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SUMMARY

I N the previous decade, offshore wind undeniably took off as an important player in
the European energy market, which resulted in continuously enhancing turbine sizes

and foundation structures pushing the boundaries of engineering, with the purpose of
minimizing the levelized cost of energy to the range of optimal competitiveness. Regard-
ing the foundation structure – or support structure – an important trade-off exists with
respect to optimization and differentiation within an offshore wind farm on the one hand,
and the required computational effort at an early stage of the design on the other. This
effort comprises the extensive set of environmental conditions that require evaluation
and the level of complexity of the modelling of the different environmental interactions,
be it with wind, waves or soil.

Concerning the modelling of the environmental interactions with the structure, a
decoupling of the turbine and the support structure is commonly applied, allowing the
turbine manufacturer and the offshore contractor to develop their designs separately. The
analysis of the support structure, however, has to account for the effect of the aerodynamic
force, particularly for the aerodynamic damping, as this is known to affect the structural
response to wave actions substantially. In this respect, the shared information usually
concerns the damping ratio of the first fore-aft mode of vibration. This damping ratio
does not explicitly express its dependency on the operational conditions of the turbine,
e.g., the mean wind velocity and the rotor speed. Moreover, the provided ratio is only valid
for the fore-aft motion in the first mode or vibration, and can therefore not be applied
for higher fore-aft modes, or modes describing different motions, such as side-to-side or
torsional.

This work investigates the possibility to describe the apparent aero-elastic properties,
namely the added stiffness, damping and mass, for wind turbine rotors in closed form. To
this end, first a single-blade analysis of a wind turbine blade is performed, to generate
insight in the different modelling approaches of the aerodynamic excitation. The analysis
distinguishes instantaneous and history-dependent force models and considers both non-
linear and linearized expressions. It is shown that the response of the blade to turbulent
inflow conditions can be estimated reasonably well with the linearized instantaneous
force model, which provides the basis for the subsequent analysis of the apparent aero-
elastic properties of the rotor as a whole.

Concerning the complete rotor, closed-form expressions for the apparent aero-elastic
properties are presented, accounting for motions in three directions and cross-couplings
between motions and forces. These system properties are presented state-independently,
implying that they are independent of the structural motions. This independence allows
for a linearized representation of the decoupled support structure system. At the same
time, the explicit dependency on the operational conditions, as well as the control param-
eters – the blade pitch angle and the generator torque – allows for the response evaluation
under different environmental circumstances. As the presented apparent aero-elastic
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properties account for motions in three directions, the support structure response for
yaw misalignments, and wind-wave misalignments can be assessed too.

The magnitudes of the apparent aero-elastic properties are illustrated for the rotor of
the NREL 5 MW turbine, revealing the high contributions of the aerodynamic damping in
yaw, and the aero-elastic coupling between the side-to-side and torsional motions. The
performance of the presented method with the state-independent apparent aero-elastic
properties is assessed by means of a comparison with a similar model defined with the
software BLADED 4.6, which, contrarily to the current approach, accounts for the effect of
flow separation on the aerodynamic force and includes higher-order contributions from
the state-dependency of the aerodynamic force. Regarding the support structure, the
dimensions of the UpWind monopile are adopted. To assess the response to combined
wind-wave excitations, the presented method is extended with drive-train and control
sub-systems – again based on the properties of the NREL 5 MW turbine – potentially
allowing for the implementation of control strategies that aim for response reductions of
the support structure.

The overall conclusions of this work is that the apparent aero-elastic properties,
specifically the aerodynamic damping, of a rotor of a wind turbine can be defined in
closed form and state-independently, accounting for motions in three directions and
cross-couplings between motions and forces. The proposed method is shown to provide
a good correspondence with the estimated response as obtained with the BLADED model,
despite the mentioned restrictions of the application of the state-independent apparent
aero-elastic properties. Additionally, an alternative method, which uses the response-
independent aerodynamic force from the BLADED model, was considered, offering the
benefit of a partial inclusion of the force contribution from flow separation. In obtaining
the results, the focus is placed on the above-rated regime, in which the pitch-control
system is activated.

With the application of the presented approach, the stress distribution in the support
structure can be determined straighforwardly, depending explicitly on the operational
conditions and the controller actions. With the inclusion of the controller response for
transitions between the below and above-rated regime, the potential of the method can
be increased further. This extension may involve the separate simulation of a drive-train
model, which provides the response of the control variables as input for the decoupled
simulations, offering the opportunity of frequency-domain analyses of the support struc-
ture of an offshore wind turbine.



SAMENVATTING

I N in het afgelopen decennium is wind op zee ontegenzeggelijk een belangrijke spe-
ler op de Europese energiemarkt geworden, wat geresulteerd heeft in steeds grotere

turbines en funderingsconstructies die de grenzen van de techniek bereikten, met het
dusdanig minimaliseren van de levelized cost of energy als doel, dat de competitiviteit
geoptimaliseerd wordt. Ten aanzien van de funderingsconstructie – of de ondersteunings-
constructie – is er aan de ene kant een belangrijke afweging aangaande de optimalisatie en
differentiatie binnen een windpark op zee, en aan de andere kant de vereiste rekenkracht
in een vroegtijdig ontwerpstadium. Deze rekenkracht is benodigd voor de analyse van de
omvangrijke reeks aan weerkundige omstandigheden die beschouwd moet worden en de
complexiteit die gepaard gaat met het modelleren van de verschillende hieruitvolgende
omgevingsinteracties, met wind, golven en grond.

Wat betreft het modelleren van de omgevingsinteracties met de constructie, wordt
doorgaans een ontkoppeling van de turbine en de ondersteuningsconstructie toegepast,
waardoor de turbinefabrikant en de offshore-aannemer hun ontwerpen afzonderlijk kun-
nen ontwikkelen. Bij de analyse van de ondersteuningsconstructie moet echter rekening
worden gehouden met het effect van de aërodynamische kracht, in het bijzonder voor de
aërodynamische demping, aangezien bekend is dat deze de structurele respons op golf-
bewegingen aanzienlijk beïnvloedt. In dit opzicht betreft de gedeelde informatie meestal
de dempingsverhouding van de eerste voorwaartse trillingsmodus. Deze dempingsver-
houding drukt niet expliciet zijn afhankelijkheid uit van de operationele omstandigheden
van de turbine, bijvoorbeeld de gemiddelde windsnelheid en de rotorsnelheid. Boven-
dien is de verstrekte verhouding alleen geldig voor de voorwaartse beweging in de eerste
trillingsmodus en kan daarom niet worden toegepast voor hogere modi van voor naar
achter of modi die verschillende bewegingen beschrijven, zoals zijwaarts of torsie.

Dit werk onderzoekt de mogelijkheid om de schijnbare aëro-elastische eigenschap-
pen, namelijk de toegevoegde stijfheid, demping en massa, te beschrijven voor wind-
turbinerotoren in gesloten vorm. Hiertoe wordt eerst een enkelbladige analyse van een
windturbineblad uitgevoerd om inzicht te verkrijgen in de verschillende modelleringsbe-
naderingen van de a"{erodynamische excitatie. De analyse maakt onderscheid tussen
momentane en geschiedenis-afhankelijke krachtmodellen en houdt rekening met zowel
niet-lineaire als gelineariseerde uitdrukkingen. Aangetoond wordt dat de reactie van het
blad op turbulente instroomomstandigheden redelijk goed kan worden ingeschat met
het gelineariseerde momentane krachtmodel, dat de basis vormt voor de daaropvolgende
analyse van de schijnbare aëro-elastische eigenschappen van de rotor als geheel.

Wat betreft de volledige rotor worden uitdrukkingen in gesloten vorm voor de schi-
jnbare aëro-elastische eigenschappen gepresenteerd, rekening houdend met beweg-
ingen in drie richtingen en kruiskoppelingen tussen bewegingen en krachten. Deze
systeemeigenschappen worden toestandsonafhankelijk gepresenteerd, wat impliceert
dat ze onafhankelijk zijn van de structurele bewegingen. Deze onafhankelijkheid maakt

xiii
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een gelineariseerde weergave van de ontkoppelde ondersteuningsconstructie mogelijk.
Tegelijkertijd maakt de expliciete afhankelijkheid van de operationele omstandigheden,
evenals de regelparameters – de bladhellingshoek en het generatorkoppel – een evaluatie
van de respons mogelijk onder verschillende omgevingsomstandigheden. Aangezien de
gepresenteerde schijnbare aëro-elastische eigenschappen corresponderen met bewegin-
gen in drie richtingen, kan ook de respons van de ondersteuningsstructuur op wind en
golven met een verschillende richting.

De omvang van de schijnbare aëro-elastische eigenschappen wordt geïllustreerd voor
de rotor van de NREL 5 MW-turbine, waarbij de hoge bijdragen van de aërodynamische
demping bij gieren en de aëro-elastische koppeling tussen de zijwaartse en torsiebeweg-
ingen worden onthuld. De prestatie van de gepresenteerde methode met de toestandson-
afhankelijke schijnbaar aero-elastische eigenschappen wordt beoordeeld door middel
van een vergelijking met een soortgelijk model gedefinieerd met de software BLADED

4.6, die, in tegenstelling tot de huidige benadering, het effect van stroomscheiding op de
aërodynamische kracht beschrijft en bijdragen van hogere orden van de toestandafhanke-
lijkheid van de a¨rodynamische kracht omvat. Wat betreft de ondersteuningsconstructie
wordt rekening gehouden met de afmetingen van de UpWind-monopile. Om de respons
op gecombineerde wind- en golfexcitaties te beoordelen, wordt de gepresenteerde meth-
ode uitgebreid met een aandrijflijn- en besturingssubsysteem - opnieuw gebaseerd op
de eigenschappen van de NREL 5 MW-turbine - waardoor de implementatie van regel-
strategieën die gericht zijn op voor responsvermindering van de ondersteuningsstructuur
mogelijk wordt.

De algemene conclusies van dit werk zijn dat de schijnbare aero-elastische eigen-
schappen van een rotor van een windturbine, met in het bijzonder de aërodynamische
demping, in gesloten vorm en toestandsonafhankelijk gedefinieerd kunnen worden, hi-
erbij rekening houdend met bewegingen in drie richtingen en kruiskoppelingen tussen
bewegingen en krachten. De voorgestelde methode blijkt een goede overeenkomst te
bieden met de geschatte respons zoals verkregen met het BLADED-model, ondanks de
genoemde beperkingen van de toepassing van de toestandsonafhankelijke schijnbare
aëro-elastische eigenschappen. Bovendien wordt een alternatieve methode voorgesteld,
die gebruik maakt van de responsonafhankelijke aerodynamische kracht van het BLADED-
model, en die het voordeel biedt van een gedeeltelijke opname van de krachtbijdrage
door stroomscheiding. Bij het verkrijgen van de resultaten wordt de focus gelegd op
windsnelheden corresponderend met een bovennominale energie-opwekking, waarvoor
de pitch-regeling geactiveerd wordt.

Met de toepassing van de gepresenteerde benadering kan de spanningsverdeling in
de ondersteuningsconstructie expliciet afhankelijk van de operationele omstandigheden
en de acties van het regelsysteem rechtstreeks worden bepaald. Met de opname van een
beschrijvig van het regelsysteem voor transities tussen windsnelheden in het beneden- en
bovennominale regime, kan het toepassingsgebied van de methode verder worden verg-
root. Deze uitbreiding kan de afzonderlijke simulatie van een aandrijflijnmodel omvatten,
dat de respons van de regelvariabelen levert als input voor de ontkoppelde simulaties,
wat de mogelijkheid biedt tot analyses in het frequentiedomein van de draagconstructie
van een windturbine op zee.



1
INTRODUCTION

To meet the political goals regarding renewable energy production, offshore wind keeps
expanding to waters with larger depths and harsher conditions, while the turbine size
continues to grow and ever-larger foundation structures are required. This development
can only be successful if not only the minimization of the direct levelized cost of energy is
addressed, but also indirect costs concerning the industry’s carbon footprint, the impact
on biodiversity and end-of-life-time considerations. Regarding the design of the founda-
tion structures, a particular challenge in this respect relates to the reduction of the total
computational time required for the design. For both practical and commercial reasons,
the decoupled modelling of offshore wind support structures finds a common application,
especially during the preliminary design stage. This modelling approach aims at capturing
the relevant characteristics of the different environmental interactions, while reducing
the complexity as much as possible. This chapter presents a comprehensive review of the
state-of-the-art approaches to modelling environmental interactions for offshore wind
support structures. In this respect, the primary focus is on the monopile foundation, as
this concept is expected to remain the prominent solution in the years to come. Current
challenges in the field are identified, considering as well the engineering practice and the
insights obtained from code comparison studies and experimental validations. It is con-
cluded that the decoupled analysis provides valuable modelling perspectives, in particular
for the preliminary design stage. In the further development of the different modelling
strategies, however, the trade-off with computational costs should always be kept in mind.

This chapter represents an adaptation of Van der Male et al. [1].
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W HILE the current flourishment of offshore wind energy in Europe may very well
become proverbial [2], the political debate still requires focus on the corresponding

public costs – both financial and environmental. The extent to which this tendency of
the discourse is biased, implying that no fair comparison with other methods of energy
harvesting is conducted, should be the topic of decent investigation. Nevertheless, it
cannot be disputed that a healthy industrial business should subject itself to restricting
both costs mentioned.

Being still in its infancy1, the coming years will determine whether offshore wind2

turns out to be either the prodigal child, or the outcast of its technological parents –
onshore wind and offshore oil and gas [3]. Having the preferred horizontal axis rotor
orientation already inherited from the former, the latter allowed for a thorough education
from its decade-long experience in offshore developments, and moreover, scripted the
genetic code for the preferred foundation solutions.

In order to raise healthily, the differences in reality should be recognized and faced.
Contrarily to onshore wind turbines, its offshore siblings are exposed to both wind and
wave excitations, affecting the dynamic behaviour and therefore the force distributions.
Traditional offshore structures are commonly uniquely developed, while offshore wind
farms generally consist of dozens of identical structures. On top of this, the risk profiles
are incomparable, be it politically, technologically, economically, environmentally and
with respect to public health and safety.

Lozano-Minguez et al. [4] presented a methodology for the systematic assessment of
different conceptual designs for offshore wind support structures. The authors suggest to
evaluate the different concepts not only on the basis of engineering and economic criteria,
but emphasize the relevance of environmental aspects too, such as the carbon footprint
and the potential beneficial impact on the biodiversity. Van Kuik et al. [5] indicate that
the long-term impact on the marine ecosystem is not yet sufficiently analyzed. These
impacts comprise, among others, the radiation of underwater noise and the hazards of
the rotating blades for birds. On the other hand, the opportunity to employ offshore wind
farms for sustainable food production and protein harvest is mentioned as well.

A responsible industry includes the end-of-life-time in its product development pro-
cedure. In order to really stand out with respect to the currently deplored fossil fuel
industry, ‘offshore wind’ can no longer exclude a thorough life-cycle assessment and
subsequent full-cycle optimization of its supply chain – contrarily to the traditional prac-
tice of sub-cycle optimization. Whether this optimization ends at cutting ‘the monopile
and jacket foundations [...] into a depth more than 1 m below the mud line, so that the
environmental impact is minimised and the process becomes more sustainable’ [6], may
require some reassessment for the industry to become fully future-proof.

1.1. THE ENGINEERING PRACTICE
Whereas the minimization of the environmental impact during the complete life-time
requires utmost attention, this work focusses on the design life-time of the support

1To the author’s believe, the growing up requires the first offshore wind farms to complete their full life-cycle.
2‘Offshore wind’ refers to the whole supply chain, including research, involved in the development of wind

turbines at locations off-shore.
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Figure 1.1: Schematic representation of a three-bladed monopile-based offshore wind turbines with the defini-
tions according DNVGL-ST-0126 [7].

structure of single offshore wind turbines. In this respect, reference is made to the
design standard DNVGL-ST-0126 [7], which defines the support structure as the structural
component supporting the rotor-nacelle assembly. As an example, Figure 1.1 provides
a schematic representation of a three-bladed monopile-based offshore wind turbine.
The support structure itself is sub-divided into the tower, sub-structure and foundation,
roughly corresponding to the elements exposed to air, water and soil, respectively.

1.1.1. DESIGN PROCEDURE
The stiffness of the foundation affects the aerodynamic excitation of a wind turbine. In
addition, the hydrodynamic action on a support structure induces motions of the turbine
rotor, which, as a result, experiences an aerodynamic resistance. For operating wind
turbines, this resistance is of significant importance for the force distribution in the struc-
ture. As a result, an optimal analysis of the response of an offshore wind turbine requires
an integrated design approach. Mainly for commercial reasons, however, the design of
most offshore wind turbines takes place in a sequential – or iterative – manner, where
one party designs the turbine and tower, and a second party designs the foundation, or
sub-structure [8]. The sub-optimal assembly of an onshore wind turbine and a traditional
offshore platform can easily be recognized here.

The design loop of a typical sequential design procedure of an offshore wind sub-
structure is illustrated in Figure 1.2. As a first step, the foundation designer defines an
initial geometry of the support structure. This initial geometry can be defined such,
that the first natural frequency of the offshore wind turbine does not coincide with the
aerodynamic and hydrodynamic frequency bands that contain most energy for structural
excitation. In this respect, the rotational frequency of the rotor and the blade passing
frequency are of particular relevance [9]. A procedure for the preliminary design of
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Figure 1.2: Schematic representation of the sequential design procedure for offshore wind turbines.

offshore wind monopile foundations was described by Arany et al. [10], resulting in rules
of thumb to estimate the pile geometry for the initial design.

After defining the preliminary design of the support structure, the procedure starts
with a model of the foundation structure, which is exposed to the hydrodynamic, and
possibly seismic, loads (Step 1 in Figure 1.2). Subsequently, the model – or a reduced-
order representation – and the response at the interface with the wind turbine are shared
with the turbine designer, who evaluates the structural response of a wind turbine model
to the aerodynamic excitations (Step 2). The response at the foundation interface can
then be used to re-evaluate the structural model of the foundation structure, after which
an updated foundation model initiates a subsequent design loop. Passon and Branner
[11] provided a detailed description of this design sequence, and Van der Valk and Rixen
[12] specifically addressed the derivation of equivalent interface forces, which are to be
shared between the different design parties.

1.1.2. DESIGN CHALLENGES
The design of the support structures of offshore wind turbines involves multiple parties
and models of varying complexity. At this point, the design of most offshore wind turbines
involves a sequential procedure, requiring multiple iterations for optimized designs. On
top of that, while the non-linear nature of the dynamic interactions between the structure
and the environment results into digital brain-cracking simulations, the stochastic nature
of these excitations imposes the necessity of a large number of such analyses to predict the
governing stress distribution in the ultimate limit state and the accumulation of the fatigue
damage. Because of these design iterations, the non-linearity of the structural interactions
and the stochastic nature of the environmental excitations, the design procedure is
incredibly time-consuming. Each design loop requires once again the simulation of
the hydrodynamic load cases. Moreover, the aerodynamic analyses neither include the
non-linear hydro-elastic coupling, nor the non-linear soil-structure interaction. As a
consequence, the sequential design procedure is intrinsically sub-optimal.
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Muskulus and Schafhirt [13] identified a number of challenges regarding the design
of offshore wind support structures, the first of which concerns the non-linearity of
wind excitations – wake development, dynamic flow, control – and wave excitations –
wave slamming – as well as structural non-linearities, mainly from the soil-structure
interaction. Vorpahl et al. [14] identified additional structural non-linearities, stemming
from the active pitch and torque controls, and the large deflections of the commonly fibre-
reinforced composite blades. With respect to the wind conditions, the characteristics of
wake turbulence are of importance to evaluate a design within the context of the wind
farm. The analysis of the hydrodynamic loads, from both waves and current, requires a
valid assessment of both viscous and inertial aspects.

At the same time, the available tools to model for commercial applications do not
account for the environmental interactions in full. For instance, the aerodynamic inflow
is not described for non-uniform conditions and the effect of structural motions is not
included. Concerning the hydrodynamic excitation, the load models are only valid for
slender vertically submerged rigid cylinders and the action of irregular higher-order waves
cannot be described. On the other hand, the available models do not allow for ‘quick-and-
dirty’ preliminary design approaches either, leaving the designer with time-demanding
tools, of which the actual accuracy is not fully known. Van Kuik et al. [5] recognized the
different levels of fidelity of existing design tools for the different components relevant
for the design of an offshore wind turbine. The need for holistic and comprehensive
design methods is emphasized, which can be employed for different levels of design
uncertainties.

Design analyses are required to assess both the ultimate and the fatigue limit states of
the structure during its intended operational life-time. These analyses concern the load
conditions during both operational and non-operational states of the turbine, as well
as the transitional states of start-up or shut-down, under both normal and emergency
conditions. Concerning the later, the occurrence of turbine faults negatively affecting the
internal force distribution requires consideration [15].

The ultimate limit state assessment involves the definition of the extreme sea states
and the corresponding extreme wave heights. Given the asymmetry of the support
structure, due to the presence of appurtenances, Seidel et al. [9] suggested that twelve
loading directions should be distinguished. In relating the water level and the extreme
wave conditions, it should be noted that the lowest water level may induce breaking
waves.

Seidel et al. [9] stated that the assessment of the fatigue limit state requires omnidirec-
tional scatter tables, relating wind speeds at hub height to significant wave heights and
significant wave heights to wave peak periods. Moreover, the wave directionality should
be correlated to the directionality of the wind, ideally in bins of 30 degrees, distinguishing
the mentioned twelve directions. If wind speed bins of 1 m/s are adopted, thousands of
environmental states need to be evaluated for the full fatigue assessment.

After the installation of an offshore wind farm, metocean data is collected and struc-
tural accelerations are measured. These data allow for the validation of the designed
structural properties, as well for the monitoring of the structural stress variations. Unfor-
tunately, the amount of data available to the public is limited, but the published results of
measurement campaigns reveal a discrepancy between the identified and the modelled
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dynamic properties. Having the fatigue limit state as design driver, the most important
consequence of this discrepancy is that the real accumulation of the fatigue damage devi-
ates from the predicted accumulation, leaving the actual fatigue life-time of the structure
unknown, unless a-posteriori estimation techniques are applied [16].

In summary, the following challenges in designing the foundation structures of off-
shore wind turbines are identified:

• The design of offshore wind turbines in a sequential manner, requiring multiple
iterations for optimized designs.

• Given the non-linear dynamic interactions between the structure and the environ-
ment, and the stochastic nature of the environmental excitations, a large number
of time-domain analyses are required to predict the governing stress distribution
and the accumulation of the fatigue damage.

• The available modelling tools for commercial applications do not account for
the environmental interactions in full, whereas these tools do not allow for quick
preliminary designs either.

• Measurement campaigns, of which the results are publicly available, reveal a dis-
crepancy between the identified and modelled dynamic properties, while the pro-
cess of accumulation of the fatigue damage in the structure is not yet fully under-
stood.

1.2. MODELLING STRATEGIES
The full analysis of an offshore wind turbine requires dynamic structural models of the
support structure3 and the rotor-nacelle assembly, including a model of the control
system4, coupled to sufficiently large models of the surrounding media, involving the
solving of the Navier-Stokes equations for the air and water flows and the applicable
constitutive relations for the soil, see Figure 1.3. To the author’s knowledge, such a
comprehensive attempt has not taken place yet. Existing studies focus either on the
modelling of one of the media, be it in the realm of academia or engineering [17–21], or
on the dynamic description of the controlled offshore wind turbine [22–24]. The latter
case is referred to as the integrated modelling approach, albeit that the full coupling with
the surrounding media is not accounted for in full. The structural modelling is based
on either finite elements or a multi-body approach, whereas the solution procedure
generally involves a Galerkin decomposition. Existing software tools, such as BLADED

and FAST [25] allow for the integrated analysis of offshore wind turbines, even though
FAST requires coupling with separate modelling modules for the hydrodynamic and
soil-structure interaction.

As a further simplification, the rotor-nacelle assembly and the support structure
can be analysed in separate models. This so-called decoupled analysis finds practical
application in the sequential design procedure, as described in Section 1.1.1, and in

3Support structures can be either bottom-founded or floating, i.e. bottom-moored, implying a large freedom of
motion at the water level. Unless stated otherwise, the current study refers to the former type of structures.

4Many previous studies have been based on fixed-speed and/or stall-regulated turbines. For current analyses,
variable-speed and pitch-regulated turbines are assumed, unless stated otherwise.
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studies solely focussing on either the rotor sub-system or the support structure. The
decoupled analysis of the support structure requires the definition of adequate boundary
conditions at the tower top, as a substitute of a full rotor model. As an example, Figure 1.4
illustrates a decoupled support structure, modelled as a non-prismatic Euler-Bernoulli
beam, in which the rotor-nacelle assembly is replaced by a concentrated mass at the tower
top, an approach which is adopted in many studies [16, 26, 27], sometimes supplemented
by the mass moments of inertia of the rigid rotor [28], so that the contribution of the rigid
body motion of the rotor-nacelle assembly to the dynamic characteristics of the support
structure is accounted for. In this example, the aerodynamic interaction is accounted for
by an apparent mass and damping, whereas the soil-structure interaction is represented
by distributed springs and dashpots. More realistic representations would account for
frequency dependency of the interactions, as well as their non-linear character. Figure 1.4
does not present the apparent dynamic characteristics of the hydrodynamic interaction –
mass and damping – which could affect the global dynamic characteristics of the system
too.

The integrated analysis of an offshore wind turbine requires an explicit description
of the different environmental interactions, with the surrounding fluids – air and water
– and the soil. Moreover, the model needs to account for control actions, concerning
the generator torque and the blade pitching, to realistically represent the force transfer
to the support structure. For the decoupled analysis of a support structure, the aerody-
namic rotor excitation including the turbine control is captured by a separate turbine
model, and the aerodynamic interaction is accounted for by equivalent tower top forces
and an additional damping. The following sections provide an overview of the various
approaches and corresponding challenges to capture the environmental interactions in
either integrated or decoupled models.

1.2.1. AERODYNAMIC INTERACTION
The aerodynamic inflow through the rotor plane of an operating wind turbine generates
a circulatory flow around the aerofoil-shaped turbine blades, inducing a lift. The lift
force distributed over the radii of the different blades produces an aerodynamic torque
around the horizontal rotor axis, which drives the rotation of the rotor. The rotation of the
horizontal axis generates a resisting torque at the generator – through either an indirect
or a direct drive-train mechanism. Worth mentioning, in addition, is the fluid power
transmission as a most recent development, for which no generator is required in the
nacelle at the tower top [29].

Figure 1.5 depicts the aerodynamic torque and the thrust force on a turbine rotor as a
function of the upstream wind speed. At relatively low wind speeds, when the generator
does not produce its rated power, the rotational speed of the rotor is controlled by the
generator torque. For above rated wind speeds, the torque is kept constant through a
pitch control system [30, 31]. Whereas the aerodynamic torque extracts the energy from
the airflow, the wind turbine is exposed to a thrust force, and tilt5 and yaw moments too,
as well as relatively small side and upward forces.

To a lesser extent, the viscous drag imposed by the flow on the blades contributes to

5Or pitch, the common term in aviation, which in the context of wind turbines may lead to confusion with the
control system.
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Figure 1.3: Schematic representation of a three-
bladed monopile-based offshore wind turbine ex-
posed to wind, waves and current.

Figure 1.4: Example of a decoupled model of a
monopile-based support structure, with the rotor-
nacelle assembly (RNA) replaced by a concen-
trated mass.

(a) (b)

Figure 1.5: Schematic representation of (a) the aerodynamic torque, and (b) the thrust force on a turbine rotor
as a function of the upstream wind speed.
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the forcing. Both lift and drag are a function of the relative flow conditions, on the one
hand, dependent on the inflow wind speed and the rotational velocity of the rotor, and,
on the other hand, affected by the structural motions, see Figure 1.6. The dependency
of the aerodynamic forcing on the relative motion is non-linear and history dependent6,
implying that the load at a certain instance in time depends on the foregoing flow states.
Besides, both forces depend on the inflow angle, or the angle of attack, which is defined
as the inflow angle minus the geometrical twist and pitch of the blade. Structural motions
induce variations in the angle of attack. For small angles of attack, the dependency of
the drag force is negligible, as opposed to the lift force, which is strongly affected by the
variations in the angle of attack. The aerodynamic aerofoil forcing has been addressed in
both the frequency-domain and the time-domain in the historical works by Theodorsen
[32] and Wagner [33].

(a) (b)

Figure 1.6: Schematic representation of (a) an aerofoil exposed to the relative inflow velocity resulting from the
wind speed, the rotor speed and the structural motion, and (b) the resulting lift and drag forces acting on that
aerofoil.

When considering the rotor as a whole, the flow conditions must obey the conservation
laws (mass, momentum). The amount of extracted energy relates to the aerodynamic
torque, which in turn results from the aerodynamic forcing on the rotor blades. As a
consequence, the analysis of the aerodynamic excitation of a rotating rotor requires the
combined analysis of both the global inflow conditions and the local blade forcing. This
combined analysis is generally referred to as the blade element-momentum theory, which
has been extensively described in several textbooks [34–36].

The one-dimensional blade element-momentum theory can account for both axial
and tangential flow variations and the apparent inertia resulting from a time-varying
inflow. To account for radially varying inflow conditions, the concepts of independent
rotor annuli is adopted. For the estimation of the flow field at the rotor plane, the actuator
disc concept is applied. The blade element-theory was extended to yawed flows [37],
however, the upstream inflow conditions should still be uniform. The free wake vortex
ring model, which is based on the discretization of the tubular vortex wake concept,
offers an alternative approach to estimate the flow conditions at the rotor plane, for both

6An aerodynamicist would speak of ‘unsteady’, which is ambiguous in the field of structural dynamics.
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time-varying and radially varying inflow conditions [38, 39]. Approaches to estimate the
azimuthal variation of the inflow for finite-bladed rotors require the evaluation of the
Biot-Savart law for each time step [40, 41], or involve solving the Navier-Stokes equations
– representing the rotor blades by actuator lines [42, 43] or actuator surfaces [44, 45] – and
quickly lose the applicability for design purposes because of the increasing computational
demands. A schematic representation of some different approaches to estimate the flow
field is provided by Figure 1.7. The estimation of the inflow conditions, while accounting
for structural motions, requires the coupling of a computational fluid dynamics analysis
with a dynamic structural model, a combination requiring tremendous skill and effort [46].

(a) (b) (c)

Figure 1.7: Schematic representation of different inflow and near-wake modelling approaches, distinguishing
(a) the stream tube model for the momentum-balance method, (b) the free wake vortex ring model, and (c) the
free vortex wake model.

Structural motions of the rotor also affect the relative inflow conditions, which subse-
quently affect the aerodynamic forcing on the blades. These motions result from vibra-
tions of the blades, the drive-train or the support structure. Concerning the decoupled
analysis of a support structure, the aerodynamic interaction can only depend on the tower
top motion, which affects the relative velocity between the inflow and the structure. De-
spite the non-linear dependency of the aerodynamic excitation on the structural velocity,
in decoupled analyses the aerodynamic interaction is commonly accounted for in terms
of a modal damping, which is defined for the first mode of vibration only [47, 48].

The relevance of the aerodynamic damping for the force distribution of an offshore
wind support structure was illustrated by Kühn [49]. The estimation of the life-time
fatigue damage involves the response analysis to sea states which may induce resonance
in the structure. The dynamic amplification at these frequencies is heavily affected by the
amount of mobilized damping, to which the aerodynamic damping may give a substantial
contribution. Garrad [50] derived a closed-form expression for this aerodynamic damping
for a constant-speed turbine and attached-flow conditions, based on the analysis of the
blade-element forcing on a rigid rotor. The derivation expresses the strong dependence
of the damping coefficient on the rotational velocity of the rotor, implying an increase
in damping for increasing below-rated wind speeds and a constant maximum damping
for above-rated wind speeds. The closed-form expression was extended by Valamanesh
and Myers [51], who included the drag contribution to the aerodynamic damping and
explicitly related the damping to the rotor-induced flow velocities. Moreover, the authors
provided an expression for the side-to-side damping of a turbine rotor.
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Having an integrated model of an offshore wind turbine available, the aerodynamic
damping can be identified as the real part of the complex eigenvalues of the dynamic
stiffness matrix [49]. This approach does allow for variations in rotor speed and separa-
tion of the flow, even though the eigenvalues can only be obtained after establishing a
state-independent dynamic stiffness matrix. As an alternative, Kühn [49] suggested to
analyse the tower top vibrations of a wind turbine in either steady or turbulent wind con-
ditions after the release of an additional pre-thrust loading, from which the aerodynamic
damping can be estimated from the logarithmic decrement of the transient decay. This
approach accounts for the state-dependent aerodynamic interaction and can include the
contribution of the control system. Regarding the latter, however, the pre-thrust loading
will violate the validity of its initial conditions. Moreover, for systems with closely spaced
modes, such as the first fore-aft and side-to-side modes of an offshore wind turbine, the
identified damping cannot be interpreted purely as modal damping. Whereas Kühn [49]
implemented an artificial additional thrust force, Cerda Salzmann and Van der Tempel
[52] identified the aerodynamic damping from the ratio between variations in the thrust
force and the wind speed, therefore requiring uniform inflow conditions. Liu et al. [53]
presented a comparison between the latter method and the closed-form expression of
Garrad [50] with a correction for variable-speed turbines. The different approaches to
estimate the aerodynamic damping are summarized in Table 1.1.

Table 1.1: Overview of studies presenting approaches to estimate the aerodynamic damping of an operating
wind turbine.

study approach
Garrad [50] closed-form expression fore-aft damping
Kühn [49] real part of complex eigenvalue of dynamic stiffness ma-

trix
response analysis to additional pre-thrust loading

Cerda Salzmann and
Van der Tempel [52]

ratio of thrust force and wind speed variations

Valamanesh and My-
ers [51]

extension of [50] including rotor-induced velocities and
side-to-side damping

Liu et al. [53] extension of [50] for variational speed turbines

The validity of the model decoupling by means of the application of a single dashpot
at the tower top was studied by Ong et al. [54]. In their study, wind turbines with a
full-height lattice tower and a lattice-tower hybrid support (or ‘jacket’) structure were
considered. The aerodynamic damping for the decoupled modelling was estimated
from the thrust-force derivative with respect to the wind speed. It was concluded that
decoupled support structure model with a linear aerodynamic damping gives reasonable
mean and standard deviation results when compared to a fully coupled simulation for
environmental conditions for wind-force dominated load cases. A lower accuracy was
obtained for load cases with a more pronounced wave contribution.

Instead of assuming a single discretized dashpot acting in the fore-aft direction, or
estimating the total aerodynamic damping in the modal domain from an integrated anal-
ysis, Schafhirt and Muskulus [55] distinguished the damping for the six translational and
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rotational motion of the tower top. The corresponding damping values are obtained from
an optimization procedure, relating the decoupled support structure model to an inte-
grated wind turbine model. It was shown that the decoupled model with the six dashpots
gives a much better fit with the integrated model than a decoupled model with a single
fore-aft dashpot. Additionally, it was observed that the aerodynamic damping increases
for higher wind speeds, also for above-rated velocities. It was suggested, however, that a
linear damping model does not suffice to describe the aerodynamic interaction.

In addition, the control system of the turbine allows for variations of the rotational
speed and the pitch angle of the blades, affecting the relative inflow and the angle of
attack. Apart from optimizing the power output of the wind turbine, the control system
can also be employed to control the motion of the support structure [56]. Individual pitch
control systems, which affect the pitch angle of each blade separately offer the possibility
to reduce asymmetric loads on the rotor plane, for instance resulting from altitudinal
wind speed variations [57–59]. Alternatively, Fischer et al. [60] studied the influence of
both the generator torque and pitch control systems on the mitigation of side-to-side
motions. Zhang et al. [61] presented a generator torque control system with the same
purpose.

In conclusion, the available literature reveals a need for closed-form expressions for
the aerodynamic damping corresponding to the six translational and rotational tower
top motions. The resulting aerodynamic damping matrix, which establishes the relation
between the structural motions and the resulting aerodynamic forces, should account
for off-diagonal contributions as well. Such a matrix should cover the varying conditions
within the operational range of the wind turbine. Furthermore, the underlying assump-
tions regarding the aero-elastic modelling, including attached flow conditions and the
effect of the control system should be regarded, and the validity of a linearization should
be assessed. It could be considered to account for higher-order contributions of the aero-
dynamic interaction as well, even though this immediately impairs the computational
efficiency.

1.2.2. HYDRODYNAMIC INTERACTION
The implementation of the hydrodynamic excitation requires the selection of valid incom-
ing wave and wave-induced force models. Figure 1.8 illustrates the validity of different
wave theories for varying water depths and wave heights. Provided that the wave steep-
ness is small, the waves can be modelled linearly. The linear wave theory can be applied
straightforwardly to define stochastic sea states too. For shallow waters and/or high
waves, the linear wave theory is no longer valid and the definition of the wave profile
requires higher-order harmonic corrections [62, 63], or breaking wave theory should be
adopted. The profiles of these different waves is depicted in Figure 1.9 and an overview of
the different wave theories can be found in [64].

In practical situations, non-linear waves are defined deterministically. To analyze the
response to non-linear waves in a random sea, Henderson and Zaaijer [65] suggested that
a linear stochastic wave model could be applied to determine the initial conditions for the
assessment of the excitation of a regular non-linear wave. The propagation of non-linear
gravity waves in irregular seas can be evaluated with the potential theory, using non-linear
free surface boundary conditions. Agarwal and Manuel [66] generated irregular nonlinear
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wave profiles by employing the second-order correction proposed by Sharma and Dean
[67]. To increase the computational efficiency, Marino et al. [68] proposed a domain-
decomposition strategy, in which the occurrence of non-linear waves is assessed in a
linear irregular wave profile, after which a non-linear wave profile is determined to replace
the linear profile in a sufficiently large domain, using a higher-order boundary-element
method. This approach is schematized in Figure 1.10.

Figure 1.8: Schematic representation of the differ-
ent wave-theory regimes for varying water depths
and wave heights.

Figure 1.9: Schematic representation of wave pro-
files corresponding with different wave theories.

Figure 1.10: Schematization of the sub-domain analysis approach of non-linear irregular waves [68].

Once the wave kinematics have been adequately defined, the Morison equation can be
employed to predict the resulting forces on submerged vertical slender cylinders [69].
The equation distinguishes the inertia force, composed of the Froude-Krylov and the
added mass components – as predicted by the potential flow theory – and the drag force
resulting from the viscosity of the flow, and requires the definition of time-averaged
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added mass and drag coefficients, which depend on the shape of the structure, the
Reynolds regime and the history of the relative motion between fluid and structure. The
empirical Morison equation can be applied to structures that do not significantly affect
the incident wave field, provided that the predicted force is either drag or inertia domi-
nated [70]. This is illustrated by Figure 1.11, with Figure 1.11(a) depicting the disturbance
of the incoming wave field by a cylindrical structure, and with Figure 1.11(b) indicating
the governing hydrodynamic force on a cylinder based on the ratios between the wave
length and height and the diameter of the cylinder. For shallow waters and/or non-slender
cylinders, the effects of wave diffraction and reflection can no longer be neglected. On
the basis of linear potential theory, and therefore linear waves, MacCamy and Fuchs [71]
derived the hydrodynamic inertia force for a cylinder, accounting for both effects. For an
elaborate overview of the wave force models on cylindrical structures, reference is made
to [70, 72].

(a) (b)

Figure 1.11: (a) Schematic representation of the diffracted wave field around a cylindrical structure [73], and
(b) the governing hydrodynamic force on a cylindrical structure as a function of the wave length-diameter and
wave height-diameter ratios.

To account for the hydrodynamic interaction with a flexible structure, the hydrodynamic
force isexpressed in terms of the relative kinematics between the fluid particles and the
structure, implying that the structural velocity affects the drag force and the structural
acceleration the added mass component of the inertia force [74]. It should be noted that
the coefficients for drag and inertia of the Morison equation, which are for rigid structures,
may lose their validity for this adaptation [70]. Regarding the dynamic response of a
monopile-based wind turbine to irregular waves, Bachynski et al. [75] conducted model
scale experiments for a 7 m diameter support structure. The results demonstrated the
contribution of the second mode of vibration for a parked turbine under extreme sea
state conditions.

For increasing wave heights, induced by the wind in developing seas or resulting from
wave-wave interactions in random seas, the water particle velocity in the crest of the
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wave may reach the wave celerity, as a result of which the wave breaks [76]. Birkinshaw
et al. [77] compared the measured kinematics of resulting so-called ‘spilling breakers’
with predictions through Dean’s stream theory and found the measured velocities and
accelerations in the crest region to be slightly higher. Computational fluid dynamics
approaches to model the kinematics of spilling breakers were presented by Jacobsen et al.
[78] and Alagan Chella et al. [79]. Marino et al. [80] studied the wind-wave energy transfer
for the development of steep waves in the vicinity of offshore wind turbines.

Plunging breakers occur when moderate waves run up a seabed slope, enforcing
the wave to break. Computational fluid dynamics techniques are commonly employed
to study the wave impact on cylindrical structures, such as monopile-based offshore
wind turbines [81–83]. Marino et al. [84] modelled the wave kinematics of a plunging
breaker by means of their domain-decomposition strategy and estimated the impulsive
force on an offshore wind turbine with an analytical impact model. Chan et al. [85]
performed a detailed laboratory study on the mechanics of plunging wave impacts on
vertical cylindrical structures. Experimental results of breaking wave excitations of a
flexible vertical cylinder with a top mass, resembling an offshore wind turbine, were
presented by Bredmose et al. [86]. The experiments showed how breaking wave events
induce an impulsive excitation of the first mode of vibration, while the second and the
third modes were excited too.

The difficulty of predicting hydrodynamic forces for regimes within which fluid-
structure interaction is of relevance was mentioned by Van Kuik et al. [5] as an important
long-term research for offshore wind. Especially the impact load from breaking waves still
requires a description in terms of time-history and statistical characteristics. Additionally,
it is recognized that the existing concepts for stochastic non-linear waves ‘are based on
spectral synthesis and the superposition principle of linear wave theory’. The need for a
useful concept for non-linear irregular waves is expressed. Moreover, as computational
fluid dynamics do not provide an applicable approach for design purposes, the Mori-
son equation and the potential flow theory may lose their validity for larger and novel
foundation concepts, generating the need for mid-fidelity modelling approaches.

Apart from the hydrodynamic action from waves and currents, certain regions require
the analysis of the action of floating level ice, ice floes and ice ridges on the support
structures of offshore wind turbines. The prediction of loads from ice requires sufficient
data regarding the ice thickness, drifting speed and strength, where the latter relates
non-linearly to the rate of loading. Thus, in interaction with vertical-sided structures,
the pattern of the structural motion varies with the relative incident velocity of the ice,
for which the following regimes for increasing ice speeds are distinguished: intermittent
crushing, frequency lock-in and continuous brittle crushing, see Figure 1.12.

Several models have been developed to predict the loads from the interaction be-
tween floating level ice and vertical-sided compliant structures [88–90], recognizing the
relevance of the relative incident velocity and assuming a specific crushing length, or
applying an effective negative damping to account for the non-linear dependency of the
ice strength on the relative motion. These approaches, however, have failed to predict the
measured ice loads over a sufficiently wide range of drifting speeds. A phenomenological
model developed by Hendrikse and Metrikine [91], and subsequently validated [87, 92],
recognized the dependency of the contact area between ice and structure on the speed of
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Figure 1.12: Illustrations of ice-load and structural-response patterns of vertical-sided structures in interaction
with ice with varying speed [87].

loading. With the application of this approach, which was already applied in an integrated
analysis of an offshore wind turbine [93], the modelling of the non-linear ice-structure
interaction requires the distinction of a sufficient number of elements in the contact area
between the ice and the structure, significantly enhancing the duration of the required
load simulations. Still, the existing model only accounts for one-directional ice-structure
interaction, whereas the aerodynamic forcing excites the offshore wind turbine in both
the fore-aft and the side-to-side directions. An extended analysis of the interaction in two
directions is therefore required. On a different note, large uncertainty exists regarding
the occurring ice conditions throughout the life-time of offshore wind turbines. Similar
to the concept of sea states which are used for the long-term statistics of the ocean con-
ditions, so-called ‘ice states’ would serve the ultimate and fatigue limit state analyses of
wind turbines in ice-exposed regions, requiring an extended database of occurring ice
conditions.

In analyzing the dynamic response of an operating offshore wind turbine to either hy-
drodynamic or ice loads, the corresponding aerodynamic interaction cannot be neglected,
given the substantial contribution to the damping of the system. As the aerodynamic
damping is commonly accounted for in terms of the ratio of the critical damping per
mode of vibration, an understanding of the modal contributions to the total response is
important. Given the non-linear nature of the interactions between the structure and
hydrodynamic actions – particularly breaking waves – and ice loads, response contribu-
tions from higher global bending modes cannot be neglected, especially from modes
with relatively large modal amplitudes around the sea level [94]. For such modes, the
contribution to the critical damping from the aerodynamic interaction may result to a
lesser extent from the lateral motion of the tower top, the motion which is considered
dominant for the modal damping of the first mode, whereas the nodding motion may
provide a considerable contribution. In principle, integrated models intrinsically account
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for the aerodynamic damping contribution for the varying motions from the different
modes of vibration, provided that the mode shapes are estimated accurately. Decoupled
modelling approaches, however, require more advanced representations of the aero-
dynamic damping, to avoid erroneous contributions to the damping ratios of higher
bending modes.

1.2.3. SOIL-STRUCTURE INTERACTION
For monopile-based support structures, which represent the vast majority of the installed
offshore wind turbines, the main soil-structure interaction takes place laterally. This
interaction varies with the soil characteristics, e.g., the density, the cohesion, the over-
consolidation ratio. Close to the surface, the soil fails in wedges, whereas at deeper
layers circumferential sliding of the soil will take place, see Figure 1.13. For offshore wind
applications, not just the ultimate resistance of the soil is of importance. The structural
response to the time-varying excitations of wind and waves relies on the dynamic stiffness
of the soil and the damping through radiation and hysteresis.

Figure 1.13: Schematic representation of the soil-failure mechanisms for laterally loaded piles.

The industry-standard approach to model the soil-structure interaction of laterally loaded
piles is the p−y curve method [7], an overview of which is provided by Reese and Van Impe
[95], which defines the interaction in terms of non-linear force-deflection relations, see
Figure 1.14. For soft normally consolidated marine clay, this method finds its basis in
the empirical testing of piles with a diameter of 0.32 m and an embedded length of 12.80
m [96], implying a length-diameter ratio of approximately 40. Tests were performed for
short-term static loading, cyclic loading (corresponding to emerging storm conditions)
and subsequent reloading with forces smaller than the previous maximums. Cox et al.
[97] and Reese et al. [98] presented p − y curves for soils consisting of clean fine sand to
silty fine sand. The tests on which these curves where based had been done with piles
with a length-diameter ratio of approximately 34 (diameter 0.61 m and an embedded
length of 21.03 m). These tests were performed for both static and cyclic loadings at a
frequency of approximately 0.06 Hz, which corresponds to the quasi-static range of a
typical bottom-founded offshore wind turbine.

In conclusion, the p − y curve method was developed for the modelling of large
displacements of flexible piles, whereas monopile foundations for offshore wind turbines
must be characterized as rigid (for diameters in the range of 4 to 6 m, the length-diameter
ratios are in the order of five to six [99]), for which the soil-structure interaction must
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(a) (b)

Figure 1.14: Representations of p-y curves for (a) clay and (b) sand, distinguishing the soil-structure interaction
for static or cyclic loading.

be characterized differently (see Figure 1.15). Shadlou and Bhattacharya [100] stated
that with the application of the p − y curve method, the stiffness of the foundation
of an offshore wind turbine is underpredicted. Moreover, the studies resulting in the
standardized force-displacement curves primarily focussed on the soil reaction for large
deformations. For the estimation of the fatigue damage accumulation in offshore wind
support structures, the small-strain stiffness of the soil is of particular relevance see
Figure 1.14(a)).

(a) (b)

Figure 1.15: Schematic representation of the lateral pile deformation resulting from a shear force and overturning
moment at the soil surface, distinguishing (a) a flexible pile and (a) a rigid pile.

For piles with a diameter larger than 1.0 m, the design standard DNVGL-ST-0126 [7]
requires the validation of the p − y curve method with a finite-element analysis. In
research, the small-strain stiffness of sand and clay for rigid piles has been investigated
on the basis of the finite-element method, as well as small and full-scale experiments.
Versteijlen et al. [20] used in situ measured small-strain shear moduli to develop a three-
dimensional finite-element model of an embedded monopile to validate the soil stiffness
predicted by the p − y method. The predicted pile deflections with the three-dimensional
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model were smaller than the deflections predicted with the p− y curve method. Sørensen
et al. [101] and Kallehave et al. [102] have proposed a modified initial stiffness for piles
in sand, depending on the diameter, internal friction angle and the depth below the
mudline.

Cyclic loading conditions allow for kinematic hardening and ratcheting – or cyclic
creep – of non-cohesive soils, affecting the soil-structure interaction [103, 104]. Schafhirt
et al. [105] demonstrated the influence of soil conditions changing over time on the fatigue
life-time of monopile foundations. For saturated and cohesive soils, cyclic loading may in-
duce gapping and subsequent expulsion of water carrying soil particles. As a consequence,
both the resistance and the stiffness of the soil reduce, even for relatively small defor-
mations [95]. The behaviour of monopile foundations under lateral cyclic loading was
investigated by Achmus et al. [106], focussing specifically on cohesionless soil. The soil
response is represented by a degradation stiffness model, which combines finite-element
simulations of the pile–soil interaction and an evaluation of drained cyclic triaxial tests.
The work established a relation between the pile performance under cyclic loading and its
embedded length, and defines design criteria for large-diameter monopiles. Damgaard
et al. [107] suggested an increased soil stiffness for cyclic motions to account for the pore
pressure generation in saturated soils. Jardine et al. [108] provided a historical review of
empirical studies to the response of cyclically loaded piles. As yet, the principles behind
the cyclic soil-structure interaction and the subsequent pile deformations are not fully
understood [109], and the reliability of existing methods to estimate the long-term pile
deflections and rotations at the mudline should be considered from that perspective [10].

Given the inconvenience of the standardized force-deflection curves for piles with a
small diameter-length ratio, alternative modelling approaches are required for offshore
wind applications. For design purposes, these alternative models need to be computa-
tionally efficient, rendering the three-dimensional finite-element approach undesirable.
As a consequence, a need exists for simplified equivalent representations of the three-
dimensional soil-structure interaction for rigid piles. Dutta and Roy [110] published a
survey, in which a selection of alternative methods for the modelling of soil-structure
interaction is gathered and reviewed. The work focussed on both 1D idealizations and
continuum models. Zaaijer [111] suggested to replace the embedded monopile by a
stiffness matrix at the mudline, to simplify the modelling of the foundation of offshore
wind turbines, where the components of the stiffness matrix can be estimated with the
Randolph’s method. Bhattacharya and Adhikari [112] adopted a similar stiffness mod-
elling, but neglected the coupling between translations and rotations. A similar approach
was taken by Andersen et al. [113], who investigated the dynamic characteristics of an
offshore wind turbine model with stochastic p − y curves. Other studies proposed a
discretized foundation model for a monopile support structure, recognizing the relevance
of the coupling between the translational and rotational motions. As an alternative, the
application of an equivalent fixity depth was suggested [114, 115]

Varun et al. [116] and Versteijlen et al. [117] presented a procedure to define an ef-
fective one-dimensional Winkler foundation from a three-dimensional response ob-
tained with a finite-element model. The effective foundation models capture the three-
dimensional effects of the soil-structure interaction of piles with a large diameter com-
pared to the embedded length – in other words, piles with a small length-diameter ratio.
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This method was extended further in the work of Versteijlen et al. [118], where global
stiffness kernels were extracted from simulations with a three-dimensional inhomoge-
neous continuum. On the basis of these kernels – which can include soil stiffness, inertia
and damping – a one-dimensional non-local Winkler foundation can be defined, with
which the three-dimensional dynamic response of a ‘vast range of soil-pile systems can
be mimicked’. Corciulo et al. [119] used a three-dimensional finite-element model to
analyze the dynamic response of a wind turbine on a monopile foundation. This study
particularly focussed on the effect of hydro-mechanical coupling on the cyclic soil re-
sponse. In a second study, Corciulo et al. [120], uncoupled lateral and rotational springs
were suggested to replace the three-dimensional soil-structure interaction.

The damping due to the interaction between the structure and the soil exists through
radiation and hysteresis. The former type of damping is considered irrelevant for the
frequency range of interest for offshore wind applications, i.e., below 1 Hz [121–123].
Carswell et al. [123] defined a viscous damping representation for the lumped-parameter
modelling of an offshore wind turbine, based on a two-dimensional finite-element repre-
sentation including hysteretic damping. Corciulo et al. [120] defined a viscous damper to
replace the hysteretic dissipation of energy at the dominant frequency of oscillation.

While many studies on the modelling of the soil-structure interaction for offshore wind
turbines have been done, no final substitution for the p − y method has been defined yet.
As to date, all alternatives require the modelling of a foundation in a three-dimensional
continuum, from which the soil-structure interaction characteristics to be adopted for
the modelling of the wind turbine foundation can be extracted. As suggested by Van Kuik
et al. [5], a re-evaluation of the p − y curve method for pile sizes applicable in the offshore
wind industry is required. The establishment of new curves requires full-scale and long-
term measurements, to correctly account for the rigidity of the foundation structures, as
well as the history-dependency of the soil properties under cyclic loading. For offshore
wind foundations, the small-strain stiffness and the damping potential of the soil are of
particular relevance.

For alternative foundation solutions, the application of the p − y curve method is less
disputed, or not considered at all. Multi-member support structures, such as so-called
jackets and tripods are often founded on multiple flexible piles, for which the validity of
the p − y method is still assumed. In this respect, Abhinav and Saha [27] illustrated the
relevance of soil-structure interaction for a multi-member support structure, founded
on multiple flexible piles. Concerning the soil-structure interaction, both lateral and
axial springs were implemented, based on the p − y method. Other foundation concepts
involve gravity-based solutions and suction buckets. Regarding the modelling of gravity-
based foundations, Andersen [121] investigated the lumped-parameter representation
of the dynamic characteristics of homogeneous and layered soils. A three-dimensional
finite-element model for a suction bucket foundation was presented by Achmus et al.
[124], whereas Zhang et al. [125] presented a three-dimensional limit method for the
stability analysis of suction buckets. The modelling of gravity-based and suction bucket
foundations still require the definition of an applicable dynamic stiffness, accounting
for cyclic degradation and liquefaction [126, 127]. An increasing popularity of these
alternative foundation concepts may instigate the need for industry-standard force-
response relations as well.



