number of simulation runs 75 15 2 

 resulting modal share for SAV [in %] 4.5 4.3 4.3 

3. Mode Options and Specifications 

modes simulated by teleportation walk, bike, public transport 

beeline distance factor for teleportation 1.3 

teleportation speed: walking [in km/h] 5 

teleportation speed: cycling [in km/h] 15 

teleportation speed: public transport freespeed car travel3 

number of simulated SAV (represented by 20%) 12,500 

number of parking spots dedicated for SAV (represented by 20%) 15,000 

MATSim-specific dispatching algorithm for SAV “rule-based” 

re-optimization time step for SAV [in seconds] 60 

pick-up time for SAV [in seconds] 120 

drop-off time for SAV [in seconds] 60 

4. Average simulation runtime of 1 full day on desktop PC with Intel Core i5-3470 3.2 GHz, 16GB 

RAM; including replanning phase and dumping of output files 

without SAV [in seconds] 308 

with SAV, no relocation [in seconds] 648 

with SAV, “Demand-Anticipation” [in seconds] 1,715 

with SAV, “Supply-Anticipation” [in seconds] 23,043 

with SAV, “Demand-Supply-Balancing” [in seconds] 21,892 

                                                        
3 Differing to the MATSim default setting, the “teleportedModeFreespeedFactor” for the ratio between 
car speed and public transport speed has been set to 1.  
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5.3.1 Travel Demand 

The daily activity plans of the agents travelling within the case study network have been 

specified based on the outcome of the Dutch activity-based model ALBATROSS for the base 

year 2004 (Arentze & Timmermans, 2004). Its outcome is a travel demand model specifying 

the activities performed by each member of a household, including i.a. the start time and end 

time of the activity, the 4-digit postal code of the activity and the chosen travel mode to reach 

the activity location. The Dutch 4-digit postal code areas are quite large (see zonal division 

shown in Figure 5.3). For this reason, we attributed to each activity an actual address within the 

postal code area at random. The ALBATROSS data set has been reduced to households in 

which at least one household member performs at least one activity within the municipality of 

Amsterdam. For computational reasons, we simulate only 20% of the population, therefore each 

agent is weighted by a factor of five in the simulation. In doing so, we follow common practice 

(see also Maciejewski and Bischoff, 2016). This results in a total of 767,495 agents (represented 

by 153,499) who perform a total of 3,776,805 activities on a single day and move either by car, 

public transport or active mode (walking and cycling combined). The majority of the agents are 

based in Amsterdam, but a substantial share arrives from surrounding suburbs and from nearby 

towns situated in the greater metropolitan area. The altered data set used in this study and a 

detailed description of how it has been derived is publically available (see Winter and Narayan, 

2019). 

5.3.2 Specification of SAV and Their Infrastructure Needs 

Since automated on-demand transport services are not operational as of now, assumptions 

concerning their operational and technical specifications, as well as the assumptions on the 

passengers’ reception of such services remain speculative for the moment. For this reason, a 

simple scenario has been drawn regarding the technical and operational specification of SAV 

and their according infrastructural needs. The assumptions made on AV technology and 

infrastructure needs are reduced in complexity so that the simulation results remain traceable 

and the analytical focus can be put on the relocation strategies.  

 

In this study, SAV are offered as an additional mode alternative to private car, public transport 

and active modes. In terms of vehicle technology, SAV are regarded to be similar in their 

performance to private cars, they achieve thus the same driving speeds and have the same 

physical dimensions. In this study, SAV and private cars share the same road infrastructure, it 

is such a simulation of mixed traffic. In operational terms, the SAV are assumed to be operated 

as a centrally dispatched fleet which allows for sequential vehicle sharing. Car-pooling, i.e. 

simultaneous vehicle sharing, is thus not considered in this study. Vehicles are assumed to fully 

comply to the dispatcher and operate in a collaborative scheme. In regard to their infrastructural 

needs, it is assumed that they share the road infrastructure built for private cars and can drive 

on all links of the road network.  

 

To test the impact of the different relocation strategies, the fleet size has been set to 12,500 

vehicles, which leads to an average passenger-waiting time of 4 minutes – a value which we 

selected to represent an acceptable level of service. This fleet size for SAV is approximately 

2% of the simulated fleet size of private vehicles. For these vehicles, 15,000 curbside parking 

spots are reserved throughout the network within the limits of the city area, their location is 

shown in Figure 5.3c. We generated these parking spots per link-arc based on the link length, 

which therefore determines the storage capacities for idle vehicles per link. These generated 

parking spots are located in the middle of arcs representing residential streets situated within 

the city boundaries on streets with a maximum allowed speed of 50 km/h. At the beginning of 
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the simulated day, the SAV are parked randomly on the dedicated parking facilities, as shown 

in Figure 5.3d. The amount of dedicated parking spots has been selected so that sufficient 

parking space is provided to the SAV at all times throughout the simulation, and so that in 

addition some extra space is available to efficiently park the vehicles according to the relocation 

strategies. In this scenario, parking spots can be allocated and reserved by the same central 

dispatcher, who also performs the request dispatching. We capped the size of the set of 

candidate zones considered for relocation to three (ζ=3). 

5.3.3 Behavioural Model and Model Specifications 

The modal split present in the reduced ALBATROSS data set is not aligned with the modal 

split observed for the city of Amsterdam based on all trips taken within the city as well as trips 

with either their origin or destination within the city boundaries (Gemeente Amsterdam, 2016). 

To overcome this, the plans of the agents have been calibrated by simulation based on the co-

evolutionary learning process implemented in MATSim until a modal split similar to the one 

observed for the city of Amsterdam (including walking and cycling, which account for large 

shares of trips performed) has been achieved. The calibration has been performed under the 

conditions that the daily travel pattern remains showing two demand peaks due to commuting 

and that all agents reach their final destination within the simulated period. While the 

Amsterdam scenario has been carefully calibrated to reproduce the actual local overall modal 

shares, the simulated scenario has not been calibrated for more detailed traffic and travel data.  

 

Over time, MATSim agents can alter their daily plans following a set of day-to-day learning 

rules. The MATSim-specific settings in regard to this simulated learning-behaviour are 

presented in Table 5.3. After a completed simulation run of one day, agents either select their 

next plan from a set of plans they have memorized from previous simulation runs based on the 

plans’ scores, or alter parts of their plan according to pre-defined plan-innovation rules (see 

Table 5.3). The learning behaviour simulated in MATSim is based on the concept of utility. 

The utility of performing an activity is described by the activity duration, the waiting time in 

case of arriving too early, a potential delay, a potential early departure and the potential 

reduction of the desired time spend on the activity (Nagel et al., 2016). The coefficient for the 

utility of performing an activity, 𝛽𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is based on the value of the average hourly wage in 

Amsterdam in the year 2017, which is 16.25 Euro per hour (Gemeente Amsterdam, 2018b). 

The coefficient for arriving late is weighed three times as much as 𝛽𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, following the 

standard MATSim settings and the findings in Börjesson et al. (2012). The disutility of 

travelling depends on travel time and travel costs. The coefficient for travel time 𝛽𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒,𝑚 

is mode specific, while the one for travel cost 𝛽𝑡𝑟𝑎𝑣𝑒𝑙_𝑐𝑜𝑠𝑡 is generic, based on the assumption 

that costs are perceived in a rational manner. Additional mode-specific preferences are 

represented by the Alternative Specific Constants (𝐴𝑆𝐶𝑚). The cost parameters and the mode-

specific constants for travel time for the modes car, public transport, cycling and walking as 

well as the cost parameters are, where possible, based on values reported in literature (K. van 

Ommeren, Lelieveld, de Pater, & Goedhart, 2012) and are presented Table 5.2.  

 

The values for costSAV are based on values reported for the simulation of comparable services, 

which range between 14 €-cent/km and 91 €-cent/km, with most studies settling at price similar 

to the one used in our study (see Bösch et al. 2018; Gurumurthy et al. 2019; Simoni et al. 2019). 

The values for the perceived utility of SAV have been set to be the same as the ones for private 

car, since the way we envision this transport service is most similar to the one of the mode “car” 

in this model: passengers are moved inside a motorized vehicle, which is not shared with 

strangers, and provides an on-demand door-to-door transport service. Currently the state-of-
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the-art discrete choice models comprising the choice between SAV and the other modes 

included in this model are not unequivocally enough to make an assertive statement about the 

relative difference in the perceived utility of SAV and car (Ashkrof, Correia, Cats, & van Arem, 

2019; de Looff, Correia, van Cranenburgh, Snelder, & van Arem, 2018; Simoni et al., 2019). 

However, the specified behavioural model serves the purpose of creating a test-bed in which 

strategies for idle vehicle relocation for SAV can be analysed in regard to their service 

efficiency, externalities and equity. This can be achieved with the simplified model described 

in Table 5.2 and Table 5.3. Nevertheless, given the many uncertainties linked to the user 

preferences towards vehicle automation in general, and shared automated vehicles in particular, 

we refrain from analysing the impact of the relocation strategies on mode shifts and mode 

shares. The latter should be included in such an analysis once more reliable mode-choice 

models for SAV are available.  

Table 5.3: Constants and coefficients specified for the utility function formulating the mode choice 

behaviour of the agents 

Mode ASCm(q) βtravel_time,m(q) βtravel_cost costq 

Car 0.0 -10.7 1 30 €-cent/km  

Public Transport -8.3 -6.65 1 25 €-cent/km 

Cycling -1.0 -10.7 1 0 €-cent/km 

Walking 0.3 -6.65 1 0 €-cent/km 

SAV 0.0 -10.7  1 30 €-cent/km 

 

For this reason, we suppressed mode changes in the final model used to test the relocation 

strategies. To able to do so, we split the simulation process into three parts: (1) In the first 

calibration phase, we let agents incorporate SAV into their daily plans in the course of 76 

repeated simulations of one day. During the cause of these simulated days, agent mode choice 

behaviour stabilized, leading to a modal share of 4% for SAV, which equals approximately 

130,000 trips performed using SAV per day (Table 5.3). (2) The resulting plans of the final 

simulated day have been used as an input in the second simulation phase, in which the same 

day has been simulated in 16 runs. (3) The output of this second round has been used as an 

input for the final simulation, in which the same day is simulated only twice, while suppressing 

any mode choice innovations. The second simulation phase has proven to be necessary due to 

a particular feature inherent to MATSim’s Dynamic Transport Services module, which uses the 

exponential moving averages of link travel times over all iterations of a simulation for its 

dispatching algorithm. Without the intermediate step, the output of the last day of the first 

calibration phase would not lead to the same results of the first day of the final simulation. The 

applied solution to this problem has also been suggested in (Maciejewski & Bischoff, 2018). 

The demand for SAV is shown on a zonal level in Figure 5.3e, the temporal distribution of the 

requests for SAV are shown in Figure 5.3f, in which the requests per hour per zone are stacked 

up on top of each other in layers. 

 

During the learning phase of the agents, the relocation strategy of “demand-anticipation” has 

been applied to capture the appropriate agent learning behaviour as a response to SAV service 

that is subject to parking restrictions. We opted for this strategy for computational reasons, as 

this strategy shows the shortest computational times (see Table 3). The resulting plans of this 

simulation are used as an input to all following simulations testing the different relocation 

strategies. The input the scenarios simulating the different relocation studies is thus the output 

of the simulations performed in the initialisation phases. It contains a set of agents and their 

activity schedules for the simulated day, including their travel behaviour. For the simulation of 
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the relocation strategies for SAV, these plans are not altered any further, the demand for SAV 

is thus kept inelastic. 

5.4 Results 

In the following, the results for the three relocation strategies of Demand Anticipation, Supply 

Anticipation and Demand-Supply Balancing are assessed for three categories of key-

performance indicators (KPI): (1) service efficiency, (2) service externalities and (3) the service 

provision equity. We also include into this discussion the results for the scenario Remain, for 

which vehicles simply wait at their latest drop-off location, irrespective of the availability of 

parking facilities. The Remain scenario is thus not a valid representation of the real-life 

constraints caused by the scarcity of road-space and parking-space. For this reason, we focus 

on the comparison between the three scenarios in which idle vehicles have to relocate according 

to one of the relocation heuristics (Demand Anticipation, Supply Anticipation and Demand-

Supply Balancing), and not on the comparison between a situation with and without the 

relocation of idle vehicles4. However, we provide results for the scenario Remain in order to 

allow a comparison also to other simulation studies of SAV with this feature. All discussed KPI 

are based on the average results of 4 runs. The number of necessary runs per relocation strategy 

has been determined by a two-sided t-test between means with a 95% confidence interval.  

5.4.1 Service Efficiency 

The service efficiency is measured in KPI describing the quality of service from a passenger’s 

perspective, as well as KPI showing how efficiently the transport service can be operated. For 

an overview of these KPI, see Table 5.4, as well as Figure 5.4 and 5.5.  

Table 5.4: Key Performance Indicators regarding the service efficiency for the relocating strategies 

Demand Anticipation, Supply Anticipation and Demand-Supply Balancing. 
 

 
Demand 

Anticipation 

Supply 

Anticipation 

Demand-

Supply 

Balancing 

Share of empty driven mileage over total driven 

mileage: 
𝑽𝑲𝑻𝑺𝑨𝑽_𝒆𝒎𝒑𝒕𝒚

𝑽𝑲𝑻𝑺𝑨𝑽
 [𝐢𝐧 %] 

56.1 57.1 57.1 

Share of driven mileage for relocation over total 

empty driven mileage: 
𝑽𝑲𝑻𝑺𝑨𝑽_𝒓𝒆𝒍𝒐𝒄𝒂𝒕𝒊𝒏𝒈

𝑽𝑲𝑻𝑺𝑨𝑽_𝒆𝒎𝒑𝒕𝒚
 [𝐢𝐧 %] 70.5 75.0 75.2 

Share of time driven emptily: 
𝒕𝒕𝑺𝑨𝑽_𝒆𝒎𝒑𝒕𝒚

𝒕𝒕𝒕𝒐𝒕𝒂𝒍
 [𝐢𝐧 %] 14.0 14.5 14.6 

Average in-vehicle times per trip in SAV: 

𝒊𝒗𝒕𝑺𝑨𝑽 [𝒎𝒊𝒏] 
18.0 18.4 18.2 

Average and 95% percentile of passenger 

waiting time:  𝒕𝑺𝑨𝑽_𝒘𝒂𝒊𝒕;   𝒕𝑺𝑨𝑽_𝒘𝒂𝒊𝒕_𝟗𝟓% [𝒎𝒊𝒏] 
4.6 ; 12.1 3.6 ; 9.4 3.5 ; 9.1 

                                                        
4 For such a comparison, see the juxtaposition of the results for all simulated relocation strategies 
presented in the Appendix.  
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Waiting Times 

The average passenger waiting time 𝑡𝑆𝐴𝑉_𝑤𝑎𝑖𝑡 is with 3.5 minutes the lowest for the strategy 

Demand-Supply Balancing. The highest average waiting time with 4.6 minutes occurs for the 

strategy Demand Anticipation. The average waiting time for the Supply Anticipation strategy 

lies with 3.6 minutes close to the one of the Demand-Supply Balancing strategy. All three 

relocation strategies increase the passenger waiting times in comparison to the Remain scenario, 

for which the average passenger waiting time is 2.2 minutes. In regard to 95% percentile of the 

passenger waiting times  𝑡𝑆𝐴𝑉_𝑤𝑎𝑖𝑡_95%, the same trend than for the average passenger waiting time 

can be observed: with 12.1 minutes the highest value is reached for the strategy Demand 

Anticipation, with 9.1 minutes the lowest value for the strategy Demand-Supply Balancing, 

closely followed by the one for Supply Anticipation.  

 

We did not set a cap on the maximum waiting times, therefore no requests have been declined 

or cancelled by passengers. This leads to a maximum passenger waiting time of 189 minutes in 

the scenario Remain. For the scenarios with idle vehicle relocation, the longest maximum 

passenger waiting time is reached for the strategy Supply Anticipation (278 minutes), followed 

by the strategy Demand Anticipation (271 minutes) and Demand-Supply Balancing (252 

minutes). These very long waiting times cannot be interpreted as the expected maximum 

waiting times for an on-demand service operated by SAV, as it is not realistic that passengers 

would wait several hours for their ride to arrive. But these values show the extent to which the 

different strategy disadvantage passengers in different areas, which is discussed in more detail 

in the following sections.  

Empty Driven Mileage 

The total driven mileage for a fleet of SAV is composed of the VKT with passengers on-board 

as well as VKT driven emptily. The ratio between the VKT with and without passengers on-

board is an important KPI for the efficiency of the service. In our scenario, the average trip 

length for trips taken in SAV is approximately 12 kilometres, but the total VKT travelled per 

trip is a threefold of this once idle vehicle relocation is introduced. In the course of a day, SAV 

are driving emptily (𝑉𝐾𝑇𝑆𝐴𝑉_𝑒𝑚𝑝𝑡𝑦) for two different purposes: (a) moving from the latest drop-

off location to the assigned parking spot leads to empty VKT due to relocation 

(𝑉𝐾𝑇𝑆𝐴𝑉_𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑛𝑔) and (b) moving from to the parking spot to the next pick-up location. A 

leading KPI to measure the efficiency of the operation of an SAV service is the share is of the 

empty driven mileage 𝑉𝐾𝑇𝑆𝐴𝑉_𝑒𝑚𝑝𝑡𝑦 of the total driven mileage 𝑉𝐾𝑇𝑆𝐴𝑉, which varies between 

56.1% and 57.1% for all three relocation strategies. If vehicles are not relocated, as simulated 

in the scenario Remain, this ratio drops to 10.2%. 

