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Summary 
 

During the lifetime of quays, it is likely that the desire arises for a quay to be used in a different 

condition than it was initially designed for. Examples are: a higher surcharge loading on the quay in 

order to increase the storage capacity or a higher retaining height due to the wish for larger ships to 

arrive at the quay. If the loading conditions change, the reliability of the quay needs to be reassessed. 

Reassessment of the quays proves to be difficult. The main problem is the large uncertainty in for 

example soil parameters, soil behaviour and the current state of the structural elements. To cope with 

this uncertainty, the structural- and soil parameters are estimated. As estimates are used, it is 

uncertain how ‘well’ the model predicts the real behaviour.  

In this thesis a possible solution to reduce this uncertainty is reviewed. This option is to use 

monitoring data obtained from a controlled loading situation to enhance the probabilistic model. The 

technique of Bayesian updating is used for this. Bayesian updating uses monitoring data to 

probabilistically update the included stochastic variables. Bayesian updating changes the means and 

standard deviations of the variables. These changes result in the most likely combination of the 

variables. This most likely combination is based on the measurement and the prior distributions of the 

variables. The result of a Bayesian update is thus a changed set of stochastic variables.  

In general, the process for performing the update is the following. A prior prediction of the quay’s 

behaviour based on the prior distributions of the variables is made. These prior variables are based 

on the soil investigations and the design documents. Then the measurements are used to determine 

the posterior distributions of the variables and a posterior prediction is made.  

The reference case used in the thesis is a combi-wall anchored by two grout anchors at each 

tubular pile. The quay is modelled with Blum and PLAXIS.  

For the Bayesian update, it is assumed that the maximum deflection of the wall and the strain 

in the top anchor tube is measured. For the research fictitious measurements cases are defined. 

Several fictitious cases are used to show the effect of Bayesian updating. 

Based on the results found with the different update cases it can be concluded that Bayesian updating 

increases the accuracy of the probabilistic model. The standard deviations of the included variables 

reduce and if variables are chosen too conservative or too optimistic the mean will be changed 

accordingly. This change in the variables is the largest for the variables with a large influence on the 

failure probability.  

The result of Bayesian updating is the most likely combination of the variables. It is more 

efficient and more accurate to use this most likely combination, instead of fitting the model prediction 

to the measurements. In that case it will be hard to prove that the fitted combination of parameters is 

the combination which will occur as usually many variables are included and thus many combinations 

are possible. 

 By performing a Bayesian update the reliability of the quay can be determined more 

accurately. If the measurement shows that the prior prediction is too optimistic the reliability 

decreases. It is then possible to prove that reinforcing is required and also the effect of reinforcing can 

be determined with more certainty by using the updated model.  

 For the other cases, a too conservative prior prediction or a prediction equal to the 

measurements, an increase of reliability is found. It can then be determined if this increase proves the 

quay to be sufficiently safe and if an increase of retaining height or an increase of surcharge load is 

possible.  

 The results show how the obtained data from a test loading can be used. For a full evaluation 

of test loading, more research into the procedure and the costs of test loading is required.  
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1 Introduction 
 

The main functions of quay walls are to provide a safe place for ships to berth and to allow safe 

unloading and reloading of ships. Therefore, the developments of quay walls throughout the years are 

closely related to the developments in the shipping industry. Figure 1 shows the development of ship 

dimensions in time. The graph shows that, starting from approximately the 1960’s, the draught of 

ships has increased considerably. As the draught of the ships increases also the retaining height of 

the quay walls must be increased. Accompanied with this increase of draught the amount of cargo 

has significantly increased. Requiring more and larger cranes to unload ships, these cranes impose 

considerable loads on the quay. 

 A recent example (2018) of a large dredging operation in the Port of Rotterdam, is the 

deepening of the Nieuwe Waterweg and Botlek harbour. The Botlek area is an older port expansion 

and is realized in 1960. In the recent dredging operation, the depth of the harbour basins is increased 

from NAP -14,50 to NAP -15,90. This provides access for ships with a draught up to 15 m. Prior to 

this dredging operation, the safety of the quays in the Botlek area need to be reassessed.  

 

 

Figure 1 Development of ship dimensions in time (van Tol & de Gijt, 1999) 

 

In addition to the increasing draught also the type of cargo which is being loaded on quay walls is 

changing. Starting with the first ships, which were classified as general cargo ships, carrying all sorts 

of cargo, to the development of specialized ships nowadays. Starting from the 1950’s ships are 

becoming more dedicated to one type of cargo such as containers, bulk, oil or LNG. These shifts in 

cargo types also introduced a change in the loads acting on the quay. 

Another aspect is the development of the port itself. Ports can grow, expand or relocate certain areas. 

This leaves the old quay walls without function. In order to make these quay walls functional again, by 

for example increasing the retaining height, it must be verified that this new usage is possible. 

Furthermore, companies that use a quay can change over time. So, another important factor 

which could lead to reassessment of a quay wall is the development of ports. 
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The previous examples illustrate that the loads on quay walls are changing throughout the years. 

Usually quay walls are designed for a life time of 50 years. Looking at the graph in Figure 1, in 50 

years the ships draught and carrying capacity have significantly increased and so are the loads on the 

quays. Due to the complicated nature of quays it is not easily verified that a quay is able to withstand 

these larger loads.  

Experience has shown that quay walls in the Rotterdam Harbour are already adapted after 

15-20 years of service time. This is indicated in Figure 2. The vertical axis shows the lifetime in years 

and the horizontal axis indicates the year in which the quay is constructed. A special case is the 

quays for the chemical industry, indicated by the yellow bar on the bottom of the graph; they are 

already adapted after 5 years of service life. 

 

 
Figure 2 Service life of quay walls in Rotterdam (van der Toorn & de Gijt, 2009) 

 

1.1 Problem description 
 

As introduced in the first part of this chapter it is likely that during the lifetime of a quay the desire 

arises for a change in the loading conditions. This changed load could be due to an increase of the 

ships draught or to a changed function of the quay. Whenever the load exceeds the design load, the 

reliability of the quay wall needs to be reassessed.  

Also when a quay is approaching the end of its lifetime, it is necessary to reassess the quay. It 

might be possible that the lifetime can be extended for a couple of years. 

 

In the reassessment of quays there are a lot of uncertainties, for example: the state of the structure. A 

quay wall is for the most part submerged and embedded in the subsoil, which makes it difficult to 

inspect the structure. Next to the uncertainty in the structure itself, there is in many cases a large 

uncertainty in the behaviour of the soil. 

In addition to these uncertainties the design requirements for quay walls are changing in time. 

Especially for older quays the design calculations made, do not comply with the current safety 

standards.  
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To summarize, proving that a quay wall is suitable for a new function is no easy task. The large 

uncertainties lead to estimates of the soil- and structural parameters. A risk inherent to these 

estimates is that a too conservative approach is used. This in turn leads to expensive reinforcement 

measures or an entire replacement of the quay. Due to these conservative estimates it might be 

possible that these measures are not necessary. However, it is also possible that a too optimistic 

approach is adopted and thus the reliability of the quay is over estimated. Proving that an approach is 

too optimistic, too conservative or realistic is however not yet possible. 

 

1.2 Research objective 
 

Based on the problem description there is a need for a method which can more accurately predict the 

actual strength of a quay wall. One of the methods, which is currently under consideration, to do so is 

test loading quay walls. How to perform a test load is not part of the scope of this research. A possible 

option for test loading could be, loading the quay by stacking containers behind the quay.  

Using the containers, the loads on the quay can be stepwise increased. Another option is 

increasing the retaining height by slowly dredging in front of the quay. Both of these options increase 

the load on the quay in a controlled manner. If the quay is monitored during the test, one can use the 

obtained data to determine the level up to which it is safe to load the quay. More options can be 

thought of, this will however not be part of the research. This thesis focusses on using the data 

obtained from a test loading. 

The main advantage of test loading is that the real strength of the quay can be determined. 

The main disadvantage of the method is the risk of permanent damage to the quay. As quays have 

numerous different failure mechanisms and some of those mechanisms occur without warning, it can 

be difficult to predict which mechanism is governing. So, to safely execute a test load, one needs 

model predictions to verify that sudden failures do not occur and monitoring to prevent failures that do 

give warning signals. Also monitoring is used to verify that the behaviour of the quay is within 

predefined boundaries and to determine when the loading should be stopped. 

Although model predictions and monitoring are in many ways available in engineering 

practice, they are often used as separate items. For the test load to be useful the obtained data during 

the test load must be used to enhance the model predictions. Therefore, this research will focus on 

using the obtained data in the model predictions. One method in particular is useful for this problem: 

Bayesian updating.  

A Bayesian update uses evidence to probabilistically update a prediction. Evidence can be 

either measurements or the knowledge that a structure has survived a certain load. Some examples 

of studies which have applied Bayesian updating are (Schweckendiek, 2010) and (van der Meijs, 

2015). Schweckendiek has used survived load data, the knowledge that a flood defence has survived 

a certain high-water event, to increase the reliability of a flood defence. Van der Meijs has applied 

Bayesian updating to increase the accuracy of settlement predictions based on settlement plate 

measurements.  

For a quay to be safe, the failure probability needs to be sufficiently low. As written in the problem 

statement, there is a large uncertainty in the prediction of the failure probability of a quay wall. By 

using monitoring data, for example strain or displacement measurements, Bayesian updating can 

help in reducing this uncertainty. Based on the above the objective of the research is defined as:  

developing a Bayesian updating method which improves the prediction of the failure probability of a 

quay wall. 
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The problem description and research objective can be translated into the following research 

question: 

How to use Bayesian updating to improve the prediction of the failure probability of a quay wall? 

 

Sub questions have been defined to aid in answering the main research question. The following sub 

questions are defined: 

What improvements to the probabilistic model can be obtained through performing a Bayesian 

update? 

How are the results of the Bayesian update influenced by a different measurement quantity? 

 

1.3 Thesis structure and strategy 
 

After introducing the problem and the thesis’ objectives, the thesis starts in chapter 2 with explaining 

the theory required. An overview of the calculation methods for quay walls and the concept of 

structural reliability, including Bayesian updating, is explained. Based on this literature study a 

research method is defined, which is also explained in this chapter.  

In chapter 3 Bayesian updating is applied to an analytical model of a cantilever beam. This example 

allows to gain insight into the process of Bayesian updating.  

The case which is investigated is introduced in chapter 4. The structural details and soil profile are 

provided. In this chapter also, the starting points for the Bayesian update are listed. 

In chapter 5 Bayesian updating is applied to the first calculation model, the model of Blum. After 

investigating the results obtained from Blum, a finite element model is applied.  

Chapter 6 contains the explanation and the input of the finite element model. Bayesian updating is 

then applied to the finite element model. 

The obtained results from the Bayesian updates are used in chapter 7 to determine if the loads on the 

quay can be increased. As this calculated increase is determined based on fictitious measurements, a 

global strategy is provided to obtain the measurements in practice and to perform a Bayesian update 

based on real measurements.  

Answers to the research question and the sub questions are given in chapter 8. Chapter 8 also lists 

recommendations. The thesis ends with an evaluation of the results and possible further research 

subjects in chapter 9. 
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2 Theoretical Background 
 

The theory required to answer the research question can be divided into two main categories, these 

categories are: calculation methods for quay walls and the concept of structural reliability. Each of 

these categories are treated separately in this chapter. 

 

2.1 Quay wall calculation models 
 

For designing quay walls there are three main calculation models available. These are: 

 Model of Blum 

 Spring model 

 Finite Element Model 

These models are shortly explained in this section. 

 

2.1.1 Blum 

 

The model of Blum is a relatively simple calculation method. The simplicity of the method allows to 

make hand calculations. The method of Blum assumes that the soil behaves either fully active or fully 

passive. This assumption can be visualized in Figure 3. The red line indicating the assumption by 

Blum so either passive or active, while in reality soil behaves more like the black curve. 

 

Figure 3 Stress-Strain relation as assumed by Blum (Molenaar & Voorendt, 2017) 

 

Furthermore, Blum assumes that somewhere in the soil the sheet pile is fully clamped and at this 

clamped point the moments are equal to zero. This assumption allows a quick calculation of the 

required embedded depth of the sheet pile. Blum has proven effective as a first approximation. 

However, the deformations are poorly predicted and a staged construction cannot be modelled. 

Therefore, for design purposes usually a spring- or finite element model is applied. 
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2.1.2 Spring model 

 

A more advanced model is the spring model. It schematizes the soil as a set of elasto-plastic springs. 

This schematization is a more accurate prediction of the real stress-strain behaviour. However, it is 

still a simplified approach as the non-linear stress-strain relation of soils, the black parabolic line in 

Figure 3, is approximated by linear line segments. This model is shown in Figure 4a. The pile 

schematization is shown, in which the soil is represented in multiple springs. This process is based on 

uncoupled springs and is therefore unable to include arching effects in the ground. 

 

 

Figure 4 Representation of spring model and stress strain relation (de Gijt, 2010) 

The stress-strain relationship used in the spring model is shown in Figure 4b. In this figure a bi-linear 

stress strain relationship is shown, it is also possible to use multiple linear line segments in order to 

approximate the non-linear relation. 

The main arguments for using a spring model in design calculations are that it is a simple, fast, and 

user-friendly method. These benefits do come at a cost. The disadvantage of the spring model is that 

in the soil stiffness simplifications are made. These have as result that the displacements are not 

accurately predicted.  

To determine the forces on the wall, a choice must be made in applying a method based on 

straight slip surfaces or on curved slip surfaces. In principle applying straight slip surfaces is only valid 

when the sheet pile is smooth and no friction occurs between soil and pile. In reality this is never true, 

so a curved slip surface is present. For determining the active pressures, the difference between the 

methods is rather small, except for high friction angles. In the case of high friction angles, methods 

based on straight slip surfaces tend to overestimate the resistance. So, for larger friction angles, a 

method based on curved slip surfaces is usually applied (Deltares, 2016).  

In the cases of a non-horizontal ground level or discontinuity in the surcharge load straight slip 

surfaces need to be used, as neither can be modelled when applying curved slip surfaces. 

If straight slip surfaces are applied the delta friction angle (a parameter describing the friction 

between the soil and the sheet pile) must be reduced. When curved slip surfaces are applied this 

reduction is not necessary. (CUR, 2012).  

In general, independent of applying straight or curved slip surfaces, D-Sheet Piling is unable 

to realistically model quays with relief platforms. D-Sheet piling is a one-dimensional software 

program. This implies that any combination of a sheet pile and other structural elements cannot be 

realistically modelled.  
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For determining the forces on the sheet pile, three methods are available in D-Sheet Piling. These are 

(Deltares, 2016): 

 Culmann 

The method of Culmann is especially useful if the soil profile behind the sheet pile is not horizontal or 

if a surcharge load is present. The method can be described according to Figure 5. The method is 

based on straight slip surfaces. Along each slip surface equilibrium is calculated between the 

surcharge B, the soil weight W, the force from the sheet pile Q, the normal force N and the shear 

force T. The program searches for the slip surface along which the maximum active- and minimum 

passive pressures are present.  

 

Figure 5 Method Culmann (Deltares, 2016) 

 

 Müller-Breslau 

A second solution based on straight slip surfaces are the formulas defined by Müller-Breslau. The 

formulas assume a straight slip surface with an angle of 
𝜋

4
±

𝜑

2
. If a vertical sheet pile is applied and a 

horizontal ground surface is present the formulas can be written as: 

𝐾𝑎 =
𝑐𝑜𝑠2(𝜑)

(1 + √
sin(𝜑) sin (𝜑 + 𝛿)

cos (𝛿) )2

 

𝐾𝑝 =
𝑐𝑜𝑠2(𝜑)

(1 − √
sin(𝜑) sin (𝜑 + 𝛿)

cos (𝛿)
)2

 

The above equations for 𝐾𝑎 and 𝐾𝑝 are valid under the following conditions: 

o 𝜑 ≤ 30° for rough steel sheet pilings and comparable walls 

o 𝜑 ≤ 35° for rough concrete pilings 

 

 Kötter 

Another possibility are the formulas of Kötter. These formulas describe a curved slip surface. The 

following assumptions are made when using the equations: 

o The surface is horizontal and unloaded. 

o The soil is homogeneous with volumetric weight of zero. 

o The slip plane consists of a logarithmic spiral and a straight part. 
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The above three statements are assumptions and one should keep this in mind when using the 

method of Kötter. 

Kötter defines the following active pressure coefficient: 

𝐾𝑎 =
1 − sin(𝜑) sin (2𝛼 + 𝜑)

1 + sin (𝜑)
𝑒((−0,5𝜋+𝜑+2𝛼)tan (𝜑)) 

With 𝛼: cos(2𝛼 + 𝜑 − 𝛿) =
sin (𝛿)

sin (𝜑)
 

For the passive pressure coefficient: 

𝐾𝑝 =
1 − sin(𝜑) sin (2𝛼′ + 𝜑)

1 + sin (𝜑)
𝑒((−0,5𝜋+𝜑+2𝛼´)tan (𝜑)) 

With 𝛼′: cos(2𝛼′ − 𝜑 + 𝛿) =
sin(𝛿)

sin(𝜑)
 

 

2.1.3 Finite Element model 

 

The final and most powerful model is to employ a finite element analysis. Using a finite element 

analysis, a fundamental approach can be applied which reduces the number of simplifications. It 

reliably predicts both forces and deformations. Finite element models can take into account two or 

three-dimensional structures. It is thus possible to take into account interaction between different 

structural elements for example the effect of a relief platform and interaction between foundation piles 

and the sheet pile. Applying a finite element method however, requires more input parameters and 

has in general a calculation time which is significantly longer than using software based on the spring 

model.  

The accuracy of the finite element calculation is dependent on the soil model which is used. For 

quay walls the following four models are generally applied: 

 Linear Elastic Model 

The simplest of the available models is the linear elastic model. It is based on Hooke’s law and 

assumes a linear relation between stress and strain. It requires as input the Young’s modulus and the 

Poisson’s ratio. Soils in general do not behave linear elastic and therefore this model is only useful for 

very stiff and strong soils, for example rock formations and in some cases when concrete is modelled.  

 Mohr-Coulomb Model 

The Mohr-Coulomb Model includes plastic behaviour of soils and is an improvement compared to the 

linear elastic model. Mohr-Coulomb assumes a linear elastic perfectly plastic material. This is shown 

in Figure 6. The first, linear elastic, part of Figure 6 is described by Hooke’s law. The second, plastic, 

part is the failure criterion as defined by Mohr-Coulomb. Not included in the model of Mohr-Coulomb 

is dependency of the stiffness on the stress level, the stress path and the strain level. Only the depth 

dependent stiffness can be included. The approximated stress-strain relationship as used in the Mohr-

Coulomb model represents soil behaviour close to failure quite well. In non-failure conditions the 

Mohr-Coulomb model tends to deviate from the real behaviour. 
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The soil behaviour of Mohr-Coulomb model has the benefit of a method called 𝑐, 𝜑 reduction. The 

described strength reduction is also possible with the advanced soil behaviour models. However, the 

advanced features of these models will be lost and thus the behaviour during such a strength 

reduction is equal to the Mohr-Coulomb model.  