1.3. CODE COMPARISON AND EXPERIMENTAL VALIDATION

1

21

1.3. CODE COMPARISON AND EXPERIMENTAL VALIDATION
Models for offshore wind turbines, either integrated or decoupled, and including formu-
lations for the different environment-structure interactions, predict responses to wind
and wave excitations for which the structures are designed. The overview of the different
approaches to model the interactions between the structure and the environment reveals
that many uncertainties still exist. In this respect, a number of design tool comparison
programmes have been executed over time [128–132].

Vorpahl et al. [14] presented a comparison of the capabilities of available design
tools. Concerning the aerodynamic models, all considered tools employ the blade-
element/momentum theory, whereas most allow for the implementation of dynamic stall.
The linear wave theory in combination with Morison’s equation is the standard model
for the evaluation of wave loads. Some packages allow for the application of the stream
function wave theory, and the linear potential flow theory for the implementation of
diffraction and radiation is offered by few. The industry-standard structural modelling ap-
proach is the finite-element method or a multi-body dynamics formulation. For the future
development of design tools, Vorpahl et al. [14] suggested, among others, the validation
of the hydrodynamic models for multi-member support structures, the implementation
of non-linear blade deflection models, the coupling of the aerodynamic analyses with
computational fluid dynamic approaches and the corresponding integration of the tur-
bine within the context of the complete wind farm, and the development of a validated
model for the prediction of ice loads.

A benchmark study regarding the comparison of software tools available for the inte-
grated analysis of a 5 MW offshore wind turbine was performed by Vorpahl et al. [133].
A main finding was that the agreement between the estimated structural responses was
quite good, differences resulting particularly from varying model fidelities and aerody-
namic and hydrodynamic load implementations. Robertson et al. [134] and Robertson
et al. [135] have performed a comparative study with the focus on the hydrodynamic load
on a cylindrical structure, including the effect of a sloped seabed. The added value of
fully non-linear potential flow analyses and computational fluid dynamics techniques
for highly non-linear wave conditions was recognized. Furthermore, it was concluded
that none of the tested codes was capable to capture the total force resulting from a
breaking wave event. Concerning the existing design tools, Muskulus and Schafhirt [13]
pointed out that only a few specialized software packages are available to evaluate the
combined aerodynamic and hydrodynamic excitations of offshore wind turbines. More-
over, the functionality of these packages is often limited and customizations to perform
non-standard simulations may not always be possible.

Validation by means of full-scale measurements of installed offshore wind turbines
are required to further develop the modelling strategies for future turbines. Measurement
campaigns on offshore wind turbines have aimed in particular at the identification of
the fundamental natural frequencies, both in fore-aft and side-to-side directions and the
estimation of the corresponding damping. Operational modal analysis based on assumed
broadband ambient excitations, response measurements to rotor stop tests and the
seismic testing of the soil are examples of applied identification strategies [20, 136, 137].

Regarding the natural frequencies of offshore wind turbines, many studies have ad-
dressed the identification of the natural frequencies and used the results to calibrate a
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structural model [122, 136, 138] – of either onshore or offshore wind turbines – while ad-
dressing the reliability of different identification techniques. In the following, an overview
is presented of studies that compare the natural frequencies predicted with a structural
model with identified frequencies from measurements, as these validations can be used
to address the validity of the modelling approach, and studies identifying the damping
corresponding to the first modes of vibration. This overview is based on a chronological
ordering of results related to specific measurement campaigns. Tables 1.2 and 1.3 present
an overview of the natural frequency comparisons and the identified damping ratios.

Zaaijer [111] performed a natural frequency validation, using the measured nacelle
acceleration of operating wind turbines from two wind farms in the Netherlands for a
comparison between predicted and identified first natural frequencies, and compared
those with the predicted frequencies from a structural model. Whereas the predicted first
natural frequencies at the wind farm Irene Vorrink slightly underestimated the identified
natural frequencies, up to 5%, the predicted natural frequencies at the wind farm Lely
showed an underestimation of 9% and 37%, respectively. An explanation for the difference
at the Irene Vorrink farm was primarily found in the selection of the soil parameters
and the modelling of the soil-structure interaction. A specific explanation for the large
differences at the Lely wind farm was not found, but it was expected to be due to erroneous
inputs for the structural model.

Even though not offshore, Hansen et al. [136] focussed on the identified damping
ratios of an onshore pitch-regulated, variable speed 2.75 MW turbine by means of pitch
angle and generator torque variations and operational modal analysis based on stochastic
sub-space identification. The most reliable results were obtained with the operational
modal analysis, as with the pitch angle and generator torque variations, it turned out to
be difficult to isolate the damping corresponding with the first fore-aft and side-to-side
modes. Concerning the first fore-aft mode, damping ratios with an average of 12% were
identified, with a standard deviation of 1.2%, for a variation of wind speeds. The lateral
damping varied from 7.9% at low wind speeds to 3.2% at higher wind speeds, a decrease
which is explained by the increasing pitch angle of the blades. As the damping ratios were
obtained from an operating turbine, the values include the high apparent damping from
the aerodynamic interaction, on top of the structural and soil damping contributions.

Evaluating the measurement data of a series of consecutive rotor stop tests at the
Burbo Banks wind farm, Versteijlen et al. [137] identified a damping ratio of 3% of the
critical damping of the first fore-aft mode, 1.5% of which was believed to be generated
by soil-structure interaction. The identified damping ratio is significantly lower than
the value presented by Hansen et al. [136], since the contribution of the aerodynamic
damping is negligibly small in case of rotor stop tests.

Damgaard et al. [139] identified the damping ratio for a monopile-based offshore wind
turbine in the North Sea from a series of rotor stop tests. The obtained damping ratios
were in the range from 2.2% to 2.4%. An extended study was presented by Damgaard et al.
[122], who considered both rotor stop tests and acceleration measurements of monopile-
based wind turbines in five offshore wind parks, and focussed on the time dependency of
the modal parameters and the identification of the side-to-side – or cross-wind – damping.
The amount of soil damping was identified as 0.06, in terms of the logarithmic decrement,
which corresponds to a modal damping of approximately 1.0%. The rotor stop tests
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resulted in an identified first fore-aft mode damping ratio from 2.4% to 2.5%, whereas
from measurements on operating turbines, an average side-to-side damping in the range
of 2.5 to 2.9% was identified. It was suggested that the backfilling of the scour hole around
the monopile foundation is the main source of the time dependency of the identified
dynamic characteristics.

Concerning the fundamental natural frequencies, Damgaard et al. [107] reported
values identified from rotor stops tests on 3 MW turbines in the North Sea. The identified
frequencies were significantly higher, in the range of 2 to 13%, than the first natural
frequencies obtained with a computational model, for which p − y curves were applied.
The observed deviations were attributed to the pore pressure build-up in dynamic soil-
structure interaction of saturated soils. In this respect, Versteijlen et al. [20] adopted the
small-strain shear modulus from in-situ measurements to construct a three-dimensional
soil-structure interaction of an offshore wind turbine. The model was used to estimate the
static deflection of the wind turbine, which was compared with the deflection determined
with the industry-standard p − y curve method. The later was shown to predict up to 50%
larger deflections at the mudline.

The experimental data from a measurement campaign in the Belgian North Sea was
used by Shirzadeh et al. [140] to identify the dynamic properties of a 3 MW offshore
wind turbine on a monopile foundation. The measurement data were obtained during
rotor stops, as well as from idling turbines. The identified first natural frequencies were
compared with the frequencies obtained from a numerical model. The identified first
natural frequency from the rotor stop test was 4.5% lower than the predicted natural
frequency, whereas for the idling turbine the identified frequency was 2.9% lower. The
soil-structure interaction was accounted for by p − y curves. Regarding the damping
ratio of the first fore-aft mode, from both tests a ratios of 1.05% of the critical damping
was identified. Devriendt et al. [141] presented a comparative study on the different
techniques for system identification with the same measurement data, identifying also
a damping ratio of 1.27%, corresponding to the first side-to-side mode. The higher
side-to-side damping, compared to the fore-aft damping, was explained by the large
blade pitch angle, resulting in a larger exposed blade area in the side-to-side direction.
In a subsequent work, Devriendt et al. [142], presented the identification of the modal
damping ratios from continuous measurements on an idling or parked wind turbine.
Average damping ratios of 1.86% and 2.49%, corresponding to the first fore-aft and side-
to-side modes of vibrations, respectively, were identified. These values are higher than
the identified damping in the previous studies [140, 141], as during these measurements
a tuned-mass damper was active. The most extensive comparison was presented by
Shirzadeh et al. [143], who compared the identified natural frequencies with frequencies
predicted by a numerical model and presented the variation in damping ratios with the
wind speed, both for parked conditions. In comparison with the natural frequencies
estimated from time-simulations, the first fore-aft frequency provided a virtually perfect
fit, whereas in the first side-to-side frequency was overestimated by 1.37%. Again, p − y
curves were adopted to represent the soil-structure interaction. The mean identified
damping ratio corresponding with the first fore-aft mode increased from 1.73% to 2.77%
with increasing wind speed, whereas the mean first side-to-side damping ratio varied
from 2.18% to 3.19% with the increasing wind speed, with the tuned-mass damper active,
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again showing a higher damping in the side-to-side direction die to the larger exposed
blade area.

To validate the modelling of the soil-structure interaction specifically, Versteijlen et al.
[144] presented the results of vibration measurements of an in-situ monopile foundation
in a near-shore wind farm, with a stiff sandy soil composition. From the pile-only mea-
surements, the identified low-frequency soil stiffness was 140% higher than the stiffness
prescribed by the p − y curve method. With the application of the identified soil stiff-
ness in the numerical model, using a one-dimensional effective stiffness [117], a good
prediction of the identified fundamental natural frequency was obtained.

A comparison of the measured response of a North Sea wind turbine to models with
different representations of the soil-structure interaction was presented by Page et al.
[145], including p − y curves and a macro-element representation. In comparing the
identified first fore-aft and side-to-side natural frequencies with the predicted frequen-
cies from a model with p − y curves, the predictions underestimated the actual natural
frequencies by 12.3% and 12.8%, respectively. These differences confirm the findings of
Damgaard et al. [107] and Versteijlen et al. [144], who illustrated the weak performance
of the industry-standard p − y curves for monopile-based support structures of offshore
wind turbines too.

When considering the different natural frequency comparisons, listed in Table 1.2, the
importance of adequate modelling of the soil-structure interaction must be recognized.
This relates to a correct representation of the small-strain stiffness, the cyclic degradation
and the selection of the applicable sea bed level, as for non-cohesive soils and in absence
of adequate scour protection a variation in soil level and compaction at the mudline
is to be expected [146, 147]. Other sources of modelling inaccuracy may exist in the
shape of the representation of the rotor-nacelle assembly and the mass distribution of
the transition piece and the electrical equipment. These components, however, were not
present in the full-scale experiments of Versteijlen et al. [144], leaving the hydrodynamic
added mass as the only other source of modelling inaccuracy, next to the representation
of the soil-structure interaction.

Regarding the identified damping ratios, Table 1.3, it becomes clear that fore-aft
damping values for operating conditions are lacking. The only exception are the results
presented by Hansen et al. [136], which were obtained from an onshore turbine. These
results give an insight in the high potential of the aerodynamic damping. The reported
damping values from rotor stop tests and for parked-idling turbines are all within the same
range of magnitude. These values can be expected to represent the structural damping, as
well as the damping from the soil-structure interaction. In this respect, the identified side-
to-side damping is slightly higher than fore-aft damping, as for non-operating conditions
the wind turbine blades provide a larger lateral resistance.

1.4. SOLUTION APPROACHES
In Section 1.2 of this work, the existing approaches to model the environmental interac-
tions with offshore wind support structures were considered. An overview of different
code comparison studies, as well as experimental validations, was presented in Section 1.3
to give an impression of the validity of the modelling strategies. Apart from different ap-
proaches to modelling the structure, different approaches to predict the response to
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Table 1.2: Overview of studies presenting validations of the first fore-aft and side-to-side natural frequencies
of wind turbines, indicating the underestimation of the modelled frequencies compared to the identified
frequencies.

study turbine fore-aft side-to-side operational
state

Zaaijer [111] Irene Vorrink up to 5% – power
wind farm production
Lely wind farm 9 to 37% – power

production
Damgaard et al. [107] North Sea 3MW 2 to 13% – rotor stop

turbines
Shirzadeh et al. [140] North Sea 3MW −4.5% – rotor stop

turbine −2.9% – idling
Shirzadeh et al. [143] North Sea 3MW 0.00% −1.37% parked

turbine
Page et al. [145] North Sea 12.3% 12.8% idling

turbine

Table 1.3: Overview of studies presenting validations of the first fore-aft and side-to-side damping ratios of wind
turbines.

study turbine fore-aft side-to-side operational
state

Hansen et al. [136] 2.75MW turbine 12% 3.2 to 7.9% power
(onshore) production

Versteijlen et al. [137] Burbo Banks 3% – rotor stop
Damgaard et al. [139] North Sea wind 2.2 to 2.4% – rotor stop

turbine
Damgaard et al. [122] North Sea wind – 2.5 to 2.9% power

farms production
2.4 to 2.5% – rotor stop

Shirzadeh et al. [140] North Sea 3MW 1.05% – rotor stop
turbine 1.05% – idling

Devriendt et al. [141] North Sea 3MW 1.05% 1.27% idling
turbine

Devriendt et al. [142] North Sea 3MW 1.86% 2.49% parked/
turbine idling

Shirzadeh et al. [143] North Sea 3MW 1.73 to 2.77% 2.18 to 3.19% parked
turbine
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environmental excitations exist, with the aim of generating sufficiently accurate results,
against as low as possible computational costs. In this respect, three approaches are
distinguished here:

• Reduction of the total number of coupled differential equations that need to be
solved.

• Reduction of the required number of load cases that need to be analysed.

• Reduction of the complexity of the numerical operations, i.e., transforming the
system of equations to the frequency domain.

A finite-element formulation of an offshore wind support structure including the environ-
ment-structure interactions generally consists of a large number of coupled second-order
differential equations. As a consequence of the non-linear nature of the system, the
structural response to wind and wave excitations is commonly estimated by means of
time-domain simulations. With the application of a Galerkin reduction [148], the number
of equations that require simultaneous solving can be kept within ‘reasonable’ limits.
Within the iterative solution procedure, resulting from the decoupled modelling approach,
dynamic sub-structuring techniques allow for the separate analysis of structural compo-
nents, and the subsequent assembly of reduced component models. These techniques
aim at capturing the most relevant dynamic characteristics of a structural component,
and, subsequently, analyzing the structure as a whole [149].

Instead of reducing the number of degrees of freedom, it has been attempted to reduce
the number of required simulations, mainly resulting from the analysis of the fatigue
limit state [150]. Other researchers aimed at defining the dynamic system in terms of a
system of algebraic equations, by transforming a reduced-order model to the frequency
domain [151]. To circumvent the non-linear aero-elastic interaction of the rotor, Kühn
[49] and Van der Tempel [152] suggested a hybrid time-frequency domain approach.

1.4.1. DYNAMIC SUB-STRUCTURING
Instead of employing the full structural matrices of the foundation structure for the aero-
dynamic analysis, with the application of a model reduction technique a set of reduced
structural matrices – or ‘super elements’ – can be extracted, which can subsequently be
applied as boundary conditions for the turbine model. Figure 1.16 presents a schematiza-
tion of this technique for offshore wind turbines. Concerning these reduction techniques,
which are generally referred to as dynamic sub-structuring, the Guyan reduction repre-
sents the foundation structure only quasi-statically, whereas the Craig-Bampton tech-
nique accounts for both the static condensation and the fixed- or free-interface dynamic
response, allowing for a reduced-order model, which includes the dynamic character-
istics relevant for the required simulations [153]. Impulse-based techniques employ a
set of Green’s functions to represent a structural component in a reduced manner for the
analysis of the complete system [154, 155].

The equations of motion of the reduced system based on the Craig-Bampton tech-
nique are coupled, since the adopted modes of vibration are not orthogonal. The selection
of the modal basis requires a convergence analysis, to ensure a sufficiently accurate dy-
namic representation of the system. In case too few dynamic modes are selected, the
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reduced model does not capture the ‘real’ resonance frequencies of the system. Although
the Craig-Bampton technique primarily aims at the spectral convergence of the modal
basis, without spatial convergence – required for the forced-response analysis of a dy-
namic system – a sufficient accuracy of the reduced-order model is not guaranteed. With
the inclusion of a set of modal truncation vectors – or load-dependent residual vectors –
the modal basis can be augmented and the estimation of the forced dynamic response
can be improved, a method referred to as the Augmented Craig-Bampton technique [149].
Alternatively, the forces acting on a sub-structured component can be represented by
equivalent forces acting on the interfaces between the structural components. The
concept of blocked forces and equivalent free-interface displacements was originally
developed for the frequency domain, and extended by Van der Valk and Rixen [12] to
applications in the time domain.

The benefits of the reduced-order modelling are enlarged for foundation structures
consisting of multiple members, such as space-frame structures, which require a large
number of structural degrees of freedom for accurate modelling. The sub-structuring
technique finds its basis in the principle of linear superposition, implying that a super
element represents a linearized projection of the foundation structure. Given the non-
linear nature of both the hydrodynamic interaction and the soil-structure interaction,
different load cases may require the derivation of different super elements. Moreover,
the non-linear aero-elastic coupling possibly requires an enhanced modal basis for the
derivation of the super element, since higher-order modes may contribute to the dynamic
response of the system too.

The commercially available simulation tool BLADED7 employs a sub-structuring tech-
nique to simulate the response of an offshore wind turbine to environmental excitations.
The reduced-order modelling is based on the static deformation shapes and the fixed-
interface modes of vibration. In this respect, an important point of attention relates to
the natural frequency convergence of the applied component-mode synthesis with the
number of estimated modes. The preliminary design of a support structure structure is
commonly based on a frequency analysis, which aims at the estimation of the natural fre-
quencies to avoid interference of the natural frequencies with the rotor and blade-passing
frequencies. The accuracy of the estimated frequencies may be low if only few estimated
modes are included.

1.4.2. LOAD CASES REDUCTION
Apart from the efforts to reduce the complexity of the required simulations for the design
of an offshore wind support structure – concerning both the non-linear environment-
structure interactions and the number of degrees of freedom – a reduction of the vast
amount of simulations that need assessment would allow for a speed-up of the entire
analysis of an offshore wind support structure. Concerning the analysis of the ultimate
limit state, Morató et al. [24] considered the relevance of the load cases for power pro-
duction and parked conditions. The design load case combining power production with
severe wave conditions was found to be design driving, with respect to the maximum
overturning moment at the mudline.

The analysis of the fatigue limit state demands a joint-probability distribution of the

7Within the context of this work, reference is made to BLADED 4.6.
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Figure 1.16: Schematization of the dynamic sub-structuring technique for offshore wind turbines [149].

wind and wave states at the location under consideration, providing stationary Gaussian
descriptions of the occurring environmental conditions. In a practical situation, long-
term measurement of combined wind speeds, significant wave heights and wave periods
– zero-upcrossing, zero-downcrossing or peak – as well as directionality data should
be available. The assessment of the expected fatigue damage entails the evaluation of
this joint-probability distribution with sufficiently small bin sizes, having the number of
simulations grow to several tens of thousands easily.

Kühn [49] introduced the concept of load case lumping to the field of offshore wind
turbines. Establishment of the sets of wind and wave conditions, which together define
the lumped load case, is initially based on some rules of proportionality, which relate the
separate environmental conditions to an expected fatigue damage. From a comparison
with the damage resulting from the elementary load cases, the lumped load cases can be
refined. As the operational state of the wind turbine depends on the governing wind con-
ditions, the distribution of sea states is often considered for a given wind state, assuming
that the system properties are independent of the stochastic wave conditions. On this
basis, the objective is to find a single equivalent sea state that predicts a damage similar
to the full set of states from the probability distribution.

Seidel [156] considered the lumping of wave conditions, based on a frequency-domain
analysis of the wave-induced fatigue damage of monopile support structures. Provided
a low damping ratio, which de facto limits the method to non-operating turbines, an
equivalent spectral density of the wave elevation is obtained from the spectral densities of
a set of sea states at the first natural frequency of the offshore wind turbine. The suggested
method accounts for the first mode of vibration only and is invalid for drag-dominated
wave conditions.

The lumped load cases obtained in accordance with Kühn [49] and Seidel [156] may
not imply damage equivalency at different locations critical for the fatigue assessment. In
this regard, Passon [157] suggested to determine the damage contour lines for two well-
separated locations and to select the damage equivalent wave conditions for associated
wind conditions from the intersection point of both lines. Passon and Branner [150]
presented a more extensive comparison of the different lumping methods.
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Another line of research focussed on the identification of the load cases with the
largest contribution to the damage accumulation. Neglecting the contribution of the
structural response, Velarde and Bachynski [158] defined a fatigue damage parameter to
quantify the contribution of different sea states to the fatigue development. Focussing
on a jacked-based wind turbine, Häfele et al. [159] addressed the reduction of the set of
load cases based on statistical evaluations. The work shows that reduced set can produce
results which are comparable to those of the complete set. Moreover, it was discovered
that the introduced uncertainty grows at a lower rate than the dimension reduction of the
set. Stieng and Muskulus [160] showed that a small set of the most severe fatigue design
load cases for a particular turbine suffice for an accurate prediction of the fatigue damage
of a slightly different design, for instance for a related or optimized design.

An accurate prediction of the fatigue damage requires a sufficiently long simulation of
the environmental conditions, exceeding the commonly adopted 6×10 minutes [161], as
well as a stochastic distribution of the sea state parameters within a considered wind speed
bin [162]. This recommendations are more relevant for the more severe load cases than for
the milder conditions. Based on this idea, Hübler et al. [163] introduced different load case
reduction concepts, using Monte Carlo simulations, basing the number of simulations
on either the probability of occurrence, the expected damage or the equivalence of load
conditions. The sampling approaches proposed by Hübler et al. [163] were validated by
Hübler et al. [164] on the basis of an extensive data set from the Northwind wind farm. The
study demonstrated an improved performance compared to standard sampling methods.
Nevertheless, it is concluded that the uncertainty in life-time prediction remains high,
depending significantly on the design of the offshore wind turbine and controller actions.
A summary of the different approaches to reduce the number of load cases is given by
Table 1.4.

In conclusion, it has been demonstrated that the accumulated fatigue damage can
be approximated with a limited set of load cases only. Regarding the selection of these
load cases, the required simulation time and the definition of the environmental condi-
tions – either deterministically of stochastically – remains a topic of ongoing research.
Approaches that select the load cases based on the relation between the expected damage
and the operational state seem to be most promising for practical applications.

1.4.3. FREQUENCY-DOMAIN ANALYSIS
Instead of aiming to reduce the sheer amount of required simulations for the design of
an offshore wind support structure, the simulation time of each single realization could
virtually be nullified if the system allowed for analysis in the frequency domain. This
approach has found its application in the analysis of offshore structures for oil and gas
applications [76], for which the main environmental excitations are of hydrodynamic
nature. In this respect, the drag force dependency on the relative velocity is non-linear,
introducing both linear and non-linear interaction terms to the model of the offshore
wind support structure (provided that the drag contribution is governing, which only
applies to high/long waves, relative to the structural diameter). With the purpose of
analyses in the frequency domain, several works presented spectral densities of the drag
force on rigid structures [165–167]. Attempts to assess the response to the non-linear drag
force on compliant structures in the frequency domain have been done by Kareem [168],
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Table 1.4: Overview of studies presenting approaches to reduce the number of environmental load cases.

study approach comment
Kühn [49] sea-state lumping based on damage-

equivalence
no dynamic interac-
tion

Seidel [156] sea-state lumping based on wave spectral
density at the first natural frequency

only non-operating
turbines

Passon [157] sea-state parameters from damage-
contour lines ensuring simultaneous
compliance with damage equivalency
criteria at different locations

damage-contour
lines require many
simulations

Velarde and
Bachynski [158]

fatigue damage parameter for different
sea states

no dynamic interac-
tion

Häfele et al.
[159]∗

exclusion of load cases with non-critical
directionality and/or low probability of oc-
currence

pre-knowledge re-
quired on structural
response

Hübler et al.
[163]

variable wind speed bin sizes expert knowledge to
define bin sizes re-
quired

∗ this study focusses on jacket-based support structures.

Kareem et al. [169], Kareem et al. [170] and Carassale and Kareem [171], who employed
the Volterra series expansion technique.

Concerning the aerodynamic excitation of the turbine rotor, Halfpenny [151] at-
tempted to derive the frequency-response function between a homogeneous turbulent
inflow field and the forcing acting on the tower top. Kühn [49], however, concluded that
the frequency-domain approach to wind turbines is inapplicable, first of all because of
the non-linear aero-elasticity. Besides, the considerable geometrical non-linearity, mainly
resulting from the flexibility of the rotor blades, renders the frequency-domain approach
unsuitable too. Moreover, a transfer function between the inflow and the tower top
excitation does not capture the transience resulting from varying operational conditions.

As an alternative, Kühn [49] introduced a hybrid time-frequency domain approach, in
which the aerodynamic interaction is assessed in the time domain and the hydrodynamic
excitation in the frequency domain, while accounting for the present aerodynamic damp-
ing. This approach is illustrated by Figure 1.17. For the analysis of the fatigue limit state,
the fatigue damages from the separate analyses were combined by means of a quadratic
superposition procedure. Van der Tempel [152] used time-domain simulations for the
aerodynamic analysis as well, employing a model of a flexible rotor mounted on a rigid
tower. The power spectral density of the resulting tower top forces was subsequently
used for a frequency-domain analysis of the support structure, combined with a spectral
definition of a corresponding sea state. The aerodynamic interaction was accounted
for by an additional modal damping. This hybrid time-frequency domain approach cir-
cumvents the difficulties arising from the non-linear aerodynamic interaction and the
control system. Besides the auto-spectra of the wind and wave excitations, however, this
approach requires a cross-spectral input as well.
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Figure 1.17: Schematization of the hybrid analysis by Kühn [49]. Regarding the properties of the decoupled
model, reference is made to Figure 1.4.

1.5. RESEARCH FOCUS
In the previous sections, an overview is provided of the challenges related to the design
of offshore wind support structures. The overview also shows the tremendous efforts
that have been undertaken to either enhance the fidelity of the modelling techniques
or to reduce the computational load required for the design analysis of these structures.
Regarding the latter, it is recognized that the environmental interactions for the response
analysis of support structures at a preliminary stage in the design process still leaves
room for improvement, be it the aerodynamic, hydrodynamic or soil structure interaction.
In this respect, the focus is specifically put on the representation of the aerodynamic
interaction of the turbine rotor in a decoupled support structure model.

In a decoupled model of an offshore wind support structures, the aerodynamic in-
teraction is accounted for by means of an additional modal damping, or a discretized
dashpot dissipating the energy of the fore-aft tower top motions. A drawback of the former
is that the damping value can only be estimated from an integrated model with specific
dynamic characteristics. Moreover, the dependency on the operational conditions is
not easily expressed in terms of modal damping ratios. The second approach does not
account for the damping of tilt and yaw motions, the damping contribution of which –
especially for higher-order modes – may be considerable, and the damping of side-to-side
motion, and moreover, the couplings of the different damping mechanisms, through the
eccentricity of the rotor, as well as the shapes of the orthogonal modes.

Based on the above, the question arises to what extent the coupling between an
operating turbine and its support structure can be captured with the help of an added
damping matrix, with which the aerodynamic force that is induced due to the non-
zero structural velocity can be mimicked. Such a matrix should define the coupled
aerodynamic damping mechanism corresponding to the three translations and the three
rotations of the tower top. Moreover, the matrix should explicitly express the dependency
on the operational conditions, so that the varying damping characteristics are easily
accounted for.

Defining the aerodynamic interaction in terms of an added damping matrix involves
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a linearization procedure, while the aerodynamic loading on the wind turbine blades
depends non-linearly on the structural motions. Before state-independent expressions
for the added damping are to be obtained, first the state-dependent aerodynamic loading
of a single turbine blade is to be addressed. This analysis not only considers the validity
of a linearized representation of the aerodynamic interaction, but also the applicability of
a simple instantaneous load model to begin with, in comparison with a more accurate
history-dependent definition of the loads.

Any definition of the added damping depends on the operational conditions of the
turbine, and consequently on the control system. When concerning a load simulation
of a pitch-regulated turbine, it must be possible to define a good prediction of the pitch
angle variations, based on the inflow conditions. In this respect, the question is to what
extent the decoupled design procedure can be improved by separating the aerodynamic
forcing related to the pitching actions of the turbine from the aerodynamic interaction.

Given that a definition of the aerodynamic damping in terms of a state-independent
added damping matrix already involves a linearization of the dependency of the forcing
on the structural response, it may be worthwhile to re-consider the applicability of the
frequency-domain analysis for the design of offshore wind support structures, at least
during the preliminary design stage. Provided that offshore wind turbines are excited
simultaneously by wind and waves, this aspect should address the correlation between
these stochastic processes.

1.6. APPROACH
The analysis of the dynamics of offshore wind turbines is by default case-based. At the
moment of writing, new turbines are being designed, new support structure concepts
developed and new control strategies defined, while the search for wind energy resources
enters deeper waters and harsher offshore conditions. The details of these developments
seep only to a very limited extent through to the public domain. Within the context of
this research, it was chosen to base the analysis on the 5 MW reference turbine, presented
by the NREL institute [172], with the monopile-based support structure defined in the
UpWind study [173], simply because the majority of the existing studies are still based on
this offshore wind turbine concept.

The studies presented in this work find their basis in numerical simulations. This
involves simulations with the proposed new models and comparisons with the certified
aero-elastic software BLADED, allowing for a quantitative assessment of the presented
result. In this respect it is worth mentioning that BLADED is a closed-source commercial
software, as a result of which the differences between simulation results are sometimes
subjected to interpretation.

Before it is attempted to express the aerodynamic interaction in terms of an added
damping matrix, Chapter 2 contains the theoretical framework of this study, and addresses
the basic theories regarding the aero-elasticity of a rotating rotor. These theories provide
the basis for the further derivations in the following chapters, as well as give an insight
in the many assumptions that render any simplification of the aerodynamic interaction.
Subsequently, the linearization of the state-dependency of the aerodynamic loading of
a single rotating turbine blade is assessed in Chapter 3. Apart from the linearization,
the chapter also addresses the history-dependency of the aerodynamic load. Chapter 4
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defines a structural model of a rotating rotor, exposed to time-varying inflow conditions.
On this basis, state-independent expressions for the aerodynamic damping are obtained,
accounting for tower top motions in three dimensions, and response simulations with
different inflow conditions are compared with results obtained with BLADED. The further
separation of the pitch-induced forcing from the rotor loading is addressed in Chapter 5,
where the performance of the proposed method is demonstrated for simultaneous wind
and wave excitations. Ultimately, Chapter 6, summarizes the main conclusions and
presents subsequent recommendations for future research.





2
BASIC PRINCIPLES OF ROTOR

AERODYNAMICS

The dynamic analysis of offshore wind support structures requires understanding of the
basic principles of rotor aerodynamics. The interaction of the rotating blades with the
ambient wind field determines the aerodynamic force that needs to be transferred to the
foundation. Moreover, this interaction causes a resistance against wave-induced motions,
reducing the amplitude of the resulting stress variations in the support structure. In provid-
ing the basic understanding, the focus is on established analytical approaches to capture
the flow conditions around and the loads on a rotor. In this regard, this chapter provides
a description of the fluid-structure interaction at blade level and of varying methods to
estimate the flow conditions around a rotor. The largest part of this chapter concerns the
aerodynamic loads on an aerofoil, distinguishing stationary, quasi-stationary and dynamic
flow conditions. The presented theory serves as a basis for the analysis of the rotating blade
and the state-independent apparent aero-elastic properties of a wind turbine rotor in the
subsequent chapters.
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T HE aerodynamic excitation defines the reason of existence of offshore wind turbines.
Regarding the support structure, design optimizations seek a balance between struc-

tural efficiency and power output maximization. Given the complexity of the excitation
in interaction with the rotating blades, the aerodynamic excitation is an ongoing subject
of research.

This research is predominantly focused on the aero-elastic performance of the turbine
rotor, addressing aspects as the wake development and aerofoil performance, and numer-
ical validations by means of computational fluid dynamics of ever larger turbines [39, 174–
176]. Even though it is recognized that these topics can undeniably be related to the
forcing of the support structure of the turbine, this link is generally not pursued.

In line with the modern view on design, the integration of the support structure into
an overall design approach for wind turbines is often acclaimed. The flexible support
structure allows for wind and wave induced lateral and rotational rotor motions, which
affect the aerodynamic action on the rotor blades. Hence, the modelling of the rotor
aerodynamics requires theories that capture the influence of these motions on the de-
velopment of the flow and the loads on the blades. One could wonder, however, to what
extent the detailed modelling of the rotor aerodynamics is relevant for the design of the
support structure, especially if the computational efforts are included in this equation.
In this respect, the blade-element momentum theory is the most common approach to
predict the loads on the rotor, and subsequently on the support structure.

The one-dimensional axial momentum balance theory regards the rotor as an actuator
disc, implying an infinite number of blades and assumes that the axial flow velocity over
the plane is uniform, i.e., independent of the radial distance from the axis of rotation.
Moreover, the flow is constant in time. By describing the rotor wake in terms of helical
vortices, a more physically realistic representation of the downstream airflow is created.
Further modifications accounted for tip and yaw corrections and dynamic flows [177].
To account for radial variations, the method assumes independent annuli for which
the momentum balance is considered. Yu et al. [38] proposed a free wake vortex ring
model to account for radial and time-varying load conditions. More accurate results
are obtained with vortex wake methods, assuming an inviscid incompressible flow and
applying the Biot-Savart law [40], and computational fluid dynamics techniques. In terms
of computational efficiency, however, these concepts disqualify for the application in
simplified tools for the integrated modelling of offshore wind turbines. Nevertheless, in
absence of available full-scale measurements, these methods are most relevant for the
interpretation of the results of simpler tools (and the other way around!)1.

The claim that all contemporary models applied for assessing the performance of
and forcing on wind turbine rotors find their origin in the field of aviation theory, and
more particularly in the field of helicopter research, can easily be verified. A simple
comparison between textbooks from both fields reveals the similarity straight away. In
this respect, reference is made to Katz and Plotkin [178] and Anderson Jr. [179] concerning
the potential flow theory for aerofoils, Saffman [180] for the theory of vorticity, Anderson Jr.
[179] for the thin aerofoil theory, Johnson [181], Leishman [182] and Wright and Cooper

1Here, it should be highlighted that the objective of the analyses with so-called ‘hi-fi’ and ‘low-fi’ models usually
differs tremendously, rendering the comparison of results invalid.
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[183] for the analysis of non-stationary aerodynamic loads and Bisplinghoff et al. [184]
and Fung [185] for aero-elasticity theory.

Still, the differences are easily observed too, first of all regarding size and rotational
regime. In addition, wind turbines commonly operate around a horizontal axis, resulting
in blade rotation through varying aerodynamic regimes. Another significant difference is
the fact that the rotor of a wind turbine is mounted on the top of a flexible tower. When
considering the rotor aerodynamics of wind turbines, the textbooks by Manwell et al.
[34], Burton et al. [35] and Hansen [36] considered basic theories of the momentum
balance. An elaborated overview of the momentum balance theory for horizontal axis
wind turbines was published by Sørensen [177], whereas Branlard [41] addressed vorticity-
based methods for wind turbine applications.

The decoupled analysis of a support structure of an offshore wind turbine requires
a representation of the relation between the motion of the support structure and the
aerodynamic excitation of the rotor. To obtain such a relation, a theoretical framework of
the aerodynamic interaction of the rotor is a necessity, and the underlying concepts need
to be considered. These concepts cover the inflow and wake developments of a rotating
rotor and the aerodynamic loads on an aerofoil-shaped body.

This chapter addresses the relevant aspects for the assessment of the aerodynamic
excitation of the support structures of offshore wind turbines. This assessment is re-
stricted to a three-bladed rotor on a monopile foundation, since these represent the vast
majority of wind turbine structures applied offshore. As rotor aerodynamics is still a
thriving field of research, this chapter aims to summarize the established theories, with
the focus on analytical methods. Detailed insight can be generated with the application
of sophisticated numerical tools, but these approaches cannot be adopted yet for the
decoupled analyses of offshore wind support stuctures.

In this respect, Section 2.1 first addresses the development of the flow around a
rotating wind turbine blade. Subsequently, Section 2.2 considers the modelling of the
near-wake, from which the flow conditions and the aerodynamic blade forces can be
obtained. Different approaches to describe these aerodynamic forces are then regarded
in Section 2.3.

2.1. FLUID-STRUCTURE INTERACTION

2.1.1. IDEALIZED FLOW DECOMPOSITIONS
The generation of electrical energy by a rotating rotor affects the airflow in the vicinity
of the rotor. The other way around, the affected airflow imposes pressures on the rotor
blades, resulting in the aerodynamic forcing that induce the rotation of the rotor. Apart
from the rotor rotation affecting the airflow, the structural motions induce changes in the
wind velocity pattern too. On top of that, the ambient airflow is far from being stationary
and uniform, which complicates the interaction even further.

This interaction between the air field and the turbine is generally explained in terms
of wake vorticities and induced velocities. Before addressing these terms in more detail,
first the flow around an aerofoil is analyzed. Figure 2.1(a) shows the pattern of a stationary
inviscid flow around an aerofoil-shaped cross-section of a rotating turbine blade. The
incident flow is composed of the stationary wind velocity and the rotational velocity of
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the blade. The angle of attack of the flow is sufficiently small to ensure attached flow
conditions, i.e. no vorticity is generated at the downstream side of the blade.

The disturbed flow pattern can be decomposed into a symmetric flow pattern and
a circulatory flow, Figure 2.1(b) and (c), respectively. Along the length of the blade, the
circulatory flow can be perceived as a line vortex. This line vortex is referred to as the
bound circulationΓΓΓB;b(rB, t ), where ‘B’ indicates blade. Since the vortex strength varies
over the length of the blade, due to changes in both the cross-sectional geometry and
airflow, the bound circulation is a function of the radial distance along the blade, rB.
Moreover, as the actual flow conditions are never stationary, the bound circulation is a
function of time t too.

(a) (b) (c)

Figure 2.1: Schematic representation of the streamlines of an inviscid flow around an aerofoil, with (a) the
attached flow for a small angle of attack, (b) a symmetric flow pattern, and (c) the induced circulatory flow.

2.1.2. WAKE VORTICITY
The bound circulation along the length of a single rotating blade is illustrated by Figure 2.2.
Due to the spatial variation of its vortex strength, vorticity is emitted from the blade. The
resulting panel vortex is referred to as the trailed vorticity γγγB;t(rB, t ) and can be calculated
as

γγγB;t(rB, t ) = ∂ΓΓΓB;b(rB,t )
∂rB

. (2.1)

Variations in time of the wind velocity or the rotational velocity disturb the flow pattern
equilibrium of Figure 2.1(a). This disturbed flow pattern is depicted in Figure 2.3(a), and
results in a time-variation of the bound circulation. To compensate for this variation,
vortices are emitted at the trailing edge of the blade (see Figure 2.3(b)). This panel vortex
is referred to as shed vorticity γγγB;s(rB, t ) and can be derived as

γγγB;s(rB, t ) = ∂ΓΓΓB;b(rB,t )
∂t . (2.2)

The shed vortex panel is illustrated in Figure 2.2. Control actions, such as blade pitching,
and structural motions result into trailed and shed vorticity too.

At the tip of each blade of a rotor with radius R, a helical vortex of strengthΓΓΓB;tip(t ) =
ΓΓΓB;b(R, t ) is convected into the rotor wake. The helix angle of this tip vortex will initially
coincide the inflow angle φB;tip(t) at the blade tip. In a similar way, a helical vortex
ΓΓΓB;root(t) = ΓΓΓB;b(rH, t) is emitted at the root at each blade. Since the hub radius rH is
relatively small compared to the rotor radius, the total root vortex of a rotor is generally
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Figure 2.2: Schematic representation of the bound circulation around a rotating blade, the vortex sheet com-
posed of trailed and shed vorticities and the tip and root vortices.

(a) (b)

Figure 2.3: Schematic representation of an aerofoil in a disturbed flow, with (a) the streamline pattern and (b)
the shed vorticity at the trailing edge.
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defined as a line vortex with the strength of the combined blade root vortices. Figure 2.2
illustrates the vorticity convected from the blade tip and root of a rotor blade, rotating
with rotor speedΩΩΩR .

The total wake vorticity consists of the combined tip and root line vortices, and the
trailed and shed panel vortices. From the equilibrium of the convected wake vorticity
and the operational state of the turbine, the aerodynamic forces on the turbine rotor can
be estimated. Once the bound circulation is known, the pressure variation on the blade
surface can be derived, the circumferential integration of which gives the lift force, which
drives the rotation of the rotor.

2.1.3. FLOW INDUCTION
With the generation of the wake vorticity, energy is extracted from the incoming airflow.
As a result, the flow velocity in the wake must be smaller than the upstream velocity. The
difference between the axial upstream and downstream wind velocity is referred to as the
axially induced wind velocity.

The axially induced wind velocity, or the axial induction factor, which is calculated
as the ratio of the difference velocity and the upstream velocity, is an important concept
in the analysis of the aerodynamic forcing on wind turbine rotors. The momentum
balance theory employs the axial induction velocity to obtain an equilibrium between
the aerodynamic forces on the rotor blades and the upstream and downstream flow
conditions. This theory is addressed in more detail in Section 2.2.2.

Considering the concept of axial flow induction from the description of the wake
vorticity in Section 2.1.2, it can straight away be concluded that the axial induction varies
both radially and azimuthally. The axial induction will be higher in the vicinity of the
blades, leaving a smaller wind velocity reduction in the area between the blades. Due
to the variation in aerofoil geometry along the length of the blades, and the increase
of the rotational velocity towards the blade tips, the vorticity along the blade lengths is
non-uniform, with the tip vortex as most significant discontinuity, resulting in the radial
variation of the induced wind velocity.

Adhering to the conservation of momentum, the axial induction of the wind velocity
comes with an expansion of the airflow, implying that an airflow passing the a rotating
rotor inhibits a larger cross-sectional area at the downstream side of the rotor than at the
upstream side.This increase in cross-sectional area comes with an induced radial velocity.
Furthermore, the rotation of the rotor induces a rotational or tangential component to
the downstream airflow. In the description of the wake vorticity, this tangentially induced
flow can be recognized from the helical vortex travelling in downstream direction.

2.1.4. VISCOUS FLOWS
The description of the wake vorticity is based on inviscid incompressible flow conditions.
For viscous flows, the airflow adjacent to the blade surface acquires the velocity of this
surface. As a result, a boundary layer develops around the aerofoil, i.e., an air layer
surrounding the aerofoil, in which "the velocity gradient is steep and the viscous stresses
are significant" [70]. The resulting shear stress on the aerofoil is referred to as friction
drag.

The thickness of the boundary layer is different for laminar and turbulent flows, and
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depends on the Reynolds number. Considering an aerofoil, the boundary layer always
starts as a laminar layer and changes after a certain distance from the leading edge into a
turbulent boundary layer [179]. As a consequence, the total skin friction is composed of a
combination of the laminar and turbulent skin frictions.

A flow of air at the top surface of an aerofoil first experiences a strong drop in pressure
at the leading edge, after which the pressure slowly recovers to the ambient air pressure
over the length of the chord. As a result of this increase of pressure over the aerofoil
surface, the flow velocity reduces. In addition, for viscous flows, the skin friction reduces
the airflow in the boundary layer. These combined effects may result in a zero velocity
gradient normal to the aerofoil surface. At this point, the flow velocity is reversed and
the airflow separates from the aerofoil. As a consequence, the pressure at the top surface
does not recover to the ambient pressure within the length of the chord and a so-called
stalled flow condition is obtained.

2.2. MODELLING OF THE FLUID-STRUCTURE INTERACTION

2.2.1. COMPUTATIONAL FLUID DYNAMICS TECHNIQUES
Understanding the wake development behind a rotating rotor is a key concept in estimat-
ing the aerodynamic forces on the structure. Defining the wake vorticity allows for the
estimation of the pressure distribution behind the rotor and subsequently the pressure
drop in the airflow across the rotor. However, the fundamental law that computational
efficiency and accuracy never come hand in hand finds its application here too, and it is
generally understood that good approximations are not obtained cheaply.

The Navier-Stokes equations allow for the formulation of rotational viscous flows, and
can be applied to model the vortex shedding behind a rotor in an airflow numerically [70].
The numerical integration of the Navier-Stokes equations is referred to as computational
fluid dynamics, and the analysis technique allows for the computation of arbitrary flows.
Given its numerical nature, the application of computational fluid dynamics requires the
generation of a mesh, two-dimensional or three-dimensional. Generating such a mesh is
a very dedicated task, particularly in the region surrounding the rotating blades – given
the high shear – and in the vicinity of the shed vortices.

The explicit closing2 of the Navier-Stokes equations requires a powerful numerical
solver. This issue can be overcome by solving a time-averaged system of equations, for
example on the basis of Reynolds-averaged Navier-Stokes, accounting for the integral
length scale of the turbulence only, and adding a model to account for the smaller length
scales. The Large Eddy Simulation approach is used to model tubulent flows, includ-
ing the energy content at the micro-scale. Solving the Navier-Stokes equations in full,
including the turbulence at the Kolmogorov dissipation scale is done by the explicit
Direct Numerical Simulation technique, which represents the most computationally
demanding approach. A full analysis of a flow field around this rotor, accounting for
the rotor rotation and blade, drive-train and tower flexibilities, imposes the need for a
dynamic mesh. Given the tremendous skill and effort demanded, the computational
fluid dynamics only finds application for research or validation purposes [186–188], using

2In other words, solving the Navier-Stokes equations while accounting for the mixing of the different turbulence
length scales.
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deforming-spatial-domain/stabilized space-time formulation.

2.2.2. MOMENTUM-BALANCE METHODS
Computational fluid dynamics techniques aim at solving the viscous flows in terms of
velocities and pressures. With the assumption that the air is inviscid, incompressible and
irrotational, the flow field can be described by the Laplace equation

∇∇∇2Φ(XR, t ) = 0, (2.3)

where the velocity potentialΦ(XR, t ) is defined as

∇∇∇Φ(XR, t ) = W(XR, t ), (2.4)

with the differential operators ∇∇∇= ∂
∂XR

and ∇∇∇2 = ∂2

∂XR
2 . W(XR, t ) expresses the velocity vec-

tor at location XR within the inertial XRYRZR reference frame (the subscript ‘R’ indicates
rotor). The Laplace equation results from the substitution of the velocity potential into
the conservation of mass expression for inviscid, incompressible and irrotational flows.

A second principle that governs the velocity conditions of the flow field is the con-
servation of momentum. The full expression of the momentum balance is given by the
Navier-Stokes equations, but for inviscid and incompressible flows, the Navier-Stokes
equations can be approximated by the Euler equations. From Eqs. (2.3), and the formula-
tion of the appropriate boundary and initial conditions, a non-stationary flow field can be
solved for, and the actual flow conditions at a rotor plane be obtained. Subsequently, the
pressure distribution and the resulting forces on the rotor structure can be obtained from
the Euler equations. It goes without saying that solving the Laplace and Euler equations
for arbitrary boundary and initial conditions, still requires a powerful numerical solver.

STATIONARY UNIFORM AXIAL FLOWS

For stationary flow conditions, the time-dependency of the Laplace and the Euler equa-
tions disappears. The description of the fluid-structure interaction can be simplified
even further, by assuming the flow to be uniform and axial and defining impermeability
boundary conditions at the blade surfaces, stating that the relative flow velocity normal
to the surface of the blades is zero. Within the potential flow framework, these bound-
ary conditions can be defined by means of time and space-dependent sink/source and
doublet velocity fields.

After some mathematical manipulations, the Euler equations can be reformulated
into the celebrated Bernouilli’s equation. With the application the of Bernouilli’s equation,
the uniform axial airflow through the rotor plane can be represented by a stream tube, as
illustrated by Figure 2.4. As a further simplification, the rotor is modelled as an actuator
disc, effectively implying a rotor with an infinite number of blades and small solidity,
i.e. the ratio between the total blade area and the rotor disc area. Adopting the rotor
disc concept and the stream tube representation, a uniform flow distribution at the rotor
plane in the axial YR direction is obtained.

The momentum-balance analysis allows to formulate the axial flow velocity at the
rotor plane WR;Y within the stream tube to be expressed in terms of the the axial upstream
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Figure 2.4: Schematic illustration the stream tube model, representing a uniform constant flow through an
actuator disc.

velocity, WU;Y (’U’ indicates upstream):

WR;Y = (
1−aR;Y

)
WU;Y . (2.5)

Here, the coefficient aR;Y represents the induction ratio, i.e., the ratio between the induced
flow velocity at the rotor plane and the upstream wind velocity:

aR;Y = 1− WR;Y
WU;Y

. (2.6)

With the application of Bernoulli’s equation, the axial downstream flow velocity WD;Y can
be expressed as

WD;Y = (
1−2aR;Y

)
WU;Y , (2.7)

and the magnitude of the resulting thrust force on the rotor plane FR;Y as

FR;Y = 1
2πρairCR;T;Y R2W 2

U;Y , (2.8)

with the air density ρair and the axial thrust coefficient CR;T;Y :

CR;T;Y = 4aR;Y
(
1−aR;Y

)
. (2.9)

To find a solution for the flow field at the rotor plane, an additional equation for the in-
duction coefficient is required. This additional equation can be derived from the analysis
of the aerodynamic forcing on the blades. In Section 2.3, the aerodynamic forcing on the
rotor blades is considered. This aerodynamic forcing is a function of the flow velocity
at the rotor plane, for which again Eq. (2.5) can be adopted. The aerodynamic forcing,
with the unknown coefficient aR;Y can subsequently be solved with the application of
Eq. (2.8). Instead of the stream tube of Figure 2.4, the momentum balance can also be
considered for independent annuli with thinkness δrB. Likewise, the aerodynamic forc-
ing can be considered for small blade elements too. If the momentum balance and the
aerodynamic forcing are equalled per annulus, a radius-dependent thrust force FR;Y (rB)



2

44 2. BASIC PRINCIPLES OF ROTOR AERODYNAMICS

and induction coefficient aR;Y (rB) are obtained. This approach is generally known as the
blade element/momentum theory.

The analysis of the flow velocity on the basis of the Bernoulli’s equation does correctly
predict a larger wake diameter, compared to the diameter of the rotor. On the other hand,
as a result of the assumption of the actuator disc, the induction coefficient is azimuth-
independent, whereas the actual induced velocity is higher in the vicinity of the blades.
Moreover, the momentum balance does not account for the rotation of the wake, which is
induced by the rotational velocity of the rotor. In addition, the stream tube model assumes
a transition of the flow velocity within the tube from the upstream velocity WU;Y to the
downstream velocity WD;Y . Outside the tube, the flow velocity remains unaffected and
equals WU;Y . The resulting jump in flow velocity at the interface, however, is non-physical.

Solving Bernoulli’s equation under the assumption of a uniform and constant axial
inflow results in the computationally cheapest description of the flow field at the rotor
plane. The resulting flow field is referred to as a static wake formulation. When analyzing
time-varying flows, a dynamic formulation of the flow conditions would allow for a
better description of the forces on the blades. The one-dimensional momentum theory,
however, only accounts for variation of the axial flow, implying that the induced radial
and rotational flows are not considered. Moreover, the concept of the tubular axial
flow disregards a smooth transition between the flows inside and outside the stream
tube. The adopted actuator disc assumes an infinite number of blades, a concept which
contains little resemblance with actual wind turbine rotors. Finally, the one-dimensional
momentum theory requires axial and uniform inflow conditions over the rotor plane,
rendering the theory invalid for skewed inflows and analysis within the atmospheric
boundary layer.

Sørensen [177] derived a general momentum theory for uniform axial inflows, includ-
ing the induced azimuthal flow directly behind the rotor plane. This derivation does
not allow to solve the flow conditions for a turbine rotor, without the supplementary
computational fluid dynamics simulations or the implementation of unvalidated assump-
tions. Regarding the latter, Glauert [189] derived a closed model under the assumptions
of negligibly small radial pressure forces and an invariable azimuthal flow velocity in the
rotor wake. Defining the azimuthal flow velocity at the rotor plane in a rotating reference
frame as WR;Ψ, the radially varying rotationally induced velocity coefficient aR;Ψ(rB) can
be defined as

aR;Ψ(rB) =− WR;Ψ
ΩY rB

. (2.10)

Here,ΩY represents the rotor speed around the Y axis. The minus sign appears because
the wake and rotor rotations have opposite directions. From Glauert’s derivation, the
induction coefficient aR;Ψ(rB) can subsequently be solved as follows:

aR;Y (1−aR;Y ) =λ2
tipµ

2aR;Ψ(rB)(1+aR;Ψ(rB)), (2.11)

where λtip = ΩY R
WU;Y

, or the tip speed ratio, and µ= rB
R , or the relative radius.

Burton et al. [35] assumed a balance between the axial upstream and downstream
pressures and the kinetic energy from the induced rotational flow. The assumption
that the ratio between the induced velocities in wake and at the rotor plane equals two
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was released by Joukowsky [190], requiring a complementary equation expressing the
difference in the upstream and downstream pressures.

The actuator disc concept supposes an infinite number of blades. As a consequence,
the application allows for the prediction azimuthally invariant axial induction coefficients.
For finite-bladed rotors, however, the induced flow varies with the azimuth angle. Glauert
[189] proposed the a correction for the axial induction coefficient, with the application of
the tip correction FB;tip(rB):

FB;tip(rB) = π
2 arccos

(
e
− NB(1−µ)

2µsinφB(rB)

)
. (2.12)

Here, NB represents the number of blades, whereas φB(rB) is the local inflow angle.