 

When looking in more detail at what causes the empty VKT, it can be observed that the 

relocation strategy Demand Anticipation has with 70.5% the lowest share of empty VKT for 

relocating vehicles 𝑉𝐾𝑇𝑆𝐴𝑉_𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑛𝑔, and thus, conversely, has the highest shares of empty 

VKT for approaching passengers at their respective pick-up locations. The strategies Supply 

Anticipation and Demand-Supply Balancing have with 75.0% and 75%, respectively, a higher 

share of empty VKT caused by relocation, and conversely fewer empty VKT caused by moving 

from their parking location to the pick-up locations of their next customer.  

Trip Times 

The time for a trip in an SAV experienced by a passenger is a combination of waiting time, the 

time it takes to enter the vehicle (set to 120 seconds in the simulation), the in-vehicle time and 

the time it takes to exit the vehicle (set to 60 seconds in the simulation). For the scenario 
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Remain, the average in-vehicle time per trip (𝑖𝑣𝑡𝑆𝐴𝑉) is 15.4 minutes, and the average trip time 

is 20.6 minutes. When introducing idle vehicle relocation, the average trip times increase by 

factor 1.2, with Demand-Supply Balancing leading to an average trip time of 24.8 minutes, 

followed by Supply Anticipation (25.0 minutes) and Demand Anticipation (25.3 minutes). The 

difference in trip time between the strategy Demand Anticipation and Demand-Supply 

Balancing is 57 seconds, which translates in our scenario to a difference of 2042 passenger-

hours saved for users of the SAV in case of the strategy Demand-Supply Balancing. The 

differences in in-vehicle time originate solely from different levels of congestion, which is 

discussed in more detail in the following sections, since the demand is kept inelastic for the 

analysed case study. 

Service Efficiency: Summary 

Concerning service efficiency, it can be concluded that the strategy Demand-Supply Balancing 

leads to the shortest average passenger waiting times, which also leads to the shortest total trip 

times for the simulated case study. This comes however at the cost of longer in-vehicle travel 

times, which are a result of congestion effects caused by relocating vehicle to areas with high 

demand, as well as congestion elsewhere in the network due to vehicles spreading out in zones 

with an undersupply of vehicles. These local congestion effects due to vehicle bunching are the 

strongest for the strategy Demand Anticipation, which is also the strategy with the longest 

average passenger waiting time. However, when it comes to the shares of empty driven mileage 

or the time spend on relocating, is the strategy Demand Anticipation the most efficient for the 

simulated case study, and the strategy Demand-Supply Anticipation the least efficient one.  

Table 5.5: Key Performance Indicators regarding the service externalities for the relocating strategies 

Demand Anticipation, Supply Anticipation and Demand-Supply Balancing.  
 

 
Demand 

Anticipation 

Supply 

Anticipation 

Demand-

Supply 

Balancing 

Average driving speed for SAV: 𝒗𝑺𝑨𝑽  [
𝒌𝒎

𝒉
] 39.2 39.2 39.1 

Average driving speed of SAV with and 

without passengers on-board: 

𝒗𝑺𝑨𝑽_𝑰𝑽𝑻 ;  𝒗𝑺𝑨𝑽_𝒆𝒎𝒑𝒕𝒚  [
𝒌𝒎

𝒉
] 

38.9; 39.6 39.3; 39.1 39.0; 39.2 

Total mileage of SAV: 

 𝑽𝑲𝑻𝑺𝑨𝑽 [𝒊𝒏 𝟏𝟎𝟎𝟎 𝒌𝒎] 
3,519 3,610 3,608 

5.4.2 Service Externalities 

The externalities of SAV relocation strategies are analysed for three aspects: (1) the average driving 
speed as a proxy for congestion, (2) the total driven mileage as a proxy for energy consumption 
and potential emissions and (3) the spatial consumption of curbside parking space by SAV. For an 
overview of these KPI, see Table 5.5. 

Congestion 

As already pointed out in the previous section, the different relocation strategies lead to 

different levels of congestion. In this simulation, potential congestion effects caused by pick-

up and drop-off situation or potential lower flow density caused by mixed traffic with automated 
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and non-automated vehicles are not included, and the presented values might be therefore an 

underestimation of congestion SAV might cause.  

 

The average driving speed of the SAV (𝑣𝑆𝐴𝑉) in the scenario Remain is 46.4 km/h. When 

forcing vehicles to relocate when idle, the 𝑣𝑆𝐴𝑉  goes down by about 17% (see Table 5.5). Using 

the average speed as a proxy for congestion, it can be concluded that vehicle relocation causes 

undesired externalities in the form of additional disturbances in the network flows. To 

understand better, how and where the different relocation strategies can cause congestion, we 

analyse the driving speeds of SAV with and without passengers on-board separately. The 

average driving speed for SAV for the scenario Remain is 46.0 km/h with passengers on board 

(𝑣𝑆𝐴𝑉_𝐼𝑉𝑇) and 50.0 km/h without passenger on board (𝑣𝑆𝐴𝑉_𝑒𝑚𝑝𝑡𝑦). When introducing idle 

vehicle relocation, in particular 𝑣𝑆𝐴𝑉_𝑒𝑚𝑝𝑡𝑦 goes down (roughly by 25% for all relocation 

strategies compared to the scenario Remain), indicating that vehicles driving empty to and from 

their parking locations experience (and create) more congestion than those serving passenger 

request. The impact on 𝑣𝑆𝐴𝑉_𝐼𝑉𝑇 on the other hand is less strong, with the percentage difference 

being approximately 15% for all strategies compared to the scenario Remain. Looking in more 

detail at the differences between the relocation strategies, it can be observed that for the 

strategies that relocate idle vehicles closer to anticipated future demand (Demand Anticipation 

and Demand-Supply Balancing), 𝑣𝑆𝐴𝑉_𝑒𝑚𝑝𝑡𝑦 is faster than 𝑣𝑆𝐴𝑉_𝐼𝑉𝑇, and that the differences 

between these two speeds are more pronounced than for the strategy Supply Anticipation. This 

is a direct result of the boundaries set by the relocation algorithms, which leads in the case of 

anticipated demand to vehicle accumulation in the areas with the highest demand levels. As a 

consequence, idle vehicles are blocking each other when departing from the zones with high 

demand. The strategy Supply Anticipation, on the other hand, creates less of locally 

concentrated congestion, but slows down traffic flows more evenly in the network. The strategy 

Demand-Supply Balancing combines, in regard to congestion effects, the worst of both 

strategies and leads consequently to the lowest average driving speed. 

Driven Mileage 

In this study, the discussion of the effects of vehicle relocation of SAV on energy consumption 

and emissions is deliberately kept on an abstract level. No assumptions on the source of vehicle 

propulsion for the SAV is made, thus also no assumption on the magnitude of energy 

consumption, fine dust matter in the form tyre debris (see Kole et al. 2017), noise pollution (see 

Campello-Vicente et al. 2017) or other emissions can be made. The impact of the relocation 

strategies is instead based on the total driven mileage as a proxy, which can be used as input to 

any traffic emission estimation model. The total mileage driven by SAV is presented in Table 

5.5. 

 

For the scenario Remain, the total 𝑉𝐾𝑇𝑆𝐴𝑉 for the entire fleet is 1,707,415 km, which 

corresponds to an average of 13.2 km driven per trip served by SAV. When introducing idle 

vehicle relocation, the total VKT increase with more than factor 2. When applying the strategy 

Demand Anticipation, the total 𝑉𝐾𝑇𝑆𝐴𝑉 is 3,518,975 km, translating to 27.2 km driven per 

served passenger trip. The strategies aiming at spreading out idle vehicles more increase the 

total driven mileage even further, with 𝑉𝐾𝑇𝑆𝐴𝑉=3,609,493 km for the strategy Supply 

Anticipation and 𝑉𝐾𝑇𝑆𝐴𝑉=3,607,769 km for the strategy Demand-Supply Balancing, translating 

to approximately 27.9 km driven per served passenger trip. The results of these additionally 

VKT are overall lower driving speeds, as discussed in the previous section.  
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Figure 5.4: Average zonal parking usage (solid line) over the course of a simulated day. The 5th-95th 

percentile and 20th-80th percentile is shown by the shaded areas. 

Parking Space Consumption 

As a third aspect of service externalities, the curbside parking consumption is analysed. This 

analysis is conducted at a zonal level. For each zone, the parking space utilisation rate has been 
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determined on a minute basis and is averaged per hour, allowing to trace the parking use over 

time. 

 

In Figure 5.4, the course of the hourly parking usage averaged over all zones is shown. The 

average parking usage follows a similar pattern over the course of the day for the three 

relocation strategies, and averages to about 65% for all strategies for the whole day. However, 

the distribution of the parking usages for the strategy Demand Anticipation differs strongly to 

the one for the strategies Supply Anticipation and Demand-Supply Anticipation, which can be 

clearly seen when comparing the range of the 5th – 95th percentile and the 20th – 80th percentile. 

When applying Demand Anticipation, the spatial distribution of idle vehicles follows the 

demand patterns simulated in the case study, which is not evenly distributed, as shown in Figure 

5.3e and f. This leads to parking facilities in zones with high demand getting fully used, while 

parking spots in zones with lower demand remain unused. This effect is particularly strong 

during the off-peak hours, thus the periods in which most vehicle relocations happen, the 

variance in spatial distribution increases further.  

Parking Space Consumption 

As a third aspect of service externalities, the curbside parking consumption is analysed. This 

analysis is conducted at a zonal level. For each zone, the parking space utilisation rate has been 

determined on a minute basis and is averaged per hour, allowing to trace the parking use over 

time.  

 

In Figure 5.4, the course of the hourly parking usage averaged over all zones is shown. The 

average parking usage follows a similar pattern over the course of the day for the three 

relocation strategies, and averages to about 65% for all strategies for the whole day. However, 

the distribution of the parking usages for the strategy Demand Anticipation differs strongly to 

the one for the strategies Supply Anticipation and Demand-Supply Anticipation, which can be 

clearly seen when comparing the range of the 5th – 95th percentile and the 20th – 80th percentile. 

When applying Demand Anticipation, the spatial distribution of idle vehicles follows the 

demand patterns simulated in the case study, which is not evenly distributed, as shown in Figure 

5.3e and f. This leads to parking facilities in zones with high demand getting fully used, while 

parking spots in zones with lower demand remain unused. This effect is particularly strong 

during the off-peak hours, thus the periods in which most vehicle relocations happen, the 

variance in spatial distribution increases further.  

 

The parking usage depends on the shape, size and parking capacity of the zones, and is thus 

case-specific. For this reason, it is important to not just look at the average usage over zones 

and its respective variance, but also look at the distribution of zonal waiting times in the heat 

maps shown in Figure 5.5. These show that the strategy Demand Anticipation leads to a more 

unbalanced distribution of parked vehicles throughout the city than the other two strategies by 

concentrating idle SAV in high-demand areas in the North of the city, following the demand 

pattern shown in Figure 5.3e.  

 

In Figure 5.5, the hourly average of parking usage is shown for two moments in time: the initial 

parking usage in the first hour of the simulated day and the parking usage after the evening peak 

in the 21st hour of the simulated day. The strategy Demand Anticipation leads to more parked 

vehicles in the centre and the West of the city, while Supply Anticipation and Demand-Supply 

Balancing lead to more parked vehicles in the South and East of the city, and overall to a more 

even distribution of idle vehicles in the city area.  
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Figure 5.5: Zonal parking space utilization rate for the three relocating strategies Demand 

Anticipation, Supply Anticipation and Demand-Supply Balancing after the evening peak hour (21h-

22h). The initial parking usage per zone is shown at the top. 

Service Externalities: Summary 

In regard to undesired externalities, it can be concluded that the strategy Demand Anticipation 

leads idle vehicle congregating in high demand areas and thus causes local congestion and an 

uneven usage of the parking facilities, but also creates less congestion in the network overall 

and contributes the least to energy consumption and emissions. The strategy Demand-Supply 

Balancing, on the other hand, is less favourable for reducing undesired emissions and 

contributes more to congestion in the network than Demand Anticipation. The strategy Supply 

Anticipation causes the highest number of VKT, but outperforms the strategy Demand-Supply 

Balancing in regard to congestion, as this strategy causes less local congestion than the other 

two strategies anticipating future demand.  

5.4.3 Service Provision Equity 

In regard to undesired externalities, it can be concluded that the strategy Demand Anticipation 

leads idle vehicle congregating in high demand areas and thus causes local congestion and an 

uneven usage of the parking facilities, but also creates less congestion in the network overall 

and contributes the least to energy consumption and emissions. The strategy Demand-Supply 

Balancing, on the other hand, is less favourable for reducing undesired emissions and 

contributes more to congestion in the network than Demand Anticipation. The strategy Supply 

Anticipation causes the highest number of VKT, but outperforms the strategy Demand-Supply 
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Balancing in regard to congestion, as this strategy causes less local congestion than the other 

two strategies anticipating future demand.  

Waiting Time Distribution 

The Gini-index for the passenger waiting times 𝐺𝑤𝑎𝑖𝑡  for the scenario Remain is 0.453, and for 

the average zonal passenger waiting times 𝐺𝑤𝑎𝑖𝑡,𝑧, the Gini-index is 0.215. For the scenarios with 

idle vehicle relocation, the highest Gini-index, and thus the most unequal distribution for 

passenger waiting times occurs when applying the strategy Demand Anticipation (𝐺𝑤𝑎𝑖𝑡 = 

0.554). This is also the strategy that leads to the longest average waiting times (Table 5.4), 

which shows that the gains in overall reduced waiting times by placing vehicles strategically in 

anticipation of future demand not only comes at the cost of overall longer waiting times for 

passengers, but that these are also particularly unequally distributed by systematically 

disadvantaging passengers in zones with lower demand. This can be also be seen in the spatial 

representation of averaged waiting times, where it obvious that passengers in the West of the 

city benefit from shorter average zonal waiting times compared with those in the North-East 

and South. The lowest Gini-coefficient for the total waiting times is achieved with the strategy 

Demand-Supply Anticipation, which is also the strategy leading to the lowest average waiting 

times (Table 5.4). In the simulated case study, a more equal distribution of all waiting times 

leads thus to higher efficiency in the service operation in regard to average waiting times.  

Table 5.6: Key Performance Indicators regarding the service equity for the three relocating strategies 

Demand Anticipation, Supply Anticipation and Demand-Supply Balancing. Zones for which no 

demand occurs are left blank. 
 

 Demand Anticipation Supply Anticipation 
Demand-Supply 

Balancing 

Gini-coefficient 
for passenger 
waiting times 
𝑮𝒘𝒂𝒊𝒕 

0.554  0.517  0.507  

Gini-coefficient 
for average zonal 
passenger waiting 
times 𝑮𝒘𝒂𝒊𝒕,𝒛 

0.291 0.276 0.265 

Zonal average 
waiting times [in 
minutes] 

 
   

Service Provision Equity: Summary 

Regarding the service provision equity, it can be concluded that while the strategy Demand 

Anticipation leads to the shortest waiting times in average, it also leads to the least equal waiting 

times. When positioning idle vehicles close to future requests, the short approach times which 

can be achieved for a large groups come at the cost a few who experience very long waiting 

times. More equally distributed waiting times can be achieved for strategies that aim spreading 
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out idle vehicles more, such as Demand-Supply Balancing and in particular Supply Balancing. 

This however leads to an increase in average waiting times.  

5.5 Discussion and Conclusion 

5.5.1 Impact of Idle Vehicle Relocation  

With shared mobility and on-demand transport services gaining steadily more ground, and the 

automation of vehicles pushing into the field of transport as the next ‘disruptive’ technology, 

the need for reliable simulation studies for testing operational strategies for AV and SAV is 

increasing. This study has shown that an important component of operating such vehicles in a 

large fleet is the relocation of idle vehicles during off-peak hours. In the urban context, space 

for idle vehicles is scarce and parking is often constrained. The relocation of idle vehicles is 

thus a necessary consequence of real-world parking constraints. For this reason, it is important 

to test for the impact of different relocation strategies when introducing SAV to a city, and 

specify them for example in a tendering process or when tailoring curbside management 

strategies. Including vehicle relocation under parking constraints to the simulation of the 

operation of SAV is thus an important step to increase the realism of the simulation and 

consequently improve the analysis of such transport services. For this reason, it is not the 

comparison between the Remain strategy and the simulated relocation per-se that is subject of 

analysis, but rather primarily the comparison between the different relocation strategies, which 

take the real-life constraints caused by the scarcity of road-space and parking-space into 

account. However, there are two main insights gained from referencing the scenarios with pro-

active relocation strategies against a situation where parking constraints are not accounted for 

(i.e. Remain): (1) The relocation of idle vehicles does not necessarily lead to performance gains 

for a fleet of vehicles providing on-demand transport services. As a consequence, there is a risk 

of overestimating the performance of such fleets in simulations in case the relocation of empty 

vehicles is not accounted for. (2) Relocating idle vehicles in a pro-active manner might be 

outperformed by reactive relocation strategies in regard to the service efficiency and the total 

driven mileage. Because this finding is case-specific and depends on the spatial and temporal 

distribution of the demand, more research is required in order to determine the conditions under 

which it is favourable to apply reactive or proactive relocation strategies. 

