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Abstract
Vegetation roots play an essential role in regulating the hydrological cycle by removing water from
the subsurface and releasing it to the atmosphere. However, the present understanding of the
drivers of ecosystem-scale root development and their spatial variability globally is limited. This
study investigates the varying roles of climate, landscape, and vegetation on the magnitude of root
zone storage capacity (Sr) worldwide, which is defined as the maximum volume of subsurface
moisture accessible to vegetation roots. To this aim, we quantified Sr and evaluated 21 possible
climate, landscape, and vegetation controls for 3612 river catchments worldwide using a random
forest machine learning model. Our findings reveal climate as primary, but spatially varying, driver
of ecosystem scale Sr with landscape and vegetation characteristics playing a minor role. More
specifically, we found the mean inter-storm duration as most dominant control of Sr globally,
followed by mean temperature, mean precipitation, and mean topographic slope. While the
inter-storm duration, temperature, and slope exhibit a consistent relation with Sr globally, the
relation between precipitation and Sr varies spatially. Based on this spatial variability, we classified
two different regimes: precipitation driven and energy limited. The precipitation-driven regime
exhibits a positive relation between precipitation and Sr for precipitation of up to 3 mmd−1, above
which the relation flattens and eventually becomes negative. The energy-limited regime exhibits a
strictly negative relation between precipitation and Sr. Using the random forest model based on
these three dominant climate variables and the landscape variable slope, we generated a global
gridded dataset of Sr, which closely resembles other global datasets of root characteristics. This
suggests that our parsimonious approach based on four globally available variables to estimate Sr
on a global scale has the potential to be readily and easily integrated into the parameterization of Sr
in global hydrological and land surface models. This may enhance the accuracy of global
predictions of land–atmosphere exchange fluxes and hydrological extremes by providing a robust
representation of both spatial and temporal variability in vegetation root characteristics.

1. Introduction

Vegetation continuously adjusts to the prevailing cli-
mate and landscape characteristics ensuring optimal
functionality (Gentine et al 2012, Fan et al 2017). One
of the properties identified as adaptive in both space

and time are vegetation root systems, that are shaped
in a way to provide both anchoring in the subsur-
face (Read and Stokes 2006), as well as access to suffi-
cient nutrients and water (Zhang et al 2019, Oldroyd
and Leyser 2020, Maan et al 2023). Water uptake by
roots of vegetation regulates vegetation transpiration,

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ad8805
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ad8805&domain=pdf&date_stamp=2024-11-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8811-0620
https://orcid.org/0000-0003-0508-1017
https://orcid.org/0000-0002-2153-7961
https://orcid.org/0000-0001-5450-4333
mailto:f.vanoorschot@tudelft.nl
https://doi.org/10.1088/1748-9326/ad8805


Environ. Res. Lett. 19 (2024) 124018 F van Oorschot et al

globally the largest water flux released from terrestrial
systems (Schlesinger and Jasechko 2014), and the
associated latent heat flux into the atmosphere. In
spite of its importance for the global water and energy
budgets, direct large scale (i.e. beyond lab scale or
individual plants) observations of root systems and
the related water uptake do not exist.

Therefore, several indirect methods have been
developed to represent vegetation root character-
istics on large (here: global) scales. Schenk et al
(2009) provided global estimates of the soil depths
that contain 95% of the roots (i.e. the 95% root-
ing depth), extrapolated from a sample of several
hundred direct point-scale root observations of indi-
vidual plants (Schenk and Jackson 2003). Other stud-
ies followed inverse methods based on optimality
principles to infer root characteristics at a global
scale. For example, Kleidon (2004) maximized net
primary production, while Yang et al (2016) used
balances of carbon cost and benefits, and Fan et al
(2017) derived depths of root water uptake from bal-
ances of water supply and demand. Similar water sup-
ply and demand considerations were also used by
Wang-Erlandsson et al (2016) and Stocker et al (2023)
to estimate global distributions of root zone stor-
age capacity Sr (mm). Sr is defined as the maximum
volume of subsurface moisture accessible to vegeta-
tion roots, representing all sources of water within the
reach of roots, including unsaturated soil, deep and
shallow groundwater (Gao et al 2014). Sr is a funda-
mental characteristic of terrestrial hydrological sys-
tems as it regulates not only water budgets by parti-
tioning precipitation into drainage and evaporation,
but also energy budgets over the associated latent heat
flux (Zhang et al 2001, Donohue et al 2012, Wang-
Erlandsson et al 2016). Many studies have suggested
that, on ecosystem scale, Sr is mainly shaped by cli-
mate and in particular by the interplay of the tem-
poral dynamics of water and energy availability, as
vegetation optimizes its root system to sustain water
demand (Kleidon 2004, Laio et al 2006, Guswa 2008,
Gentine et al 2012, Gao et al 2014, 2023, De Boer-
Euser et al 2016). Consequently, ecosystem disturb-
ances such as climate change and human land-use
change also influence the evolution of Sr, as demon-
strated by multiple studies (Nijzink et al 2016, Liu
et al 2020, Hrachowitz et al 2021, Bouaziz et al 2022,
Tempel et al 2024, Wang et al 2024). Thus, insight
in the specific controls of Sr is essential for predict-
ing how different ecosystems will respond to such
disturbances.