NON-UNIFORM ROTOR PRESSURE

The momentum balance on the basis of the Bernoulli’s equation requires a uniform
pressure jump across the rotor plane. As a result, the flow velocity at the interface of
the stream tube is non-continuous. Kinner [191] found that, if the Laplace equation is
adopted for the pressure field instead of the velocity potential, the pressure distribution
can be expressed in ellipsoidal coordinates and a solution can be obtained in terms
of Legendre polynomials, which describe a continuous transition of the flow velocity
at the interface of the stream tube. Joglekar and Loewy [192] extended this method to
include induced velocities in all directions. These approaches, however, were specifically
developed for helicopter applications. Van Bussel [193] adjusted the method for wind
turbine rotors.

Adopting again the stream tube model and the actuator disc concept, the stationary
flow field can be described as a summation of the upstream velocity field and the induced
velocity field in the vicinity of the rotor. It is assumed that the components of latter are
small compared to the former. After substitution of this formulation of the velocity field
into the stationary Euler equations, and linearization with respect to the induced velocity
field, the Laplace equation can now be applied to describe the pressure field:

∇∇∇2p(XR) = 0. (2.13)

After a coordinate transformation to ellipsoidal coordinates, the pressure field can be
found in terms of Legendre polynomials of the first and second kinds, which is referred
to as the Kinner’s solution of the pressure distribution on a rotor disc, expressing the
pressure field as a summation of harmonics. The required mathematical operations to
obtain this expression can be found in Whittaker and Watson [194].

Figure 2.5(a) presents the solution of the first term of the Kinner’s pressure distribution,
in terms of the thrust coefficient CR;T;Y , for a uniform axial flow. The maximum pressure
is obtained at the hub, whereas the pressure drops to zero towards the edge of the rotor
disc. The actual pressure on a rotating wind turbine rotor should also be zero at the
hub. This can be achieved by adding a second term to the description of the pressure
distribution, illustrated in Figure 2.5(b). The resulting relative pressure distribution is
shown in Figure 2.5(c), for which the pressure is zero at both rB → R and rB = 0. In general,
turbine rotors are designed such, that a uniform pressure distribution over the blade
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(a) (b) (c)

Figure 2.5: Kinner’s solutions for uniform axial flows, with(a) the first-term solution, (b) the second-term
solution, and (c) the combined first and second-term solution.

spans is obtained. Using Kinner’s solution to describe such a pressure distribution would
require more terms.

After defining the pressure distribution at the rotor plane, the induced velocity field
can be estimated by spatial integration of the linearized Euler equations for the induced
velocity field. For uniform and axial flows, Mangler and Squire [195] calculated the
induction coefficient aR;Y at the rotor plane:

aR;Y (µ) = 15
16CR;T;Y µ

2
√

1−µ2. (2.14)

In deriving the Euler equations for the induced velocity field, the Euler equations for
the total velocity field were linearized with respect to the induced velocity, implying that
Eq. (2.14) is only valid if aR;Y (µ) is small compared to one. From, Eq. (2.14), the thrust
coefficient can be expressed in terms of the average induced velocity over the rotor area,
āR;Y :

CR;T;Y = 1
4 āR;Y . (2.15)

Solving the Euler equations by means of Kinner’s solution results in non-uniform pressure
distribution, and zero pressures at the hub and blade tips specifically. The presented
approach, however, does not account for wake rotations and corresponding in-plane
induced velocities. Moreover, a comparison between Eqs. (2.9) and (2.15) shows that the
flow field obtained from the acceleration potential is only valid for small values of āR;Y .

NON-AXIAL UNIFORM FLOWS

Figure 2.6 illustrates an actuator disc exposed to a non-axial flow. The rotor plane is
directed with the yaw angle γR;Z with respect to the uniform upstream inflow W(XR). As
a result, the centre line of the wake is skewed at an angle χR;Z with respect to the global
YR axis, for which it applies that χR;Z > γR;Z . Under these inflow conditions, the pressure
distribution on the actuator disc is no longer axi-symmetric.

The Kinner’s solution can be adopted to describe an anti-symmetric pressure distri-
bution on a rotor disc exposed to a non-axial flow. These pressure distributions result in
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Figure 2.6: Schematic representation of an actuator disc exposed to a skewed airflow.

to moments around the XR and ZR axis, TR;X and TR;Z , respectively – also referred to as
tilting an yawing moments – which can be expressed in terms of the moment coefficients
CR;M;Z and CR;M;X , respectively:

TR;Z = 1
2ρairπR3CR;M;Z |W(XR)|2 , (2.16)

and

TR;X = 1
2ρairπR3CR;M;X |W(XR)|2 . (2.17)

The resulting anti-symmetric pressure distributions are depicted in Figures 2.7(a) and (b),
respectively. The pressure distributions are shown relative to CR;M;Z and CR;M;X .

(a) (b)

Figure 2.7: Kinner’s solutions for anti-symmetric pressure distributions, with (a) the first-term solution for a
yawed rotor and (b) the first-term solution for a tilted rotor.

As shown in Figure 2.6, the expansion of the flow through a yawed rotor is asymmetric.
As a result, the blades of the yawed rotor experience a larger lift force during the upwind
sweep than during the downwind sweep, and the rotor experiences a yawing moment
around the global ZR axis. At the same time, the yawing affects the incident velocity of a
vertically oriented blade, resulting into a tilting moment around the global XR axis.
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Pitt and Peters [196] determined the induced flow velocity at a helicoptor rotor for varying
inflow angles, by means of numerical integration of the linearized Euler equations for the
induced velocity field, basing the numerical integration on the linearized Euler equations.
For the numerical integration, the pressure distributions at the rotor plane of the Kinner’s
term for anti-symmetric pressure distributions was adopted. Based on the numerical
results, an analytical fit for the induction coefficient perpendicular to the rotor plane was
defined:

aR;Y = āR;Y +aR;Y Zµsinψ+aR;Y Xµcosψ, (2.18)

which describes the induction coefficient as a function of the azimuth angle ψ. āR;Y

defines the mean value of the induction coefficient and and the aR;Y X and aR;Y Z the
variations about the XR and ZR axes, respectively. Pitt and Peters [196] defined the 3×3
matrix LR, which relates the thrust and moment coefficients to the induction coefficients
of Eq. 2.18:

CR(t ) = L−1
R aR;Y (t ). (2.19)

Here, CR(t) is a vector containing the thrust and moment coefficients of Eqs. (2.8),
(2.16) and (2.17). aR;Y (t ) is a vector with the corresponding induction coefficients from
Eq. (2.18.)

Moreover, with the inclusion of the second-order pressure term for the anti-symmetric
pressure distribution, the derivative of the pressure at the hub of the rotor can be enforced
to be zero. The inclusion of higher-order pressure terms allows for a better description of
the pressure distribution over the radius of the rotor. Furthermore, an azimuthal variation
of the pressure over the rotor plane could be accounted for. In-plane induced velocities
were not accounted for yet either, but may be included with higher-order Legendre
polynomials too.

The matrix LR as defined by Pitt and Peters [196] does not account for the skewed wake.
At an earlier stage, Coleman et al. [197] suggested a dependency of the axial induction on
both the yaw angle γR;Z and the wake angle χR;Z . For this derivation, a vortex cylinder
model for the rotor wake was applied.

NON-STATIONARY FLOWS

For non-stationary flows, the time-dependent induced flow velocity can be determined
from the stationary Euler equations – with the velocity field decomposed into the up-
stream and induces velocity components – for either an axial or a non-axial flow fields.
Such a quasi-static approach results in the definition of a so-called equilibrium wake, for
which the induced velocity instantaneously adapts to variations in the inflow conditions.
Solving the Euler equations, however, with the inclusion of the acceleration terms allows
for the derivation of a dynamic wake and the corresponding time-dependent induced
velocity field.

Assuming an induced velocity field which is small compared to the ambient velocity
field, the flow can be again described in terms of the pressure potential instead of the
velocity potential. Gaonkar and Peters [198] defined the 3×3 added inertia matrix MR to
account for the time-dependency of the force-induction relation:

CR(t ) = MRȧR;Y (t )+L−1
R aR;Y (t ). (2.20)
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The entries of the MR matrix are not affected by the yawing of the rotor. Furthermore, no
cross-couplings between the induced accelerations and the aerodynamic coefficients are
introduced. Peters et al. [37] generalized the dynamic wake model, so that it accounts for
an arbitrary number of inflow harmonics and radial shapes. An overview of the further
developments of the dynamic wake modelling is provided by Peters et al. [199].

2.2.3. VORTEX METHODS
In deriving a general momentum theory, Sørensen [177] accounted for the azimuthal flow
in the rotor wake. The derivation allowed for the description of the wake as a rotating
body – which was argued to be unphysical – or a free vortex flow. Te subsequent attempts
to describe the flow in terms of vorticity, instead of velocities and pressures – as is the case
with computational fluid dynamics techniques and the momentum-balance methods – is
associated with vortex methods [41].

The free vortex flow provides a basis for the Joukowsky’s cylindrical vortex model [200]
and the tubular vortex model, the latter of which allowing for the expansion of the wake.
These methods still employ the actuator disc concept, a correction for which was pre-
sented by Prandtl [201]. The modelling approach can be improved with the inclusion
of a root vortex and bound vorticity disk at the rotor plane, a full derivation of which
was presented by Branlard and Gaunaa [202] for axial flows and Branlard and Gaunaa
[203] for skewed flows. The discretization of the tubular vortex wake model introduces
the vortex ring model. Yu et al. [38] illustrated the applicability of this approach to non-
stationary and radially varying axisymmetric inflows, a work which was experimentally
substantiated for transient loads [39].

The actuator disc concept consists of a homogeneous rotor plane, as a result of the
assumed infinite-bladed turbine. Modelling the individual blades by their aerodynamic
performance, in terms of their distributed bound circulation, allows for a finite-bladed
rotor representation and the prediction of an inhomogeneous induced velocity field.
Instead of these so-called lifting lines, the blades can be represented by lifting surfaces
too, by which the chord lengths of the blade sections are explicitly accounted for. If rigid
prismatic blades are assumed, the wake can be modelled in terms of the emitted tip
and root vortices, through the application of the Biot-Savart law. Neglecting the wake
expansion, this approach provides the basic helical vortex model representation, from
which analytical predictions for the induced velocity field can be obtained [41].

More advanced wake representations, for instance for radially varying bound circula-
tions and wake involves the explicit modelling of shed vorticity by means of line or panel
elements. To meet the requirement of irrotationality of the potential flow theory, the mod-
elling of the shed vorticity requires the explicit modelling of the vortex wake, for instance
by means of vortex panels. This requirement restricts the analysis of the rotating rotor,
including the wake development, to the numerical domain, providing an alternative for
computational fluid dynamics analysis approaches [40, 204]. Leishman [40] distinguished
prescribed and free vortex techniques, the former used for the validation of experimental
results, while the later can be employed for predictive purposes. In the application to
transient analyses, the modelling of vortex wake models can be characterized as tedious
and prone to numerical instabilities. The repetitive evaluation of the Biot-Savart law, re-
quired for the estimation of the wake vortices, still renders the methods computationally
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expensive, while providing the advantage of a physically more realistic representation of
the rotor wake, compared to the momentum-balance approaches. Wang and Coton [205]
applied a vortex filament approach to analyze the tower shadow load effect on the blades
of a downwind wind turbine. Gebhardt et al. [206] developed a vortex-lattice approach,
with which the velocity field around a flexible rotor-tower structure in non-stationary
aerodynamic conditions has been predicted [207, 208].

2.3. AERODYNAMIC FORCING

2.3.1. AEROFOIL DEFINITION
This section addresses the aerodynamic forcing on an aerofoil in a two-dimensional flow.
As the main theory to describe this forcing, the thin aerofoil theory – which reduces the
aerofoil to a vortex panel – is introduced. On this basis, first the forcing on an aerofoil in a
stationary inviscid flow is considered. Subsequently, this analysis is expanded towards
aerofoils in non-stationary inviscid flows. This second scenario induces added inertia
force components too, which are addressed separately. As a final generalization of the
two-dimensional analysis, the aerodynamic forcing in a viscous flow is addressed. Due to
the viscosity, the airflow may separate from the aerofoil surface, resulting a stalled flow
condition. The analyses in this work, however, are restricted to attached flow conditions.
As a final generalization, the aerodynamic forcing in a three-dimensional flow is briefly
addressed. It should be noted, that only incompressible flows are considered in this
section.

As a starting point, Figure 2.8(a) presents the important geometric definitions of a
typical aerofoil. The side cutting into the airflow is referred to as the leading edge, whereas
at the trailing edge the separated airflow comes back together. The length of an aerofoil
is expressed in terms of its chord, the straight line between the leading and the trailing
edges. The camber line is defined by the points halfway the top and bottom surfaces.
For symmetric aerofoils, the chord line and the camber line coincide. The aerodynamic
theories presented in this section, often refer to the semi-chord, which is half the length
of the chord.

(a) (b)

Figure 2.8: Aerofoil representation, with (a) the important geometric definitions and (b) the parametric repre-
sentation of the relevant aerofoil properties, depicted within the global moving reference frame.

Figure 2.8(b) presents the positioning of a symmetric aerofoil with respect to the global
moving reference frame rBYBZB, of which the YB defines the axis of the rotor rotation
ΩR;Y . The principal axes of the aerofoil section are defined by the local rB yBzB reference
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frame, the origin of which is located at the semi-chord, or mid-chord. The rB axis of the
local frame coincides with the rB axis of the global moving rBYBZB frame. The yB and zB

axes are rotated over an angleβ0(rB)+βB(t ) with respect to the global moving frame. Here,
the angle β0(rB) represents the geometric rotation, or twist, which generally varies over
the length of the blade, rendering the twist angle a function of rB. βB(t ) is the pitch angle,
which is actively controlled at above-rated wind velocities for pitch-regulated turbines.
For this reason, the pitch angle is presented as a function of time. The chord length cB(rB),
and consequently the semi-chord length bB(rB) vary over the length of the blade and are
therefore presented as functions of rB. As far as two-dimensional flows are considered,
the dependencies of the aerofoil properties, the flow conditions and the aerodynamic
forcing on the blade radius are omitted.

2.3.2. THIN AEROFOIL THEORY
Figure 2.9(a) shows a symmetric aerofoil exposed to the effective airflow velocity WB;eff.
This effective airflow is composed of the rotational velocity, the inflow velocity and the
induced wind velocity components within the rotor plane. For the time-being, this veloc-
ity is assumed to be stationary, but it does vary along the length of the blade. Assuming
inviscid flow conditions, an effective airflow acting along the symmetry axis of the aerofoil
does not induce aerodynamic forces on this aerofoil. If the airflow acts under a small
angle of attack αB with respect to the symmetry axis, see Figure 2.9(a), a circulatory flow
develops around the aerofoil. This circulatory flow was introduced in Section 2.1 as the
bound circulationΓΓΓB;b, which for stationary flows is independent of time.

(a) (b) (c)

Figure 2.9: Schematic illustration of the thin aerofoil theory, with (a) an aerofoil exposed to an effective airflow
velocity, (b) the representation of a symmetric aerofoil by means of a vortex sheet and (c) the representation of a
cambered aerofoil by means of a vortex sheet.

The bound circulation around and aerofoil can be estimated with the thin aerofoil theory.
Among others, Anderson Jr. [179], Leishman [182] have addressed this theory extensively.
As a main principle, the bound circulation is replaced by a streamline of a the vortex sheet
γγγB;b(zB) along the camber line of the aerofoil:

ΓΓΓB;b =
∫ bB

−bB

γγγB;b(zB)dzB. (2.21)

For symmetric aerofoils, the camber line coincides with the chord line, and as illustrated
by Figure 2.9(b), a straight vortex sheet is obtained. For a cambered aerofoil, however, the
camber line is curved and described by the function ξB;y (zB), as shown in Figure 2.9(c).
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The vortex sheetγγγB;b(zB) obeys two additional conditions. First, the pattern of a stationary
flow around an aerofoil, as illustrated by Figure 2.1(a), is dictated by the Kutta condition,
that is, the flow leaves the aerofoil smoothly. For aerofoils with a finite angle at the trailing
edge, the Kutta condition even implies that the flow velocity at the trailing edge is zero.
Second, for the camber line to be a stream line, the resulting velocity normal to the camber
line along the length of the aerofoil must be zero.

(a) (b) (c)

Figure 2.10: Schematic representation of the velocity vectors defining the blade vortex sheet, with (a) the
effective inflow velocity vector and the velocity vector normal to the blade camber, (b) the angle defining the
slope of the camber line, and (c) the induced velocity normal to the camber line resulting from the bound
vorticity.

Figure 2.10(a) illustrates the effective velocity normal to the camber line, WB;eff;n(zB),
which due to the camber is a function of zB. The angle ϕB(zB) defines the slope of the
camber line along:

tan
{
ϕB(zB)

}=− ∂ξB;y (zB)
∂zB

. (2.22)

With this angle, the magnitude of the vector WB;eff;n(zB) can be defined as follows:∣∣WB;eff;n(zB)
∣∣= ∣∣WB;eff

∣∣sin
{
αB +ϕB(zB)

}
, (2.23)

with the vector components in the yBzB plane as shown in Figure 2.10(b).

WB;eff;n(zB) = ∣∣WB;eff;n(zB)
∣∣[cos

{
ϕB(zB)

}
sin

{
ϕB(zB)

}]
. (2.24)

Figure 2.10(c) illustrates the induced circulation at the point zB = ζ on the camber line.
The resulting velocity component normal to the camber line at an arbitrary point zB is
given by wB;b;n(ζ, zB):

wB;b;n(ζ, zB) = 1
2π

(
γγγB;b(ζ)× rc(ζ,zB)

|rc(ζ,zB)|
)

|rc(ζ,zB)| , (2.25)

where rc(ζ, z) is the vector between ζ and zB, as indicated in Figure 2.10(c). On this basis,
the resulting velocity along the lenght of the camber is obtained as follows

WB;b;n(zB) = 1
2π

∫ bB

−bB

(
γγγB;b(ζ)× rc(ζ,zB)

|rc(ζ,zB)|
)

|rc(ζ,zB)| dζ. (2.26)
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For symmetric aerofoils, the velocity normal to the camber line is directed in the local yB

direction and the expression for WB;b;n(zB) can be simplified:

WB;b;n(zB) = 1
2π

∫ bB

−bB

(γγγB;b(ζ)×eB;z )
zB−ζ dζ, (2.27)

where eB;z is the unit vector in the local zB direction. The second condition which the
vortex sheet γγγB;b(zB) needs to fulfil now results from the superposition of the normal
effective velocity WB;eff;n(zB) and the normal vorticity WB;b;n(zB), given by Eq. (2.24) and
(2.27), respectively:

WB;eff;n(zB)+WB;b;n(zB) = 0. (2.28)

With the application of the Kutta condition and the assumption of a asymmetry, Eq. (2.28)
can be solved and the bound circulation is obtained from Eq. (2.21):

ΓΓΓB;b = 1
2 cB

∣∣WB;eff
∣∣(Cα

B;L sinαB +C c
B;L

)
eB;r , (2.29)

with the lift coefficients Cα
B;L, relating to the angle of attack αB, and C c

B;L depending on the
shape of the camber only. eB;r is the unit vector defining the direction of the longitudinal
rB axis. For symmetric aerofoils, Cα

B;L = 2π and C c
B;L = 0:

ΓΓΓB;b =πcB
∣∣WB;eff

∣∣sinαBeB;r . (2.30)

From the bound circulation, obtained by either Eq. (2.29) or Eq. (2.30), the two-dimensional
aerodynamic forcing on an aerofoil in a stationary inviscid flow can be defined.

2.3.3. STATIONARY INVISCID FLOWS
Figure 2.1 depicted the division of a stationary airflow around an aerofoil into a symmetric
flow and a circulatory flow, the bound circulation ΓΓΓB;b. Under inviscid conditions, the
symmetric flow does not induce any skin friction and the resulting force on the aerofoil,
in accordance with d’Alembert’s paradox is zero. It goes therefore without saying that the
stationary inviscid flow remains attached to the aerofoil.

Magnus [209] described how a rotating body in a stationary flow experiences a lift
force FB;L perpendicular to the direction of the flow, on which basis the Kutta-Joukowski
theorem was developed:

FB;L = ρair
(
WB;eff ×ΓΓΓB;b

)
. (2.31)

For an effective airflow in accordance to Figure 2.9(a), Figure 2.11 illustrates the resulting
lift force on the aerofoil.

The solution of Eq. (2.31) for an aerofoil can, after the implementation of Eq. (2.29),
be expressed in terms of the lift coefficient CB;L:

FB;L = 1
2ρaircBCB;L

∣∣WB;eff
∣∣(WB;eff ×eB;r

)
, (2.32)

where, with reference to Eq. (2.29), CB;L is given by

CB;L =Cα
B;L sinαB +C c

B;L. (2.33)
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Figure 2.11: Schematic representation of the aero-
foil lift force and moment, with the lift force at mid-
chord and the corresponding moment around the
leading edge.

Figure 2.12: Schematic representation of the con-
tribution of the vortex strength at zB = ζ to the lift
moment around the leading edge.

The range of applicability of Eq. (2.33) is restricted to relatively small angles of attack. The
reason being that real flows are viscous, and for large angles of attack the flow separates
from the aerofoil. Eq. (2.33) is not valid for separated flows.

In addition to the lift force, the bound circulation induces a lift moment on the aerofoil
too. This moment can be obtained from integrating the vortex strength times the distance
to a reference point over the chord length. If the leading edge is chosen as the reference
point, see Figure 2.12, the lift moment MB;L;0 is obtained as follows:

MB;L;0 = ρair

∫ bB

−bB

{(
WB;eff ×γγγB;b(ζ)

)× r0(ζ)
}

dζ. (2.34)

As indicated in Figure 2.12, the vector r0(ζ) defines the distance between the leading edge
and the work line of the local lift force at zB = ζ. Here, the subscript "0" refers to the
zero-chord point, i.e., the leading edge of the aerofoil. Eq. (2.34) can be elaborated on into

MB;L;0 = 1
2ρair (cB)2 CM;0

∣∣WB;eff
∣∣(WB;eff ×eL

)
. (2.35)

The unit vector eL defines the direction of the lift force FB;L as indicated in Figure 2.11(a).
The lift moment is expressed in terms of the lift moment coefficient CB;M;0, which, in turn,
can be related to the lift coefficient CB;L:

CB;M;0 =−
(

1
4CB;L +C c

B;M

)
. (2.36)

The coefficient C c
B;M depends on the shape of the camber and is zero for symmetric

aerofoils. As a result, the coefficient for the lift moment around the leading edge is
negative for symmetric aerofoils, implying that the moment indicated in Figure 2.11 acts
in the counter-clockwise direction.

The moment coefficient for the lift moment around an arbitrary point ζ on the chord
line is obtained as follows:

CB;M;ζ =CB;M;0(r )+
(
1+ ζ

bB

)
CB;L. (2.37)

From this, it can be shown that for thin aerofoils, the coefficient for the lift moment
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around the one-quarter chord point CB;M;c/4 can be expressed as

CB;M;c/4 =CB;M;0 + 1
4CB;L

=C c
B;M.

(2.38)

This leads to the conclusion that for symmetric thin aerofoils, the coefficient of the lift
moment around the one-quarter chord point is zero. For cambered thin aerofoils, this lift
moment coefficient is not equal to zero, but it is independent of the angle of attack. The
one-quarter chord point is generally referred to as the aerodynamic centre.

2.3.4. QUASI-STATIONARY AEROFOIL MOTIONS IN INVISCID FLOWS
For an oscillating aerofoil, the stationary flow pattern is disturbed. This disturbance
comes with accelerations of the airflow, inducing a so-called non-circulatory excitation of
the aerofoil. Furthermore, with a change in the flow pattern, a new circulation equilibrium
must be found, such that the Kutta condition is met. This equilibrium is not obtained
instantaneously, implying a delay in the development of the bound circulation and the
corresponding lift force on the aerofoil.

(a) (b) (c)

Figure 2.13: Quasi-stationary aerofoil motion, with (a) heave motion, and (b) pitch motion, and (c) the vertical
motion at the three-quarter chord length affecting the equivalent angle of attack for pitch motions.

Assuming first a low-frequency motion of the aerofoil, the flow conditions can be defined
as quasi-stationary. This implies that the accelerations of the flow are very small and
can be neglected, and the new circulation equilibrium is found with a negligible delay.
Figure 2.13(a) shows an aerofoil exposed to the effective inflow velocity WB;eff, directed in
the positive zB direction, undergoing the heave motion u̇B;y (t ) = u̇B;y (t )ey in the positive
yB direction. The overdot indicates that the motions represents the time-derivative of
the displacement uB;y (t ). The quasi-stationary – or instantaneaous – angle of attack can
straightforwardly be determined from the uniform normal velocity along the chord of the
aerofoil:

sinαqs
B (t ) =− u̇B;y (t )

|WB;rel(t )| , (2.39)

with the superscript ‘qs’ indicating quasi-stationary. The angle is negative, because the
heave motion induces a flow in the negative yB direction WB;rel(t) is the relative airflow
velocity experienced by the aerofoil, including the induced wind velocity, the rotational
velocity of the rotor and the structural motion:

WB;rel(t ) = WB;eff − u̇B;y (t ). (2.40)
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If the heave motion is small compared to the effective inflow velocity, the instantaneous
angle of attack can be approximated as:

α
qs
B (t ) ≈− u̇B;y (t )

|WB;eff| . (2.41)

A pitch motion β̇̇β̇βB(t ) = β̇B(t )er, depicted in Figure 2.13(b), first imposes an angle of attack
equal to the pitch rotation βB(t ). Moreover, the pitch motion introduces a linearly varying
normal velocity along the chord of the aerofoil. If the pitch axis is assumed at zB = zB;β,
the velocity profile WB;y (zB, t ) can be expressed as

WB;y (zB, t ) =−β̇B(t )
(
zB − zBβ

)
. (2.42)

A symmetric aerofoil with a linearly varying velocity profile along its chord length is
equivalent to a cambered aerofoil with a uniform velocity profile, with a parabolic camber
ξB;y (zB, t ):

ξB;y (zB, t ) =
∫

WB;y (zB,t )

|WB;rel(t )| dzB. (2.43)

With the application of the thin aerofoil theory for cambered aerofoils, the quasi-stationary
equivalent angle of attack of an aerofoil in pitch motion can be defined as

sinαqs
B (t ) = sinβB(t )+ u̇B;β;y (t )

|WB;rel(t )| , (2.44)

with u̇B;β;y (t), the magnitude of the motion vector u̇B;β;y (t) depicted in Figure 2.13(c),
defined as

u̇B;β;y (t ) =−( 1
2 bB − zB;β

)
β̇B(t ). (2.45)

If the pitch axis is located at the three-quarter chord point, i.e., zB;β = 1
2 bB, the effective

angle of attack resulting from the pitch motion is the actual pitch angle, while for a
pitch axis at the one-quarter chord point, i.e., zB;β =− 1

2 bB, the effective angle of attack
corresponds with the angle of attack at the three-quarter chord point.

The quasi-stationary angle of attack from a combined heave and pitch angle can now
be expressed as

sinαqs
B (t ) = sinβB(t )− u̇B;y (t )

|WB;rel(t )| +
( 1

2 bB − zB;β
) β̇B(t )
|WB;rel(t )| . (2.46)

For small pitch motions, the equivalent angle of attack can be approximated:

α
qs
B (t ) ≈βB(t )− u̇B;y (t )

|WB;eff| +
( 1

2 bB − zB;β
) β̇B(t )
|WB;eff| . (2.47)

Combining Eqs. (2.33) and (2.47), the quasi-stationary lift coefficient of a symmetric
aerofoil in heave and pitch can be approximated as

C qs
B;L(rB, t ) ≈ 2π

{
βB(t )− u̇B;y (t )

|WB;eff| +
( 1

2 bB − zB;β
) β̇B(t )
|WB;eff|

}
. (2.48)
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The lift moment coefficient for the moment around the leading edge can be obtained
from Eq. (2.36). As a result of the induced camber, the coefficient C c

B;M, see Eq. (2.36), is
non-zero:

C qs
B;M;0(t ) = 1

4C qs
B;L(t )− π

4 bB
β̇B(t )

|WB;rel(t )| . (2.49)

On this basis and with the application of Eq. (2.37), the lift moment coefficient around an
arbitrary point ζ can be defined:

C qs
B;M;ζ(t ) =C qs

B;M;0(t )+ 1
2

(
1+ ζ

bB

)
CB;L(t ), (2.50)

from which the moment coefficient with respect to the one-quarter chord point can be
obtained:

C qs
B;M;c/4(t ) =−π

4 bB
β̇B(t )

|WB;rel(t )| . (2.51)

The pitch motion results in a moment around the one-quarter chord point, which is
independent of the location of the pitch axis.

2.3.5. DYNAMIC AEROFOIL OSCILLATIONS IN INVISCID FLOWS
For aerofoils oscillating at higher frequencies, the acceleration of the flow cannot any
longer be neglected, as a result of which a so-called non-circulatory flow force on the
aerofoil is induced. Furthermore, the violation of the Kutta condition is compensated by a
shed vorticity and the new bound circulation is established with a delay. The lift force on
an aerofoil in a non-stationary inviscid flow was analysed by Theodorsen [32] by means of
the potential flow theory. This analysis specifically addressed the non-stationary lift force
on an aerofoil oscillating in heave and pitch. The Laplace equation can be solved by both
sink/source and vortex velocity fields, the former inducing the so-called non-circulatory
lift force – or apparent inertia force – and the latter resulting in a circulatory lift.

Concerning the aerodynamic forces on an aerofoil in a non-stationary inviscid flow,
this section specifically considers the forcing on oscillating aerofoils. The following
section, Section 2.3.6 considered the aerodynamic forces on an aerofoil for varying inflow
conditions. In the case of varying inflow conditions, the instantaneous angle of attack
changes gradually along the length of the chord. Moreover, under these conditions the
potential flow theory is, strictly speaking, not valid.

NON-CIRCULATORY LIFT

Bisplinghoff et al. [184] presented a detailed elaboration of the Theodorsen’s solution
for the non-circulatory lift force. The force is predicted with the potential flow theorem
and the definition of source/sink velocity fields. After applying Joukowski’s conformal
transformation, the non-circulatory lift force FB;I(t ) of an aerofoil moving in heave and
pitch was derived as

FB;I(t ) =πρairb2
B

{−üB;y (t )+WB;eff × β̇̇β̇βB(t )− zB;β
(
eB;z × β̈̈β̈βB(t )

)}
. (2.52)

The first and second term of this force relate to the uniform acceleration, experienced by
the aerofoil for a plunging type of motion. The third term expresses the acceleration at
mid-chord due to the accelerated pitching actions.
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The corresponding moment around the pitch axis MB;I(t ) is

MB;I(t ) =πρairb2
B

{
u̇B;y (t )×WB;eff(r )+ zB;β(r )

(
eB;z × üB;y (t )

)
+WB;eff(r )× β̇̇β̇βB(t )× (

WB;eff(r )
)− (

1
8 (bB(r ))2 + (

zB;β(r )
)2

)
β̈̈β̈βB(t )

}
.

(2.53)

Here, the first and third terms result from an antisymmetric pressure distribution, with
zero pressure at mid-chord and pressures increasing to plus and minus infinity towards
the trailing and leading edges respectively. This pressure distribution does not generate a
net force on the aerofoil and therefore, these terms cannot be related to any of the terms
of the non-circulatory lift force. The second term expresses the moment around the pitch
axis, resulting from the heave motion of the aerofoil. This term vanishes if the pitch axis is
located at the mid-chord point. The last term expresses the moment resulting from the
pitching acceleration.

The flow pattern corresponding to the non-circulatory flow does not satisfy the Kutta
condition. As a consequence, an additional velocity field is required, which first of all
represents a solution of the Laplace equation and secondly satisfies the Kutta condition,
in superposition with the non-cirulatory flow.

CIRCULATORY LIFT

For a flow pattern satisfying the Kutta condition, the lift force can be determined from
Eqs (2.29) and (2.31). If the stationary flow pattern is disrupted, as depicted in Figure 2.3,
the Kutta condition is violated. As a result of this loss of equilibrium, the flow converges
to a new bound circulation, such that the Kutta condition is again satisfied. Until the new
equilibrium is found, shed vorticity γγγB;s(t ) is emitted from the trailing edge, as defined by
Eq. (2.2). With reference to Eq. (2.27), the velocity component normal to the camber line,
now results from the following integral equation:

WB;b;n(zB, t ) = 1
2π

∫ bB

−bB

(γγγB;b(ζ,t )×eB;z )
zB−ζ dζ+ 1

2π

∫ ∞

bB

(γγγB;s(ζ,t )×eB;z )
zB−ζ dζ. (2.54)

The bound circulation can be solved from Eq. (2.54) with the application of the Kutta
condition and the Kelvin’s circulation theorem. The disturbance of the stationary flow
pattern, and therefore the establishment of the new equilibrium depends on the nature
and the time scale of the disruption [40]. Causes of non-stationarity are time-varying
inflow conditions, variations in rotational velocity, blade pitch and turbine yaw actions
and blade flexibility.

Different theories exist to describe the transition to a new equilibrium, depending
on the cause of the non-stationarity. This section first explains the non-stationary aero-
dynamic forcing on an aerofoil moving in oscillatory heave and pitch. To this end, the
Theodorsen’s function is introduced, which allows for the analysis of the oscillatory lift
force in the frequency domain. The time-domain equivalent, employing Küssner’s indicial
function, is introduced subsequently.

FREQUENCY-DOMAIN AEROFOIL OSCILLATIONS

The quasi-stationary analysis of the lift force and moment implies an instantaneous
variation of the effective angle of attack and does not account for the shed vorticity γγγB;s(t )
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according to Eq. (2.54). On the basis of the potential theory and the thin aerofoil theory,
Theodorsen [32] developed the exact frequency-dependent complex function C (k), with
the reduced frequency k, to describe the non-stationary lift coefficient for harmonic
oscillation in heave and pitch.

The Theodorsen’s function can be expressed in terms of the Hankel’s functions of the
second kind, H (2)

n (k):

C (k) = F (k)+ iG(k) = H (2)
1 (k)

H (2)
1 (k)+iH (2)

0 (k)
, (2.55)

and the reduced frequency is determined as

k = ωbB|WB;eff| , (2.56)

where ω is the angular frequency of the oscillation and i =p−1, i.e., the imaginary unit.
For a rotating wind turbine blade, the reduced frequency varies along the length of the
blade, and attains its lowest value at the tip of a rotating blade.

(a) (b)

Figure 2.14: Schematic representation of an oscillating aerofoil, with (a) an aerofoil oscillating in heave, and (b)
an aerofoil oscillating in pitch.

Figure 2.14(a) shows a symmetric aerofoil exposed to the horizontal inflow WB;eff, which
is assumed to be constant in time. The aerofoil experiences a heave oscilation uB;y (t ) =
ūB;y eB;y eiωt , as a result of which the quasi-stationary angle of attack αqs

B (t) can be ex-
pressed as

sinαqs
B (t ) =− iωūB;y

|WB;eff(t )|eiωt . (2.57)

Here, it is assumed that the heave motion does not significantly affect the relative inflow
velocity, implying that the latter can be approximated with the effective inflow velocity.

With the application of the Theodorsen’s function, the lift coefficient of a symmetric
thin aerofoil in oscillating heave can be expressed as

C ns
B;L(k) =−2πC (k)

iωūB;y

|WB;eff(t )|eiωt , (2.58)

with the superscript ‘ns’ indicating non-stationary.
Theodorsen’s function can also be used to describe the frequency-dependent lift

coefficient for a oscillating pitch motion βββB(t) = β̄Bereiωt of a symmetric aerofoil, see
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Figure 2.14(b). The pitch oscillation takes place around the pitch axis, which is assumed at
zB;β on the local zB axis. Theodorsen’s evaluation resulted in the following lift coefficient
for this oscillating pitch motion:

C ns
B;L(k) = 2πC (k)

{
1+ iω

( 1
2 bB − zB;β

)}
β̄Beiωt . (2.59)

The Theodorsen’s function affects both the amplitude and the phase of the lift coefficient
with respect to the quasi-stationary lift. Figure 2.15 illustrates the Theodorsen’s function
for four typical reduced frequencies, k = 0.05,0.2,0.5 and 1.0. The figure presents the
oscillations C (k)ekτ, with the non-dimensional – or reduced – time τ, the time counterpart
of the reduced frequency:

τ=
∫ t

0

|WB;rel(t )|
bB

dt , (2.60)

and compares these against the quasi-stationary Theodorsen’s function, i.e., C (k), as
k converges to 0. At k = 0.05, see Figure 2.15(a), a slight reduction in amplitude and
a small phase shift can be observed. Both the reduction in amplitude and the shift in
phase increase for k = 0.2, as shown in Figure 2.15(b). For higher reduced frequencies,
Figures 2.15(c) and (d), the amplitude reduction stabilizes at a factor 0.5, while no increase
in the phase lag can be observed.
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Figure 2.15: Illustrations of the Theodorsen’s function against the quasi-stationary Theodorsen’s function, with
(a) the reduced frequency k = 0.05, (b) the reduced frequency k = 0.2, (c) the reduced frequency k = 0.5, and (d)
the reduced frequency k = 1.0.

Figure 2.16 presents the amplitude and phase angle of the Theodorsen’s function over
a range of reduced frequencies. It is shown that the amplitude reduces quickly for low
reduced frequencies, k < 1, after which it converges to a factor 0.5. The phase lag reaches
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a maximum of approximately 15 degrees at k ≈ 0.3. For higher values of k, the phase lag
converges to zero.
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Figure 2.16: Amplitude and phase angle of the
Theodorsen’s function as a function of the reduced
frequency.

Figure 2.17: Variation of the lift coefficient for angle
of attack oscillations for a variation of reduced fre-
quencies, obtained with the Theodorsen’s function.

A last illustration of the Theodorsen’s function is given by Figure 2.17, which presents the
variation of the lift coefficient CB;L(k), for different oscillations of the angle of attack:

ααα(r, t ) =
(
ᾱ(r )+∆α(r )eikτ

)
ef

r. (2.61)

The lift coefficient oscillations are determined for a mean angle of attack ᾱ(r ) = 4 degrees
and an amplitude of oscillation ∆α(r ) = 3 degrees. The figure distinguishes the oscillation
of the lift coefficient for the reduced frequencies k = 0.05,0.2 and 1.0. As a reference,
the quasi-stationary lift coefficient is shown. The amplitude effect of the Theodorsen’s
function can be deducted from the decreasing slope of the oscillation as k increases. As a
result of the phase lag, the evolution of the lift coefficient is elliptical. In correspondence
with Figure 2.16, the width of the ellipse is largest for k = 0.2.

From the lift coefficient of an aerofoil in oscillatory motion, as given by Eqs. (2.58) and
(2.59), the lift moment around the leading edge can be obtained from the lift moment
coefficient given by Eq. (2.49). For pitch motions, this lift moment coefficient contains a
second term, which is independent of the Theodorsen’s function. This term concerns,
therefore, a quasi-stationary moment contribution of the circulatory flow.

TIME-DOMAIN AEROFOIL OSCILLATIONS

Wagner [33] derived the time-domain equivalent of the Theodorsen’s function. The
indicial Wagner’s function describes the evolution of the lift coefficient after a step change
in the angle of attack. A sudden change in the angle of attack can result from a step change
in the inflow velocity, for instance by an increase in the rotational velocity of the rotor, or
a pitch action of the blade. The heave and pitch blade motions that induce angle of attack
variations were presented in Figure 2.13. A sudden heave motion u̇B;y (t ) after time t = 0,



2

62 2. BASIC PRINCIPLES OF ROTOR AERODYNAMICS

in the negative local yB direction, can be expressed as follows:

u̇B;y (t ) =
{

0, for t ≤ 0,
−u̇B;y eB;y , for t > 0.

(2.62)

The corresponding instantaneous angle of attack can be expressed in terms of the relative
airflow velocity WB;rel(t ), which is given by Eq. (2.40):

sinαqs
B (t ) =

{
0, for t ≤ 0,

u̇B;y

|WB;rel(t )| , for t > 0.
(2.63)

The change in the angle of attack resulting from the pitch motion depicted in Figure 2.13(b)
is twofold. First, the changing pitch angle immediately changes the angle of attack of the
effective airflow velocity. In addition, the imposed velocity in the local yB direction at the
three-quarter chord point results in an additional heave contribution. Defining the pitch
rotation β̇̇β̇βB(t ) around the point zB;β as

β̇̇β̇βB(t ) =
{

0, for t ≤ 0,
β̇BeB;r , for t > 0,

(2.64)

the instantaneous angle of attack can be obtained from Eq. (2.44):

sinαqs
B (t ) ≈

{
0, for t ≤ 0,

sinβB(t )+ ( 1
2 bB − zB;β

) β̇B(t )
|WB;relt| , for t > 0.

(2.65)

Here, it should be noted that the pitch motion affects the relative inflow velocity too. If the
amplitude of the motion remains small, the relative inflow velocity could be approximated
with the effective inflow velocity, which does not account for the structural motion.

For instantaneous angles of attack, resulting form a step change in the pitch velocity,
the non-stationary bound circulation can be expressed in terms of the Wagner’s function
ΦW(τ):

ΓΓΓns
B;b(τ) =πcB

∣∣WB;rel(τ)
∣∣sinαqs

B (τ)ΦW(τ)eB;r . (2.66)

For small variations of the angle of attack, the non-stationary bound circulation can be
approximated as

ΓΓΓns
B;b(τ) ≈πcB

∣∣WB;eff
∣∣αqs

B (τ)ΦW(τ)eB;r . (2.67)

The Wagner’s function is obtained from the inverse Laplace transform of the Theodorsen’s
function C (k) [185]. Given the inconvenience of the Wagner’s function in practical appli-
cations, the function has been approximated in algebraical terms [210], and employing
exponential expressions [211, 212]:

ΦW(τ) ≈ 1− 2
τ+4 , for τ> 0, (2.68)

or

ΦW(τ) ≈ 1−Ψ1e−η1τ−Ψ2e−η2τ, for τ> 0. (2.69)
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Table 2.1: Coefficients of the approximated indicial Wagner’s function.

coefficient Wagner’s functionΦW(τ) [212]
Ψ1 0.165
Ψ2 0.335
η1 0.0455
η2 0.3

The coefficients of the double time-lag approximation, Eq. (2.69) have been defined for
aerofoils with various aspect ratios. Table 2.1 presents the coefficients that are applicable
under the thin aerofoil assumption.

Figure 2.18 presents both the algebraic and the exponential approximations of the
Wagner’s function. The initial value of the Wagner’s function isΦW(0) = 0.5, implying that
half of the bound circulation develops instantaneously after the step change in the angle
of attack. The Wagner’s function converges to 1.0 as τ→∞. The exponential expression,
Eq. (2.69), approximates the Wagner’s function best, whereas the Eq. (2.68) agrees within
two percent with the Wagner’s function over the entire range of τ.
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Figure 2.18: Approximations of Wagner’s indicial function.

The bound circulation of an arbitrarily oscillating aerofoil can be obtained from the
Wagner’s function by means of the Duhamel integral:

ΓΓΓns
B;b(τ) =πcB

∣∣WB;eff
∣∣{ΦW(τ)αqs

B (0)+
∫ τ

0
ΦW(τ− τ̃)

∂α
qs
B (τ̄)
∂τ̃ dτ̃

}
eB;r , (2.70)

for τ≥ 0. τ̃ is a dummy variable, required for the convolution integral. It should be noted
that this expression is derived with the assumption that the variations in the structural
motion are small compared to the effective inflow velocity.

2.3.6. INCIDENT AIRFLOW VARIATIONS
Theodorsen addressed the lift force on an oscillating aerofoil with a time-invariant in-
cident airflow. The Theodorsen’s function is not necessarily applicable for a stationary
moving aerofoil with time-varying inflow conditions. Particularly for high-frequency in-
flow variations, the instantaneous angle of attack along the length of the aerofoil chord is
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non-uniform and the Theodorsen’s and Wagner’s function are not applicable for the anal-
ysis of the non-stationary aerodynamic forcing. For analyses in the frequency-domain,
the Sears’s function was derived on the basis of the potential flow theory [213]. As for
the oscillating aerofoil, a time-domain equivalent was derived in the form of an indicial
function. This time-domain equivalent is known as the Küssner’s function [184]. Both
the Sears’s and the Küssner’s functions address the non-stationary aerodynamic forcing
for a lateral, or gust-like, airflow variation, i.e., a variation of the inflow conditions in the
local y −B direction of the aerofoil depicted in Figure 2.8. As an extension of the theory,
Leishman [182] considered a variation of the effective inflow in the local zB axis too.

FREQUENCY-DOMAIN INCIDENT AIRFLOW VARIATIONS

Figure 2.19 shows an aerofoil exposed to the constant effective wind velocity WB;eff in the
local zB direction and a harmonically varying airflow velocity in the local yB direction:

wB;y (zB, t ) = w̄B;y e
i
(
ωwt−2π

zB
λw

)
eB;y , (2.71)

with the amplitude of the oscillation w̄B;y , the frequency of oscillation ωw and the corre-
sponding wavelength λw. Regarding the harmonically varying airflow, two scenarios can
be distinguished. First, the wavelength of the oscillation can be large, i.e. λw À bB. In this
situation, which is depicted in Figure 2.19(a), the airflow variation over the length of chord
is almost linear, or even constant. Hence, the Theodorsen’s function can be expected
to describe the non-stationary lift force relatively well. For λw ∼ bB, the airflow varies
strongly over the length of the chord and Theodorsen’s derivations cannot any longer be
expected to be valid. This scenario is depicted in Figure 2.19(b).

(a) (b)

Figure 2.19: Schematic representation of an aerofoil exposed to a harmonically varying lateral inflow, with (a)
the wave length of the lateral inflow much larger than the semi-chord length, and (b) the wave length of the
lateral inflow in the same order of magnitude as the semi-chord length.

Von Karman [213] analyzed the aerodynamic forcing on an aerofoil in non-uniform
motion. In this study, the mid-chord point was chosen as a reference. The local yB axis,
however, was located at the leading edge of the aerofoil, see Figure 2.20, introducing the
phase shift kw in the harmonically varying airflow:

kw = 2π bB
λw

. (2.72)

This wavelength-dependent phase shift is referred to as the reduced frequency for a
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Figure 2.20: Schematic representation of an aerofoil with the origin of the local frame of reference positioned at
the leading edge.

harmonically varying airflow. Estimating the quasi-stationary angle of attack as

α
qs
B (t ) ≈ w̄B;y

|WB;eff|eiωwt , (2.73)

the non-stationary lift coefficient can be approximated with the application of the Sears’s
function S(kw):

C ns
B;L(kw) ≈ 2πS(kw)

w̄B;y

|WB;eff|eiωt . (2.74)

An exact expression of the Sears’s function can be given in terms of the Theodorsen’s
function C (kw), with the phase shift kw replacing the reduced frequency k:

S(kw) = {J0(kw)− iJ1(kw)}C (kw)+ iJ1(kw), (2.75)

where J0(kw) and J1(kw) are Bessel’s functions of the first kind.
Similarly to the Theodorsen’s function, the Sears’s function affects both the amplitude

and the phase of the lift coefficient with respect to the quasi-stationary lift. This is
illustrated by Figure 2.21, which shows the Sears’s function for four typical reduced
frequencies, kw = 0.05,0.2,0.5 and 1.0. The figure presents the oscillations S(k)ekwτ

against the quasi-stationary Sears’ function. Contrarily to the Theodorsen’s function, the
amplitude reduction does not converge to a constant value for an increasing kw. For the
lower values of kw, a phase lag between the Sears’s and the quasi-stationary oscillations
can be observed, as shown in Figures 2.21(a), (b) and (c). The oscillation depicted in
Figure 2.21(d), however, shows a positive shift in phase for kw = 1.0, with respect to the
quasi-stationary oscillation.

The amplitude and phase shift of the Sears’s function are depicted as a function of
the reduced frequency kw in Figure 2.22. The amplitude of the Sears’s function decreases
for an increasing reduced frequency, and converges to zero. The phase angle initially
shows phase lag slightly smaller than 15 degrees for kw ≈ 0.2, after which the phase shift
increases and converges asymptotically to kw − π

4 . This reduced frequency dependency
counteracts the wavelength dependency of the airflow oscillation at the mid-chord point,
so that the actual phase shift converges to −π

4 . For small reduced frequencies, k = kw < 0.1,
the Theodorsen’s and Sears’s function behave similarly.

Likewise for the Theodorsen’s function, the variation of the lift coefficient resulting
from an oscillating angle of attack is determined for the Sears’ function, as presented in
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Figure 2.21: Illustrations of the Sears’s function against the quasi-stationary Sears’s function, with (a) the reduced
frequency k = 0.05, (b) the reduced frequency k = 0.2, (c) the reduced frequency k = 0.5, and (d) the reduced
frequency k = 1.0.
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Figure 2.22: Amplitude and phase angle of the Sears’s
function as a function of the reduced frequency.

Figure 2.23: Variation of the lift coefficient for an-
gle of attack oscillations for a variation of reduced
frequencies, obtained with the Sears’s function.
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Figure 2.23. The figure is created on the basis of an angle of attack oscillation given by
Eq. (2.61), with ᾱB = 4 degrees and∆αB = 3 degrees. The amplitude and phase shift effects
of the non-stationary lift coefficent can again clearly be distinguished. The variation for
kw = 0.05 is very similar to the variation of the lift coefficient of an oscillation aerofoil with
k = 0.05, see Figure 2.17. The comparison of the Figures 2.16 and Figures 2.22 already
hinted towards this finding. For higher reduced frequencies, kw = 0.2 and kw = 0.5, a
substantial amplitude reduction and phase shift can be observed.

-0.2 0 0.2 0.4 0.6 0.8 1
real part [-]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

im
ag

in
ar

y 
pa

rt
 [

-]

Theodorsen's function Sears's function

Figure 2.24: Comparison of the Theodorsen’s and Sears’s functions.

A comparison between the real and imaginary parts of the Theodorsen’s and Sears’s func-
tions is presented in Figure 2.24. Both functions are presented for reduced frequencies
in the range 〈0.0,10.0]. Again, it is shown that for reduced frequencies k = kw < 0.1, both
functions behave similarly. Considering the Theodorsen’s function, the real part decreases
for an increasing k and converges to a value of 0.5. The imaginary part first reduces until
k ≈ 0.2 and than increases and converges to zero. These observations correspond to
the amplitudes and phase shifts presented in Figure 2.16. The Sears’s function shows
the sign change of the imaginary part for an increasing reduced frequency, which corre-
sponds to the positive phase shift that was visible Figure 2.22. For large values of kw, the
Sears’s function converges spirally to zero. This shape only occurs when the harmonically
varying airflow velocity is referenced to the mid-chord point, and as a result contains a
reduced frequency-dependent phase shift. If the airflow is referenced to the leading edge,
with zB = 0 according to Figure 2.19(c), the shape of the Sears’s function is similar to the
Theodorsen’s function, and both the real and imaginary parts converge to zero.



2

68 2. BASIC PRINCIPLES OF ROTOR AERODYNAMICS

TIME-DOMAIN INCIDENT AIRFLOW VARIATIONS

The Wagner’s function is not valid for the analysis of the development of the bound
circulation after a step change in the airflow conditions. Figure 2.25 shows how an aerofoil
cuts with a velocity WB;rel(t) through a gust, so that the aerofoil experiences the flow
velocity wB;y (zB, t) in the local yB direction, along the length of the chord. Locating
the local yB axis at the leading edge of the aerofoil, this vertical velocity profile can be
described as follows:

wB;y (zB, t ) =
{

0, for τ< z
bB

,
wB;y eB;y , for τ≥ z

bB
.

(2.76)

For τ≥ 2, the aerofoil is exposed to a uniform flow velocity wB;y in the local yB direction
along the chord length, and the angle of attack can be expressed as:

sinαqs
B (t ) = wB;y (t )

|WB;rel(t )| . (2.77)

Here, the relative inflow velocity WB;rel(t ) is composed of WB;eff and wB;y (t ) and no aerofoil
motion is assumed.

Figure 2.25: Schematic representation of an aerofoil exposed to a step change in the lateral inflow velocity.

If the gust velocity is small compared to the effective inflow velocity, the angle of attack
can be approximated as

α
qs
B (t ) ≈ wB;y (t )

|WB;eff| . (2.78)

Assuming that the effective inflow velocity is much larger than the vertical gust velocity,
the non-stationary bound circulation can be expressed in terms of the Küssner function
ΦK(τ):

ΓΓΓns
B;b(τ) =πcB

∣∣WB;rel(τ)
∣∣sinαqs

B (τ)ΦK(τ)eB;r . (2.79)

For small variations of the angle of attack, the non-stationary bound circulation can be
approximated as

ΓΓΓns
B;b(τ) ≈πcB

∣∣WB;eff
∣∣αqs

B (τ)ΦK(τ)eB;r . (2.80)

Sears and Sparks [214] suggested to define the Küssner’s function, which relates to the
inverse Laplace transform of the Sears’ function, in similar terms as the exponential
approximation of the Wagner’s function:

ΦK(τ) ≈ 1−Ψ1e−η1τ−Ψ2e−η2τ, for τ> 0, (2.81)
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with the coefficients for a thin aerofoil given in Table 2.2. An algebraic approximation was
presented by Bisplinghoff et al. [184]:

ΦK(τ) ≈ τ2+τ
τ2+2.82τ+0.80

, for τ> 0. (2.82)

Figure 2.26 illustrates both Küssner’s function approximations. Contrarily to the Wagner’s
function, the initial value of the Küssner’s function isΦK(0) = 0. The Küssner’s function
converges to 1.0 as τ→∞.

Table 2.2: Coefficients of the approximated indicial Küssner’s function.

coefficient Küssner’s functionΦK(τ) [214]
Ψ1 0.5
Ψ2 0.5
η1 0.13
η2 1.0
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Figure 2.26: Approximations of Küssner’s indicial function.