 

In this study, three pro-active relocation heuristics based on zonal parking availability are 

compared to each other, in terms of service efficiency, service externalities and service 

provision equity, for a case study based on the city of Amsterdam, the Netherlands. 

Performance differences could be detected regarding the quality of the offered service (average 

passenger waiting times, average trip times), the impact on traffic (local congestion, total driven 

mileage), the parking space usage and the spatial service provision equity (distribution of 

passenger waiting times).  

 

The strategy Demand Anticipation, which relocates vehicles to zones with the highest number 

of upcoming requests, leads to short average passenger waiting times in these zones. This, 

however, comes at the cost of passengers experiencing longer waiting times in zones with less 

demand. This relocation strategy leads, overall, to the longest average passenger waiting times, 

and to the least equal service provision. This strategy also causes bunching of vehicles in areas 

close to demand hotspots, which causes local congestion and high usage of parking facilities in 

those areas. As a consequence for this particular case study, vehicles drive shorter distances 
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when empty, leading to more efficient usage of the rolling stock, and cause less overall 

congestion in the network compared to the other two relocation strategies.  

 

The strategy Supply Anticipation aims at distributing idle vehicles evenly over the zones, 

irrespective of the expected demand. This strategy leads, in comparison to the other two 

strategies, to the highest number of kilometres driven by SAV per served trip, as the SAV have 

longer access routes for reaching pick-up locations of passengers compared to relocation 

strategies taking into account future demand. This reduces the efficiency of the fleet in that 

regard. However, distributing idle vehicles evenly over zones leads to a more balanced usage 

of parking facilities. 

 

The strategy Demand-Supply Balancing aims at reducing the deficit between future demand 

and future vehicle supply per zone, and thus combines the goals of the previous two strategies. 

The resulting KPI for this strategy are consequently also situated in most cases between those 

of the two previous relocation strategies, with the outcome of the Demand-Supply Balancing 

strategy being much closer to the one of the strategy Supply Anticipation than for Demand 

Anticipation. But two KPI stand out in this regard, namely the empty driven mileage, and the 

passenger waiting times. This strategy leads to the highest value for VKT without passengers 

on board, which is caused in particular by the relocation of idle vehicles. As a consequence, 

this strategy also leads to the highest congestion levels in the network. At the same time, this 

strategy also leads to the shortest average passenger waiting times and the most equal 

distribution of the latter.  

 

As shown in this study, the underlying principles of a vehicle relocation strategy impact the 

efficiency, externalities and equity of an on-demand service. It depends on the importance one 

attaches to these aspects, whether one declares one of these relocation strategies to be more 

beneficial than the others, since the results suggest that none of them outperforms the others in 

all regards. When discussing the introduction of SAV to a city, main stakeholders include the 

(potential) users of the transport service they offer, the operator of the service, the planning 

authority supervising the introduction of the new service to provide a certain level of service, 

and the citizens (potential non-users) in the area. From the perspective of a service operator, 

different relocation strategies can prove to be beneficial: Demand Anticipation allows to reduce 

average waiting times in high-demand areas and to reduce driven mileage, both contributing to 

increased service efficiency. For this reason, most current on-demand transport services 

operated by drivers acting as decision-making agents are dominated by this relocation strategy. 

When drivers are in direct competition for passengers with each other, they create a situation 

closer to a stochastic user equilibrium (SUE), which does not necessarily benefit the fleet as a 

whole. However, once the demand, and accordingly the fleet size, reaches a level that the 

operation of SAV causes local congestion, it can be beneficial for an operator to cap the number 

of idle vehicles in high-demand areas and swap to a relocation strategy which spreads out idle 

vehicles more, such as the strategy Supply Anticipation. Increased service efficiency is also 

beneficial for the users of the service in terms of reducing waiting times and in-vehicles times. 

For passengers requesting the service in zones with low demand, a relocation strategy 

distributing idle vehicles more evenly is particularly beneficial, as this reduces the waiting times 

that they might experience otherwise. The best results in this regard could be achieved with the 

strategy of Demand-Supply Balancing for the simulated case study.  

 

When taking the perspective of a higher planning authority, for example on a municipal level, 

different objectives could be leading for selecting a relocation strategy. On-demand transport 

shows more fluctuation over time in its performance than scheduled transport, especially 
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regarding waiting times and reliability of indicated waiting times. There is no clear consensus 

yet on how to benchmark average waiting times, maximum waiting times, reliability of 

indicated waiting times and updated waiting times for on-demand transport services. For the 

simulated scenarios, the service with the overall shortest trip times (waiting time and in-vehicle 

time combined) is achieved with the strategy Demand Anticipation. This strategy also leads to 

the lowest value for the total driven mileage, which can be interpreted as a proxy for energy 

consumption and emissions of pollutants and noise caused by this transport service. However, 

in regard to parking consumption, the case could be made for different strategies: Supply 

Anticipation and Demand-Supply Balancing lead to the much more equal occupation of parking 

facilities in spatial terms, which can reduce pressure on the parking facilities in popular areas 

like city centres, and also to a higher service provision equity. Another way to look at the 

bunching of idle vehicles in areas of high demand caused by the strategy Demand Anticipation 

could be to interpret this as a “polluter-pays” situation: if users of other modes are not affected 

by the parking consumption of SAV, e.g. because these park on reserved parking spots or 

private ground, and the local congestion the create SAV does not affect overall network flows, 

this could also be an acceptable solution from the perspective of a planning authority. Which 

relocation principle is more favourable for a city’s management of scarce parking facilities 

depends on the local situation, and also in regard to which potential user groups might profit 

most from this. As neither the strategy of Demand Anticipation nor the one of Supply 

Anticipation clearly outperforms the other when taking into account the holistic set of KPI 

presented in this paper, a compromising strategy like the Demand-Supply Balancing strategy 

has the potential to provide the necessary attenuation of undesired effects. 

5.5.2 Study Limitations and Outlook 

The analysis of the relocation heuristics is based on the simulation of a case study. This set-up 

does not allow to draw universal conclusions, and should be generalized or transferred to other 

contexts with caution. The main limitations of this study are linked to two input parameters: (1) 

the zonal division and (2) the behavioural model used to describe the users’ response in the 

agent-based model.  

(1) The zonal division is expected to have an important impact on the working of vehicle 

relocation strategies based on demand and vehicle supply aggregated on a zonal level. 

For this study, the zones have been based on postal code areas which are commonly 

used in the Netherlands for defining parking regulations. However, depending on the 

goal of a relocation strategy, other criteria for the zonal divisions could be selected, 

e.g. a zonal division based on the current quality of scheduled public transport 

services. More research is required to determine the optimal (or good enough) number 

of zones, their size, and their defining principles in order to come to satisfying 

conclusions on zonal relocation strategies under parking constraints. 

(2) In regard to the behavioural model used, the current state of research on mode choice 

behaviour in an era of SAV is not developed enough in order to confidently apply 

choice models to simulation models. In this paper, basic assumptions have been made 

about the specifications of the SAV service and on the perception of the different 

elements linked to a trip taken in an SAV. As for now, any simulation study featuring 
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SAV can only be interpreted in light of the assumptions made for the underlying 

behavioural model. 

 

Further limitations of this study are caused by other simplifications made for the simulation of 

the case study, such as that parking spots are dedicated for SAV and can be reserved upfront by 

the operator. Future research into the distribution of parking spots for SAV and the allocation 

of free parking spots will be an important aspect in the development of dynamic fleet operation 

paradigms. This is particularly important if more than one fleet of SAV compete with each other 

for parking space, or if they compete with individual drivers of (non-)automated vehicles. 

Furthermore, the performance of the different relocation strategies for idle vehicles should also 

be tested for other operational scenarios, most importantly for SAV operated as a pooled 

service. The operational differences for pooled services mainly impact the vehicle routing 

problem and vehicle dispatching problem, however, also the performance of vehicle relation 

strategies can change due to pooling. When operating SAV as a simultaneously shared service, 

instead of a sequentially shared one, vehicles likely turn idle less often, and they turn idle at 

different locations in the network. Which relocation strategy performs best in such a setting 

highly depends on local conditions and should be carefully tested for the different performance 

indicators presented in this study.  

 

The analysis in this study is based on one specific case study in order to retrace the impact of 

three simple vehicle relocation heuristics. Based on this set-up, future work will investigate 

further the interplay between the fleet size of SAV and the number of reserved parking facilities, 

and curbside management strategies will be concretized in order to test the impact of parking 

policies for SAV.
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Part III – Parking Management  

The process of policymaking in the field of transportation is often a reactive one, with policies 

following changes in travel behaviour, technology advancements and the appearance of new 

mobility services. The presence of unprecedented modes is especially likely to challenge 

policymakers to overhaul old policy principles if new classifications are required, which also 

involves defining rules, rights and regulations for such modes: for example, should people on 

roller skates be allowed to use the sidewalk or the cycle lane, and what about electrified 

skateboards and e-scooters? Are car-sharing vehicles public transport vehicles, and if so, should 

they be allowed to use bus lanes and be granted access to special parking spaces? Such questions 

can often only be answered after some experience with the new modes has been gained, and 

policies for new modes emerge accordingly in the course of time, once related issues and 

opportunities become apparent.  

 

Polices for automated vehicles are expected to take shape in an equally adaptive process, 

following the opportunities and issues created by the introduction of such vehicles. Therefore, 

it could happen that in the early days of shared automated vehicles no all-comprising legal 

framework and according policies will be in place. This, however, does not mean that the 

introduction of shared automated vehicles cannot be shaped and influenced by transport 

authorities from the very beginning. In this part (Chapter 5), parking management strategies are 

applied to shared automated vehicles to improve the service efficiency and equity, while 

reducing undesired negative externalities. Parking management is something that policymakers 

are very familiar with, that does not require changes in the legal framework and that can be 

applied to a broad range of modes, making it flexible enough to accommodate changing 

technology and transport services.  
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Chapter 6 - Parking Space for Shared Automated 

Vehicles: Why Less Can Be More 

Abstract 

With the anticipated introduction of self-driving vehicles, new challenges arise for urban 

transport- and planning authorities. This study contributes to the efforts of formulating the 

potential opportunities and threats stemming from the introduction of larger fleets of self-

driving vehicles to our cities, and what action could be taken by transport authorities to shape 

this introduction beneficially. In particular, the focus is put on the impact different parking 

management strategies can have on the performance of a fleet of sequentially shared automated 

vehicles providing on-demand transport services. This analysis focuses on aspects of service 

efficiency, externalities and service provision equity.  

 

The selected parking management strategies are tested in a large-scale activity-based simulation 

of a case study based on the city of Amsterdam. The vehicles of the fleet aim at relocating to 

zones with high future demand, which can lead to bunching of vehicles at demand-hotspots. 

Parking management in the form of restricting parking facilities forces idle vehicles to spread 

out more evenly in the network. We show that this can reduce average passenger waiting times, 

increase service provision equity, cause less congestion and even can reduce the necessary fleet 

size. However, this comes at the cost of an increase in vehicle-kilometres-travelled, which 

reduces fleet efficiency and causes more undesired service externalities. Parking management 

is thus a simple, yet effective way for transport authorities to (a) determine where idle self-

driving vehicles operating an on-demand transport service will be parked and (b) influence the 

performance of said transport service. 
 

This chapter is based on: Winter, K., Cats, O., Martens, K., van Arem, B. Parking Space for 

Shared Automated Vehicles: Why Less Can Be More. Under Review.  
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6.1 Introduction 

The development of autonomously driving vehicles has the potential to change the way people 

move through cities in such a fundamental way, that new urban planning and management 

approaches need to be developed for an era of self-driving vehicles. While the technology for 

self-driving vehicles is yet to mature, a window of opportunity opens up for cities to take the 

lead in shaping the way such vehicles will be used and what infrastructure will be provided to 

them. 

 

Autonomous vehicles (AV) promise to bring various benefits, ranging from improved traffic 

safety for all road users (Fagnant & Kockelman, 2015; Greenwald & Kornhauser, 2019; 

Sperling et al., 2018), improved traffic flows and reduced mobility costs (Dong et al., 2017; 

Greenwald & Kornhauser, 2019), to enhancing the mobility of people currently not (able to) 

driving a private car (Harper et al., 2018). However, the introduction of AV may well go hand-

in-hand with an increase in negative externalities, such as an increase in vehicle-kilometres 

travelled due to idle vehicle relocation (Greenwald & Kornhauser, 2019; Harper et al., 2018) or 

to more car-oriented cities as urban infrastructure is redesigned to cater for AVs at the expense 

of other users and uses of public space. It is the task of municipal transport authorities to 

counteract this by accompanying the introduction of self-driving vehicles with designated urban 

planning measures (Greenwald & Kornhauser, 2019; Spurling, 2020).  

 

One promising way to make use of the technology of self-driving vehicles is their employment 

in cooperative fleets of shared automated vehicles (SAV), also referred to as aTaxi (Greenwald 

& Kornhauser, 2019). The fact that such vehicles are self-driving offers three game-changers: 

(1) The costs for on-demand transport would be significantly lower than today, as no driving 

personnel is required. This would make the operation of large-scale on-demand public transport 

systems feasible also in high-wage countries (Greenwald & Kornhauser, 2019). (2) The vehicles 

can be programmed to be fully compliant to a central dispatcher and are free of pursuing self-

serving goals. This could solve issues linked to unregulated or under-regulated on-demand 

transport services, such as bad driver conduct towards passengers or undesired bunching of 

vehicles at demand-hotspots (see Cetin and Deakin 2019). (3) The vehicles can move without 

a human driver present, which would solve the problems current car-sharing systems have in 

relation to vehicle redistribution (see Angelopoulos et al. 2018; Ferrero et al. 2018). However, 

these advantages could be annihilated if large fleets of SAVs would be introduced to cities 

without the appropriate accompanying policies. The dangers of large-scale on-demand transport 

services lie in clogging the network and parking spaces during and around demand-hotspots 

(Circella & Alemi, 2018; Jiang, Chen, Mislove, & Wilson, 2018; Winter, Cats, Marten, & van 

Arem, 2019), increasing the total driven mileage due to relocating or idle cruising of the 

vehicles (Circella & Alemi, 2018; Winter et al., 2019) and providing lower-quality or higher-

cost services to passengers located at locations that require long access or egress times for SAV 

vehicles (L. Chen, Mislove, & Wilson, 2015; Jiang et al., 2018).  

 

In this paper, we address these issues by applying a measure widely available in the toolbox of 

urban planners, namely parking management. While in the long-term, SAV-parking may be 

regulated through legal agreements as part of public tenders, this is unlikely to be the case in 

the early stages of SAV introduction. In this early stage, local authorities are likely to allow 

several SAV operators to freely enter the market, each using its own dispatching and relocation 

algorithm, much like is currently the case for ride-hailing services. In that situation, parking 

policy becomes an important tool to avoid the potential negative effects of large numbers of 

idle SAVs in the city. 
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Parking management has been successfully deployed to regulate the vehicle inflow to cities and 

reduce the number of parked vehicles in high-demand areas for decades. In European cities, 

urban parking management has been decidedly used to decrease traffic congestion and to 

discourage the use of private cars in inner cities (Shoup, 2018). The legal framework for this 

approach is well-established and policymakers are familiar with the lines of argument for 

instituting different parking management approaches.  

 

It is important to discuss the management of idle vehicles of SAV fleets, as these fleets are 

likely dimensioned to provide a satisfactory level of service during the peak-hours. This would 

leave a substantial part of the vehicles unused during off-peak hours, which calls for relocation 

strategies for idle vehicles from the side of the fleet operators, and in response provides the 

opportunity for policymakers to shape the way the on-demand transport services are operated 

(Greenwald & Kornhauser, 2019; Winter et al., 2019). This holds for both individual services 

(i.e. vehicles are sequentially shared, like car-sharing vehicles or taxis) and shared services (i.e. 

vehicles are simultaneously shared, like carpooling). The main findings of this study are thus 

not only applicable to SAV but can be generalized to any on-demand transport services operated 

by cooperating fleets such as ride-hailing and ride-sharing services. However, the applied 

parking management strategies and the simulated relocation strategies in this study are 

indifferent to the objectives of individual vehicles (or drivers), and hence more suitable for a 

fleet operated by automated vehicles. 

 

While idle vehicle relocation for SAV has drawn some attention as part of a more efficient 

vehicle dispatching aiming at reducing passenger waiting times (for a brief compilation see 

(Winter et al., 2019)), only few studies have analysed the effect of idle vehicle relocation on 

other aspects of such transport services such as service efficiency, externalities and equity (van 

Engelen et al., 2018; Winter et al., 2019; W. Zhang et al., 2015).  