The 𝑐, 𝜑 reduction method can calculate safety factors. By stepwise reduction of the friction 

angle and the cohesion, the method determines the point of failure. The safety factor can then be 

defined as: 

 

𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 = ∑𝑀𝑆𝐹 =
tan (𝜑) 𝑝𝑟𝑖𝑜𝑟

tan (𝜑) 𝑟𝑒𝑑𝑢𝑐𝑒𝑑
=

𝑐 𝑝𝑟𝑖𝑜𝑟

𝑐𝑟𝑒𝑑𝑢𝑐𝑒𝑑
 

In which 𝑐, 𝜑 𝑝𝑟𝑖𝑜𝑟 are the friction angle and cohesion values of the soil. The 𝑐, 𝜑 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 are the 

friction angles and cohesion values at global failure. 

  

 

  

Figure 6 Stress-Strain relationship of a linear elastic perfectly plastic material (left) and the Mohr 
Coulomb yield surface in principal stress space (right) (Plaxis bv, 2017) 

 Hardening Soil Model 

Based on Quay Walls (2013) the Hardening Soil model is the most suitable model for designing 

retaining structures. The Hardening Soil model describes the soil strength based on the Mohr-

Coulomb failure criterion. However, the Hardening Soil model can more realistically describe the soil 

stiffness. Mohr-Coulomb using a linear-elastic perfectly plastic description, while the Hardening Soil 

model uses a hyperbolic stress-strain relation, shown in Figure 7.  

 

Figure 7 Hyperbolic stress-strain relation in primary loading for a standard drained triaxial test (Plaxis bv, 
2017) 
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Key feature of the Hardening Soil model, is the fact that the yield surface can expand in the principle 

stress state, shown in Figure 8. In the Mohr-Coulomb model this yield surface is fixed, shown in 

Figure 6. The expansion of the yield surface is caused by plastic strains and is called hardening, 

hence the name Hardening Soil model. 

 

 

Figure 8 Representation of total yield contour of the Hardening Soil model in principal stress space for 
cohesionless soil (Plaxis bv, 2017) 

To predict deformations even more accurate, an adapted version of the Hardening Soil model can be 

used. This is called: Hardening Soil Small Strain model. This model includes the effect that soil 

behaves stiffer in small strain conditions. 

 

 Soft Soil Creep Model 

In case the structure is placed in soft soils, with a dominant time-dependent behaviour, the soft soil 

creep model can describe the viscous behaviour of soft soil. The model is also based on the Mohr-

Coulomb failure criterion, but it allows modelling of the following aspects: stress-dependent stiffness 

moduli, pre-consolidation stress and unload/reload behaviour. In particular for soft soils this model is 

more accurate than the hardening soil model. The model will not be used in this research and thus 

only a brief overview is provided.   
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2.2 Structural Reliability 
 

The goal of designing structures is ensuring that the structure will be safe. A safe structure is in 

general defined as a structure with a sufficiently low probability of failure. To determine the ‘safety’ of 

a structure, a reliability analysis is performed. The concept of this analysis is explained in this chapter. 

 

2.2.1 General concept 

 

A structural reliability problem can be written in the following equation or limit state function. 

𝑍 = 𝑅 − 𝑆 

In this equation R is the resistance and S represents the load (solicitation). The structure will not fail 

as long as 𝑍 > 0, which means that 𝑅 > 𝑆. Traditionally this problem was solved using a deterministic 

approach. A certain nominal or expected value of the structural resistance and the expected loads are 

used. Usually an overall safety factor is applied, in equation form this results in: 

𝑍 = 𝑅𝑛𝑜𝑚 − 𝛾𝑆𝑛𝑜𝑚 

In which 𝛾 is the overall safety factor. In the above approach, it is assumed that the load and the 

resistance can be calculated with reasonable accuracy. This is however not always the case, as there 

is uncertainty on both the load and the resistance side. To take these uncertainties into account 

probabilistic methods have been developed. These methods aim to calculate the probability of failure. 

The probability of failure equals: 

𝑃𝑓 = 𝑃(𝑍 < 0) = 𝑃(𝑆 > 𝑅) 

For structures a maximum allowable failure probability is defined. For quay walls this maximum 

depends on the consequences of failure. Three different consequence classes are defined; the 

classes are presented in Table 1. In this table the reliability index 𝛽 is defined. 𝛽 is related to the 

probability of failure, in case the limit state function is normally distributed, by: 

𝑃(𝑍 < 0) = Φ (
0 − 𝜇𝑧

𝜎𝑧

) = Φ (−
𝜇𝑧

𝜎𝑧

) = Φ(−𝛽) 
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Table 1 Reliability classes according to NEN-EN 1990 (Broeken & de Gijt, 2013) 

Description of reliability 
classes 

Reliability 
index 𝜷 

Design life 
in years  

Examples 

RC 1/CC 1 
Low consequence for loss 
of human life and 
economic, social or 
environmental 
consequences small or 
negligible 
 

𝛽 = 3,3 50 Quay walls and port infrastructure that 
are part of a terminal or port with 
functional redundancy and limited 
number of people at risk 

RC 2/CC 2 
Medium consequence for 
loss of human life and 
economic, social or 
environmental 
consequences 
considerable 

𝛽 = 3,8 50 Unique port infrastructure of vital 
economic importance without functional 
redundancy;  
Quay walls that are a part of another 
system, such as chemical or power 
plants, but for which failure would not 
lead to failure of other structures, such 
hazardous installations  
Urban quay walls, located in fairly 
crowded locations  
Soil-retaining walls that are part of 
secondary flood defence systems or 
dams 
Quay walls needed for recovery after 
earthquake damage or tsunamis;  
Quay walls facilitating cruise vessels 

RC 3/CC 3 
High consequence for loss 
of human life and 
economic, social or 
environmental 
consequences very great 

𝛽 = 4,3 50 Soil-retaining walls that are part of a 
primary flood defence system or major 
dam 
Soil-retaining walls the failure of which 
would lead to the inaccessibility or 
unavailability of main commercial 
waterways 
Quay walls the failure of which would 
lead to the failure of other hazardous 
structures, such as hazardous 
installations of chemical or power plants. 

 

To calculate the probability of failure, three levels of probabilistic methods can be defined: 

 Level I  semi-probabilistic approach 

 Level II  full probabilistic approach with approximations 

 Level III full probabilistic approach 

The difference between the levels is explained in detail in the next sections. 
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2.2.2 Level I analysis 

 

The semi probabilistic approach aims to be a practical, not too complicated approach to a probabilistic 
design. The method can be described as follows: first characteristic values of both the load and the 
strength are defined. For a load parameter a characteristic value is a high representative value. It is 
commonly defined as a value which has a probability of exceedance of 5%. For resistance parameter 
a low characteristic value is used. For a low characteristic value holds that the probability of obtaining 
a lower value is 5%.  
 The characteristic values are then multiplied or divided by a safety factor, to obtain design 
values. It should then still be the case that the strength should be higher than the loads. The above 
can be written in a formula, as shown here: 
 

𝑅𝑘

𝛾𝑅

> 𝛾𝑆𝑆𝑘 

 

 𝑅𝑘 Characteristic value for resistance 

 𝛾𝑅 Partial safety factor on resistance 

 𝑆𝑘 Characteristic value of load (solicitation) 

 𝛾𝑆 Partial safety factor on load 
 

The formula and the approach with characteristic and design values can also be visualized in the 
graph in Figure 9. In red the distribution of the load is shown and in green the distribution of the 
resistance. Furthermore, the characteristic values (𝑅𝑘 , 𝑆𝑘) and the design values (𝑅𝑑 , 𝑆𝑑) are shown.  
 

 
Figure 9 Level 1 approach (Jonkman et al, 2017) 

 

The factors used to determine the design values are called partial safety factors. In general, for 

normally distributed variables the partial safety factors can be calculated with: 

𝛾𝑚 =
𝑅𝑘

𝑟∗
=

𝑅𝑘

𝜇𝑟 − 𝛼𝑠𝛽𝜎𝑟

 

The 𝛾𝑚 represents, in this case, a partial factor on a resistance parameter. As is indicated by the 

subscript ‘r’ in the inequality. 
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The partial safety factor is higher in case: 

 the influence coefficient 𝛼 is higher; 

 the target reliability index 𝛽 is higher; 

 the standard deviation 𝜎 is higher. 

The partial factors used in level 1 methods are usually not determined by the formula but prescribed 

in guidelines. The exact failure probability is not calculated. The safety is included in the definition of 

the partial safety factors. The predefined partial factors in the guidelines are derived from the more 

advanced level II and level III analyses. 

 

2.2.3 Level II analysis 

 

A level II probabilistic calculation employs a fully probabilistic approach with approximations. In a fully 

probabilistic approach no partial factors are included. All variables and their uncertainty can be 

included into the limit state function. However, in the evaluation of the limit state function 

approximations are made to reduce the computational effort. The most commonly applied level II 

method is the First Order Reliability Method (FORM). Several other methods are available, but only 

FORM is treated here. 

 
FORM approximates the failure probability by linearizing the limit state function. For a linear limit state 

function this provides the exact failure probability. However, most limit state functions are non-linear. 

FORM is based on the principle introduced by Hasofer and Lind (1974), which is: 

The reliability index 𝛽 is equal to the shortest distance from the origin to the surface described 
by g(U)=0 in the space of normalized basic variables 

This principle can be seen in Figure 10. 
 

 

 
 
Figure 10 Reliability index as introduced by Hasofer and Lind (Jonkman et al, 2017) 
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The principle makes the application of FORM suitable to any kind of limit state function. The 

linearization which is applied in FORM reduces the accuracy of the calculation but also reduces the 

computational effort. The accuracy of the linearization is dependent on the chosen linearization point. 

Most effective is linearizing the function in the design point. The design point is defined as the point 

on the failure plane which has the largest contribution to the actual probability of failure. As this point 

is usually not known on beforehand, FORM iteratively converges to this design point.  

In addition to finding the design point, FORM shows the sensitivity factors of the variables 

involved. This provides useful information into which variables are dominating the failure probability. 

 

The steps required to perform FORM are the following: 
 

1. Choose starting values 

𝛽 =
𝜇𝑧

𝜎𝑧

 

 
 

2. Linearize function in starting values, substitute 𝛽 in: 
 

𝑍 = 𝑔(𝑈) ≈ 𝑔(𝑈0) + ∑
𝛿𝑔

𝛿𝑢𝑖

𝑛

𝑖=1

(𝑈0)(𝑈𝑖 − 𝑈0𝑖) 

 

𝛼𝑖 =

𝛿
𝛿𝑋𝑖

𝑔(𝑋∗)𝜎𝑋𝑖

√∑
𝛿

𝛿𝑋𝑖
𝑔(𝑋∗)𝜎𝑋𝑖

𝑛
𝑖=1

2 =

𝛿
𝛿𝑋𝑖

𝑔(𝑋∗)𝜎𝑋𝑖

𝜎𝑧

 

 
 
 

3. Use the determined 𝛽 and 𝛼 values to determine new design point 
 

𝑋𝑖
∗ = 𝜇 − 𝛼𝑖𝛽𝜎𝑋𝑖

 

 
 
4. Repeat steps 1 to 3 until convergence is reached 

 
 

2.2.4 Level III analysis 

 

The most accurate solution for a probabilistic analysis is a level III method. A level III method is a fully 

probabilistic approach without approximations or linearization. The most well-known level III method is 

a Monte Carlo simulation. Other methods are numerical integration or solving the limit state function 

analytically. The last two methods are rarely used due to fact that usually many variables are 

included, resulting in complicated limit state functions. For the analytical solution this means that the 

formula is not easily solved and for numerical integration the number of calculations required 

increases with an exponent equal to two times the number of variables. Numerical integration puts, 

due to this exponential relation, a high demand on CPU-power. It is therefore, only applicable for low 

dimensional problems. A Monte Carlo can always and relatively easily be applied. As Monte Carlo 

simulation and other probabilistic methods based on a Monte Carlo Simulation are used in this thesis, 

the process of a Monte Carlo simulation is explained in this section. 
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A Monte Carlo simulation is a very simple solution to determine the failure probability. Once the limit 

state function and the distributions of the included variables are defined, the simulation can start. The 

Monte Carlo simulation takes random draws from the probability distribution functions of the variables 

and then evaluates the limit state function.  

The probability of failure is then simply defined as: 

 

𝑃𝑓 =
𝑁𝑓

𝑁
 

In which: 
 

 𝑁𝑓 is the number of evaluations in which the structure fails. 

 𝑁 is the total number of evaluations done. 
 
 
 
A huge disadvantage of this method is that for low failure probabilities a large amount of simulations 

must be done to accurately determine this failure probability. This effect can be seen in the graph in 

Figure 11. This figure shows that for a 𝛽 = 4 over 20000 calculations have been done and still, some 

spread is present in the calculated reliability index. 

 

 

 

Figure 11 Number of Monte Carlo simulations required (Jonkman et al, 2017) 

 

To reduce the number of calculations required, several techniques have been developed which 

significantly improve the efficiency of the simulation. Two of those techniques are treated here: 

Importance Sampling and Directional Sampling. 

Both of these techniques rely on the fact that taking samples from the original distribution is not 

efficient for low probabilities of failure. The chance that a “bad draw” is taken from the sampling 

distribution is too low. In order to reduce the number of calculations required the chance of obtaining a 

bad draw must be increased.  
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Importance sampling solves this problem by taking samples from a different sampling distribution and 

relating them through the following function: 

 

𝑃𝑓 =

∑ 𝐼(𝑍𝑖)
𝑓𝑅,𝑆(𝑟𝑖 , 𝑠𝑖)
ℎ𝑅,𝑆(𝑟𝑖 , 𝑠𝑖)

𝑛
𝑖=1

𝑛
 

In which: 

 𝑓𝑅,𝑆  is the original distribution. 

 ℎ𝑅,𝑆 is the sampling distribution. 

 

The larger the probability of obtaining a “bad draw” the more effective importance sampling is. The 

method of importance sampling is most effective if the sampling distribution is close or in the design 

point. So, to achieve an optimum efficiency it requires knowledge of the failure plane which is usually 

not present on beforehand.  

Directional sampling solves both the efficiency problem and knowledge about the failure plan is not 

required. Directional Sampling searches for the design point without requiring information on the 

failure plane on beforehand. Directional Sampling follows an iterative procedure much like FORM, in 

which the design point is determined in the iterative process. Instead of FORM it is not based on the 

linearized approximation. As directional sampling is a sampling method, the accuracy of the solution 

is dependent on the number of directions or calculations which are evaluated.  

The principle of Directional Sampling can be explained with the help of Figure 12. In the standard 

normal space in each direction a line is evaluated. Along this line it is checked when a change in sign 

occurs, in other words when failure occurs. For each found direction, for which failure occurs, the 

reliability analysis will be performed by one dimensional integration. 

 

 

 

Figure 12 Principle of Directional Sampling (Schweckendiek, 2006) 
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2.2.5 Uncertainty 

 

A main topic of this research is to reduce the uncertainty in the prediction. There is uncertainty in for 

example the soil parameters, soil behaviour, harbour bottom depth, surcharge load and in the 

structures response. In order to reduce the uncertainty, it is first required to define the different types 

of uncertainty and which of those types can actually be reduced. Van Gelder (2010) defines the two 

following types of uncertainty: inherent uncertainty and epistemic uncertainty. Inherent uncertainty is 

defined as the randomness or variation in nature; it is not possible to reduce this type of uncertainty. 

An example of inherent uncertainty is the fact that it is not possible to predict, with absolute certainty, 

the maximum water level which will occur next year; even if we would have collected the water levels 

over an infinite amount of years.  

The other type of uncertainty, epistemic, is related to a lack of knowledge or an insufficient amount of 

data. Epistemic uncertainty can be reduced by collecting more data or doing more research into the 

phenomena. Van Gelder (2010) further divides the two types into five uncertainty categories shown in 

Figure 13. 

 

 

Figure 13 Types of uncertainty (van Gelder, 2010) 

 

The statistical types of uncertainty are related to the amount of data which is available. In the case of 

soil parameters, there is an uncertainty due to the fact that usually a limited amount of investigations 

is done and this limited amount must represent the whole area. This uncertainty can be reduced by 

doing more investigations to obtain a better estimate for the parameters and their distributions. 

Model uncertainty is for example dependent on how the soil behaviour is schematized in the 

calculation model. Using the spring model for calculation generally results in a larger model 

uncertainty then using a finite element hardening soil model. 

Inherent uncertainty can be divided into uncertainty in time and space. The uncertainty in time is 

related to predicting future events, which is of course not possible. Uncertainty in space can 

theoretically be reduced. This is however a problem of costs. It is usually considered to be too 

expensive to do site investigations at a close enough distance to fully reduce the spatial uncertainty. 

In view of this research the main focus will be on reducing the statistical uncertainty. The goal is to 

make a better prediction of the parameters and their distributions. This will be done using a Bayesian 

update technique which is treated in the next paragraph.  

1 

2 

3 

4 

5 
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2.2.6 Bayesian updating 

 

As shortly introduced, Bayesian updating will be used to update model predictions according to 

measurements on site. A Bayesian update is a tool to improve the accuracy of a predictions based on 

evidence. In general evidence can be any property, measured quantity or observation. The evidence, 

in this case, are measurements.  

Bayesian updating is based on the conditional statistics theory developed by Bayes. This theorem is 

defined as  

(Dekking, Kraaikamp, Meester, & Lopuhaä, 2005): · 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 

In which: 

 𝑃(𝐴) is the probability that event A occurs. 

 𝑃(𝐵) is the probability that event B occurs. 

 𝑃(𝐴|𝐵) the conditional probability that A occurs when event B is true. 

 𝑃(𝐵|𝐴) the conditional probability that B occurs when event A is true. 

The Bayes formula can be written in a slightly different form, so it allows updating predictions to the 

measurements. For this, a distinction is made between the prior probability of failure and the posterior 

probability of failure. The prior probability of failure is the prediction made based on the site 

investigations and the prior beliefs, this would then represent the prediction as done for a 

reassessment of the quay. It is the prediction before using the measurements. The prior failure 

probability can be calculated by making assumptions on the soil and structure characteristics.  

The posterior probability of failure is the prediction which is updated using the measurement 

data. This is the probability of failure one would obtain after performing a test loading or any other 

method of obtaining the required monitoring data. 

A limit state Z can be defined and the prior probability of failure can be written as: 

 𝑃(𝑍(𝑋 < 0) 

To introduce the measurements, an observation limit state can be defined g(X). Failure can be 

defined if the measurements exceed a certain threshold, for example a larger deformation than 0,10 

m is defined as failure. The observation limit state is then written as: 

𝑔(𝑋) = 0,10 − 𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  

 𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the measured deformation 

For this observation limit state also holds that failure occurs when 𝑔(𝑋) < 0.  
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The prior probability of failure and the observation limit state can be applied into Bayes Theorem. 