With the application of the angle of attack in accordance with Eq. (2.78) and the Küssner’s
function, the non-stationary bound circulation for arbitrary variations of the wind velocity
in the local yB direction is obtained from

ΓΓΓns
B;b(τ) =πcB

{
ΦK(τ)wB;y (0)+

∫ τ

0
ΦK(τ− τ̃)

∂wB;y (τ̄)
∂τ̃ dτ̃

}
eB;r , (2.83)

for τ≥ 0.
Due to the assumptions that both the structural motion and the gust velocity are small

compared to the effective flow velocity, Eqs. (2.70) and (2.83) are linear functions of these
time-variations and the combined non-stationary bound circulation can be obtained by
means of superposition. Dropping this assumption implies, that both the angle of attack
and the bound circulation should be determined on the basis of the time-dependent
relative flow velocity WB;rel(t ):

WB;rel(t ) = WB;eff(t )+wB;y (t )− u̇B;y (t )− ( 1
2 bB)− zBβ

)(
eB;z × β̇̇β̇βB(t )

)
. (2.84)
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The effective flow velocity WB;eff(t) is here expressed as a function of time, because its
orientation in the yBzB plane is affected by the pitch angle βB(t ).

With the application of WB;rel(t) in accordance with Eq. (2.84), the angle of attack
depends non-linearly on both the structural motion and the gust velocity. As a conse-
quence, the non-stationary flow cannot be separated into linear components and the
combined non-stationary bound circulation cannot be determined on the basis of the
indicial Wagner and Küssner functions.

TIME-DOMAIN EFFECTIVE INFLOW VARIATIONS

So far, only variations in the local yB direction were considered, while the effective inflow
in the local zB direction was assumed constant in time. With the application of helicopter
aero-elasticity, Leishman [182] considered the non-stationary aerodynamic forcing for a
time-variant effective inflow too. Such time-variations can result from a non-stationary
rotational velocity of the rotor and oscillations in the wind velocity. As a result of the
time-varying effective inflow velocity, the convection speed of the shed wake is no longer
constant.

If the direction of this time-dependent effective airflow velocity is assumed to be
time-invariant, the non-stationary bound circulation can be expressed in terms of the
instantaneous downwash3 WB;y (t ):

WB;y (t ) = ∣∣WB;eff(t )
∣∣sinαqs

B (t ). (2.85)

Here, the contributions of plunging and pitching motions could be included in the defini-
tion of the instantaneous downwash as well. On this basis, the bound circulation can be
expressed as

ΓΓΓns
B;b(τ) =πcB

{
ΦW(τ)WB;y (0)+

∫ τ

0
ΦW(τ− τ̃)

∂WB;y (τ)
∂τ̃ dτ̃

}
×eB;z . (2.86)

The non-stationary bound circulation is here expressed in terms of the Wagner’s function,
while the non-stationarity may result from both instantaneous aerofoil motions and
gradual variations in the wind velocity. This implies that the varying inflow velocity is
effectively replaced by a structural oscillation in the local zB direction. Strictly speaking,
this approach is inly valid for inflow variations with long wave lengths, compared to the
blade geometry.

Van der Wall and Leishman [215] illustrated the applicability of Eq. (2.86) in a com-
parison with a number of alternative models [32, 181, 216, 217]. It was also observed that
for the analysis of inflow variations with long wave lengths in the frequency domain, the
Theodorsen’s function can be applied to predict the resulting lift forces.

2.3.7. VISCOUS FLOW ANALYSIS
Contrarily to inviscid flows, shear stresses develop within viscous flows, resulting in
friction forces on the aerofoil. As a result, a boundary layer develops around an aerofoil in

3The term ‘downwash’ is borrowed from the field of aeronautics, where it refers to the change in direction of
the airflow, which is deflected by an aerodynamic action of an airfoil, wing or blade in motion, as part of the
process of producing lift.
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an airflow, within which the flow velocity decreases to zero towards the aerofoil surface.
The resulting friction force on the aerofoil, which is referred to as skin-friction drag,
depends on the Reynolds number of the flow and the roughness of the aerofoil surface,
which dictate the thickness of the boundary layer and the characteristics of the flow within
this layer.

Assuming a thin aerofoil and a very small angle of attack, it can be shown that the
flow in the boundary layer starts out from the leading edge as laminar [179]. Towards the
trailing edge, a transition to a turbulent flow occurs and the thickness of the boundary
layer increases. The resulting skin-friction drag depends on the location of the transition
along the length of the chord, determining the contribution of the skin friction from the
laminar flow and the skin friction from the turbulent flow.

The boundary layer flow around an aerofoil first experiences an increase in velocity,
resulting in a reduction of the pressure. Because of the friction, the pressure in the
flow increases and the flow velocity decreases, until the point a negative flow velocity
should occur. At this point, the flow separates from the aerofoil surface, forming a vortex
travelling towards the trailing edge, and inducing a zone with a lower pressure than the
pressure that would exist in an attached flow. For non-zero angles of attack, the separation
occurs at the side of the aerofoil with the longest travelling distance of the flow, inducing
in a pressure difference between both sides of the aerofoil. The force resulting from the
integrated pressure along the aerofoil surface is referred to as pressure drag, or form drag.

For small angles of attack, the total drag is governed by friction, the resulting force of
which is relatively small for aerofoil-shaped cross-section and independent of the angle
of attack, whereas for large angles of attack the pressure drag becomes dominant, and the
force increases steeply with an increase in the angle of attack. The total drag force F̄B;D(t )
is generally expressed as follows:

FB;D(t ) = 1
2ρcBCB;DWB;rel(t )

∣∣WB;rel(t )
∣∣ . (2.87)

The drag coefficient CB;D expresses the combined contribution of friction drag and pres-
sure drag, which is determined empirically, and depends on the Reynolds regime and the
temperature. In a non-stationary airflow, the boundary layer needs to adapt continuously,
implying that the drag coefficient cannot be considered constant in time. Provided that
the flow remains attached to most of the aerofoil surface, however, the contribution of
the drag force to the total aerodynamic forcing is small, and the drag coefficient can be
assumed to be independent of time and the drag force to react instantaneously to changes
in the flow conditions.

The separation of the flow, having vortices shed from the trailing edge, results in a
drop in the bound circulation and the lift force. This development of stall is a transient
process, as the vorticity generated at the separation point is not immediately shed from
the trailing edge, implying that the bound circulation does not drop immediately after an
increase in the angle of attack forces the flow to separate. As a consequence, the lift force
initially keeps increasing after the angle of attack exceeds the limit of static stall, showing
a steep drop once the stall is completely established [35]. Multiple semi-empirical models
have been developed to describe the non-linear relation between the lift coefficient and
the angle of attack [218–221].
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2.3.8. THREE-DIMENSIONAL FLOWS
The models presented in this section, describe the two-dimensional aerodynamic forcing
on an aerofoil cross-section, based on the inflow velocity perpendicular to the longitudinal
blade axis. For actual rotor blades the two-dimensional flow is disturbed because of the
finite blade length, with a vortex being shed from the tip. Moreover, radial flows are
induced because of the expansion of the wake and the trailed vorticity from the varying
bound circulation along the blade span. Non-axial components of the ambient wind field
contribute to the three-dimensional airflow as well.

The assumption of two-dimensional flows agrees with the assumed independent
annuli of the blade element-momentum theory. Leishman [40] argued, based on experi-
mental work [222, 223] that for below-stall angles of attack, the principle of independent
annuli is justified, whereas the onset of dynamic stall was observed at a higher angle
of attack for flows acting under a sweep angle, inducing a radial flow. On this basis,
Leishman and Beddoes [218] developed a model to predict the dynamic stall under three-
dimensional sweep.

Lorber et al. [224] investigated the dynamic stall of an oscillating finite blade, both
swept and unswept. It was observed the assumption of independent annuli is justified on
the inboard portion, allowing for the analysis of the two-dimensional flow. At the blade
tip, however, the tip vortex was shown to reduce the effective angle of attack, inducing a
delay in the onset of dynamic stall. This effect was stronger for the unswept blade than
for the swept blade.



3
ROTATING BLADE ANALYSIS

Existing models for the analysis of offshore wind turbines account for the aerodynamic
action on the turbine rotor in detail, requiring a high computational price. When consid-
ering the foundation of an offshore wind turbine, however, a reduced rotor model may be
sufficient. To define such a model, the significance of the non-linear velocity and history
dependency of the aerodynamic force on a rotating blade should be known. Aerodynamic
interaction renders the dynamics of a rotating blade in an ambient wind field non-linear
in terms of the dependency on the wind velocity relative to the structural motion. Moreover,
the development in time of the aerodynamic force does not follow the flow velocity instanta-
neously, implying a history dependency. In addition, both the non-uniform blade geometry
and the aerodynamic interaction couple the blade motions in and out of the rotational
plane. Therefore, this chapter presents the Euler-Bernoulli formulation of a twisted rotat-
ing blade connected to a rigid hub, excited by either instantaneous or history-dependent
aerodynamic forces. On this basis, the importance of the history dependency is determined.
Moreover, to assess the non-linear contributions, both models are linearized. The structural
response is computed for a stand-still and a rotating blade, based on the NREL 5-MW
turbine. To this end, the model is reduced on the basis of its first three free-vibration mode
shapes. Blade tip response predictions, computed from turbulent excitation, correctly ac-
count for both modal and directional couplings, and the added damping resulting from the
dependency of the aerodynamic force on the structural motion. Considering the deflection
of the blade tip, the history-dependent and the instantaneous force models perform equally
well, providing a basis for the potential use of the instantaneous model for the decoupled
modelling of the rotor and the support structure. The linearized instantaneous model
provides similar results for the rotating blade, indicating its potential application for this
scenario, and allowing for the definition of an added damping matrix, applicable for the
dynamic analysis of rotating turbine blades.

This chapter represents an adaptation of Van der Male et al. [225]
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W ITH the enhanced interest in renewable energy, the development of offshore wind
power has soared. The forces on offshore wind turbines mainly result from environ-

mental interactions – aerodynamic and hydrodynamic – which are coupled through the
response of the structure. The coupled analysis requires an integrated model, accounting
for the rotor, nacelle assembly, tower and foundation. Available commercial and academic
software codes allow for a detailed analysis of the aerodynamic interaction [133].

A detailed integrated analysis of offshore wind turbines comes with a high computa-
tional price. In order to reduce the complexity of the integrated models, recent research
has focussed on the reduction of the foundation structure [12, 149, 155]. As an alternative,
models can be developed with a reduced rotor representation, in particular when the
engineering focus is on the foundation of the structure. This would require a simplified
rotor model, accounting for the aerodynamic forcing that results from the operational
state. Such a rotor simplification cannot account in full detail for the non-linear velocity
and history dependency of the aerodynamic interaction. The question rises to what extent
these interaction characteristics are of importance for the preliminary integrated analysis
of offshore wind turbines.

The aerodynamic interaction models for turbine blades stem from preceding devel-
opments in the aircraft industry [32, 212, 215, 218, 226]. Larsen et al. [221] presented an
overview of aerodynamic models for wind turbine application, valid for the lower flow
velocities. In case of unsteady aerodynamics, either through a non-stationary flow or
structural motion, a change in the angle of attack results in a brief separation of the flow
until again a wake equilibrium – that is, an aerodynamic equilibrium of the near wake
behind the trailing edge of the aerofoil – is found, thus delaying the transition to a new
aerodynamic state. Hansen et al. [219] presented a modified Beddoes-Leishman model
[182], with which experimental data derived for attached-flow conditions was predicted.
This model expresses the history dependency in terms of aerodynamic states, through
which a delay in the development of the aerodynamic coefficients – lift and drag – is
established. Different history-dependent aerodynamic force models have been applied in
the study on aero-elastic instabilities of wind turbine blades [227–231].

In many cases, the aerodynamic interaction is described by means of an instantaneous
force model [34, 35, 232]. Such a model neglects the disturbance of the near wake and the
consequent delayed development of the new aerodynamic equilibrium. The validity of
this approach can in principle be assessed on the basis of the reduced frequency, a non-
dimensional parameter relating the period of the blade oscillations to the time required
for the air flow to travel across the blade chord [183]. The air flow velocity of wind turbine
blades varies along the length of the blade, and so does the reduced frequency. Moreover,
the contribution of the structural motion to the relative air flow velocity is not known
beforehand. Consequently, the history dependency of the aerodynamic interaction of
wind turbine blades cannot straightforwardly be determined.

This chapter addresses the aerodynamics of a single rotating blade, with the purpose of
assessing the significance of the non-linear velocity and history-dependent aerodynamic
interaction. The blades of a wind turbine are large, flexible and non-uniform elements,
twisted along their length. This implies that the flexural modes of vibration are not easily
defined, and, moreover, cannot be described within one plane. Given the environmental
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conditions, the rotational speed can be adjusted, which affects the centrifugal stiffening.
To control the aerodynamic interaction, the blades can be pitched towards or away from
the direction of the wind. As a result, the coupling between the motions in and out of
the plane of rotation depends on the operational state, implicitly affecting the natural
frequencies and the modal shapes of the blade. Moreover, added damping and mass are
introduced as a result of the aerodynamic interaction, through which the in-plane and
out-of-plane blade motions are coupled. Given the nature of the aerodynamic interaction,
this coupling is non-linear.

A geometrically linear model of a twisted non-uniform aerofoil is derived and the true
undamped modes corresponding to different operational states are obtained by means
of the finite element method. The structural and aero-elastic properties of the blade
are based on the conceptual NREL 5MW turbine [172]. Subsequently, an instantaneous
and a history-dependent aerodynamic force model are defined, accounting for the de-
pendency on the structural motion of the turbine blade. These non-linear aerodynamic
models, which are restricted to attached flows, couple the blade motions in and out
of the rotational plane. After expanding and truncating the response, by means of the
Galerkin decomposition, added damping and the modal and directional coupling are
assessed for both a stand-still and a rotating aerofoil on the basis of linearized aerody-
namic models. To this end, frequency-response functions of the blade tip motions are
computed, which either include or exclude the contribution of aerodynamic interaction
terms. Subsequently, the relevance of the non-linear velocity and history dependency of
the aerodynamic interaction is assessed. In a previous preliminary study, the coupled
non-linear system was analyzed with the help of a Volterra series expansion [233]. In this
chapter, the full non-linear response is determined for a turbulent wind signal on the
basis of a Kaimal turbulence spectrum, using time integration on the basis of an explicit
Runge Kutta scheme. By comparing the blade tip motions derived with the non-linear and
the linearized models, the influence of the non-linear velocity and history dependency of
the forcing on the structural response is addressed.

3.1. ROTATING BLADE MODEL

3.1.1. ROTATING BEAM MODELLING
Numerous examples of the free-vibration analysis of rotating beams can be found in
literature. Many of those have focussed on the linear motion of a uniform Euler-Bernoulli
beam [234–241], or a Timoshenko beam [242–245]. Most works are limited to motion
either in or out of the rotational plane, while some have specifically addressed the flexural-
flexural coupling [234, 242, 245], the flexural-axial coupling [237, 239, 240, 244, 246] –
introducing the Coriolis effect – or the flexural-torsional coupling [247]. Apart from
uniform beams, many studies have focussed on tapered beams [235, 238, 245, 248, 249]
or non-uniform beams with an axial twist or asymmetrical cross-section [245–247]. The
finite element method has frequently been adopted to derive the natural frequencies
and the modal shapes [234, 235, 239, 240, 242, 245, 248], while the Galerkin expansion
is a commonly applied method too, to assess the dynamic response of the system [236,
237, 245–247, 250]. Some works particularly focussed on the application of alternative
approaches such as the direct stiffness method and the extended power series method
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[238, 243, 249]. The effect of geometrical non-linearities has been included in a number of
studies [247, 250–252], where perturbation methods and non-linear normal modes were
used to analyze the dynamic behaviour of such beams. Some authors have specifically
focussed on the modelling of a helicopter blade [253, 254], providing a basis for the
derivation of the equation of motion of rotating wind turbine blades [232, 255].

3.1.2. MODEL DEFINITION
The adopted model is illustrated in Figure 3.1. The blade of radius R is defined in the
rotating global frame of reference rBYBZB, defined by the unit vectors eB;r, eB;Y and eB;Z,
within the fixed global frame of reference XRYRZR, with YR = YB (Figure 3.1(a)). The rB

axis coincides with the longitudinal axis of the blade. The rotation is expressed by the
vectorΩR(t ) =ΩR;Y (t )eB;Y , implying a clockwise rotation round the YB axis. The blade is
fixed to a rigid hub with radius rH. Figure 3.1(b) depicts a blade cross-section at rB, with
chord width cB. For each cross-section, the principal axes are defined by the local rB yBzB

coordinate system, where the principal axes vary with twist βB;0(rB) about the rB axis.
Furthermore, the blade can be pitched, introducing a pitch βB(t ), which is constant along
rB, but can vary in time, in addition to βB;0(rB). It should be noted that the definition of
the positive angles βB;0(rB) and βB(t ), as indicated in Figure 3.1(b), does not correspond
to the right-hand rule sign convention.

Regarding the control of the blade, both the rotational speed and the pitch angle
are assumed to be constant in time, i.e., ΩR;Y (t) = Ω̄R;Y and βB(t) = β̄B, with the bar
indicating that the mean value is adopted. The amplitudes of vibration are assumed to
be sufficiently small, justifying a geometrically linear analysis. This also implies that the
centrifugal stiffening, resulting from the rotation of the beam, does not vary during the
vibration. Furthermore, cross-sections under deformation are assumed to remain plane
and normal to the neutral axis, i.e., the beam is assumed to satisfy the Euler-Bernoulli
theory. Similar models have been presented by Rao and Gupta [245] and Lin et al. [246],
the former addressing a free-vibration analysis of a non-uniformly twisted non-prismatic
rotating Timoshenko beam, and the latter studying the Green’s functions of a rotating
Euler-Bernoulli beam with an elastic root and a tip mass.

3.1.3. EQUATIONS OF MOTION
The equations of motion are defined in the global rotating rBYBZB reference frame; the
deformation vector uB(rB, t) defines the local deflection uB;Y (rB, t) in YB direction and
the local deflection uB;Z (rB, t ) in ZB direction:

uB(rB, t ) =
uB;r (rB, t )

uB;Y (rB, t )
uB;Z (rB, t )

 . (3.1)

In the remainder of this chapter, the YB and ZB direction will be indicated as out-of-plane
and in-plane, respectively, referring to the plane of rotation. Since the model is restricted
to flexural motion, uB;r (rB, t ) equals zero for all rB. The strain energy UB(t ) of the rotating
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(a) (b)

Figure 3.1: The rotating blade model, with (a) the global configuration of the rotating beam and (b) the local
configuration of an arbitrary cross-section.

beam can be expressed as

UB(t ) =
∫ R

rH

1
2

{
u′′

B(rB, t )
}T EIB(rB)u′′

B(rB, t )drB +
∫ R

r0

1
2

{
u′

B(rB, t )
}T PB(rB)u′

B(rB, t )drB,

(3.2)

where EIB(rB) represents the bending stiffness tensor, consisting of the rB-dependent
diagonal terms E I B;Y Y (rB) and E I B;Z Z (rB), and the cross-term E I B;Y Z (rB). The primes
indicate spatial derivatives with respect to rB. The diagonal tensor PB(rB) represents the
deflection-restoring force, i.e., centrifugal force, resulting from the rotation of the blade:

PB(rB) = Ω̄2
R;Y

∫ R

rH+rB

MB(ξ)ξdξ. (3.3)

MB(rB) is the diagonal mass matrix, with the distributed mass mB(rB) as its diagonal
entries, and ξ is a dummy variable replacing rB.

The definition of the kinetic energy TB(t ) is as follows:

TB(t ) =
∫ R

rH

1
2 {vB(rB, t )}T MB(rB)vB(rB, t )drB. (3.4)

The velocity vector vB(rB, t ) defines the local velocity of the rotating and vibrating blade:

vB(rB, t ) = Ω̄R × (
rBeB;r +uB(rB, t )

)+ u̇B(rB, t )

=
Ω̄R;Y uB;Z (rB, t )

0
−Ω̄R;Y rB

+
 0

u̇B;Y (rB, t )
u̇B;Z (rB, t )

 .
(3.5)

This formulation of the velocity accounts for both the blade deflection and the local
vibration velocity u̇B(rB, t) affecting the arm of rotation, where the overdot indicates a
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derivative with respect to time. As the analysis does not include longitudinal motions, the
entries of Eq. (3.5) in the rB direction are disregarded.

By applying Hamilton’s principle [148], the equations of motion for the beam can be
obtained:

MB(rB)üB(rB, t )+KB(rB)uB(rB, t ) = 0, (3.6)

where KB represents a 2×2 operator matrix, which results from the superposition of three
matrices:

KB(rB) = ∂2

∂r 2 EIB(rB) ∂2

∂r 2 − ∂
∂rB

PB(rB) ∂
∂rB

−GB(rB). (3.7)

The matrix GB(rB) expresses the increase in kinetic energy due to an in-plane deflection
within the geometrically linear model definition [251]:

GB(rB) =
[

mB(rB)Ω̄2
R;Y 0

0 0

]
. (3.8)

In a similar manner, Hamilton’s principle allows for the derivation of the boundary condi-
tions, which for the fixed-free blade take the form of

uB(rH, t ) = u′
B(rB, t )

∣∣
rB=rH

= 0, (3.9)

and

∂
∂rB

EIB(rB)u′′
B(rB, t )

∣∣∣
rB=R

= EIB(rB)u′′
B(rB, t )

∣∣
rB=R = 0. (3.10)

3.1.4. EIGENANALYSIS
Given the boundary conditions of Eqs. (3.9) and (3.10), the operator matrix KB is self-
adjoint. On this basis, the displacement vector uB(rB, t) satisfying Eq. (3.6) and the
boundary conditions can be expanded in an absolutely and uniformly convergent series
of eigenfunctions [148]. If ω2

B;n is the n-th eigenvalue corresponding to the n-th eigen-
function of the system uB;n(rB), the eigenvalue problem can be expressed in accordance
with Lin et al. [246]: {

KB(rB)−ω2
B;n MB(rB)

}
uB;n(rB) = 0. (3.11)

In physical terms, ωB;n and uB;n(r ) represent the n-th natural frequency and mode, re-
spectively.

The developed model is applied to describe the dynamic characteristics of a wind
turbine blade. Hereto, the structural properties of the NREL 5MW blade [172] are adopted.
This blade has a length of 61.5 m and is attached to a hub with a radius of 1.5 m. The
cross-sectional shape varies along the length of the blade to optimize the aero-elastic
performance. For the same reason, the blade twist varies from 13.3o near the hub to 0o at
the blade tip. The first three natural frequencies have been estimated with the software
program FAST as 0.70 Hz, 1.08 Hz and 2.02 Hz. The effect of rotation was not explicitly
taken into account and the coupling of the in-plane and out-of-plane motions was not
addressed.
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Since no closed-form solution for Eq. (3.11) can be found, a finite element code is devel-
oped to find the eigenvectors and eigenvalues of the model. To this end, use is made of the
model presented by Yokoyama [242]. The first three mass-normalized mode shapes are
derived for two different operational scenarios: (i) stand-still, pitched β̄B = 90o, and (ii) at
an operational rotation of Ω̄R;Y = 12.1 rpm and zero additional pitch β̄B (see Table 3.1).

Table 3.1: Operational scenarios.

scenario rotation Ω̄R;Y [rpm] pitch angle β̄B [o]
i 0 90
ii 12.1 0

Figure 3.2 presents the in-plane and out-of-plane components of the first three mode
shapes, where Figure 3.2(a) and (b) represent the in-plane and out-of-plane components
of the first mode shape, respectively. In the stand-still scenario, the component in the
in-plane direction almost exclusively represents the modal shape, with only little contri-
bution in the out-of-plane direction due to the twistβB;0(rB) of the blade, i.e., the coupling
through the bending stiffness tensor. The opposite is observed for the rotating blade, with
a larger out-of-plane component resulting from the zero-pitch β̄B. The corresponding
natural frequency increases from 0.70 Hz (scenario i) to 0.73 Hz (scenario ii). The increase
results from the centrifugal stiffening, induced by the rotation of the blade.

The second and third natural frequencies change from 1.11 Hz to 1.13 Hz, and from
2.01 Hz to 2.06 Hz, respectively. The corresponding mode shapes are depicted in Fig-
ures 3.2(c) and (d), and Figures 3.2(e) and (f). The figures again show the interchange of
the dominant modal components due to the pitching of the blade.

3.2. AERODYNAMIC INTERACTION

3.2.1. FORCE DEFINITIONS
Figure 3.3(a) depicts a cross section of the blade model subjected to a relative incident air
flow WB;rel(rB, t ) under the angle of attack αB(rB, t ). The relative incident flow velocity is
composes of the wind speed at the blade section, the rotational speed of the blade and
the structural motion. It should be noted that the definition of the positive angle of attack
αB(rB, t ), as indicated in Figure 3.3(a), contradicts the right-hand rule sign convention.

Figure 3.3(b) illustrates the drag force FB;D(rB, t ) and the circulatory lift force FB;L(rB, t ),
acting on the aerofoil. The forces act on the aerodynamic centre of the blade, which
approximately coincides with the quarter-chord point on the blade. This implies that a
change in the angle of attack does not affect the torsional moment about this point [179].
The angle of attack can be defined in terms of the so-called downwash, the relative flow
velocity WB;rel;y (rB, t) in the local yB direction. The downwash is defined at the three-
quarter chord point and serves the determination of the angle of attack [183].

The time-varying aerodynamic forces introduce a time-dependent torque about the
shear centre, inducing a torsion of the blade. Since the natural frequency of the first
torsional mode is relatively high, 5.56 Hz in case of a rigid connection at the hub, the
corresponding motion can be assumed to be quasi-static. Moreover, given the large
torsional stiffness, the amplitude of the torsional motion will be small and its effect on
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Figure 3.2: First three mode shapes, with (a) the in-plane direction component of the first mode shape, (b) the
out-of-plane component of the first mode shape, (c) the in-plane direction component of the second mode
shape, (d) the out-of-plane component of the second mode shape, (e) the in-plane direction component of the
third mode shape, and (f) the out-of-plane component of the third mode shape
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(a) (b)

Figure 3.3: Aerodynamic configuration, with (a) the definition of the angle of attack and (b) the definition of the
drag and the lift forces.

the aerodynamic interaction is therefore assumed to be small. Since the current model
does not account for the torsional motion of the blade, the downwash does not vary along
the chord length. Therefore, the downwash can be determined from the relative air flow
at the aerodynamic centre and the angle of attack can conveniently be defined at the
quarter-chord point as depicted in Figure 3.3.

3.2.2. DRAG FORCE MODEL
As described in Section 2.3.7, the drag force can be distinguished into viscous – or, skin
friction – drag and pressure drag. The current analysis is restricted to attached flows,
implying that the angle of attack is relatively small, and for which the contribution of the
pressure drag is negligible. Based on this assumption, the static drag FB;D(rB, t) can be
estimated by determining the viscous drag only:

FD(rB, t ) = 1
2ρaircB(rB)CB;D(rB)WB;rel(rB, t )

∣∣WB;rel(rB, t )
∣∣ . (3.12)

Drag coefficients of aerofoils are obtained empirically from stationary flows. Given the
dependency on the Reynolds number, Eq. (3.12) is in principle not necessarily valid
for non-stationary flow analyses. Since no alternative formulation for non-stationary
flows is available, Eq. (3.12) is used in the current analysis to model the drag force for
non-stationary flows.

3.2.3. INSTANTANEOUS LIFT FORCE MODEL
For quasi-stationary flows, is can be assumed that the Kutta condition is met instan-
taneously, when a change in the flow conditions occurs. As a consequence, the quasi-
stationary bound circulation – as described in Section 2.3.4 – can be adopted to model
the lift force acting on the aerofoil:

ΓΓΓ
qs
B;b(rB, t ) = 1

2πcB(rB)C c
B;L(rB, t )

∣∣WB;rel(rB, t )
∣∣eB;r + 1

2πcB(rB)Cα
B;L(rB, t )WB;rel;y (rB, t )eB;r

ΓΓΓ
c;qs
B;b (rB, t )+ΓΓΓα;qs

B;b (rB, t ),

(3.13)

where the lift coefficient CB;L(rB, t ) for cambered aerofoils and attached flows is expressed
in accordance with Eq. (2.33). As a consequence, the quasi-stationary bound circulation
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can be separated into a camber-dependent and an α-dependent contribution, ΓΓΓc;qs
B;b (rB, t )

andΓΓΓα;qs
B;b (rB, t ), respectively:

ΓΓΓ
qs
B;b(rB, t ) =ΓΓΓc;qs

B;b (rB, t )+ΓΓΓα;qs
B;b (rB, t ). (3.14)

The instantaneous lift force Fqs
B;L(rB, t) on a blade in a quasi-stationary inviscid incom-

pressible flow can be derived from the Kutta-Joukowski theorem:

Fqs
B;L(rB, t ) = ρair

(
WB;rel(rB, t )×ΓΓΓqs

B;b(rB, t )
)

. (3.15)

In addition, a non-circulatory lift force – or apparent inertia force – should be accounted
for. For this apparent inertia force FB;I(rB, t ), t ), the formulation presented in Section 2.3.5
is adopted:

FB;I(rB, t ) = 1
4ρπcB(rB)2ẆB;rel(rB, t ). (3.16)

The complete definition of the instantaneous aerodynamic force FB;i(rB, t ) is given by

FB;i(rB, t ) = FB;D(rB, t )+Fc;qs
B;L (rB, t )+Fα;qs

B;L (rB, t )+FB;I(rB, t ). (3.17)

3.2.4. HISTORY-DEPENDENT LIFT FORCE MODEL
To assess the history dependency of the aerodynamic interaction, a non-stationary flow
analysis is required, as addressed in Section 2.3. In the time-domain, the non-stationary
bound circulationΓΓΓns

B;b(rB, t ) can be calculated with the application of the indicial Wagner’s
and Küssner’s functions, the former of which being applicable for aerofoils oscillating in
heave and pitch and the latter for variations in the lateral inflow velocity. For a description
of these functions, reference is made to Sections 2.3.5 and 2.3.6

The bound circulation can again be separated into a camber-dependent and an α-
dependent contribution:

ΓΓΓns
B;b(rB, t ) =ΓΓΓc;ns

B;b (rB, t )+ΓΓΓα;ns
B;b (rB, t ), (3.18)

where the camber-dependent contribution is equal to the camber-dependent bound
circulation of the quasi-stationary lift force:

ΓΓΓc;ns
B;b (rB, t ) =ΓΓΓc;qs

B;b (rB, t ) =ΓΓΓc
B;b(rB, t ). (3.19)

With the application of the Wagner’s function, in correspondence with [215], the α-
dependent non-stationary bound circulatory flow for arbitrary variations in the lateral
inflow can then be derived from

ΓΓΓα;ns
B;b (r,τ) = 1

2 cB(rB)Cα
B;L(rB)

{
ΦW(rB,τ)WB;rel;y (rB,0)+

∫ τ

0
ΦW(rB,τ− τ̃)

∂WB;rel;y (r,τ̄)
∂τ̃ dτ̃

}
eB;r,

(3.20)

expressed in terms of the non-dimensional time τ= 2
cB(rB)

∫ t
0

∣∣WB;rel(rB, t )
∣∣dt , and with

ΦW(rB,τ) representing the Wagner’s function. WB;y (rB, t ) is the relative downwash, or the
relative flow velocity in the local yB direction:

WB;rel;y (rB, t ) = {
β̄̄β̄βB(rB)

}T
WB;rel(rB, t ), (3.21)
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where

β̄̄β̄βB(rB) = [
0 cos

(
β0

B(rB)+ β̄B
) −sin

(
β0

B(rB)+ β̄B
)]T

. (3.22)

Were blade pitching and torsion accounted for, the relative downwash would have to be
determined at the three-quarter chord point. Alternatively, the relative downwash can be
expressed in terms of the instantaneous angle of attack and the magnitude of the relative
inflow velocity:

sin
(
α

qs
B (rB, t )

)= WB;rel;y (rB,t )

|WB;rel(rB,t )| . (3.23)

For thin plates, the Wagner’s function can be approximated with a double time-lag func-
tion [212]:

ΦW(rB,τ) ≈ 1−
2∑

i=1
ΨW;i (rB)e−ηW;i (rB)τ, (3.24)

for τ≥ 0. ΨW;i (rB) and ηW;i (rB) are aspect-ratio dependent coefficients, accounting for
both low- and high-frequency flow separation effects [221].

The term within curly brackets of Eq. (3.20) is referred to as effective downwash. After
some mathematical manipulations and inclusion of Eq. (3.24), the non-stationary bound
circulation can be rewritten as

ΓΓΓα;ns
B;b (rB, t ) = 1

2 cB(rB)Cα
B;L(rB)sin

(
αns

B (rB, t )
)∣∣WB;rel(rB, t )

∣∣eB;r, (3.25)

where the non-stationary angle of attack is obtained from

sin
(
αns

B (rB, t )
)= (

1−ΨW;1(rB)−ΨW;2(rB)
)
sin

(
α

qs
B (rB, t )

)+ζW;1(rB, t )+ζW;2(rB, t ),

(3.26)

with the aerodynamic states ζW;i (rB, t ). The aerodynamic states ζi (rB, t ) can be obtained
from two first-order differential equations [219]:

ζ̇W;i (rB, t )+ 2
cB(rB)

∣∣WB;rel(rB, t )
∣∣( cB(rB)

2

∂
∂t (|WB;rel(rB,t )|)
|WB;rel(rB,t )|2 +ηW;i (rB)

)
ζW;i (rB, t ) =

2
cB(rB)ηW;i (rB)ΨW;i (rB)

∣∣WB;rel(rB, t )
∣∣sin

(
α

qs
B (rB, t )

)
,

(3.27)

for i = 1,2. On this basis, the history-dependent lift force Fns
B;L(r, t ) is obtained from

Fns
B;L(rB, t ) = ρair

(
WB;rel(rB, t )×ΓΓΓns

B;b(rB, t )
)

. (3.28)

The total history-dependent aerodynamic force FB;u(rB, t ) can now be composed as the
superposition of FB;D(rB, t ), Fc

B;L(rB, t ) Fα;ns
B;L (rB, t ) and FB;I(rB, t ):

FB;u(rB, t ) = FB;D(rB, t )+Fc
B;L(rB, t )+Fα;ns

B;L (rB, t )+FB;I(rB, t ). (3.29)
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3.2.5. CONSTITUENTS OF THE AIR FLOW VECTOR
The vector WB;rel(rB, t ) can be thought of as a summation of vectors:

WB;rel(rB, t ) = wB(rB, t )−vB(rB, t )

=
wB;r (t )

wB;Y (t )
wB;Z (t )

+
Ω̄R;Y uB;Z (rB, t )

0
Ω̄R;Y rB

−
 0

u̇B;Y (rB, t )
u̇B;Z (rB, t )

 ,
(3.30)

where the entries in the rB direction are disregarded, as the aerodynamic forcing is
described in the cross-sectional plane only.

The vector vB(rB, t ) is given by Eq. (3.5), and includes the rotational velocity and the
time derivative of uB(rB, t). By inclusion of this response term, the dependency of the
aerodynamic forces on the structural response, and thus the aerodynamic interaction, is
explicitly accounted for.

The drag and lift force vectors contain the absolute value of the relative inflow vector∣∣WB;rel(rB, t )
∣∣, which can be expressed as:

∣∣WB;rel(rB, t )
∣∣=√(

WB;rel;Y (rB, t )
)2 + (

WB;rel;Z (rB, t )
)2, (3.31)

with

WB;rel;Y (rB, t ) = wB;Y (rB, t )− u̇B;Y (rB, t ), (3.32)

and

WB;rel;Z (rB, t ) = Ω̄R;Y rB +wB;Z (rB, t )− u̇B;Z (rB, t ). (3.33)

The lift force vector contains the cross product eB;r ×W(rB, t ):

WB;rel(rB, t )×eB;r =
 0

WB;rel;Y (rB, t )
WB;rel;Z (rB, t )

×
1

0
0

=
 0

WB;rel;Z (rB, t )
−WB;rel;Y (rB, t )

 . (3.34)

Since axial motion is not accounted for and the aerodynamic analysis is limited to two-
dimensional flows, this rB component is omitted in the remainder of this chapter.

With reference to Eq. (3.16), the apparent inertia force depends on the relative acceler-
ation of the air flow ẆB;rel(rB, t ), which can be decomposed into

ẆB;rel(rB, t ) = ẇB(rB, t )− v̇B(rB, t ). (3.35)

Eqs. (3.31), (3.34), and (3.35) clearly show the dependency of the aerodynamic excitation
on the structural response velocity and acceleration. Furthermore, it can be concluded
that the in-plane and out-of-plane motions are coupled aerodynamically. This response
dependency of the aerodynamic forcing and the associated motion coupling, representing
the aerodynamic interaction, are non-linear.

In Section 3.3.1, the aerodynamic forces are linearized underthe assumption of small
structural motion. These linearized forces will be expressed in terms of the effective
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Figure 3.4: Reduced frequencies as functions of the relative blade length (a) for a stand-still blade (scenario i),
and (b) for a rotating blade (scenario ii). The black lines represent the transition from a quasi-instantaneous
aerodynamic force to a history-dependent aerodynamic force.

incident air flow WB;eff(t), which accounts for the wind speed and the rotational speed
only:

WB;eff(rB, t ) =
[

wB;Y (rB, t )
wB;Z (rB, t )

]
+

[
0

Ω̄R;Y rB

]
, (3.36)

consisting of components in the YB and the ZB directions only.

3.2.6. REDUCED-FREQUENCY ASSESSMENT
The instantaneous lift force model can be assumed to be valid for reduced frequencies
in the range 0 ≤ k(rB) ≤ 0.05 [182]. If k(rB) ≥ 0.05, the interaction should be considered
history-dependent and for k(rB) ≥ 0.2, a high degree of history dependency can be as-
sumed, implying that a non-stationary lift force model should be adopted. Figure 3.4
presents the reduced frequencies as a function of the relative position along the blade
for a stand-still blade (scenario i, see Figure 3.4(a)) and a rotating blade (scenario ii, see
Figure 3.4(b)). The effective incident velocity is determined on the basis of Eq. (3.36), with
a constant wind velocity of 11.4 m/s and the rotational velocity Ω̄R;Y in correspondence
with Table 3.1. As oscillation frequencies, the first three natural frequencies as derived in
Section 3.1.4 are adopted.

The reduced frequency is larger for higher oscillation frequencies and smaller effec-
tive velocities. This can clearly be seen in Figure 3.4, which shows the stand-still blade
(scenario i) to give higher reduced frequency values than the rotating blade (scenario ii).
Apart from that, the third natural frequency oscillations show the highest values.

According to the definition of history dependency, the aerodynamic interaction of the
standstill blade (scenario i) can be expected to be history-dependent or highly history-
dependent, depending on the actual frequency of oscillation. The rotating blade (sce-
nario ii), on the other hand, shows a more mixed picture. Towards the centre of rota-
tion, where the velocity due to rotation is relatively low, the interaction is bound to be
history-dependent, whereas towards the blade tip, the airflow velocity increases and the
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interaction is more quasi-instantaneous. Whether the interaction of the blade is domi-
nated by instantaneous or history-dependent aerodynamics cannot be concluded on the
basis of Figure 3.4 only. Besides, the reduced frequency as defined by Eq. (2.56) cannot be
expected to define the history dependency of the interaction accurately. The influence of
the structural motion, for instance, is not accounted for in the airflow velocity.

3.3. ANALYSIS PROCEDURE

3.3.1. AERODYNAMIC FORCE LINEARIZATION
In Section 3.1, the equations of motion of a rotating blade with a varying twist were
derived. Subsequently, in Section 3.2, two non-linear aerodynamic models were defined,
both accounting for the influence of the structural response. The resulting system con-
sists of two coupled non-linear fourth-order partial differential equations describing the
structural motion:

MB(rB)üB(rB, t )+KB(rB)uB(rB, t ) = FB(rB, t ), (3.37)

where the forcing vector FB(rB, t ) represents either the instantaneous model FB;i(rB, t ) or
the history-dependent model FB;u(rB, t ). The latter forcing depends on two aerodynamic
states, which are defined by two first-order differential equations, non-linearly coupled
with the structural response.

One objective of this study is to identify the significance of the non-linearity of the
coupled dynamic system. For this reason, a linearized representation of the forcing
equations is derived in this section. A comparison of the structural response to the
linearized and the non-linear aerodynamic interaction, presented in Section 3.4, provides
insight in the non-linear forcing contributions. The non-linear forcing is linearized with
the help of the Taylor series expansion. The forcing expressions are expanded into first-
order polynomials. In this regard, the state vectors Sqs

B (t ) and Sns
B (t ) are defined:

Sqs
B (t ) = [

{uB(t )}T {u̇B(t )}T {üB(t )}T {ẇB(t )}T {ẅB(t )}T
]

, (3.38)

and

Sns
B (t ) = [

Sqs
B (rB, t ) ζW;1(rB, t ) ζW;2(t )

]
. (3.39)

The linearization is done with respect to the mean states S̄B, for either the quasi-stationary
or the non-stationary forcing, which are defined as:

S̄B = {
Sqs

B (t ) = S̄qs
B

}
, (3.40)

or

S̄B = {
Sns

B (rB, t ) = S̄ns
B (rB)

}
. (3.41)

The aerodynamic forcing can now be expressed in terms of the deviations of the structural
motion and the wind speed, ∆uB(t) and ∆wB(t), with respect to the means, ūB(t) and
w̄B(t ). By adopting the time-varying wind speed and its time derivative as Taylor variables
as well, the Taylor expansion is developed with respect to the mean operational conditions,
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for which the mean rotational speed and pitch angle can be defined. As a consequence,
the force coefficients are time-independent. Furthermore, the force expressions can
easily be used to investigate the response to specific deviations of the mean conditions,
for instance a step excitation or a turbulence that relates to a mean wind speed. These
benefits come with a loss of accuracy of the force approximations.

The linearized approximation of the drag force model can be expressed in terms of
the perturbations ∆uB(t ) and ∆wB(t ):

FB;D(rB, t ) ≈
[

FB;D(rB, t )

∣∣∣∣
S̄B

]
+

[
∂FB;D(rB,t )
∂{u̇B(t )}

∣∣∣∣
S̄B

]
∆u̇B(t )+

[
∂FB;D(rB,t )
∂{wB(t )}

∣∣∣∣
S̄B

]
∆wB(t ). (3.42)

The first term on the right hand side of this drag force approximation represents the mean
force component, which is obtained as

FB;D(rB, t )

∣∣∣∣
S̄B

= 1
2ρaircB(rB)CB;D(rB)

∣∣W̄B;eff(rB)
∣∣[ w̄B;Y (rB)

w̄B;Z (rB)+ Ω̄R;Y rB

]
. (3.43)

The mean flow velocity in the local ZB direction, which rotates around the YR axis, could
represent the tangentially induced velocity field.

The linear dependencies on the structural motion and the wind speed variation are
expressed as[

∂FD;B(rB,t )
∂{u̇B(t )}

∣∣∣∣
S̄B

]
=−

[
∂FD;B(rB,t )
∂{wB(t )}

∣∣∣∣
S̄B

]
=

− 1
2ρaircB(rB)CB;D(rB)

∣∣W̄B;eff(rB, t )
∣∣


(
(w̄B;Z (rB)+Ω̄R;Y rB)2

|W̄B;eff(rB)|2 +1

)
(w̄B;Z (rB)+Ω̄R;Y rB)w̄B;Y (rB)

|W̄B;eff(rB)|2
(w̄B;Z (rB)+Ω̄R;Y rB)w̄B;Y (rB)

|W̄B;eff(rB)|2
(

(w̄B;Z (rB)+Ω̄R;Y rB)2

|W̄B;eff(rB)|2 +1

)
 .

(3.44)

The matrices expressing the linear dependency on the structural velocity and the wind
speed fluctuation are equal, but of different sign.

The lift force was separated into a camber-dependent and an α-dependent compo-
nent. Considering first the former, the linearized expression can be written as

Fc
B;L(rB, t ) ≈

[
Fc

B;L(rB, t )

∣∣∣∣
S̄B

]
+

[
∂Fc

B;L(rB,t )

∂{u̇B(t )}

∣∣∣∣
S̄B

]
∆u̇B(t )+

[
∂Fc

B;L(rB,t )

∂{wB(t )}

∣∣∣∣
S̄B

]
∆wB(t ), (3.45)

the mean force component of which is obtained as

Fc
B;L(rB, t )

∣∣∣∣
S̄B

= 1
2ρaircB(rB)C c

B;L(rB)
∣∣W̄B;eff(rB)

∣∣[(w̄B;Z (rB)+ Ω̄R;Y rB

−w̄B;Y (rB)

]
. (3.46)

The following matrices express the linear dependency of the camber-dependent lift force
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on the structural motion and the wind speed variation:[
∂Fc

B;L(rB,t )

∂{u̇B(t )}

∣∣∣∣
S̄B

]
=−

[
∂Fc

B;L(rB,t )

∂{wB(t )}

∣∣∣∣
S̄B

]
=

− 1
2ρaircB(rB)C c

B;L(rB)
∣∣W̄B;eff(rB)

∣∣


(w̄B;Z (rB)+Ω̄R;Y rB)w̄B;Y (rB)

|W̄B;eff(rB)|2
(

(w̄B;Z (rB)+Ω̄R;Y rB)2

|W̄B;eff(rB)|2 +1

)
−

(
(w̄B;Z (rB)+Ω̄R;Y rB)2

|W̄B;eff(rB)|2 +1

)
− (w̄B;Z (rB)+Ω̄R;Y rB)w̄B;Y (rB)

|W̄B;eff(rB)|2

 .

(3.47)

With the application of the mean state of Eq. (3.40), the α-dependent lift force is approxi-
mated as

Fα;qs
B;L (rB, t ) ≈

[
Fα;qs

B;L (rB, t )

∣∣∣∣
S̄B

]
+

[
∂Fα;qs

B;L (rB,t )

∂{u̇B(t )}

∣∣∣∣
S̄B

]
∆u̇B(t )+

[
∂Fα;qs

B;L (rB,t )

∂{u̇B(t )}

∣∣∣∣
S̄B

]
∆wB(t ) (3.48)

the mean force component of which is obtained as

Fα;qs
B;L (rB, t )

∣∣∣∣
S̄B

= 1
2ρaircB(rB)Cα

B;L(rB)W̄B;eff;y (rB)

[
w̄B;Z (rB)+ Ω̄R;Y rB

−w̄B;Y (rB)

]
, (3.49)

and the dependency on the structural motion and the wind speed variation is expressed
as [

∂Fα;qs
B;L (rB,t )

∂{u̇B(t )}

∣∣∣∣
S̄B

]
=−

[
∂Fα;qs

B;L (rB,t )

∂{wB(t )}

∣∣∣∣
S̄B

]
=− 1

2ρaircB(rB)Cα
B;L(rB)W̄B;eff;y (rB)

·
 (w̄B;Z (rB)+Ω̄R;Y rB)

W̄B;eff;y (rB)
cos

(
βB;0(rB)+ β̄B

)
1− (w̄B;Z (rB)+Ω̄R;Y rB)

W̄B;eff;y (rB)
sin

(
β(r )+βB;0

)
−1− w̄B;Y (rB)

W̄B;eff;y (rB)
cos

(
βB;0(rB)+ β̄B

) w̄B;Y (rB)
W̄B;eff;y (rB)

sin
(
βB;0(rB)+ β̄B

)
 .

(3.50)

The matrices that relate to the structural velocity constitute an added damping CB;A(rB).
The combined added damping matrix from the drag and lift force approximations is
obtained as:

CB;A(rB) =−
([

∂FB;D(rB,t )
∂{u̇B(t )}

∣∣∣∣
S̄B

]
+

[
∂Fc;qs

B;L (rB,t )

∂{u̇B(t )}

∣∣∣∣
S̄B

]
+

[
∂Fα;qs

B;L (rB,t )

∂{u̇B(t )}

∣∣∣∣
S̄B

])
. (3.51)

Given that the drag coefficient CB;D(rB) is very small, the lift component gives the domi-
nant contribution to the added damping. The matrix clearly illustrates the directional
coupling of the structural motions through the aerodynamic forces. Moreover, it should
be noted that the added damping resulting from the camber-dependent lift force consists
of a negative entry on its diagonal, potentially inducing instability. The apparent inertia
force of Eq. (3.16) was already expressed as a linear function of the wind and structural
accelerations, implying that no further linearization steps are required to approximate
this force.

The linear approximation of the non-stationary α-dependent lift force can be ex-
pressed in terms of the quasi-stationary α-dependent lift force and the aerodynamic
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states ζW;1(rB, t ) and ζW;2(rB, t ):

Fα;ns
B;L (rB, t ) ≈

(
1−ΨW;1(rB)−ΨW;2(rB)

)
Fα;qs

B;L (rB, t )

+
[
∂Fα;ns

B;L (rB,t )

∂{ζW;1(t )}

∣∣∣∣
S̄B

]
ζW;1(rB, t )+

[
∂Fα;ns

B;L (rB,t )

∂{ζW;2(t )}

∣∣∣∣
S̄B

]
ζW;2(rB, t ),

(3.52)

where Fα;qs
B;L (rB, t) is approximated in accordance Eq. (3.48) and the coefficients for the

aerodynamic states can be expressed as[
∂Fns

B;L(rB,t )

∂{ζW;1(t )}

∣∣∣∣
S̄B

]
=

[
∂Fns

B;L(rB,t )

∂{ζW;2(t )}

∣∣∣∣
S̄B

]
= 1

2ρaircB(rB)Cα
B;L(rB)

∣∣W̄B;eff(rB)
∣∣[w̄B;Z (rB)+ Ω̄R;Y rB

−w̄B;Y (rB)

]
.

(3.53)

The history-dependent lift force requires the time-dependent aerodynamic states as input.
These states can be obtained from Eq. (3.27), which after linearization reduces to

ζ̇W;i (rB, t )+ 2
cB(rB)ηWi (rB)

∣∣W̄B;eff(rB)
∣∣ζW;i (rB, t ) = 2

cB(rB)ηW;i (rB)ΨW;i (rB)WB;y (rB, t ).

(3.54)

With reference to Eqs. (3.24) and (3.54), it can be stated that forηW;i (rB) →∞, orΨW;i (rB) →
0 and ηW;i (rB) → 0, the equations of the history-dependent lift force model reduce to the
equations of the instantaneous lift force model. For step excitations ∆wB(rB, t ) =∆wB(rB)
for t > 0 s, the linearized aerodynamic states reduce to the following steady states:

lim
t→∞ζW;i (rB, t ) =ΨW;i (rB)

WB;y (rB,t )

|W̄B;eff(rB)| . (3.55)

Substitution of these aerodynamic states into Eq. (3.52), and using Eq. (3.21), gives

lim
t→∞Fα;ns

B;L (rB, t )

∣∣∣∣
S̄B

= lim
t→∞Fα;qs

B;L (rB, t )

∣∣∣∣
S̄B

− 1
2ρaircB(rB)Cα

B;L(rB)
(
ΨW;1(rB)+ΨW;2(rB)

)
W̄B;Y (rB)

[
∆wB;Z (rB)
−∆wB;Y (rB)

]
.

(3.56)

The second term on the right hand side of Eq. (3.56) results from the linearization of
the force models around the mean wind speed w̄B(rB). As a result, the linearized quasi-
stationary and non-stationary force models predict a difference between the steady-
state forces resulting from a step excitation between the two linearized models. It can
easily be demonstrated that for a step excitation the non-linear unsteady circulation
(Eq. (3.25)) eventually reduces to the non-linear instantaneous circulation, Eq. (3.13),
which should be the case, because a new stationary flow has developed. A similar analysis
shows that the non-linear instantaneous lift force, Eq. (3.15), approaches its linearized
expression, Eq. (3.48). Hence, it can already be concluded that in case of step excitations
the linearized history-dependent lift force model will perform poorer than the other
aerodynamic models.
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3.3.2. GALERKIN DECOMPOSITION
The forcing vector FB(rB, t ) depends non-linearly on the time-dependent wind fluctuation
vector wB(rB, t ), the structural response velocity vector u̇B(rB, t ) and the time derivatives of
both. Moreover, the history-dependent model includes two aerodynamic state variables,
which are governed by first-order time-variant differential equations that include the
vectors wB(rB, t) and u̇B(rB, t). In order to analyze the aerodynamic interaction, the
system of partial differential equations describing the continuous-space system is now
reduced to a system of coupled ordinary differential equations by means of the Galerkin
decomposition [148], which assumes that the response of the blade uB(rB, t) can be
expressed in terms of an infinite series of generalized coordinates qB;n(t ) associated with
the admissible functions sB;n(rB):

uB(rB, t ) =
∞∑

n=1
sB;n(rB)qB;n(t ), (3.57)

where sB;n(rB) is a vector consisting of the n-th admissible function components sB;Y ;n(rB)
and sB;Z ;n(rB) [246]. The Galerkin decomposition requires the admissible functions to
be differentiable to the order of the differential equations, and to satisfy the boundary
conditions of the system. These requirements are fulfilled by the modes uB;n(rB) of the
homogeneous system of equations, see Eq. (3.6) and Section 3.1.4, which moreover
are orthogonal with respect to the mass matrix MB(rB) and the operator matrix KB(rB).
Therefore, adopting these modes as admissible functions allows for the diagonalizing
of the MB(rB) and KB(rB) matrices. These modes, however, do not allow for the full
decoupling of system of equations of motions, because of the response dependency of
the aerodynamic excitation vector FB(rB, t ) .

Practical application of Eq. (3.57) requires truncation after a finite number of general-
ized coordinates N . The n-th equation of the system of ordinary differential equations
can be obtained by substituting Eq. (3.57) into Eq. (3.37):

N∑
n=1

MB(rB)uB;n(rB)q̈B;n(t )+
N∑

n=1
KB(rB)uB;n(rB)qB;n(t ) ≈ FB(rB, t ). (3.58)

After premultiplication with
{

uB;m(rB)
}T and integration over the length of the blade, the

m-th equation reads:

N∑
n=1

∫ R

rH

[{
uB;m(rB)

}T MB(rB)uB;n(rB)q̈B;n(t )+{
uB;m(rB)

}T KB(rB)uB;n(rB)qB;n(t )
]

drB ≈
N∑

n=1

∫ R

rH

{
uB;m(rB)

}T FB(rB, t )drB.