 

Hitherto, no coherent analysis has been performed on how and to what extent planning 

authorities can shape the impact of SAV by means of a strategic restriction of parking facilities 

for such vehicles. This study focuses on how, by parking management alone, the introduction 

of large fleets of SAV can be steered to serve municipal mobility objectives. The analysis of 

the different parking management strategies is performed for a set of scenarios envisioning the 

introduction of SAV in which these vehicles are competing with (and complementing) 

traditional public transport services as well as private vehicles and active modes. The scenarios 

are developed for a case study based on the city of Amsterdam, the Netherlands. The analysis 

of these scenarios is performed mainly from the perspective of a transport authority, but also 

discusses the implications for other stakeholders. To benchmark, the more detailed parking 

management strategies restricting on-street parking for SAV, scenarios featuring large off-street 

depots as well as idle vehicle cruising are included in the analysis.  

 

The remainder of this paper is structured in the following way: In section 6.2, a review of the 

current literature sketches what parking management strategies for SAV have been envisioned. 

In section 6.3, the case study and the drawn scenarios are described, as is the simulation model 

used to test the impact of the different parking management approaches. The results for these 

scenarios are presented in section 6.4, and discussed in the concluding section.  
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6.2 Parking Self-Driving Vehicles and On-Demand Transport 

Vehicles  

Autonomous vehicles are still in a testing phase, and larger fleets of centrally dispatched shared 

autonomous vehicles are not yet operational. In the following, we review findings from studies 

that modelled parking management strategies for SAV, as well as findings on parking use and 

parking management of ride-hailing services and taxis.  

6.2.1 Parking Management Strategies for Shared Automated Vehicles 

Not all current parking management approaches will be effective in an era in which SAV 

operate on a larger scale in our cities (Guerra & Morris, 2018; Millard-Ball, 2019; Regional 

Plan Association (RPA), 2017). Currently, parking regulation consists mainly of the following 

four dimensions: (1) spatial restrictions, e.g. restricted on-street parking in city centres 

(Mingardo et al., 2015) (2) temporal restriction, e.g. limitations on parking duration or on hours 

at which parking is allowed (Mingardo et al., 2015; Simićević, Vukanović, & Milosavljević, 

2013) (3) users’ restriction, e.g. parking for residents only (Kaspi, Raviv, & Tzur, 2014; 

Mingardo et al., 2015; Molenda & Sieg, 2013) and (4) pricing parking by the introduction of 

fees (D’Acierno, Gallo, & Montella, 2006; Migliore, Burgio, & Di Giovanna, 2014; Mingardo 

et al., 2015; J. van Ommeren & Russo, 2014). Of these practices, it has been argued that parking 

pricing is not suitable to manage AV, as their self-driving capabilities would allow them to 

avoid parking costs by idly cruising through the network or by moving to areas where no 

parking fees are issued (Millard-Ball, 2019). This argument highlights that in the case of SAV, 

restrictions on idle cruising might become also an important instrument for managing their 

impact on urban traffic, similar to the “cruising time cap” recently issued for ride-hailing 

services in New York City (see Balan and Raina, 2019).  

 

The aims of contemporary urban parking policies can be summarized in four main objectives: 

(1) improve accessibility and mobility (2), improve the quality of life and liveability, (3) 

stimulate the local economy and (4) contribute to the city’s revenue (Mingardo et al., 2015). 

The relative balance between these objectives of parking policies might change if their subject 

is not only private cars, but also vehicles in the service of the general public, as it can be argued 

that earning revenues might not play a role anymore when managing the parking of shared or 

public transport vehicles, while improving service quality and service visibility might become 

increasingly important (Kent & Dowling, 2016). Early indications for this trend are the parking 

policies issued for car-sharing services: if transport authorities consider an on-demand transport 

service or a car-sharing service as part of the public transport offer, parking policies may aim 

at boosting such services by assigning dedicated parking space close to demand-hotspots. 

Numerous cities provide dedicated parking space to car-sharing services, which has proven to 

be vital to the success of these services (Kent & Dowling, 2016; Zvolska, Lehner, Voytenko 

Palgan, Mont, & Plepys, 2018). Taxi stands are also commonly strategically placed close to 

demand-hotspots such as transportation hubs, shopping and entertainment facilities or local 

neighbourhood centres. First drafts of parking policies for automated vehicles formulate two 

main objectives: (1) ensuring enough pick-up and drop-off curbside space to allow on-demand 

transportation and good delivery without compromising the traffic flow and (2) eliminating on-

street parking by sending self-driving vehicles to off-street parking facilities (Regional Plan 

Association (RPA), 2017). 
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6.2.2 Where to Park Shared Automated Vehicles 

One of the characteristics of AV that sets them apart from non-automated vehicles is that they 

can drive without a human on board. This means that the acceptance of parking locations is no 

longer linked to the acceptance of access or egress walking distances between the parked 

vehicle and the destination of the user. By simulation, it has been found that because of this and 

current parking pricing policies, privately-owned AV can be expected to mainly park just 

outside the city centre or other demand-hotspots (Fagnant & Kockelman, 2015; Zakharenko, 

2016). However, when operated as SAV, idle vehicles are expected to be positioned 

strategically so that passenger waiting times will be as short as possible, which increases again 

the parking pressure around demand-hotspots. This effect can be mitigated when allowing 

vehicles to cruise when idle at the cost of a substantial rise in vehicle-kilometres travelled 

(VKT), as shown by simulation in Zhang et al. (2015). The parking location of SAV is 

determined by the relocation strategies they are subject to. The relocation strategy impacts the 

performance of the SAV service as well as its impact on local traffic flows, total VKT and 

spatial disparities in service provision. By simulation, it has been shown that relocation 

strategies aiming at more even distributions of vehicles can be superior in terms of societal 

benefits to strategies relocating idle vehicles close to demand-hotspots (Winter et al., 2019). 

These findings stress the importance of introducing policy instruments such as parking 

management to control the impact of the on-demand transport service in case fleet managers 

are free to decide where to park idle vehicles.  

 

The claim has been made that SAV might be parked in “large warehouses or open lots in low-

value parts of cities” (Guerra and Morris 2018, p.295). However, we argue that the issue of 

parking idle on-demand transport vehicles is more complex than that. Even though AV can park 

in a more space-saving manner in parking lots than non-automated vehicles (Ferreira et al., 

2014; Nourinejad, Bahrami, & Roorda, 2018), this is at best suitable for long periods of low 

demand (night hours), but not for hours of variable demand, where waiting time is crucial for 

the success of the service. Since parking structures are expensive, certainly in or close to high 

demand zones, it may be expected that SAV operators will aim to avoid the use of such 

structures if other, cheaper, alternatives are available. This means that in off-peak hours a 

substantial part of the fleet will be idle, and these vehicles have to park somewhere. 

 

In simulation studies, SAV are often assumed to park close to expected hotspots of future 

demand. In previous studies focusing on the operational objectives, we found that striving for 

a more balanced distribution of vehicles throughout the network can be beneficial for both the 

efficiency of the service operation as well as the service provision equity (Winter et al., 2019). 

Transport authorities could enforce such a relocation strategy only by having legal agreements 

with the operator (e.g. through a tender or concession). However, we foresee that especially in 

the introductory phase of SAV, such opportunities of influence will be limited, not least because 

of a lack of experience with tendering large-scale on-demand SAV-based public transport 

services. Instead, formulating parking restrictions for SAV is arguably a more feasible approach 

for transport authorities, amongst others because it will apply to all SAV operators entering the 

market. For this reason is the focus of this study expanded from the operational decision of 

relocation under parking constraints from previous studies, to the question how to set such 

parking constraints from the perspective of a transport authority.  
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6.3 Application 

In this study we test different parking management scenarios in a case study based on the city 

of Amsterdam, using the simulation testbed presented in Chapter 5. For this case study, we 

specify a set of parking management scenarios in section 6.3.1 which we then analyse for three 

main stakeholders, whose role we discuss in section 6.3.2. The input used in our simulation 

study, in particular regarding the demand for SAV and the fleet specification, is described in 

section 6.3.3 and 6.3.4.  

6.3.1 Parking Management Scenarios  

We base the parking management scenarios for a fleet of SAV operating an on-demand public 

transport service on two principles: the temporal and the spatial limitation for curbside parking. 

As a BaseCase scenario, we simulated a fleet of 12,500 vehicles, which can park on 15,000 

dedicated curbside parking spots, which are spread out throughout the network and can be used 

by SAV all day long. We compare this BaseCase with scenarios featuring different fleet sizes 

or different number of dedicated parking spots and scenarios with various levels of restrictions 

on parking SAV in the city centre. To benchmark these scenarios, we also include a scenario in 

which vehicles cruise through the city when empty, and a set of scenarios in which idle vehicles 

move to a varying number of off-road parking depots. An overview of these scenarios is shown 

in Figure 6.1. The exact location of the parking spots and depots in the network (see Figure 6.2) 

is shown in Figure 6.3a-c.  

 

The influence of the fleet size on the performance of the on-demand transport service is tested 

by varying the number of vehicles between 10,000 and 15,000 (scenarios F10,000 to F15,000) 

while reserving the same amount of curbside parking spots for the fleet as in the BaseCase 

scenario. 

 

Next to the three scenarios taking into account the sensitivity to fleet size, further parking 

management scenarios are simulated for a fleet size of 12,500 vehicles. To test for the impact 

of the number of reserved parking spots in relation to the fleet size, the number of parking spots 

is reduced down to 12,500 and increased up to 17,500 vehicles (scenario P12,500 to P17,500), 

as shown in Figure 6.3a-c. The parking spots are randomly distributed through the city on links 

with sufficient link length. To vary the number of parking facilities for the scenarios with 

parking facilities differing to the BaseCase, random parking spots have been removed or added 

in such a way that the parking facilitates of scenarios with lower numbers of parking spots are 

a subset of scenarios with a higher number of parking spots.  

 

Additionally, a set of scenarios has been formulated to reflect the scarcity of parking space often 

present especially in city centres. The division into inner- and outer-city (shown in Figure 6.2) 

is based on the parking zones defined by the municipality of Amsterdam as of April 2019 

(Gemeente Amsterdam, 2018). In scenario noCenter and noCenterDay, the availability of 

curbside parking spots is limited spatially by dividing the zones into an inner-city and an outer-

city parking zone. In scenario noCenterDay, SAV are not allowed to park in the inner city 

between the morning and the evening peak (between 10 a.m and 6 p.m.), while in scenario 

noCenter they are never allowed to park in the inner city. For scenario Center5Min and 

Center60Min, an upper limit for the parking duration of SAV in the city centre of 5 minutes 

and 60 minutes, respectively, is introduced.  
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Figure 6.1: Scenarios for which the on-demand transport service operated with SAV is simulated in 

this study 

 

Figure 6.2: City boundaries and zonal division of the city of Amsterdam based on postal codes. Zones 

covering the inner city of Amsterdam are outlined in red 
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 a) 12,500 parking spots b) 15,000 parking spots  

 

  

 

 c) 17,500 parking spots   

 

 

number of parking spots per zone 

 

    

 d) 1 depot e) 10 depots  

 

  

 

 f) 20 depots g) 40 depots  

 

  

 

    

Figure 6.3: Illustration of the spatial distribution of the simulation input: a)-c) showing the number of 

parking spots per zone for scenario P12,500, BaseCase and P17,500; d)-g) showing the location of 

parking depots for scenario D1, D10, D20 and D40 
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In scenarios D1 to D80, the parking capacity restriction is relaxed by providing off-street depots 

or parking lots, with each having the capacity to facilitate the entire fleet of SAV. In these 

scenarios, no on-street parking is permitted for SAV. As parking availability per designated 

parking location, or depot, is not a restricting factor anymore, the functionality of the vehicle 

relocation algorithms amounts to relocating idle vehicles to the closest depot located in a zone 

with high demand in the near future. The number of depots tested ranges from one central one 

(D1), over 5, 10, 20 and 40 to 80 depots (D80), one in each zone with suitable infrastructure. 

The locations of the depots in D10, D20 and D40 were set at random, as illustrated in Figure 

6.3e -g. 

6.3.2 Stakeholders 

The effect of the parking management strategies is analysed in this paper for three main 

stakeholders: the “transport authority”, the “fleet manager”, and the “customers”. The on-

demand transport service provided by a fleet of SAV is envisioned in this study as an addition 

to a city’s public transport services and in parallel to continued use of regular (or automated) 

private vehicles. The role of these three stakeholders is described in more detail in the 

following: 

 

(1) The “transport authority” is the organisation providing the infrastructure used by the fleet 

of SAV, such as roads, drop-off zones and parking facilities. The “transport authority” 

desires a transport service that provides the best service possible to the “customers” while 

reducing undesired external effects such as air pollution, greenhouse gas emissions, 

congestion or clogging areas with parking or cruising vehicles. The transport authority also 

has an interest in limiting the space required to provide dedicated parking spots for SAV. 

The on-demand transport service is envisioned as a public (transport) service, requiring that 

all citizens have access to the service and service fees are universal and depend only on the 

distance travelled in the SAV. This means that no request should get declined, nor that 

monetary compensations are made for efficiency reasons, e.g. off-peak fares or different 

fares for different regions within the service area. The quality of the transport service is 

defined by the average passenger waiting time, but the transport authority has also an 

interest in minimizing the disparities in waiting times to increase the service provision 

equity. In our scenarios, it is also the “transport authority” who decides where, when and 

for how long idle SAV are allowed to park within the city boundaries by specifying where 

the dedicated parking spots for SAV are located, and by specifying the rules that apply to 

their usage by SAV.  

 

(2) In this study, there is only one “fleet manager” providing the envisioned transport service 

operated by SAV. The “fleet manager” has full control over the individual vehicles of the 

fleet and can decide on the dispatching and relocation process, as long as any potential 

service provision objectives such as a maximum for average passenger waiting times set by 

the “transport authority” are met and none of the parking restrictions are violated. The “fleet 

manager” aims at managing the fleet as efficiently as possible in regard to vehicle utilisation 

while reducing the average vehicle mileage in order to increase the profit. In our scenarios, 

it is the “fleet manager” who decides where idle vehicles park on the dedicated parking 

facilities.  
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(3) The “customer” chooses to travel with the on-demand transport service based on a mode 

choice model specified in Chapter 5, which is based on the concept of utility maximisation. 

In the simulation of users’ choices in this study, the two main elements influencing the 

utility of travelling by SAV are (a) the passenger waiting time and (b) the travel time in the 

vehicle.  

6.3.3 Demand 

The case study, for which the different parking management scenarios are tested, is based on 

the city of Amsterdam in the Netherlands (see Figure 6.2). This testbed for parking management 

strategies is similar to the one described in Chapter 5. We simulate 129,485 trips performed in 

SAV per day (represented by 20% in the simulation), resulting in a modal share of 4.3% for 

SAV. The average distance travelled per simulated trip by SAV is 12 kilometres. The spatial 

and temporal distributions of the passenger requests are shown in Figure 6.4. The demand is 

kept inelastic for testing the impact of the different parking management strategies on the key-

performance indicators described in section 6.4.  

a) Passenger Requests per Zone 

 

 

 

Figure 6.4: a) daily passenger requests per zone, b) daily passenger requests per hour 

6.3.4 Modelling Environment and Relocation Strategy 

The parking management scenarios for a fleet of centrally dispatched SAV are simulated in the 

agent-based model MATSim (Horni et al., 2016), in particular by using its Dynamic Transport 

Services module (Maciejewski, 2016). A detailed description of the simulation process and the 

applied parameters is provided in Chapter 5. The simulation of each scenario is repeated 4 

times, all results are averaged. The number of necessary runs has been determined with a two-

sided t-test between means (99% confidence interval). 

 

The performance of the parking management strategies formulated by the “transport authority” 

is tested for a demand-anticipatory relocation strategy formulated by the “fleet manager”, which 

sends idle vehicles to the zones with the highest demand levels for a defined time horizon. 

Demand anticipatory relocation strategies are a common variant of proactive relocation 

strategies for idle vehicles in simulation studies of SAV or similar transport services (see e.g. 

Babicheva et al., 2018; Winter et al., 2017; Zhang et al., 2016). Demand-anticipatory relocation 
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strategies are voracious when it comes to parking space consumption close to demand-hotspots. 

This can also be observed for current taxi and ride-hailing services, for which this problem 

becomes most apparent around transport hubs like airports or in proximity to large hotels 

(Harding et al., 2016). This can lead to local congestion and clogging of parking facilities in 

such areas. The impact of parking management strategies is thus particularly strong under such 

relocation strategies. For this reason, we selected this relocation strategy for SAV, since testing 

the different parking management strategies for such a situation highlights best the working of 

parking management, as well as its limits.  

 

In our case, SAV are relocated only if they are idle and if there is no open passenger request 

left to be served. For reasons of simplicity, we assume full knowledge of future demand for the 

upcoming five minutes in the simulation. Based on this, the three zones with the highest demand 

with currently free parking facilities in this time span are determined. The idle vehicle is sent 

to the closest of these zones. Once the decision to relocate a vehicle is taken, a reservation is 

placed for the parking spot the vehicle is heading towards. The working of this relocation 

strategy is described in more detail in Chapter 5. For the scenario in which vehicles cruise 

through the network when idle (scenario Cruise), the same rationale is applied by letting 

vehicles cruise in the closest zone out of the three zones with the highest expected future 

demand in the upcoming 5 minutes.5  

6.4 Results 

6.4.1 Impact of the Fleet Size and the Number of Dedicated Parking Facilities 

We start the discussion of parking management for a fleet of SAV by analysing the relation 

between fleet size and dedicated parking facilities. For this part of the analysis, we focus on 

two key-performance-indicators (KPI): the average passenger waiting time as an indicator for 

service effectiveness, and the vehicle-kilometres travelled without passengers on-board as an 

indicator for service efficiency and service externalities. To enrich this analysis, additional 

simulations have been performed for varying combinations of fleet size (in the range between 

10,000 and 15,00 vehicles) and parking facilities (ranging between 12,500 and 17,500 parking 

spots). The ratio between vehicles and their dedicated parking facilities ranges thus between 

0.57 and 1.00 (Table 6.1a). The results for the average passenger waiting times and empty VKT 

for each scenario are summarized in Table 6.1b and 1c and are visualized in relation to the ratio 

of vehicles per dedicated parking spots in Figure 6.5. 