Resulting in the posterior probability of failure 𝑃(𝐹|𝑔) (Schweckendiek, 2010): 

 

𝑃(𝐹|𝑔) =
𝑃(𝑍(𝑋 < 0 ∩ 𝑔(𝑋) < 0)

𝑃(𝑔(𝑋) < 0)
 

 

 𝑃(𝐹|𝑔) is the posterior failure probability based on the measurements. 

 𝑃(𝑍(𝑋) < 0) is the prior probability of failure. 

 𝑃(𝑔(𝑋) < 0) is the probability that the observation limit state function is smaller than zero. 

 𝑃(𝑍(𝑋 < 0 ∩ 𝑔(𝑋) < 0) is the probability that the limit state function and the observation limit 

state function are smaller than zero. 

The required steps for applying a Bayesian update to the model are visualized in the flowchart in 

Figure 14. A Bayesian update can be done ‘direct’ or ‘indirect’. The indirect procedure will first update 

all the parameters and then calculate the new probability of failure. This has the advantage that it 

gives insight into the changes in parameter values. However, this method requires two probabilistic 

calculations, resulting in a larger computational effort. The direct approach gives the updated 

probability of failure immediately.  

 

 

Figure 14 Flowchart Bayesian Update 

 

To determine the analytical solution for a Bayesian updating problem with a large number of variables 

is difficult. In order to solve the formula, it must be integrated over all included variables. The result is 

a multi-dimensional integral which in general cannot be solved easily.  

Therefore, a different approach is required. A commonly applied method to solve the equation 

is by using sampling methods. The most well-known are the Markov Chain Monte Carlo (MCMC) 

methods, which are usually based on the Metropolis Hastings Algorithm.  

This method searches for the posterior distribution of the variables. It compares the likelihood of each 

sample with the previous sample and either accepts or rejects the sample. By this procedure the 
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method reaches, after a number of samples, a stationary distribution which is equal to the posterior 

distribution.  

 The disadvantage of using a MCMC method is that it can take a large number of samples 

before this stationary distribution is reached. In addition to the problem of actually reaching a 

stationary distribution, the samples are correlated. To obtain sufficiently uncorrelated posterior 

samples a large number of samples is required.  

In order to overcome the disadvantages of a MCMC method, the Bayesian Update with 

Structural reliability methods (BUS) is investigated. BUS rewrites the formula of Bayes into a Limit 

State format. This rewritten equation can then be solved by applying the standard reliability methods. 

The advantage of this approach is that it can be applied relatively simple and gives flexibility, as 

theoretically every already available structural reliability method can be applied.  

Out of the three given methods, only BUS is treated here. Obtaining samples from the posterior 

distribution is according to (Papaioannou, Betz, & Straub, 2013) equivalent to solving the Limit State 

function below: 

ℎ(𝑥, 𝜇0) = 𝜇0 − 𝑐𝐿(𝑥) 

In which: 

 𝜇0 is a standard uniform random variable. 

 𝑐 is a constant to ensure that 𝑐𝐿(𝑥)<1, the optimum choice is 𝑐 = [max (𝐿(𝑥))]−1. 

 𝐿(𝑥) is the likelihood function and is a probability density function defined as. 

 

o 𝐿(𝑥)=𝑓𝑦𝑖|𝑥(𝑦𝑖|𝑥) 

o 𝑦 contains the measurements 

If a sample is obtained for which holds that: 

ℎ(𝑥, 𝜇0) < 0 

Then this sample falls in the posterior distribution. The most straight forward way to obtain these 

samples would be crude Monte Carlo simulation. For multi-dimensional problems and if the probability 

that ℎ(𝑥, 𝜇0) < 0 is low, this will be inefficient. Applying techniques such as FORM, Importance 

Sampling or Directional Sampling will improve the efficiency. However, after obtaining the samples for 

which holds that  ℎ(𝑥, 𝜇0) < 0, additional steps must be taken to transform these samples to the ‘real’ 

distributions. 

The above holds in case all variables are transformed to independent standard normal variables and 

under the condition that the measurement data is of the equality type.  

In general, a distinction can be made between equality- and inequality information. Inequality 

information implies that the measurement is greater or less than a function of random variables. 

Examples of inequality information are survived loads or incomplete load test data. The evidence 𝜖 

can be written as (Straub D. , 2011) : 

𝜖 ≡ {ℎ(𝑥 < 0)}           ∨          𝜖 ≡ {ℎ(𝑥 > 0)} 

Equality information is commonly obtained when measuring certain quantities, displacements for 

example. Equality evidence can be written as: 

𝜖 ≡ {ℎ(𝑥 = 0)}  
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2.3 Research methodology 
 

An overview of theory regarding quay walls, probabilistic design and Bayesian updating is described 

in previous paragraphs. The use of this theory to answer the research and sub question is explained 

in this section. 

2.3.1 Bayesian update 

 

The objective of the thesis is to apply Bayesian updating to a quay wall calculation model. In section 

2.2.6 three methods have been explained for Bayesian updating. These are: solving Bayes formula 

analytically, Markov Chain Monte Carlo method and Bayesian updating with structural reliability 

methods (BUS). From these options, BUS seems to be the most suitable method for applying to this 

research topic. It provides more flexibility in the used evaluation method and it should therefore give 

more control on the convergence and calculation time compared to a Markov Chain Monte Carlo 

approach. These benefits make BUS the better choice. As BUS can potentially be combined with any 

structural reliability method, further study is required to determine the most suitable method. In 

chapter 3, a choice is made which reliability method will be used. 

2.3.2 Case to be evaluated 

 

In order to execute a Bayesian update, a suitable reference case is selected. For the focus to remain 

at the Bayesian update a relatively simple quay structure is chosen. For a quay, a simple case means 

an anchored sheet pile or anchored combi-wall. The selected reference case and the details of the 

structure and the soil is provided in chapter 4.  

 It should be noted that Bayesian updating can be applied to any type of retaining structure. 

This thesis shows that the finite element software PLAXIS can be used and thus also complicated 

structures can be evaluated.  

To perform Bayesian updating measurements are required. In this thesis the measurement 

data is fictitious, the values used are assumed. It is chosen to use a more theoretical approach by 

assuming different measurement cases. This allows showing more general trends and thus different 

possible outcomes if one is to perform test loading. So, for this study it is chosen to use a real 

structure, but with fictitious measurements.  

2.3.3 Calculation models 

 

To evaluate the effectiveness of Bayesian updating, it is used in combination with the model of Blum 

and in combination with finite element software. The choice for Blum has the advantage of a fast 

calculation time results and as this model is relatively simple it allows to gain insight in to the process 

of Bayesian updating. The main reason for choosing Blum is that the results of the update can more 

easily be validated and possible bottlenecks can be identified. The disadvantage of Blum is the fact 

that the model is not sufficiently accurate and is in practice only used as a first estimation. Therefore 

once sufficient experience is gained with Blum, finite element software will be used to validate the 

results obtained from Blum. The finite element software used is PLAXIS 2D 2017. 

  



3 Bayesian Updating with structural reliability methods 3.1 Selected structural reliability methods 

 

23 
 

3 Bayesian Updating with structural reliability methods 
 

As introduced in chapter 2, Bayesian updating with structural reliability methods (BUS) will be applied. 

The key benefit of this method is that Bayesian updating can now be applied with any structural 

reliability method. This gives flexibility and provides control over the calculation process.  

From the commonly available structural reliability methods, two are selected for applying BUS. 

These are: Monte Carlo Simulation and Subset Simulation. In this chapter the choice for these 

methods is explained, the principle of both methods is explained and the methods are applied on an 

example.  

 

3.1  Selected structural reliability methods 
 

Bayesian updating with structural reliability methods can be combined with all of the available 

structural reliability methods. As numerous methods are available, first a choice is made in which 

reliability methods will be used.  

Three criteria are defined for the application of BUS in this research. These criteria are: 

 The method should not require any knowledge of the posterior distribution.  

 

BUS will be applied to fictitious monitoring data of a quay wall. The data are assumed to be obtained 

from a test loading. On beforehand the outcome of this test is unknown, the selected method should 

obtain reliable results independent of the test result. 

 It should be possible to evaluate a large number of variables and correlation between 

variables.  

 

The variables included for quay design are structural parameters, geotechnical parameters and 

geometrical parameters. Ideally all of these parameters and uncertainties need to be included. As 

geotechnical parameters can be correlated, this effect must also be included. 

 It should be straightforward to obtain the posterior distributions of the variables.  

 

This final criterion severely limits the possible reliability methods. It does however, make the 

application easier. If for example the well-known optimized reliability methods such as Directional 

Sampling or FORM are applied, the posterior distributions are difficult to determine. The reason for 

this is that, these methods apply optimization algorithms to determine the failure probability and thus 

the stochastic posterior distributions are not easily determined. 

Based on the three listed criteria, Monte Carlo Simulation (MCS) and Subset Simulation (SuS) are 

selected for the application of BUS.  

 The application of MCS is relatively easy. All of the above criteria are met, no prior knowledge 

is required and also all variables and correlation can be included. Furthermore, one can directly obtain 

the samples which are in the posterior distribution and evaluating the stochastic distribution is thus 

relatively simple.  

If the measurement is deviating from the prior prediction, MCS will be inefficient. As the 

probability of obtaining a posterior sample is then low. 
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To solve this problem another method, Subset Simulation, is investigated. Subset Simulation is based 

on a Monte Carlo approach but is much more efficient in sampling low probabilities. Furthermore, 

obtaining the posterior distributions remains relatively simple. Applying Subset Simulation is however 

more complex and requires all variables to be transformed to standard normal independent variables.  

To show the difference between the two methods, both Monte Carlo Simulation and Subset 

Simulation are applied to an example of a cantilever beam model. First some additional information 

about applying both methods is provided.  

 

3.2 Monte Carlo Simulation 
 

Applying BUS using a Monte Carlo Simulation is, as already introduced, a relatively straightforward 

method. The principle is based on a simple-rejection filter (Straub & Papaioannou, 2014). The 

samples are filtered based on their likelihood of occurring.  

 The measurements, including the measurement error, are written into a likelihood function. 

This likelihood function is a probability density function: 

 𝐿(𝑥)=𝑓𝑦𝑖|𝑥(𝑦𝑖|𝑥) 

 𝑦 contains the measurements, which can be a vector containing measured points or a certain 

measured mean value in combination with a measurement error. 

The required steps to obtain samples from the posterior distribution are: 

1. Generate sample X from prior distribution 

2. Estimate a value for constant ‘c’.  

c is a constant to ensure that 𝑐𝐿(𝑥)<1, so the optimum choice is 𝑐 = [max (𝐿(𝑥))]−1 

The purpose of the constant is to increase the number of samples which are in the posterior 

distribution. The optimum choice requires knowledge about the likelihood function.  

3. Calculate probability 𝐿(𝑋) 

4. If 𝑐𝐿(𝑋)>𝜇0  X is a sample in posterior distribution 

If 𝑐𝐿(𝑋)<𝜇0   X is not a sample in posterior distribution 

𝜇0 is a random draw from the standard uniform distribution 

c is a constant to ensure that 𝑐𝐿(𝑥)<1, so the optimum choice is 𝑐 = [max (𝐿(𝑥))]−1 

5. Repeat until enough samples in posterior distribution are found 

 

The above steps are written in a python code (Technical University of Munich, 2018), this code is 

shown in Appendix A. 

In the above written steps, the constant 𝑐 needs to be selected. In the cases used in this thesis the 

constant can exactly be determined. It should however be noted that this constant has a direct 

influence on the result of the update. 

 If a value of 𝑐 is selected which causes 𝑐𝐿(𝑥) >1, some samples will falsely be accepted. This 

will lead to an error in the estimate of the posterior distribution. 

 Selecting a value of 𝑐 which causes 𝑐𝐿(𝑥) ≪1, will lead to a very inefficient calculation. If a too 

low value of 𝑐 is selected the acceptance rate will be low and thus a large number of calculations is 

required.  

To summarize, the most efficient choice is thus 𝑐 = [max (𝐿(𝑥))]−1. 
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3.3 Subset Simulation 
 

As shortly introduced, Subset Simulation is a more efficient method to calculate samples with a low 

probability of occurrence. The principle for the simulation is to split the problem of small probability, 

into a series of problems with a higher probability. This is done by intermediate failure events. The 

ratio between the intermediate failure events is a constant conditional probability, 𝑝0. So instead of 

solving the initial problem which is assumed to have a low probability, a series of problems is solved. 

This series of problems proves much easier to solve. In mathematical formulation, the intermediate 

events are expressed as follows: 

Failure is defined as 𝑍 < 0, the probability of failure 𝑃𝑓(𝑍 < 0) 

Subset Simulation calculates the probability of failure by M intermediate events: 

𝑃𝑓(𝑍 < 0) = 𝑃𝑓(∩𝑖=1
𝑀 𝑍𝑖) = ∏𝑖=1

𝑀 𝑃𝑓(𝑍𝑖|𝑍𝑖−1) 

 

These M intermediate events are defined as: 

𝑍 < 𝑏𝑖, 𝑏 ranges from 𝑏1 > 𝑏2 … > 𝑏𝑚 = 0 

 
The values of b, are chosen adaptive such that the estimation of the conditional probability is equal to 

a value 𝑝0. This value is required as input and (Au & Beck, 2001) suggests that a value between [0,1-

0,3] should be used.  

The samples in the intermediate events, 𝑏1 > 𝑏2 … > 𝑏𝑚−1, are generated by Markov Chain Monte 

Carlo Simulation (MCMCS). This method compares the likelihood of each sample with the previous 

sample and either accepts or rejects the sample. By this procedure the method reaches, after a 

number of samples, a stationary distribution which is equal to the posterior distribution.  

A common disadvantage of MCMCS is that it can require a large number of samples for the 

chain to converge. It is shown by (Papaioannou, Beck, Zwirglmaier, & Straub, 2014) that the Markov 

Chain used in Subset simulation does not suffer from this problem. The chain uses the samples from 

the previous event as a seed for the next event and as such the chain is already converged, so the 

samples are directly from the required distribution. 

The samples conditional on 𝑃𝑓(𝑍 < 0), the final event, are generated by a Monte Carlo Simulation. 

Samples generated by MCMCS are dependent. To have uncorrelated posterior samples MCS is used 

for the final event. 

Figure 15 further illustrates the explanation of Subset simulation. The figure shows a reliability 

calculation in standard normal space. The red parabola is the limit state function to be evaluated. The 

left figure indicates samples generated by MCS. It shows that only a few samples exceed the red limit 

state function. The right figure shows the procedure of Subset Simulation with one intermediate 

subset. The black parabola is used as an intermediate failure event. This intermediate failure plane is 

then used to evaluate the final failure event. This makes it more likely to have samples which exceed 

the red limit state function and thus to more efficiently calculate the failure probability. 
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Figure 15 Principle of Subset Simulation (ERA group, 2018) 

 

Applying Subset Simulation requires two choices: a choice in the conditional probability 𝑝0 and a 

choice in how many samples of the intermediate events are taken. The number of samples should be 

chosen large enough to ensure that the conditional probability is accurately estimated.  

To apply Subset Simulation in combination with BUS, one more step is required. From the obtained 

samples, it must be identified which of these samples are in the posterior distribution. This is done by 

applying the Likelihood filter (section 3.2) and generating a number of samples which are in this 

posterior distribution.  

The above explained subset simulation procedure is applied with a matlab code. The code is based 

on (Straub & Papaioannou, 2014). It applies Subset simulation, as introduced by (Au & Beck, 2001). 

This original procedure is extended for applying BUS, so instead of failure probabilities the posterior 

distributions are determined. The used code is elaborated in Appendix B. 

Furthermore, an ‘adaptive approach’ is used. This ‘adaptive approach’ eliminates the choice 

for the constant ‘c’, as shown by (Straub, Betz, & Papaioannou, 2014). Instead of estimating the 

coefficient before starting the simulation, the adaptive approach changes the coefficient during the 

simulation. Before generating the samples in each subset an estimate of the coefficient is made. After 

evaluating all samples in the subset, the coefficient is adapted and approaches the optimum choice.  

An important final remark regarding the application of BUS with Subset Simulation, is that the input 

variables are transformed to standard normal independent variables. The matlab script uses the Nataf 

transformation (Lebrun & Dutfoy, 2009). The Nataf transformation is based on a Gaussian Copula. 

This implies that the joint distribution of the variables will be normally distributed. So in principle, the 

marginal distributions must also be normally distributed. The Nataf transformation can take into 

account correlation between parameters, which is useful for modelling the soil parameters in the next 

chapters. 
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3.4 Example of Bayesian Updating 
 

To compare the two methods, BUS with Monte Carlo simulation and BUS with Subset simulation, a 

model of a cantilever beam is used. The mechanical scheme is represented in Figure 16. 

 

 
Figure 16 Cantilever beam with point load F 

 

The deflection of the beam, 𝑤, can be calculated with the basic equation: 

𝑤 =
𝐹𝐿3

3𝐸𝐼
 

Assume that the parameters are normally distributed according to Table 2. These parameters would 

represent a prismatic, rectangular, concrete beam with a width and height equal to 300 mm. 

 

Table 2 Distribution of parameters cantilever beam 

Parameter Symbol Mean μ Standard deviation σ 

Force F [N] 1,00 x 10
4 5,00 x 10

2

  
Length L [mm] 5,00 x 10

3 1,00 x 10
2 

Young’s modulus E [N/mm
2

] 3,00 x 10
4 1,50 x 10

3

  
Moment of Inertia I [mm

4

] 6,75 x 10
8  6,75 x 10

6 
 

Using the parameters this results in the following prior distribution of the deflection, w.  

 𝜇𝑤 =20,65 mm 

 𝜎𝑤 =1,93 mm 

 

For comparison a failure definition is introduced. If the beam deflects more than 25 mm it is 

considered to be failed. This results in the prior reliability index of (calculated using a Monte Carlo 

Simulation with 100.000 samples): 

 𝛽 = 2,10 

 

 

F 

L 
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Suppose that the displacement of the beam is measured. It is assumed that the measurements can 

be described by a normal distribution with a mean of 18 mm and standard deviation of 1 mm. The 

assumed standard deviation represents inaccuracies in the taken measurements by for example a 

deviation in the measurement equipment. The likelihood function, 𝐿(𝑥), can then be written as:  

𝐿(𝑥) =
1

√2π𝜎2
𝑒

−
(𝑥−𝜇)2

2∗𝜎2  

With: 

 𝜇 =18 mm 

 𝜎 =1 mm 

 𝑥 is the displacement as calculated using the basic equation for a cantilever beam 

For the Monte Carlo simulation, the ‘c’ coefficient must be defined. As the likelihood function is known, 

the value of this constant is: 

 𝑐 = max (𝐿(𝑥))−1 

 𝑐 = √2π𝜎2 = 2,51 

For both methods 100.000 samples are generated in the posterior distribution and for the Subset 

calculation a conditional probability 𝑝0 = 0,1 is chosen. The results of the calculations for both 

methods are shown in Table 3. 