A range of other recent studies has explored
how climate variables influence the extent of Sr
across different regions in varying climatic zones. Gao
et al (2014) identified precipitation inter-storm dur-
ation and seasonality index as key controls of Sr in
Thailand and the United States. Inter-storm duration

is an indicator for the length of dry periods dur-
ing which vegetation relies on its subsurface water
buffer for transpiration and was linked to the size of
vegetation root systems in multiple previous studies
(e.g. Gentine et al 2012, Sivandran and Bras 2013).
Conversely, de Boer-Euser et al (2019) observed a
strong positive relationship between mean temperat-
ure and Sr in Finland, along with a positive correla-
tion between aridity index and Sr, as also found by
Zhao et al (2016) in China. Also Gao et al (2014)
noted that, on average, drier regions have larger Sr
thanwetter regions in Thailand and theUnited States,
but eco-region classes Tropical Savanna and Semi-
arid Prairies deviated from this trend. Contrasting
signals were also reported by Singh et al (2020), who
showed that increased aridity in tropical forests leads
to decreased tree cover but increased Sr due to the
remaining scarcer vegetation investing more in roots
to create a water buffer for drier periods. However, in
drier savanna-grasslands, Sr decreases with increased
aridity (Singh et al 2020). Yet, other studies do high-
light that vegetation (de Boer-Euser et al 2019) and
landscape characteristics such as soil properties (Laio
et al 2006, Collins and Bras 2007) and geology (Hahm
et al 2019, 2024, McCormick et al 2021) can play a
relevant role at regional scales. Furthermore, vegeta-
tion and landscape characteristics in practice effect-
ively determine Sr in most land surface models (Liu
et al 2020, Van Oorschot et al 2021, Wang et al 2021).

Overall, previous studies suggest that the influ-
ence of climate variables on Sr, considering both their
magnitude and direction, is not consistent across dif-
ferent regions (Gao et al 2014, Zhao et al 2016, de
Boer-Euser et al 2019, Singh et al 2020). Similarly,
the spatially varying role of landscape and vegetation
characteristics versus climate has not been systemat-
ically quantified and analyzed on a global scale. Thus,
it remains unclear which aspects of climate, landscape
and vegetation are the most important controls on
Sr on global scale, and how these controls vary in
space.

Here we bridge this knowledge gap by quantit-
atively characterizing, for the first time, how differ-
ent climate, landscape and vegetation variables con-
trol the magnitude of Sr at the global scale, and how
these controls vary spatially. Based on historical long-
termwater balance data, we estimate Sr in 3612 catch-
mentsworldwide using thememorymethod as inVan
Oorschot et al (2024).We then test a wide range of cli-
mate, landscape, and vegetation variables to quantify
their influence on Sr in different regions using a ran-
dom forest model. Having identified a set of first
order controls, we then use this model to extrapolate
the catchment Sr estimates to a global gridded map
of Sr ensuring coverage of regions where insufficient
water balance data are available to directly estimate
Sr. Finally, we evaluate how these estimates relate to
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Table 1. Data sources used for the hydrological variables daily
precipitation (P (mmd−1)), daily potential evaporation (Ep
(mmd−1)), and annual mean discharge (Q (mmd−1)).

Variable Data source

P (mmd−1) Global Soil Wetness Project Phase 3
(GSWP-3) (Dirmeyer et al 2006, Lange
and Büchner 2020)

Ep (mmd−1) Global Land Evaporation Amsterdam
Model version 3.5a (GLEAMv3.5a);
based on the Priestley–Taylor approach
(Miralles et al 2011, Martens et al 2017)

Q (mmd−1) GSIM (Do et al 2018, Gudmundsson et al
2018), LamaH-CE (Klingler et al 2021),
CAMELS Australia (Fowler et al 2021),
CAMELS US (Addor et al 2017), and
EStreams (do Nascimento et al 2024)

other global datasets of root characteristics (Schenk
and Jackson 2003, Kleidon 2004, Schenk et al 2009,
Wang-Erlandsson et al 2016, Yang et al 2016, Fan et al
2017, Stocker et al 2023).

2. Methods

2.1. Catchment data
Following the data and methods from Van Oorschot
et al (2024), we estimated catchment-scale root zone
storage capacity Sr in the 3612 study catchments
using catchment-averaged daily precipitation data P
(mmd−1), daily potential evaporation Ep (mmd−1),
and annualmeandischargeQ (mmd−1) from sources
documented in table 1. We selected 3612 catchments
based on the following four criteria: (1) at least
10 years of overlap between Q, P and Ep data; (2)
catchment not exceeding the water limit, i.e. Q<
P; (3) catchment not exceeding the energy limit,
i.e. annual mean actual evaporation (Ea = P−Q)<
Ep; (4) catchment area <10 000 km2 to limit the het-
erogeneity within catchments.