 

As can be expected, it can be observed that, overall, the average passenger waiting time is 

reduced when increasing the fleet size, which comes at the cost of increased empty VKT. By 

increasing, for example, the fleet size from 12,500 to 15,000 vehicles while providing 15,000 

parking spots, the passenger waiting times decrease by 23%, and the empty VKT increases by 

5%. For a fixed amount of dedicated parking spots, the trade-off when increasing the fleet size 

is thus between lower average passenger waiting times and additional VKT caused by idle 

vehicles approaching passengers at their respective pick-up locations. Less obvious, however, 

is the observed impact of increasing the number of parking spots for a fixed fleet size, which 

effectively has the reverse effect – it increases the passenger waiting time and reduces the empty 

VKT. By decreasing, for example, the number of reserved parking spots from 15,000 to 17,500, 

                                                        
5 For the results for a scenario in which vehicles cruise randomly through the network, please the 
Appendix. 
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the passenger waiting time decreases by 10% and the empty VKT increases by 1%. Hence, it is 

the combination of the absolute number of vehicles and the number of dedicated parking spots 

which jointly determines the performance of the transport service.  

 

As shown in Figure 6.5, it is primarily the ratio between the fleet size and the dedicated parking 

spots that impacts the performance of the transport service for the two selected KPIs. By 

lowering the ratio of vehicles per dedicated parking spot, passenger waiting times increase and 

empty VKT decreases. The reason for this lies in the set-up of our case study, in which the 

number of free parking spots determines how much vehicles are spread out across the network. 

The more parking spots are available, the more vehicles can relocate to zones with high future 

demand. This leads to bunching of the vehicles in such zones, leaving zones with low demand 

under-supplied with idle vehicles. A more in-depth discussion of this follows in the subsequent 

sections. But already based on this first visual inspection of the relation between fleet size and 

dedicated parking space, it can be concluded that providing less dedicated parking can be a 

better option for improving the service for the passengers than providing more vehicles. 

Table 6.1: Simulations performed with varying fleet size and number of dedicated parking spots (a), 

their respective ratio between vehicles and dedicated parking spots (b), the resulting average 

passenger waiting times (c) and the vehicle-kilometres-travelled without passengers on-board. 

a) Ratio Vehicles/Dedicated Parking spots 

     parking
 

fleet  
12,500 13,750 15,000 16,250 17,500 

10,000 0.80 0.73 0.67 0.62 0.57 

11,250 0.90 0.82 0.75 0.69 0.64 

12,500 1.00 0.91 0.83 0.77 0.71 

13,750  1.00 0.92 0.85 0.79 

15,000   1.00 0.92 0.86 
 

b) Average Passenger Waiting Time 

[in seconds] 
c) Empty Vehicle-Kilometres-Travelled 

[in 1000km] 
    parking

 

fleet
 12,500 13,750 15,000 16,250 17,500 

10,000 316 352 356 367 366 

11,250 274 273 292 304 302 

12,500 252 261 277 278 274 

13,750  237 243 256 254 

15,000   218 238 241 
 

     parking
 

fleet 
12,500 13,750 15,000 16,250 17,500 

10,000 1.830 1.825 1.825 1.820 1.810 

11,250 1.930 1.930 1.905 1.905 1.895 

12,500 2.000 1.990 1.975 1.965 1.960 

13,750  2.020 2.025 2.020 2.010 

15,000   2.075 2.060 2.045 
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Figure 6.5: Service performance in respect to the ratio between fleet size and parking facilities, 

expressed in average passenger waiting times (left) and empty vehicle-kilometres-travelled (right) 

6.4.2 Impact of Parking Management  

To analyse the impact of restricting parking space, we focus on scenarios P12,500, BaseCase 

and P17,500. In addition, in order to analyse the impact of the spatial distribution of parking 

space, we also investigate in more detail the scenarios NoCentre, NoCentreDay and 

Centre60min. The outcome for scenario Centre5min differs only marginally from the one for 

scenario NoCentre, indicating that adding additionally 5 minutes of buffer time before vehicles 

get relocated is not enough to improve the efficiency of the vehicle dispatching. To benchmark 

these results, we include two reference scenarios in the discussion, both representing a situation 

with no or only limited interference of the “transport authority”: the scenario CRUISE and the 

scenario D80. In both of these scenarios, the relocation destination of idle vehicles is solely 

based on the expected future demand, and not on the availability of dedicated parking spots per 

zone. The discussion of the parking management strategies is based on a set of KPIs, which 

together allow drawing a holistic picture of the impact in regard to service efficiency, service 

externalities and service provision equity.  

Service Efficiency  

In this section we address the impact of the different parking management scenarios on service 

efficiency with regard to two major KPIs (see also Table 6.2): the empty vehicle mileage and 

the passenger waiting time. In order to gain more understanding of the role of the spatial 

dispersion of idle vehicles plays in regard to service efficiency, we conclude this section with a 

comparison of these KPIs for the scenarios featuring depots.  

 

Empty Vehicle Mileage 

Operating the fleet as efficiently as possible is a prime goal of the “fleet manager”. The leading 

KPI selected for describing the influence of empty vehicle relocation on the service efficiency 

is the ratio percentage of VKT caused by relocation out of all VKT travelled without passengers 

on-board (Table 6.2). The lower the value for this KPI, the higher is the efficiency of the service 

operation. The lowest value can be obtained in the scenario D80, in which 62% of the VKT 
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without passengers on-board are caused by vehicle relocation. This scenario also leads to the 

lowest rate of VKT without passengers on-board out of all VKT, namely 52%. The highest 

value is obtained for the scenario CRUISE, in which 96% of all VKT without passengers on-

board are caused by the constant undirected relocation of vehicles, while only 4% of the VKT 

without passengers on-board are caused by a vehicle moving towards the pick-up location of 

its next passenger. This scenario leads also to the worst ratio of VKT without passengers on-

board over the total VKT travelled by the fleet, namely 87%. 

 

For the scenarios with reduced parking capacity, it can be seen that providing more parking 

space reduces VKT caused by idle relocation, which follows the observation that VKT decrease 

with an increase in parking spots as stated in the previous section. The lowest rate for VKT 

caused by relocation for these parking management strategies is reached for the scenarios 

reducing the parking in the city centre (NoCentre and Centre60min). 

 

In terms of the absolute level of empty VKT per vehicle, the improvement for the scenario D80 

ranges between 15% and 28% compared to the scenarios restricting parking. The percentage 

difference for the empty VKT per vehicle between scenarios D80 and CRUISE is 569%, 

showing clearly the adverse impact of idle cruising on service efficiency. 

Table 6.2: Key-Performance-Indicators describing the service efficiency for selected parking 

management scenarios 
 

 parking management strategies with parking space constraints 
free of parking 

constraints 

 P12,500 
Base 
Case  

P17,500 
No 

Centre 

No 

Centre 

Day 

Centre 

60min 
D80 Cruise 

percentage of 

empty VKT 

driven to 

relocate [in %] 

72.1% 70.5% 69.7% 65.7% 66.3% 65.9% 62.0% 95.7% 

Empty VKT 

per vehicle [in 

km] 

160 158 157 163 162 163 144 831 

Average and 

95% percentile 

of passenger 

waiting time 

[in minutes] 

4.2; 11.0 4.6; 12.1 4.6; 12.5 6.5; 17.1 6.3; 16.4 6.4; 16.7 6.4; 17.3 4.3; 9.7 

Average trip 

time: waiting 

time and in-

vehicle time  

[in minutes] 

22.5 22.7 22.4 24.0 23.7 23.6 23.8 23.2 

 

Passenger Waiting Times and Trip Times 

The passenger waiting time is the leading KPI for “customers”. As can be seen in Table 6.2, is 

the average passenger waiting time for scenario P10,000 shorter than for the scenarios with 

more parking spots available (BaseCase, P15,000 and D80), and the average passenger waiting 

times for the scenarios restricting inner-city parking are longer than for the scenario BaseCase. 

By limiting the possible parking locations in scenario P12,500, idle vehicles are forced to spread 

out more equally throughout the network than in the other scenarios. Consequently, passenger-
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demand in low-demand zones can generally get served faster, reducing the number of 

passengers with very long waiting times at the cost of slightly increasing the waiting times 

around demand-hotspots. Overall it can be observed that the less the vehicles are spread out - 

either because they are bunching more in zones with high demand (BaseCase and P17,500) or 

because they are forced to park outside of the city centre (NoCentre, NoCentreDay and 

Centre60min) - the higher the average passenger waiting times are. With regards to the latter 

set of scenarios, it can be seen that the average passenger waiting times are the longest if 

vehicles are not allowed to park in the city centre at all (NoCentre, NoCentreDay).  

 

It is not just the waiting time that determines the efficiency of the service, but also the time 

needed to complete a full trip. The time for a trip in a SAV experienced by a passenger is in our 

case a combination of waiting time and the in-vehicle time (IVT), as for reasons of 

simplification the time it takes to board and exit a vehicle is constant. The waiting times have a 

strong influence on this indicator, as the differences between the different scenarios are less 

pronounced for IVT than for waiting times (see Table 6.2). Consequentially, the worst 

performance for this KPI is reached for the scenario NoCentre and the scenario D80, and the 

best for the scenario P12,500 and P17,500. More details of the IVT as a result of congestion in 

the network are discussed in the following section.  

 

The Role of Vehicle Dispersion 

To gain a better understating of the impact of the spatial dispersion of idle vehicles, we take a 

closer look at the scenarios featuring only zonal depots, which take the level of dispersion of 

idle vehicles to an extreme: in D1, vehicles are forced to bunch in the central zone, while in 

D80 they can freely select their parking location, in our case based on where future demand is 

located, which in turns leads to vehicle bunching as well. Between those two most extreme 

scenarios, we provide in the scenarios D10, D20, and D40 an increasing degree of freedom to 

select the relocation destination, while restricting to some degree where vehicles may park. 

Providing only one depot leads to severe performance losses, as the average passenger waiting 

times for served trips are more than 2 times higher than for the scenario D10, and 10to 25 times 

higher than scenarios D20 to D80. In scenario D1 to D10, not all passenger requests could be 

served, with scenario D1 performing so badly that only half of all passenger requests could be 

served. In Figure 6.6, it can clearly be seen how average passenger waiting times decrease with 

an increase in the number of depots dropping from 20 minutes for D5 to less than 7 minutes for 

D40 and D80 (D1 is excluded from this analysis, as not all passengers could be served). The 

reason for this sharp decline is not just the positioning of the vehicles, but also the local 

congestion caused by SAV driving to and from the depots. This can be seen in by comparing 

the average empty VKT travelled per vehicle with the average empty drive-hours per vehicle: 

the average driving speed for SAV in scenario D1 is 11.5 km/h, while the average driving speed 

in scenario D80 is 41.3 km/h. From Figure 6.6 it also becomes apparent that adding more depots 

does not necessarily improve the efficiency of the SAV transport service, once a good level of 

service has been reached: the average passenger waiting time improves by 31 seconds from 

scenario D40 to D80 (decrease by 7.8%), while the average driving speed reduces by 2.4 % 

from 42.3 km/h to 41.3 km/h. This strengths the observation that neither bunching at strategic 

locations by design (such as in scenario D1 at the city centre), nor bunching around demand-

hotspots (such as in scenario D80) are favourable for the efficiency of the service.  



102                                                                                               Providing Public Transport by Self-Driving Vehicles 

 

 

Figure 6.6: Average passenger waiting times (left) and average empty VKT and empty vehicle-drive 

hour per vehicle (right) as a function of the number of depots (scenarios ranging from D5 to D80) 

Service Externalities 

The externalities of the service are discussed on the basis of three leading KPIs (Table 6.3): (a) 

the average driving speed of the SAV as a proxy for congestion in the network, (b) the total 

VKT as a proxy for energy consumption and harmful emissions such as particular matter, 

greenhouse gases or noise, and (c) the distribution of parking space consumption as a proxy of 

local disturbances caused by bunching idle vehicles.  

 

Congestion 

In our simulation, driving speed is a direct indicator of congestion, as the overall demand and 

route choice behaviour are kept inelastic. The analysis of the average driving speed of the SAV 

shows that the worst performance in this regard is observed for the scenario Cruise, for which 

driving speeds decrease by 2.9% compared to the Base Case. The second worst performance is 

observed for scenario P12,500, which is primarily caused by the additional VKT caused by the 

relocation of the vehicles in comparison to the other scenarios altering the number of parking 

spots (Base Case and P17,500), as presented in Table 6.2. This is corroborated by looking at 

the percentage decrease between the driving speeds with and without passengers on-board, 

which is -3.4% for scenario P12,500, and only -1.5% for scenario P17,500. It is, however, not 

just the empty VKT that determines the driving speed – which is a direct result of the proximity 

of available parking space- it is also a question of where parking space is offered: while the 

empty VKT is higher for the scenarios reducing parking in the city centre compared to P12,500, 

the average driving speed is also higher for these scenarios, as the highest driving speeds are 

observed for the scenario Centre60min. As a result of the specific demand pattern in 

combination with the demand anticipatory relocation strategy of our case study, the same effect 

can be observed for scenario D80, in which most vehicles move to the North of the city when 

idle. To illustrate the importance of these differences, a closer look at the average in-vehicle 

times of the passengers is taken, which are, given the inelasticity of the served demand, in direct 

relation with driving speed and thus congestion. For the BaseCase, the average IVT per 

passenger trip is 18.1 minutes, for the scenario P12,500 this is 18.3 minutes and for P17,500 is 
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17.9 minutes. This leads to an increase in IVT for the total of all SAV users per day of 442 

hours for P12,500 and a reduction of 474 for scenario P17,500 compared to the BaseCase. 

Table 6.3: Key-Performance-Indicators describing the service externalities for selected parking 

management scenarios 
 

 parking management strategies with parking space constraints 
free of parking 

constraints  

 P12,500 
Base 

Case  
P17,500 

No 

Centre 

No 

Centre 

Day 

Centre 

60min 
D80 Cruise 

Average driving 

speed taxis [in 

km/h] 

38.7 39.2 40.0 40.6 40.6 41.3 41.2 37.6 

Total VKT [in 

1000 km] 
3,550 3,520 3,505 3,585 3,570 3,580 3,340 11,930 

Gini-index zonal 

parking usage 

9pm- 10pm 

0.26 0.36 0.42 0.53 0.53 0.52 0.74 -- 

Usage of zonal 

parking usage 

between 9 and 

10 p.m. [in %] 

P12,500 Base Case D80 

 

   

 

Energy Consumption and Emissions 

In the following, we do not make any assumption on the propulsion engine, filter technology, 

tyres or other vehicle components potentially used for SAV. We focus instead on the VKT as a 

proxy KPI in this regard. 

 

Overall, it can be observed that the gains in driving speeds of SAV achieved by relocating idle 

vehicles to locations outside of city centres, as discusses in the previous section, are 

counteracted by the increase in VKT: the closer vehicles can park to future demand locations, 

the shorter are the distances travelled without passengers on-board and consequently, the lower 

is the total of VKT in case of inelastic demand. The difference between the scenario with the 

lowest total of VKT (P17,500) and the scenario with parking restrictions showing the highest 

total of VKT (NoCentre) is 80,000 VKT per day, which is a difference of 2.5%. An absolute 

outlier in this regard is the scenario Cruise, in which vehicles are practically constantly on the 

move: The difference between scenario NoCentre and Cruise in regard to total VKT is 107.6%, 

showing how important it can be to prevent idle vehicle cruising in order to not just reduce 

additional congestion, but also the energy consumption of the fleet, as well as noise and air 

pollution. 
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Parking Space Consumption 

We express the spatial dispersion of idle vehicles, and thus the local consumption of the 

provided parking facilities, by using the Gini-index (Gini, 1912) as a measure of inequality, 

which is an indicator derived from the Lorenz Curve. The higher the Gini-index, the less equal 

is the distribution of the concerned measure. To capture the inequality in spatial consumption, 

we analyse the Gini-index for the percentage of used parking spots per zone, collected per 

minute. This is particularly interesting for off-peak hours, during which a larger share of the 

fleet is not in use. Overall, it can be seen that the impact on this KPI intensifies throughout the 

day, with the differences in the Gini-index being more extreme after the evening peak compared 

to the morning hours. This indicates that any nuisance caused by unequal zonal parking space 

consumption can be especially problematic in the evening. For this reason, we present the 

analysis of this KPI for an hour during the depletion of the evening demand peak, starting at 9 

p.m. 