 

Table 3 Calculation results deflection cantilever beam 

Parameter Posterior Monte Carlo simulation Posterior Subset simulation 

 Mean μ  Standard 
deviation σ 

Mean μ Standard 
deviation σ 

F [N] 9,70 x 10
3
 4,53 x 10

2
  9,70 x 10

3
 4,41 x 10

2
 

L [mm] 4,93 x 10
3
 9,63 x 10

1
 4,93 x 10

3
 8,35 x 10

1
  

E [N/mm
2
] 3,09 x 10

4 
1,37 x 10

3
  3,09 x 10

4 
1,34 x 10

3
 

I [mm
4
] 6,76 x 10

8  
7,06 x 10

6
 6,76 x 10

8  
6,71 x 10

6 
 

w  [mm] 1,86 x 10
1
  0,88  1,86 x 10

1
  0,86  
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In addition to Table 3 the relative changes obtained by both methods of Bayesian updating are shown 

in Figure 17 and Figure 18. In both graphs the change is expressed related to the prior values. So: 

𝐶ℎ𝑎𝑛𝑔𝑒 =
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝑃𝑟𝑖𝑜𝑟
 

From the above formula it can be derived that if the bar height in the graph is below one, the posterior 

mean or standard deviation is lower than the prior one. If the bar height is more than one, the 

posterior mean or standard deviation is higher than the prior one 

 

 

Figure 17 Relative change in mean 

 

 

Figure 18 Relative change in standard deviation 
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The posterior reliability index can now be calculated (using a Monte Carlo Simulation with 100.000 

samples): 

 Posterior reliability Monte Carlo simulation 

o 𝛽 = 3,44 

 

 Posterior reliability Subset simulation 

o 𝛽 = 3,69 

 

By looking at Figure 17, the following can be observed. In the posterior distribution: 

 the acting force, F, is reduced; 

 the length, L, is reduced; 

 the Young’s Modulus, E, increases; 

 the moment of inertia, I, remains more or less constant; 

 the deflection, w, decreases. 

The posterior distributions are obtained by Bayesian updating with a measurement which shows less 

deflection then initially predicted. So, the above listed observations make sense. Less deflection can 

be caused by a lower acting force, less beam length, an increased stiffness or a larger moment of 

inertia. The result of the Bayesian update is the most likely combination of the input parameters. The 

most likely combination is dependent on the prior distribution of the parameters and the provided 

measurements. 

If, for example the length of the beam is measured before loading the beam and thus the 

length can be included with a much lower standard deviation, the resulting most likely combination will 

change. If the length is included with lower standard deviation it will be unlikely that the length will 

show a change and thus the remaining parameters will show a larger change. 

The results from both methods are in general quite similar. Especially the obtained posterior means 

are almost the same value. The method of Subset simulation shows a slightly larger reduction in the 

estimated posterior standard deviations. This reduced standard deviation has the result that the 

predicted posterior reliability is higher with Subset simulation than with Monte Carlo simulation. 

The final results for the displacement of the beam are visualized in Figure 19. The figure shows the 

probability density functions of the prior- (blue), the posterior distributions (red and black) and the 

measurement (green). 

Bayesian updating according to the assumed measurement results in a much narrower 

distribution and a lower predicted deflection. The assumed measurement is a lower deflection and the 

measurement error is much lower than the deviation in the prior prediction. Thus, based on the 

assumed measurement the result is as expected. Furthermore, Figure 19 and Table 3 show that MCS 

and SuS give similar results. SuS results in a slightly narrower posterior distribution. 
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Figure 19 Probability density functions of prior and posterior distributions 

 

 

As both methods provide almost similar results, another important aspect to compare is the efficiency 

of the methods. For the example treated in this chapter the calculation time is negligible, obtaining the 

results takes less than one minute. However once applied on more complicated models, the 

calculation time will be an important aspect. The time required for the simulations is related to the 

number of likelihood function calls. For each method the number of calls is: 

 Number of likelihood function calls Monte Carlo Simulation  864.952 

 Number of likelihood function calls Subset Simulation  300.000 

In this example 100.000 samples were generated in the posterior distribution. The number of 

likelihood function calls in the SuS methods depends on the number of subsets, or intermediate 

failure events, required to solve the problem. In this example three subsets are required and thus 

300.000 function calls are made.  

 In MCS the number of function calls is related to the acceptance rate. The chance of obtaining 

posterior samples is called the acceptance rate. As MCS is drawing random samples from the original 

distributions, the chance of obtaining a posterior sample is also random. The acceptance rate will 

decrease if the difference between the measurement distribution and the prior distribution is large. 

 In general SuS is more efficient and thus more suitable for the application of BUS. 
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4 Introduction to the case 
 

This chapter provides information about the case which is used for the application of Bayesian 

updating. The chapter provides general information regarding the use of the quay wall, technical 

details regarding the structure, a representative soil profile and an overview of the starting points. 

 

4.1 General case information 
 

The used case is a quay wall located the port of Rotterdam. Specifically, the location of the quay is on 

the second Maasvlakte. The second Maasvlakte is a port expansion built on a land reclamation. The 

soil conditions at the second Maasvlakte are mostly sandy. The quay is realized in 2017. A satellite 

image of the second Maasvlakte is shown in Figure 20. 

 

 

Figure 20 Second Maasvlakte [Google Maps] 
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4.2 Technical details  
 

The quay has a retaining height of 14 m and the retaining element is a combined-wall. A combined-

wall is a combination of tubular piles and sheet pile elements. This combination of piles and sheets 

has a much higher bending stiffness and bending moment capacity then standard sheet piles. A 

combined wall is therefore more suitable to resist larger retaining heights.  

The combined wall is anchored with two grout anchors at each tubular pile. A cross-section of the 

structure is seen in Figure 38 in Appendix C. A summary of relevant characteristics is presented here, 

based on (Timmermans, 2015): 

 

 Soil and water levels 

o Ground level    NAP + 5,10 m 

o Harbor bottom level   NAP - 8,90 m 

o Groundwater level   NAP - 0,34 m 

o Harbor water level    NAP - 0,84 m 

 

 Applied anchors 

o Anchor     Jetmix φ 101.6 mm x 22,2 mm 

 Area    𝐴 = 5.510 𝑚𝑚2  

 Yield strength   𝑓𝑦;𝑑 = 500 𝑁/𝑚𝑚2  

o Anchor angle     42,5 ° and 47,5 ° 

o Anchor top level   NAP +1,5 m and NAP +0,5 m 

o Top grouted part   NAP - 24 m 

o Anchor center to center distance 2,941 m 

 

 Applied retaining structure 

o Sheet piles    3 PU28 

o Top level    NAP + 5,10 m 

o Toe level    NAP – 12,5 m 

 Steel quality S355  𝑓𝑦;𝑑 = 477 𝑁/𝑚𝑚2 

𝐸 = 2,10 ∗ 105 𝑁/𝑚𝑚2 

𝐼 = 0,36 ∗ 105 𝑚𝑚4/𝑚 

 

o Tubular piles    φ 1067-15 mm 

 Top level   NAP + 5,10 m 

 Toe level   NAP – 27,5 m 

 Steel quality  X70  𝑓𝑦;𝑑 = 355 𝑁/𝑚𝑚2 

    𝐸 = 2,10 ∗ 105 𝑁/𝑚𝑚2 

               𝐼 = 2,33 ∗ 105 𝑚𝑚4/𝑚 

 

o System size combiwall   2,941 m 

(Width of the three sheet piles and tubular pile) 
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A top view of the applied combi-wall including the dimensions is shown in Figure 21. 

 

Figure 21 Applied combi-wall (Timmermans, 2015) 

 

4.3 Soil profile  
 

The second Maasvlakte is a large land reclamation and consists mainly of sandy soils. This sandy 

subsoil can be seen in the soil investigations which are done for the design of the wall. The soil profile 

present at the quay consists largely of sand with some small clay layers in between. Based on the soil 

investigations which are done during the design phase, one representative soil structure is defined. 

During the design phase the cone penetration tests (CPT’s) and soil borings are performed.  

Table 2b from NEN9997-1 is used to determine the strength parameters. The values obtained 

from this table are characteristic values.  

The soil profile which is representative for the soil at the location of the quay is found in Table 

4. The CPT which is used to derive these values is found in Appendix C.  

Some CPT’s show small deviations from this representative profile. These deviations are 

identified as local disturbances and it is assumed that the effect of these deviations is small on the 

behaviour of the wall. The profile as defined in Table 4 and the coefficient of variations listed below 

are used in the calculations in the following chapters. 

 

Table 4 Soil profile based on DKM-124 (Timmermans, 2015) 

Top level 
layer 
[m NAP] 

Soil type γd 

[kN/m
3
] 

γsat 

[kN/m
3
] 

ϕ 
[⁰] 

c 
[kN/m

2
] 

𝑬𝒐𝒆𝒅 
[kN/m

2
] 

+5,1 Sand, clean, loose 17 19 30 0 15000 

-4,0 Clay, slightly sandy, weak 15 15 22,5 0 1500 

-5,5 Sand, clean, loose 17 19 30 0 15000 

-10,0 Sand, slightly silty clayey 18 19 27 0 35000 

-14,0 Sand, clean, loose 17 19 30 0 15000 

-21,0 Clay, slightly sandy, weak 15 15 22,5 0 1500 

-23,0 Sand, clean, solid 18 20 32,5 0 75000 

 

 

 



4 Introduction to the case 4.4 Starting points 

 

35 
 

Next to the representative soil parameters table 2b from NEN9997-1 provides coefficient of variation 

for each soil parameter. These are shown here: 

 Volumetric weight  𝛾𝑑/𝛾𝑠𝑎𝑡  coefficient of variation = 0,05 

 Friction angle   𝜑  coefficient of variation = 0,10 

 Cohesion   𝑐  coefficient of variation = 0,20 

 Stiffness   𝐸𝑜𝑒𝑑  coefficient of variation = 0,25 

 

A schematic of the quay’s cross-section indicating the different soil layers is shown in Figure 22. 

 

 

Figure 22 Schematic cross-section quay 

 

4.4 Starting points 
 

This section describes the general starting points for the calculations in the coming chapters. The 

specific model related starting points are described in the relevant chapters. The starting points are 

chosen to limit the scope of the calculations and to reduce the calculation efforts. The main starting 

points mentioned in this section are the selection of stochastic variables and the loading situation 

which is considered in the models. 

For the design of quay walls, a significant amount of information is required. This can be seen while 

looking at the information which has been presented in the previous sections, 4.2 and 4.3. These 

sections describe structural parameters, geotechnical parameters and geometrical parameters. 

Theoretically there is in each presented value a certain amount of uncertainty. Including all of these 

uncertainties for all parameters will result in a large computational effort. Therefore, a selection of 

which parameters are treated as stochastic variables is made. 

Sand, clean, loose      layer 1 

Sand, clean, loose      layer 3 

Sand, slightly silty, clayey layer 4 

Clay, slightly sandy, weak layer 6 

Sand, clean, solid     layer 7 

Sand, clean, loose      layer 5 

Clay, slightly sandy, weak layer 2 

NAP 



4 Introduction to the case 4.4 Starting points 

 

36 
 

4.4.1 Structural parameters 

 

One of the aims of applying Bayesian updating is to reduce the uncertainty in the variables by 

obtaining better estimates. This will be most interesting for the variables which are most uncertain. 

The structural parameters are in general less uncertain then soil parameters. For the case treated in 

this thesis, the structural parameters are well known. Using the design documents, it is determined 

which sheet, which tubular pile, the type of anchor and to which depth they are applied. Furthermore, 

due to the fact that the quay is only recently constructed, corrosion cannot have had a significant 

impact on the thicknesses of the structural parts. So, the update will be less interesting for these 

parameters as the prior estimates are already ‘good’ estimates. The structural parameters are treated 

deterministic with the characteristic values presented in section 4.2. 

4.4.2 Geotechnical parameters 

 

The reasoning in section 4.4.1 is not true for the geotechnical parameters. It will be interesting to see 

how the estimates for the geotechnical parameters change. Using the soil investigations and table 2b 

from NEN9997-1 one can obtain estimates for these parameters. For two reasons it is interesting to 

obtain better estimates for these parameters. First, guideline values are usually considered to be safe 

estimates. So, the real soil parameters might deviate from this and possibly be more favourable. The 

second reason is that performing a soil investigation is expensive and also has some remaining 

uncertainties caused by for example sample disturbance. Therefore, in the models the soil 

parameters are treated as stochastic variables.  

For the model of Blum, the following parameters need to be included: volumetric weight, 

friction angle and cohesion. Table 4 shows that the soils have no cohesion and as such this 

parameter is treated deterministically with a value equal to zero. This leaves the volumetric weight 

and friction angle as stochastic variables. It is assumed that the parameters are distributed normally. 

In PLAXIS the soil stiffness needs to be provided. This parameter is assumed to be 

lognormally distributed. The choices for these distributions are consistent with previous studies for 

example: (Schweckendiek, 2006), (Wolters, 2012), (Rippi, 2015) and (Janssen, 2016).  

The variables presented in Table 4 are characteristic values. A characteristic value is defined 

as the value which has a probability of exceedance, in case of load parameters, of 5 %. For 

resistance parameters the probability of obtaining a lower value is 5 %. Using these values is 

common practice in deterministic and level 1 probabilistic calculations. In level 2 and level 3 

probabilistic calculations, mean values should be used. If characteristic values are used, this leads to 

an underestimation of the failure probability. Therefore, mean values are used in the probabilistic 

calculations.  

Based on the 95% confidence interval for normally distributed variables the characteristic 

values can be transformed to mean values by the following expression: 

𝜇𝑥 =
𝑋𝑘

1 − 1,64 ∗ 𝐶𝑜𝑉
 

In which: 

 𝑋𝑘 Characteristic value as determined in Table 4. 

 𝐶𝑜𝑉 Coefficient of Variation 

 𝜇𝑥 Resulting mean value of the variable 

As the soil stiffness is lognormally distributed the above relation is not applicable to the soil stiffness 

parameters. The relation used to translate the characteristic stiffness to the mean value is based on 

the formula given in CUR166 (CUR, 2012): 
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𝜇𝐸𝑠𝑜𝑖𝑙 =
2

1,3
∗ 𝐸𝑘;𝑙𝑜𝑤;𝑠𝑜𝑖𝑙 

The stochastic definition of the geotechnical parameters is presented in Table 5. In this table the 

following is presented: the characteristic value, mean and standard deviation. The mean value and 

the standard deviation are used in chapter 5 and chapter 6. 

 
Table 5 Stochastic soil variables  

 

Variable Characteristic value Mean μ  Standard deviation σ 

Sand, clean, loose    

ϕ layer 1 30 ⁰ 35,89 ⁰ 3 ⁰ 

γ sat layer 1 19 kN/m
3 

20,69 kN/m
3 

0,95 kN/m
3
 

γd layer 1 17 kN/m
3
 18,52 kN/m

3
 0,85 kN/m

3
 

Eoed layer 1
1
 15000 kN/m

2 
23076 kN/m

2
 3750 kN/m

2
 

Clay, slightly sandy, weak    

ϕ layer 2 22,5 ⁰ 26,91 ⁰ 2,25 ⁰ 

γ sat layer 2 15 kN/m
3
 16,34 kN/m

3
 0,75 kN/m

3
 

γd layer 2 15 kN/m
3
 16,34 kN/m

3
 0,75 kN/m

3
 

Eoed layer 2 1500 kN/m
2 

2307 kN/m
2
 375 kN/m

2
 

Sand, clean, loose    

ϕ layer 3 30 ⁰ 35,89 ⁰ 3 ⁰ 

γ sat layer 3 19 kN/m
3
 20,69 kN/m

3 
0,95 kN/m

3
 

γd layer 3 17 kN/m
3
 18,52 kN/m

3
 0,85 kN/m

3
 

Eoed layer 3 15000 kN/m
2 

23076 kN/m
2
 3750 kN/m

2
 

Sand, slightly silty clayey    

ϕ layer 4 27 ⁰ 32,30 ⁰ 2,7 ⁰ 

γ sat layer 4 19 kN/m
3
 20,69 kN/m

3
 0,95 kN/m

3
 

γd layer 4 18 kN/m
3
 19,61 kN/m

3
 0,9 kN/m

3
 

Eoed layer 4 35000 kN/m
2 

53846 kN/m
2
 8750 kN/m

2
 

Sand, clean, loose    

ϕ layer 5 30 ⁰ 35,89 ⁰ 3 ⁰ 

γ sat layer 5 19 kN/m
3
 20,69 kN/m

3 
0,95 kN/m

3
 

γd layer 5 17 kN/m
3
 18,52 kN/m

3
 0,85 kN/m

3
 

Eoed layer 5 15000 kN/m
2 

23076 kN/m
2
 3750 kN/m

2
 

Clay, slightly sandy, weak    

ϕ layer 6 22,5 ⁰ 26,91 ⁰ 2,25 ⁰ 

γ sat layer 6 15 kN/m
3
 16,34 kN/m

3
 0,75 kN/m

3
 

γd layer 6 15 kN/m
3
 16,34 kN/m

3
 0,75 kN/m

3
 

Eoed layer 6 1500 kN/m
2 

2307 kN/m
2
 375 kN/m

2
 

Sand, clean, solid    

ϕ layer 7 32,5 ⁰ 38,88 ⁰ 3,25 ⁰ 

γ sat layer 7 20 kN/m
3
 21,79 kN/m

3
 1 kN/m

3
 

γd layer 7 18 kN/m
3
 19,61 kN/m

3
 0,9 kN/m

3
 

Eoed layer 7 75000 kN/m
2 

115384 kN/m
2
 18750 kN/m

2
 

                                                   
1 In PLAXIS the following stiffness relations are used. 𝐸50 = 𝐸𝑜𝑒𝑑 and 3 ∗ 𝐸50 = 𝐸𝑢𝑟 
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A remark regarding the standard deviations in Table 5, these are derived from the coefficients of 

variations as defined by NEN9997. It is assumed that these coefficients of variation are spatially 

averaged values. This assumption is further explained below. 

Soil properties are not uniform in space. They can be different in every direction. A commonly 

applied method to include this spatial variability, is averaging the variations along a soil layer. This 

method is called Spatial Averaging and is described in (Joint Committe on Structural Safety JCSS, 

2001).  

The concept of this method is that the obtained point variance, found by for example site 

investigations, is averaged over a soil layer. The idea behind this method is that a single weak spot 

doesn’t lead to failure along the slip plane. The weak spots can be averaged along a soil layer. Thus, 

using the theory of Spatial Averaging one can obtain a reduction in the coefficients of variation. In this 

thesis it is assumed that the coefficients of variation as defined by NEN9997 are spatially averaged 

values. 