(3.59)

Given that the modes are mass-normalized, the modal components of Eq. (3.59) can as
follows be decoupled on the basis of the orthogonality relations:∫ R

rH

{
uB;m(rB)

}T MB(rB)uB;n(rB)drB = δmn , (3.60)
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∫ R

rH

{
uB;m(rB)

}T KB(rB)uB;n(rB)drB =ω2
B;nδmn , (3.61)

with the Kronecker delta δmn . The right-hand sides, however, remain coupled:∫ R

rH

{
uB;m(rB)

}T FB(rB, t )drB =
∫ R

rH

{
uB;Y ;m(rB)FB;Y (r, t )+uB;Z ;m(r )FB;Z (rB, t )

}
drB,

(3.62)

where it should be noted that the total structural response uB(rB, t ) is embedded in both
the forcing vector FB(rB, t ) and the aerodynamic states ζW;1(rB, t ) and ζW2(rB, t ) as well.

3.3.3. FLUCTUATING WIND
In Section 3.4, the aerodynamic interaction of the blade will first be assessed by means
of frequency-response functions. Subsequently, the structural response to fluctuating
wind signals will be analyzed, which allows for a comparison of the non-linear and the
linearized aerodynamic models. This analysis requires fluctuating wind signals, which
are derived in this section.

Determining the energy distribution of a turbulent wind field disturbed by a rotating
blade is a field of research on its own.The ambient wind field can be expressed in terms
of auto- and cross-spectra, which define the energy distribution over the turbulence
frequencies and which can be obtained from literature. These spectra allow for the
definition of a time-dependent wind field within the fixed global frame of reference.
For the analysis of the rotating blade, however, wind data as experienced by the blade
is required. On the basis of rotational sampling, turbulence spectra applicable for the
rotating frame of reference can be derived [256, 257]. Apart from the turbulence being
homogeneous and isotropic, this technique assumes the wind field to obey Taylor’s frozen
turbulence hypothesis. Moreover, it does not account for the so-called induced velocity
and the distortion of the wind field due to the presence of the blade.

For this study, some important simplifications are adopted. First of all, to define the
fluctuating wind signals, the input vector ∆wB(rB, t ) is separated in time and space:

∆wB(rB, t ) = SB;w(rB)νννB(t ), (3.63)

where SB;w(rB) is a space-dependent diagonal matrix containing the shape functions
SB;w;Y (rB) and SB;w;Z (rB). νννB(t ) is a time-dependent vector consisting of the turbulence
signals νB;Y (t ) and νB;Z (t ), representing the in-plane and out-of-plane components of the
excitation, respectively. The shape functions define the distribution of the fully coherent
fluctuating wind signals over the length of the blade. One-point time signals for the
fluctuating wind are derived in the global fixed reference frame (see Figure 3.1) from
one-sided Kaimal turbulence spectra that depend on the frequency f in Hz [35]:

SR;Y Y ( f ) = 4σ2
R;Y

LR;Y

W̄R;Y

(
1+6 f

LR;Y

W̄R;Y

)− 5
3 , (3.64)

and

SR;X X ( f ) = 4σ2
R;X

LR;X

W̄R;Y

(
1+6 f

LR;X

W̄R;Y

)− 5
3 . (3.65)
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Figure 3.5: (a) Kaimal spectra for longitudinal and lateral turbulence, and (b) time frames of wind turbulence
signals in longitudinal and lateral direction.

Here, it is assumed that the mean wind acts in the longitudinal YR direction, so that
the mean velocity in the lateral XR direction equals zero. σR;Y and σR;X represent the
standard deviations of the turbulent wind velocity, and LR;Y and LR;X are turbulent
length scales. Figure 3.5(a) visualizes these spectra for a mean wind velocity of 11.4
m/s, turbulence intensities of 10% and 8% in YR and XR directions, respectively, and the
following turbulence length scales: LR;Y = 150 m and LR;X = 0.3LR;Y . Moreover, it should
be noted that the Kaimal spectra as defined by Eqs. (3.64) and (3.65) are valid only for
frequencies larger than 0.02 Hz.

From these spectra, time signals are obtained by following a procedure described
in [258], assuming independent random phase angle distributions in both directions. A
time window of 10 s out of the turbulence signals with a total length of 1092 s is presented
in Figure 3.5(b). Hereto, a cut-off frequency of 3.0 Hz and time steps of approximately 0.03
s were adopted. The time signals are applied for the analysis of both the stand-still blade
(scenario i) and the rotating blade (scenario ii). In Section 3.2.5, it was explained that a
correct analysis requires the rotational sampling of the turbulence spectra for generating
the turbulence signals as experienced by the blade. Here, it is assumed that the YR wind
turbulence represents the experienced turbulence in YB direction and the XR turbulence
the turbulence experienced in the rotating XB direction. For a stand-still blade, pointing
upwards, this assumption represents reality quite well, but for the rotating blade the
frequency content of the experienced turbulence will be different. For instance, in the
YR direction, the low-frequency energy content will diminish and be distributed over a
sequence of peaks at each integer multiplication of the rotational frequency Ω̄R;Y . With
respect to the spatial dependency of the turbulence, uniform distributions for SB;w;X (rB)
and SB;w;Y (rB) are adopted.

It should be noted that with the direct derivation of the turbulent wind fields acting
on the blade from the Kaimal spectra, the rotor-induced wind velocity is not accounted
for. As a consequence, wind velocity acting on the blade of a rotating rotor is somewhat
overestimated. Regardig the choice for the force fluctuations resulting from wind shear or
tower shadowing could have been chosen for the analysis, alternatively. These sources of
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aerodynamic excitation, however, only apply for the rotating blade. In order to compare
the response from both scenarios, it was decided to apply the fluctuating wind signals,
mimicking an ambient turbulence field.

3.4. RESULTS AND DISCUSSION

3.4.1. LINEARIZED INSTANTANEOUS AERODYNAMIC FORCING
In the following, the frequency response of the linearized models is analyzed, to visualize
the differences in response to the instantaneous and the history-dependent force models,
and to assess the coupling of the generalized coordinates and the relevance of the added
damping. This analysis is elaborated on for both the stand-still blade (scenario i) and the
rotating blade (scenario ii). Subsequently, the fully non-linear models are analyzed on the
basis of the fluctuating wind signals in Section 3.4.3, where the level of non-linearity is
assessed, as well as the the difference in response of the instantaneous and the history-
dependent force models. In all analyses, a structural damping is added in the form of
modal damping, accounting for 1.0% of the critical damping per considered mode (or
generalized coordinate). Besides, all calculations employ a 48 node discretization of the
blade, allowing the full application of the blade definition as given in [172].

Using the linearized equations for the instantaneous aerodynamic force model, the
frequency responses for the two operational scenarios are determined. To this end, a
drag coefficient of 0.01 is adopted. Regarding lift, the blade is assumed to be symmetric,
i.e., C c

B;L(rB) = 0. The angle of attack-dependent slope of the coefficient is defined in
accordance with the thin aerofoil theory, implying that Cα

B;L(rB) = sin(αB(rB, t )). For the

air density a value of 1.25 kg/m3 is taken. The frequency response is derived on the basis
of the harmonic inputs of either νB;Y (t ) = e2πi f t , or νB;Z (t ) = e2πi f t .

Figure 3.6 presents the amplitude of the blade tip deflection for the stand-still scenario
(scenario i) – with Figures 3.6(a) and (b) representing the in-plane and out-of-plane
deflections, respectively – and the rotating scenario (scenario ii) – where Figures 3.6(c)
and (d), respectively, represent the in-plane and out-of-plane deflections. Each graph
presents the amplitude of the displacement to both in-plane and out-of-plane excitation.
This allows for assessing the extent of the coupling between the in-plane and out-of plane
motions of the blade. Furthermore, the dotted lines indicate the structural response in
absence of the aerodynamic interaction, i.e., without added damping and modal coupling,
resulting in a response that is independent of the structural motion.

Starting with the dotted lines, three peaks can be distinguished. These peaks corre-
spond with the natural frequencies as identified in Section 3.1.4. In that section, it was
also shown that for the stand-still blade (scenario i), the modal amplitudes of the first
and third modes have the largest component in the in-plane direction, while the second
mode is mostly pronounced in the out-of-plane direction. This observation is confirmed
by the frequency-response graphs, where the opposite relation between the generalized
coordinates and the direction of motion for the rotating blade (scenario ii) can be ob-
served too. Clearly, the structural response curves for excitation without aerodynamic
interaction visualize the directional coupling through the geometrical twist of the blade.

Considering next the frequency response when accounting for the aerodynamic inter-
action, the peaks can still be observed. The corresponding frequencies are lower, however,
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Figure 3.6: Amplitude of the blade tip deflection excited by a unit excitation, as predicted with the linearized
instantaneous force model, (a) for a stand-still blade (scenario i) in in-plane direction and (b) in out-of-plane
direction, and (c ) for a rotating blade (scenario ii) in in-plane direction and (d) in out-of-plane direction. The
dotted lines present the frequency responses in absence of aerodynamic interaction.

indicating the effect of the added damping and mass, as well as the influence of modal
coupling. The magnitude of most peaks has decreased, again confirming the relevance
of the added damping. When comparing the results of the rotating blade (scenario ii) to
the stand-still blade (scenario i), it can be seen that the curves of the former are much
smoother. This is a result of a larger added damping for the rotating blade, due to a
much higher relative wind velocity. In Figure 3.6(d), the out-of-plane resonance peaks
are completely absent. This curve clearly shows the influence of the added damping on
the out-of-plane motion of a rotating blade. At the same time, though, the rotating blade
does experience an amplified in-plane motion around the second natural frequency.

3.4.2. LINEARIZED HISTORY-DEPENDENT AERODYNAMIC FORCING
The history-dependent aerodynamic force model contains aerodynamic state variables
that account for the separation of the flow in the case of sudden velocity changes. These
aerodynamic state variables were derived from a double time-lag approximation of the
Wagner’s function, Eq. (3.24), containing the aspect ratio-dependent coefficientsΨW;1(rB),
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Figure 3.7: Amplitude of the blade tip deflection excited by a unit excitation, as predicted with the linearized
history-dependent force model, (a) for a stand-still blade (scenario i) in in-plane direction and (b) in out-of-
plane direction, and (c ) for a rotating blade (scenario ii) in in-plane direction and (d) in out-of-plane direction.
The dotted lines present the frequency responses in absence of aerodynamic interaction.
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ΨW;2(rB), ηW;1(rB) and ηW;2(rB). Numerical values of these coefficients for blade profiles
are not available. Instead, the approximate values for thin plates from [212] are applied,
the numerical values of which are presented in Table 3.2.

The frequency-response functions for both operational scenarios (scenario i and ii)
are given in Figure 3.7. In general, the same conclusions can be drawn as for the analysis
with the linearized instantaneous force model. The aerodynamic interaction affects the
magnitudes of the frequency peaks, which occur at a lower frequency. In comparison to
Figure 3.6, it can be noted that the shape of some peaks and dips differs somewhat. The
main difference between the results of the analyses with the stationary and the history-
dependent force models is visible in the directional coupling, and more specifically, in
the response to a static excitation. Consider, for instance, Figures 3.6(a) and 3.7(a), or
Figures 3.6(d) and 3.7(d). Such an excitation corresponds to a step excitation, as was
discussed in Section 3.3.1. As soon as a new near wake equilibrium is established, the flow
pattern round the blade remains undisturbed and the history-dependent force model
should predict similar forces as the instantaneous force model. In Section 3.3.1, it was
already demonstrated that both linearized models predict a different forcing as a result of
a step excitation. Here, this finding is confirmed by the frequency-response graphs.

Table 3.2: Coefficients for the double time-lag approximation of the Wagner’s function [212].

coefficient numerical value [-]
ΦW;1 0.165
ΦW;2 0.335
ηW;1 0.045
ηW;2 0.300

3.4.3. NON-LINEAR AERODYNAMICS
As a final step, the extent of the non-linearity of the aerodynamic models is assessed. To
this end, the blade tip response to the turbulent wind signals, as defined in Section 3.3.3, is
evaluated. The results are presented in both time and frequency domain, where the former
are obtained by means of an explicit Runge Kutta scheme. Concerning the frequency-
domain representations, the power spectral densities of the finite time simulations are
estimated on the basis of the fast-Fourier transform of the time series. These estimations
are obtained from the squared amplitude spectra, divided by the length of the time signal.

Figure 3.8 presents a 10 s time window out of the blade tip response for the stand-still
blade (scenario i) – with Figures 3.8(a) and (b) representing the in-plane and out-of-plane
deflections, respectively – and the rotating blade (scenario ii) – where Figures 3.8(c)
and (d), respectively, represent the in-plane and out-of-plane deflections. On average,
the blade tip deflection of the stand-still blade (scenario i) is close to zero. This is in
accordance with the expectations, since the drag contribution is very small and the blade
is pitched such, that the lift force is minimized. It can be seen that the in-plane blade tip
motion is governed by the first and the third natural frequencies, while the out-of-plane
motion mainly mainly takes place at the second natural frequency. This observation
logically corresponds to the eigenanalysis as presented in Section 3.1.4. Due to the
different orientation, in-plane blade tip motion of the the rotating blade (scenario ii) is
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governed by the second mode of vibration. Again, this is in line with the results of the
eigenanalysis. The rotating blade mainly deflects in negative in-plane direction and in
positive out-of-plane direction. This perfectly agrees with the definition of the lift force
in the global rotating frame of reference, see Figure 3.3, given that the flow is attached
and the lift force is much larger than the drag force. The magnitude of the deflections of
the rotating blade is in agreement with blade tip deflections found in previous studies.
For instance, Hsu and Bazilevs [187] presented and blade tip deflection of 3 to 4 m to a
constant wind velocity of 11.4 m/s and Li et al. [17] predicted a maximum out-of-plane
blade tip deflection close to 8 m and and in-plane deflection up to 1 m, based on a
turbulent wind field with an average wind velocity of 11.4 m/s. Both studies made use of
the blade characteristics of the NREL 5MW turbine. In the origonal reference document,
Jonkman et al. [172] presented blade tip deflections of approximately 5.5 m and 0.5 m, in
the out-of-plane and in-plane directions, respectively, for a stationary wind of 11.4 m/s.
These deflections are smaller than those obtained with the current model, due to the
induced wind velocity, which is neglected here.

The blade tip deflections in Figure 3.8 are obtained with the four aerodynamic models.
It is reasonable to expect that the non-linear history-dependent force model should
provide the most accurate results. Taking this model as a benchmark, the results are
now discussed in more detail. Considering first the stand-still blade (scenario i), it can
be observed that all the different model predictions are similar in terms of frequency
and phase. Deviations in vibration amplitudes, however, can clearly be distinguished.
The different aerodynamic models tend to slightly overestimate the in-plane deflection,
as predicted by the history-dependent force model – see Figure 3.8(b). On the other
hand, in out-of-plane direction, the correspondence between the history-dependent and
the instantaneous force models is very good. In general, these findings apply for the
rotating blade (scenario ii) too, for which a good match between the instantaneous and
the history-dependent force models is obtained. This match confirms the expectations
based on the reduced-frequency analysis in Section 3.2.6. Furthermore, the predictions
by the linearized instantaneous force model are relatively close to the results of both
non-linear models. Only the linearized history-dependent force model is a bit off. In both
in-plane and out-of-plane directions, Figures 3.8(c) and (d), a small deviation can be
observed, whereas Figure 3.8(d) shows a general underprediction of the deflection peaks.
The poorer performance of the linearized history-dependent force model was already
expected after the analysis of the linearized models in Section 3.3.1, where it was shown
that the lineairzed history-dependent force model converges to a different force after a
step change in wind speed than the linearized instantaneous force model, see Eq. (3.56).
The good performance of the linearized instantaneous force model for the rotating blade
(scenario i), however, provides an interesting basis for further linearized analyses of such
structural elements.

The power spectral density of the blade tip deflections for the stand-still blade (sce-
nario i) is presented in Figure 3.9, and for the rotating blade (scenario ii) in Figure 3.10.
These one-sided spectral densities are obtained from the complex-valued Fourier spectra,
generated from the time series with the application of Fourier transformation. As a result
of the random phase angle assumption in the derivation of the wind turbulence signals,
the spectral densities have a noisy appearance. For this reason, a moving root mean
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Figure 3.8: Blade tip response of a stand-still blade (scenario i), (a) in in-plane direction, and (b) in out-of-plane
direction, and of a rotating blade (scenario ii), (c) in in-plane direction, and (d) in out-of-plane direction.
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Figure 3.9: Estimated power spectral density of the blade tip deflection of a stand-still blade (scenario i), (a) in
in-plane direction, and (b) in out-of-plane direction.
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Figure 3.10: Estimated power spectral density of the blade tip deflection of a rotating blade (scenario ii), (a) in
in-plane direction, and (b) in out-of-plane direction.
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Figure 3.11: Close-up of the estimated power spectral density of the blade tip deflection of a stand-still blade
(scenario i) in in-plane direction, at (a) the first natural frequency, and (b) the third natural frequency.
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Figure 3.12: Close-up of the estimated power spectral density of the blade tip deflection of a rotating blade
(scenario ii) in in-plane direction, at the second natural frequency.
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square filter is applied to smooth out the power spectral densities.
In general, the shape of the spectral density distributions corresponds to the frequency-

response functions, as derived on the basis of the linearized models in Section 3.4.1 and
3.4.2 and presented in Figures 3.6 and 3.7. The peaks at the natural frequencies are
clearly visible, except for Figure 3.10(b), which shows the energy density of the blade
tip deflection in out-of-plane direction for the rotating blade (scenario ii). In this case
no peaks are visible – apart from a small disturbance at 1 Hz – as a result of the added
damping.

When comparing the different aerodynamic models in Figures 3.9 and 3.10, no ob-
vious differences in the locations and sizes of peaks can be distinguished. Only after
zooming in, some deviations become visible. Consider, for instance, the in-plane de-
flection of the stand-still blade (scenario i). At the first and the third frequency, Figures
3.11(a) and (b), respectively, both instantaneous models predict the peak at a slightly
lower frequency. Moreover, at the third natural frequency the instantaneous models
predict a smaller peak, as can be seen in Figures 3.11(b). From this, the differences in
the time response between the non-linear and the linearized models, as seen in Figure
3.8(a) can be explained quite well. The other most eye-catching difference is visible in the
peak at the second natural frequency for in-plane motion of the rotating blade (scenario
ii), Figure 3.12. Here, the linearized history-dependent force model clearly gives a larger
peak at a slightly smaller frequency, explaining the difference in time response in Figure
3.8(c).

In summary, no remarkable differences between the response predictions with the
instantaneous and the history-dependent force models have been observed. Most likely,
this is related to the random nature of the excitation, due to which the influence of the
delay in establishing the aerodynamic equilibrium is not pronounced in the time series of
the blade tip displacement. On the basis of the reduced frequencies, see Section 3.2.6, it
can be expected that for excitations containing energy at higher frequencies – for instance,
corresponding to tower shadowing or wind shear – the difference in model performance is
more pronounced. An analysis with rotationally-sampled turbulence spectra may amplify
the effect of the history-dependent aerodynamics too.

After linearization, the instantaneous force model still predicts a response similar
to the non-linear models. This especially applies for the rotating blade (scenario ii).
The linearized history-dependent force model, on the other hand, provides the most
deviating displacements. The explanation can be found in the choice linearize the force
models around the mean wind speed, as a result of which the linearized aerodynamic
state equations of the history-dependent force model result in a force prediction that
differs from the other force models, and thus provide poorer predictions for the blade tip
deflections in a turbulent wind field. This observation was substantiated in Section 3.3.1,
where it was shown that the linearized history-dependent force model predicts deviating
steady-state forces resulting from a step excitation, in comparison with the other models.

3.5. CONCLUSIONS
In this chapter, the aerodynamic interaction of a rotating blade with a turbulent wind
field has been investigated. The aim was to assess the non-linear velocity and history
dependency of such an interaction, as a preceding step towards the development of a
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reduced rotor model for the engineering of offshore wind support structures. To this end,
a blade with the structural characteristics of the NREL 5MW wind turbine was modelled,
accounting for the twisted geometry and rotational effects. The blade was defined as
a non-uniform Euler-Bernoulli beam, rigidly fixed to a hub and with lateral freedom
of motion in two directions. The model explicitly incorporates the rotational velocity
and the pitching of the blade, and demonstrates the directional coupling of the blade
motion, as well as the effect of added damping and modal coupling through the non-linear
aerodynamic interaction, accounting for the unsteadiness of the air flow.

With respect to the aerodynamic interaction, instantaneous and history-dependent
force models were distinguished. The former was adopted for its simplicity, whereas the
latter allowed for time delays in establishing the aerodynamic equilibrium in unsteady
flows. To this end, two additional equations were required, expressing the aerodynamic
state of the interaction process. By comparing the responses computed with the two
different interaction models, the relevance of the history dependency could be assessed.
The validity of the interaction models, however, is limited to attached-flow conditions,
a requirement that can easily be met by pitching the blade. Moreover, both models
possess a non-linear dependency on the relative wind velocity, and, in order to assess
the significance of the non-linearity, two linearized models were derived on the basis of
Taylor series expansions.

Results were presented for the blade tip deflection. Hereto, use was made of a reduced-
order model, based on the first three modes of the free-vibrating blade. For the analyses,
both a stand-still and a rotating blade were considered. With the linearized models,
frequency-response functions were computed, clearly illustrating the combined direc-
tional and modal coupling. A difference between the linearized instantaneous and history-
dependent force models was observed in the response to a step excitation, explained by a
poor representation of the aerodynamic state equations after linearization. Furthermore,
it was shown that due to the large contribution of the added damping for a rotating blade,
some resonance peaks vanish.

Time-domain responses were computed from turbulent wind signals obtained from
Kaimal turbulence spectra. These time signals and their frequency-domain representa-
tions showed a good correspondence between the predictions with the instantaneous
and the history-dependent force models, especially for the rotating blade, implying little
history dependency of the aerodynamic interaction. For the stand-still blade, the devia-
tion between the responses to both interaction forces is larger, suggesting more history-
dependent aerodynamics. This observation is confirmed by the reduced-frequency anal-
ysis, from which a more history-dependent interaction of the stand-still blade was ex-
pected. It was demonstrated that the results of the linearized instantaneous force model
are in good correspondence with the non-linear interaction models, again especially for
the rotating blade. This linearized model allows for an easy assessment of the added
damping that results from the aerodynamic interaction. The results with the linearized
history-dependent force model are somewhat off, which could be expected based on
the linear frequency-response analysis. On this basis, the application of the linearized
history-dependent model is not recommended.

It should be noted, that the results are computed for a mainly low-frequency tur-
bulent excitation. The assessment of the reduced frequencies, however, suggested a
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dominant instantaneous aerodynamic interaction for the rotating blade at low excitation
frequencies. Excitation at higher frequencies, for instance through tower shadowing, can
induce a more history-dependent aerodynamic interaction. Moreover, an assessment
with the application of rotationally sampled turbulence spectra may show a higher degree
of history dependency too.

The relevance of the results of the current chapter lie in the fact that the model allows
for the prediction of the directionally coupled response of the blade, while account-
ing for modal coupling through the aerodynamic interaction. This allows for a much
more accurate consideration of the added damping, which in the existing literature is
commonly defined erroneously in terms of modal damping. Second, the good corre-
spondence between the structural response obtained with the history-dependent and
the instantaneous aerodynamic force models provides a good basis for the application of
the latter, more simple model, to derive a reduced rotor model. Particularly the case of
the rotating blade showed a good correspondence for the linearized instantaneous force
model, which is of course the preferred model in terms of calculation time. Furthermore,
the linearized instantaneous force model allowed for the extraction of an added damping
matrix, with which straightforward dynamic analyses of a rotating wind turbine blade can
be performed, and which can provide a basis for the definition of a reduced rotor model.



4
STATE-INDEPENDENT APPARENT

AERO-ELASTIC PROPERTIES

The aerodynamic force on a wind turbine rotor depends on the motion of that wind turbine.
For instance, in the fore-aft direction, the turbine experiences an aerodynamic resistance,
which is widely considered as an apparent damping. Particularly for the structural analysis
of offshore wind support structures, this apparent damping is of relevance, as it reduces
the response to wave excitations. Furthermore, a change in orientation of the rotor –
resulting from a tower deformation – is perceived as an apparent stiffness, and the non-
circulatory lift force contributes to an apparent mass. This chapter presents closed-form
state-independent expressions for these apparent aero-elastic properties, accounting for
three-dimensional motions, obtained from a Taylor expansion of state-dependent aerody-
namic force expressions, explicitly accounting for geometric and aeroelastic parameters,
such as rotor eccentricity, rotational velocity, pitch angle, and lift and drag coefficients. The
apparent properties are derived generically, allowing for differences in blade properties and
spatial variations in the wind field. For the specific case of a rotor with identical blades,
the expressions are explained and their relevance is visualized. The response of the NREL
5MW turbine with the UpWind monopile-based support structure is estimated and com-
pared to response estimations obtained with an equivalent BLADED model. The estimated
response shows good correspondence for turbulent wind conditions, provided that the yaw
misalignment is not too large. In addition, a hybrid approach is presented, which combines
the response-independent aerodynamic force from BLADED with the state-independent
apparent aero-elastic properties presented in this chapter. The closed-form expressions for
the apparent aero-elastic properties represent a valuable tool to assess and understand the
interdependency between the response of a wind turbine and the aerodynamic excitation.
Furthermore, the expressions are useful for the preliminary design of the foundations of
wind turbines.

This chapter represents an adaptation of Van der Male et al. [259], that was submitted for publication.
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T HE aerodynamic force on a wind turbine rotor is a function of the relative wind veloc-
ity. This relative wind velocity is composed of the ambient and induced wind fields,

the rotational velocity of the rotor and the structural motion, and depends, moreover,
on the wake development behind the rotor. The flexible tower of a wind turbine allows
for translational rotor motions, as well as structural rotations. The dependency of the
aerodynamic force on the relative velocity is non-linear; hence, the aerodynamic force
depends non-linearly on the structural motion. Concerning the structural motion, it
is obvious that bending of the tower, either in the fore-aft or the side-to-side direction,
results in both a deflection and a rotation of the tower top, while from a rotor perspective,
both the fore-aft motion and the yaw motion, i.e., the rotation around the vertical tower
axis, result in an out-of-plane structural velocity, i.e., a structural velocity perpendicular
to the plane of rotation of the rotor. As a consequence, it can be stated that the aero-
dynamic forcing is affected by both the translational and rotational structural motions
of the rotor. Since the aerodynamic force also depends on the rotational velocity of the
rotor, this dependency is affected by the operational state of the turbine. Additionally,
the eccentric positioning of the rotor with respect to the tower axis introduces an inertial
coupling between the side-to-side and the yaw motions. Understanding the aerodynamic
force-response interdependency is of particular relevance for the estimation of the force
distribution in the foundation of the wind turbine. The mutual dependence between a
force and a response is commonly referred to in terms of apparent damping and mass.
Moreover, structural deformations affect the geometric orientation of the rotor plane with
respect to the wind direction and subsequently, the aerodynamic forcing, resulting in an
apparent stiffening, or apparent stiffness. For offshore wind turbines, the force distribu-
tion resulting from a wave excitation is affected by the aerodynamic interdependency
too, as waves induce rotor motions and therefore aerodynamic excitations. As a result,
the design of the foundation of offshore wind turbines requires a coupled analysis of the
aerodynamic and hydrodynamic forces [9, 14].

The relation between the aerodynamic force and the fore-aft motion of the rotor has
been addressed multiple times [49, 50, 52]. In these studies, the dependency has been
expressed in terms of a damping coefficient, which is a function of the rotational velocity
and the gradient of the lift coefficient of the aerofoils with respect to the angle of attack of
the relative wind vector. Schafhirt and Muskulus [55] addressed the three-dimensional
apparent damping by relating the decoupled support structure model to an integrated
wind turbine model. The results of these studies have been derived with the assumption
that the aerodynamic forcing reacts instantaneously to a change in the relative wind
velocity, neglecting the history dependency of – or the memory effect on – the force-
response relation. This assumption was shown to be acceptable at the level of a single
blade in Chapter 3, where the aerodynamic coupling for in-plane and out-of plane blade
vibrations was defined.

With the development of different aero-elastic software codes, the aerodynamic
force-response interdependency has been accounted for to a greater extent. These
models account for three-dimensional flow effects on the induced aerodynamic forc-
ing [35, 40, 204]. Several researchers have presented the concepts behind the development
of these codes [25, 230, 260, 261], and the results of an aero-elastic analysis with such a
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tool [262]. These software codes do not allow for the application of aerodynamic models
including memory effects [215, 219], which render the force-response interdependency
more complicated. In Chapter 3, however, the analysis of the aerodynamic force on a
flexible rotating blade connected to a fixed hub indicated the validity of the instanta-
neous model, particularly for a high rotational velocity. This finding is substantiated
by the definition of the reduced frequency [182, 183], from which it can be derived that
at the envisaged oscillation frequencies, the contribution of the history dependency is
low. At a different level, the aerodynamic excitation of a wind turbine rotor has been
modelled by means of vortex wake models [208] and computational fluid dynamics codes
in combination with a multi-body dynamics code [17, 186, 187, 263]. The results of these
studies are very valuable for the analysis of fully coupled fluid-structure interaction, but
still require simplified analyses for validation. The need for simplified validation and
modelling tools was already addressed in Van Kuik et al. [5]. In this respect, several studies
have aimed at simplifying the support structure [12, 149, 155] and the soil-structure inter-
action [111, 117, 118] of offshore wind turbines. Zhang et al. [61] presented a simplified
rotor model to investigate the control of lateral tower vibrations, using an active torque
controller. Regarding the aerodynamic forcing, however, no closed-form expressions were
presented.

When considering the dynamic response of offshore wind turbine foundations, it
is not uncommon to assume the aerodynamic force and the structural response to be
independent [49, 123, 152, 264, 265]. In most of these cases, the aerodynamic force is
found from a separate rotor model, and multiple iterations are necessarily required to
obtain an accurate response estimation. Future studies of this nature would benefit from
the availability of closed-form relations, expressing the interdependency between the
aerodynamic force and the structural response. A transparent analytical formulation of
this mutual dependency would provide a valuable insight in the particular relevance of
the different aero-elastic parameters, such as the rotational velocity, the pitch angle and
the lift and drag coefficients. In addition, the expressions could prove to be a valuable
tool in the design of wind turbine foundations, especially offshore – given the interaction
between the wind and wave excitations, because the relevant aerodynamic force-response
interdependency – in terms of apparent stiffness, damping and mass – can be accounted
for, while a detailed rotor model can be omitted.

This chapter presents such closed-form expressions for the apparent stiffness, damp-
ing and mass for a wind turbine rotor. To this end, use is made of closed-form expressions
of the aerodynamic force, which depend non-linearly on the structural response. Hence,
the implicit apparent stiffness, damping and mass are state-dependent. By means of a
first-order Taylor approximation of the aerodynamic force, the expressions are linearized
with respect to the structural response, accounting for rotor motions and rotations in
three directions. Since the aerodynamic force is defined in a global inertial frame of
reference, forces in three directions and moments around three axes are distinguished.
From these linearized expressions, state-independent apparent stiffness, damping and
mass matrices are explicitly obtained.

The derivation of the apparent aero-elastic properties is done in a general manner
with respect to the blade properties, implying that the matrices allow for the analysis of
rotors with unequal blades. On the basis of the resulting expressions, the force-response
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relation can be better understood. This already applied for the closed-form expressions
that contain implicit state-dependent apparent aero-elastic properties, and specifically
for the linearized state-independent expressions, provided that the aerodynamic force is
approximated without loss of its validity. The results of Chapter 3 suggested that after such
an approximation the force-response interdependency can still be predicted accurately.

As a starting point, the equations of motion of a rigid rotor fixed on a flexible tower
top are derived, taking the rotor eccentricity into account. In addition, it is assumed that
the rotational velocity is constant, implying that the resisting torque at the tower top
always balances the aerodynamic torque acting on the rotor. The equations of motion are
derived in the global inertial frame of reference, explicitly accounting for pseudo-force
effects, such as Coriolis and centrifugal stiffening. Subsequently, the state-dependent
aerodynamic force expressions are introduced, distinguishing lift, drag and inertia forces.
The presented forces are valid for attached flow conditions, and it is assumed that memory
effects can be neglected. After expanding the forces in terms of the structural motions,
the state-independent apparent aero-elastic properties are presented. The terms of these
expressions are assessed in more detail for the specific case of a rotor with identical blades
and the resulting mean wind perpendicular to the rotor plane. The derived equations do
not account for an active control system or particular drive-train dynamics. In Chapter 5,
the drive-train will be added to the current model by distinguishing the rotational degrees
of freedom of the rotor around its axis of rotation from the tower top motions. This
addition will allow for a rotor with a varying speed rotation. Subsequently, simple control
systems can be implemented, which relate this rotational velocity to the pitch angles of
the blades or the resisting torque of the generator.

The analysis of the state-dependent force expressions for the specific case of identical
blades allows for an assessment of the apparent stiffness, damping and mass contribu-
tions. Moreover, the contribution of the separate force components – lift, drag and inertia
– can be visualized. In order to do so, the rotor properties of the NREL 5MW turbine are
adopted [172]. As a validation of the state-independent force-response interdependency,
the structural response to a turbulent wind signal is computed in the time domain and
compared to the response derived with the force containing state-independent apparent
aero-elastic properties. This comparison illustrates the degree of non-linearity of the
adopted force expressions. Moreover, the response is compared with the simulation
results obtained with the software package BLADED 4.6. This validation requires the
definition of a tower and a foundation, for which use is made of the UpWind offshore
wind support structure [173].

The derived closed-form expressions for the apparent stiffness, damping and mass
can be applied for the coupling between a detailed rotor model and a model of the support
structure. Given the explicit incorporation of the relevant aero-elastic parameters, such
as rotor eccentricity, rotational velocity, pitch angle and lift and drag coefficients, the
expressions allow for the further studying of operational concepts in relation to the
foundation response. In this respect, the expressions have a practical potential, especially
regarding the preliminary analysis of the fatigue damage for support structures of offshore
wind turbines. Moreover, the force expressions provide a starting point for the further
implementation of control aspects and drive-train dynamics.
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(a) (b) (c)

Figure 4.1: Schematic representation of the reference frames defining the turbine system, with (a) the global
inertial reference frame, (b) the floating rotor reference frame, and (c) the rotating blade reference frames.

4.1. ROTOR MODEL

4.1.1. SYSTEM DEFINITION
In this chapter, the aerodynamic force on a wind turbine rotor in the inertial reference
frame is defined in terms of matrix multiplications. This requires the definition of a
turbine rotor on which the aerodynamic force acts, and, therefore, this rotor definition is
presented first. The rotor model is obtained from Lagrange’s equation and the derivation
for wind turbine rotors is similar to the early work presented by Garrad and Quarton [266],
which was employed in many subsequent works [267–269].

For the derivations presented in this chapter, use is made of the definition of a three-
bladed rotor on a flexible tower. To define the turbine system, use is made primarily
of three types of reference frame, which are illustrated in Figure 4.1. First, Figure 4.1(a)
presents the global inertial XTYTZT reference frame, with its origin OT located at the
intersection of the axis of rotation and the centre line of the tower. The support script ‘T’
indicates that the reference frame relates to the tower of the turbine system. Figure4.1(b)
depicts the rotor-fixed XRYRZR floating reference frame, which connects to the hub of
the rotor, and with the YR axis defining the axis of rotation, the XR directed horizontally
and the ZR axis pointing in the vertical direction. The subscript ‘R‘ refers to rotor and
indicates that the reference frame relates to the rotor of the turbine. Both the orientation
of the rotor-fixed reference frame and the location of its origin within the global inertial
reference frame are affected by elastic deformations of the tower. In other words, the rotor-
fixed reference frame floats within the global inertial reference frame. The orientation
of each blade is defined by a blade-fixed rB; j YB;jZB; j rotating reference frame – with ‘B’,
which stands for blade, specifying that the reference frame relates to a blade, and the
subscript j indicating the specific blade to which the reference frame relates. As shown in
Figure 4.1(c), the axes YB; j coincide with the YR axis, and the rB; j axes correspond with
the longitudinal blade axes. The ZB; j axes lie within the plane of rotation, perpendicular
to the rB; j axes.

To indicate within which reference system each vector, and its components, are
defined, use is made of the superscripts ‘f’ and ‘r’, indicating that the specific vector is
defined within the floating rotor reference frame, or a rotating blade reference frame.
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Global inertial Rotor-fixed Blade-fixed 

XTYTZT XRYRZR rB;jYB;jZB;j 

floating (‘f’) rotating (‘r’) 

rotating and floating 

Figure 4.2: Definition of the relation between the different reference frames and the usage of the superscripts ‘f’
and ‘r’. The arrows indicated with respect to which reference frame a frame of reference is defined as floating or
rotating.

No specific superscript is used to indicate that a vector is defined in the global inertial
reference. Figure 4.2 illustrates the relation between the different reference frames and
the usage of the superscripts.

Figure 4.3 presents the front view of a three-bladed rotor with radius R. The orbital
angular velocityΩΩΩf

R(t ) characterizes the rotor rotation. As the rotor rotationΩΩΩf
R(t ) takes

place around the YR axis, the magnitude of the rotational velocity is indicated byΩf
R;Y (t ).

The orientation of the YR within the global inertial reference frame is affected by the loads
acting on the turbine system. For unloaded conditions, the tilt of the rotor introduces an
inclination of the YR axis with respect to the YT axis.

The azimuth positions of the blades is given byΨf
B; j (t ), for j = 1,2,3

Ψf
B; j (t ) =

∫ t

0
Ωf

R;Y (t )dt +ψf
B; j . (4.1)

For equally spaced blades, ψf
B; j can be chosen as 2

3

(
j −1

)
π. The rotor azimuthΨf

R(t ) is

defined as the azimuth of the first blade, i.e., for j = 1. As indicated by the superscript ‘f’,
both the rotor speed and the azimuth angle are defined in the rotor-fixed XRYRZR frame
of reference.

Having defined the rotor system within its frames of reference, the aero-elastic prop-
erties of the system can be introduced. Figure 4.4 distinguishes the rotor sub-system and
the tower sub-system. Figure 4.4(a) illustrates the degrees of freedom of both sub-systems.
The degrees of freedom vector vT(t ), defined at the tower top, describes the translation
uT(t ) and rotation θθθT(t ) of the tower top within the global inertial reference frame. The
translational motions – uT;X (t), uT;Y (t) and uT;Z (t) – are from here on referred to as
side-to-side, fore-aft and up-down, respectively, whereas the rotational motions – θT;X (t ),
θT;Y (t ) and θT;Z (t ) – are referred to as tilting, rolling and torsion of the tower sub-system.

The degrees of freedom of the rotor sub-system, given by vR(t ), express the translation
uR(t ) and rotation θθθR(t ) within the global inertial reference frame and are defined at the
tower top as well. It should be noted that these degrees of freedom are defined in the
global inertial reference frame. Within the rotor-fixed reference frame, the rotation θf

R;Y (t )
can be perceived as a perturbation of the rotor azimuth that corresponds with the mean
rotor speed Ω̄f

R;Y :

Ψf
R(t ) = Ψ̄f

R(t )+θf
R;Y (t ), (4.2)
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where

Ψ̄f
R(t ) = Ω̄f

R;Y t . (4.3)

The relation between the rotations θf
R;Y (t ) and θR;Y (t ) is defined mathematically in Sec-

tion 4.1.2. Regarding the translational motions of the rotor sub-system and the rotational
motions θR;X (t ) and θR;Z (t ), similar definitions as for the tower sub-system are employed.

As illustrated by Figure 4.4, the tower sub-system is defined by the mass matrix MT,
the stiffness matrix KT and the damping matrix CT. Moreover, the mass matrix MN – with
‘N’ indicating nacelle – represents the inertia of the nacelle components, including the
drive-train, defined in the global inertial reference frame with respect to the tower top.
The rotor system consists of the blades with the distributed masses mB; j (rB; j ). The matrix
MH represents the inertia of the hub defined with respect to the tower top. The tower
representation by a six-degree-of-freedom system is adopted for reasons of simplicity.
For the actual modelling of the tower-system, a model with many degrees of freedom is
likely to be applied, for instance a finite-element beam model. The definition of the rotor
sub-system allows for the application of such a model, as will be done in Section 4.5.

Figure 4.4(b) presents the external and internal forces acting on the rotor and tower
sub-systems. The aerodynamic excitations on the rotor sub-system are expressed by the
vector QR;A(t ):

QR;A(t ) =
[{

FR;A(t )
}T {

TR;A(t )
}T

]T
, (4.4)

with FR;A(t ) containing the forces coinciding with the axes of the global inertial reference
frame and TR;A(t) the moments about these axes. The subscript ‘A’ indicates that the
forces represent aerodynamic excitations.

The forces FR;A;X (t ), FR;A;Y (t ) and FR;A;Z (t ) are from hereon referred to as the lateral,
axial and vertical aerodynamic rotor forces. The moment TR;A;Y (t) is referred to as the
aerodynamic torque and concerning the moments TR;A;X (t ) and TR;A;Z (t ) – the definitions
tilting and yawing are employed. The vector QT;E(t) – with FT;E(t) and TT;E(t) – defines
the external environmental excitation (‘E’) of the tower sub-system. At the interface
between the two sub-systems, the force vector QR;DT(t ) represents the resistance from the
drive-train (‘DT’) on the rotor and the force vector QT;DT(t ) from the the transfer between
the rotor and tower sub-systems. For indirectly driven wind turbines, different drive-train
torques act on the rotor and tower sub-systems.

The current model does not contain degrees of freedom which relate to the flexibility of
the blades, implying that the blades are assumed to be rigid. The lowest natural frequency
of the blades is generally multiple times higher than the natural frequencies correspond-
ing to the first bending modes of the complete structure, implying that the interference of
these modes is small. The energy of aerodynamic excitations from turbulence and hydro-
dynamic excitations – for offshore wind turbines – is mainly concentrated at frequencies
much lower than the lowest natural frequencies of the blades. As a consequence, for these
excitations, the response of the blades can be assumed to be predominantly quasi-static.
The static stiffness of the blades affects the orientation of the aerodynamic inflow with
respect to the blade cross-sections. This influence is not accounted for. Given that the
deformation of the blades is sufficiently small, this effect is negligible. The quasi-static
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Figure 4.3: Front view of the three-bladed rotor.

(a) (b)

Figure 4.4: Schematic representation of the dynamic turbine system, sub-divided into the rotor and tower
sub-systems, with (a) the degrees of freedom of the rotor and tower sub-systems, and (b) the external and
internal forces acting on the rotor and tower sub-systems.

motion of flexible blades, however, affects the relative flow velocity, and subsequently the
aerodynamic force on the blades, an effect which is neglected in this model.

4.1.2. EQUATIONS OF MOTION
The equations of motion of the rigid rotor sub-system can be derived with the definition
of the turbine rotor within both the global inertial reference frame and the moving blade
reference frames. Starting point is the point xr

B; j , which is located on the j -th blade and

defined in the corresponding rB; j YRZB; j reference frame:

xr
B; j =

[
rB; j 0 0

]T
. (4.5)

The position of the corresponding point xf
B; j (t ) in the rotor frame of reference is obtained

with the application of the rotation matrix RB;Ψ̄; j (t ):

xf
B; j (t ) = RB;Ψ̄; j (t )xr

B; j , (4.6)

with

RB;Ψ̄; j (t ) =
[

cosΨ̄f
B; j (t ) 0 sinΨ̄f

B; j (t )

0 1 0
−sinΨ̄f

B; j (t ) 0 cosΨ̄f
B; j (t )

]
. (4.7)
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The blade azimuths Ψ̄f
B; j (t ) define the positions on the basis of the mean rotor speed Ω̄f

R;Y .

The position vector xf
B; j (t) describes the time-varying blade position as a result of the

rotor rotation only, and its time derivative is an important input for the state-independent
force expressions, which are derived in Section 4.3.

Within the global inertial frame of reference, the vector xB; j (t ) describes the deformed
position of the j -th blade, and results from translations uR(t ) and rotations θθθR(t ) of the
rotor sub-system:

xB; j (t ) = dR +uR(t )+RR;θ(t )xf
B; j (t ), (4.8)

where dR represents the eccentricity of the rotor plane with respect to the tower. The
matrix RR;θ(t ) describes the total rotation after subsequent rotations θR;X(t ), θR;Y(t ) and
θR;Z(t) around the axes of the XTYTZT reference frame. This matrix cannot be defined
uniquely, since large rotations in a three-dimensional frame of reference are non-commu-
tative [270]. The matrix RR;θ(t ) also relates the rotation vectorsθθθf

R(t ) andθθθR(t ), the former
of which was used in Eq. (4.2):

θθθR(t ) = RR;θ(t )θθθf
R(t ), (4.9)

Defining the state vector SR(t ) as

SR(t ) = [
{vR(t )}T {v̇R(t )}T {v̈R(t )}T

]
, (4.10)

the Lagrangian LR(SR(t )) of the rotor sub-system can be expressed in terms of its kinetic
energy:

L
(
SR(t )

)= 1
2 {v̇R(t )}T MHv̇R(t )+

3∑
j=1

∫ R

rH

1
2

{
ẋB; j (t )

}T mB; j (rB; j )ẋB; j (t )drB; j , (4.11)

where

ẋB; j (t ) = u̇R(t )+ ṘR;θ(t )xf
B; j (rB; j , t )+RR;θ(t )ẋf

B; j (rB; j , t ), (4.12)

and the kinetic energy of the blade is obtained after integration over the length of the
blade, starting from the hub radius rH.

With reference to Figure 4.4(b) and employing Hamilton’s principle [148], the equa-
tions of motion of the rotor sub-system can be expressed as

d
dt

∂L
(

SR(t )
)

∂v̇R(t ) − ∂L
(

SR(t )
)

∂vR(t ) = QR;A(t )−QR;DT(t ). (4.13)

These equations of motion depend non-linearly on the state SR(t). With a first-order
Taylor expansion of the nonlinear terms with respect to SR(t ), developed about the mean
state S̄R(t ), defined as

S̄R = {
SR(t ) = S̄R(t )

}
. (4.14)
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The linear approximation of the equations of motions can be expressed in terms of the
perturbations ∆vR(t ) of vR(t ) with respect to the mean v̄R(t ):[

MH +
3∑

j=1
MB; j (t )

]
∆v̈R(t )+

3∑
j=1

GB;C; j (t )∆v̇R(t )+
3∑

j=1
GB;S; j (t )∆vR(t ) =

3∑
j=1

QB;S; j (t )+QR;A(t )−QR;DT(t ).

(4.15)

The matrices MB; j (t ) define the inertia of the rotating blades, and can be expressed as

MB; j (t ) =
[

MB;uu; j (t ) MBuθ; j (t )
MB;θu; j (t ) MB;θθ; j (t )

]
, (4.16)

with

MB;uu; j (t ) = I3×3

∫ R

rH

mB; j (rB; j )drB; j , (4.17)

MB;uθ; j (t ) = {
MB;θu; j (t )

}T =
∫ R

rH

mB; j (rB; j )

[
∂
{

ṘR;∆θ(t )xB;θ̄; j (t )
}

∂
{
θ̇̇θ̇θR(t )

}
∣∣∣∣∣
S̄R

]
drB; j , (4.18)

and

MB;θθ; j (t ) = 1
2

∫ R

rH

mB; j (rB; j )

 ∂2
({

ṘR;∆θ(t )xB;θ̄; j (rB; j ,t )
}T

ṘR;∆θ(t )xB;θ̄; j (t )

)
∂
{
θ̇̇θ̇θR(t )

}2

∣∣∣∣∣∣
S̄R

drB; j , (4.19)

with the three by three identity matrix I3×3.
The matrices GB;C; j (t) and GB;S; j (t) express the Coriolis effect and the centrifugal

stiffening corresponding to tower top motions, respectively, and are obtained as

GB;C; j (t ) =
[

GB;C;uu; j (t ) GB;Cuθ; j (t )
GB;C;θu; j (t ) GB;C;θθ; j (t )

]
, (4.20)

and

GB;S; j (t ) =
[

GB;S;uu; j (t ) GB;Suθ; j (t )
GB;S;θu; j (t ) GB;S;θθ; j (t )

]
, (4.21)

with

GB;Cuu; j (t ) = 03×3, (4.22)

GB;C;uθ; j (t ) =
∫ R

rH

mB; j (rB; j )

[
∂
(
RR;∆θ(t )ẋB;θ̄; j (t )

)
∂θθθR(t )

∣∣∣∣∣
S̄R

]
drB; j

+
∫ R

rH

mB; j (rB; j )

[(
d

dt

∂
{

ṘR;∆θ(t )xB;θ̄; j (t )
}

∂
{
θ̇̇θ̇θR(t )

}
)∣∣∣∣∣

S̄R

]
drB; j ,

(4.23)



4.1. ROTOR MODEL

4

113

GB;C;θu; j (t ) =−
∫ R

rH

mB; j (rB; j )

[
∂
(
RR;∆θ(t )ẋB;θ̄; j (t )

)
∂θθθR(t )

∣∣∣∣∣
S̄R

]
drB; j

+
∫ R

rH

mB; j (rB; j )

[(
d

dt

∂
{

ṘR;∆θ(t )xB;θ̄; j (t )
}

∂
{
θ̇̇θ̇θR(t )

}
)∣∣∣∣∣

S̄R

]
drB; j ,

(4.24)

GB;C;θθ; j (t ) = 1
2

∫ R

rH

mB; j (rB; j )

[(
d

dt

∂2
{

ṘR;∆θ(t )xB;θ̄; j (rB; j ,t )
}T

ṘR;∆θ(t )xB;θ̄; j (t )

∂
{
θ̇̇θ̇θR(t )

}2

)∣∣∣∣∣
S̄R

]
drB; j , (4.25)

GB;S;uu; j (t ) = GB;S;θu; j (t ) = 03×3, (4.26)

GB;S;uθ; j (t ) =
∫ R

rH

mB; j (rB; j )

[(
d

dt

∂
(
RR;∆θ(t )ẋB;θ̄; j (t )

)
∂θθθR(t )

)∣∣∣∣∣
S̄R

]
drB; j , (4.27)

and

GB;S;θθ; j (t ) =
∫ R

rH

mB; j (rB; j )

 d
dt

∂2
({

ṘR;∆θ(t )xB;θ̄; j (t )
}T

RR;∆θ(t )ẋB;θ̄; j (t )

)
∂θ̇̇θ̇θR(t )∂θθθR(t )

∣∣∣∣∣∣
S̄R

drB; j . (4.28)

The matrix 03×3 represents the three by three null matrix.
The matrices GB;C; j (t ) and GB;S; j (t ) are asymmetric because of the description of the

rotating blade elements in a fixed frame of reference and both matrices vanish if the
rotor is not rotating. For a rotating rotor, the rotor sub-system matrices of Eq. (4.15) are
time-dependent. It should be noted that the matrix GB;S;θθ; j is susceptible to the assumed
order of structural rotations, which defines the matrix RR;θ(t ) [270].

The vector QB;S; j (t ) represents the centrifugal stiffening and can by divided into the
force vector FB;S; j (t ) and the moment vector TB;S; j (t ):

QB;S; j (t ) =
[{

FB;S; j (t )
}T {

TB;S; j (t )
}T

]T
, (4.29)

with

FB;S; j (t ) =
∫ R

rH

mB; j

[
RR;∆θ(t )ẍB;θ̄; j (t )

∣∣∣
S̄R

]
drB; j , (4.30)

and

TB;S; j (t ) =−
∫ R

rH

mB; j

[(
d

dt

∂
{

ṘR;∆θ(t )xB;θ̄; j (t )
}T

RR;∆θ(t )ẋB;θ̄; j (t )

∂
{
θ̇̇θ̇θR(t )

}
)∣∣∣∣∣

S̄R

]
drB; j . (4.31)

In deriving the system matrices, the matrix RR;θ(t ) is rewritten in terms of the matrix RR;θ̄ ,

which expresses the rotation resulting from the mean deformation θ̄̄θ̄θR and the matrix
RR;∆θ(t ), which corresponds to the perturbations RR;∆θ(t ):

RR;θ(t ) = RR;∆θ(t )RR;θ̄ . (4.32)
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Furthermore, the vector xB;θ̄; j (t) expresses the position of the point rf
B; j in the global

inertial reference frame, accounting for the mean rotor deformations θ̄̄θ̄θR:

xB;θ̄; j (t ) = RR;θ̄xr
B; j

(
XR(rB; j ), t

)
. (4.33)

Moreover, the small angle assumption for the perturbations ∆θθθR(t ) is adopted, allowing
to approximate the matrix RR;∆θ(t ) as:

RR;∆θ(t ) ≈ I3×3 +∆θ̃̃θ̃θR(t ), (4.34)

where ∆θ̃̃θ̃θR(t ) is the skew-symmetric maxtrix corresponding to the vector ∆θθθR(t ).
If the three blades are identical, and the mean rotations θ̄̄θ̄θR are assumed small, the

rotor sub-system can be defined unambiguously in terms of the time-independent rotor
matrices MR, GR;C and GR;S:

[MH +MR(t )]∆v̈R(t )+GR;C(t )∆v̇R(t )+GR;S(t )∆vR(t ) = QR;S(t )+QR;A(t )−QR;DT(t ),
(4.35)

of which the system matrices are defined as

MR =
3∑

j=1
MB; j (t ) =

[
MR;uu MR;uθ
MR;θu MR;θθ

]
, (4.36)

GR;C =
3∑

j=1
GB;C; j (t ) =

[
03×3 03×3
03×3 GR;C;θθ

]
, (4.37)

and

GR;S =
3∑

j=1
GB;S; j (t ) = 06×6, (4.38)

where 06×6 is a 6×6 null matrix, and

MR;uu =
∫ R

rH

mB(rB)rB


3

rB
0 0

0 3
rB

0

0 0 3
rB

drB, (4.39)

MR;uθ =
{

MR;uθ
}T

∫ R

rH

mB(rB)rB

 0 0 3
dR
rB

0 0 0

−3
dR
rB

0 0

drB, (4.40)

MR;θθ =
∫ R

rH

mB(rB)rB

 3
2 rB+3

d 2
R

rB
0 0

0 3rB 0

0 0 3
2 rB+3

d 2
R

rB

drB, (4.41)
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and

GR;C;θθ =
∫ R

rH

mB(rB)Ω̄RrB

[
0 0 3rB
0 0 0−3rB 0 0

]
drB. (4.42)

It follows that, for the rotor with identical blades, the resulting centrifugal effect com-
pletely vanishes:

QR;S =
3∑

j=1
QB;S; j (t ) = 06×1, (4.43)

where 06×1 is a 6×1 null vector. Since the blades are identical, rB; j is replaced by rB and
mB; j (rB; j ) by mB(rB).