 

The usage of parking facilities for the scenarios in which the SAV make use of on-street parking 

facilities is the most equal for scenario P12,500 (Gini-index of 0.26), and the least equal for the 

scenarios in which vehicles have to park outside the city centre (NoCentre, NoCentreDay: both 

Gini-index of 0.53). The highest Gini-index of all scenarios is observed for D80 (Gini-index of 

0.74), showing the extreme case in which the relocation decision is not subject to constrained 

supply of parking facilities per zone. In this scenario, 95% of the vehicles use parking facilities 

of only approximately one-third of all zones, and more than half of the parked vehicles are 

parked in the eight most-used depots, which is evident in the very steep increase of the Lorenz 

curve for this scenario (Figure 6.7). When comparing the outcome for the different scenarios, 

it becomes evident that the more restricted the number of parking facilities, the more equal the 

usage of parking facilities becomes. From Table 6.3, the spatial distribution of idle vehicles can 

be seen, which follows the demand patterns of SAV users, leading to a majority of empty 

vehicles parking in the North and West of the city. 

 

 

Figure 6.7: Lorenz curves for the average zonal parking usages for the scenarios P12,500, BaseCase, 

P17,500, NoCentre and D80. 
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Service Provision Equity 

The service provision equity is measured by the Gini-index of waiting times across all users 

and waiting times across space. This analysis is conducted across the complete set of agents 

using SAV, thus no distinction is made between groups of different user characteristic. The 

impact of spreading out idle vehicles on the average passenger waiting times has already been 

discussed in section 4.2.1, with the main observation being that the more idle vehicles are spread 

out through the network, the lower the average passenger waiting times.  

 

Distribution of Passenger Waiting Times 

Spreading out idle vehicles reduces not only the average passenger waiting times, but also the 

distribution of the passenger waiting times becomes more equal. As can be seen in Table 6.4, 

where the distributions for the passenger waiting times are shown exemplarily for scenario 

P12,500, BaseCase and D80. For the scenarios P12,500 and BaseCase, the distribution of 

passenger waiting times follows a logarithmic distribution, with about 40% of all passengers 

experiencing waiting times shorter than 2 minutes, 34% having waiting times between 2 and 5 

minutes, and about 25% of all passengers having waiting times longer than 5 minutes, including 

3% experiencing waiting times longer than 15 minutes. For the scenario P80 however, the 

distribution shows a clear hump: only around 17% of the passengers are served instantly 

(maximum 2 minutes of waiting time), and the peak of the distribution occurs between 2 and 5 

minutes of waiting times (around 38%), with a peak at around 3 to 4 minutes of waiting time. 

The tail of the distribution for this scenario is much longer and more prominent than for scenario 

P12,500 or BaseCase, as more than 6% of passengers have to wait for longer than 15 minutes 

to be served by a vehicle. These distributions of passenger waiting times show that by locating 

idle vehicles close to future demand, a much smaller group of passengers experiences instant 

service (waiting times below 2 minutes) than when spreading idle vehicles out in the network. 

Spreading out vehicles also counters very long waiting times (longer than 15 minutes) more 

efficiently.  

 

Spatial Distribution of Passenger Waiting Times 

We measure the spatial distribution of the passenger waiting times for the daily average 

passenger waiting times per zone. It can be seen in Table 6.4 that spreading out vehicles as 

much as possible not only reduces the average passenger waiting times, but also leads to a lesser 

geographical dispersion in average zonal passenger waiting times for the scenarios with 

constrained parking facilities: the Gini-index of the average zonal waiting times for the 

scenarios P12,500, BaseCase and P17,500 is with 0.28-0.29 much lower than the ones for the 

scenarios in which parking in the inner city is more restricted (NoCentre, NoCentreDay, 

Centre60min), which ranges between 0.33 and 0.34. That the differences in average zonal 

passenger waiting times within these groups of scenarios are marginal, can be also seen in 

Figure 6.8, which shows that the Lorenz curves for these scenarios are very close to each other. 

The Gini-index for the scenario D80 is, with a value of 0.21, the lowest amongst all scenarios. 

This means that the differences in average zonal passenger waiting times are less prominent 

than in the other scenarios. This could be interpreted as a positive quality, as this guarantees a 

higher service provision equity on a spatial level than the other scenarios. However, interpreted 

in combination with the average passenger waiting time and the distribution of passenger 

waiting times for scenario D80, a less desirable picture presents itself: in this case, the increase 

in service provision equity originates from the inefficiency of the provided transport service by 

SAV, leading to a situation where customers are generally worse off. The same holds for 

scenario Cruise.  
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Table 6.4: Key-Performance-Indicators describing the service provision equity for selected parking 

management scenarios 
 

 parking management strategies with parking space constraints 
free of parking 

constraints  

 P12,500 
Base 

Case  
P17,500 

No 

Centre 

No 

Centre 

Day 

Centre 

60min 
D80 Cruise 

Gini-

coefficient for 

average zonal 

passenger 

waiting times 

0.28 0.29 0.28 0.34 0.33 0.34 0.21 0.25 

Distribution 

of Passenger 

waiting times  

[in seconds] 

 

Average 

passenger 

waiting time 

per zone (in 

seconds) 

P12,500 Base Case D80 

 

   

 
It is interesting to note that, throughout all scenarios, the zones with the shortest waiting times are 
zones with low demand. These zones have in common that the passenger requests occur during 
the peak-hours, in which vehicles serve one passenger request after the other and are thus less 
likely to be idle and relocate. For such zones, the different parking management strategies are less 
impactful than for zones in which a substantial number of passenger requests are launched during 
off-peak hours.  
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Figure 6.8: Lorenz curves for the average zonal waiting times for the scenarios P12,500, BaseCase, 

P17,500 (all medium gray), NoCenter, NoCentreDay, Centre60min (all dark grey), D80 and Cruise 

(both light grey). 

6.5 Discussion and Conclusion 

This study suggests that parking management can be an effective way to steer the operations of 

an on-demand transport service operated by SAV. Parking management can be used to improve 

various aspects of the service both for the whole city as well as for selected areas. However, 

improving the service always involves the trade-off between different aspects, and parking 

policies for such transport services, therefore, have to carefully weigh the benefits and 

disadvantages of each parking management strategy.  

 

The results of this study suggest that overall it can be beneficial to spread out idle vehicles as 

evenly as possible in the network. For the simulated parking management strategies achieving 

a more even spatial distribution of idle vehicles, the average passenger waiting times are lower, 

less congestion is induced and, naturally, the dedicated parking facilities are used more evenly. 

This, however, comes at the cost of an increase in driven mileage. For these reasons it is also 

not beneficial to let idle vehicles cruise through the network: in this study the total VKT increase 

by factor 3.4 for a scenario in which idle vehicles cruise. It is thus of great interest to a transport 

authority to provide parking space for vehicles providing on-demand transport services, yet 

restrict parking in an appropriate way. However, the question of how much and where this 

parking space should be provided is far from trivial, as this depends on local transport policy 
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objectives. As a general observation, it has been shown in this study that it can be beneficial to 

reduce the ratio of parking spots per vehicle and thereby have vehicles using dedicated parking 

facilities more equally across the city. This is based on the observation that neither the 

operational efficiency nor the service provision quality improve with an increasing number of 

dedicated parking spots. From the perspective of a transport authority, it can be therefore argued 

that providing less dedicated parking space brings more benefits than increasing the fleet size. 

This is how less can be more in case of parking space for such transport services. 

6.5.1 Parking Management Strategies and Possible Policy Paths  

The analysis of the parking management scenarios for an on-demand transport service operated 

by SAV shows that providing restricted dedicated parking space is an effective means to tackle 

issues cities are commonly facing. By tailoring parking management strategies, the spatial 

distribution of idle vehicles can be steered, which can impact not just the local parking 

conditions, but also congestion levels, total driven mileage, average passenger waiting times as 

well as the distribution of the latter. Depending on the local conditions and the ambitions of 

planning authorities, different strategies can prove to be beneficial. The main trade-off concerns 

the total driven mileage: by forcing idle vehicles to spread evenly throughout the network, the 

VKT travelled without passengers on-board increases substantially, reducing partly the 

efficiency of the service as well increasing undesired externalities linked to pollutant emissions 

and energy consumption. Notwithstanding, the average passenger waiting times and the service 

provision equity, the average driving speed and the spatial distribution of parking space 

consumption can be influenced favourably by ensuring that idle vehicles spread out evenly.  

 

By providing a limited number of dedicated parking facilities spread over the entire network, 

service performance can be improved for important KPIs, while allowing superimposing 

policies at the local level if necessary, e.g. as done in this study by limiting parking in the inner 

city. Similar effects could alternatively be achieved by amending the relocation algorithm of 

the fleet manager, as done in Chapter 5. This opens up two potential paths for transport 

authorities to impact the service of on-demand SAV services : (a) allot dedicated parking space 

to the vehicles of such a fleet based on the locally most suitable parking management strategy 

or (b) introduce virtual parking space constraints into relocation algorithms, which could be 

part of a tender contract or other legal agreements with SAV fleet managers. Both ways allow 

solutions tailored to local problems and ambitions related to service efficiency, externalities 

and provision equity. The latter approach allows implementing refined and flexible solutions 

and thus might become the preferred option with growing familiarity with such kind of services 

and their legal framework. Also, the magnitude of improvement for the selected KPI has shown 

to be larger when “internalizing the parking constraints” in the relocation decision by selecting 

a relocation strategy that has an objective to spread out idle vehicles instead of enforcing this 

behaviour from the outside with physical parking constraints. We illustrate this by comparing 

in Table 6.5 the most restrictive parking management scenario tested in this study, namely 

P12,500, with the relocation strategy “Demand-Supply Balancing” applied to the same 

parameters described in the scenario BaseCase tested in Chapter 5, which relocates vehicles so 

that not just future demand, but also future vehicle supply is taken into account per zone when 

relocating idle SAV. In both cases, the same demand for SAV and the same fleet size is 

simulated for the case study. It can clearly be seen that the external parking restriction can 

reduce passenger waiting times less efficiently than the internal parking restrictions formulated 

by the relocation strategy. Again, this gain comes at the cost of additional empty mileage driven 

by the SAV. This comparison shows that internal, or “virtual” parking constraints specified by 

relocation strategies for SAV can have a greater impact than the parking management strategies 
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per-se. This gives reason to believe that in the long term the rules for where and when idle SAV 

park, could be specified in the form of relocation algorithms rather than in terms of physical 

parking constraints by a “transport authority”.  

Table 6.5: Impact comparison between external and internal parking restrictions for the average 

passenger waiting time and the total empty VKT 
 

 Scenario P12,500 Scenario BaseCase 

“Demand-Supply 

Balancing” relocation 

strategy 

Input: fleet size 12,500 12,500 12,500 

Input: number of 

parking spots 
12,500 15,000 15,000 

Input: Relocation 

Strategy for SAV 
Demand Anticipation Demand Anticipation 

Demand-Supply 
Balancing 

Average passenger 

waiting time 

[in minutes] 

4.2 

 

4.6 

 

3.5 

Total empty VKT 

[in km] 
2,001 

 

1,974 

 

2,063 

 

However, especially in the introductory phase of SAV, or comparable on-demand transport 

services on larger scales, it can prove to be simpler, and thus quicker, to formulate and 

implement parking constraints for such vehicles as part of existing urban parking management. 

This is especially true when it comes to responding to pressing challenges posed by the presence 

of (multiple and competing) ride-hailing services. Parking management strategies could thus be 

instrumental in counteracting on-demand service operators focussing solely on gaining the 

largest share of highest-paying customers, which could lead to a distortion of the principle of 

spreading out empty vehicles as much as possible. Formulating parking constraints, as done in 

this study, can be a robust way to enforce this, as this does neither require insight into the 

relocation strategy applied by the fleet manager nor does it require direct coordination between 

multiple fleet operators. 

6.5.2 Study Limitations and Outlook  

With the advancement in the technology of automated vehicles, also our view on how such 

vehicles will be used will advance. The debate on how to deal with larger fleets of on-demand 

transport services in our cities has just started, and it is likely to intensify once driverless 

vehicles enter the arena. However, it is not too early to start the discussion on which policy 

tools transport authorities have at their hands to proactively shape the introduction of such 

transport services beneficially, and how effective these can be in the future.  

 

This study examines a set of parking management strategies for a fleet of shared automated 

vehicles based on a simulation study for a case study based on the city of Amsterdam. Given 

the futuristic nature of such transport services, we had to make a multitude of assumptions and 

simplifications, concerning both the parameters used to describe the testbed in which we 

simulated the operation of the SAV, as well as the parameters used to describe the operation of 

the SAV. By regularly conducting many more similar simulation experiments with 

-27.1% -9.1% 

+1.4% +4.4% 



110                                                                                               Providing Public Transport by Self-Driving Vehicles 

continuously updated behavioural and operational parameters for a plurality of case studies, the 

scientific community will gain a more robust understanding of the best way to relocate idle 

vehicles of large fleets of on-demand transport services operated by automated vehicles in an 

urban context.  

 

The parking management scenarios in this study are devised in order to sketch the consequences 

of opposing solutions to the question of where idle vehicles should be placed. More subtle 

parking management strategies could also be based, for example, on financial incentives. 

Another avenue for further research includes the consideration of multiple SAV providers in 

different urban structures, which will create a competition that can lead to an even stronger 

incentive to locate idle vehicles close to demand hot-spots, as well as introducing various 

relocation strategies at the same time for risk management purposes. Furthermore, further 

research on the behavioural response to waiting times and waiting time reliability may help to 

assess the benefits of the different parking management strategies. However, as the degree of 

familiarity with SAV and comparable transport services is still too low to formulate reliable 

mode choice models, this study refrains from simulating changes in mode choice in response 

to the parking management strategies.  

 

Furthermore, the set of KPI used in this study for measuring the impact of the different parking 

management strategies is not conclusive. Especially in regard to social aspects, such as a 

possible increase in inclusiveness or a reduction in mobility poverty, more analysis is needed 

before coming to a conclusive judgement in regards to the different parking management 

options. Expanding the catalogue of KPIs used to describe the impact of parking management 

strategies and/or relocation algorithms will be an important task for future research in order to 

support policymakers and transport authorities on this topic.  
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Chapter 7 - Conclusion  

Worldwide, pilot studies and trials with fully autonomous vehicles are conducted, heralding a 

future in which self-driving vehicles might play an important role for our mobility. Self-driving 

vehicles (level 4 and 5 in the SAE classification) have the potential to be a true disrupter in the 

field of transport, as they might change the way we travel and challenge both the current market 

for private vehicles as well as the current public transport system. By being able to move 

without a human driver on board, they make modern car-sharing concepts as well as on-demand 

transport services more feasible. Shared automated vehicles (SAV) are therefore often sketched 

as one of the first applications of self-driving technology. This thesis combines the findings 

from three main research branches addressing the possible impacts of shared automated 

vehicles: behavioural research describing the preferences of potential users of such vehicles 

(Part I), operational research improving the way such vehicles are put into use (Part II) and 

research into policy implications for such vehicles (Part III).  

7.1 Main Scientific Findings and Their Practical Implications 

7.1.1 Preferences for Self-Driving Vehicles Used for Public Transport Services 

The first of the three main research questions addressed in this thesis asks, who the users of 

self-driving vehicles deployed in road-bound public transport services (automated buses or 

SAV) might be and what influences the choices for or against using such services. In order to 

analyse the preferences towards self-driving vehicles used for public transport services, two 

stated-preference experiments have been conducted, based on which discrete-choice models 

have been estimated. The findings from these experimental studies contribute to the growing 

body of work analysing preferences towards, as well as perceptions of, self-driving vehicles in 

general and shared automated transport services in particular.  

 

The results of the stated-preference studies suggest that operating public transport services with 

automated vehicles does not improve the preference for such services for all people alike. 
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Participants with the strongest preferences towards self-driving vehicles used for public 

transport services have been found to be more likely young, male, with higher education and 

participants who are more sensitive towards travel-time reduction rather than travel-cost 

reductions. In terms of the current commuting behaviour, it has been observed that multi-modal 

users currently combining private car and public transport services show the highest preference 

for shared automated vehicles.  

 

The characteristics of those with higher preferences for self-driving vehicles deployed for 

public transport services, and the flexibility in service they enable, fit at large the picture we 

generally have of early adopters of new technologies. Generally speaking, this group is however 

neither the largest group among public transport users nor is it the group most dependent on 

public transport services. This leads to the conclusion that the introduction of self-driving 

vehicles for public transport services would initially be met with some scepticism by most of 

the current users of public transport services, but would have the potential to directly meet the 

travel demands of a highly mobile group of people currently combining public transport 

services and the usage of their private cars as part of their commuting trips.  

 

It also has been found that on-demand transport services are not preferred over scheduled 

services by public transport users per se. A shift in preference towards such flexible transport 

services would require these services to provide a clear benefit over existing forms of public 

transport, either by being noticeably cheaper or faster. Commuters currently using exclusively 

their private car have been found to show an increased preference towards vehicle sharing in 

the form of free-floating car-sharing, but not towards self-driving vehicles. Their preference for 

free-floating car-sharing services increases further if parking fees for private cars are applicable 

or if the search for a parking spot costs more time when using a private car than when using the 

car-sharing vehicle. This shows a potential route for policies aiming at stimulating the use of 

car-sharing vehicles instead of private cars. 