To investigate the controls on Sr, we selected 21
catchment-averaged variables (table 2), subdivided
into three categories: climate, landscape, and veget-
ation. All variables were obtained from global data-
sets to ensure data consistency across catchments and
in view of extrapolation from catchments to global
scale. These variables were selected based on three
main criteria: (1) globally available data that is repres-
entative for catchment scales; (2) variables with lim-
ited mutual interactions and (3) variables with lim-
ited assumptions on vegetation root characteristics
(e.g. root depth) that are based on scarce observations
that are not representative for ecosystems at landscape
scales (Van Oorschot et al 2021).

2.2. Root zone storage capacity estimation
Using thememorymethod, a term introduced by Van
Oorschot et al (2021) and also known as water bal-
ancemethod and related to themass curve technique,

root zone storage capacity Sr (mm) is derived from
root zone storage deficits (Sd (mm), e.g. Gao et al
2014, Wang-Erlandsson et al 2016, Dralle et al 2021,
Van Oorschot et al 2021, 2024). Based on long-term
precipitation, potential evaporation and river dis-
charge data we here computed long-term time-series
of catchment Sd following themethodology described
in VanOorschot et al (2024). These time-series reflect
both water supply to and water uptake by the veget-
ation’s roots, leaving the vegetation as transpiration.
Despite the inherent limitations of this method (Van
Oorschot et al 2021, 2024) the Sr estimates it produces
have been shown to closely align with those derived
from hydrological model calibration, providing inde-
pendent confirmation of their accuracy (Gao et al
2014). After fitting the Sd time-serieswith theGumbel
distribution, Sr was estimated based on the extreme
Sd values with a 20 year return period to represent
the memory of vegetation to past water deficit con-
ditions. The extreme value analysis was done to gen-
eralize the results as the time-series of the catchments
have different lengths and do not necessarily overlap,
and to represent the timescale of vegetation adapt-
ation. Previous studies have shown that low vegeta-
tion adapts its Sr to droughts occurring with relat-
ively low return periods (<10 years) and high vegeta-
tion to >40 years (Wang-Erlandsson et al 2016). For
the aim of this study a-priori differentiation between
land cover types is not desirable, and therefore a fixed
20 year return period was selected for all catchments
following Singh et al (2020) and Bouaziz et al (2020).
Full details of the memory method can be found in
the supplementary material S1.

2.3. Random forest model
We used a random forest regression model to pre-
dict catchment Sr and identify the dominant controls
on Sr using the variables presented in table 2. A ran-
dom forest model was selected because it can rep-
resent the non-linear interactions between catchment
variables and Sr which appeared during the studies of
Gao et al (2014), Zhao et al (2016), de Boer-Euser et al
(2019), and during exploratory analyses on our data-
set. The model was trained by minimizing the mean
absolute difference (MAD (mm)) between root zone
storage capacity from thememorymethod (Sr,M) and
from the random forest model predictions (Sr,P). We
applied a five-fold cross validation in order to fairly
estimate the generalization performance. This implies
that we performed model training and testing five
times on a different subset of the total dataset, with
for each fold 80% of the catchments (2890) were
used for model training and 20% of the catchments
(722) for model testing. Model performance is quan-
tified by the mean and the standard deviation of the
MAD between the Sr,M and Sr,P over the five cross-
validation folds. Supplementary section S2 describes
the details of the random forest model.
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Table 2. Catchment variables used for the random forest models (section 2.3). All variables represent a single value per catchment,
obtained through averaging grid cells that lie within the catchment boundary. For each catchment time series matching the available
discharge data were used.

Name Description Units Data source

Climate P Mean precipitation mmd−1 GSWP-3 (Dirmeyer et al 2006,
Lange and Büchner 2020)

Ep Mean potential evaporation mmd−1 GLEAMv3.5a (Miralles et al 2011,
Martens et al 2017)

T Mean temperature ◦C GSWP-3
tIS Mean inter-storm duration d GSWP-3
IS,P Seasonality index of precipitation

(Gao et al 2014)
— GSWP-3

IS,Ep Seasonality index of potential
evaporation (Gao et al 2014)

— GLEAMv3.5a

Td Temperature difference, defined as
the difference between the monthly
mean maximum and minimum
temperature

◦C GSWP-3

IAS Asynchronicity index between
monthly mean precipitation and
potential evaporation (Feng et al
2019)

— GSWP-3 and GLEAMv3.5a

fsnow Mean snow cover fraction — MOD10A1 (Hall and Riggs, 2021)
fsnow,v Variability of snow cover fraction

defined as fsnow,s/fsnow with fsnow,s
the standard deviation of monthly
mean fsnow