To finalize this section regarding the geotechnical parameters, correlation between the soil 

parameters needs to be addressed. The correlation coefficients are based upon previous studies. 

Both (Wolters, 2012) and (Bach, 2014) have determined correlation coefficients based on the 

database of (Gemeentewerken Rotterdam, 2003). This database consists of a large number of triaxial 

tests done in the area of Rotterdam. The parameters in each layer are assumed to be correlated 

according to the correlation matrix, Table 6. The different layers are assumed to be uncorrelated. 

 

Table 6 Correlation Matrix 

 ϕ γ sat γd Eoed
2
 

ϕ 1 0,5 0,5 0,25 

γ sat  0,5 1 1 0,5 

γd  0,5 1 1 0,5 

Eoed  0,25 0,5 0,5 1 

 

  

                                                   
2 The 𝐸50, 𝐸𝑜𝑒𝑑 and  𝐸𝑢𝑟 are assumed to be fully correlated, a correlation coefficient equal to one. 
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4.4.3 Geometrical parameters 

 

The next set of parameters to discuss is the geometrical parameters. These describe the ground and 

water levels both behind and in front of the quay. They are assumed to be deterministic, as both the 

water levels and the ground levels can be relatively easily and accurately determined. To further 

support the decision for fixed water levels, a drainage system is present in the quay. Therefore if this 

system is well maintained, no significant water level difference can occur over the quay. The levels 

are determined based on Appendix C and are shown here: 

 Ground level   NAP + 5,10 m 

 Design depth   NAP - 8,95 m 

 Groundwater level  NAP - 0,34 m 

 Harbor water level   NAP - 0,84 m 

The groundwater level and the harbour water level are fluctuating over time. In the calculations they 

are assumed to be fixed. They are chosen consistent with the design documents (Timmermans, 

2015). The choice of the levels influences the obtained results and to obtain the most accurate result, 

one should use the levels consistent with the levels present when the measurements are taken. If one 

is to perform test loading, these water levels should be determined in order to obtain the most realistic 

model results. As in this thesis fictitious measurement cases are introduced, the water levels are 

assumed to be in line with the design values. 

In the design of the quay a design depth (DD) is determined. This design depth is a conservative 

choice for the height of the passive zone. It is based on the following depths and clearances 

(Timmermans, 2015): 

𝐷𝐷 = 𝑁𝐺𝐷 − ℎ𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 − 𝑑𝑏𝑜𝑡𝑡𝑜𝑚𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 − 2 ∗ √𝛿𝑑𝑟𝑒𝑑𝑔𝑖𝑛𝑔
2 + 𝛿𝑏𝑜𝑡𝑡𝑜𝑚𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛

2 − ℎ𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 

In which: 

 𝑁𝐺𝐷    Nautical Guaranteed Depth (for shipping purposes) NAP -6,10 m  

 ℎ𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒    Maintenance clearance defined by port of Rotterdam 1,00 m  

 𝑑𝑏𝑜𝑡𝑡𝑜𝑚𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛  Thickness bottom protection    0,55 m 

 𝛿𝑏𝑜𝑡𝑡𝑜𝑚𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛  Tolerance on execution of bottom protection  0,25 m 

 𝛿𝑑𝑟𝑒𝑑𝑔𝑖𝑛𝑔   Dredging tolerance     0,30 m 

 ℎ𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒   Thickness of the by dredging disturbed layer  0,50 m 

 𝐷𝐷   Design Depth      NAP - 8,95 m  

 

The above determine design depth is a safe choice, including execution tolerances. As in the 

probabilistic calculations mean values are used. Also, for the depth a mean value is used. In the 

calculation an average depth equal to NAP - 8,15 m is used. This is equal to the above calculation, 

but without the tolerances on the dredging and placing of the bottom protection. The average depth, 

as used in the following chapters, is thus calculated as: 

 
𝐴𝐷 = 𝑁𝐺𝐷 − ℎ𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 − 𝑑𝑏𝑜𝑡𝑡𝑜𝑚𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 − ℎ𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 = −6,10 − 1 − 0,55 − 0,5 = 𝑁𝐴𝑃 − 8,15 𝑚 
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On the passive side, the harbour bottom, a bottom protection is placed. The function of this protection 

is to prevent a scour hole in front of the quay. The weight of this protection can be added to the stress 

on the passive side of the quay. The bottom protection applied is loose rock with a grading of 40-200 

kg penetrated with 160 l/m
2
 underwater concrete. The thickness of this layer is 0,55 m. This weight is 

calculated as: (Timmermans, 2015) 

 

 𝜌𝑠 = 2650 𝑘𝑔/𝑚3  Weight of the stones in bottom protection 

 𝑑 = 0,55 𝑚  Thickness of bottom protection 

 𝑣 = 0,55  Void ratio of bottom protection 

 𝜌𝑐 = 1900 𝑘𝑔/𝑚3 Weight of concrete used to penetrate the protection 

 

 𝑊 =
2650∗0,55∗(1−0,55)+0,160∗1900)

1000
= 9,60 𝑘𝑁/𝑚2 

 

 

The thickness of the bottom protection has a certain spread. Dredging and placing the protection is 

subject to tolerances. Therefore, the load is varying over the harbour bottom. The influence is 

assumed to be little and, in the calculations, it is a deterministic value. 

 

4.4.4 Acting loads on quay 

 

Continuing with the same reasoning as applied for the water levels, a surcharge is assumed to be 

present on the quay. For the following chapters, it is assumed that measurements are obtained from 

an actual test load on the quay. In the test, the quay has been loaded up to 100 kN/m
2
. This 100 

kN/m
2
 is consistent with the design requirements (Timmermans, 2015) of the quay. The additional 

load cases investigated during the design are neglected. As it is assumed that the measurements are 

obtained from a test load, these additional load cases will not be present. It is furthermore assumed 

that the magnitude of the load is controlled, i.e. with limited variation. The surcharge is thus chosen as 

deterministic parameter. 

 

4.4.5 Monitoring data 

 

The starting points and information listed up to now make it possible to predict the prior failure 

probability of the quay. The next step is to update the probabilistic model. This update requires 

evidence. Evidence can be all sorts of measured data for example: structure or soil deformations, 

strains or rotations. Another possibility is knowledge about the survived load on the quay. If it is 

known that a certain extreme load is placed on the quay, then also this information can be used to 

update the probabilistic model. In this thesis the evidence are fictitious measurements.  

Two types of measurements are used. It is assumed that the displacement of the quay is 

measured and that the anchor tube is equipped with strain gauges. To show the possible outcomes of 

Bayesian updating, three different cases are defined per type of measurement. This results in a total 

of six cases and thus six Bayesian updates. The cases are: 

 High  less displacement or strain is measured then is predicted.  

 Average  equal displacement or strain is measured then is predicted. 

 Low  more displacement or strain is measured then is predicted. 

For the measured displacements additional assumptions are required. It is assumed that the full 

displaced profile of the quay is measured. The input for the update is then the point of maximum 
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horizontal displacement. This is illustrated in Figure 23. The figure shows the displaced profile as 

predicted by PLAXIS. The black dot indicates the point of maximum horizontal displacement. This 

point is used in the Bayesian update. 

 

 

Figure 23 PLAXIS predicted displacement of quay 

  

Measured point of 

maximum displacement 
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5 Bayesian update with Blum Model 
 

In this chapter the Bayesian update is applied to a Blum model of the case. The principle of the model 

as defined by Blum is treated in section 2.1. This chapter is structured in the following order: first the 

model specific starting points are listed, second the prior results are provided and the final step is to 

determine the posterior distributions using fictitious measurement cases. Two types of measurements 

are used: displacements measurements and anchor strain measurements. The calculation is 

performed with a Python script which is based on the code found in (Verruijt, 2012). The input data 

required for the calculation is described in chapter 4. 

 

5.1 Starting points Blum 
 

In addition to the starting points listed in section 4.4 the model specific starting points for applying the 

model of Blum are listed here. 

The quay is a combi-wall anchored by two anchors, as shown in the cross-section in Figure 38. A 

calculation with two anchors is not possible with the model of Blum. Therefore, the two anchors 

located at NAP +1,5 m and NAP +0,5 m, are schematized to a single anchor at NAP +1,0 m. This 

single anchor has the capacity equal to both anchors.  

The concrete capping beam and slab, which is located from NAP +5,1 m to NAP -2 m, is not 

taken into account. In the model the top level of the retaining structure is located at NAP +5,1 m and 

the tip of the retaining structure is at NAP -27,5 m. 

The applied retaining structure is a combi-wall. The wall consists of both tubular piles and sheet piles. 

The tubular piles reach to a depth of NAP -27,5 m, while the sheet piles are placed to a depth of NAP 

-12,5 m. So, the stiffness of the wall is not constant over the height of the wall. In the Blum 

calculations this is not included. It is assumed that both the tubular piles and sheet piles are placed to 

a depth of NAP -27,5 m. 

 The script found in (Verruijt, 2012) calculates the embedded depth of a sheet pile. The 

calculations done in this thesis are probabilistic and in principle each combination of samples has a 

different embedded depth. As the script iteratively determines the embedded depth, the calculation 

time will quickly increase for a large number of samples. In the calculation a fixed embedded depth is 

chosen. The influence of this assumption is estimated to be limited and will not significantly impact the 

results found in this chapter. 

 

5.2 Prior prediction 
 

To show the effect Bayesian updating has on the failure probability and to compare the changed 

variables with their influence coefficients, two Limit States are defined. One limit state considers the 

quay to be failed if a maximum displacement is exceeded and the other limit state is related to a 

maximum anchor force.  

The first limit state is defined by the design requirement, which states that the displacement of 

the quay may not be larger than 1,0 % of the retaining height. For this case, that is a maximum 

displacement of 140 mm. 

The second limit state is the structural failure of the anchor. It is assumed that the steel tube 

of the anchor is the critical part, in practice this is almost never the case. Failure of the anchor tube is 

a brittle failure mechanism. Brittle failure of structures needs to be avoided and therefore usually the 
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geotechnical failure of the anchor is governing. In case of grout anchors, it is usually ensured that the 

anchor tube is stronger than the grip force of the grout body. As the interest is limited to showing the 

difference between prior and posterior, this assumption is justified.  

It is assumed that the anchor fails when the tube starts to yield, plastic behaviour is neglected. The 

maximum anchor force can then be calculated by: 

 𝐹𝑎𝑚𝑎𝑥                                      𝐴 ∗ 𝑓𝑦;𝑑 

 Area   𝐴 = 5.510 𝑚𝑚2  

 Yield strength  𝑓𝑦;𝑑 = 500 𝑁/𝑚𝑚2  

 𝐹𝑎𝑚𝑎𝑥                                     𝐴 ∗ 𝑓𝑦;𝑑 = 5510 ∗ 500 = 2755 𝑘𝑁 

The above calculated value is over the system size (the tubular pile and the three sheet piles) 

the anchor force per running meter is given by: 

 𝐹𝑎𝑚𝑎𝑥 =
2755

2.941
= 918,33 𝑘𝑁/𝑚 

The above calculated anchor force is determined for one anchor. If the maximum anchor force for two 

anchors is used, this results in very high reliability indices. In the design of the quay effects such as 

settling soil and corrosion of steel tube have been included, these effects are in the definition of this 

limit state neglected. This simplification leads to a much lower failure probability. The limit state for 

anchor failure is thus defined as the maximum force for one anchor. 

To summarize, the two limit states to be evaluated are: 

 Limit state 1 Displacements  𝑑 < 140 𝑚𝑚 

 Limit state 2 Anchor force  𝐹𝑎𝑚𝑎𝑥 < 918,33 𝑘𝑁/𝑚 

These definitions of failure and the distributions of variables as defined in Table 3 and section 4.3 

results in the following prior results. The reliability is calculated with a FORM calculation and is shown 

below: 

Limit state 1 Displacements 

 𝛽 = 2,22 

Limit state 2 Anchor Force 

 𝛽 = 5,72 

In addition to the reliability the prior distributions of the maximum moment, displacement and anchor 

force are shown in Table 7: 

 

Table 7 Prior Blum moment-, displacement-, and anchor force distribution 

Prior results Mean μ  Standard deviation σ 

Maximum moment 883,6 kNm 294,0 kNm 

Displacement 47,56 mm 35,04 mm 

Anchor force 464,31 kN/m 69,15 kN/m 

Anchor strain 0,59 mm/m 0,09 mm/m 
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Figure 24 and Figure 25 show the influence coefficients for both limit states. The influence coefficients 

represent the influence of a stochastic variable on the reliability. In the figures the five most important 

variables are shown.  

 

 

 

Figure 24 Blum Influence coefficients anchor failure 

 

 

 

Figure 25 Blum Influence coefficients displacements 
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5.3 Posterior prediction  
 

The posterior prediction is obtained after using the measurements to update the prior prediction. As is 

described in section 4.4.5, fictitious measurements are used. The choice for fictitious measurements 

allows showing the results for different scenario’s. In the calculations with Blum the six cases 

presented in Table 8 are used. 

 

Table 8 Measurement cases Blum 

Case Measurement μ Measurement error σ 

Anchor strain    

High 0,90 mm/m 0,01 mm/m 

Average 0,60 mm/m 0,01 mm/m 

Low 0,30 mm/m 0,01 mm/m 

Displacement   

High 80,0 mm 5,00 mm 

Average 45,0 mm 5,00 mm 

Low 10,0 mm 5,00 mm 

 

The model of Blum calculates an anchor force. The calculated anchor force by Blum is a horizontal 

force. In reality the anchor is inclined and thus to obtain the axial force the anchor needs to be 

adjusted. This correction for an inclined angle is not included in the results presented in this chapter.  

In the Bayesian update strain measurements are used. The anchor force is related through 

the strain in the anchor by: 

𝜀 =
𝐹𝑎

𝐸𝐴
 

In which: 

 𝐹𝑎 is the anchor force per running meter quay wall 

 𝐸 is the young’s modulus of the anchor. A steel tube is applied so: 

o 𝐸 = 2,10 ∗ 108𝑘𝑁/𝑚2/𝑚 

 𝐴 is the area of the anchor per running meter quay wall. Two anchors of type Jetmix φ 101.6 

mm x 22,2 mm are applied.  

o The area per anchor is 𝐴 = 5,50 ∗ 10−3 𝑚2  

o Distance between anchor is 2,941 m 

o Two anchors per 2,941 m 

o 𝐴 =
5,50∗10−3∗2

2,941
= 3,75 ∗ 10−3 𝑚2/𝑚 

In the above calculation of strains in the anchor tube, it is assumed that the anchor forces are equally 

divided over both anchor tubes. This is not entirely correct as is also shown in the PLAXIS calculation 

in Appendix F. 

The Bayesian update is applied using the Matlab script described in Appendix B. The following input 

is required: 

 Number of samples in each Subset 

It is chosen to generate 1000 samples in each Subset. 
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 Conditional acceptance probability, 𝑝0 

(Au & Beck, 2001) suggest a value of 0,1 ≤ 𝑝0 ≤ 0,3, 𝑝0 = 0,1 is chosen 

 Likelihood function 

It is assumed that the measurements can be described by a normal distribution with mean and 

standard deviation as specified in Table 8. The likelihood function can thus be described by the 

probability density function of a normal distribution. This results in the following likelihood function: 

𝐿(𝑥) =
1

√2π𝜎2
𝑒

−
(𝑥−𝜇)2

2∗𝜎2  

𝑥 is the calculated displacement or strain using the model of Blum. 

 Prior distributions 

The prior distributions of the variables are specified in Table 3 and section 4.3.  

In Table 9 and Table 10 the updated reliability is provided. The reliability is calculated using FORM. 

Furthermore in Figure 26, Figure 27 and Figure 28 the effect of the six measurements are shown for 

the maximum moment, displacement and anchor force. In addition to anchor forces and 

displacements, which are directly related to the limit states, also the maximum moment in the combi-

wall is shown. Moments inside the wall are of interest for design calculations and usually determine 

the properties of the wall. It is interesting to see how the maximum predicted moments in the wall are 

influenced by the measurements. 

 

Table 9 Reliability results Blum of update limit state displacements 

Case β [-] 

Prior 2,22 

Displacement high 1,59 

Displacement average 2,77 

Displacement low 3,46 

 

 

Table 10 Reliability results Blum of update limit state anchor failure 

Case β [-] 

Prior 5,72 

Anchor strain high 3,53 

Anchor strain average 6,69 

Anchor strain low 8,72 
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Figure 26 Results Blum update maximum moment 

 

 

Figure 27 Results Blum update displacement 
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Figure 28 Results Blum update anchor force 

 

5.4 Review of results 
 

Using Bayesian updating one determines the statistic most likely combination of parameters. It is 

important to determine if this most likely combination is also likely by the physical explanation. This 

section will therefore be dedicated to reviewing the obtained results.  

 

By looking at the provided figures and tables, Figure 26, Figure 27, Figure 28, Table 9 and Table 10, 

the following observations can be made: 

 

 The case high strain leads to an increase in anchor force and moments, while the 

displacements are reduced. The case low strain provides the exact opposite. 

 The case high displacements leads to a decrease in anchor force and moments, while the 

displacements increase. The case displacements low shows the opposite effect. 

 The average cases show for all provided distributions a posterior mean equal to the prior 

mean. 

 In all update cases the standard deviation is significantly reduced. 

 The update cases high show a reduced reliability for both limit states. 

 The average update and the low update show an increase of reliability for both limit states. 
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Looking at Figure 28, which shows the effect of the measurements on the anchor force, the most 

straightforward observation is the change in posterior anchor forces. As the stiffness and area of the 

anchor are chosen deterministic, one directly updates the anchor force. So it makes sense that, a 

lower measured strain leads to a low anchor force. The opposite is also true, a higher measured 

strain leads to a higher anchor force.  

The displacements are also affected by the anchor strain measurements. Measuring a low 

strain and thus a low anchor forces leads to an increase in displacements. This can be explained by 

the reasoning that if the anchor is taking less force, the structure behaves less stiff relative to the soil. 

A less stiff structure results in more displacements and also a lower moment in the wall, visible in 

Figure 26. This effect is also visible with the cases related to a measured displacement. If a low 

displacement is measured the result is an increase in moment and anchor force and a high 

displacement gives a reduced moment and anchor force. 

By the same reasoning, the results of a high strain can also be explained. The high strain 

case leads to a higher anchor force. This higher anchor causes the structure to be relatively stiffer 

with respect to the soil and thus less displacements and a larger moment in the combi-wall.  

In the starting points in section 4.4.1, it is assumed that the structural parameters are deterministic 

values. This choice is based on the reasoning that the structural parameters have less uncertainty 

then the soil parameters and thus the update would be less interesting for the structural parameters. 

The influence of this assumptions is assessed here.  