With reference to Figure 4.4, the equations of motion of the tower sub-system can be
defined straightforwardly:

[MT +MN] v̈T(t )+CTv̇T(t )+KTvT(t ) = QT;E(t )+QT;DT(t ). (4.44)

The turbine system is now described by the equations of motion of the tower sub-system,
Eq. (4.44) and the rotor sub-system, Eq (4.15) or Eq. (4.35), with the degrees of freedom
vT(t ) and vR(t ), respectively, and the coupling forces QT;DT(t ) and QR;DT(t ). Concerning
translations, the motions of the rotor and tower sub-systems are equal and the forces
FT;DT(t ) and FR;DT(t ) counteract each other, implying that the translations uT(t ) and uR(t )
are equal. The transfer of the torques is affected by the dynamic response of the drive
train. Considering an indirect drive with rigid shafts, the torque transferred to the tower
top balances the aerodynamic torque. If, in addition, a rigid yaw connection is assumed,
the tilting and yawing rotations of rotor and tower top are equal, i.e., θR;X (t ) = θT;X (t ) and
θR;Z (t ) = θT;Z (t ).

4.2. AERODYNAMIC EXCITATION

4.2.1. FORCE DEFINITIONS
In Section 4.1, the equations of motion of a rigid rotor on a flexible tower were derived.
This model can now be used to derive the state-independent apparent mass, damping
and stiffness of the rotor. To this end, an aerodynamic excitation model needs to be
formulated. To allow for the analysis of wind turbine support structures, the apparent
aero-elastic characteristics should be defined in the global inertial reference frame. As a
basis, however, the aerodynamic forces need to be defined locally, using the local blade
reference frames.

Figure 4.5(a) depicts a schematic cross-section of the j -th aerofoil, defined within the
floating rB; j YRZB; j reference frame. The local configuration of the aerofoil is indicated by
the local floating rB; j yB; j zB; j coordinate system, where the yB; j and zB; j axes correspond
with the principal axes of the cross-section. The orientation of this local reference frame
varies along the length of the blade, due to the twist angle βB;0; j (rB; j ) around the rB; j axis.
The time-varying pitch angle of the blades is given by βB; j (rB; j , t ). The subscript j and the
dependency on rB; j indicate that this pitch angle corresponds to a segmented individual
blade pitching. For the derivations in this chapter, no control system is accounted for. As
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(a) (b)

Figure 4.5: Aerodynamic configuration, with (a) the definition of the angle of attack with respect to the relative
wind velocity vector, and (b) the definition of the drag and the lift forces.

a consequence, the perturbation of the pitch angle is neglected from here on, implying
that βB; j (rB; j , t ) = β̄B; j (rB; j ).

The force expressions are derived on the basis of a pitch angle corresponding to the
mean pitch angle for the operational state under consideration, implying that no active
pitch control is accounted for. cB; j (rB; j ) represents the chord width of the aerofoil of the
j -th blade. The aerofoil is subjected to the relative wind velocity vector Wr

B;rel; j (rB; j , t),

which acts under an angle αB; j (rB; j , t) – the angle of attack – with respect to the local
rotating local zB; j axis. It should be noted that the definition of the positive angles
β0; j (rB; j ), β̄B; j (rB; j ) and αB; j (rB; j , t ), as indicated in Figure 4.5, contradicts the right-hand
rule sign convention.

As a result of the relative wind velocity vector Wr
B;rel; j (rB; j , t ), the aerofoil experiences

a lift and a drag force, the latter directed parallel to the wind vector and the former perpen-
dicular to the wind vector. The configuration of these forces is depicted in Figure 4.5(b),
from which it can be seen that the angle of attack defines the angle between the lift force
and the local rotating yB; j axis of the aerofoil. The angle of the lift force with respect to
the axis of rotation is given by ϕB; j (rB; j , t ).

With reference to Section 2.3, the quasi-stationary lift force Fr
B;L; j (rB; j , t ) on the aerofoil

is obtained as

Fr
B;L; j (rB; j , t ) = ρair

(
Wr

B;rel; j (rB; j , t )×ΓΓΓr
B;b; j (rB; j , t )

)
, (4.45)

with

ΓΓΓr
B;b; j (rB; j , t ) = 1

2 cB; j (rB; j )CB;L(rB; j , t )
∣∣∣Wr

B;rel; j (rB; j , t )
∣∣∣er

B;r, (4.46)

where the lift coefficient is defined as

CB;L; j (rB; j , t ) =Cα
B;L; j (rB; j )sinαB; j (rB; j , t )+C c

B;L; j (rB; j ), (4.47)

from which the α-dependent and the camber-dependent force components, Fα;r
B;L; j (rB; j , t )

and Fc;r
B;L; j (rB; j , t ), can be defined as:

Fα;r
B;L; j (rB; j , t ) = 1

2ρaircB; j (rB; j )Cα
B;L; j

({
β̄̄β̄βB; j (rB; j )

}T
Wr

B;rel; j (rB; j , t )
)(

Wr
B;rel; j (rB; j , t )×er

B;r

)
,

(4.48)
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and

Fc;r
B;L; j (rB; j , t ) = 1

2ρaircB; j (rB; j )C c
B;L; j

∣∣∣Wr
B;rel; j (rB; j , t )

∣∣∣(Wr
B;rel; j (rB; j , t )×er

B;r

)
. (4.49)

Considering the drag force, only skin friction is accounted for. This, because the current
analysis is restricted to attached flows, implying that the angle of attack is relatively small,
and the contribution of the pressure drag is negligible. Based on this assumption, the
drag force Fr

B;D; j (rB; j , t ) can be estimated by determining the viscous drag only:

Fr
B;D; j (rB; j , t ) = 1

2ρaircB; j (rB; j )CB;D; j (rB; j )Wr
B;rel; j (rB; j , t )

∣∣∣Wr
B;rel; j (rB; j , t )

∣∣∣ , (4.50)

with the aerofoil-dependent drag coefficient CB;D; j (rB; j ).
In addition, an inertia force Fr

B;I; j (rB; j , t) can be accounted for. This force is aligned

with the acceleration vector of the effective air flow field and is derived from:

Fr
B;I; j (rB; j , t ) = 1

4ρairπ
{
cB; j (rB; j )

}2 Ẇr
B;rel; j (rB; j , t ). (4.51)

Given that the lift and drag coefficients are only known for flows perpendicular to the blade
axis, the presented theory only allows for the derivations of the aerodynamic forces in the
plane presented in Figure 4.5. Moreover, the presented force equations are in principle
only valid for an instantaneous flow-force relation, implying that these expressions do
not account for the loss of the aerodynamic equilibrium after a disturbance of the flow. In
Chapter 2, it was shown that the aerodynamic force on a rotating blade in turbulent wind
conditions can be approximated reasonably well with the current aerodynamic model.

4.2.2. RELATIVE WIND VECTORS
The aerodynamic forces depend on the relative wind velocity Wr

B;rel; j (rB; j , t ), normal to

the longitudinal blade axes, implying that for each blade, the relative velocity vector needs
to be defined in its moving frame of reference. The relative wind velocity describes the
difference between the wind velocity at the rotor plane and the structural velocity. At the
rotor plane, the wind velocity is expressed by the time-dependent velocity vector field
WR(XT, t ), containing the lateral, axial and vertical velocity components. The derivation
of the velocity field at the rotor plane requires an analysis of the inflow conditions, for
instance on the basis of the momentum balance theory. This would allow for the definition
of a static, equilibrium or dynamic wake, or a skewed wake in accordance with [40, 196] .
Alternatively, the wake can be defined with the employment of vortex theory [197]. For
more details, reference is made to Section 2.2. As a consequence, WR(XT, t ) includes the
axially and tangentially induced velocity fields, resulting from the rotor rotation.

Defining the position of a section of the j -th blade in the inertial reference frame as
XB; j , the velocity field at this section can be expressed as WR

(
XB; j , t

)
. For non-homoge-

neous inflow conditions, this velocity field would represent the rotationally sampled
inflow at the rotor plane. The structural velocity, including the rotational velocity, can be
found from the time derivative of the position vector xB; j (t ), see Eq. (4.12). The relative
wind velocity Wr

B;rel; j (rB; j , t ) can now be obtained from

Wr
B;rel; j (rB; j , t ) =ΞΞΞ

{
RB;Ψ̄; j (t )

}−1 {
RR;θ(t )

}−1 {
WR

(
XB; j , t

)− ẋB; j (t )
}

. (4.52)
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The left multiplication with the matrix ΞΞΞ is applied to ensure that only the in-plane
kinematics are accounted for. The matrixΞΞΞ is defined as

ΞΞΞ=
0 0 0

0 1 0
0 0 1

 . (4.53)

The inertia force requires the relative acceleration. This relative acceleration is defined
as the acceleration of the wind velocity at the rotor plane, as experienced by a point on
a rotating blade, minus the structural acceleration, both defined in the global rotating
frames of reference.

4.2.3. GLOBAL AERODYNAMIC FORCES
Having defined the aerodynamic excitation within the floating blade reference frames,
the resulting forces can be transformed to the inertial reference frame. After subsequent
integration of these forces over the rotor plane, the total rotor force results. Since the
blade forces also induce a moment around the tower top, the total rotor force consists of
both a force and a moment component.

Denoting the total aerodynamic force Fr
B;A; j (rB; j , t) – with ‘A’ indicating the general

aerodynamic nature of the force, and refers to either lift, drag, or inertia – in the local
rotating blade frames of reference as the summation of the lift, drag and inertia forces,
the aerodynamic force components in the inertial frame of reference FB;A; j

(
XB; j , t

)
can

be obtained from

FB;A; j
(
XB; j , t

)= RR;θ(t )RB;Ψ̄; j (t )Fr
B;A; j (rB; j , t ). (4.54)

The moments around the origin tower top can subsequently be obtained from:

TB;A; j
(
XB; j , t

)= (
xB; j

(
XB; j , t

)−uR(t )
)×FB;A; j

(
XB; j , t

)
. (4.55)

The total resulting aerodynamic rotor excitation QR;A(t) can be found from integrating
the separate blade contributions over the blade lengths and adding each contribution:

QR;A(t ) =
3∑

j=1

∫ R

rH

QB;A; j
(
XB; j , t

)
drB; j , (4.56)

where the aerodynamic blade force QB;A; j
(
XB; j , t

)
is defined as

QB;A; j
(
XB; j , t

)= [
FB;A; j

(
XB; j , t

)
TB;A; j

(
XB; j , t

)]T
. (4.57)

With the implementation of the relative-flow characteristics velocity and acceleration,
Wr

B;rel; j (rB; j , t ) and Ẇr
B;rel; j (rB; j , t ), Eq. (4.56), with the aerodynamic force definitions pre-

sented in Section 4.2.1, represents a state-dependent expression for the aerodynamic
force on the wind turbine rotor. It should be noted that the aerodynamic force on the
turbine rotor is derived on the basis of two-dimensional force model and, therefore, does
not account for three-dimensional effects such as tip and root losses, and wind velocity
components parallel to the blade axes. The aerodynamic forces are now defined on the
basis of the blade element theory. Combined with the actuator disc theory, the resulting
wind velocity at the rotor plane are obtained [35]. On the basis of this approach, the
aerodynamic forces on a wind turbine rotor are approximated in Sections 4.4 and 4.5.
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4.3. APPARENT AERO-ELASTIC PROPERTIES

4.3.1. APPROXIMATION PROCEDURE
In Section 4.2, the state-independent aerodynamic excitation on a turbine rotor within
the inertial reference frame was derived, see Eq. (4.56), with which an expression for
the aerodynamic excitation of the rotor sub-system is obtained. The aerodynamic force
expressions, presented in Section 4.2.1 relate the forcing and the structural motion in a
non-linear manner. In other words, the force expressions contain apparent aero-elastic
properties, introducing a state dependency with respect to the degrees of freedom vR(t )
of the rotor sub-system. In this section, state-independent expressions of these apparent
dynamics are derived. This derivation entails an approximation of the force expressions,
by means of a first-order Taylor expansion with respect to vR(t ) and its time derivatives,
around the state S̄R as given by Eq. (4.14), which was used earlier for the linearization of
the equations of motion of the rotor sub-system too:

QB;A; j
(
XB; j , t

)≈[
QB;A; j

(
XB; j , t

)∣∣∣∣
S̄R

]
+

[
∂QB;A; j

(
XB; j ,t

)
∂{vR(t )}

∣∣∣∣
S̄R

]
∆vR(t )

+
[
∂QB;A; j

(
XB; j ,t

)
∂{v̇R(t )}

∣∣∣∣
S̄R

]
∆v̇R(t )+

[
∂QB;A; j

(
XB; j ,t

)
∂{v̈R(t )}

∣∣∣∣
S̄R

]
∆v̈R(t ).

(4.58)

The first term of Eq. (4.58) represents the force vector which is independent of the tower
top motion. The remaining terms relate the aerodynamic force to vR(t). The matrices
within brackets are referred to as the state-independent apparent stiffness, damping and
mass, respectively.
In the Sections 4.3.2 to 4.3.5, the components within brackets in Eq. (4.58) are presented
for the lift, drag and inertia forces, separately. For these derivations, use is made of
software for symbolic manipulations. In doing so, the orthonormality of the matrices
RB;Ψ̄; j (t) and RR;θ̄(t) is recognized. Moreover, the inverse of the matrix RR;∆θ(t) can be
approximated as {

RR;∆θ(t )
}−1 ≈ I3×3 −∆θ̃̃θ̃θR(t ). (4.59)

4.3.2. STATE-INDEPENDENT AERODYNAMIC FORCE APPROXIMATIONS
The first term of Eq. (4.58) relates to the state-independent components of the aero-
dynamic excitation for the state S̄R, and contains the mean components of both the
aerodynamic forces and moments (see Eq. (4.57)):

QB;A; j
(
XB; j , t

)∣∣∣∣
S̄R

=
[

FB;A; j
(
XB; j , t

)∣∣∣∣
S̄R

TB;A; j
(
XB; j , t

)∣∣∣∣
S̄R

]
]T. (4.60)

The lift and drag force approximations can be expressed as

FB;A; j
(
XB; j , t

)∣∣∣∣
S̄R

= 1
2ρaircB; j (rB; j )CB;A; j (rB; j )·{

AB;A; j
(
XB; j , t

)
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))}
,

(4.61)
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whereas the state-independent moment vector around the tower top is obtained as

TB;A; j
(
XB; j , t

)∣∣∣∣
S̄R

= 1
2ρaircB; j (rB; j )CB;A; j (rB; j )·{

x̃B;θ̄; j

(
XB; j , t

)
AB;A; j

(
XB; j , t

)
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))}
,

(4.62)

where CB;A; j (rB; j ) represents the aero-elastic coefficients Cα
B;L; j (rB; j ), C c

B;L; j (rB; j ) and

CB;D; j (rB; j ), respectively. x̃B;θ̄; j

(
XB; j , t

)
is the skew-symmetric matrix of the vector

xB;θ̄; j

(
XB; j , t

)
, which accounts for the cross product in Eq. (4.55) to obtain the moment

around the tower top delivered by the force. For the different aerodynamic forces – lift
and drag – the matrix AB;A; j

(
XB; j , t

)
is obtained as

AαB;L; j

(
XB; j , t

)=
−RR;θ̄RB;Ψ̄; j (t )

{
β̄̄β̄βB; j (rB; j )

}T
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))
ẽB;r,

(4.63)

Ac
B;L; j

(
XB; j , t

)=−RR;θ̄RB;Ψ̄; j (t )

∣∣∣∣ΞΞΞ{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))∣∣∣∣ ẽB;r.

(4.64)

and

AB;D; j
(
XB; j , t

)= RR;θ̄RB;Ψ̄; j (t )

∣∣∣∣ΞΞΞ{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))∣∣∣∣ ,

(4.65)

where ẽB;r is the skew-symmetric matrix of the unit vector er
B;r, defining the longitudinal

axis of the j -th blade in its local frame of reference.
The state-independent approximations of the inertia force and moment are obtained

as

FB;I; j
(
XB; j , t

)∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2 ·

RR;θ̄RB;Ψ̄; j (t )ΞΞΞ
{

ṘB;Ψ̄; j (t )
}T {

RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))
−RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
ẍB;θ̄; j

(
XB; j , t

)
,

(4.66)

and

TB;I; j
(
XB; j , t

)∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2 ·

x̃B;θ̄; j

(
XB; j , t

)
RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
ṘB;Ψ̄; j (t )

}T {
RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))
− x̃B;θ̄; j

(
XB; j , t

)
RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
ẍB;θ̄; j

(
XB; j , t

)
.

(4.67)
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The presented force expressions allow for the approximation of the aerodynamic force on
the tower top without the contribution of the apparent stiffness, mass and damping. The
expressions present the forces along the length of the blades within the global inertial
frame of reference.

4.3.3. STATE-INDEPENDENT APPARENT STIFFNESS APPROXIMATIONS
The second term of Eq. (4.58) relates the aerodynamic force to the structural deformation

of the tower top. The matrix
∂QB;A; j

(
XB; j ,t

)
∂{vR(t )}

∣∣∣∣
S̄R

expresses the state-independent apparent

stiffness, which can be subdivided for the different aerodynamic forces and moments
related to either the tower top deflection uR(t ), or the rotation θθθR(t ):

∂QB;A; j
(
XB; j ,t

)
∂vT(t )

∣∣∣∣
S̄R

=


∂FB;A; j

(
XB; j ,t

)
∂uR(t )

∣∣∣∣
S̄R

∂FB;A; j
(
XB; j ,t

)
∂θθθR(t )

∣∣∣∣
S̄R

∂TB;A; j
(
XB; j ,t

)
∂uR(t )

∣∣∣∣
S̄R

∂TB;A; j
(
XB; j ,t

)
∂θθθR(t )

∣∣∣∣
S̄R

 . (4.68)

The apparent stiffness resulting from lateral deformations equals zero for all force compo-
nents:

∂FB;A; j
(
XB; j ,t

)
∂uR(t )

∣∣∣∣
S̄R

= ∂TB;A; j
(
XB; j ,t

)
∂uR(t )

∣∣∣∣
S̄R

= 03×3. (4.69)

A rotation of the tower top affects the orientation of the wind inflow on the rotor plane.
Moreover, the orientation of the aerodynamic forces on the different blade sections within
the global inertial reference frame is affected. As a consequence, the apparent stiffness

matrices
∂FB;A; j

(
XB; j ,t

)
∂θθθR(t )

∣∣∣∣
S̄R

and
∂TB;A; j

(
XB; j ,t

)
∂θθθR(t )

∣∣∣∣
S̄R

contain non-zero entries. For the lift and drag

forces, these matrices are obtained as

∂FB;A; j
(
XB; j ,t

)
∂θθθR(t )

∣∣∣∣
S̄R

= 1
2ρaircB; j (rB; j )CB;A; j (rB; j )·[(

AB;A; j
(
XB; j , t

)+BB;A; j
(
XB; j , t

))
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
W̃B; j

(
XB; j , t

)− ˜̄qB;A; j

(
XB; j , t

)]
,

(4.70)

and

∂TB;A; j
(
XB; j ,t

)
∂θθθR(t )

∣∣∣∣
S̄R

= 1
2ρaircB; j (rB; j )CB;A; j (rB; j )

[
x̃B;θ̄; j

(
XB; j , t

)
{(

AB;A; j
(
XB; j , t

)+BB;A; j
(
XB; j , t

))
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
W̃B; j

(
XB; j , t

)− q̃B;A; j
(
XB; j , t

)}
+ q̃B;A; j

(
XB; j , t

)
x̃B;θ̄; j

(
XB; j , t

)]
.

(4.71)
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W̃R
(
XB; j , t

)
is the skew-symmetric matrix of the vector WR

(
XB; j , t

)
, and ˜̄qB;A; j

(
XB; j , t

)
is

the skew-symmetric matrix of the vector q̄B;A; j
(
XB; j , t

)
:

q̄B;A; j
(
XB; j , t

)= AB;A; j
(
XB; j , t

)
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T [
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

)]
.

(4.72)

For the different lift and drag forces, the matrix BB;A; j
(
XB; j , t

)
is given by

Bα
B;L; j

(
XB; j , t

)=−RR;θ̄RB;Ψ̄; j (t )ẽB;rΞΞΞ
{

RB;Ψ̄; j (t )
}T {

RR;θ̄

}T

(
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

)){
βββB; j (rB; j )

}T ,
(4.73)

Bc
B;L; j

(
XB; j , t

)=−RR;θ̄RB;Ψ̄; j (t )ẽB;rΞΞΞ
{

RB;Ψ̄; j (t )
}T {

RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))
{
ΞΞΞ

{
RB;Ψ̄; j (t )

}T{
RR;θ̄

}T(
WR

(
XB; j ,t

)−ẋB;θ̄; j

(
XB; j ,t

))}T

∣∣∣∣ΞΞΞ{
RB;Ψ̄; j (t )

}T{
RR;θ̄

}T(
WR

(
XB; j ,t

)−ẋB;θ̄; j

(
XB; j ,t

))∣∣∣∣ ,

(4.74)

and

BB;D; j
(
XB; j , t

)= RR;θ̄RB;Ψ̄; j (t )

{
ΞΞΞ

{
RB;Ψ̄; j (t )

}T{
RR;θ̄

}T(
WR

(
XB; j ,t

)−ẋB;θ̄; j

(
XB; j ,t

))}T

∣∣∣∣ΞΞΞ{
RB;Ψ̄; j (t )

}T{
RR;θ̄

}T(
WR

(
XB; j ,t

)−ẋB;θ̄; j

(
XB; j ,t

))∣∣∣∣ . (4.75)

The apparent stiffness resulting from structural rotations for the inertia force is obtained
as

∂FB;I; j
(
XB; j ,t

)
∂θθθR(t )

∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2 ·[
RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
ṘB;Ψ̄; j (t )

}T {
RR;θ̄

}T ˜̄WB; j (rB; j )− ˜̄qB;I; j

(
XB; j , t

)]
,

(4.76)

and

∂TB;I; j
(
XB; j ,t

)
∂θθθR(t )

∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2 ·[
x̃B;θ̄; j

{
RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
ṘB;Ψ̄; j (t )

}T {
RR;θ̄

}T ˜̄WB; j (rB; j )− ˜̄qB;I; j

(
XB; j , t

)}+ ˜̄qB;I; j x̃B;θ̄; j

]
.

(4.77)

The matrix q̃B;I; j
(
XB; j , t

)
is the skew-symmetric matrix from the vector qB;I; j

(
XB; j , t

)
:

qB;I; j
(
XB; j , t

)=RR;θ̄RB;Ψ̄; j (t )ΞΞΞ
{

ṘB;Ψ̄; j (t )
}T {

RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))
−RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
ẍB;θ̄; j

(
XB; j , t

)
.

(4.78)
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Contrarily to translations, structural rotations do affect the resulting aerodynamic force
on the turbine rotor. As a result of tilting or yawing rotations, the axial wind velocity at
the rotor plane changes. The matrix W̃R

(
XB; j , t

)
accounts for the changing orientation

of the wind inflow on the rotor plane. The matrix q̃B;A; j
(
XB; j , t

)
relates to the changing

orientation of the aerodynamic forces in the global inertial reference frame.

4.3.4. STATE-INDEPENDENT APPARENT DAMPING APPROXIMATIONS

The state-independent apparent damping is obtained as the matrix
∂QB;A; j

(
XB; j ,t

)
∂{v̇R(t )}

∣∣∣∣
S̄R

in

the third term of Eq. (4.58). This matrix relates the velocity of the tower top motion to
the aerodynamic forces on the rotor. Similar to the state-independent apparent stiffness
matrix, the apparent damping is subdivided for the different aerodynamic forces and
moments and for the tower top velocity u̇R(t ) and rotational velocity θ̇̇θ̇θR(t ):

∂Qα
B;L; j

(
XB; j ,t

)
∂v̇R

(
XB; j ,t

) ∣∣∣∣
S̄R

=


∂FB;A; j

(
XB; j ,t

)
∂u̇R(t )

∣∣∣∣
S̄R

∂FB;A; j
(
XB; j ,t

)
∂θ̇̇θ̇θR(t )

∣∣∣∣
S̄R

∂TB;A; j
(
XB; j ,t

)
∂u̇R(t )

∣∣∣∣
S̄R

∂TB;A; j
(
XB; j ,t

)
∂θ̇̇θ̇θR(t )

∣∣∣∣
S̄R

 , (4.79)

for which the sub-matrices for the lift and drag forces can be expressed as

∂FB;A; j
(
XB; j ,t

)
∂u̇R(t )

∣∣∣∣
S̄R

= 1
2ρaircB; j (rB; j )CB;A; j (rB; j )·[
−(

AB;A; j
(
XB; j , t

)+BB;A; j
(
XB; j , t

))
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
]

,

(4.80)

∂TB;A; j
(
XB; j ,t

)
∂u̇R(t )

∣∣∣∣
S̄R

= 1
2ρaircB; j (rB; j )CB;A; j (rB; j )·[
−x̃B;θ̄; j

(
XB; j , t

)(
AB;A; j

(
XB; j , t

)+BB;A; j
(
XB; j , t

))
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
]

,

(4.81)

∂FB;A; j
(
XB; j ,t

)
∂θ̇̇θ̇θR(t )

∣∣∣∣
S̄R

= 1
2ρaircB; j (rB; j )CB;A; j (rB; j )·[(

AB;A; j
(
XB; j , t

)+BB;A; j
(
XB; j , t

))
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
x̃B;θ̄; j

(
XB; j , t

)]
,

(4.82)

and

∂TB;A; j
(
XB; j ,t

)
∂θ̇̇θ̇θR(t )

∣∣∣∣
S̄R

= 1
2ρaircB; j (rB; j )CB;A; j (rB; j )·[

x̃B;θ̄; j

(
XB; j , t

)(
AB;A; j

(
XB; j , t

)+BB;A; j
(
XB; j , t

))
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
x̃B;θ̄; j

(
XB; j , t

)]
.

(4.83)
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The state-independent apparent damping matrices from the inertia force are obtained as

∂FB;I; j
(
XB; j ,t

)
∂u̇R(t )

∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2
[
−RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
ṘB;Ψ̄; j (t )

}T {
RR;θ̄

}T
]

, (4.84)

∂TB;I; j
(
XB; j ,t

)
∂u̇R(t )

∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2
[

x̃B;θ̄; j

(
XB; j , t

)
RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
ṘB;Ψ̄; j (t )

}T {
RR;θ̄

}T
]

,

(4.85)

∂FB;I; j
(
XB; j ,t

)
∂θ̇̇θ̇θR(t )

∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2 ·[
RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T (
W̃B; j

(
XB; j , t

)+ ˜̇xB;θ̄; j

(
XB; j , t

))
+RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
ṘB;Ψ̄; j (t )

}T {
RR;θ̄

}T
x̃B;θ̄; j

(
XB; j , t

)]
,

(4.86)

and

∂TB;I; j
(
XB; j ,t

)
∂θ̇̇θ̇θR(t )

∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2 ·[
x̃B;θ̄; j

(
XB; j , t

)
RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T (
W̃B; j

(
XB; j , t

)+ ˜̇xB;θ̄; j

(
XB; j , t

))
+ x̃B;θ̄; j

(
XB; j , t

)
RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
ṘB;Ψ̄; j (t )

}T {
RR;θ̄

}T
x̃B;θ̄; j

(
XB; j , t

)]
.

(4.87)

4.3.5. STATE-INDEPENDENT APPARENT MASS APPROXIMATIONS

The last term of Eq. (4.58) contains the apparent mass matrix
∂QB;A; j

(
XB; j ,t

)
∂{v̈R(t )}

∣∣∣∣
S̄R

which re-

lates the structural accelerations to the aerodynamic force on the wind turbine rotor.
Distinguishing the aerodynamic force and moment on the tower top, and the lateral and
rotational tower top accelerations, this matrix can be subdivided as follows:

∂QB;A; j
(
XB; j ,t

)
∂v̈R

(
XB; j ,t

) ∣∣∣∣
S̄R

=


∂FB;A; j

(
XB; j ,t

)
∂üR(t )

∣∣∣∣
S̄R

∂FB;A; j
(
XB; j ,t

)
∂θ̈̈θ̈θR(t )

∣∣∣∣
S̄R

∂TB;A; j
(
XB; j ,t

)
∂üR(t )

∣∣∣∣
S̄R

∂TB;A; j
(
XB; j ,t

)
∂θ̈̈θ̈θR(t )

∣∣∣∣
S̄R

 . (4.88)

For the lift and drag force components, no apparent mass contribution is obtained, since
these forces as defined in Section 4.2.1 do not depend on structural accelerations. The
apparent mass resulting from the inertia force can be expressed as

∂FB;I; j
(
XB; j ,t

)
∂üR(t )

∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2
[
−RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
]

, (4.89)
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∂TB;I; j
(
XB; j ,t

)
∂üR(t )

∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2
[

x̃B;θ̄; j

(
XB; j , t

)
RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
]

,

(4.90)

∂FB;I; j
(
XB; j ,t

)
∂θ̈̈θ̈θR(t )

∣∣∣∣
S̄R

=
[

RR;θ̄RB;Ψ̄; j (t )ΞΞΞ
{

RB;Ψ̄; j (t )
}T {

RR;θ̄

}T
x̃B;θ̄; j

(
XB; j , t

)]
, (4.91)

and

∂TB;I; j
(
XB; j ,t

)
∂θ̈̈θ̈θR(t )

∣∣∣∣
S̄R

= 1
4ρairπ

{
cB; j (rB; j )

}2 ·[
x̃B;θ̄; j

(
XB; j , t

)
RR;θ̄RB;Ψ̄; j (t )ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T
x̃B;θ̄; j

(
XB; j , t

)]
.

(4.92)

With the apparent mass expressions for the inertia force and moment, all closed-form
expressions for the state-independent apparent stiffness, damping and mass have been
presented in this section. Combined within Eq. (4.58), and subsequently applied in
Eq. (4.56), these expressions constitute the approximation of the non-linear aerodynamic
excitation of a rotating wind turbine rotor. The individual matrices define the blade force
components and therefore allow for differences in the aerodynamic force per blade.

4.4. APPARENT PROPERTIES OF AN ISOTROPIC ROTOR

4.4.1. ROTOR DEFINITION AND OPERATIONAL STATE
The aerodynamic force approximations, presented in Section 4.3, have been derived for
each blade separately, and are hence necessarily time dependent. In deriving the total
rotor force, on the basis of Eq. (4.56), differences between the blades – both geometrically
and aero-elastically – can be accounted for. Therefore, it can be stated that the presented
force matrices are valid in a general sense, provided that the attached flow condition is
met, and the instantaneous aerodynamic force model is sufficiently accurate.

To elucidate the physical significance of the derived matrices, in this section the
complete rotor matrices are presented for the particular case of a rotor with identical
blades, implying that the geometric and aero-elastic blade properties are independent of
the blade number j . Moreover, the wind field at the rotor plane is assumed to be axial,
uniform and positive. If, in addition, a static wake model is assumed, the induced velocity
field is not affected by time variations of the airflow, and the resulting velocity field at the
rotor plane can be expressed as:

WR (XB, t ) = [
0 WR;Y (XB, t ) 0

]T
. (4.93)

To illustrate the relevance of the separate force components, the forces on the rotor of the
NREL 5MW turbine are derived for a wind velocity of 15.0 m/s. The rotational velocity
in this operational state is 12.1 rpm, and the full-span pitch angle is 10.45 degrees. For
this equilibrium state, the values of the aero-elastic lift and drag coefficients are readily
available from any aero-elastic code, and presented here in Table 4.1 for each aerofoil
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of the NREL 5MW turbine and in Figure 4.6(a) as a function of the relative blade radius.
Figure 4.6(b) presents the axial and tangential induction coefficients for the described
operational conditions. The components of the incident velocity in the rotor plane – the
wind and rotor speeds – are depicted in Figure 4.6(c). Figure 4.6(d) presents the angle of
attack along the blade length, where the transition from attached to separated flows is
indicated at an approximated angle of 8 degrees. For small radii, the angle of attack is
zero, because of the circular cross section of the blades. It is shown that up to circa 30% of
the blade length separation of flow may occur for the adopted operational state. With the
assumed attached flow conditions, the lift force in this range is overestimated, whereas
the drag force is underestimated. Towards the centre of rotation, however, the effective
inflow velocity decreases, and the contributions of the blade section forces are of minor
relevance, compared to the section forces towards the blade tips.

Table 4.1: Aero-elastic coefficients of the NREL 5MW turbine aerofoils for small angles of attack.

aerofoil lift coefficient C c
L [-] slope of lift

coefficient Cα
L [-]

drag coefficient CD [-]

NACA64 0.442 6.003 0.0052
DU21 0.521 6.205 0.0057
DU25 0.444 6.446 0.0065
DU30 0.288 7.333 0.0087
DU35 0.196 7.184 0.0094
DU40 0.137 7.489 0.0113

4.4.2. APPARENT STIFFNESS FOR AN ISOTROPIC ROTOR
As addressed in Section 4.3, structural translations do not affect the resulting aerodynamic
force on the rotor. On the other hand, structural rotations were shown to affect the forces
on the rotor and, subsequently, the tower sub-system. The reason for this is twofold.
First, as a result of a rotation of the rotor plane, the projection of the wind field on the
rotor plane changes. This effect is expressed through the matrix ˜̄WR

(
XB; j , t

)
in Eq. (4.68).

Secondly, a structural rotation of the rotor affects the orientation of the blade forces in
the global inertial frame of reference, and, as a consequence, the resulting rotor forces
too. With a reference to the same equations, this effect is expressed though the matrix
q̃B;A; j

(
XB; j , t

)
. These force effects are visible in the apparent stiffness matrices, derived for

the operational conditions defined in Section 4.4.1 and with the application of Eqs. (4.56)
and (4.57).

Apart from the contributions to the lateral and vertical rotor forces, structural rotations
affect the moments around the tower top. Here, again, two effects can be distinguished.
First, due to the rotor eccentricity, a structural rotation introduces an additional moment
around the tower top. A second contribution results from a change in orientation of the
aerodynamic torque, or the resulting moment around the axis of rotation of the rotor. As
a result of a tilting rotation, the aerodynamic torque T f

B;Y ; j (rB; j , t ) around the rotational

axis of the rotor can be decomposed into components around the YT and the ZT axes
in the global inertial reference frame, i.e., a yawing and a rolling moment. The same
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Figure 4.6: Operational conditions, with (a) the aero-elastic coefficients for lift and drag, (b) the axial and
tangential induction coefficients, (c) the resulting axial and tangential inflow velocities in the rotor plane, where
the dashed lines indicate the upstream wind velocity and the rotational speed, and (d) the angle of attack, for
which dashed line indicates the assumed limit for attached flow conditions.
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applies for a yawing rotation, which induces an additional tilting moment at the tower
top, because of the changed orientation of the rotor plane.

Figure 4.7 illustrates the apparent stiffness matrix for the given operational state. As
shown in Figure 4.7(a), the sensitivity of the rotor forces to structural rotations results
mainly from the lift force, with the α-dependent lift force providing the largest con-
tribution, while the sensitivity of the rotor moments, depicted in Figure 4.7(b) almost
completely results from the α-dependent lift force only.

(a) (b)

Figure 4.7: Apparent stiffness for the turbine system for the given operational state, with (a) the rotor force
sensitivities, and (b) the rotor moment sensitivities. The diagrams show the superposition of the absolute values
of the force sensitivities.

4.4.3. APPARENT DAMPING FOR AN ISOTROPIC ROTOR
The matrices relating the structural velocities to the aerodynamic force can be consid-
ered as apparent damping matrices, and the entries represent what in literature is often
referred to as aerodynamic damping [50]. Particularly for rotating turbines, this damp-
ing contribution is a very relevant component of the dynamic characteristics of a wind
turbine, with damping ratios of about 4% of the critical damping of the first turbine
mode [49].
The extent to which the different aerodynamic force components affect the overall aero-
dynamic damping is visualized in Figure 4.8. This figure provides insight in the sensitivity
of the rotor forces to the structural velocities. The sensitivity of the rotor forces to the
translational motions is depicted in Figure 4.8(a). This figure shows that for the given
operational conditions the sensitivity to the fore-aft motion is dominant, and moreover,
that the α-dependent lift force mainly contributes to apparent damping. The magnitude
of the sensitivity of the α-dependent lift force to the fore-aft motion corresponds with the
aerodynamic damping as defined in previous studies [49, 50, 52].

Given the relevance for the analysis of support structures of offshore wind turbines, the
apparent damping matrix for the isotropic rotor relating the translational rotor motions
to the α-dependent and the camber-dependent lift forces are presented in full:
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(a) (b)

(c) (d)

Figure 4.8: Sensitivity of the rotor forces to structural motions, with (a) the rotor force sensitivity to translational
motions, (b) the rotor force sensitivity to rotational motions, (c) the rotor force sensitivity to translational
motions, and (d) the rotor moment sensitivity to rotational motions. The diagrams show the superposition of
the absolute values of the force sensitivities.
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and
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The matrices are obtained for the state SR;0, for which the mean deformations v̄R are
assumed to be zero. The diagonal entries of the matrices in Eq. (4.94) are negative,
implying that the apparent damping is positive. Eq. (4.95), however, contains positive
entries on its diagonal. Positive entries indicate a negative damping and could induce
structural instabilities. Nonetheless, with reference to Figure 4.8, the contributions from
the camber dependent lift force are much smaller than the contributions from the α-
dependent lift force, and the overall apparent damping from the diagonal entries is
positive.

Considering the sensitivity of the rotor forces to the rotational velocities, presented in
Figure 4.8(b), the strongest interdependency is observed between the axial force and the
rotor azimuth perturbation. In fact, this motion can be seen as an additional rotational
velocity of the rotor Ω̄R;Y . The sensitivity of the lateral and vertical forces to the rotational
tilting and yawing velocities, respectively, is considerable too. In comparison, the associ-
ated cross-coupling sensitivities, however, are shown to be negligibly small. The apparent
damping mainly results from the α-dependent lift force, though the contribution of the
camber to the total lift force cannot be neglected here. The matrix entries from both the
α-dependent and the camber-dependent lift forces have been computed as follows:
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(4.96)



4.4. APPARENT PROPERTIES OF AN ISOTROPIC ROTOR

4

131

and
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A similar pattern is observed in the sensitivity of the rotor moments to the translational
velocities, Figure 4.8(c). The strongest interdependency is observed for the aerodynamic
torque and the fore-aft velocity, while also the mutual dependencies between the tilting
and yawing moments to the lateral and vertical velocities, respectively, are substantial.
Cross-coupling contributions can again be considered as absent, and despite the main
contribution to the apparent damping from the α-dependent lift force, the effect of the
camber cannot be neglected. The matrix entries from both the α-dependent and the
camber-dependent lift forces are computed as follows:
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As shown in Figure 4.8(d), the sensitivity of the aerodynamic torque to a perturbation
of the rotational velocity is much smaller than the sensitivity of the tilting and yawing
moments to the tilting and yawing motions, respectively. This indicates a relatively strong
damping of the yaw and tilt motions of the turbine rotor. This apparent damping almost
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completely results from the α-dependent lift force, which is given as
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The apparent damping contributions from the camber-dependent lift force result from
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The apparent damping matrices from the camber-dependent lift and the drag forces
contain negative diagonal entries relating the rotation of the rotor to the moments on
the tower top. As shown in Figure 4.8(d), these contributions are much smaller than the
positive contributions from the α-dependent lift force, indicating that these negative
contributions to the damping of the system don’t induce structural instabilities. No
relevant cross-couplings are observed in Figure 4.8(d).

4.4.4. APPARENT MASS FOR AN ISOTROPIC ROTOR
The inertia force contains a dependency on the structural acceleration. The correspond-
ing state-dependent matrix can be considered as an apparent inertia matrix. For the
operational conditions presented in Section 4.4.1, and with the application of Eqs. (4.56),
(4.57) and (4.88) – separating the contributions terms related to üR(t ) and θ̈̈θ̈θR(t ), Figure 4.9
visualizes the magnitude of the terms of Eqs. (4.89) to (4.92). The magnitude of the diago-
nal entries of Eqs. (4.89) and (4.92) are shown in Figure 4.9(a) and (d), while Figure 4.9(b)
and (c) show the extent of the cross-coupling of Eqs. (4.90) and (4.91). The magnitude of
the entries of Eqs. (4.89) to (4.92) is small compared to the actual mass and mass moment
of inertia of the NREL 5MW rotor. This apparent mass matrix can therefore be expected
to be of limited relevance for the dynamic response of this wind turbine.

4.5. TURBINE RESPONSE ANALYSIS

4.5.1. TURBINE DEFINITION
In the previous sections, apparent stiffness, damping and mass matrices have been
derived, which allow for the analysis of the aerodynamic excitation of a wind turbine
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(a) (b)

(c) (d)

Figure 4.9: Sensitivity of the rotor forces to structural accelerations, with (a) the rotor force sensitivity to
translational accelerations, (b) the rotor force sensitivity to rotational accelerations, (c) the rotor force sensitivity
to translational accelerations, and (d) the rotor moment sensitivity to rotational accelerations. The diagrams
show the absolute values of the force sensitivities.

rotor on a flexible support structure. These matrices were derived for a rotor with rigid
blades and are valid for attached flow conditions. In this section, the response of a wind
turbine is calculated with the application of the presented matrices, and compared to
the response computed with the non-linear state-dependent aerodynamic rotor force
expressions as defined in Section 4.2. Moreover, simulations with the aero-elastic software
BLADED 4.6 are used to validate the estimated response with the state-dependent and the
state-independent simulation approaches.

To predict the structural response of a wind turbine on the basis of these simulation
approaches, the UpWind support structure [173] is modelled by means of the finite-
element method, allowing for both bending, extensional and torsional deformations,
employing the work presented in [271, 272]. This offshore support structure – consisting
of a 6 m diameter monopile with an embedded length of 24m and a water depth of 25m
– is chosen, as it suits the NREL 5MW turbine. The structure is modelled geometrically
linearly with 34 Timoshenko beam elements, containing six degrees of freedom per node
(warping is not accounted for). The soil is modelled as a Winkler foundation, representing
the stiffness properties of sand. The dynamic properties of the rotor are implemented by
means of Eqs. (4.36) to (4.38), for which it was assumed that the rotor blades are identical.
The resulting finite-element model replaces the matrices MT and KT of Figure 4.3.

The first six undamped natural frequencies of the modelled turbine are presented in
Table 4.2 and the corresponding mode shapes are depicted in Figure 4.10. These dynamic
properties are derived for a wind velocity of 15.0 m/s, i.e., the operational conditions
are the same as defined in Section 4.4.1. The natural frequencies of the first fore-aft and
side-to-side bending modes, which correspond with [173], are similar. This suggests that
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the asymmetry introduced by the rotor eccentricity, resulting in a coupling between the
side-to-side and torsional motions, is small on the scale of the complete turbine. The
similarity between the modes can also be observed in the mode shapes, as shown in
Figure 4.10. Here, however, a coupling between the side-to-side bending modes – mode 1,
3 and 6 - and the tower torsion, or yawing mode – mode 5 – is visible. The irregularities
in the mode shapes result from the stiffness variation along the length of the turbine
structure.

The undamped natural frequencies and the corresponding mode shapes of the first
six modes were presented in Table 4.2 and Figure 4.10. The state-independent force
expressions introduce an apparent mass and damping, which vary with the operational
conditions of the turbine. The effect of the apparent mass on the first six natural frequen-
cies is illustrated in Figure 4.11(a), for two upstream wind speeds, i.e., 6 m/s and 15 m/s.
As a result of the apparent mass from the inertia force, the natural frequencies of these
modes decreases slightly, with the largest reduction of 2% for mode 5, whereas the first
four modes show a reduction of less than 0.5%. Both the wind speed and the rotational
speed of the turbine are of negligible influence on the natural frequencies, since both
considered operational conditions lead to almost the same reductions.

The contribution of the apparent, or aerodynamic damping to the modal damping of
the first six modes, obtained from the real part of the corresponding natural frequencies,
is depicted in Figure 4.11(b). The damping ratios are presented as a function of the wind
speed and, therefore, implicitly of the operational conditions of the turbine. The highest
damping ratios are obtained for the torsional mode. Furthermore, the fore-aft modes
generate a higher amount of damping than the side-to-side modes. It is shown that the
apparent damping does relate to the operational state, as the damping ratios enhance
initially with the increasing rotational speed, after which the damping stabilizes for above
rated wind speeds. The small decrease in damping in this wind range is caused by the
increasing pitch of the blades to ensure a constant aerodynamic torque.

In the following, Section 4.5.2 describes the BLADED reference model that is used for
the validation of the predicted response with the state-dependent and state-independent
simulation approaches. Afterwards, the specific analysis approach is addressed in more
detail in Section 4.5.3. Section 4.5.4 considers the aerodynamic forces on a rotor mounted
on a rigid tower, implying that only the response-independent aerodynamic forces are
covered. Dynamic analyses of the aerodynamic excitation are subsequently addressed
in Sections 4.5.5 and 4.5.6, which consider the response to a sudden step change in the
upstream wind velocity and a turbulent upstream wind velocity, respectively. At the end
of Section 4.5.6, misaligned inflow conditions are considered.

4.5.2. BLADED REFERENCE MODEL
To validate the results of the numerical simulation with the model presented in Sec-
tion 4.5.1, a turbine model with similar properties is created with the software package
BLADED 4.6, from here on referred to as BLADED. The turbine is defined as stall-regulated
with a constant rotor speed, to ensure a similar behaviour. For numerical simulations,
BLADED represents the support structure by a set of attachment modes and constraint
modes, effectively employing a sub-structuring technique.

Table 4.3 presents the frequencies corresponding with the six attachment modes.
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Table 4.2: First six undamped natural frequencies of the modelled turbine.

mode frequency [Hz] description
1 0.269 first side-to-side bending mode
2 0.270 first fore-aft bending mode
3 1.36 second side-to-side bending mode
4 1.40 second fore-aft bending mode
5 1.88 first torsion mode
6 3.02 third side-to-side mode
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Figure 4.10: First six mode shapes of the modelled undamped turbine for a wind speed of 15.0 m/s, with (a) the
first side-to-side bending mode, (b) the first fore-aft bending mode, (c) the second side-to-side bending mode,
(d) the second fore-aft bending mode, (e) the first torsion mode, and (f) the third side-to-side mode.
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Figure 4.11: Effect of the state-independent forces on the dynamic characteristics of the turbine, with (a) the
change in the first six natural frequencies for two operational states, and (b) the damping ratios of the first six
modes as a function of the upstream wind velocity.

BLADED bases these mode shapes on the deformation shape resulting from a concen-
trated load or moment at the tower top. Hence, these modes are obtained from the
stiffness properties only. The frequencies of the two translational attachment modes are
relatively close to the first side-to-side and fore-aft natural frequencies from the finite-
element model. The other attachment modes correspond to very different frequencies
than the natural frequencies of Table 4.2. Simulating an analysis with BLADED with a
similar dynamic performance as the six-mode approximation of the finite-element model
requires the inclusion of a large number of constraint modes. Alternatively, the BLADED

model can be reduced to the first two attachment modes only, implying that the model
cannot predict resonance response for higher modes. The BLADED model that is adopted
for validation purposes accounts for these first two attachment modes, i.e.,modes 1 and 2
of Table 4.3, only.

Table 4.3: Six attachment mode frequencies of the BLADED model.

mode frequency [Hz] description
1 0.275 side-to-side translational attachment mode
2 0.276 fore-aft translational attachment mode
3 1.89 torsional attachment mode
4 1.91 side-to-side rotational attachment mode
5 2.07 fore-aft rotational attachment mode
6 9.08 up-down attachment mode

4.5.3. ANALYSIS APPROACH
The turbine response analysis comprises the simulated response of the finite-element
model with either the state-independent or the state-dependent aerodynamic apparent
aero-elastic properties of the aerodynamic force. The predicted response is subsequently
validated with the BLADED model presented in Section 4.5.2. As indicated in Section 4.5.2,
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the BLADED turbine is modelled as constant speed and stall-regulated, as the force ex-
pressions presented in Section 4.3 do not account for a torque or pitch controller either.

The presented aerodynamic force expressions with state-independent apparent aero-
elastic properties distinguish the response-independent and the response-dependent
force components, i.e., the force components that relate to the response of the turbine
structure. This distinction allows to adopt the response-independent force from BLADED,
which can be obtained from the simulation of a rotor on a rigid tower. The combined
analysis, where BLADED is used to find the response-independent force components and
the state-independent force expressions for the response-dependent forces, is referred to
as the hybrid analysis procedure.

Table 4.4 summarizes the four simulation approaches and indicates how the flow con-
ditions and the apparent aero-elastic properties of the aerodynamic forcing are accounted
for. As indicated, only the BLADED and the hybrid simulation approaches account for
separation of the flow. Since the hybrid approach uses the state-independent aero-elastic
properties as derived in Section 4.3.2, a separation of the flow can only be accounted
for as a part of the response-independent aerodynamic forcing. The state-independent
simulation approach, subsequently, is similar to the hybrid approach, with the exception
that only attached flow conditions are captured. In the same way, the state-dependent
approach is similar to the simulations fully based on BLADED.

Table 4.4: Overview of the four simulation approaches.

description flow conditions apparent properties structural model
BLADED flow separation

possible
state-dependent two attachment

modes
hybrid flow separation

possible∗
state-independent six normal modes

state-independent attached flow state-independent six normal modes
state-dependent attached flow state-dependent six normal modes
∗restricted to the response-independent force components only.

The response analysis requires a modelling of the inflow conditions as well, with which the
axially and tangentially induced velocity fields can be determined. For the current analysis,
static wake conditions are adopted. The induction coefficients that give expression to the
induced velocity fields, are determined with BLADED and subsequently employed in the
state-independent, state-dependent and the hybrid analysis procedures.

Regarding the computational procedure, a Galerkin decomposition is applied. As
indicated in Table 4.4, the BLADED simulation approach uses the first two attachment
modes of the BLADED reference model to obtain the dynamic response. The other sim-
ulation approaches employ the finite-element model described in Section 4.5.1, which
is subsequently reduced on the basis of the first six normal modes of the unloaded and
undamped structure, reducing the number of degrees of freedom for the numerical solver
from 208 to six. As a consequence, the BLADED simulations only capture fore-aft and
side-to-side motions corresponding with the first attachment modes, whereas the other
simulations also allow for motions described by the second fore-aft bending mode, the
second and third side-to-side bending modes and the first torsional mode.
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4.5.4. FORCE ANALYSIS OF A ROTOR ON A RIGID TOWER
The response-independent aerodynamic force components can be determined with a
rigid tower analysis. The resulting thrust force and the aerodynamic torque are deter-
mined as a function of the wind speed with both the state-independent model and the
BLADED model, see Figure 4.12. The upstream wind is uniform and directed in the global
YT direction. For each wind speed, the state-independent analysis uses the inflow con-
ditions, as well as the operational conditions in terms of the rotational speed and the
pitch angle, as obtained from BLADED. It should be noted that the state-dependent force
expressions will give the same forces for this rigid tower analysis as the state-independent
force expressions.

For both the thrust force, Figure 4.12(a), and the aerodynamic torque, Figure 4.12(b),
the curves obtained from the state-independent analysis and the BLADED analysis com-
pare well. Apart from the wind speeds close to the cut-out wind velocity the BLADED

model predicts a somewhat higher thrust force and aerodynamic torque. For above-rated
wind speeds, the aerodynamic torque should be independent of the wind speed, as is
correctly obtained from the BLADED model. The state-independent model, however,
predicts an aerodynamic torque that slightly increases with the wind speed.

The differences between the calculated thrust and torque results from the attached-
flow assumption, which was adopted for the derivation of the state-independent force
expressions, whereas the BLADED model allows for flow separation. As a consequence,
an offset between the estimated deformations of the tower top in the dynamic analysis
(Sections 4.5.5 and 4.5.6) between the BLADED and hybrid simulations – on the one hand
– and the state-dependent and state-independent simulations – on the other hand – is to
be expected.
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Figure 4.12: Aerodynamic forcing as a function of the upstream wind speed on a rotor with a rigid tower, with (a)
the thrust force, and (b) the aerodynamic torque.

4.5.5. RESPONSE ANALYSIS TO A STEP CHANGE IN THE UPSTREAM WIND

VELOCITY
The response to a step change in the uniform upstream wind speed provides insight in the
structural behaviours as obtained with the different analysis procedures. To analyze these
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behaviours, a uniform wind speed of 15 m/s is applied, which after 30 s changes abruptly
to 16 m/s. This wind speed signal is illustrated by Figure 4.13. The inflow conditions are
based on the static wake assumption, the induced wind field of which is determined for
the initial wind speed. Moreover, tip and root loss effects are not accounted for. For each
analysis, the initial conditions are chosen such, that no transient response occurs at the
start of the simulation.
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Figure 4.13: Time signal of the uniform upstream wind speed with a step change from 15 m/s to 16 m/s after 30
s.

The tower top deflections resulting from this wind signal are depicted in Figure 4.14,
where Figure 4.14(a) presents the fore-aft motion primarily resulting from the thrust
force, and Figure 4.14(b) the side-to-side motion resulting from the aerodynamic torque.
Both figures present the response from the BLADED simulation, as well as the hybrid, the
state-independent and the state-dependent simulations.

Considering first the fore-aft deflections, Figure 4.14(a), the tower top deformation
takes place in the positive direction, which coincides with the direction of the wind.
The figure shows a difference in the initial deformations for the different simulations;
the smallest deformation for the state-independent and state-dependent simulations, a
slightly larger deformation for the BLADED simulation and the largest deflection for the
hybrid simulation. The cause for this difference can partly be found in the mean force
components, as depicted in Figure 4.12(a), which showed that BLADED predicts a higher
thrust force for a constant upstream wind speed of 15 m/s than the state-independent
approach, and likewise the state-dependent approach. As a consequence, the BLADED

and hybrid simulations give a larger initial deflection, whereas the deflections obtained
from the state-independent and the state-dependent simulations are equal. The differ-
ence between the BLADED and hybrid simulations can be explained in addition by the
difference in the first fore-aft natural frequencies, which is larger for the BLADED model.
As a consequence, the stiffness of the corresponding modal equation of motion is larger
as well, resulting in the smaller deflection.