— MOD10A1

Landscape e Elevation m HydroSHEDS Hydrologically
Conditioned DEM (Lehner et al
2008) and Multi-Error-Removed
Improved-Terrain (MERIT) DEM
for latitudes>60◦ (Yamazaki et al
2017)

s Slope % Same as for elevation.
db Depth to bedrock m SoilGrids250m (Hengl et al 2017)
fclay Fraction of soil clay content for

0–200 cm depth
— SoilGrids250m

fsand Fraction of soil sand content for
0–200 cm depth

— SoilGrids250m

Vegetation ftree Tree cover fraction — MOD44B.006 (DiMiceli et al 2015)
fnontree Non tree cover fraction — MOD44B.006
fnonveg Non vegetation fraction defined as

1− ftree − fnontree

— MOD44B.006

LAI Mean leaf area index — CGLS (Verger et al 2019)
vLAI Variability of leaf area index defined

as LAIs/LAI with LAIs the standard
deviation of monthly mean LAI

— CGLS

Ia Irrigated area fraction — (Siebert et al 2015)

With the above described procedure we built
a model with 21 predictor variables (21-variable
model) (table 2), which was used to investigate which
catchment variables are a dominant control on Sr.
The degree of control, i.e. the variable importance,
is quantified by the permutation feature importance,
which represents the decrease in model perform-
ance (∆MAD) when the values of this single vari-
able are randomly shuffled, while keeping the values
of other variables (Breiman 2001). Based on the vari-
able importance of the 21-variable model and cross-
correlations between individual variables, we selected

a subset of four predictor variables used in a second
4-variablemodel. The reduced number of variables in
the 4-variable model allows for in-depth model inter-
pretation, and is simpler for future applications than
the 21-variable model as it requires less data.

2.4. Model interpretationmethods
For the 4-variable model, we used individual con-
ditional expectation (ICE) curves to analyze how
individual variables influence Sr,P in each catchment
(Goldstein et al 2015). In the ICE curves, Sr is pre-
dicted by the 4-variable model for each catchment

4
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Figure 1. (a) Memory method root zone storage capacity (Sr,M (mm)). (b) Difference between the 4-variable model predicted
and memory method:∆Sr = Sr,P − Sr,M of the test data, represented by the combined test results of the five-fold cross validation
models. Relative differences between Sr,M and Sr,P are shown in figure S3. Dots represent the catchment outlets.

with a range of hypothetical values for one of the vari-
ables, while keeping the original values of the other
variables. This way we obtain a curve for each vari-
able, for each catchment, that represents the depend-
ence between the model Sr,P and that variable for a
single catchment. The 4-variable model is then also
used to globally estimate Sr,P at a 0.5◦ latitude× 0.5◦

longitude spatial resolution. This global Sr map is
compared to other global datasets of root character-
istics in terms of spatial patterns and Spearman rank
correlations (r). Details of these global datasets are
provided in table S3.

3. Results and discussion

3.1. Root zone storage capacity prediction
Themedian Sr,M estimated from thememorymethod
in the 3612 catchments reached 120 mm (5–95th
percentiles: 10–390 mm). The lower Sr,M values are
concentrated in cool-temperate humid regions while
higher values are scattered around warmer, more
arid regions (figure 1(a)). These magnitudes and pat-
tern are broadly consistent with previous regional
Sr estimates based on the memory method (Gao
et al 2014, De Boer-Euser et al 2016, Zhao et al
2016, Singh et al 2020). Using these estimates to
train the 21-variable model then resulted in a MAD

= 13± 0.2 mm (R2 = 0.97) (figure 2(a)). The test
sets of the cross-validation analysis exhibited with
35± 2 mm (R2 = 0.81) a larger scatter (figure 2(b)),
but the limited performance fluctuations between the
individual cross validation folds on the unseen test
data (table S2) indicate that the model is robust. The
sequence of variable importance in the 21-variable
model suggests that climate variables play by far
the largest role, while landscape and vegetation vari-
ables are less important for explaining Sr,P globally
(figure 2(c)). We found that the inter-storm dura-
tion (tIS) is the most important variable in the 21-
variable model. This can be seen in figure 2(c) by
the increase of MAD by ≈25 mm when the catch-
ment values of the mean inter-storm duration (tIS)
are randomly shuffled between catchments, while
keeping the other variables unchanged. The variable
importance of mean inter-storm duration tIS is fol-
lowed by the climate variables mean snow cover fsnow
(∆MAD≈ 13mm), mean temperature T (∆MAD≈
13mm), andmean precipitation P (∆MAD≈ 7mm)
(figure 2(c), table 2). While the most important land-
scape variables slope (s) and elevation (e) play a mod-
erate role (∆MAD≈ 5mm), all other landscape vari-
ables and all vegetation variables are characterized by
much lower∆MAD< 2mm. This indicates that they
only have minor explanatory power for Sr.
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Figure 2. (a), (b), (d), (e) Scatter plots of catchment memory method root zone storage capacity (Sr,M) and predicted root zone
storage capacity (Sr,P) for (a), (b) the 21-variable model, and (d), (e) the 4-variable model. (a), (d) show the training results and
(b), (e) the testing results of one of the cross validation folds. The mean and standard deviation of the MAD and the R2 in the title
are based on the five-fold cross validation. (c) and (f) represent the variable importance (i.e. permutation feature importance) for
the 21-variable model (c) and 4-variable model (f) expressed as an increase in MAD (∆MAD) for each variable for the test data
for the five-fold cross validation, with the bars representing the mean and the black lines the standard deviation. Table 2 shows the
variable details and figures S1 and S2 shows the cross-correlation tables of the variables.