If stiffness and the steel area are stochastic values the above described effect, the effect that 

a change in strain directly results in a change in anchor force, will be less visible. A lower strain can 

also be explained by a larger area and a stiffer anchor. So, if stiffness and area are treated stochastic 

the effect will be a smaller change in anchor forces. To what extent the results are affected by the 

stochastic definition of area and stiffness is dependent on the chosen distributions.  

A larger uncertainty or standard deviation will cause a stronger reduction, as these 

parameters will then become more dominant. In the same way, if the standard deviation is relatively 

small the results will be close to the presented results. 

In addition to the posterior distributions of moments, displacements and anchor forces in section 5.2 

graphs of the posterior variables and the influence coefficients are shown. Looking at the influence 

coefficients for both limit states, Figure 24 and Figure 25, the main difference between the graphs is 

that the most influential parameters for anchor failure are found in the active zone of the soil body, 

while for displacements the influential parameters are located in the passive zone.  

The anchor force is largely dependent on the load on the quay. The loads on the quay are 

dependent on the active part of the soil body. So, it makes sense that for anchor failure the most 

influential parameters are found in the active part.  

The displacements are dependent on how fixed the wall is in the soil. This fixedness is 

determined by the strength of the passive soil part. Therefore, the influential parameters for the limit 

state displacements are found in the passive zone. 

The figures in Appendix E show the change variables due to the updates. In general, the change in 

variables is mainly in the friction angles. For the case anchor strain high, Figure 39, one sees that the 

posterior means of φ in the active zone are reduced. This causes more load on the wall and thus 

explains the result of a larger anchor force.  

The same holds for the displacements measurement cases. For the case displacements high, 

the φ decreases, resulting in a larger load in the active part and a smaller resistance in the passive 

part. This explains the larger displacement of the combi-wall.  
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5.5 Conclusions  
 

Based on the results obtained from updating the Blum model some remarks can be made. In this 

thesis fictitious measurements are used. The obtained posterior means are directly related to these 

assumed measurements and thus these posterior means might nog be realistic. The conclusions are 

therefore not focused on the exact values, but on the general trend which is visible in the posterior 

results. 

In general, it can be seen that for each quantity of interest (moment, displacement and anchor force) 

the standard deviation significantly decreases after including the measurements. The posterior 

standard deviation decreases to a value which in the same order of magnitude of the assumed 

measurement error. The samples are filtered based on the assumed measurement distribution. So, it 

is logical that the posterior standard deviation follows this distribution.  

This reduced posterior standard deviation allows for a more accurate and less conservative 

determination of the failure probabilities of the system. The effect of the reduced deviation can be 

seen in the results of the ‘average’ update. The measurements support the prior prediction, the 

posterior and prior or mean are almost equal while only the standard deviations decrease. The result 

is that the posterior failure probability is significantly lower than the prior one. 

In section 5.2 graphs of the posterior variables and the influence coefficients are shown. The posterior 

means change with 5-10% relative to the prior mean. A larger change is found in the standard 

deviations.  

If one compares the graphs of the changed variables with the influence coefficients for the two 

different limit states, the most influential parameters also have the largest change in the posterior 

distribution. This effect can aid in reducing the computational time of more complex models. In the 

updating process one could eliminate the variables with a low influence coefficient based on a prior 

calculation of the failure probability. 
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6 Bayesian update with finite element model 
 

In the previous chapter the Bayesian update is applied using the model of Blum. As it is known that 

Blums model is relatively simple, a comparable calculation is performed with finite element software. 

The finite element model is used to confirm the results found with Blum and to show that these 

calculations can already be performed with more accurate and more commonly applied models.  

The finite element software used in this thesis is PLAXIS 2017 2D. The followed procedure is 

similar to the update with the model of Blum. First, a prior prediction is made. Thereafter 

measurement cases are defined and the posterior distributions are determined. Finally, a review of 

the results is given.  

6.1 PLAXIS model and starting points 
 

In chapter 4 all technical details, starting points and assumptions required are listed. Based on this a 

PLAXIS model has been setup. The specific model choices and details of this model are elaborated in 

Appendix F. The general process of setting up the model is treated here.  

In the first step a base model is defined. This base model is assumed to be the best, currently 

possible, representation of the real quay behaviour. The base model is then compared to the results 

of Blum found in chapter 5 and D-Sheet piling calculation, which has been used for the design of the 

quay.  

Some minor differences between the results are found. These differences can for the largest 

part be attributed to the facts that D-Sheet piling neglects arching and the different soil behaviour 

models (D-Sheet piling uses elastoplastic springs and PLAXIS the hardening soil model). Another 

minor contribution is due to a different water level schematization.  

So, the base model and the D-Sheet piling model provide comparable results. From this it is assumed 

that the PLAXIS model has been setup correctly. The next step is then to optimize the PLAXIS model 

in calculation time. The base model takes about 300 seconds to run, which is to long for the 

probabilistic calculations. Therefore, stepwise optimizations have been tested and evaluated. 

Resulting in a model which is still reasonably accurate with an as short as possible calculation time.  

The optimization has led to the use of 6-Noded elements instead of the commonly applied 15-

Noded elements. The difference between the 6-Noded – and 15-Noded elements is explained in 

(Plaxis bv, 2017). The key issue with 6-Noded elements is the fact that in failure analysis the 6-Noded 

elements provide a too favourable result. For two reasons this simplification is justifiable. 

First, as the focus of the research is on the effect of the measurements, the calculated failure 

probabilities are used for illustrative purposes. The resulting inaccuracy in the calculated failure 

probabilities due to the use of 6-Noded elements is thus negligible. 

Second, the use of ‘average’ values instead of the characteristic values results in a model 

which is not close to the failure boundary. In the prior predictions and the calculations to determine 

the posterior predictions the model provides accurate results. 

In the PLAXIS calculation a fixed relation between the dry – and wet volumetric weight is assumed. 

This has been done to avoid obtaining draws which have a larger dry weight than wet weight. The 

distributions assumed in Table 5 show that it is likely that such a draw is obtained. The calculations 

done with Blum and the research of (Wolters, 2012) indicate that the influence of the dry weight on 

the failure probability is limited. Therefore, the following fixed relation, based on (Rippi, 2015), is used: 

𝑦𝑑 = 𝑦𝑠𝑎𝑡 − 𝑈(0,2) 

In which: U (0, 2) represents a uniform distribution within the range of 0 to 2. 
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The final assumption is that the concrete capping beam and slab which is located from NAP +5,1 m to 

NAP -2 m is not taken into account. In the model the top level of the retaining structure is located at 

NAP +5,1 m and the tip of the retaining structure is at NAP -27,5 m. 

 

6.2 Prior predictions  
 

Similar to the case with Blum, two limit states are defined for calculating the reliability. The limit states 

are used to show the effect Bayesian updating has on the reliability and to compare the changed 

variables with their influence coefficients. The first limit state considers the quay to be failed if a 

maximum displacement is exceeded and the other limit state is related to a maximum anchor force.  

The procedure used for calculating the reliability in PLAXIS is the following. The Deltares Probabilistic 

Toolkit is used. This toolkit is connected through PLAXIS by a Python script. The Toolkit takes care of 

the probabilistic part, i.e. it tells PLAXIS which samples need to be calculated. PLAXIS then provides 

the resulting displacement or anchor force. 

At first FORM is used to determine the reliability. This has proven to be ineffective as the 

toolkit was unable to find convergence, more details about the convergence is given in section 9.1. 

Instead of FORM, Importance Sampling is used to determine the reliability. The method of Importance 

Sampling is explained in section 2.2.4. 

To increase the efficiency of Importance Sampling the probability of obtaining a failure must 

be increased. For the method of Importance Sampling, it is required to have a sufficient number of 

failures to accurately determine the failure probability. To increase the probability of obtaining a 

failure, two solutions are used.  

First, on experience gained from the Blum calculations and model runs in PLAXIS, the mean 

of the samples has been shifted towards failure boundary.  

Second solution is to change the limit states to have an increased number of failures, a lower 

maximum displacement and lower maximum anchor forces. The new limit states are: 

 Limit state 1 Displacements  𝑑 < 90 𝑚𝑚 

 Limit state 2 Anchor force  𝐹𝑎𝑚𝑎𝑥 < 600 𝑘𝑁/𝑚 

As in PLAXIS both anchors can be modelled. Limit state 2 relates to the force in the top anchor. 

Based on the model runs, the highest force occurs in this anchor.  

These definitions of failure and the distributions of variables as defined in Table 3 and section 4.3 

results in the following prior results. The reliability is calculated with Importance Sampling. A limited 

number of samples is used, so the calculated values are approximations. The values are shown 

below: 

Limit state 1 Displacements 

 𝛽 = 1,49 

Limit state 2 Anchor Force 

  𝛽 = 4,01 
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In addition to the prior reliability the prior distributions of the maximum moment, displacement and 

anchor force are shown in Table 11. 

 

Table 11 Prior PLAXIS moment-, displacement-, and anchor force distribution 

Prior results Mean μ  Standard deviation σ 

Maximum moment 945,05 kNm 74,25 kNm 

Displacement 59,61 mm 11,57 mm 

Anchor force (top anchor) 474,77 kN/m 18,71 kN/m 

Anchor strain (top anchor) 0,6092 mm/m 0,023 mm/m 

 

 

Figure 29 and Figure 30 show the influence coefficients for both limit states. The influence coefficients 

represent the influence of a stochastic variable on the reliability. In the figures the five most important 

variables are shown.  

 

 

Figure 29 PLAXIS Influence coefficients anchor failure 
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Figure 30 PLAXIS influence coefficients displacements 

 

 

6.3 Posterior predictions  
 

As advised in chapter 3, the use of BUS in combination with Subset Simulation is preferred over the 

use of MCS. Obtaining the posterior distributions with Subset Simulation is much more efficient. This 

higher efficiency is especially beneficial when using finite element software. However due to software 

related issues the author was unable to combine the use of the MATLAB script in Appendix B and 

PLAXIS.  

Therefore, it is chosen to use the solution based on Monte Carlo simulation, as explained in 

section 3.1. The main disadvantage on the use of MCS is that only after generating a large number of 

samples, it can be determined which of these samples are in the posterior distribution. 

The chance that a sample falls in the posterior distribution is dependent on the difference 

between the prior distributions and the measurement. If the distributions have a large difference, the 

chance of obtaining posterior samples is low and thus a large amount of calculations is required. By 

assuming the fictitious measurements close to the prior distributions, the effect of Bayesian updating 

can still be shown with acceptable efficiency.  

Similar to Blum, six measurements cases are defined. A low, average and high measurement is 

defined for both measured displacements and anchor strains. Each is assumed to have a normal 

distribution with mean and standard deviation as specified in Table 12. 

 

Table 12 Measurement cases PLAXIS 

Case Measurement μ Measurement error σ 

Anchor strain    

High 0,63 mm/m 0,01 mm/m 

Average 0,60 mm/m 0,01 mm/m 

Low 0,57 mm/m 0,01 mm/m 
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Case Measurement μ Measurement error σ 

Displacement   

High 75 mm 5,00 mm 

Average 60 mm 5,00 mm 

Low 45 mm 5,00 mm 

 

For applying the script in Appendix A, the scaling constant ‘c’ needs to be defined. As explained in 

chapter 3, this scaling constant ensures that  𝑐𝐿(𝑋) ≤ 1. If the scaling constant ensures results close 

to one, the acceptance rate is optimal. A constant which gives results larger than one will cause 

falsely accepted posterior samples.  

The update is applied based on a single measurement with a known distribution. Therefore, 

the maximum of the likelihood function is known on beforehand. The measurements are normally 

distributed, so the likelihood function is also normally distributed and the maximum of this function can 

be calculated as: 

 𝑐 = max (𝐿(𝑥))−1 

 𝑐 = √2π𝜎2 

 For anchor strain measurements: 

o 𝑐 = √2π𝜎2 = 0,025 

 For displacement measurements 

o 𝑐 = √2π𝜎2 = 12,53 

 

After performing 3000 calculations using PLAXIS the results are filtered to obtain the samples which 

are in the posterior distribution. As the number of samples in the posterior can only be determined 

afterwards, a different number of samples are obtained for each measurement case. The number of 

samples which are in the posterior distribution of each measurement case is shown in Table 13 

 
 
Table 13 Number of samples in posterior distribution 

Case Measurement μ Measurement error σ Samples in posterior 

Anchor strain     

High 0,63 mm/m 0,01 mm/m 372 

Average 0,60 mm/m 0,01 mm/m 780 

Low 0,57 mm/m 0,01 mm/m 403 

Displacement    

High 75 mm 5,00 mm 427 

Average 60 mm 5,00 mm 808 

Low 45 mm 5,00 mm 447 

 

 

After filtering the results to obtain the posterior distributions, the following results have been obtained. 

In Table 14 and Table 15 the updated reliabilities are shown.  
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Table 14 Reliability results of PLAXIS update limit state displacements 

Case β [-] 

Prior 1,49 

Displacement high 1,06 

Displacement average 1,92 

Displacement low 3,02 

 
Table 15 Reliability results of PLAXIS update limit state anchor failure 

 

Case β [-] 

Prior 4,01 

Anchor strain high 3,42 

Anchor strain average 4,42 

Anchor strain low 4,81 

 

 

In Figure 31, Figure 32 and Figure 33 the effect of the six measurements are shown for the maximum 

moment, displacement and anchor force. 

 

 

 

Figure 31 Results PLAXIS update maximum moment 
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Figure 32 Results PLAXIS update maximum displacement 

 

Figure 33 Results PLAXIS update top anchor force 
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6.4 Review of results 
 

The results found with PLAXIS are similar to the results with Blum. The measurements have a similar 

impact on the prior prediction. One of the main results found with Blum is the reduced standard 

deviation in all posterior predictions. This reduction can also be seen in the results from PLAXIS.  

Furthermore, the effect of the measurement cases is the same. The low strain case leads to 

lower anchor forces, lower moments and more displacement. While the high strain case does the 

exact opposite. For the displacement measurements the same is visible. A higher measured 

displacement leads to a reduction in anchor forces and moments, while less measured displacements 

lead to an increase of anchor forces and moments.  

The average update cases result in posterior means equal to the prior ones. The standard 

deviations decrease significantly. 

The change in calculated failure probabilities with PLAXIS show the same trend as initially 

found with Blum. The high strain and high displacement cases result in a reduced reliability while the 

other measurement cases increase the reliability.  

The effect of Bayesian updating seems less on the PLAXIS model, compared to the results with Blum. 

The posterior means with PLAXIS are much closer to their prior ones as compared to the posterior 

and prior means with Blum. The reasons for this smaller change are the following two. First, in 

PLAXIS the measurements are assumed to be closer to the prior mean. Therefore, the resulting 

posterior change is also less. This assumption is made to increase the efficiency of the PLAXIS 

simulation.  

The second reason is the fact that the prior standard deviations in PLAXIS are much lower 

compared to the Blum values. The difference between measurement error and prior standard 

deviation is less with PLAXIS and thus the following reduction in standard deviation is also less. 

In Appendix G the posterior distributions of the variables and in section 6.2 the influence coefficients 

are shown. The main changing variables are the friction angles and the soil stiffness moduli. These 

variables are also the most influential variables, as can be seen in the graphs for the influence 

coefficients. This trend, in which the most influential parameters show the largest change, is also 

visible in the results of Blum.  

With respect to the means, the standard deviations show a larger change between prior and 

posterior. These reduced standard deviations explain the results which are observed in the graphs in 

section 6.3. In all posterior distributions the standard deviations reduce, so this effect must also be 

visible in the included variables. 

The influence coefficients found with the calculations of Blum, shown in Figure 22 and Figure 

23, differ from the influence coefficients found with PLAXIS, shown in Figure 27 and Figure 28. In the 

failure probabilities calculated by Blum there is one parameter very influential with respect to the 

remaining parameters. The influence of the parameters with PLAXIS is divided across multiple 

parameters. It can be seen that multiple parameters have an influence of approximately 20%.  

In general the same parameters appear to be influential. The friction angles are both in PLAXIS 

and Blum highly influential. Furthermore, in PLAXIS the stiffness’s of the soil layers are important. Soil 

stiffness is not included in Blum and thus the influence is mainly in friction angles. While for PLAXIS 

the influence is both in soil stiffness’s as in soil friction angles. 

 

 

 

 



6 Bayesian update with finite element model 6.5 Conclusions 

 

59 
 

6.5 Conclusions  
 

By a first comparison of the results with PLAXIS and Blum, it seems that the effect of the update is 

more favourable with Blum. As explained, this is due to a difference in chosen measurements in 

PLAXIS and the fact that PLAXIS shows a lower prior standard deviation.  

So, the change shown in this chapter is less but still is significant. Even if the PLAXIS 

prediction is almost equal to a real measurement (a result similar to average update cases), it is still 

worthwhile to perform. As the increased reliability by the average update is a significant increase. 

The results of PLAXIS show that the posterior prediction has a much smaller standard 

deviation. The updated model will therefore show a more accurate prediction of reliability. This holds 

for all update cases. So, even if the measurement shows an unfavourable behaviour, the effect of 

reinforcements can also be evaluated with more certainty. 

By performing the calculations with PLAXIS and showing that it is possible with a reasonable 

efficiency, the method can also be applied to larger and more complicated quay structures. In 

principle the application of the Bayesian update is the same, however the PLAXIS model is more 

complicated which will result in longer calculation time. As PLAXIS is used even applications besides 

quay’s can be thought of. 
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7 Potential load capacity gained by Bayesian update 
 

In the previous chapters Bayesian updating has been applied to a probabilistic Blum- and PLAXIS 

model. In several update cases an increase of reliability is determined. To evaluate the significance of 

the increased reliability, it is determined if it is possible to increase the load on top of the quay. If this 

top load can be increased, the user of the quay can decide to for example increase storage on the 

quay.  

The used procedure to determine this increase in load capacity; is to assume that the 

measurement case ‘displacement low’ is measured at the quay. In the calculation models the 

surcharge on the quay is stepwise increased until the calculated reliability index is equal to the prior 

predicted reliability.  

Furthermore, in this approach it is assumed that failure due to excessive displacements is the 

governing failure mechanism. In practice displacements usually do not govern the design of a quay 

and thus the results are not fully representative for a real quay. The choice for this assumption is 

made to have a comparison with the previous chapters.  

 The measurement case ‘displacement low’ assumes less displacement then initially predicted. 

This indicates that the behaviour, with respect to displacements, is more favourable than predicted. 

The results in chapter 5 and 6 have shown that the moments and anchor forces have increased and 

thus for other failure mechanisms, the used measurement case can be less favourable.  

 

7.1 Blum 
 

In chapter 5 a Bayesian update is done in combination with the model of Blum. Six measurement 

cases are investigated and thus six changed sets of input parameters are determined. The updated 

parameters from the measurement case ‘displacement low’ are used.  