7.1.2 Benefits of Idle Vehicle Relocation for Shared Automated Vehicles  

The operation of fleets of vehicles providing on-demand transport services has moved into the 

focus with the rising popularity of ride-hailing services and the development of self-driving 

vehicles progressing rapidly. In the scientific world, especially the request-dispatching and 

routing of shared vehicles attracts attention. The relocation of idle vehicles is often treated as a 

subordinate step of these operational tasks. For this reason, the second main research questions 

addressed in this thesis asks, what role the relocation of idle vehicles can play in the operation 

of SAV. The findings presented in this thesis suggest that idle vehicle relocation can be not 

only a crucial component for efficient and effective service operation, but can also be used to 

achieve other objectives such as service provision equity or reduced service externalities. The 

relocation strategies tested for the on-demand transport services described in this thesis do not 

take into account the individual objectives of vehicles (or drivers), and hence are more suitable 

to fleets of automated vehicles than fleets of manually driven vehicles.  

 

The tested relocation strategies include idle cruising, placing idle vehicles in zones with high 

demand, spreading idle vehicles out as much as possible and a combination of the two latter 

strategies. None of the tested relocation strategies was found superior in all respects, but for the 

different simulated testbeds the strategy of spreading out idle vehicles throughout the network 

has shown benefits from an operator’s point-of-view: it avoids creating congestion around 

demand-hotspots, which overall leads to shorter average passenger waiting times. However, 
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spreading out idle vehicles comes at the cost of higher total vehicle-kilometres travelled, which 

can reduce the efficiency of the operation.  

 

Which of the relocation strategies is the most advantageous one depends on the market in which 

the transport service offered by the SAV is operating. Demand-anticipatory relocation strategies 

could be preferred by operators in a highly competitive market, in which several fleets vie with 

each other for customers. In such a setting, fleet managers could find it beneficial to strategically 

position idle vehicles so that they have a higher probability of reaching a large number of 

customers faster than their competitors. If, however, the on-demand transport service would be 

operated in a less competitive environment, a relocation strategy aiming at spreading out idle 

vehicles could prove to be a better operational choice, considering its benefits in terms of 

service efficiency and service provision equity, as found in this thesis.  

7.1.3 Proactive and Reactive Vehicle Relocation of Shared Automated Vehicles 

The results presented in chapters 4 to 6 of this thesis open up the question whether proactive 

vehicle relocation strategies for idle SAV are advantageous compared to reactive relocation 

strategies, which neither take future demand nor future supply distribution into account. In this 

thesis, various proactive and reactive strategies have been tested, with the results of the reactive 

strategies presented in concise form in the Appendix. The following main conclusions can be 

drawn from this comparison between proactive and reactive relocation strategies for idle SAV: 

 

 Not moving idle vehicles can outperform proactive relocation strategies: The 

scenario Remain With Parking Constraints is the most passive relocation strategy 

simulated with parking constraints. This strategy leads to considerable gains in the 

service efficiency, as vehicles move shorter distances for reaching their next parking 

location, which leads to less empty VKT, hence also to less congestion and ultimately 

to shorter trip times. The passenger waiting times are equally low as for the Demand 

Supply Balancing strategy, but slightly less equally distributed than for this proactive 

strategy, as can be seen by comparing the 95% percentile of passenger waiting time and 

the Gini-index of zonal waiting times. This shows that by staying close to the destination 

of passenger trips, the chance of meeting future demand increases similarly than when 

spreading vehicles out according to the most advanced relocation heuristic tested in this 

thesis.  

 Unregulated cruising should be avoided: The results obtained for the scenario Cruise 

and Random Cruise show that zonal cruising and random cruising through the network 

cause severe congestion (driving speeds are much lower than in the other cases), which 

negatively affects all service efficiency parameters. This is true for both reactive and 

proactive cruising strategies. The latter, however, causes fewer disruptions in the 

network. This leads to the conclusion that if cruising cannot be avoided, it should be at 

least be stirred to a more proactive pattern in order to reduce the randomness of the 

cruising. 

 Not simulating parking constraints leads to an overestimation of the service 

performance of SAV: The strategy Remain describes a hypothetical case in which idle 

vehicles remain at the latest drop-off location regardless of the availability of parking 

space at this location. In the simulated case study, this leads to an overestimation of the 

service performance of SAV, as this “strategy” outperforms all other ones. The reason 

for this is two-fold: (1) By positioning vehicles at the destination of passenger-trips, the 

likelihood increases to be positioned close to future demand, and (2) systematic delays 

caused by the discontinuous updating of the simulation increase passenger waiting 
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times, which is the case for all other relocation strategies where the additional “actions” 

(start relocation, end relocation and turn to parking) cause laggardness. The latter issue 

could, however, be overcome by continuously improving the technical specifications of 

the simulation of SAVs. 

The comparison between the scenarios Remain and Remain With Parking Constraints 

shows that the consideration of parking constraints leads to an increase in the average 

passenger waiting times by 46% and of the total VKT by 40%. The VKT are not subject 

to systematic distortions caused by the discontinuous simulation approach, and hence 

show the degree to which the performance of SAV can be overestimated when not 

taking into account parking space constraints for the simulated case study.  

 

The comparison between proactive and reactive relocation strategies thus leads to two key 

observations: (1) Parking constraints are an important factor to be considered when simulating 

on-demand transport services such as the one envisioned here to be operated by SAV and should 

be carefully included when judging the performance of such services. (2) Proactive relocation 

heuristics do not necessarily outperform reactive relocation strategies. This is, however, a case-

specific finding for the simulated case study with its distinctive demand pattern, zonal division 

and parking supply. Different demand patterns (spatially or temporally) and different parking 

supply per zone could lead to another outcome in this regard, which emphasizes how important 

it is to repeat similar simulation scenarios and relocation strategies for a large variance of case 

studies and service specifications before coming to conclusive judgments of how SAV could, 

and perhaps should, be operated.  

7.1.4 Parking Management for Shared Automated Vehicles 

The final main research question addressed in this thesis asks, how parking management can 

effectively shape the way SAV perform in our cities. As shown in the analysis of the different 

strategies for relocating shared automated vehicles, idle vehicle relocation impacts not just the 

operational performance of the service, but also externalities caused by such a transport service 

as well as its service provision equity. This opens up an alley for transport authorities to take 

an active role in shaping the impact of SAV by defining where, and for how long, idle vehicles 

may park.  

 

In this thesis, parking management is shown to be an effective way to manage service 

externalities and service provision equity of on-demand transport services operated by SAV, 

while preserving adequate levels of operational efficiency. This can be particularly useful in 

cases where no agreement on vehicle relocation with the operator can be obtained, e.g. due to 

a lack of a legal framework or because multiple competing services are operated in the same 

area. Depending on the objective of the transport authority, issues such as service provision 

equity, spatial usage, congestion or the environmental impact of such transport services can be 

addressed by defining respective parking management strategies. The results of this study have 

shown that transport authorities do not have to provide an abundance of dedicated parking space 

in order for such transport services to be able to operate efficiently. The results in this thesis 

show that providing more parking space than necessary can even decrease the service efficiency 

in a situation where fleet managers relocate their vehicles based on demand-anticipatory 

strategies. When looking at the average passenger waiting time, it has been shown that the 

improvement attained through parking management is much higher than by increasing the fleet 

size. This can reduce the operational costs as well as the total parking space needed for such 

fleets. However, it could also be shown that relocation strategies applied by a fleet manager or 
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operator directly have a stronger impact than relocation constraints created through parking 

management strategies. 

 

These findings show that it will be beneficial for all involved stakeholders if transport 

authorities take an active role in the decision on how on-demand transport services are operated 

in their cities. In many cases, this is not even a new role transport authorities have to take on, 

as current taxi services and increasingly also ride-hailing services, are also often regulated. 

7.2 Limitations and Scientific Recommendations 

7.2.1 Behavioural Models Including Shared Automated Vehicles 

The conclusions drawn in regard to the relocation strategies of idle vehicles and parking 

management of shared automated vehicles are based on results obtained from agent-based 

simulation models. Such models allow modelling the interaction effects emerging from the 

interplay between the simulated agents. This interplay is defined by a set of pre-defined rules 

that describe the behaviour of the agents. The quality of the simulation results is thus directly 

linked to the accuracy of the underlying behavioural model. For the case studies simulated in 

this thesis, the behavioural rules are based on the concept of utility, balancing the satisfaction 

of performing a set of planned activities with the inconveniences of travelling. The latter consist 

of the related costs, the time spent on travelling and deviances in the planned activity-schedule 

due to delays or congestion.  

 

Since only very few people have already experienced travelling in self-driving vehicles and 

nobody has used transport services operated by shared automated vehicles as sketched in this 

thesis, it is not yet possible to formulate a reliable behavioural model that includes SAV. For 

this reason, the analysis of the strategies for vehicle relocation and parking management has 

been confined to operational parameters while leaving out the behavioural response to the 

different strategies. Once, more reliable behavioural models become available, this analysis 

should also include the effects of vehicle relocation on the agent’s choice behaviour, e.g. in 

regard to mode-choice. 

 

The findings presented in the first part of this thesis add to a better understanding of the 

perceived preferences towards self-driving vehicles used for public transport services and car-

sharing systems. However, the results for the stated preferences hold only for the particular 

choice situations described in the choice experiments, which do not cover all choice situations 

needed to describe the agent behaviour in the simulation model. Examples for choice situations 

not covered in the experiments are mode choices for trip purposes other than commuting, or 

departure-time choices. For this reason, the findings presented in the first part of this thesis are 

only used in a qualitative way in the simulation model of the second and third part. The findings 

from these studies can also not be used to predict the mode choice behaviour in the future, as 

they capture merely the current perceived utility of the different mode alternatives included in 

the experiment. Over time, with a growing degree of familiarity with the new technology and 

the new transport services, these perceptions are likely to change. By continuing to perform 

stated-preferences experiences, it will be possible to derive increasingly accurate descriptions 

of the perceived preferences towards vehicle automation and transport services offered by self-

driving vehicles. Furthermore, by doing so we would learn more about how perceptions of new 

technology change over time with an increasing degree of familiarity and in the presence of 

possible disruptive events in the early phase of deployment, positive or negative. Monitoring 
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the behavioural response to the introduction of self-driving vehicles will be particularly 

interesting once enough people have actually experienced travelling in such vehicles and with 

such transport services in order to compare stated and revealed preferences.  

7.2.1 Modelling the Operation of Shared Automated Vehicles 

The findings in this thesis are based on one possible description of how on-demand transport 

services operated by shared automated vehicles could look like. There are numerous operational 

parameters, such as the fleet size, type of vehicles, the way how vehicles are shared, the routing, 

dispatching or idle vehicle relocation, that determine the quality of service performance and its 

externalities. By performing more simulation studies for the different possible forms of 

transport offered by shared automated vehicles, it will be possible to detect opportunities as 

well as problems that generally can arise with the introduction of such services. For this, it is 

crucial to analyse the effects in a holistic manner that captures not just service efficiency, but 

also service externalities and service equity.  

 

From the findings in this thesis, two particularly interesting questions arise for the relocation of 

idle vehicles in regard to operational decisions under uncertainty: how will the relocation of 

idle vehicles impact the performance in a setting in which (1) the fleet manager or transport 

operator does not have full information on the availability of free parking space at the moment 

of the decision to relocate a vehicle, or parking space cannot be reserved in advance, and (2) 

several fleets compete for passengers and parking space. Including these issues in the simulation 

of shared automated vehicles would not just enrich our understanding on how to best operate a 

fleet of such vehicles, but would also allow determining more precisely the range in which 

parking management can impact such transport services.  

7.2.3 Modelling Car-Ownership in Times of Shared Automated Vehicles 

A possible introduction of new transport services operated by shared automated vehicles would 

not just impact short-term decision such as mode choice or departure time choice, but could 

also potentially impact long-term choices such as car ownership choices. As shown in this 

thesis, car-sharing services or ride-hailing services, automated or not, have the potential to 

compete directly with the use of the private car, especially when they relieve the users of 

parking costs and the search for parking spots. Most of the current car ownership models make 

mainly use of socio-economic parameters for modelling car ownership choices. In times of car-

sharing services similar to the one envisioned in this thesis, however, simple socio-economic 

parameters such as income and household size might not be the best predictors anymore. In 

order to capture the point at which a car owner considers not owning a private vehicle anymore 

due to his/her access to car-sharing services, the use of the private car and use of the car-sharing 

service could be compared. There are only few car-ownership models that include the actual 

use of a private car to forecast car ownership, among which the “Indirect utility car ownership 

and use” (De Jong, 1990; Rouwendal & Pommer, 2004) models and the “Dynamic discrete-

continuous choice” models (Bhat & Sen, 2006; Cernicchiaro & de Lapparent, 2014). These 

joint discrete-continuous models consider car ownership and car use in integrated micro-

economic frameworks, based on the idea that car ownership and car usage are strongly 

interrelated. For each household, a certain demand for kilometres-travelled by car is assumed, 

depending on the socio-economic status of the household. Additionally, an indirect-utility 

model describes the relationship between different car ownership states and the demand for car 

use. Some of these models even include fixed car cost and variable car cost into this choice set. 

Based on such models, the usage of car-sharing or ride-hailing services could be included in 
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car ownership models, which would allow, in combination with models capturing the day-to-

day choices like the one presented in this thesis, to model the impact of such services on long-

term choices.  

7.3 Outlook  

Self-driving vehicles could allow operating public transport services in a more flexible manner 

since they could make it more affordable to operate fleets of smaller vehicles providing on-

demand transport services. This has the potential to disrupt the way we perceive, use and operate 

public transport services and consequently presents unknown challenges to transport- and urban 

planners. An example of such new challenges is one of the key questions addressed in this 

thesis, namely if, and where, idle self-driving vehicles providing on-demand public transport 

services should be parked, and how much urban space should be allocated to this purpose. Given 

the long planning horizon common to infrastructural projects, it is now the time to start the 

discussion on what changes can be expected due to increasingly automated vehicles, and how 

these can be shaped in a beneficial way. Scientific research findings on this topic can support 

transport authorities and municipalities in taking an active role in transforming cities currently 

adapted to private cars into cities in which resources are shared more efficiently and space is 

used more effectively. Three research directions directly connecting to the findings in this thesis 

are highlighted in the following:  

 

(1) Closing the gap between models describing short-term impacts and those describing 

long-term effects of the introduction of shared transport services. Without this step, it 

will not be possible to model the potentially far-reaching changes in travel behaviour 

due to such services. A brief sketch of how mode choice could be coupled to car 

ownership is discussed above. There are more aspects for which short-term and long-

term choices affect each other, e.g. location choices and land use patterns, which need 

to be included as well.  

 

(2) A second issue directly affiliated with the research presented in this thesis is the question 

if the technology of self-driving vehicles can be a game-changer regarding transport 

equity. If the introduction of self-driving vehicles should allow public transport services 

to become more flexible, issues of availability and accessibility of transport services can 

be tackled, but what will be the impact in regard to affordability and adequacy of the 

provided transport services? Addressing these questions, especially in regard to the role 

transport authorities can play in the development of such transport services, will be 

crucial in terms of shaping the introduction of self-driving vehicles beneficially.  

 

(3) Finally, addressing the possible spatial impacts of self-driving vehicles on a broader 

scale than just parking space consumption will be important to make transport and urban 

planning fit for a future with self-driving vehicles. This concerns issues directly linked 

to the operation of SAV such as future road layouts, the installation of vehicle 

communication technologies or the design of transport networks integrating such 

transport services, but also might lead to changes in land-use, and hence urban planning 

in general. For example, large-scale on-demand transport services require a different 

infrastructure from current public transport services for picking-up and dropping-off 

passengers. Currently, public transport hubs often create local centres vital to the urban 

structure by attracting businesses and other local players of medical and social supply. 

With an increase in door-to-door transport services, public transport hubs could lose 
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their status as a natural anchor of such local centres. The changes shared automated 

vehicles might cause in the public transport system, therefore, open up new 

opportunities, as well as challenges, for urban planning.
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Appendix 

In chapter 5 and 6, various relocation strategies have been simulated for the “base case” of the 
Amsterdam MATSim Scenario, described in detail in Table 5.2. In addition to these strategies, an 
additional number of reactive relocation and cruising strategies was tested. An overview of all 
simulated strategies with a brief description is presented in Table A.1.  

Table A1: Overview of the proactive and reactive relocation strategies tested for the Amsterdam case 

study 
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Demand 

Anticipation 

Described in chapter 5, referred to as “Base Case” in chapter 6: Vehicles 

move to zones with the highest demand depending on the availability of 

free parking space. 

Cruise 
Described in chapter 6, same functionality as Demand Anticipation, with 

the difference that vehicles keep cruising in zones to which they relocate 

Supply 

Anticipation 

Described in chapter 5: Vehicles move to zones with the lowest supply of 

idle vehicles depending on the availability of free parking space 

Demand-Supply 

Balancing 

Described in chapter 5: Vehicles move to zones with the highest deficit 

of idle vehicles per zone to serve the future demand in zone 

R
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st
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Remain 

Described in chapter 6: Hypothetical scenario, in which idle vehicles 

remain at the latest drop-off location, regardless of parking space 

availability 

Remain With 

Parking 

Constraints 

Not presented so far: Idle vehicles drive to parking spots available within 

the zone of their latest drop-off location. If no parking spot is available, 

they move to the closest zone with available parking spots.  