Based on these results we have then removed vari-
ables with low variable importance as well as correl-
ated variables (see figures S1 and S2) to obtain an
interpretable model, while maintaining high model
performance. The resulting parsimonious 4-variable
model uses tIS,T (excluding fsnow due to its strong cor-
relation with T), P, and s (figure 3). With a training
MAD = 14± 0.2 mm (R2 = 0.97) (figure 2(d)), this
reduced model predicts Sr,P for the unseen test data
with a MAD = 38± 2 mm (R2 = 0.78) (figure 2(e)),
which is very close to the test performance of the full
21-variable model (figure 2(b)). Here tIS also emerges
as the most important variable, followed by T, P,
and s in the same hierarchy as in the full 21-variable
model (figure 2(f)). Figure 1(b) shows that Sr,P as
predicted by the 4-variable model captures well the
general pattern of Sr,M with only rather limited devi-
ations across all regions. Overall,∆Sr remains within
±50 mm for 3173 (88%) catchments. Larger ∆Sr,

both positive and negative, are found in regions such
as India, Spain, and Northern Australia (figure 1(b)).
However, in these regions Sr,M is relatively large,
thus resulting in relatively minor relative differences
(figure S3).

The dominance of climate variables as primary
controls on Sr corresponds well with previous stud-
ies (e.g. Gao et al 2014, De Boer-Euser et al 2016, and
Yang et al 2016). Our findings also show the relevance
of topography, albeit to a lesser degree compared to
climate, in shaping Sr, which was also highlighted by
Fan et al (2017). However, other studies also emphas-
ized the importance of other landscape characterist-
ics such as geology and soil textures for Sr (Laio et al
2006, Hahm et al 2019, 2024, McCormick et al 2021).
In particular, Hahm et al (2024) demonstrated that in
regions with limited variability in climate character-
istics, geologic factors can become a stronger control
on Sr. This also holds for the relevance of irrigation,
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Figure 3. Global maps of the gridded variables that are input to the 4-variable model with (a) mean inter-storm duration tIS (d),
(b) mean temperature T (◦C), (c) mean precipitation P (mmd−1), and (d) slope s (%), based on the data products described in
table 1. Black markers represent the 3612 catchment outlets. Lightgrey areas represent regions with values outside the ranges of
the values in the catchments for at least one of the variables or oceans.

Figure 4. Individual Conditional Expectation (ICE) curves of the evaluation data for (a) mean inter-storm duration tIS (d), (b)
mean temperature T (◦C), (c) mean precipitation P (mmd−1), and (d) slope s (%) in the 4-variable model. The histograms
represent the distribution of catchments (n) over the specific range of the variable. The curves are based on the model results of all
3612 catchments of the five-fold cross validation combined.

that was previously found to be regionally influencing
Sr (Van Oorschot et al 2024). Besides that, the limited
impact of the degree of irrigation and other vegeta-
tion variables in shaping Sr directly results from their
inherent dependence on climate conditions. The res-
ults of our analysis above are largely consistent with
previous findings as they suggest that landscape char-
acteristics are important as a secondary control at
regional scales where differences of climate factors are
more limited. For ecosystem scales in a global context,
and thus a wide range in climates, climate is the clear
first order control on Sr.

3.2. Relation between predictor variables and root
zone storage capacity
The individual influences of the four variables on Sr,P
in the 4-variable model are represented by the ICE
curves in figure 4. Generally, as mean inter-storm
duration tIS and mean temperature T increase, Sr,P
also increases (figures 4(a) and (b)). Thus, overall,
Sr,P is higher in warmer regions with longer dry peri-
ods. However, it can also be observed that tIS has
more effect on Sr,P, i.e. a steeper slope in the ICE
curve, for values between 3–5 days than for higher tIS,
i.e. longer periods without rainfall (figure 4(a)). As
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Table 3. Characteristics of the two groups with distinct relations between mean precipitation P (mmd−1) and root zone storage
capacity Sr (mm) as identified in figure 5, with values for mean inter-storm duration tIS (d), mean temperature T (◦C), mean
precipitation P (mmd−1), slope s (%), and tree dover fraction ftree (−) representing the median and inter quartile range (25th
percentile–75th percentile) of the catchments in the specific group (table 2).