The case ‘displacement low’ is related to a lower displacement then predicted, so a stiffer soil 

behaviour then initially expected. The changed parameters along with their initial value are shown in 

Table 16. The values used in the calculation are found in the columns with the posterior values. In 

general, the difference between the prior- and posterior values is found in the friction angle, most of 

the soil layers show an increase of friction angle.  

Table 16 Input Blum 

Variable Prior values Posterior values 

Mean 
Standard 
deviation 

Mean 
Standard  
deviation 

Sand, clean, loose     

ϕ layer 1   [⁰] 35,89  3,00  36,27 2,88 

γ sat layer 1 [kN/m
3
] 20,69 0,95  20,60 0,97 

γd layer 1 [kN/m
3
] 18,52  0,85  18,45 0,62 

Clay, slightly sandy, weak    

ϕ layer 2 [⁰] 26,91  2,25  26,72 2,34 

γ sat layer 2 [kN/m
3
] 16,34  0,75  16,28 0,75 

γd layer 2 [kN/m
3
] 16,34  0,75  16,28 0,75 

Sand, clean, loose     

ϕ layer 3 [⁰] 35,89  3,00  37,08 2,79 

γ sat layer 3 [kN/m
3
] 20,69  0,95  21,03 0,81 

γd layer 3 [kN/m
3
] 18,52  0,85  18,71 0,47 
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Variable Prior values Posterior values 

  
Mean Standard 

deviation 
Mean Standard  

deviation 

Sand, slightly silty clayey   

ϕ layer 4 [⁰] 32,30  2,70  33,51 1,96 

γ sat layer 4 [kN/m
3
] 20,69  0,95  21,07 0,80 

γd layer 4 [kN/m
3
] 19,61  0,90  18,89 0,76 

Sand, clean, loose     

ϕ layer 5 [⁰] 35,89  3,00 37,11 2,98 

γ sat layer 5 [kN/m
3
] 20,69 0,95  20,95 0,95 

γd layer 5 [kN/m
3
] 18,52  0,85  18,68 0,57 

Clay, slightly sandy, weak    

ϕ layer 6 [⁰] 26,91  2,25  27,15 2,02 

γ sat layer 6 [kN/m
3
] 16,34  0,75  16,39 0,68 

γd layer 6 [kN/m
3
] 16,34  0,75  16,40 0,69 

Sand, clean, solid     

ϕ layer 7 [⁰] 38,88  3,25  38,57 3,27 

γ sat layer 7 [kN/m
3
] 21,79  1,00  21,65 1,00 

γd layer 7 [kN/m
3
] 19,61  0,90  19,48 0,92 

 

The reliability of the quay is calculated according to the following limit state function: 

 Limit state Displacements  𝑑 < 140 𝑚𝑚 

FORM is used to determine the reliability. The prior reliability is: 

 Prior reliability    𝛽 = 2,22 

Using the determined posterior variables, the reliability index is increased to the following: 

 Posterior reliability   𝛽 = 3,46 

If it is assumed that the prior reliability is sufficiently safe and based on the Bayesian update the 

reliability is increased, then an increase of allowable surcharge load is possible. The result of several 

reliability calculations with a stepwise increased surcharge load is shown in Figure 34. 
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Figure 34 Blum reliability for increased surcharge load 

 

Figure 34 shows that due to the updated parameters the surcharge load can be increased to almost 

175 kN/m
2
. Compared to the design requirement of 100 kN/m

2
, this is a significant increase. 

 This increase is calculated with the assumption that failure due to excessive displacements is 

the governing mechanism. To determine the actual allowable increase, the updated model should be 

used to verify that the other failure mechanisms are not more governing. 

  

3,46 

2,66 

2,15 

1,69 

2,22 

0

0,5

1

1,5

2

2,5

3

3,5

4

100 125 150 175 200

R
el

ia
b

ili
ty

 in
d

ex
 [

-]
 

Surcharge [kN/m2] 

Reliability for increased load 

Posterior reliability

Prior reliability



7 Potential load capacity gained by Bayesian update 7.2 PLAXIS 

 

63 
 

7.2 PLAXIS 
 

The previous section has determined the possible increase of surcharge load based on the model of 

Blum. This section will use the same procedure to determine the increase of surcharge which based 

on the PLAXIS model can be allowed on the quay. The posterior variables determined from the 

measurement case ‘displacement low’ are used. These posterior values along with their prior values 

are shown in Table 17. 

 

Table 17 Input PLAXIS 

Variable Prior values Posterior values 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Sand, clean, loose     

ϕ layer 1 [⁰] 35,89 3,00 37,72 2,73 

γ sat layer 1 [kN/m
3
] 20,69

 
0,95 20,37 0,91 

Eoed layer 1 [kN/m
2
] 23076 3750 23110 3734 

Clay, slightly sandy, weak    

ϕ layer 2 [⁰] 26,91 2,25 27,00 2,21 

γ sat layer 2 [kN/m
3
] 16,34 0,75 16,35 0,76 

Eoed layer 2 [kN/m
2
] 2307 375 2319 380 

Sand, clean, loose     

ϕ layer 3 [⁰] 35,89 3,00 37,44 2,88 

γ sat layer 3 [kN/m
3
] 20,69

 
0,95 20,92 0,98 

Eoed layer 3 [kN/m
2
] 23076 3750 23350 3567 

Sand, slightly silty clayey    

ϕ layer 4 [⁰] 32,30 2,70 33,92 2,46 

γ sat layer 4 [kN/m
3
] 20,69 0,95 20,84 0,92 

Eoed layer 4 [kN/m
2
] 53846 8750 54216 8906 

Sand, clean, loose     

ϕ layer 5 [⁰] 35,89 3,00 36,51 2,79 

γ sat layer 5 [kN/m
3
] 20,69

 
0,95 20,74 0,93 

Eoed layer 5 [kN/m
2
] 23076 3750 23000 3782 

Clay, slightly sandy, weak    

ϕ layer 6 [⁰] 26,91 2,25 26,80 2,22 

γ sat layer 6 [kN/m
3
] 16,34 0,75 16,36 0,77 

Eoed layer 6 [kN/m
2
] 2307 375 2315 345 

Sand, clean, solid     

ϕ layer 7 [⁰] 38,88 3,25 39,72 3,15 

γ sat layer 7 [kN/m
3
] 21,79 1,00 21,79 0,97 

Eoed layer 7 [kN/m
2
] 115384 18750 113754 17759 
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The reliability of the quay is calculated according to the following limit state function: 

 Limit state Displacements  𝑑 < 90 𝑚𝑚 

As reliability method importance sampling is used. The prior reliability is: 

 Prior reliability    𝛽 = 1,49 

Using the determined posterior variables, the reliability index is increased to the following: 

 Posterior reliability   𝛽 = 3,12 

 

By performing a Bayesian update the reliability is increased. This increase of reliability indicates that it 

is possible to increase the surcharge load. Several reliability calculations are performed to determine 

the possible increase until the posterior reliability is equal to the prior reliability level. The result is 

shown in Figure 35. 

 

 

Figure 35 PLAXIS reliability for increased surcharge load 

 

Figure 35 shows that compared to the prior reliability, the surcharge can increase to almost 120 

kN/m
2
. This indicates an increase of 20 kN/m

2
 with respect to the design requirements. This increase 

is determined with the assumption that failure due to excessive displacements is governing. For an 

actual increase in surcharge, the failure probability of all failure mechanisms needs to be calculated 

and verified that these are not more governing. 
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7.3 Application in practice 
 

This chapter has determined if based on fictitious measurements and the evaluation of only one limit 

state the surcharge can be increased. In this section an overall strategy is provided for determining 

this increase in practice. The strategy resembles an ideal situation without considering the costs 

aspects. 

In the ideal situation of performing a Bayesian update, a test loading is applied to an existing quay 

under controlled conditions. The statement of controlled conditions means that boundary conditions 

such as water and groundwater level, retaining height and surcharge are known and can thus be 

included as deterministic parameters or with a small uncertainty. Measures to achieve this are 

(Inventec b.v., 2018): 

 Piezometers to monitor groundwater level 

 Water level meter for the water level in front of the quay 

 Determining harbour bottom depth by measuring the level and if present inspecting the 

bottom protection to determine thickness and weight of bottom protection 

 Loading the quay in fixed steps using elements of an equal and known weight. As an 

example, using sand-filled containers which have a known predetermined weight. 

The first step is to determine the prior soil and structural parameters. The calculations performed in 

this thesis use soil parameters based on local CPT data. To determine the soil profile the data 

obtained from a CPT is reliable. However, for determining volumetric weight, friction angles, cohesion 

and soil stiffness’s it is more accurate to determine these based on laboratory testing.  

 Structural parameters need to be identified based on design documents and for older quays 

possibly in situ investigation, such as wall thickness measurements, is required to determine the state 

of the structural elements. 

The most important aspects to the procedure of test loading, is how to apply the load and for how long 

the load needs to be applied. To answer the first question, it must be possible to load and more 

important to unload the quay quickly. To avoid damaging the quay, in case of unexpected behaviour 

the load must be removed quickly. Therefore as suggested before, elements which are easy to handle 

with a uniform size and weight need to be used. Sand-filled containers are seen as a feasible solution. 

In a more detailed study other fill materials or different elements can be evaluated. 

 The second question focusses on is the duration of the applied load. This depends on the soil 

profile. The interest of test loading is in the long-term behaviour of the quay. The procedure should 

therefore resemble drained conditions and ideally excess pore pressures need to be dissipated before 

the next load step can be placed. If a quay is located in permeable soils, the duration of the load and 

the time between load steps can be relatively short. In case of less permeable soils the test loading 

will be longer. The prior prediction needs to be used to determine the duration of the dissipation of the 

pore pressures and in situ this can be verified by using piezometers.  

 Another aspect to take care of in the chosen loading strategy, is to avoid an influence caused 

by 3D effects. The load needs to be applied over a long enough section of the quay to allow the test 

load to be analysed by a 2D calculation. As a rough estimate, if a 10 m long section of a quay is 

equipped with monitoring devices. The load needs to applied for a length of 15 m on both sides of the 

measured section. This results in a total of 40 m quay wall to be loaded. 
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During the test load, the following should be monitored: the displacement of the front wall and if an 

anchored quay or a quay with relief platform is to be loaded, strains in anchors and piles. To have a 

redundant setup also the soil displacement and soil pressures behind the quay need to be measured. 

This combination of measurement data can then be used to determine the posterior distributions of 

the variables. The following equipment can be used to measure the above-mentioned items (Inventec 

b.v., 2018): 

 ShapeAccelArray/Field (SAAF) to measure displaced profile of the front wall 

 Fibre optic cable to measure distributed strain over the full length of pile or anchor. Another 

option is to use local strain sensors. 

 SAAF to measure soil displacement behind the quay 

 Total pressure cells can be used to measure soil pressures and to determine the actual 

surcharge load. 

As calculation model PLAXIS is advised. PLAXIS results in general in the most realistic prediction. 

This thesis has shown that even though the calculation times are significant, it is feasible to perform 

Bayesian updating with PLAXIS.  

A risk to be avoided is that during the test load the load capacity of the quay is exceeded. This 

could lead to damage or in the worst-case destruction of the quay. Therefore, the prior prediction 

should be used to determine the maximum test load. This maximum test load should be determined 

such that the quay will not fail by a brittle failure mechanism. The failure mechanisms which slowly 

develop can be prevented by continuous monitoring of the quay behaviour.   

The prior prediction should furthermore be used to determine stop criteria. A stop criterion can 

be a maximum allowable deformation of the quay. The test should be stopped once the deformation 

exceeds this limit. 

 The benefit of performing a Bayesian update is that it is not required to load the quay up to 

maximum capacity. The reference case used in this thesis can based on design requirements be 

loaded up to 100 kN/m
2
. If for example a test load is performed up to 60 kN/m

2
, the model prediction 

can then be updated to these measurements. The updated posterior model can then be used to 

evaluate the behaviour of the quay under different surcharges. 

To summarize this section, the procedure to determine the load capacity can be roughly described by 

the flowchart in Figure 36. 
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Figure 36 Flowchart to determine posterior reliability 

 

The presented strategy is mainly focused on application with existing quays. Another option is to 

monitor a quay during the construction stages. If during the construction phase monitoring equipment 

is placed on the quay, the data can directly be used.  

 An example of a construction stage which can be monitored is construction in dry conditions. 

Often quays are constructed in dry conditions. In that case a temporary retaining structure and 

temporary sand fill are placed in front of the to be constructed quay. After finishing the construction 

works, the retaining structure and sand fill are removed. During the removal of the sand fill the quay 

starts to deform and the data obtained during this phase can be used for Bayesian updating. This 

procedure will be much more cost effective then actually loading an existing quay. 

Furthermore, the obtained data can used to determine the actual load capacity of the quay and 

also the data can in more general sense be used to verify the design process. 

 

 

 

 



7 Potential load capacity gained by Bayesian update 7.4 Conclusions 

 

68 
 

7.4 Conclusions 
 

For both models, PLAXIS and Blum, holds that based on the measurement case ‘displacement low’ 

the allowable load on the quay can be increased to remain at a reliability equal to the prior prediction.  

The update performed with Blum showed a much larger possible increase of the top load. The reason 

for this larger difference can be found in the assumed measurement cases. The measurement case 

assumed with PLAXIS is closer to the prior mean and thus the posterior means change less. This 

results in a lower increase in reliability. 

The determined increase in reliability is largely dependent on the measurements. As they are 

assumed values, it cannot be assessed how realistic the calculated increase is. The used procedure 

in this chapter illustrates how measurements can be used to increase the functionality of the quay. 

The reason for the possible increase is the fact that the included variables are known with more 

certainty and thus the posterior prediction has a smaller standard deviation.  

The same holds for the case in which the quay is behaving worse than initially predicted. If 

that measurement case is reviewed, the maximum load will most likely decrease. The benefit for this 

case is that the maximum allowable load can be determined with more accuracy and also 

reinforcement measures can more effectively be reviewed. So, if the measurement shows a worse 

behaviour this still is a valuable result as in that case it can be proven that reinforcing or replacing is 

actually necessary. 

A final point to be noted is the increased reliability is only calculated for the limit state displacements. 

It is assumed that failure due to excessive displacements is the governing failure mechanism. As this 

procedure is done for one limit state, the calculated increase in load might not be representative for 

actual failure of the quay. To determine the actual allowable increase of surcharge load, the updated 

parameters should be used to check all failure mechanisms.  
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8 Conclusions and recommendations 
 

In this thesis Bayesian updating is applied to a probabilistic model of a quay wall. Based on fictitious 

measurement cases, the effect of using measurements to enhance model predictions is determined. 

Bayesian updating is applied according to the method of BUS which is developed by (Straub & 

Papaioannou, 2014). First BUS is applied to a well-known example of a cantilever beam after which 

BUS is used in combination with BLUM and finally the effect is demonstrated on a PLAXIS model.  

Several aspects of Bayesian updating are shown: posterior distributions of moments, 

displacements and anchor forces and the posterior distributions of the included variables. The 

conclusions and recommendations are given in this chapter. The conclusions are based on the results 

found in this thesis and the recommendations are more focussed on how to apply the method in 

practice. 

Before stating the conclusions and recommendations, first the problem statement is recalled. The 

introductory chapter of this thesis lists possible cases for which the safety of an existing quay wall 

needs to be reassessed. Proving the safety of existing quay walls in situations out of their initially 

designed scope, higher loads or deepening the harbour, is no easy task. The main difficulty in this is 

the large amount of uncertainty. Large factors of uncertainty are for example soil parameters, soil 

behaviour or current state of the structural parts. To cope with this uncertainty, the structural- and soil 

parameters are estimated. As estimates are used, it is uncertain how ‘well’ the model predicts the real 

behaviour. 

A solution for this uncertainty is to perform test loading on quay walls. During the test loading 

the real behavior of the quay can be monitored. Using the obtained monitoring data, the uncertainty in 

the prediction can be reduced. The starting point of the research has been to evaluate the use of test 

loading. This is done by proving that the obtained monitoring data aids in reducing the uncertainty.  

8.1 Conclusions 
 

The conclusions are listed with respect to the sub questions and main research question.  

Sub question: 

What improvements to the probabilistic model can be obtained through performing a Bayesian 

update? 

The main improvement which is gained by performing Bayesian updating is the reduced uncertainty. 

The graphs in chapter 5 and 6 show that the posterior standard deviations of moments, anchor forces 

and displacements are reduced. The reduced uncertainty can be explained by the fact that the model 

is probabilistically calibrated to the measurement. There is a difference between manually fitting the 

model according to measurements and using a probabilistic technique.  

By manually adjusting parameters one obtains a possible combination of parameters. It will 

then still be unknown if this is the combination that will occur and also how many more combinations 

are possible. Another point is that with a large number of variables this can be a time-consuming 

process. 

Bayesian updating results in the most likely combination of parameters. This most likely 

combination is determined based on the specified prior distributions and the measurement. The 

benefit of Bayesian updating is that this probabilistic update provides insight into how the stochastic 

definition of the variables change. 

The result of performing this technique is thus updated parameters with changed means and 

changed standard deviations. Conservative or optimistic choices are changed accordingly and in 

general the provided standard deviations tend to reduce. The updated parameters result in a more 

accurate determination of the failure probability.  
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Sub question: 

How are the results of the Bayesian update influenced by the type of evidence? 

Two different measurements are used for updating the probabilistic model; measuring strain in the 

anchor tube and the displacement of the combi-wall. Comparing the results, the first conclusion is that 

the largest influence is found on the posterior distributions of the quantity which is measured. 

Measuring displacements results in the largest changes in the posterior distribution of displacements 

and for strains the largest effects is in the anchor force.  

In the results (chapter 5 and 6) it is visible that measuring displacements also impacts the 

prediction of anchor forces and vice versa. Furthermore, it can be seen that both measuring 

displacements and strains have an effect on the posterior distribution. The displacement update 

cases tend to have a larger effect on the posterior moment distribution than the strain measurement. 

In general, it can be concluded that both types of evidence result in a significant reduction of 

the uncertainty. 

Research question: 

How to use Bayesian updating to improve the prediction of the failure probability of a quay wall? 

The effect Bayesian Updating has on the predicted failure probability is shown using both PLAXIS and 

Blum. For each measurement case a significant change in failure probability is found. In general, 

three possible outcomes from a measurement can occur: the behaviour is better than predicted, equal 

to prediction or worse than predicted. Two different limit states are used and all of the three possible 

outcomes are simulated. 

If the behaviour of the quay is better than or equal to prediction, the reliability increases. If the 

behaviour is worse, then accordingly the reliability decreases. In all cases a useful result can be 

found. Either the reliability is increased and thus reinforcing might not be necessary and in the best 

case more loads could be applied or the reliability is decreased and it is certain that measures are 

required. As the model will be more accurate, also the effect of possible reinforcement measures can 

be evaluated better.  

So, the use of Bayesian updating in reassessment of quays either proves the quay to be safe 

or it is known with more certainty that measures are required. 