After the change in wind speed, a transient fore-aft response is induced, which almost
completely damps out for all simulations during the remainder of the 100 s simulations.
Apart from the different deflections for which each simulation finds its equilibrium, no
obvious differences between the fore-aft responses is observed, apart from a small phase
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difference between the BLADED simulation and the other three simulations, which again
is explained by the difference in the first force-aft natural frequencies. As the transient
responses of the different simulations show a similar pattern, it can be inferred that
both the separation of the flow and the state dependency of the apparent aero-elastic
properties do not affect the estimated fore-aft motions much.

The side-to-side deflections, presented in Figure 4.14(b) take place in the positive
direction as well. The displacement results from the aerodynamic moment around the ro-
tor axis, which results in a positive deflection in the global XT direction (see Figure 4.3(b)).
The side-to-side motions also show an increase in deflection after the wind speed change,
the transient response of which initially damps out quickly. Within the range from 40 s
to 60 s, all simulations show an increase in the amplitude of the side-to-side deflection,
which subsequently damps out at a much slower rate. This behaviour is explained by
the coupling of the first and second modes through the aerodynamic damping, an effect
which is smallest for the linearized hybrid and state-independent simulations. With the
exception of the BLADED simulation, which only describes fore-aft and side-to-side mo-
tions, the side-to-side response signals also have a small higher frequency contribution,
which results from the second side-to-side bending mode of vibration of the wind turbine.

The hybrid and the state-independent simulations show a smaller amplitude of oscil-
lation after 50 s than the BLADED and the state-dependent simulations. An explanation
can primarily be found in the contribution of the higher-order contributions of the ap-
parent aero-elastic properties. Neglecting the state-dependency of these properties, as is
done for the hybrid and the state-independent simulations, results in an underestimation
of the amplitude of oscilation of the side-to-side motion.
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Figure 4.14: Tower top response to a step change in the upstream wind speed, with (a) the fore-aft motion, and
(b) the side-to-side motion.

4.5.6. RESPONSE ANALYSIS TO A TURBULENT WIND VARIATION
The turbine models are now applied to compute the time response to a turbulent wind
excitation. To this end a time representation of a turbulent wind signal of 1000 s at all
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locations of the rotor plane is obtained from a single-point Kaimal turbulence spectrum
for a mean wind velocity of 15.0 m/s with a turbulence intensity of 15.7% and a longi-
tudinal turbulence length scale of 340.2 m. Figure 4.15(a) presents a 100 s window of
this turbulent wind signal, while the corresponding estimated power spectral density is
depicted in Figure 4.15(b).

The power spectral density is estimated from the squared ampitude spectrum of the
finite time series, obtained from the fast-Fourier transform, divided by the duration of
the time signal. The shape of the Kaimal spectrum can easily be recognized. The time
signal presented in the former shows a varying wind with a non-zero mean value. This
can be explained from the fact that only a relatively short part of the complete time signal
is presented. The statistical properties of the turbulent wind are presented in Table 4.5.
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Figure 4.15: Turbulent component of the aerodynamic excitation corresponding to a mean wind velocity
of 15.0 m/s, with (a) the time-domain representation, and (b) the estimated power spectral density of the
turbulence signal.

Table 4.5: Statistical characteristics of the turbulence signal.

minimum [m/s] maximum [m/s] mean [m/s] standard deviation [m/s]
11.5 20.5 16.3 1.47

In computing the response to the turbulent wind, spatial variations of the turbulence are
neglected. As a consequence, a rotational sampling of the turbulence does not introduce
higher-frequency components into the excitation signal. Moreover, the induced velocity
field at the rotor plane is defined on the basis of the static wake model, implying that
it relates to the mean wind velocity component only, and tip and root loss effects are
neglected.

Figure 4.16 presents the fore-aft response to the turbulent wind input, distinguishing
the time-domain response and the power spectral density of the response, Figure 4.16(a)
and (b), respectively. To smooth out the power spectral densities, a moving root mean
square filter has been applied. The time signals show a good match between the reference
BLADED model on the one hand, and the hybrid, state-independent and state-dependent
models on the other hand. This match is confirmed in the frequency domain, where for
all simulations a single peak can be observed, which corresponds with the first mode of
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Figure 4.16: Fore-aft motion of the tower top, with (a) the time-domain representations, and (b) the estimated
power spectral densities.
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Figure 4.17: Side-to-side motion of the tower top, with (a) the time-domain representations, and (b) the
estimated power spectral densities.

Table 4.6: Comparative values of the fore-aft tower top motion.

simulation minimum maximum mean standard deviation
[m] [m] [m] [m]

BLADED -0.292 0.795 0.361 0.166
hybrid -0.305 0.807 0.371 0.170
state-independent -0.253 0.803 0.356 0.166
state-dependent -0.262 0.818 0.353 0.174
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Figure 4.18: Tilting motion of the tower top, with (a) the time-domain representations, and (b) the estimated
power spectral densities.
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Figure 4.19: Rolling of the tower top, with (a) the time-domain representations, and (b) the estimated power
spectral densities.

Table 4.7: Comparative values of the side-to-side tower top motion.

simulation minimum maximum mean standard deviation
[m] [m] [m] [m]

BLADED -0.0932 0.226 0.0624 0.0516
hybrid -0.107 0.188 0.0644 0.0448
state-independent -0.114 0.179 0.0598 0.0427
state-dependent -0.116 0.215 0.0628 0.0586
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Figure 4.20: Torsional motion of the tower top, with (a) the time-domain representations, and (b) the estimated
power spectral densities.

vibration. The order of magnitude of the presented deflections compares well to results
presented in [208, 273].

The side-to-side response is presented in Figure 4.17, again showing the response in
the time and frequency domains, Figure 4.17(a) and (b), respectively. Compared to the
fore-aft motions, the side-to-side motions show a larger variation in the time domain
between the simulations, with the largest amplitudes within the presented time window
resulting from the state-dependent analysis. The power spectral densities all show a clear
peak, at the frequency of the first vibrational mode. The shape of the peak of the state-
dependent simulation is broader, indicating a higher amount of damping. The hybrid
and state-independent simulations show a second peak, corresponding with the second
side-to-side mode of vibration. The BLADED simulation does not show this peak, as the
BLADED model only contains the first two attachment modes. In the frequency-domain
response of the state-dependent simulation, the peak cannot be distinguished either,
implying that the higher-order damping of the second side-to-side mode is substantial.

Figures 4.18, 4.19 and 4.20 show the rolling, tilting and torsional motions of the
tower top, respectively. Each of the figures distinguishes a response representation in
the time and frequency domain. In both these representations, couplings of the fore-aft
and side-to-side motions can be observed. Considering first the tilting response in the
time domain, Figures 4.18(a), a similarity with the fore-aft response signal can clearly
be observed, see Figure 4.16(a). This similarity can by explained by the coupling of the
tower top rotation around the global XT axis with the deflection in the global YT direction
through the structural model. The rotation takes place in the negative direction, because
for low-frequency excitations a positive deflection in the global YT direction results in
a negative rotation around the global XT axis. When comparing the tilting motion of
different simulations in the time-domain, the differences are small. In the frequency-
domain, however, the hybrid and state-independent simulations show the peak at the
natural frequency corresponding to the second side-to-side mode, as was also observed
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for the side-to-side motion, see Figure 4.17(b).
The coupling between the torsional and rolling motions is even stronger, as can be

concluded from Figure 4.19, where Figure 4.19(a) shows a high-frequency component
in the time signals and Figure 4.19(b) a peak at the natural frequency of the second
side-to-side bending mode, which is only one order of magnitude smaller than the peak
at the natural frequency of the first side-to-side mode. In the time-domain, the state-
dependent simulation shows a larger variation than the other simulations. This variation
was observed for the side-to-side motion too, see Figure 4.17(a). Also in the results of the
analysis of the step change in the upstream wind velocity, Section 4.5.5, these larger am-
plitude of the oscillations obtained with the state-dependent simulation approach were
observed, which were explained by the contribution of the higher-order contributions of
the apparent aero-elastic properties.

The amplitude of the torsional motion, Figure 4.20(a) is much smaller than the am-
plitude of the other rotations, because the energy level in the excitation signal at the
corresponding natural frequency is lower. Again, the torsional motion in the BLADED

simulation is absent, as the model does not contain modes that allow for torsion. The
other simulations estimated a very similar response in torsion, as is confirmed by the
frequency-domain representation, Figure 4.20(b). In the frequency-domain, the coupling
with the side-to-side motion is again clearly illustrated.

Tables 4.6 and 4.7 summarize the main statistical properties of the fore-aft and side-
to-side motions as obtained with the four different simulation approaches. The tables
compare the minimum and maximum deflections during the 1000 s response, as well as
the mean and the standard deviation. The presented values show a good agreement of the
different approaches. As was already observed from the responses to the step excitation,
the BLADED and hybrid simulations show a slightly larger mean for-aft deformation,
resulting from the larger mean thrust force. Concerning the standard deviations of the
fore-aft motions, which provides an indication for the differences between predictions of
the fatigue damage, only small differences are obtain. In a relative sense, these differences
are larger for the side-to-side motions. In absolute terms, the standard deviations of the
side-to-side motion are much smaller than the standard deviations of the fore-aft motion,
implying that the contribution to the fatigue damage accumulation will be much smaller
as well.

Table 4.8: Components of the mean wind velocity in the lateral and axial directions for different misalignment
angles.

misalignment mean wind in mean wind in
[deg] XT direction [m/s] YT direction [m/s]

7.5 1.96 14.9
15.0 3.88 14.5
22.5 5.74 13.9

The derived expressions for the state-dependent and the state-independent aerodynamic
interaction, in Sections 4.2 and 4.3, allow for three-dimensional inflow conditions, im-
plying that, for instance, the turbine loads resulting from a yaw misalignment can be
estimated. To illustrate the accuracy of the predicted tower motions for yawed loading
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conditions, Table 4.8 presents three scenarios with a misalignment angle of 7.5, 15.0 and
22.3 degrees respectively. The table also indicates, for a mean wind speed of 15.0 m/s, the
lateral and axial components of the wind with respect to the rotor plane, the wind speeds
in the global XT and YT directions, respectively.

To understand the impact of the misalignment on the aerodynamic force distribution,
the effects of the axial and lateral velocity components are considered separately. As a
consequence of the misalignment, the axial wind speed decreases, resulting in an overall
reduction of the angle of attack along the blades of the rotor. This smaller angle of attack
induces a lower distributed lift force and subsequently a lower aerodynamic torque and
thrust force. On average, the tower top deflections, both fore-aft and side-to-side will
reduce. In addition, the lower axial wind speed reduces the length over which separation
of the flow will take place. Hence, the differences between the response estimations of
the BLADED and hybrid simulations – on the one hand – with the state-independent and
the state-dependent simulations – on the other hand – will be smaller.

The lateral wind speed, which is introduced with the misalignment, results into a
time-varying in-plane flow velocity as experienced by each separate blade, which varies
with the rotational frequency of the rotor. Consequently, the angle of attack of each
blade varies with this same frequency as well. For three-bladed rotors, this variation
in the angle of attack of the individual blades results in harmonic components in the
tilting and yawing moments, with a frequency of three times the rotor frequency, i.e., the
blade-passing frequency.

As a second result of the time-varying angle of attack, separation of flow will take
place over a larger radius of the blades, for which the linear relation between the angle of
attack and the lift force is no longer valid. The BLADED simulations account for this non-
linear relation in an instantaneous manner. This will reflect in higher-order harmonic
components in the aerodynamic forcing. The response-independent aerodynamic force
components of the hybrid simulations allow for separation of the flow, whereas the
apparent aero-elastic properties are based on assumed attached-flow conditions. The
state-independent and state-dependent simulations are fully based on the assumption of
attached flows. On this basis, it can be expected that misaligned inflows will show larger
differences between the response estimations of the BLADED and hybrid simulations – on
the one hand – with the state-independent and the state-dependent simulations – on the
other hand.

The tower top displacements for the misaligned load scenarios are presented in
Figures 4.21 and 4.22, distinguishing the fore-aft and side-to-side tower top responses in
the time- and frequency-domain, respectively. Considering first the time signals of the
fore-aft tower top deflections, a general agreement between the estimated motions can
be observed, see Figures 4.21(a), (c) and (e). Because of the reduction of the axial wind
speeds, the overall fore-aft deflections decrease with the increase of the misalignment
angle. As expected, the difference between the BLADED and hybrid simulations, and the
state-independent and the state-dependent simulations enhances with the increase in
misalignment angle.

The side-to-side motions show stronger variations between the estimated responses,
see Figures 4.21(b), (d) and (f), also when compared with the side-to-side motions of the
aligned loading scenario of Figure 4.17(a). This larger variation, which was also seen in
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Figure 4.21: Time-domain representations of the tower top deflections for the yaw-misalignment load scenarios
of Table 4.8, with (a) the fore-aft deformation for a misalignment angle of 7.5 degrees, (b) the side-to-side
deformation for a misalignment angle of 7.5 degrees, (c) the fore-aft deformation for a misalignment angle
of 15.0 degrees, (d) the side-to-side deformation for a misalignment angle of 15.0 degrees, (e) the fore-aft
deformation for a misalignment angle of 22.5 degrees, and (f) the side-to-side deformation for a misalignment
angle of 22.5 degrees.
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Figure 4.22: Estimated power spectral densities of the tower top deflections for the yaw-misalignment load
scenarios of Table 4.8, with (a) the fore-aft deformation for a misalignment angle of 7.5 degrees, (b) the side-
to-side deformation for a misalignment angle of 7.5 degrees, (c) the fore-aft deformation for a misalignment
angle of 15.0 degrees, (d) the side-to-side deformation for a misalignment angle of 15.0 degrees, (e) the fore-aft
deformation for a misalignment angle of 22.5 degrees, and (f) the side-to-side deformation for a misalignment
angle of 22.5 degrees.
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the analyses of the step change in the upstream wind velocity and the axial turbulent
wind, is mainly expressed in the amplitude of the oscillations, whereas no clear effect
of the different misalignment angles on the dominant frequency of oscillation can be
observed.

In the frequency domain, the fore-aft tower top motions obtained with a different
misalignment angle, see Figures 4.22(a), (c) and (e), are similar to the motion obtained
with the aligned inflow, Figure 4.16(b). One difference can be observed at the frequency
corresponding to the second fore-aft mode of vibration, at which the hybrid simulation
shows a small peak. The BLADED simulation does not show peak at this frequency, since
the structural model is represented by the first two modes of vibration only. A second
difference is visible at the blade-passing frequency, approximately 0.61 Hz, where the
BLADED and hybrid simulations develop a small peak with the increasing misalignment
angle, resulting from the separation of the flow along parts of the blade radii.

This peak at the blade-passing frequency is more visible in the frequency-domain
representation of the side-to-side tower top motions, see Figures 4.22(b), (d) and (f). The
more dominant peaks, however can be observed at the frequencies corresponding to
the first side-to-side and the second fore-aft and side-to-side modes of vibration. In this
respect, the figures are comparable to Figure 4.17(b), which contained the frequency-
domain representation of the side-to-side tower top motion for the aligned inflow condi-
tions, with the exception that due to the yaw misalignment the second fore-aft mode is
excited too.

Overall, the resemblance between the fore-aft response simulations for the different
misalignment angles provides a good basis for the application of the apparent mass,
damping and stiffness matrices to model the aerodynamic interaction with the rotor.
The estimated side-to-side motions, however, show larger distinctions, especially for
the misalignment angles of 15 and 22.5 degrees. Still, for practical design situations,
a maximum misalignment angle for normal operations of 8 degrees is prescribed [15],
which is close to the analyzed case with 7.5 degrees misalignment, and for which the
resemblance in the estimated side-to-side motions is best. On top of this, it should be
noted that the current simulations were run without a control algorithm, with which
the flow separation resulting from the wind speed fluctuations can be mitigated. It is
expected that the implementation of a control algorithm will increase the agreement
between the estimated responses even further.

4.6. CONCLUSIONS
This chapter presented the derivation of transparent closed-form expressions for the
state-dependent aerodynamic excitation of a wind turbine rotor – comprising lift, drag
and inertia force components. These expressions relate the structural motion of the
turbine tower to the aerodynamic excitation and allow for the simulation of the structural
response of a wind turbine tower to a time-dependent aerodynamic excitation. By means
of a first-order Taylor approximation, closed-form state-independent apparent stiffness,
damping and mass matrices are extracted from the state-dependent force. These ex-
pressions are derived in a general manner and allow, therefore, for differences in blade
geometries and spatial variations in the aerodynamic excitation. Additionally, the effect
of a camber of the blade aerofoils on the aerodynamic forcing is explicitly taken into
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account.
In deriving the closed-form expressions, the blades of the rotor were assumed to

be rigid. Furthermore, attached-flow conditions were adopted, a requirement which in
general can be met over the largest part of the blades by choosing the right rotational
velocity and pitch angle. Active control was not accounted for in the model, implying
that the rotational velocity and the pitch angle do not respond to velocity changes in the
aerodynamic excitation.

For the particular case of a rotor with identical blades and a perfect alignment of
the mean wind component, the contribution of the separate aerodynamic force compo-
nents was visualized for a regular operational state of the NREL 5MW rotor. The mean
force components – the aerodynamic thrust and torque – were compared with the forces
obtained with the aero-elastic software BLADED 4.6., and a good overall agreement was
shown. The observed differences could be related to the separation of the flow. Further-
more, the visualization allowed for an assessment of the force-response sensitivity to
the different structural motions. The matrices that relate the structural velocities to the
aerodynamic forces give insight in the aerodynamic damping of the rotating rotor. The
large damping of the fore-aft and yaw motions was illustrated, the former of which being
in correspondence with expressions available in literature.

The last part of the chapter addressed the numerical validation of the presented model
by comparing the response estimations obtained with the state-independent and the
state-dependent simulation approaches, with the response obtained within BLADED. A
fourth approach, which was referred to as the hybrid simulation approach, combined the
response-independent aerodynamic forces from bladed with the response-dependent
terms of the state-independent simulation approach. Estimated tower top motions were
presented for a step change in the upstream wind velocity, and aligned and misaligned
turbulent inflow conditions. Concerning the fore-aft tower top motions, all simulations
showed a good agreement. The side-to-side motions illustrated the contributions of flow
separation and the higher-order terms of the response-dependent aerodynamic force to
the aerodynamic interaction with the rotor.

With the application of the state-independent matrix expressions, a wind turbine can
be modelled with the inclusion of the coupling of the structural motions through the
aerodynamic forces. This way, the force-response interdependency can be assessed and
understood, while the detailed modelling of a wind turbine rotor is avoided. In addition,
the matrices provide direct insight in the implications of geometric and aero-elastic
parameters, such as the rotor eccentricity, rotational velocity, pitch angle, and the lift and
drag coefficients, as well as the extent of the coupling of the structural motions through
the aerodynamic forcing. Moreover, the matrices allow for the further implementation of
rotor control and drive-train dynamics. The expressions presented in this chapter can be
adopted for the preliminary design of the foundations of wind turbines. Especially for
offshore wind turbines, these expressions allow for a transparent analysis of the coupled
aerodynamic and hydrodynamic excitations.
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PITCH-REGULATED OFFSHORE

WIND TURBINE

The response of offshore wind turbines to wave excitations is known to be affected consider-
ably by the apparent damping of aerodynamic force, implying that the structural analysis of
offshore wind support structures requires a representation of the apparent system properties
of this force. The application of the state-independent expressions for the apparent system
properties of the aerodynamic force potentially leads to a quicker structural assessment
in the preliminary design phase of offshore wind support structures, provided that the
estimated response to simultaneous wind and wave excitations is sufficiently accurate.
This chapter assesses the accuracy of the method with the state-independent apparent
aero-elastic properties in comparison with response estimations obtained with the aero-
elastic software BLADED 4.6. Moreover, drive-train and control sub-systems are included,
allowing for the analysis of modern pitch-regulated variable-speed wind turbines and
the contribution to the state-independent aero-elastic properties defined. In assessing the
accuracy of the proposed method, simulations with both aligned and misaligned wind-
wave conditions are performed, focussing on the performance of the implemented pitch
controller. The results show that the method with state-independent aero-elastic properties
gives accurate results, in comparison with BLADED, provided that the controller response is
governed by the aerodynamic excitation.
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O FFSHORE wind turbines are exposed to simultaneous wind-wave excitations. For
the design, the statistical variation of both environmental excitations needs to be

covered adequately, resulting in a vast amount of load simulations. These load simula-
tions should not only represent the expected correlated combinations of wind and wave
conditions, but also the directional distributions of both. The integrated design approach,
as described in Section 1.1, aims to capture the so-called aero-hydro-servo-elasticity
of the complete system, so that the dynamic response of the structure as a whole can
be captured sufficiently accurately. The decoupled approach, on the other hand, see
Section 1.1, focusses on the modelling of a specific sub-system, whereas the remaining
structural components are represented in a simplified manner. The approach aims to
capture only the most relevant mechanical behaviour of these simplified components.

For the preliminary design stage, the use of an integrated design model already re-
quires a relatively high level of detail. Combined with the large amount of simulations,
little opportunity to process optimizations remains. A decoupled approach may be pre-
ferred at this stage, as it leaves more freedom in defining the properties of the separate
sub-systems [11]. The question remains what level of detail of these sub-systems is
required, in order to obtain an acceptable representation of the system as a whole.

When considering the decoupled modelling of a support structure, the representation
of the rotor, drive-train and nacelle should include the relevant mass and damping char-
acteristics. Whereas the mass properties are usually available, concerning the damping,
typically only the fore-aft aerodynamic damping is accounted for. Especially for mis-
aligned load cases, a three-dimensional damping representation is required. Misaligned
waves excite the side-to-side motion, which is coupled with the torsional motion. Side-to-
side motion is limitedly damped, and this damping is often neglected. Yawing motion
of the rotor generates a large aerodynamic damping and necessitates a more extensive
representation of the aerodynamic damping.

Moreover, the advancing control strategies of wind turbines affect the dynamic char-
acteristics of the system as a whole [274]. In the above-rated regime, this control system
regulates the pitch angle of the rotor blades. By pitching the blades, perturbations of the
aerodynamic torque are mitigated, so that the rotor speed remains constant. A decoupled
model that estimates the aerodynamic excitation of the foundation of a wind turbine,
requires a representation of the force mitigating effect of the controller contributions.

The representation of the aerodynamic damping for the decoupled modelling of
offshore wind support structures has received significant attention in research. Several
studies derived closed-form expressions for the fore-aft damping [50–52], the relevance
of which was illustrated by Kühn [49]. Valamanesh and Myers [51] addressed the side-to-
side damping of the aerodynamic interaction as well. Other studies suggested the use of
an integrated model to obtain the numerical values of the load case-specific damping
characteristics, usually in terms of a modal damping ratio [49, 152], which is commonly
defined for the first mode of vibration only [47, 48].

A more extensive approach was presented by Schafhirt and Muskulus [55], who esti-
mated the separate damping contributions for the translational and rotational motions of
the support structure, from an integrated turbine model. In Chapter 4 of the current work,
closed-form expressions for the coupled three-dimensional aerodynamic damping were
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presented, assuming attached-flow conditions and linearizing the aerodynamic excitation
with respect to the structural kinematics. These closed-form expressions were validated
by a comparison with simulations with the aero-elastic software BLADED 4.6 for the NREL
5MW turbine with the UpWind monopile support structure [172, 173]. However, the
applicability was not demonstrated for simultaneous misaligned wind-wave excitations
of an offshore wind turbine. Moreover, an improved performance can be expected with
the inclusion of a representation of the control system of the turbine.

Basic controller concepts for wind turbines are PI and PID controllers [275, 276]. For
the below-rated regime, the controller aims at the optimization of the tip speed ratio
by adjusting the generator torque, whereas in the above-rated regime, the pitch angle
of the blades is controlled, keeping the power output constant, with the input provided
by the measured generator speed [31, 172]. Apart from power limitation, the control
system serves as well the suppression of the loads [30], for instance by employing the
pitch controller to mitigate the oscillations of the support structure [56]. Individual pitch
control systems, which affect the pitch angle of each blade separately offer the possibility
to reduce asymmetric loads on the rotor plane, for instance resulting from altitudinal
wind speed variations [57–59]. In this regard, Fischer et al. [60] and Zhang et al. [61]
studied the application of active generator torque and individual pitch controllers for the
mitigation of side-to-side tower oscillations.

The implementation of a control system requires a representation of the drive-train of
the wind turbine as well, as the rotor and generator rotations need recognition as separate
degrees of freedom. In modelling the drive-train dynamics, numerous studies have aimed
at the suppression of torsional oscillations. To this end, Geng et al. [277] adopted a two-
mass model, accounting for the mass moments of inertia of the wind turbine rotor and
the generator, a model which was employed to demonstrate an active-damping strategy.
Ritto et al. [278] proposed an methodology for the optimization of rotor-bearing systems,
based on the dynamic response, making use of a probabilistic drive-train model, whereas
Licari et al. [279] considered a three-mass model of a drive-train model, considering both
shaft and blade flexibilities. Other researchers focussed on the modelling of alternative
drive-train systems, such as the direct-driven turbine and turbines with a fluid power
transmission [29, 280]. An overview of the trends in drive-train design and the varying
modelling strategies was provided by Struggl et al. [281].

The current chapter addresses the response estimation with a decoupled support
structure model to simultaneous misaligned wind and wave excitations, using the state-
independent apparent aero-elastic properties defined in Chapter 4, with the purpose to
illustrate their applicability for preliminary design purposes. Whereas in Chapter 4 the
turbine was modelled as fixed-speed, here a pitch-regulated variable speed turbine is
considered, requiring an extension of the model with drive-train and controller represen-
tations. With the primary focus on the pitch controller, the linear contributions of the
controller to the aerodynamic forcing are presented, from which, on the basis of a PID
controller expression, additional apparent aero-elastic properties are identified.

The inclusion of a pitch controller requires the adoption of a time-dependent pitch
angle and rotational velocity of the rotor. In addition, a drive-train needs to be defined,
which decouples the rotor rotation from that of the wind turbine tower. For a drive-train
with flexible shafts, the rotations of both the rotor and the generator can be distinguished
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as degrees of freedom. In Section 5.1, the turbine model of Chapter 4 is extended with
drive-train and control sub-systems, resulting in an indirect coupling between the az-
imuth deviation of the rotor and the tower top motion. The state-independent apparent
aero-elastic properties that relate to the pitch controller are then presented in Section 5.2,
after defining the coefficients of the linear force contributions of collective pitching ac-
tions. Subsequently, Section 5.3 addresses the performance of the proposed modelling
approach, using the state-independent apparent aero-elastic properties to represent
the aerodynamic excitation, now including the representation of a control system. In
this regard, use is made of the properties of the NREL 5MW turbine with the UpWind
monopile support structure [172, 173].

The response to combined wind and wave excitations is estimated and compared
with response estimated with a similar BLADED model. As in Chapter 4, the response
is estimated with a hybrid and a state-dependent approach too, the former consist-
ing of a response-independent force estimation by BLADED, in combination with the
state-independent force expressions, which account for the response-dependency of the
aerodynamic force, and the latter of a non-linear response-dependent force representa-
tion. The BLADED and the state-dependent approaches differ in the sense that BLADED

accounts for flow separation for large angles of attack, whereas the state-dependent ap-
proach assumes linear relations between the lift and drag coefficients and the angle of
attack, or in other words, attached flow conditions.

With the analysis of simultaneous wind and wave excitations, the focus is fully on
the offshore application of wind turbines. The comparison of the simulation approaches
provides insight in the applicability of the state-independent, or, alternatively, the hybrid
analysis approach to estimate the support structure response. In the definition of the
model, both pitch and torque controller sub-systems are addressed. Given the state-
independent definition of the apparent aerodynamic properties, these approaches are
believed to be most promising for preliminary design purposes of support structures of
offshore wind turbines.

5.1. MODEL DEFINITION

5.1.1. TURBINE SYSTEM DEFINITION
The derivations presented in this section are based on the three-bladed rotor as presented
in Section 4.1, which was defined within the global inertial XTYTZT reference frame, the
floating rotor-fixed XRYRZR reference frame and the blade-fixed rB; j YB; j ZB; j reference
frames. Whereas the turbine system in Section 4.1 was only divided into tower-nacelle
and rotor sub-systems, here, the additional drive-train and control sub-systems, required
for the implementation of the pitch controller, are defined in addition.

The dynamic model which is adopted to describe this turbine system is depicted in
Figure 5.1. Figure 5.1(a) presents the dynamic properties which are accounted for, and
the degrees of freedom of the system. In the following sections, the four sub-systems are
described in more detail. The consideration of these sub-systems as a part of the turbine
system requires the definition of a force transfer. Regarding the interfaces between these
sub-systems, reference is made to Figure 5.1(b), which presents the interaction forces
required for the definition of the equations of motion of the separate sub-systems.
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(a) (b)

Figure 5.1: Definition of the model characteristics, with (a) the dynamic properties and the degrees of freedom
of the system and (b) the external forces and the interface forces between the sub-systems. The drive-train
sub-system is considered in detail in Figure 5.2

.

ROTOR SUB-SYSTEM

Compared with the rotor sub-system definition of Section 4.1, the rotor speed is now
time varying. The time-dependent rotational velocity of the rotor can be expressed as a
superposition of the mean rotational velocity Ω̄f

R;Y and the variational rotational velocity

∆Ωf
R;Y (t ):

Ωf
R;Y (t ) = Ω̄f

R;Y +∆Ωf
R;Y (t ). (5.1)

The cumulative azimuth deviation of the rotor, with respect to the mean, can be expressed
in terms of ∆Ψf

R;Y (t ):

∆Ψf
R;Y (t ) =

∫ t

0
∆Ωf

R;Y (t )dt . (5.2)

The rotor azimuth corresponding with the mean rotational velocity Ω̄f
R;Y is indicated as

Ψ̄f
R;Y (t ).

The motion of the rotor sub-system in the global inertia reference frame is described
by the six-component deformation vector ∆vR(t), composed of the translation vector
∆uR(t ), and the rotation vector∆θθθR(t ). In the moving rotor reference frame, the rotational
degrees of freedom of the rotor consist of the rotations ∆θf

R;X (t) and ∆θf
R;Z (t) and the

azimuth deviation around the YR axis:

∆θθθf
R(t ) =

∆θ
f
R;X (t )

∆Ψf
R;Y (t )

∆θf
R;Z (t )

 . (5.3)

The matrix RR;θ(t ) defines the transformation from the rotor reference frame to the inertial
reference frame:

∆θθθR(t ) = RR;θ(t )∆θθθf
R(t ). (5.4)

Following the same procedure as in Section 4.3, the linearized system of equations of
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motion for the rotor sub-system can be defined:[
MH +

3∑
j=1

MB; j (t )

]
∆v̈R(t )+

3∑
j=1

CB; j (t )∆v̇R(t )+
3∑

j=1
KB; j (t )∆vR(t ) =

3∑
j=1

QB; j (t )+QR;A(t )−QN(t )−QLSS(t ).

(5.5)

Here, the rotational degrees of freedom are approximated as:

∆θθθR(t ) ≈
∆θR;X (t )
∆Ψf

R;Y (t )
∆θR;Z (t ).

 (5.6)

On the right-hand side of Eq. (5.5), QN(t ) contains the force components that are trans-
ferred directly through the bearings of the low-speed shaft to the nacelle and, subse-
quently the tower. QLSS(t ) contains the torque that is transferred to the gearbox through
the low-speed shaft.

DRIVE-TRAIN SUB-SYSTEM

The drive-train sub-system describes the dynamic force balance between the torque on
the low-speed shaft and the electro-magnetic generator torque, T f

LSS;Y (t) and T f
G;Y (t),

respectively (see Figure 5.1). As the axis of rotation corresponds with the YR axis of the
rotor, the system is defined in the floating rotor reference frame. Assuming an indirect
drive, the drive-train consists of a low-speed shaft, connected the hub to the rotor and
a high-speed shaft which connects to the generator. The low-speed and high-speed
shafts are coupled through the gearbox, of which the gearbox ratio NDT defines ratio
of the torques of the drive-train shafts. In the dynamic modelling of the drive-train for
global response analysis, the shafts are commonly assumed to be massless. Moreover, an
effective stiffness KDT and damping CDT are included, where ‘DT’ refers to drive-train.
Regarding the degrees of freedom, the azimuth deviations of the rotor and the generator
can be distinguished, where the latter is expressed by ∆Ψf

G;Y (t) and is obtained from

the integration of the generator speed deviation ∆Ωf
G;Y (t ) over time, similar to Eq. (5.2).

This definition of the drive-train model corresponds with models, previously reported
in [61, 279], and is depicted in Figure 5.2, with Figure 5.2(a) presenting the dynamic
properties and the degrees of freedom, and Figure 5.2(b) the torque transfer.

The equations of motion of the rotor sub-system, Eq. (5.5), contain the dynamic
equilibrium of the rotor mass moment of inertia with the difference between the aerody-
namic torque and the torque of the low-speed shaft. Introducing a friction between the
low-speed shaft and the shaft bearing, expressed by the coefficient µDT, the equation of
motion of the low-speed shaft can be expressed as

CDT

(
∆Ψ̇f

R;Y (t )− ∆Ψ̇f
G;Y (t )

NDT

)
+KDT

(
∆Ψf

R;Y (t )− ∆Ψf
G;Y (t )

NDT

)
= (1−µDT)T f

LSS;Y (t ). (5.7)

The friction-component of the aerodynamic torque, µDTT f
LSS;Y (t ), is transferred through

the bearing to the nacelle.
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(a) (b)

Figure 5.2: Schematic representation of the drive-train sub-system within the floating rotor reference frame,
with (a) the rotational degrees of freedom of the low-speed and high-speed shafts, and (b) the transmission of
the aerodynamic torque through the drive-train to the tower fixed-nacelle components.

The equation of motion of the high-speed shaft, including the generator inertia, is ob-
tained as

J f
G;Y ∆Ψ̈

f
G;Y (t )+CDT

(
∆Ψ̇f

G;Y (t )

N 2
DT

− ∆Ψ̇f
R;Y (t )

NDT

)
+KDT

(
∆Ψf

G;Y (t )

N 2
DT

− ∆Ψf
R;Y (t )

NDT

)
=−T f

G;Y (t ). (5.8)

Summation of Eqs. (5.7) and (5.8), after multiplication of the latter with the gearbox ratio
NDT, results in the global balance equation of the drive-train sub-system:

NDT J f
G;Y ∆Ψ̈

f
G;Y (t ) = (1−µDT)T f

LSS;Y (t )−NDTT f
G;Y (t ). (5.9)

Moreover, after defining the torque of the high-speed shaft T f
HSS;Y (t) in terms of the

generator acceleration and the generator torque,

T f
HSS;Y (t ) = J f

G;Y ∆Ψ̈
f
G;Y (t )+T f

G;Y (t ), (5.10)

the low-speed and high-speed torques can be related in terms of the gearbox ratio:

T f
HSS;Y (t ) = (

1−µDT
) ±T f

LSS;Y (t )

NDT
. (5.11)

The sign difference, ‘±’, indicates whether the gearbox contains an even or odd number
of stages.

The total torque transferred through the drive-train to the nacelle, which is defined
as T f

HSS;Y (t ), is composed of the low-speed shaft friction, the summation of the gearbox
torques and the generator torque on the stator:

T f
DT;Y (t ) =µDTT f

LSS;Y (t )+
{(

1−µDT
)

T f
LSS;Y (t )∓T f

HSS;Y (t )
}
±T f

G(t ), (5.12)

which, after substitution of Eq. (5.8) turns into

T f
DT;Y (t ) = T f

LSS;Y (t )∓J f
G;Y ∆Ψ̈

f
G;Y (t ). (5.13)

In absence of an acceleration of the rotor, the aerodynamic torque is transmitted in full
to the top of the tower. In case of a time-varying aerodynamic torque, only a fraction
of the torque deviation is transferred, as the varying torque will primarily result in an
acceleration of the rotor sub-system.
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TOWER-NACELLE SUB-SYSTEM

The tower-nacelle sub-system is defined by the mass matrices MT and MN;fixed, and
the damping and stiffness matrices CT and KT. MN;fixed is the nacelle inertia matrix,
containing the inertias of the tower-fixed nacelle components, and therefore not including
the mass moment of inertia of the drive-train components around the rotor axis YR. For
reasons of convenience, the sub-system characteristics are lumped at OT. The motion of
the tower top is described by the six-component deformation vector ∆vT(t ), composed of
the translation vector ∆uT(t ) and the rotation vector ∆θθθT(t ):[

MT +MN;fixed
]
∆v̈T(t )+CT∆v̇T(t )+KT∆vT(t ) = QT;E(t )+QN(t )+QDT(t ). (5.14)

The translations of the tower top are fully coupled to the translation of the rotor sub-
system, implying that

∆uT(t ) =∆uR(t ). (5.15)

Within the reference frame of the rotor, the rotations around the XR and ZR axes of the
rotor and tower-nacelle sub-systems are equal as well. The rotations around the YR

axis are coupled through the transferred drive-train force vector QDT(t). The external
forces acting on the tower are represented by the effective force vector QT;E(t). Among
others, this vector contains forces resulting from the aerodynamic drag and, in the case of
offshore wind turbines, hydrodynamic impacts.

CONTROLLER SUB-SYSTEM

For below-rated wind velocities, the control sub-system of a variable speed pitch-regula-
ted wind turbine aims at power optimization. To this end, the magnitude of the generator
torque T f

G;Y (t ) is controlled, based on the measured magnitude of the rotational velocity of

the high-speed shaftΩf
G;Y (t ). For a given operational state of the turbine, the magnitude of

the generator torque can be defined as T̄ f
G;Y . A perturbation of the operational conditions

yields a variation of the generator torque ∆T f
G;Y (t), to optimize the power output by

maintaining a constant optimal tip-speed ratio of the rotor. For the below-rated regime,
the generator torque can be defined as

T f
G;Y (t ) = T̄ f

G;Y +∆T f
G;Y (t ). (5.16)

In the above-rated regime, the turbine should operate such, that the generator torque
remains constant, i.e., T f

G;Y (t) = T̄ f
G;Y . This can be achieved with the implementation

of a collective full-span pitch control system, which relates a change in the generator
rotational velocity to an adjustment in the pitch angle of the rotor blades. For a certain
operational state, the pitch angle can be defined as the superposition of its mean and a
variation:

βr
R(t ) = β̄r

R +∆βr
R(t ), (5.17)

where β̄r
R and ∆βr

R(t) are the mean pitch angle and the corresponding perturbation,
respectively. The collective angle βr

R(t ) expresses the pitch angles βr
B; j (t ) of the individual
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blades, and relates, for that reason, to the rotating blade reference frames, indicated by
the superscript ‘r’.

Concerning the equations of motion describing the control sub-system, the below
and above-rated regimes are distinguished. For below-rated wind velocities, the generator
torque should be set proportional to the square of the measured rotational speed of the
high speed shaft [30]:

T f
G;Y (t ) =GG;P

{
Ψ̇f

G;Y (t )
}2

. (5.18)

The proportionality coefficient GG;P is defined on the basis of the air density, rotor diame-
ter, gearbox ratio and the tip-speed ratio that maximizes the power output.

For a given operational state with the mean generator torque T̄ f
G;Y and corresponding

high-speed shaft velocity Ω̄f
G;Y , the variation of the generator torque ∆T f

G;Y (t ), resulting

from a rotational velocity perturbation ∆Ψ̇f
G;Y (t ), can be approximated as

T f
G;Y (t ) ≈ T f

G;Y (t )

∣∣∣∣
Ψ̇f

G;Y (t )=Ω̄f
G;Y

+
[
∂T f

G;Y (t )

∂Ψ̇f
G;Y (t )

∣∣∣∣
Ψ̇f

G;Y (t )=Ω̄f
G;Y

]
∆Ψ̇f

G;Y (t ), (5.19)

which can be re-formulated as

T f
G;Y (t ) ≈ T̄ f

G;Y +GG;PΩ̄
f
G;Y ∆Ψ̇

f
G;Y (t ), (5.20)

from which it follows that

∆T f
G;Y (t ) ≈GG;PΩ̄

f
G;Y ∆Ψ̇

f
G;Y (t ). (5.21)

This approximation is based on the assumption that ∆Ψ̇f
G;Y (t ) is much smaller than Ω̄f

G;Y .
For the above-rated regime, the pitch controller aims keeping a constant generator

torque. A PID controller relates the variation of the generator speed to an adjusted pitch
angle in the following manner:

∆βr
R(t ) =Gβ;D∆Ψ̈

f
G;Y (t )+Gβ;P∆Ψ̇

f
G;Y (t )+Gβ;I∆Ψ

f
G;Y (t ), (5.22)

or, for rigid drive-trains,

∆βr
R(t ) = NDTGβ;D∆Ψ̈

f
R;Y (t )+NDTGβ;P∆Ψ̇

f
R;Y (t )+NDTGβ;I∆Ψ

f
R;Y (t ), (5.23)

where Gβ;D, Gβ;P and Gβ;I are the differential, proportional and integral gains of the pitch
control, respectively.

The aerodynamic torque T f
R;A;Y (t) is a function of the collective pitch βr

R(t), and its
first and second time derivatives. If the optimal pitch angle for a given operational state
is defined as β̄R, the first-order Taylor approximation of the aerodynamic torque with
respect to the collective pitch can be expressed as

T f
R;A;Y (t ) ≈T f

R;A;Y (t )

∣∣∣∣
βr

R(t )=β̄r
R

+
[
∂T f

R;A;Y (t )

∂βr
R(t )

∣∣∣∣
βr

R(t )=β̄r
R

]
∆βr

R(t )

+
[
∂T f

R;A;Y (t )

∂β̇r
R(t )

∣∣∣∣
βr

R(t )=β̄r
R

]
∆β̇r

R(t )+
[
∂T f

R;A;Y (t )

∂β̈r
R(t )

∣∣∣∣
βr

R(t )=β̄r
R

]
∆β̈r

R(t ).

(5.24)

Eq. (5.24) serves as a basis for the derivation of the pitch-dependent aerodynamic force
components, which are presented in Section 5.2.
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5.1.2. SYSTEM OF EQUATIONS OF MOTION
The system of equations of motion of the turbine system, as defined by Figure 5.1, can
now be composed of the equations of motions of the different sub-systems. Starting with
the rotor sub-system, the motion is described by Eq. (5.5). This expression is derived for
three-bladed rotors, and is valid for both isotropic and anisotropic systems, i.e., a rotor
with identical or different blades. The rotor sub-system transfers the aerodynamic torque
T f

R;A;Y (t ) to the drive-train subsystem, while the remaining forces are transferred directly
to the tower-fixed nacelle components.

The motion of the drive-train is described by Eqs. (5.7) and (5.8), which only accounts
for the motions of the low-speed and high-speed-shafts, ∆Ψf

R;Y (t) and ∆Ψf
G;Y (t). Here,

an indirect-drive with a gearbox is adopted. With a gearbox ratio NDT = 1, the system
can be applied to describe a direct-drive transmission too. It is assumed that part of the
mechanical torque can be transferred to the bedplate directly. To this end, the friction
coefficient µDT is introduced.

The tower sub-system is represented by the mass matrices MT and MN;fixed, and the
stiffness and damping matrices KT and CT, with which the motion of the tower top
can be described. The matrix MN;fixed contains the inertias of the tower-fixed nacelle
components. The motion is expressed by Eq. (5.14), where the external forcing on the
tower is given by QT;E(t ). This forcing represents the environmental actions on the tower,
for instance the aerodynamic drag or hydrodynamic impacts for offshore wind turbines.
The remaining forces on the tower top are internal forces, required to describe the transfer
of the aerodynamic forcing through the drive-train and the nacelle.

For the control of the power output and the aerodynamic torque, the control sub-
system has been defined. The control of the generator torque for the below-rated regime
is given by Eq. (5.18), a linearization of which is given by Eq. (5.20). For the above-rated
regime a pitch controller becomes active. Eq. (5.22) presents a PID-controller for the
full-span collective pitch βr

R(t ).
In the derivation of the equations of motion, the small angle assumption was adopted

for the deformations of the system. As a consequence, the axis of rotation of the rotor
approximately coincides with the global inertial YT axis of the turbine system. With the
inclusion of a geometrical tilt, this assumption would be violated to a certain extent,
and the transformation from the global inertial reference frame to the floating frame of
reference becomes more cumbersome.

5.2. EXTENSION OF THE STATE-INDEPENDENT APPARENT AERO-
ELASTIC PROPERTIES

5.2.1. INFLUENCE OF PITCH ACTIONS ON THE AERODYNAMIC EXCITATION
In Section 5.1, the equations of motion of a turbine with a rigid rotor on a flexible tower
were derived. The aerodynamic excitation of the rotor was expressed as QR;A(t ), consisting
of forces and moments, defined in the global inertial reference frame. As described in Sec-
tion 4.2, the aerodynamic excitation is obtained from the integration of the aerodynamic
forces acting along the length of the blades. These aerodynamic forces are a function of
the pitch angle βr

R(t ), both through the angle of attack, and through its influence on the
relative inflow velocity.
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In accordance with Figure 2.9(a), the attackαr
B; j (rB; j , t ) adheres to the following definition:

sinαr
B; j (rB; j , t ) = W r

B;rel;y ; j (rB; j ,t )∣∣∣Wr
B;rel; j (rB; j ,t )

∣∣∣ , (5.25)

with W r
B;rel;y ; j (rB; j , t ) representing the magnitude of the relative wind velocity in the local

yB; j direction (it could be argued that the superscript ‘r’ is superfluous for variables
defined in the local blade reference frames):

W r
B;rel;y ; j (rB; j , t ) =

{
βββr

B; j (rB; j , t )
}T

Wr
B;rel; j (rB; j , t ). (5.26)

The vectorβββr
B; j (rB; j , t ) expresses the orientation of the aerofoil as a result of the geometri-

cal twist βr
B ;0; j (rB; j ) and the blade pitch angle βr

B; j (rB; j , t ):

βββr
B; j (rB; j , t ) =


0

cos
(
βr

B;0; j (rB; j )+βr
B; j (rB; j , t )

)
−sin

(
βr

B;0; j (rB; j )+βr
B; j (rB; j , t )

)
 . (5.27)

For a full-span collective pitch control system, the pitch angle of the blades can be
described by Eq. (5.17). Subsequently, the vector βββr

B; j (rB; j , t) can be replaced by the

following multiplication:

βββr
B; j (rB; j , t ) = RR;β(t )βββr

B;0(rB; j ), (5.28)

where RR;β(t ) andβββr
B;0; j (rB; j ) are given by

RR;β(t ) =
1 0 0

0 cosβr
R(t ) −sinβr

R(t )
0 sinβr

R(t ) cosβr
R(t )

 , (5.29)

and

βββr
B;0; j (rB; j ) =

 0
cosβr

B;0; j (rB; j )

−sinβr
B;0; j (rB; j )

 . (5.30)

With the application of the thin aerofoil theory, and assuming that the inflow velocity
is constant over the length of the aerofoil chord cB; j (rB; j ), the relative wind velocity
Wr

B;rel; j (rB; j , t ) can be obtained from (see Section 2.3)

Wr
B;rel; j (rB; j , t ) =Wr

B; j (rB; j , t )− ẋr
B; j (rB; j , t )− ( 1

2 b(rB; j )− zβ(rB; j )
)(

er
B;z × β̇̇β̇βr

R(t )
)

. (5.31)

The third term of Eq. (5.31) results from the additional velocity at the third-quarter chord
point, induced by a pitch action. zβ(rB; j ) specifies the location of the pitch axis on the



5

162 5. A WIND AND WAVE-EXCITED PITCH-REGULATED OFFSHORE WIND TURBINE

chord line of the aerofoil, as indicated in Figure 5.3 and er
B;z is the unit vector defining the

local zB; j axis. The figure also illustrates the pitch actionβββf
R(t ):

βββr
R(t ) =

 0
cosβr

R(t )
−sinβr

R(t )

 . (5.32)

The lift and drag force definitions are based on a uniform inflow velocity over the chord
length of the aerofoil. For a cambered aerofoil, the inflow velocity normal to the camber
line varies over the length of the chord. Concerning the definition of the lift force, this is
accounted for by means of the C c

L; j (rB; j ) coefficient. The pitching of a blade results in a

varying relative velocity over the length of the chord. It can be shown that the effective
angle of attack for the quasi-static lift force on a thin aerofoil should be determined at the
three-quarter chord point.

Figure 5.3: Schematic representation of an aerofoil, indicating the location zβ(rB; j ) of the pitch axis.

When considering the viscous drag force on an aerofoil, a variation of the flow velocity
over the length of the chord affects the development of the boundary layer. Such a flow
variation may result from a pitch action, but since pitching only induces velocities normal
to the chord of the aerofoil, it is not believed that this affects the effective drag coefficient
much, even more, because for small angles of attack, the drag coefficient of an aerofoil
is virtually independent of this angle. It does remain a question which relative inflow
velocity should be adopted for the estimation of the viscous drag on a pitching aerofoil.
At this stage, it is assumed that the velocity Wr

B;rel; j (rB; j , t), which is determined at the

three-quarter chord point, is also applicable for the estimation of the viscous drag force.
The definition of the quasi-static drag force on a pitching aerofoil requires an analysis of
the corresponding boundary layer development.

The inertia force requires the relative acceleration. This relative acceleration is defined
as the acceleration of the wind particles at the rotor plane, as experienced by a point on
a rotating blade, minus the structural acceleration, both defined in the global rotating
frames of reference and plus the acceleration induced by pitch actions:

Ẇr
B;rel; j (rB; j , t ) =Ẇr

B; j (rB; j , t )− ẍr
B; j (rB; j , t )+Wr

B;eff(rB; j , t )× β̇̇β̇βr
R(t )− zβ(rB; j )

(
er

B;z × β̈̈β̈βr
R(t )

)
.

(5.33)

With the implementation of the angle of attack and relative-flow formulations, provided
by Eqs. (5.25), (5.31) and (5.33), the aerodynamic forcing explicitly depends on the pitch
action ∆βr

R(t) that relates the pitch angle of the blades and the rotational speed of the
rotor in the above-rated regime.
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5.2.2. APPROXIMATION PROCEDURE
In Chapter 4, the aerodynamic force expressions with state-independent apparent aero-
elastic properties for the state vector SR(t ) – which consists of the rotor degrees of freedom
vR(t ), and its first and second time derivatives – were defined. Apart from the rotor degrees
of freedom, the aerodynamic excitation is affected by the control parameters ∆βr

R(t ) and

∆T f
G;Y (t ). Concerning the generator torque, the approximation given by Eq. (5.19) can be

adopted straightforwardly in the below-rated regime, for which the pitch angle variation
is absent. In the above-rated regime, the aerodynamic excitation depends non-linearly
on the pitch angle variation, which itself is governed by the pitch controller, defined by
Eq. (5.22) or (5.23).

The state vector SR;β(t) contains the collective pitch angle of the rotor and its time
derivatives:

SR;β(t ) = [
βr

R(t ) β̇r
R(t ) β̈r

R(t )
]

. (5.34)

The state-independent force expressions corresponding with the state vector SR(t ) were
obtained by means of a Taylor approximation of the aerodynamic blade force vector
QB;A; j (rB; j , t ) around the mean state S̄R. Following the same procedure, the force compo-
nents that relate to the components of the state vector SR;β(t ) can be obtained, adopting
the mean state S̄R;β:

S̄R;β =
{

SR;β(t ) = S̄R;β
}

. (5.35)

Similar to Eq. (5.24), which concerned the pitch actions affecting the aerodynamic torque
T f

R;A(t) only, the aerodynamic force vector QR;A(t) can be expanded with respect to the

pitch actions around the states S̄R and S̄R;β:

QR;A(t ) ≈QR;A(t )

∣∣∣∣
S̄R,S̄R;β

+
[
∂QR;A(t )
∂βr

R(t )

∣∣∣∣
S̄R,S̄R;β

]
∆βr

R(t )

+
[
∂QR;A(t )

∂β̇r
R(t )

∣∣∣∣
S̄R,S̄R;β

]
∆β̇r

R(t )+
[
∂QR;A(t )

∂β̈r
R(t )

∣∣∣∣
S̄R,S̄R;β

]
∆β̈r

R(t ).

(5.36)

In the following sections, the forcing expressions that correspond to the control parame-
ters of the state vector SR;β(t ) are presented for the lift, drag and inertia forces, separately.
For the derivations, use was made of software for symbolic manipulations. In doing so,
blade pitching actions were described in terms of two subsequent rotations:

RR;β(t ) = RR;∆β(t )RR;β̄, (5.37)

where for small pitch action, the matrix RR;∆β(t ) can be approximated as (see Section 4.3)

RR;∆β(t ) ≈ I3×3 +∆β̃̃β̃βR(t ). (5.38)

∆β̃̃β̃βR(t ) is the skew-symmetric matrix of the vector ∆βββr
R(t ):

∆βββr
R(t ) =

 0
cos∆βr

R(t )
−sin∆βr

R(t )

 . (5.39)
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5.2.3. PITCH ANGLE-RELATED STATE-INDEPENDENT EXPRESSIONS OF THE

AERODYNAMIC FORCE
With the inclusion of a control system that regulates the pitch angle of the blades, the
aerodynamic force expressions have become dependent on the time-varying pitch angle,
and the velocity and acceleration of the pitch actions. Following the approximation pro-
cedure of Section 5.2.2, state-independent force expressions that relate the aerodynamic
forcing and the pitch actions can be derived.