Group name tIS (d) T (◦C) P (mmd−1) s (%) ftree (−)
Sr (mm) increasing
with P (mmd−1)

Sr (mm) decreasing
with P (mmd−1)

Precipitation
driven

7
(6–8)

20
(14–24)

2.3
(1.6–3.4)

5 (3–9) 0.13
(0.08–0.20)

P≈ 0–3 P> 3

Energy
limited

4
(3–4)

9
(4–14)

3.0
(2.3–3.8)

6
(3–12)

0.39
(0.27–0.49)

— P> 0

tIS increases, vegetation needs to invest more in roots
in order to maintain transpiration during dry peri-
ods up to that value before it levels off and Sr,P does
not significantly increase anymore at higher tIS, which
is related to lower vegetation density in drier regions
with longer dry periods. The modelled Sr,P has a
stronger response to changes in T for T> 10 ◦C than
in colder regions with T< 10 ◦C. With increasing T,
there is more energy available for transpiration, and,
as long as water is available, vegetation will transpire
more under higher temperatures, leading to larger
Sr (figure 4(b)). On the other hand, Sr,P consistently
decreases with increasing slope s (figure 4(d)). Steeper
slopes are typically found in regions with higher elev-
ations, which are associated with lower temperatures
and reduced vegetation density, leading to lower Sr.
In contrast with the almost monotonically increasing
behaviour of tIS and T, and monotonically decreasing
behaviour of s in relation to Sr,P (figures 4(a), (b) and
(d)), the mean precipitation P exhibits a more com-
plex relationship with Sr,P. For P< 2mmd−1, the
median relationship shows an increase in Sr,P, while
forP> 2mmd−1 this relationship is inverted and Sr,P
decreases with increasing P. In addition, while for tIS,
T, and s, the general shapes of the ICE curves of the
individual catchments largely resemble each other,
considerable differences from the average pattern are
observed for P, as indicated by the curves of the 10th
and 90th percentiles of the curves in figure 4(c).

To further investigate these diverging patterns in
the relationship between P and Sr,P, we disentangled
the individual curves of figure 4(c) and grouped them
based on their overall trajectories (considering slopes
and peaks of the curves) in figure 5. This resulted in
two distinct groups with each group showing similar
influence of P on Sr,P, characterizing different regions
globally (figure 5, table 3). Overall, the precipitation-
driven group shows the largest influence of changes
in P on Sr (figure 5(a)). In these regions, Sr,P strongly
increases with increasing P up to ∼3 mmd−1. This
is related to the lower vegetation density and thus
less actively transpiring plants in these dry regions
(figure 6(a), table 3). Here, increases in P directly lead
to more vegetation activity and/or cover, and thus

higher Sr. Hence, the development of Sr is mostly pre-
cipitation driven. Above P> 3mmd−1, the systems
experience transitions into systems that are not water
limited anymore and where additional water input
does not result in more root development and tran-
spiration. This pattern dominates in regions that
are characterized by relatively high temperatures and
high rainfall seasonality (indicated by a large tIS), typ-
ical of tropical monsoon and (semi)-arid climates
(figures 3 and 5(c), table 3), for example North-
Eastern Brazil, India, and Northern Australia. For the
energy-limited group, an opposite signal compared
to the precipitation-driven group is found, with P
negatively influencing Sr,P (figure 5(b), table 3). This
pattern is found in energy-limited regions with year-
round rainfall and relatively high tree cover, such as
Europe and Canada, as well as tropical rainforests in
the Amazon and Indonesia (figures 5(c) and 6(b),
table 3). Here, sufficient water is available throughout
much of the year to satisfy vegetation water demand.
Therefore, an increase in water availability here does
not lead to denser vegetation, and existing vegetation
can reallocate resource investment into above-surface
growth instead of extending its root system. As a con-
sequence, additional water input, i.e. increase in P,
and thus frequent water re-supply to the root zone
results in a reduced ecosystem-scale Sr (figure 5(b)):
vegetation can access sufficient water with the need
for deeper roots.