Random 

Cruise6 

Not presented so far: Idle vehicles cruise randomly through the network 

until they are assigned to a new request. 

                                                        
6 The results for this relocation strategy are averaged over 8 simulation runs. Due to the volatile nature 
of this relocation strategy, more simulation runs are required compared to the other ones presented in 
this thesis (4 runs on a 99% confidence interval). For this reason, also a lower confidence interval of 90% 
has been selected in order to determine the necessary number of simulation runs.  



120                                                                                               Providing Public Transport by Self-Driving Vehicles 

 
An overview of the main key-performance-indicators discussed in this thesis is shown in Table A2. 
and graphical results for the zonal analysis are shown in Tables A3, A4 and A5. Here, this entire 
set of strategies is briefly compared based on the key performance indicators employed in this 
thesis. 
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Table A3: Average zonal passenger waiting times for proactive and reactive relocation strategies for 

idle SAV. 

Zonal average waiting times [in minutes] Remain 
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Table A4: Average zonal parking usage for the proactive and reactive relocation strategies for idle 

SAV for which parking usage is applicable for the 21st hour of the simulated day. 
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Table A5: Average zonal parking usage (solid line) over the course of a simulated day for the 

proactive and reactive relocation strategies for idle SAV for which parking usage is applicable. The 

5th-95th percentile and 20th-80th percentile are shown by the shaded areas. 
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Summary 

Synergies between Vehicle Automation and Vehicle Sharing 

Self-driving vehicles (levels 4 and 5 in the SAE classification) are predicted to possess 

distinctive characteristics that could change the way we use road infrastructure and the way we 

travel. With the introduction of such vehicles, especially the concept of sharing vehicles could 

become easier and more economical. Car-sharing is often discussed as a solution to the problem 

of private vehicles aggravating the competition for urban space, as such cars are used more 

efficiently and thus require less space for parking when idle. However, introducing highly 

automated, and hence also highly connected vehicles, is costly, as this requires infrastructural 

changes as well as substantial investments in the on-going development of the technology 

required for automating vehicles. By establishing such vehicles as a large, centralized fleet, 

which is used in a shared manner, investment costs could drop, and the difficult phase of mixed-

traffic consisting of vehicles with different degrees automatic could be cut short. Further 

synergies between sharing vehicles and automating vehicles are, that self-driving vehicles could 

solve issues currently linked to ride-hailing services, such as driver non-compliance, and car 

sharing systems, such as the relocation of idle vehicles or the exclusion of user-groups based 

on the prerequisite of a driving licence. 

 

The main objective of this dissertation is to understand better what it means to deploy shared 

automated vehicles (SAV) for on-demand public transport services. This is analysed from the 

perspective of three main stakeholders (see Figure I.A): (1) the preferences of potential users, 

(2) the fleet operation supervised by the fleet manager (3) and potential parking management 

strategies issued by a transport authority concerned with the introduction of SAV. In particular, 

the following overarching research questions are addressed: 

(1) Who might use self-driving vehicles deployed in road-bound public transport services 

(automated buses or SAV) and what influences the choices for or against such services? 

(2) What role can the relocation of idle vehicles play in the operation of SAV? 

(3) How can parking management effectively shape the way SAV perform in our cities? 
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Figure I.A: Core topics addressed in this thesis: user preferences, fleet operation and parking 

management for SAV 

User Preference: Perception of SAV and Automated Buses 

Self-driving vehicles are not yet available for the kind of on-demand transport services sketched 

in this thesis. For this reason, we rely on stated-preference studies to better understand how 

potential users perceive such transportation services. This thesis features two discrete choice 

models capturing the relative preferences towards automated vehicles used for public transport 

services, one focusing on self-driving buses, the other on shared automated vehicles and free-

floating car-sharing services. In the first model, a Mixed Logit model including attitudes 

towards self-driving buses has been estimated, in which different operational attributes in 

regard to the flexibility of the service (schedule based or on-demand service) or the safety 

standards (presence of a steward, on-board surveillance system) are introduced. The second 

model is estimated as a Nested Logit model with latent classes. The findings from these two 

stated-preference experiments suggest that currently there is a divide between those generally 

characterized as “early-adopters” of technology and those more hesitant towards such changes. 

Younger people, men, people with higher education, people preferring travel-time reduction 

over travel-cost reduction, people having a higher level of trust in vehicle automation or 

showing a generally increased interest in technology and multi-modal commuters have been 

found to have the highest preference for vehicle automation for public transport vehicles. 

Vehicle sharing in form of (non-automated) free-floating car-sharing, has been found to appeal 

to commuters currently commuting solely by car, in particular if they have to pay parking fees 

or if finding a parking spot is more difficult for private cars than for shared cars.  

Fleet Operation: Relocation of Idle SAV 

The operation of on-demand transport services such as the one operated by SAV envisioned 

here can be broken down into smaller operational problems. In this thesis, the focus is put on 

the operational step of idle vehicle relocation . By means of an agent-based simulation model 

(MATSim), different relocation rationales such as demand-anticipatory strategies and supply-

anticipatory strategies are tested. The first leads to vehicle bunching around demand-hotspots, 

the latter leads to a more even distribution of idle vehicles in the network. The relocation 

strategies are analysed in a holistic manner, taking into account the service efficiency, the 

service provision equity and the service externalities. None of the tested relocation strategies is 
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superior across the board. From an operational perspective, the efficiency of the service is the 

prime performance measure. The most advantageous strategy in this regard has been shown to 

be the strategy of spreading out idle vehicles throughout the network: doing so causes less 

congestion around demand-hotspots, which reduces passenger waiting and thus the quality of 

the service. However, this comes at the cost of higher total vehicle-kilometres-travelled, 

reducing the efficiency of the service to some degree. 

Parking Management: Strategies for SAV 

This thesis contributes to the exploration of potential opportunities and threats stemming from 

the introduction of self-driving vehicles to our cities, and what actions planning authorities 

could take accordingly. In particular, the impact of parking management on the service 

efficiency, the service externalities and the service provision equity is quantified for a set of 

scenarios, which are again tested by means of an agent-based simulation model. The findings 

suggest that, overall, it is also beneficial for transport authorities to ensure that idle vehicles are 

spread out as evenly as possible in the network. This can reduce the average passenger waiting 

times, but also increase the service provision equity, induce less congestion and lead to a more 

even usage of the dedicated parking facilities. However, the additional vehicle-kilometres-

travelled caused by this relocation strategy contribute to more undesired service externalities. 

One way of spreading vehicles out more equally across the city by parking management is to 

reduce the ratio of parking spots per vehicle. The results of the simulation studies show that 

reducing the number of dedicated parking spots can improve the quality of the service even 

more than increasing the fleet size.  

Conclusion 

Self-driving vehicles could make the operation of public transport services in a more flexible 

manner more affordable. Introducing shared automated vehicles would allow operating a fleet 

of smaller vehicles providing on-demand transport services. This could potentially impact the 

way we use and operate public transport services, which could eventually trigger changes in car 

ownership or land use. Such changes can pose a unique opportunity for transport authorities 

and municipalities to re-organize transport supply and networks, as well as urban space, if they 

take an active role in guiding the way self-driving vehicles are introduced. In this thesis, it is 

shown that parking can be an important parameter in this process: parking fees and parking 

search time are shown to influence mode preferences, idle vehicle relocation is shown to impact 

service efficiency, service externalities and service provision equity, and parking management 

is shown to be an effective way for transport authorities to regulate the self-driving vehicles.  
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Samenvatting  

Synergieën tussen voertuigautomatisering en voertuigdeling 

Van zelfrijdende voertuigen (niveaus 4 en 5 in de SAE-classificatie) wordt voorspeld dat ze 

specifieke kenmerken bezitten, die de manier waarop we weginfrastructuur gebruiken en onze 

manier van reizen kunnen veranderen. Met de introductie van dergelijke voertuigen kan met 

name het concept van het delen van voertuigen eenvoudiger en goedkoper worden. Autodelen 

wordt vaak gezien als een oplossing voor het probleem van particuliere voertuigen die de druk 

op de stedelijke ruimte verhogen, omdat gedeelde auto's efficiënter worden gebruikt en dus 

minder ruimte nodig hebben om te parkeren wanneer ze niet worden gebruikt. Het introduceren 

van sterk geautomatiseerde, en dus ook sterk verbonden voertuigen, is echter duur, omdat dit 

infrastructurele veranderingen vereist, evenals substantiële investeringen in de voortdurende 

ontwikkeling van de technologie die nodig is voor het automatiseren van voertuigen. Door 

voertuigen te introduceren als een grote, gecentraliseerde vloot, die op een gedeelde manier 

wordt gebruikt, kunnen de investeringskosten dalen en kan de moeilijke fase van gemengd 

verkeer, bestaande uit voertuigen met verschillende graden van autonomie, worden ingekort. 

Verdere synergieën tussen het delen van voertuigen en het automatiseren van voertuigen zijn 

dat zelfrijdende voertuigen zowel problemen kunnen oplossen die momenteel verbonden zijn 

met ride-hailing-services, zoals het overtredend gedrag van bestuurders, als met 

deelautosystemen, zoals de verplaatsing van stilstaande voertuigen of de uitsluiting van groepen 

van gebruikers op basis van het bezit van een rijbewijs. 

 

Het hoofddoel van dit proefschrift is om beter te begrijpen wat het betekent om gedeelde 

geautomatiseerde voertuigen (SAV) in te zetten voor on-demand openbaar vervoersdiensten. 

Dit wordt geanalyseerd vanuit het perspectief van drie belangrijke belanghebbenden (zie figuur 

IIA): (1) de gebruikersvoorkeuren van potentiële gebruikers, (2) de operatie onder toezicht van 

de vlootbeheerder (3) en mogelijke parkeerbeheerstrategieën uitgegeven door een 
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transportautoriteit die betrokken is bij de introductie van SAV. In het bijzonder worden de 

volgende overkoepelende onderzoeksvragen behandeld: 

(1) Wie is de mogelijke gebruiker van zelfrijdende voertuigen, die worden ingezet bij 

weggebonden openbaarvervoerdiensten (geautomatiseerde bussen of SAV), en wat 

beïnvloedt de keuzes voor of tegen dergelijke diensten? 

(2) Welke rol kan de verplaatsing of herverdeling van stilstaande voertuigen spelen bij de 

operatie van SAV? 

(3) Hoe kan parkeerbeheer de prestatie van SAV in onze steden effectief beïnvloeden? 

 

 

Figuur II.A: Hoofdonderwerp in deze proefschrift: gebruikersvoorkeur, vlootoperatie en 

parkeerbeheer voor SAV.  

Gebruikersvoorkeur: perceptie van SAV en geautomatiseerde 

bussen 

Zelfrijdende voertuigen zijn nog niet beschikbaar voor het soort on-demand transportdiensten 

dat in dit proefschrift wordt geschetst. Om deze reden vertrouwen we op studies met vaste 

voorkeuren om beter te begrijpen hoe potentiële gebruikers dergelijke transportdiensten 

ervaren. Dit proefschrift bevat twee discrete keuzemodellen (discrete choice models) die de 

relatieve voorkeuren voor geautomatiseerde voertuigen weergeven, die gebruikt worden voor 

openbaarvervoersdiensten, waarvan één gericht is op zelfrijdende bussen en de andere op 

gedeelde geautomatiseerde voertuigen en free-floating autodeelservices. In het eerste model, 

een Mixed Logit-model waarin houdingen ten opzichte van zelfrijdende bussen zijn geschat, 

zijn verschillende operationele kenmerken met betrekking tot de flexibiliteit van de service (met 

dienstregeling of on-demand service) of de veiligheidsnormen (aanwezigheid van een steward, 

bewakingssysteem aan boord) ingevoerd. Het tweede model is geschat als een nested Logit-

model met latent classes. De uitslag van deze twee stated-preference experimenten suggereren 

dat er momenteel een kloof bestaat tussen degenen die doorgaans worden gekenmerkt als 

"early-adopters" van technologie en degenen die aarzelen ten aanzien van dergelijke 

veranderingen. Jongere mensen, mannen, mensen met een hogere opleiding, mensen die een 

reductie in reistijd voorkeur geven boven reiskostenreductie, mensen die meer vertrouwen 

hebben in voertuigautomatisering of een algemeen verhoogde interesse tonen in technologie en 

multimodale pendelaars blijken de hoogste voorkeur te hebben voor geautomatiseerd openbaar 

vervoer. Het delen van voertuigen in de vorm van (niet-geautomatiseerd) free-floating 

autodelen blijkt aantrekkelijk te zijn voor forensen die momenteel alleen met de auto pendelen, 
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met name als ze parkeergelden moeten betalen of als het vinden van een parkeerplaats 

moeilijker is voor privé auto's dan voor deelauto's. 

Vlootoperatie: verplaatsing of herverdeling van niet gebruikte SAV 

De operatie van on-demand vervoersdiensten, zoals die hier omschreven voor SAV, kan worden 

onderverdeeld in kleinere operationele problemen. In dit proefschrift wordt de nadruk gelegd 

op de operationele stap van de verplaatsing of herverdeling van inactieve voertuigen. Door 

middel van een agent-based simulatiemodel (MATSim), worden verschillende 

herverdelingsprincipes zoals vraag-anticiperende strategieën en aanbod-anticiperende 

strategieën getest. De eerste leidt tot voertuigbundeling rond vraag-hotspots, de laatste leidt tot 

een meer gelijkmatige verdeling van inactieve voertuigen in het netwerk. De 

verplaatsingsstrategieën worden op een holistische manier geanalyseerd door rekening te 

houden met de service-efficiëntie, de rechtvaardigheid van de dienstverlening en de 

externaliteiten van de dienstverlening. Geen van de geteste verplaatsingsstrategieën is algemeen 

superieur. Vanuit operationeel perspectief is de efficiëntie van de service de belangrijkste 

prestatiemaatstaf. De meest voordelige strategie in dit opzicht is de strategie om stationaire 

voertuigen over het netwerk te verspreiden: dit veroorzaakt minder file rond vraag-hotspots, 

wat de wachttijden van passagiers verhoogt en dus de kwaliteit van de service vermindert. Dit 

gaat echter ten koste van een hoger aantal totaal afgelegde voertuigkilometers, waardoor de 

efficiëntie wordt verminderd. 

Parkeerbeheer: strategieën voor SAV  

Dit proefschrift draagt bij aan de verkenning van potentiële kansen en bedreigingen die 

voortvloeien uit de introductie van zelfrijdende voertuigen in onze steden, en welke acties 

planningsautoriteiten navenant zouden kunnen ondernemen. In het bijzonder wordt de impact 

van parkeerbeheer op de service-efficiëntie, de externaliteiten en de rechtvaardigheid van de 

dienstverlening gekwantificeerd voor een reeks scenario's, die opnieuw worden getest door 

middel van een agent-based simulatiemodel. De bevindingen suggereren dat het in het 

algemeen ook gunstig is voor de transportautoriteiten om ervoor te zorgen dat stilstaande 

voertuigen zo gelijkmatig mogelijk over het netwerk worden verspreid. Dit kan de gemiddelde 

wachttijden voor passagiers verminderen, maar ook de rechtvaardigheid van de dienstverlening 

vergroten, minder file veroorzaken en leiden tot een gelijkmatiger gebruik van de toegekende 

parkeerfaciliteiten. De extra voertuigkilometers, die worden afgelegd door deze 

verplaatsingsstrategie, dragen echter bij aan meer ongewenste externaliteiten. Een manier om 

voertuigen door parkeerbeheer gelijkmatiger over de stad te verspreiden, is door het aantal 

parkeerplaatsen per voertuig te verminderen. De resultaten van de simulatiestudies tonen aan 

dat het verminderen van het aantal van toegekende parkeerplaatsen de kwaliteit van de service 

nog meer kan verbeteren dan het vergroten van de vloot. 

Conclusie 

Zelfrijdende voertuigen kunnen de operatie van openbaarvervoersdiensten op een flexibelere 

manier betaalbaarder maken. Door de introductie van gedeelde geautomatiseerde voertuigen 

zou een vloot van kleinere voertuigen kunnen worden bediend, die on-demand 

transportdiensten aanbieden. Dit kan mogelijk van invloed zijn op de manier waarop we 

openbaarvervoersdiensten gebruiken en exploiteren, wat uiteindelijk veranderingen in het 
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autobezit of landgebruik kan veroorzaken. Zulke veranderingen kunnen een unieke kans zijn 

voor transportautoriteiten en gemeenten om het transportaanbod en -netwerken, evenals de 

stedelijke ruimte, te reorganiseren, als ze een actieve rol spelen bij de introductie van 

zelfrijdende voertuigen. In dit proefschrift wordt aangetoond dat parkeren een belangrijke 

parameter kan zijn in dit proces. Parkeertarieven en parkeertijd kunnen de vervoersmiddelkeuze 

beïnvloeden. Verplaatsing van inactieve voertuigen heeft invloed op de service-efficiëntie, 

service externaliteiten en de rechtvaardigheid van de dienstverlening. Tot slot blijkt 

parkeerbeleid een effectieve manier te zijn voor transportautoriteiten om zelfrijdende 

voertuigen te reguleren. 
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