Considering the different aerodynamic forces, the α-dependent lift force depends on
the actual pitch angle, as it affects the angle of attack along the blade. All aerodynamic
forces depend on the pitch velocity, through the relative inflow velocity at each blade
section, Eq. (5.31), and only the inertia force depends on the acceleration of the pitch
angle variations through the relative inflow acceleration, Eq. (5.33). Similar to Section 4.3,
the coefficient vectors of the pitch-related state-independent terms of the aerodynamic
force are now presented, starting with the pitch angle-dependency of the α-dependent
lift force:

∂Qα
B;L; j (rB; j ,t )

∂βf
R(t )

∣∣∣∣
S̄R,S̄R;β

=


∂FαB; j (rB; j ,t )

∂βf
R(t )

∣∣∣∣
S̄R,S̄R;β

∂TαB; j (rB; j ,t )

∂βf
R(t )

∣∣∣∣
S̄R,S̄R;β

 , (5.40)

with

∂FαB;L; j (rB; j ,t )

∂βf
R(t )

∣∣∣∣
S̄R,S̄R;β

= 1
2ρaircB; j (rB; j )Cα

L; j (rB; j )
[

Dα
B;L; j (rB; j , t )

]
, (5.41)

and

∂TαB;L; j (rB; j ,t )

∂βf
R(t )

∣∣∣∣
S̄R,S̄R;β

= 1
2ρaircB; j (rB; j )Cα

L; j (rB; j )
[

x̃B;θ̄; j (rB; j , t )Dα
B;L; j (rB; j , t )

]
, (5.42)

where the vector Dα
B;L; j (rB; j , t ) is obtained as

Dα
B;L; j (rB; j , t ) =RR;θ̄RB;Ψ̄; j (t )ẽr

B;rΞΞΞ
{

RB;Ψ̄; j (t )
}T {

RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))
ΞΞΞ

{
RB;Ψ̄; j (t )

}T {
RR;θ̄

}T (
WR

(
XB; j , t

)− ẋB;θ̄; j

(
XB; j , t

))T
β̃̃β̃βr

B;β̄;0
(rB; j ).

(5.43)

Following the same procedure, the matrices for the pitch velocity for the different aerody-
namic forces can be derived. Adopting the subscript ‘A’ to refer to represent the different
aerodynamic forces:

∂QB;A; j (rB; j ,t )

∂β̇f
R(t )

∣∣∣∣
S̄R,S̄R;β

=


∂FB;A; j (rB; j ,t )

∂β̇f
R(t )

∣∣∣∣
S̄R,S̄R;β

∂TB;A; j (rB; j ,t )

∂β̇f
R(t )

∣∣∣∣
S̄R,S̄R;β

 , (5.44)
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the force expressions for the lift and drag forces are obtained as follows:

∂FB;A; j (rB; j ,t )

∂β̇f
R(t )

∣∣∣∣
S̄R,S̄R;β

= 1
2ρaircB; j (rB; j )CB;A; j (rB; j )·

[(
AB;A; j (rB; j , t )+BB;A; j (rB; j , t )

){( 1
2 b(rB; j )− zβ(rB; j )

)
ẽf

B;zβ̃̃β̃βB;β̄;0(rB; j )
}]

d
(
βββr

R(t )
)

dβr
R(t )

∣∣∣∣
S̄R;β

,

(5.45)

and

∂TB;A; j (rB; j ,t )

∂β̇f
R(t )

∣∣∣∣
S̄R,S̄R;β

= 1
2ρaircB; j (rB; j )CB;A; j (rB; j )

[
x̃B;θ̄; j (rB; j , t )

(
AB;A; j (rB; j , t )+BB;A; j (rB; j , t )

)
( 1

2 b(rB; j )− zβ(rB; j )
)

ẽf
B;zβ̃̃β̃βB;β̄;0(rB; j )

]
d
(
βββr

R(t )
)

dβr
R(t )

∣∣∣∣
S̄R;β

,

(5.46)

where CB;A; j (rB; j ) represents the aerodynamic coefficient of either the α-dependent or
the camber-dependent lift forces, or the drag force. The same applies for the AB;A; j (rB; j , t )
and BB;A; j (rB; j , t) matrices, the expressions of which are provided in Section 4.3. The
presented expressions contain a dependency on the derivative of the pitch vectorβββr

R(t ),
given by Eq. (5.27) with respect to the collective pitch angle βr

R(t ), for the state S̄R;β:

d
(
βββr

R(t )
)

dβr
R(t )

∣∣∣∣
S̄R;β

=
 0
−sin β̄r

R
−cos β̄r

R

 . (5.47)

From the apparent inertia force, a pitch speed-dependent force component can be ob-
tained as well, containing the following expression:

∂QB;I; j (rB; j ,t )

∂β̇f
R(t )

∣∣∣∣
S̄R,S̄R;β

=


∂FB;I; j (rB; j ,t )

∂β̇f
R(t )

∣∣∣∣
S̄R,S̄R;β

∂TB;I; j (rB; j ,t )

∂β̇f
R(t )

∣∣∣∣
S̄R,S̄R;β

 , (5.48)

with

∂FB;I; j (rB; j ,t )

∂β̇f
R(t )

∣∣∣∣
S̄R,S̄R;β

=− 1
4ρairπ

{
cB; j (rB; j )

}2 ·[
RR;θ̄RB;Ψ; j (t )ΞΞΞ

{
RB;Ψ; j (t )

}T
{

RR;θ̄

}T (
˜̄WR

(
XB; j , t

)− ˜̇xB;θ̄; j

(
XB; j , t

))
β̃̃β̃βB;β̄;0(rB; j )

]
d
(
βββr

R(t )
)

dβr
R(t )

∣∣∣∣
S̄R;β

,

(5.49)
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and

∂TB;I; j (rB; j ,t )

∂β̇f
R(t )

∣∣∣∣
S̄R,S̄R;β

=− 1
4ρairπ

{
cB; j (rB; j )

}2 ·[
x̃B;θ̄; j

(
XB; j , t

)
RR;θ̄RB;Ψ; j (t )ΞΞΞ

{
RB;Ψ; j (t )

}T
{

RR;θ̄

}T

(
˜̄WR

(
XB; j , t

)− ˜̇xB;θ̄; j

(
XB; j , t

))
β̃̃β̃βB;β̄;0(rB; j )

]
d
(
βββr

R(t )
)

dβr
R(t )

∣∣∣∣
S̄R;β

.

(5.50)

The dependency of the apparent inertia force on the acceleration of the pitch action can
be expressed as

∂QB;I; j (rB; j ,t )

∂β̈f
R(t )

∣∣∣∣
S̄R,S̄R;β

=


∂FB;I; j (rB; j ,t )

∂β̈f
R(t )

∣∣∣∣
S̄R,S̄R;β

∂TB;I; j (rB; j ,t )

∂β̈f
R(t )

∣∣∣∣
S̄R,S̄R;β

 , (5.51)

for which the following expressions are obtained:

∂FB;I; j (rB; j ,t )

∂∆β̈f
R(t )

∣∣∣∣
S̄R,S̄R;β

= 1
4ρairπ

{
cB; j (rB; j )

}2 zB;β; j (rB; j )RR;θ̄RR;Ψ̄(t )ẽr
B;zβ̃̃β̃βB;β̄;0(rB; j )

d
(
βββr

R(t )
)

dβr
R(t )

∣∣∣∣
S̄R;β

,

(5.52)

and

∂TB;I; j (rB; j ,t )

∂∆β̈f
R(t )

∣∣∣∣
S̄R,S̄R;β

= 1
4ρairπ

{
cB; j (rB; j )

}2 ·

zB;β; j (rB; j )x̃B;θ̄; j

(
XB; j , t

)
RR;θ̄RB;Ψ̄; j (t )ẽr

B;zβ̃̃β̃βB;β̄;0(rB; j )
d
(
βββr

R(t )
)

dβr
R(t )

∣∣∣∣
S̄R;β

.

(5.53)

Following the approximation procedure given by Eq. (5.36), the coefficient vectors of
the pitch-related state-independent terms of the aerodynamic force have been derived
and presented in this section. With the application of the pitch controller defined in
Section 5.1.1, and the implementation in the drive-train sub-system of Section 5.1.1, the
apparent aero-elastic properties are now extended with the drive-train and pitch control
dynamics.

5.2.4. IMPLEMENTATION OF DRIVE-TRAIN AND PITCH-CONTROL DYNAMICS

IN TERMS OF APPARENT AERO-ELASTIC PROPERTIES
In Chapter 4, the apparent aero-elastic properties for a constant-speed wind turbine
rotor were presented. In the current chapter, the wind turbine model has been extended
with a drive-train sub-system, as a consequence of which the aerodynamic torque is no
longer transferred in full to the tower top (see Eqs. (5.13)). This implies that the apparent
aero-elastic properties for the rotor cannot straightforwardly be applied to a decoupled



5.2. EXTENSION OF THE STATE-INDEPENDENT APPARENT AERO-ELASTIC PROPERTIES

5

167

support structure model. Moreover, the system has been extended with a control sub-
system, which, for above-rated conditions, relates the rotational degree of freedom of the
generator ∆Ψf

G;Y (t ) to the collective pitch angle of the blades.
Starting with the latter, and assuming a rigid drive-train, for which the rotational speed

of the generator can be expressed in terms of the rotor speed, i.e., Ψ̇f
G;Y (t ) = NDTΨ̇

f
R;Y (t ),

the pitch angle variation can be related to the rotor rotation through
Eq. (5.22). Accordingly, the forcing term of the α-dependent lift force that relates to the
pitch angle deviation ∆βr

R(t ), which contains the coefficient vector provided by Eq. (5.40),
can be rewritten as[

∂Qα
B;L; j (rB; j ,t )

∂βββf
R(t )

∣∣∣∣
S̄R,S̄R;β

]
∆βr

R(t ) =

NDT

[
∂Qα

B;L; j (rB; j ,t )

∂βββf
R(t )

∣∣∣∣
S̄R,S̄R;β

](
Gβ;D∆Ψ̈

f
R;Y (t )+Gβ;P∆Ψ̇

f
R;Y (t )+Gβ;I∆Ψ

f
R;Y (t )

)
.

(5.54)

Recognizing that this expression contains coefficients that relate to either the azimuth
deviation, the rotor speed or the rotor acceleration, the corresponding coefficients can –
apart from their sign – be perceived as apparent stiffness, damping or mass. In a similar
way, the coefficients of the forcing terms that relate to the pitch velocity and acceleration,
Eqs. (5.44), (5.48) and (5.51), can be interpreted as apparent aero-elastic properties as
well. From these expressions, however, also forcing terms relating to the second and
third-order time derivatives of the rotor speed – relating to the jerk and jounce of the
rotation – are obtained. For rigid bodies, no forces are associated to these terms in the
theory of classical mechanics.

Regarding the drive-train, the torque T f
DT;Y (t ) that acts on the tower top was derived

in Section 5.1.1, with Eq. (5.13) presenting the transferred torque through the drive-
train. Employing the relation between the low-speed shaft and high-speed shaft torques,
Eq. (5.11), Eq. (5.13) can be re-written as

T f
DT;Y (t ) =± NDT

1−µDT
T f

HSS;Y (t )∓J f
G;Y ∆Ψ̈

f
G;Y (t ), (5.55)

where T f
HSS;Y (t ) can be replaced by Eq. (5.10):

T f
DT;Y (t ) =± NDT

1−µDT

(
J f

G;Y ∆Ψ̈
f
G;Y (t )+T f

G;Y (t )
)
∓J f

G;Y ∆Ψ̈
f
G;Y (t ), (5.56)

which can be re-formulated as

T f
DT;Y (t ) =± NDT

1−µDT
T f

G;Y (t )±
(

NDT
1−µDT

∓1
)

J f
G;Y ∆Ψ̈

f
G;Y (t ) (5.57)

for rigid drive-trains,Ψf
G;Y (t) = NDTΨ

f
G;Y (t). Using this relation, the transferred torque

can be expressed as

T f
DT;Y (t ) =± NDT

1−µDT
T f

G;Y (t )±NDT

(
NDT

1−µDT
∓1

)
J f

G;Y ∆Ψ̈
f
R;Y (t ). (5.58)

The transferred torque is presented as a function of the rotor acceleration, the coefficient
of which can be perceived as an apparent inertia. This transferred inertia, however, is
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a fraction of the inertia of the rotor, and is even zero for direct-driven turbines, i.e., for
NDT = 1. For below-rated wind speeds, the generator torque and the rotor acceleration
are controlled by the torque controller. For above-rated wind speeds, on the other hand,
the generator torque is constant and the rotor acceleration is minimized by the pitch
controller. As a consequence, the transferred torque is almost constant and, in other
words, the contribution of the apparent mass corresponding to the rotor acceleration will
be small.

5.3. TURBINE RESPONSE ANALYSIS

5.3.1. TURBINE DEFINITION
For the analyses presented in this section, use is made of the turbine properties of the
NREL 5MW turbine and the UpWind monopile foundation, the global dynamic properties
of which were already discussed in Sections 4.4 and 4.5. For the current analyses, the
model is extended with the drive-train and control sub-systems, based on the equations
of motion presented in Section 5.1. The adopted numerical values for the modelling of
these sub-systems are presented in Table 5.1.

Table 5.1: Adopted numerical values for the drive-train and control sub-systems [172].

property numerical value
rated generator torque 43.094 kNm
generator inertia 534.116 kgm2

gearbox ratio 97
proportional gain 0.008449 s
integral gain 0.004457

The drive-train is modelled as rigid, meaning that the relation between the rotor and
generator speeds is defined by the gearbox ratio:

J f
DT;Y (t ) = J f

R;Y (t )+N 2
DT J f

G;Y , (5.59)

where

J f
R;Y (t ) = J f

H;Y +
3∑

j=1
J f

B;Y ; j (t ). (5.60)

contains the mass moments of inertia of the hub and the blades, J f
H;Y and J f

B;Y ; j (t),

respectively, defined around the YR axis. Assuming an isotropic rotor, the mass moment
of inertia of the rotor is time-independent, i.e., J f

R;Y (t ) = J f
R;Y .

The analyses in this section only concern the above-rated regime, implying that only
the control-subsystem regulates the pitch angle of the blades only. To this end, the PI
controller defined by Jonkman et al. [172] is adopted, the gains of which are presented in
Table 5.1. Moreover, the generator torque is constant in time and equals its rated value.
Friction losses between the mechanical components of the drive-train and the bearings
are neglected, i.e., µDT = 0. Regarding the modelling of the near wake, the dynamic inflow
model presented in Section 2.2 is adopted.
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In the following, first the performance of the pitch sub-system is illustrated. To this
end, the rotor speed and pitch angle variations resulting from both a step chance in
wind speed and a turbulent wind, accounting for the rotor azimuth degree of freedom
only, are estimated and compared with a equivalent BLADED simulations. Subsequently,
the tower top response of the complete turbine system is estimated for simultaneous
wind and wave excitations. In this regard, both aligned and misaligned load cases are
distinguished, the latter with a misalignment angle of 45 degrees. First, the tower top
motions are determined for a load case consisting of a constant wind and a regular wave,
whereas subsequently simultaneous irregular wave and turbulent wind excitations are
considered.

As the purpose of the presented turbine response analyses is to provide insight in the
accuracy of the aerodynamic interaction with state-independent apparent aero-elastic
properties, in comparison with a state-dependent formulation of the interaction, as
well as the relevance of the force contribution from aerodynamic flow separation, the
modelling of the hydrodynamic forces acting on the turbine tower is kept rather simple.
For the modelling of the waves, use is made of Airy’s linear wave theory, whereas the
hydrodynamic drag and inertia forces are obtained from Morison’s equation, where the
structural motion, velocity and acceleration, is assumed to be much smaller than the
kinematics of the wave particles. The adopted drag and inertia coefficients are assumed
constant in time and along the length of the foundation, and equal 1.0 and 2.0, respectively.
Marine growth is not accounted for.

In accordance with Chapter 4, the BLADED simulations include the first two attach-
ment modes of the turbine. These modes are similar to the first two normal modes of the
system. The other simulations include the first six normal modes of vibrations, and, as
a consequence, account for the torsional motion of the system too. The first, third, fifth
and sixth normal modes contain a coupling between the side-to-side and the torsional
motions, which is not accounted for by BLADED either.

5.3.2. PERFORMANCE OF THE PITCH CONTROL SUB-SYSTEM
As a first analysis, the accuracy of the approximated pitch controller is illustrated for
both the step change in the upstream wind velocity and the turbulent wind signal that
were applied in Chapter 4 as well. To this end, the rigid drive-train including the pitch
controller is modelled separately, i.e., containing the rotor azimuth deviation ∆Ψf

R;Y (t ) as
a degree of freedom only. The calculated response is compared with a BLADED simulation
of a similar model, which does account for separation of the flow.

The step change in the upstream wind velocity comprises a constant wind speed of
15 m/s, which abruptly changes to 16 m/s after 30 s. Figure 5.4 shows the evolution of the
rotational speed and the collective pitch angle of both simulations. The rotational speed
in Figure 5.4(a) shows a steep increase in velocity after 30 s, beyond which the rotational
speed converges quickly to the original value corresponding to the above-rated regime.
The overall picture from both simulations is very similar. Only right after 30 s, the BLADED

simulation attains a slightly higher peak rotational speed.
Concerning the blade pitching, Figure 5.4(b), a rapid change in the pitch angle takes

place after 30 s. Both simulations show a different value to which the blade pitches, both
before and after the step change in wind speed. The step size of the pitch angle variations,
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however, is similar. The differences between the simulations can be attributed to the flow
separation along parts of the blades, which only the BLADED simulation accounts for. As
a consequence, a small difference in the time-varying aerodynamic torque is calculated,
which results in a different setting value and variation of the pitch angle. This also explains
the initial variation in rotational speed and pitch angle of the BLADED simulation.
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Figure 5.4: Pitch controller response to a step change in the upstream wind speed, with (a) the rotational velocity,
and (b) the collective blade pitch angle.

Figure 5.5 presents the response of the controller sub-system to a turbulent wind signal,
distinguishing again the rotational velocity and the pitch angle variation, Figures 5.5(a)
and (b), respectively. For the presented time window, the differences between both
simulations are small. To give more insights in the actual differences, the main statistical
values of both simulations are presented in Tables 5.2 and 5.3. These values are obtained
from a simulation of 300 s. For both control parameters, the minimum, maximum and
mean values are almost equal. The standard deviations are very similar as well, with
the BLADED simulation resulting in slightly higher values. Hence, for these simulations,
the impact of the separation of the flow, which is accounted for by BLADED is of minor
importance.

50 100 150
time [s]

1.2

1.25

1.3

ro
ta

tio
na

l v
el

oc
ity

 [
ra

d/
s]

approximation Bladed

50 100 150
time [s]

0.05

0.1

0.15

0.2

0.25

0.3

pi
tc

h 
an

gl
e 

[r
ad

]

(a) (b)

Figure 5.5: Pitch controller response to a turbulent wind speed, with (a) the rotational velocity, and (b) the
collective blade pitch angle.
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Table 5.2: Comparative statistical values of the rotor velocity variation resulting from a turbulent wind.

simulation minimum maximum mean standard deviation
[rad/s] [rad/s] [rad/s] [rad/s]

BLADED 1.22 1.34 1.27 0.0212
approximation 1.22 1.34 1.27 0.0191

Table 5.3: Comparative statistical values of the pitch angle variation resulting from a turbulent wind.

simulation minimum maximum mean standard deviation
[rad] [rad] [rad] [rad]

BLADED 0.0927 0.305 0.215 0.0378
approximation 0.0947 0.299 0.218 0.0361

5.3.3. ANALYSIS OF SIMULTANEOUS WIND AND WAVE EXCITATIONS
The response of an operating wind turbine to a wave excitation is affected by the aerody-
namic interaction. This section addresses to what extent this relation can be captured by
the aerodynamic force with state-independent apparent aero-elastic properties. To this
end, first the tower top response to a regular wave and a constant wind is analyzed, as
in this manner the effect of the time-varying waves is isolated, as the structural motion
is wave-induced only. The analysis is restricted to the above-rated regime, for which the
pitch controller is active, and a constant wind speed of 15 m/s is adopted. The regular
wave elevation is defined in correspondence with the UpWind study, with a wave height
of 2.8 m and a wave period of 6.79 s, as illustrated in Figure 5.6(a).

The second analysis considers an irregular wave and a turbulent wind. The irregular
wave is defined from a sea state defined by a JONSWAP spectrum with a significant
wave height of 2.8 m and a peak period of 6.07 s. Figure 5.6(a) shows a 100 s window
of the irregular-wave elevation with a total length of 300 s, Figure 5.6(b) presents the
corresponding estimated power spectral density, obtained from the squared amplitude
spectrum of the finite time signal, divided by the duration. The statistical properties of
the irregular wave signal are presented in Table 5.4. Concerning the turbulent wind, the
same signal of Section 4.5 is adopted. For both environmental scenarios, an aligned an
misaligned load case is considered, the latter with a misalignment angle of 45 degrees.
None of the load cases includes a yaw misalignment of the wind direction with respect to
the rotor plane.

Table 5.4: Statistical values of the irregular sea surface elevation.

minimum [m] maximum [m] mean [m] standard deviation [m]
-2.29 2.32 −4.61 ·10−4 0.822

TURBINE RESPONSE TO A CONSTANT WIND SPEED AND A REGULAR WAVE

Figure 5.7 presents the estimated tower top response to an aligned constant wind and a
regular wave, distinguishing the BLADED, hybrid, state-independent and state-dependent
approaches. The fore-aft and side-to-side motions are depicted in Figure 5.7(a) and
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Figure 5.6: Sea surface elevation of the waves at the centre of the monopile foundation, with (a) the time-domain
representation of both the regular and the irregular waves, and (b) the estimated power spectral density of the
irregular wave.

(b) respectively. The tower top motion takes place almost exclusively in the fore-aft
direction. The governing frequency of the motion corresponds with the wave frequency,
approximately 0.15 Hz, which is lower than the first natural frequency of the system. Only
small differences between the amplitudes of the different simulations can be observed.

In side-to-side direction, the motion possesses a non-zero mean, resulting from the
aerodynamic forces that are transferred to the support structure. From the state-indepen-
dent apparent aero-elastic properties, this coupling can be recognized in the added
damping matrices, see Section 4.4. As a result of this coupling, both the first fore-aft and
side-to-side modes of vibration are excited. The mean deformation in the side-to-side
direction of the BLADED simulations differs from the other simulations because of the
different modal basis. Concerning the side-to-side oscillations, the beating phenomenon
can be observed, because the natural frequencies of both motions are very closely spaced.
In the fore-aft response, this behaviour cannot be observed, as here the motion is governed
by the hydrodynamic excitation. Figure 5.7(b) shows a different beating frequency for the
BLADED simulation than for the other simulations. This difference can again be explained
by the small difference between the modal bases.

Tables 5.5 and 5.6 present the statistical values of the fore-aft and side-to-side tower
top motions, allowing for a comparison of the modelling approaches over the full sim-
ulation length. Despite the difference in the mean in the side-to-side direction for the
BLADED simulation the obtained values are very similar. Concerning the standard devi-
ations, the BLADED and state-dependent simulations resulted in values about 9 to 10%
larger than for the other simulation approaches. Using the standard deviation as a mea-
sure for fatigue, the BLADED and the state-dependent simulations will result in the largest
damage. Regarding the side-to-side vibrations, the standard deviations of the different
simulations are very small, with the smallest value from the BLADED simulation.

The motions presented in Figure 5.7 are wave-induced. In Section 5.3.2, the perfor-
mance of the control system to a wind excitation only was illustrated. Here, Figure 5.8
shows the behaviour of the control parameters for the different simulation approaches.
Figure 5.8(a) clearly shows an oscillating rotational speed of the rotor for the BLADED
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Figure 5.7: Tower top response to an aligned constant wind speed and a regular wave, with (a) the fore-aft
motion, and (b) the side-to-side motion.

Table 5.5: Comparative values of the fore-aft tower top motion resulting from a constant wind and a regular
wave with a misalignment angle of zero degrees.

simulation minimum maximum mean standard deviation
[m] [m] [m] [m]

BLADED 0.202 0.380 0.289 0.0549
hybrid 0.218 0.378 0.297 0.0496
state-independent 0.206 0.373 0.288 0.0497
state-dependent 0.211 0.396 0.296 0.0543

Table 5.6: Comparative values of the side-to-side tower top motion resulting from a constant wind and a regular
wave with a misalignment angle of zero degrees.

simulation minimum maximum mean standard deviation
[m] [m] [m] [m]

BLADED 0.0411 0.0463 0.0435 0.920·10−3

hybrid 0.0428 0.0469 0.0443 1.06·10−3

state-independent 0.0423 0.0473 0.0444 1.37·10−3

state-dependent 0.0424 0.0479 0.0446 1.38·10−3
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and the state-dependent simulations, whereas the oscillation for the hybrid and state-
independent approaches is barely visible on this scale. A similar patterns can be observed
for the pitch angle variation, see Figure 5.8(a). This lack of response is caused by the
decoupling of the control behaviour with the implementation of the pitch angle-related
state-independent expressions of the aerodynamic force as presented in Section 5.2.3. As
a consequence, the control system does not respond to wave-induced motions.

Figure 5.8 presents the torque T f
DT;Y (t ), which is transferred through the drive-train

to the tower sub-system. With reference to Eq. (5.58), the variation of this torque relates
to the rotor acceleration, which is negligibly small for the hybrid and state-independent
simulation approaches. As a consequences, the transferred torque is constant in time. For
the BLADED and state-dependent simulations, an oscillating variation of the transferred
torque can be observed. Given the similarity between the side-to-side tower top motions,
see Figure 5.7(b), it can be inferred that the impact of these oscillations on the structural
motions is small. The side-to-side motion is mainly induced by the lateral force that
results from the tilting motion of the rotor due to the wave excitation. The occurrence of
this lateral force was addressed in Section 4.4.
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Figure 5.8: Control response to an aligned constant wind speed and a regular wave, with (a) the rotor speed, and
(b) the collective pitch angle.

With the application of a wind-wave misalignment, the deflection in the fore-aft direction
reduces somewhat, whereas in the side-to-side direction a direct wave-induced motion
takes place. These effects are visible in Figure 5.10, which presents the tower top motion
in the fore-aft and side-to-side directions, Figure 5.10(a) and (b), respectively, for the
misalignment of 45 degrees. With the direct wave-induced excitation in the side-to-
side-direction, the beating phenomenon is now only visible to a much smaller degree,
compared with the aligned wind-wave simulation of Figure 5.7(b).

Again a small difference between the amplitudes of vibration between the different
simulation approaches can be observed, with the largest deflections resulting from the
BLADED simulation. In this respect, more insight is provided by Tables 5.7 and 5.8. These
tables show that the standard deviations of the fore-aft and side-to-side motions are of
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Figure 5.9: Torque transferred from the drive-train to the tower top for an aligned constant wind speed and a
regular wave.

the same order of magnitude. When focussing on the standard deviations of the fore-aft
motion of the different simulations, again the largest values are obtained with the BLADED

and state-dependent simulations, which are 8 to 9% larger than the standard deviations
of the hybrid and state-independent simulations. In side-to-side direction, the difference
between the motions are very small and the smallest standard deviation is obtained with
the BLADED simulation.

From the performed aligned and misaligned simulations combining a constant wind
and a regular wave, it can be concluded that the overall response in both the fore-aft
and side-to-side directions is similar for the different simulation approached. The small
deviations result from the different modal bases, the activation of the control system – the
contribution of which is marginal for the hybrid and the state-independent simulations –
and the higher-order contributions to the aerodynamic force. With respect to the latter,
the effect of flow separation for large angles of attack was tested with BLADED and can be
shown to be of minor importance.

TURBULENT WIND AND IRREGULAR WAVES

The next analysis concerns the response analysis to a turbulent wind and irregular wave
excitation. Similar to the case with a constant wind and regular wave, the load case is
addressed for both aligned and misaligned directionalities, the latter with a misalignment
angle of 45 degrees. Figure 5.11 presents the fore-aft tower top response, both in the
time and frequency domain, Figures 5.11(a) and (b), respectively. Within the presented
100 s window, the differences in mean and amplitude of the motions estimated with the
different simulation approaches are very small. This is confirmed by the power spectral
density of the simulated signals, which is obtained from a simulation length of 300 s.
To smooth out the power spectral densities, a moving root mean square filter has been
applied. All signals show a distinguished peak at the first fore-aft natural frequency of the
system. With the exception of the BLADED simulation, as the BLADED model contained
only two modes of vibration, a small second peak can be observed at the natural frequency
corresponding to the second fore-aft mode.
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Figure 5.10: Tower top response to a misaligned constant wind speed and a regular wave, with (a) the fore-aft
motion, and (b) the side-to-side motion.

Table 5.7: Comparative values of the fore-aft tower top motion resulting from a constant wind and a regular
wave with a misalignment angle of 45 degrees.

simulation minimum maximum mean standard deviation
[m] [m] [m] [m]

BLADED 0.227 0.357 0.289 0.0383
hybrid 0.242 0.352 0.297 0.0352
state-independent 0.231 0.348 0.288 0.0353
state-dependent 0.235 0.366 0.296 0.0386

Table 5.8: Comparative values of the side-to-side tower top motion resulting from a constant wind and a regular
wave with a misalignment angle of 45 degrees.

simulation minimum maximum mean standard deviation
[m] [m] [m] [m]

BLADED -0.0211 0.109 0.0435 0.0362
hybrid -0.0259 0.117 0.0443 0.0379
state-independent -0.0259 0.117 0.0444 0.0379
state-dependent -0.0252 0.117 0.0446 0.0379
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The small differences between the simulations are confirmed by Table 5.9, which presents
the minimum, maximum and mean deflections, as well as the standard deviations of
the different simulations. Even though the differences, in absolute terms, are small, the
hybrid and the state-independent simulations underestimate the fore-aft motion with
respect to the BLADED and state-dependent simulations. The difference in standard
deviation is 19 to 23%.
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Figure 5.11: Fore-aft response of the tower top to an a turbulent wind and an irregular wave with a misalignment
angle of zero degrees, with (a) the time-domain representations, and (b) the estimated power spectral densities.

simulation minimum maximum mean standard deviation
[m] [m] [m] [m]

BLADED -0.191 0.724 0.270 0.147
hybrid -0.505·10−3 0.630 0.294 0.120
state-independent -0.0346 0.613 0.304 0.115
state-dependent -0.146 0.664 0.274 0.150

Table 5.9: Comparative values of the fore-aft tower top motion resulting from a turbulent wind and an irregular
wave with a misalignment angle of zero degrees.

As was observed before for the simulations with a constant wind and a regular wave – see
Figure 5.7(b), the aligned wind-wave excitation introduces vibrations with a non-zero
mean in the side-to-side direction, see Figure 5.12. Within the presented time window,
Figure 5.12(a), it can be seen that the BLADED and the state-dependent simulations result
in the largest amplitudes of vibration. The dominant frequency of the different motions
is very similar, as is confirmed by Figure 5.12(b), which presents the estimated spectral
densities of the side-to-side motions. All simulations are governed by the first side-to-
side mode of vibration, whereas a small contribution of the second side-to-side mode is
present too.

The comparison of the statistical properties of the different estimated side-to-side
motions, see Table 5.10, shows the largest amplitudes of vibration result from the BLADED
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simulation. This is best illustrated by the standard deviations, of which BLADED result is
36% larger than estimated with the state-dependent simulation approach. In absolute
terms, however, the standard deviations of the side-to side-motion can be perceived as
small (an order of magnitude smaller than the standard deviations of the fore-aft motion).
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Figure 5.12: Side-to-side response of the tower top to a turbulent wind and an irregular wave with a misalignment
angle of zero degrees, with (a) the time-domain representations, and (b) the estimated power spectral densities.

Table 5.10: Comparative values of the side-to-side tower top motion resulting from a turbulent wind and an
irregular wave with a misalignment angle of zero degrees.

simulation minimum maximum mean standard deviation
[m] [m] [m] [m]

BLADED -0.0828 0.170 0.0436 0.0553
hybrid -0.0145 0.104 0.0449 0.0277
state-independent -0.0681 0.097 0.0448 0.0248
state-dependent -0.0354 0.126 0.0451 0.0355

Regarding the response of the control system, Figure 5.13 presents the rotor speed and
the pitch angle variation, Figure 5.13(a) and (b), respectively, of the different simulation
approaches. Within the presented time window, the response patterns are very similar.
The BLADED simulation, however, is shown to give the largest variation in the rotor speed,
seemingly indicating a somewhat poorer performance of the pitch-control system. From
a comparison with Figure 5.5(a), however, it can be inferred that the rotor speed of the
BLADED simulation approach and, to a somewhat smaller extent, the state-dependent
approach is affected by the wave excitation, an effect which is not included in the hy-
brid and state-independent simulation approaches. As a consequence, the latter two
approaches underestimate the variation in rotor speed and pitch angle, and, at the same
time estimate smaller standard deviations of the fore-aft and side-to side motions.

The consequence of the difference in the estimated rotor speed can also be assessed
from the transferred torque through the drive-train to the tower top, see Figure 5.14.
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The variations in torque result from the acceleration of the rotor. Overall, the estimated
torque of the four simulation approaches is very similar, since the variation in rotor
speed is governed by the aerodynamic force. The BLADED simulation, however, contains
the largest peaks, implying a larger acceleration of the rotor sub-system. The larger
transferred torque of the BLADED simulation also serves as an explanation for the larger
standard deviation of the side-to-side tower top motion, see Table 5.10.
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Figure 5.13: Control response to an aligned constant wind speed and a regular wave, with (a) the rotational rotor
speed, and (b) the collective pitch angle.
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Figure 5.14: Torque transferred from the drive-train to the tower top for an aligned constant wind speed and a
regular wave.

With the introduction of the misalignment between the wind and waves, the fore-aft
response as depicted in Figure 5.15 is obtained. Within the presented window, the time-
domain response in Figure 5.15(a) shows a deviation between the BLADED simulation
and the other simulations. This deviation is confirmed by the power spectral densities of



5

180 5. A WIND AND WAVE-EXCITED PITCH-REGULATED OFFSHORE WIND TURBINE

Figure 5.15(a), for which the largest peak at the first fore-aft natural frequency is obtained
for the BLADED simulation. Also the statistical values of the simulations, as presented
in Table 5.11, show a larger variation in vibration, in terms of standard deviation, for the
BLADED simulation.

In the side-to-side direction, the BLADED simulation shows the smallest amplitudes
of vibration, see Figure 5.16(a). As illustrated in Figure 5.16(b), this vibration is governed
by the first side-to-side mode of vibration, but the peak frequency of the wave spectrum,
see Figure 5.6(b) can clearly be distinguished too. Regarding the standard deviations, the
order of magnitude of the vibrations in the fore-aft and side-to-side directions is similar –
compare Tables 5.11 and 5.12. Unlike the results of the previous analyses, the BLADED

simulation gives the least conservative standard deviation of the oscillation amplitudes.
From the turbulent wind and irregular wave analysis, it can be concluded that the

overall picture of the response obtained with the different simulation approaches is
similar, especially when the results are considered in the frequency domain. The largest
relative differences are obtained for the side-to-side motions, for both the aligned and the
misaligned analyses, which can be explained by the much lower aerodynamic damping,
activated in that direction.

The application of the hybrid or state-independent simulation approaches, which
require lower computational costs and provide insights in the aerodynamic interaction
through the state-independent apparent interaction matrices does not by default result
in both accurate and conservative response predictions, when compared with the results
from the BLADED simulations. This is partly explained by the difference in modal prop-
erties that were accounted for in the BLADED simulations. Other sources are found in
the attached flow assumption and the linearization of the aerodynamic interaction with
respect to the state parameters. Regarding the attached flow assumption, it should be
mentioned that BLADED assumes instantaneous stall, whereas the actual stalling is a dy-
namic and history-dependent process, reducing the validity of the aero-elastic modelling
of the BLADED simulation approach.
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Figure 5.15: Fore-aft response of the tower top to a turbulent wind and an irregular wave with a misalignment
angle of 45 degrees, with (a) the time-domain representations, and (b) the estimated power spectral densities.
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Table 5.11: Comparative values of the fore-aft tower top motion resulting from a turbulent wind and an irregular
wave with a misalignment angle of 45 degrees.

simulation minimum maximum mean standard deviation
[m] [m] [m] [m]

BLADED -0.228 0.709 0.264 0.156
hybrid -0.0177 0.633 0.294 0.110
state-independent -0.0166 0.582 0.304 0.103
state-dependent -0.103 0.649 0.275 0.130
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Figure 5.16: Side-to-side response of the tower top to a turbulent wind and an irregular wave with a misalignment
angle of 45 degrees, with (a) the time-domain representations, and (b) the estimated power spectral densities.

Table 5.12: Comparative values of the side-to-side tower top motion resulting from a turbulent wind and an
irregular wave with a misalignment angle of 45 degrees.

simulation minimum maximum mean standard deviation
[m] [m] [m] [m]

BLADED -0.419 0.338 0.0441 0.150
hybrid -0.570 0.660 0.0446 0.277
state-independent -0.574 0.664 0.0446 0.282
state-dependent -0.536 0.636 0.0449 0.266

5.4. CONCLUSIONS
In this chapter, a decoupled support structure model of an offshore wind turbine was
defined to predict the response to simultaneous wind and wave excitations. To this end,
use was made of the model presented in Chapter 4, which was extended with drive-train
and control sub-systems. These extensions were implemented to include the mitigating
effect of the pitch controller on the loads in the above-rated operating regime.
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After the implementation of the drive-train and control sub-systems, closed-form ex-
pressions for the state-dependent aerodynamic force were presented. Subsequently,
additional the state-independent apparent aerodynamic properties were extracted, with
the application of a first-order Taylor approximation. In deriving the closed-form expres-
sions, the blades of the rotor were assumed to be rigid, whereas both flexible and rigid
structural properties for the drive-train were considered. Furthermore, attached-flow
conditions were adopted, a requirement which in general can be met over the largest part
of the blades by choosing the right rotational velocity and pitch angle.

The response of an offshore wind turbine with the properties of the NREL 5MW
turbine and the UpWind monopile-based support structure, were estimated with both
the state-dependent and state-independent force expressions. A BLADED 4.6 model was
used to validate the predicted responses. Moreover, a hybrid simulation approach was
adopted, which combines the response-independent aerodynamic force from BLADED

with the force contributions associated with the state-independent apparent aero-elastic
properties.

As a first analysis, the performance of the pitch control sub-system was illustrated
for both constant and turbulent wind conditions, assuming a rigid support structure. It
was shown that the predicted response with the state-independent simulation approach
shows a very similar behaviour as the BLADED response. Differences primarily result from
the attached flow assumption, which is not used by BLADED.

Regarding the analysis of simultaneous wind and wave excitations, both a constant
wind with a regular wave, and a turbulent wind with an irregular wave was considered.
Moreover, the effect of a wind wave misalignment of 45 degrees is considered. Both the
fore-aft and the side-to-side tower top responses are presented for the four simulation
approaches. Overall, the response predictions obtained with those four simulation proce-
dures show good agreement. Adopting the BLADED simulation as a reference, however,
none of the other simulation approaches can be considered to be conservative. If the state-
independent or the hybrid approaches are to be adopted for design purposes, a small
underestimation of the tower top oscillations should be accounted for. Nevertheless, the
application of these approaches potentially reduces the computational costs required for
the preliminary design of offshore wind support structures substantially. In addition, the
insights, provided by the closed-form expressions for the apparent aero-elastic properties
of the aerodynamic interaction, potentially allow for quicker design optimizations in the
preliminary design stage of offshore wind support structures, as the contributions of the
apparent aero-elastic properties, in particular the aerodynamic damping, are explicitly
obtained.

An important explanation of the differences between the tower top motions obtained
with the four simulation approaches relates to the extent with which the control system is
activated by wave excitations. The BLADED and state-independent simulation approaches
contain a stronger coupling between the wave-induced motions and the controller re-
sponse. As a consequence, both the rotor speed and the pitch angle react differently to
the excitation than for the hybrid and state-independent simulation approaches. This
difference was illustrated mostly for the constant wind combined with a regular wave
load case, since here the control system is activated by wave-induced motions only. If
the wind speed variations govern the controller behaviour, the differences in estimated
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response becomes less obvious.
Other differences between the predicted responses can partially be explained in terms

of flow separation and higher-order apparent aero-elastic properties. The largest varia-
tions were observed for the side-to-side motions, for which a much smaller aerodynamic
damping is activated, and especially for the misaligned wave excitation. In this respect,
the separation of the flow, which is accounted for by the BLADED approach, provides
an explanation for the observed differences. This flow separation, however, is modelled
instantaneously, whereas the actual process requires a dynamic formulation, reducing
the validity of the aero-elastic modelling of the BLADED simulation approach.

Another contribution to the difference was attributed to the different modal proper-
ties. The BLADED model included only the first two attachment modes, which describe
the deformation shape resulting from a point load at the tower top. The predicted corre-
sponding natural frequencies differ slightly from the frequencies corresponding to the
first two normal modes. The other simulations approaches used the first six normal
modes, with which it was demonstrated that the second side-to-side mode does provide
a contribution to the dynamic response of the wind turbine system.

The presented results only account for a pitch controller. The equations for a torque
controller have been presented in this chapter, but were not used for the analyses. Special
attention is required, however, for the transition between the torque and pitch controller,
for close to rated wind speeds. A sharp transition between these controller systems is
known to result in overshoots of both loads and motions, which is avoided by an earlier
activation of the pitch controller, i.e., an activation at below-rated wind speeds. The
model presented in this chapter, however, does not include a transition between the
torque and pitch controllers, let alone an overlap between both controller regimes. To
account for this transition, an extension of the model is required, for which a formulation
linearized with respect to the state variables most likely will not be sufficient.
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F OR the preliminary design of offshore wind turbines, the turbine and the support
structure1 are generally considered separately, the former by a turbine manufacturer

and the latter by an offshore contractor. Commercial interests provide a primary reason
for this approach, as well as the specific engineering expertise of the different parties.
The separated modelling approach, however, requires multiple design iterations, which
significantly slow down the design process and does not leave time for design optimization
and differentiation within a wind farm.

Speeding up the preliminary design phase requires the sharing of the relevant coupling
characteristics between the different design teams. For instance, the sub-structure can be
represented by a so-called ‘super element’, which describes both the dynamic stiffness
and the interface force for the frequency range of interest (see Section 1.4). On the other
hand, the decoupled design of the support structure should capture the wave-induced
aerodynamic interaction of the rotor, which is perceived as an apparent damping.

With the focus on the latter, the current industry practice adopts an additional damp-
ing in terms of a modal damping ratio, provided by the turbine manufacturer, which
concerns the fore-aft motion of the wind turbine only. This damping ratio is only valid
for the first fore-aft mode of vibration and cannot be adopted for other modes. This
implies that the damping of the side-to-side and the yawing motions is not accounted
for. Moreover, the provided damping does not explicitly give insight in the effect of the
operational state parameters – wind speed and rotational speed, or the contributions
from the control system.

The research objective of this work was the definition of an apparent damping matrix
for the aerodynamic force on a wind turbine rotor. Such a matrix should describe the
three-dimensional damping, including the couplings between different motions and
the resulting aerodynamic forces. The main question that was addressed concerned the
extent to which the coupling between an operating turbine and its support structure can
be captured by an added damping matrix.

1Strictly speaking, the interface is usually between the tower and the sub-structure (see Section 1.1).
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The derivation of an apparent damping matrix for the rotor as a whole first required an
extensive analysis of the aerodynamic force on the wind turbine blades, which is known to
depend non-linearly on the structural response. To this end, Chapter 3 defined a model of
a rotating blade with the properties of the NREL 5MW turbine, and the blade motions in a
turbulent wind field were estimated with both an instantaneous and a history-dependent
aerodynamic force model. From a comparison of the response estimations of both
models, and their linearized representations (with respect to the structural motion), it
was inferred that the blade response of an operating wind turbine in a turbulent wind
field can be estimated sufficiently accurately with the linearized instantaneous force
model. Furthermore, the results indicated that in the out-of-plane blade direction a
substantial apparent damping is mobilized, allowing to describe the blade motion quasi-
statically. The apparent damping for the motion within the plane of rotation is smaller
and a dynamic contribution to the response can be distinguished in the blade motion.

As a next step, a model of a rigid turbine rotor on a flexible tower was presented in
Chapter 4, describing motions and rotations in 3D. Using the instantaneous force model,
closed-form expressions for the state-dependent aerodynamic force on the rotor were
presented. With the application of a Taylor expansion, the state-independent apparent
dynamic properties of the force were obtained, including an added damping matrix
which explicitly depends on the operational state of the turbine and which describes the
damping coupling between the side-to-side and the yawing motions.

The contribution of the apparent dynamic properties was illustrated for an isotropic
rotor with an above-rated operational state, and the couplings were visualized. In this
respect, the high apparent damping associated with yawing motion and the aero-elastic
coupling between the side-to-side and the yawing motion of the turbine were of particular
relevance. The performance of the force model with the state-independent apparent
dynamic properties was demonstrated for the NREL 5 MW turbine with the UpWind
monopile support structure. In this respect load cases with a step change in the wind
speed and a turbulent wind were considered, the latter also with a yaw misalignment.
The response estimations were compared with simulations of a similar model, which
was created with the aero-elastic software BLADED 4.6. Moreover, a hybrid simulation
approach was defined, which combines the aerodynamic force of the BLADED model on a
rigid tower with the presented state-independent apparent dynamic properties.

The comparison of the response estimations with the different approaches showed a
good match of the tower top motions. Only for very large yaw misalignments (larger than
15 degrees), the quality of the estimations with the state-independent properties dropped.
In practical design, however, yaw misalignments larger than 8 degrees are not considered
for most design load cases. The accurate response prediction with the state-independent
apparent dynamic properties provides a good basis to include the response-dependency
of the aerodynamic force for the preliminary design of the support structure. With the
application of the hybrid simulation approach, the response of the control system to the
wind speed variations can be captured as well.

Concerning the control system, the potential benefit of the linearization of the aerody-
namic force with respect to the control parameters – the generator torque and the pitch
angle – was recognized. To this end, Chapter 5 presented an extension of the turbine
model, by defining drive-train and control sub-systems. Restricting the further analyses



6

187

to the above-rated regime, the linear force contributions of a collective pitch-system were
presented, from which additional apparent dynamic properties could be identified. A
comparison of this linearized control system with BLADED showed a good match.

The final analysis concerned the tower top response of the offshore wind turbine to
simultaneous wind and wave excitations. In this respect, regular waves were combined
with a constant wind speed and the load from a irregular wave with a turbulent wind
excitation. For both scenarios, both aligned and misaligned wind and wave loads were
considered, where a misalignment angle of 45 degrees was applied for the wave excitation.
The misalignment imposes a side-to-side excitation of the turbine system, which, due to
the limited amount of apparent aerodynamic damping, induces a significant side-to-side
deflection of the tower top.

In comparing the results obtained with the four simulation approaches – using
BLADED, force expressions with state-dependent or state-independent apparent dynamic
properties, or the hybrid approach – a good correspondence between the tower top mo-
tions was obtained, especially in the fore-aft direction. It was demonstrated, however,
that the hybrid and state-independent simulation approaches contain a weaker cou-
pling between the wave-induced motions and the controller response. Nevertheless, the
controller behaviour is governed by the variations in the wind speed and the effect of
this weaker coupling was less pronounced in the analyses with a turbulent wind and a
irregular sea. Observed differences in the side-to-side response were primarily explained
by the assumption of attached flow, whereas the BLADED simulations allow for separa-
tion of the flow at the blades. As a consequence, the response estimations with BLADED

deviate somewhat from the other response predictions. The assumption of attached
flow can be defended, however, by the limited validity of the flow separation, which is
modelled in BLADED as instantaneous. A more correct description would account for the
dynamic and history-dependent characteristics of the boundary layer of the blades. To
date, the computational costs of the inclusion of these effects affect the efficiency of the
preliminary design stage to a large extent.

The overall conclusions of this work is that the apparent aerodynamic damping for a
rotor of a wind turbine can be defined in closed form and state-independently, accounting
for motions in three directions and cross-couplings between motions and resisting forces.
The resulting damping matrix allows for a linearized response analysis of a support
structure of a wind and wave-excited offshore wind turbine, including the response-
mitigating actions of a pitch-control system. The estimated response shows a good
correspondence with results obtained with BLADED and the presented approach offers
opportunities for application in the preliminary design phase of offshore wind support
structures.

The results presented in this work provide a good basis for the further development
of the state-independent apparent dynamic properties, and in particular the added
aerodynamic damping. This development first off all concerns some of the assumptions
that were made, in order to assess the potential of the method. Second, some extensions
could be explored, to broaden the perspective of practical application.

As a first extension, the inclusion of blade modes could be considered, as in the
derivation of the apparent dynamic properties, rigid blades were assumed. In Chapter 3,
however, it was shown that the out-of-plane motion is strongly damped and only quasi-
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static response is to be expected. On the other hand, the in-plane motion is damped
to a much smaller extent. This motion is known to introduce rotor speed oscillations,
which results in variations of the thrust force and the moment transferred through the
drive-train to the tower top.

Second, the analysis of the wind and wave-excited offshore wind turbine only ac-
counted for a pitch-control system in the above-rated operational regime. In this respect,
the work demonstrated the performance of the linearized pitch controller. In the below-
rated regime, a torque-control system will be active, as presented in Chapter 5. It can be
expected that the accuracy of the linearized torque controller will be similar to that of the
linearized pitch controller, as long as the wind speed variations are not too large. Since
the torque controller is active at below-rated wind speeds, the standard deviation of the
wind speed fluctuations is generally smaller, which confirms the expected accuracy of the
response prediction.

A more challenging extension concerns the possibility to assess transitions in the con-
troller response, for instance for wind speeds close to cut-in, and, especially, around rated.
For wind speeds in these transition regions, the application of the state-independent
apparent dynamic properties cannot be expected to provide accurate response estima-
tions. As an alternative, however, the controller response can be pre-determined with a
separate drive-train model. The obtained pitch-angle and generator-torque variations
can then be implemented as input for the simulations of the complete turbine system.
As demonstrated in Chapter 5, this approach can be successful if the controller response
is governed by the wind speed fluctuations. The accuracy of this method should be vali-
dated for a variety of load cases. Provided that the obtained accuracy is acceptable, the
suggested approach potentially allows for response simulations in the frequency domain.

The presented method with state-independent apparent system properties of the
aerodynamic force assumed attached flow conditions along the blades of the rotor. With
the assumption of a homogeneous turbulent inflow, flow separation only occurs towards
the hub of the rotor, and contributes only limitedly to the overall aerodynamic forcing.
Moreover, if the response-independent aerodynamic force is obtained with an aero-elastic
tool such as BLADED, a method which was presented in Chapter 4 as the hybrid approach,
the force contribution resulting from flow separation can even be captured in part. The
implementation of the pitch-control system in Chapter 5 demonstrated the successful
mitigation of flow separations, even after linearizing the force contribution of the pitch
controller around the mean pitch angle. Nevertheless, the performance of the pitch
controller is known to deteriorate for non-homogeneous turbulent inflow conditions, or
additional aerodynamic load phenomena such as tower shadow, leading to flow separa-
tion over longer stretches of the blades. The performance of the presented simulation
approach requires a validation with respect to these more realistic aerodynamic load
conditions.

The performance of the method with state-independent apparent dynamic properties
was demonstrated for the NREL 5MW turbine. The presented approaches can be adopted
to estimate the apparent dynamic properties for larger turbines (10+ MW). The validity
of the assumptions, however, should be checked. Regarding the larger turbines, the tip
speed ratio will be smaller, leading to larger inflow angles and potentially flow separation
over longer stretches. Blade frequencies may also shift with respect to the current turbine,
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leading to different dynamic interactions.
As a final recommendation, and along the same line, the method should be assessed

for novel support structure concepts. Larger turbines and deeper waters may require
different support structure concepts, such as lattice towers and floating structures, in-
troducing different modes and frequencies of vibration. As an example, the frequency
of the first torsion mode of a turbine on a full-lattice support structure could be much
closer to the frequencies of the first bending modes of the wind turbine (compared to a
monopile-based support structure), offering the potentially high aerodynamic damping
of the yawing motion of the turbine as a mitigation of the side-to-side motion of the
system. The possible benefits of the aerodynamic damping for novel support structure
concepts can easily be explored with the application of the presented approach.
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EPILOGUE

C APTAIN Ahab would perhaps have capitulated. At times, I heard him whisper in my
ears that it should not become an obsession. And that one should be careful not to

pursue unachievable goals. But a dissertation is not a white whale, and as reluctant I
would be to hunt the later – for varying reasons – the former eventually turned into an
undeniable fact.

Mentioning undeniable facts, Ian McEwan published five novels (which I managed to
read all) and Nick Cave produced three albums, whereas I happeded to see him perform
three times in this period (four times even, if it weren’t for COVID-19), while I worked
on my research. Meanwhile, I cycled accross Cuba, ran the one and only marathon, and
discovered many Italian and Moroccan treasures. On a completely different level, I met a
most wonderful woman and became father twice.

Whenever it comes to undenying facts, I cannot refrain from expressing my gratitude
to numerous characters that played a major role in my story. To begin with, it was
Jan van der Tempel who offered me the opportunity to research ’offshore wind’, after
Andrei Metrikine welcomed me back from the industry into the realm of research. And
it was Andrei who took the academic responsibility for my scientific work, by becoming
my promotor. I am very thankful for the autonomy that Andrei allowed me and the
opportunity he gave me to find my role within Delft University of Technology. All this
time it was Karel van Dalen, who challenged me to optimize my work scientifically, being
available any time for our many discussions. Karel, you will always remain one day
younger than me!

Throughout the years, Andrei’s research group on ’Offshore Engineering, Dynamics of
Solids & Structures and Mechanics & Physics of Structures’ grew steadily, and everybody
who is part of this section has an invaluable contribution to a uniquely inspiring vibe.
In this respect, I would like to mention specifically the original Pequod crew: Antonio,
Eliz-Mari, Jeroen, Frank, Maxim and Pim. Regarding this research, I want to express
specific thanks to Hayo, João, Marco and Peter, and of course to Marysa. And to Azarakhsh
Rafiee, for providing me with a welcome research distraction.

Concerning the people close to me, I deeply hope that each of you knows how much
you mean to me. And at the same time, I apologize for all the times I did not show this.
Ralf, Jurgen, Jeroen, you are my friends for life. Jeroen, my eighth proposition is for you.
Marieke, Jasper, Amber, thank you for your being there during my darkest days. And
where would I have been without my parents? Mum and dad, you made me who I am. My
sweet sister Renate, I wouldn’t know where I was without you.

This brings me towards te centre of my life. Aline, thank you for continuously believing
in me, for giving me the love required to persevere. Thank you for emphasizing the ’C‘ in
science. And Tommaso and Artemisia, you are the apples of my eyes. You made me find
the motivation to finally finish this work, to catch this whale.
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