The spatial variability of the relation between
P and Sr as shown in figure 5 is in line with
previous regional studies by Gao et al (2014), de
Boer-Euser et al (2019), and Singh et al (2020).
Specifically, the contrasting P− Sr-relation between
tropical rainforests (energy limited) and the savanna
or prairie grassland regions (precipitation driven),
correspond to the water stress and vegetation regimes
in rainforest-savanna transitional regions found by
Singh et al (2020). Also Guswa (2008) found sim-
ilar contrasting relations betweenwetness and rooting
depth for energy-limited vs. water-limited regions.
The relations between our selected variables and Sr
presented in figures 4 and 5 can represent how eco-
systems can be plausibly expected to respond in
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Figure 5. (a), (b) Individual Conditional Expectation (ICE) curves for the mean precipitation P (mmd−1) in the 4-variable
model with the catchments categorized into two groups: (a) precipitation driven and (b) energy limited (table 3). Groups are
based on the patterns (slope and peaks) of the ICE curves in figure 4(c). The histograms are as in figure 4. (c) Geographical
location of the catchment outlets colored as the groups from (a) and (b).

terms of Sr to changes in the three climatic variables
over time, resulting from internal variability and cli-
mate change. However, it should be noted that this
only holds for relatively small changes in the vari-
ables, while larger changes may be accompanied by a
transition of the entire ecosystem into a different state
and the associated changes in vegetation composi-
tion. Furthermore, we assumed that the patterns are
largely climate driven, but human influences can have
major effects as well (e.g. Grill et al 2019, Hrachowitz
et al 2021).

3.3. Global comparison of root characteristics
Here we used the 4-variable model and the data
from figure 3 to create a global gridded map of
Sr,P (figure 7(a)), extrapolating beyond regions with
available discharge observations. To place our results
into a wider context, we compared them to seven

other global estimates of root characteristics obtained
with a wide range of different approaches (table S4)
(Schenk and Jackson 2003, Kleidon 2004, Schenk et al
2009, Wang-Erlandsson et al 2016, Yang et al 2016,
Fan et al 2017, Stocker et al 2023). Note that this
comparison can only consider the general spatial pat-
tern, while the absolute magnitudes are not necessar-
ily comparable between these studies due to differ-
ences in methods, assumptions and underlying data.

Overall, the global distribution of Sr,P broadly
corresponds with the spatial patterns of other studies
reflecting the hydrologically active rootzone in terms
of root zone storage capacities reported by Stocker
et al (2023) (r = 0.72) and Wang-Erlandsson et al
(2016) (r = 0.48), and in terms of the optimized
hydrologically active rooting depth by Kleidon (2004)
(r= 0.61) (figures 7(a)–(d) and 8(a)–(d)). Major dif-
ferences are observed in the La Plata basin, where
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Figure 6. Fraction of tree cover (ftree (—)) for the groups from figure 5 (table 3): (a) precipitation driven and (b) energy limited.
Dots represent the catchment outlets and histograms show the distribution of ftree for the specific map.

our Sr,P estimates and Kleidon (2004) show relatively
large values, while the Sr values from Stocker et al
(2023) and Wang-Erlandsson et al (2016) are relat-
ively small (figures 7(a)–(d)). Other differences are
found in relatively arid regions of the Central US,
and Central Asia (figures 7(a)–(d)), in which our 4-
variable model Sr,P estimates are higher compared to
Wang-Erlandsson et al (2016), Stocker et al (2023),
and Kleidon (2004) (figure S4).

It should be noted that the rooting depth charac-
teristics presented in figures 7(e)–(h) are not neces-
sarily proportional to the root zone storage capacity
Sr due to the fact that rooting depth is a single plant
property compared to Sr being an ecosystem prop-
erty. Moreover, while rooting depth only represents
the vertical extension of the roots, Sr accounts for the
entire root profile, including lateral root extent and
root density. Nevertheless, the rooting depth related
products of Fan et al (2017) and Schenk et al (2009)
(figures 7(e) and (g)) broadly resemble the spatial
patterns of Sr,P, with r = 0.70 and 0.73, respect-
ively (figures 8(a), (e) and (g)). However, consider-
able differences are observed between the maximum
depth of root water uptake in figure 7(e) and our
Sr,P (figure 7(a)) in Australia and Southern Africa,
where the maximum depth of root water uptake (Fan
et al 2017) is considerably larger than Sr,P (figure S4).
In these arid regions, the maximum depth of root
water uptake is high because individual trees have

deep roots to access sufficient water. However, the
ecosystem Sr is low because of low vegetation density.

The spatial pattern of our Sr,P in North-America
with relatively low values in the Midwest US and rel-
atively high values in the Great Plains corresponds
well with the results of Fan et al (2017) (figure 7(e)),
Schenk et al (2009) (figure 7(g)) and Gao et al (2014),
but less with the other datasets (figures 7(b)–(d)
and S4). These differences arise likely from dry sea-
son/summer dormancy that is common for this C3-
grass dominated part in the prairies of the Great
Plains (e.g. Ke et al 2013). In the memory method
used in this study (Van Oorschot et al 2024) as well as
by Gao et al (2014), transpiration is defined as a frac-
tion of potential evaporation based on the long-term
mean actual evaporation from the water balance.
During the dry season when potential evaporation
is typically high and grasses go dormant, this meth-
odological assumption likely leads to an overestima-
tion of transpiration, and thus Sr. The root charac-
teristics from Kleidon (2004), Wang-Erlandsson et al
(2016), and (Stocker et al 2023) are derived fromdata-
sets that directly represent vegetation activity, and are,
therefore, less exposed to this limitation. This possibly
also explains the differences in arid regions discussed
before.

Our Sr,P estimates contrast with the effective plant
rooting depth values from Yang et al (2016) in many
regions, but it should be noted that Yang et al (2016)
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Figure 7. Global information on normalized vegetation root characteristics from this study and reference products. (a) Root zone
storage capacity Sr,P as predicted by the 4-variable model (average Sr,P based on the five cross validation folds) and the data from
figure 3. (b)–(g) The titles in all panels are corresponding with the original terminology used in the respective references. (h)
Point data of measured rooting depths i.e. the depth of the 95th percentile of root mass, which may include extrapolation and at
locations where several measurements have been made the average is shown (Schenk and Jackson 2003). Note that the colorbars
and bottom labels represent normalized values, with on top the corresponding original values and units. Maps of the differences
are shown in figure S4.

similarly and markedly contrasts with all other data-
sets, with r< 0.08 (figures 8(a) and (f)). Also the com-
parison of observed rooting depths from Schenk and
Jackson (2003) (figure 7(h)) with the other datasets
reveals limited similarity. However, amongst all these
global datasets ourmodeled Sr,P exhibits the strongest

correlation with these rooting depths, with r = 0.23
(figures 8(a) and (h)).

Overall, the major features in the spatial pat-
tern of Sr,P in our study mirror those in the other
compared seven datasets. In addition, Sr,P correl-
ates better with most of the other datasets than
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Figure 8. (a) Spearman rank correlation coefficients between reference root characteristics from figures 7(b)–(h) and the root
zone storage capacity Sr,P as predicted by the 4-variable model and the data from figure 2 (figure 7(a)). (b)–(h) Scatterplots of Sr,P
and the reference root characteristics. Note that the variables and the units are not the same for each product. The numbers in the
title indicate the Spearman rank correlation coefficients, and the marker colors represent the point density. See figure 7 for the
abbreviations used.

these datasets among themselves (figure 8(a)). This
is a strong indication that using a parsimonious
4-variable model based on globally available hydro-
climatic indices and the topography represented by
slope, produces global pattern of Sr,P that are at
least as good as those of alternative approaches.

These alternative approaches rely on higher dimen-
sional models to estimate evaporation as com-
pared to our 4-variable model, which is groun-
ded in discharge observations. Furthermore, the
four variables are readily represented and simu-
lated by Earth system models (ESMs), therefore
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enabling the possibility of an interactive represent-
ation of Sr as a dynamically evolving variable in
ESMs.

4. Conclusions

In our analysis we quantified for the first time the
controls of ecosystem-scale root zone storage capa-
city Sr at the global scale using a random forestmodel.
From this analysis, hydro-climatic variables emerged
as the most dominant controls. Topographic slope
also influences Sr, though to a lesser extent than cli-
mate. Other landscape and vegetation characteristics
were found to play a minor role. More specifically, we
found that inter-storm duration, temperature, pre-
cipitation, and topographic slope are the most dom-
inant controls of Sr globally. We further found that
inter-storm duration and temperature exhibit a near-
monotonic positive relations with Sr, and that the
slope is consistently negatively related to Sr. In con-
trast, the relation between precipitation and Sr var-
ies in space. The emerging pattern suggests that while
precipitation is strongly positively correlated with Sr
in relatively dry regions with low vegetation cover,
energy-limited regions are rather characterized by a
negative relation. This highlights the distinct roles of
precipitation for vegetation water-use in different cli-
matic settings.

Our global Sr predictions, based on random forest
models driven with the above variables, correspond
closely with other global datasets of rootzone charac-
teristics, which typically rely on more complex data
sources and computations. In contrast, our model
predicts Sr from the long-termmeans of three hydro-
climatic variables (P, T, tIS), for which both historical
data as well as future projections are readily available,
and from topographic slope (s) that can be assumed
as temporally invariant. The strength of our Sr predic-
tion is further highlighted by its stronger correlation
withmost other datasets compared to the correlations
observed between those datasets themselves.

For future studies, our approach opens the
possibility to formulate and implement Sr as
dynamically-evolving prognostic variable in large-
scale land surface and hydrological models, mimick-
ing the continuous evolution of Sr over time (Wang
et al 2024) and replacing the current static repres-
entation of this parameter in most of these mod-
els. As such, we emphasize that the methodology
to estimate Sr provided here can readily be applied
in land surface and hydrological models to improve
their global representation of the coupling of root
zone storage capacity with hydro-climatic variability
(Abramowitz et al 2024). This does not only have the
potential to improve predictions of extreme river flow
and seasonal water supply but, perhaps more import-
antly, also transpiration and thus latent heat fluxes
representation (Van Oorschot et al 2021, Giardina
et al 2024), which as a knock-on effect is expected to

have major implications for climate predictions and
projections.
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