The main cause for starting the research and also the main reasoning behind the assumptions which 

have been made throughout the thesis is to evaluate test loading on quay walls. Test loading is seen 

as a possible option to obtain monitoring data to use in Bayesian updating. To determine the 

effectiveness of test loading more aspects of this procedure should be investigated. Aspects to 

investigate are for example the procedure of test loading, the possible costs and the benefits. This 

thesis has shown an effective method of using measurements in reliability calculations. The next step 

is then to determine the most efficient way of obtaining the required data.  

The focus of the thesis has been on the use of Bayesian updating for quay walls. However, the 

method is not limited to application on quays. The method can be used on any kind of structure. The 

thesis has shown that it can be combined with the use of finite element software and thus towards 

application on complex retaining structures. 
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8.2 Recommendations 
 

The first and one of the main recommendations is the use of Subset simulation. For practical 

application of Bayesian updating, a more efficient method then Monte Carlo simulation is required. 

Subset simulation is able to determine the posterior distributions with a much higher efficiency and 

this should therefore be used if applied on a case with real measurements. In this study problems with 

the coupling between PLAXIS and the matlab SuS script occurred. Two major problems need to be 

solved for Subset simulation to work in combination with PLAXIS. 

 First, the SuS script should be in python. PLAXIS provides support for the programming 

language Python and if the script is in the same language, the coupling is expected to be easier. The 

script used in this thesis is written in Matlab. Nearing the end of the thesis also a Python version of 

this script has come available, which will make the coupling with PLAXIS easier. 

 The second problem is related to the input for the Hardening Soil model. PLAXIS requires 

stiffness parameters to be within a validity range. In Subset simulation random draws are taken from 

the distributions, it is therefore unavoidable that during the calculation a draw is obtained which is 

outside this validity range. If such a draw is obtained, the process is aborted and the calculation 

needs to be restarted. To perform a Bayesian update with Subset simulation, the script should ensure 

that only ‘valid’ combinations are send to PLAXIS. 

 Based on the experience with the performance of Subset simulation, it should be possible to 

obtain an accurate result with approximately 3000 calculations. As explained, subset simulation 

solves for low probabilities by a stepwise procedure. Each subset represents a step towards this 

lower failure probability. In this thesis it took approximately six subsets to solve for the posterior 

distributions. The number of samples in each subset can be specified as input, this also gives control 

over the total number of calculations required. 

The accuracy in the determination of the posterior distributions is dependent on the number of 

samples. Literature (Au & Beck, 2001) has suggested the use of 500 samples per subset. Resulting in 

a total of 3000 calculations, which seems achievable in combination with finite element software. 

If one is to use Bayesian updating in practice, the main difficulty will be to obtain the measurements. 

For quays it is more and more common to equip quays with measuring equipment during the 

construction stage. To use measured data for Bayesian updating, the data should be ‘clean’. It should 

be known which load has caused the quay to move and preferably more boundary conditions such as 

the water level difference over the quay should also be known.  

Theoretically it is possible to include both effects with a certain spread. However, for the 

results to be most useful, i.e. to obtain the most accurate posterior model, any uncertainty which can 

be ruled out from the start, should be ruled out. Therefore, the situation in which the data is obtained 

should be well known and secondly the used model needs to be able to describe this situation. If 

these criteria are not met, the use of the updated parameters remains uncertain. 

In the current application of BUS, a single measurement has been used to update the parameters. If  

test load or any monitoring program is executed it will be more extensive then just one displacement 

or strain measurement. So in practice multiple measurements are available and it is advised to use a 

combination of measurements to obtain the posterior variables The effect of using multiple 

measurements is not determined in this thesis so only an expectation of the results is given.  

By updating the model according to multiple measured points, the combined space, in which 

the posterior distributions can be found, will be smaller. As one provides more evidence to define the 

displacement of the quay, the result will be a further reduction in uncertainty.  

A drawback is that the calculation time will also increase. The probability of obtaining a 

posterior sample will be lower, so for MCS a lower acceptance rate and for SuS more subsets to 

evaluate. For both methods holds that more model evaluations are required to obtain an equal 

number of posterior samples. As in Subset simulation the total evaluations required are related to the 
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number of subsets and the evaluations per subset can be limited, the total increase of calculations will 

be far less than for Monte Carlo simulation. Due to the higher efficiency of Subset simulation, the use 

of Subset simulation is advised to obtain the samples with a reasonable calculation time. So if one is 

to monitor the behaviour of the structure, it is advised to use the data from multiple measurements to 

determine the posterior distributions. The increased accuracy will be beneficial over the longer 

calculations.  

To summarize, the main recommendations are the use of Subset simulation over the use of Monte 

Carlo simulation and to use a combination of evidence to obtain posterior samples. 
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9 Discussion 
 

This chapter will review the obtained results and provides subjects for further research. 

9.1 Review of results 
 

The obtained results in the chapters 5, 6 and 7 are reviewed. It is assessed how the starting points 

influence the final result. 

The main starting point in the research is the limitation of the parameters which are included in the 

updating procedure. A choice is made for using only the geotechnical parameters as stochastic 

variables. The main argument used for this, is that the largest part of the uncertainty is present in 

those parameters.  

 The parameters with possible high influence coefficients that are not included are the 

stiffness’s of the structural parts; the stiffness of the anchor tube, tubular piles and sheet piles. If It is 

known that even though steel properties can be described accurately, the stiffness is subject to some 

uncertainty.  

 In addition to stiffness parameters, retaining height and yield strength of the structural 

elements can also be influential. 

As the updated parameters have shown the largest change in parameters with high influence 

coefficients, a theoretical more correct approach would be to first include all parameters as stochastic 

variables and then to eliminate the parameters with low influence coefficients.  

 The effect of including stiffness as a stochastic variable is dependent on the influence the 

stochastic definition has on the failure probability. In general, the stiffness will reduce the effect of the 

strain- and displacement updates. As, less strain or less displacements can also be caused by a 

higher stiffness.  

To further elaborate this, two extremes of including the stiffness as stochastic variable are 

reviewed. In the results found with Blum, the change in anchor force caused by the different 

measurement cases is quite large. If the stiffness is included with a large standard deviation, most 

likely it will become very influential and the result is that no change in anchor force will be observed. 

The stiffness parameter will then show a significant change. The same reasoning also applies if 

stiffness is included with only a small standard deviation. In that case the change found in the results 

will, for the largest part, still be visible. The effect of the stiffness is thus dependent on its distribution 

but should in general reduce the changes found in the moments and anchor forces.  

A second important starting point is to use fictitious measurements. As the found results are directly 

related to these fictitious measurements, one could argue that this makes the results less interesting 

for practical use. The purpose of fictitious measurements is to show in a more general sense the 

effect of applying a Bayesian update. Different measurement cases are assumed to show this effect. 

For this purpose, fictitious measurements are useful as they show the trend in the results and allow 

for a more theoretical comparison between results.  

 Therefore, fictitious measurements are chosen and thus the results are suitable for qualitative 

comparison. The exact determined quantities should be reviewed with the assumption of fictitious 

measurements in mind.  

The quay is equipped with monitoring equipment. During the construction phase and for a 

small part of its lifetime monitoring data is available. For this research, the data was available in a too 

late stadium. The use of this data, especially the data obtained during the excavation of the quay, 

would make the results more case specific. This holds in particular for the results in chapter 7.  
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Accompanied with the fictitious measurements, an assumed measurement error is used. The results 

show that the posterior distributions have a remaining standard deviation in the order of this 

measurement error. In the original publication of (Straub & Papaioannou, 2014) the used error is a 

sum of the model uncertainty and the measurement uncertainty. In this case the assumed model 

uncertainty is equal to zero. So, to be theoretically correct also a certain model error should be 

included into the definition of the Likelihood functions. As the posterior distribution tends to follow the 

assumed error, including the model uncertainty will lead to larger posterior standard deviations and 

thus a slightly less favourable result.  

In this thesis parameters have been determined based on CPT data and for the advanced PLAXIS 

parameters expert judgement is used. For the purpose of this thesis, which is to show changes in the 

parameter estimates based on measurements, the used procedure is sufficient. However, the goal of 

performing the update in practice is to determine the reliability of a quay. If the objective is to 

determine the reliability, the parameters should be determined more accurately. For example, the soil 

parameters can be determined with a more extensive soil investigation including laboratory testing 

instead of only CPT data. 

To show the effect of the different measurement cases, reliability indices have been calculated. 

FORM has been used with Blum to calculate these indices. At first, the same approach was used with 

PLAXIS. However, the PLAXIS FORM calculation was unable to converge. So instead of FORM, the 

reliability indices with PLAXIS are calculated with Importance Sampling. They are calculated with a 

limited number of samples. The indices are thus approximations of the actual reliability. 

 The reason for the inability of FORM to converge in combination with PLAXIS is unknown. To 

aid the algorithm in converging several steps have been performed: 

 Reducing the step size in between FORM iterations 

 Reducing the total number of variables, the least influential parameters were excluded. 

Instead of 20 variables the number was reduced to 8 

 Using the experience from the PLAXIS model runs and Blum to shift the variables towards the 

failure boundary 

 Using a limit state which has a higher probability of being exceeded 

 Increasing the convergence limit from 1% to 10% 

All of the above listed options have proven unsuccessful. Further study is required to determine why 

the algorithm couldn’t converge. This is not included in this research, as the time required to perform 

30-40 FORM iterations with PLAXIS is significant and also the research is not focussed on 

determining the exact failure probability. The reliability indices are used to show the differences 

between the measurement cases and for this purpose the estimation with Importance Sampling is 

sufficiently accurate. 
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9.2 Further research subjects 
 

To assume fictitious measurements, the real problem of Bayesian updating is directly solved. To 

perform a Bayesian update, accurate measurements are required. The thesis has shown how 

effective an update can be to enhance the probabilistic model. The effectiveness of the method is 

however dependent on the measurements and how well the model can describe the situation.  

A specific item which is mentioned several times during the chapters is test loading on quays. 

It is a possible option to obtain the measurements which have now been assumed. A possible option 

to perform test loading is stacking sand-filled containers behind the quay. This idea of test loading is 

however very conceptual and more study should be done before this could actually take place. So, 

how to perform a test loading on a quay is a subject which needs further study. 

 

As test loading is just a possible option for obtaining the measurements, a more general research 

subject can be defined as how to obtain measurements which can be used for Bayesian updating.  

A possible option to investigate is using monitoring data obtained during the construction of a 

quay. The case used in this thesis is equipped with monitoring equipment. During the construction 

stage and for a short period of its lifetime this data has been collected  

The quay is roughly constructed in the following steps. Dry conditions were created during the 

construction of the quay. A temporary water retaining structure and a sand fill is placed in front of the 

quay. After finishing the quay, this retaining structure is removed and the sand fill is dredged. 

An interesting option to perform BUS would be to use the data obtained from the dredging. 

Both PLAXIS and D-Sheet Piling have the possibility to include construction phases and thus it should 

be possible to perform a Bayesian update with these measurements.  

The use of data obtained during construction is another possible option to obtain input for a 

Bayesian update. An additional benefit of this method is that this data could directly be used to 

determine the additional safety which is included in the design and possibly if the allowable surcharge 

can already be increased at the start of the quay’s lifetime. 

Another subject to investigate is to further determine how the quay should be monitored. In 

this thesis only structural parts are measured, displacements of the wall and strains in the anchor, 

another option is measuring displacements of the soil body behind the quay. The option of monitoring 

the soil body is could be useful for quays that are not easily accessible and not equipped with 

monitoring devices. Costs and installation aspects need to be considered to determine the most 

optimal solution for monitoring a quay. 

Near the final stage of this thesis, the monitoring data of the quay has come available. It would be an 

interesting further research subject to use the method of Bayesian updating in combination with the 

obtained data. Especially the results obtained in chapter 7 will be more relevant if real measurements 

are used. It would then also be interesting to perform a check on the remaining failure mechanisms 

and thus to exactly determine if the surcharge can be increased.  

One should keep in mind that if measurements from the construction phases are used, ideally 

boundary conditions such as water levels and ground level should also be known during this phase.  
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Appendix A Python script BUS with Monte Carlo simulation 

 

The python script written in this appendix executes BUS based on a Monte Carlo simulation. This 

method is explained in section 3.2. The script is shown in Figure 37. The script is based on (Straub & 

Papaioannou, 2014) 

As input to the script is required: 

 Distribution of variables 

 Likelihood function 

 Required number of samples in posterior distribution 

 

 

Figure 37 Python script for BUS with MCS 

 

The script returns samples which are in the posterior distribution. These samples can be used for 

further analyses. 
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Appendix B Matlab script BUS with Subset simulation 

For application of BUS with Subset simulation, as explained in section 3.3, a MATLAB script is used. 

The script is made available by the Engineering Risk Analysis Group of the Technical University of 

Munich (Technical University of Munich, 2018). To apply Subset Simulation in fact three scripts are 

required. The functionality of each script is shortly explained here. 

 

Script:  ERADist.m 

As input for the BUS approach stochastic variables need to be defined. Using the ERADist script 

variables with a certain distribution can be generated. The distribution can be defined on its 

parameters, moments or data obtained from experiments. The script supports generating variables 

from 20 different probability distributions. With ERADist the following functions are possible: 

 Determine mean value 

 Determine standard deviation 

 Calculate probability from PDF 

 Calculate values from CDF 

 Calculate values from inverse CDF 

 Draw random numbers from given distribution 

 

Script:  ERANataf.m 

The second step for applying BUS with Subset Simulation is to transform the variables to standard 

normal independent variables. This transformation is done with the ERANataf script. It transforms the 

marginal distributions defined with ERAdist to a joint distribution. The marginal distributions are 

transformed with the Nataf transformation. As input is required a set of variables defined with ERADist 

function and a correlation matrix. Once defined the following functionalities can be called: 

 Transformation from physical space to normal space 

 Transformation from normal space to physical space 

 Draw random numbers from joint distribution 

 Calculate probability from joint PDF 

 Calculate values from joint CDF 

 

Script:  aBUS_SuS.m 

Once the variables and their distributions are defined and transformed to the standard normal space, 

the Bayesian update can be applied. The script aBUS_SuS applies this update, according to the 

procedure explained in section 3.3. The required input is: 

 Standard normal prior distribution, obtained from ERANataf 

 Intermediate conditional probability 𝑝0 

 Logarithm of the likelihood function 

 Number of samples in each subset level 

The script has as output results: 

 Samples in posterior distribution, both in normal space and in physical space 

 The marginal likelihood 

 The intermediate subset levels 
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Appendix C Cross section quay wall 

 

Figure 38 Cross section quay 
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Appendix D CPT at quay 
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Appendix E Results update Blum model 

 

The results of updating the Blum model of the quay wall are presented here. In section 5.3 the results 

of the update for the maximum moment, displacement, anchor force and anchor strain are provided. 

In this appendix the results of the update for each included variable and each of the six cases defined 

in section 5.3 are shown here in Figure 39 till Figure 44. It is chosen to plot the relative change of the 

posterior distributions. The relative change is defined as: 

𝐶ℎ𝑎𝑛𝑔𝑒 =
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝑃𝑟𝑖𝑜𝑟
 

A relative change larger then value one indicates that the posterior value is larger than the prior value. 

If the change is smaller than one, this means a lower posterior value. The red bars represent the 

relative change in posterior mean and the blue bars represent the relative change in posterior 

standard deviation.  
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Figure 39 Blum updated variables case anchor strain high 
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Figure 40 Blum updated variables case anchor strain average 

 

0,5 0,6 0,7 0,8 0,9 1 1,1 1,2

ϕ layer 1 

γ sat layer 1 

γ layer 1 

ϕ layer 2 

γ sat layer 2 

γ layer 2 

ϕ layer 3 

γ sat layer 3 

γ layer 3 

ϕ layer 4 

γ sat layer 4 

γ layer 4 

ϕ layer 5 

γ sat layer 5 

γ layer 5 

ϕ layer 6 

γ sat layer 6 

γ layer 6 

ϕ layer 7 

γ sat layer 7 

γ layer 7 

Anchor strain average 

Relative change posterior mean

0,5 0,6 0,7 0,8 0,9 1 1,1 1,2

ϕ layer 1 

γ sat layer 1 

γ layer 1 

ϕ layer 2 

γ sat layer 2 

γ layer 2 

ϕ layer 3 

γ sat layer 3 

γ layer 3 

ϕ layer 4 

γ sat layer 4 

γ layer 4 

ϕ layer 5 

γ sat layer 5 

γ layer 5 

ϕ layer 6 

γ sat layer 6 

γ layer 6 

ϕ layer 7 

γ sat layer 7 

γ layer 7 

Anchor strain average 

Relative change posterior standard deviation



Appendices Appendix E Results update Blum model 

 

90 
 

 

 

 

Figure 41 Blum updated variables case anchor strain low 
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Figure 42 Blum updated variables case displacement high 
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Figure 43 Blum updated variables case displacement average 
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Figure 44 Blum updated variables case displacement low 
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Appendix F Elaboration PLAXIS model 

 

This appendix contains the explanation of the PLAXIS model which is used in chapter 5, all model 

specific settings are elaborated here. First a base model is built. This base model is the best currently 

possible representation of the actual soil behavior. After which this base model is optimized in terms 

of calculation time. In order to limit the calculation time, for the probabilistic calculation a model is 

required which provides accurate results but has an as short as possible calculation time. 

 

Base model 

 

The first step into setting up the model is determining some general project properties. These are: 

 Model type: Plane Strain 

In this thesis a 2D model of a quay wall is used. Therefore, Plane Strain is the appropriate 

choice. 

 Elements:  15-Noded 

A choice can be made for 15-Noded elements or 6-Noded elements. By default, 15-Noded 

elements are used. Using 15-Noded elements the solution is more accurate at the cost of 

being more computationally intensive. Especially in failure analyses it is advised to use 15-

Noded elements, as failure loads and safety factors are over predicted in 6-Noded elements. 

 Contour 

The contour should be chosen such that the model is large enough that the results are not 

influenced by the boundary conditions. For this case the following boundaries are used: 

 

𝑦𝑚𝑖𝑛 = −40,0 𝑚,   𝑦𝑚𝑎𝑥 = +5,1 𝑚 

𝑥𝑚𝑖𝑛 = −50,0 𝑚,   𝑥𝑚𝑖𝑛 = +50,0 𝑚 

 

After defining the general properties, setting up a PLAXIS model consists of five main steps. For each 

of these steps it is explained which choices are made. The steps are: 

 Soil 

 Structures 

 Mesh 

 Flow Conditions 

 Staged construction 
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Soil 

 

The next step is defining the soil profile and the model used to describe the soil behavior. The soil 

profile is determined in chapter 4 and also shown in Table 18. The parameters are based on the CPT 

found in Appendix D and table 2b in NEN9997-1. 

In chapter 2 several soil models available in PLAXIS are described. Based on this, either the 

Hardening Soil or the Hardening Soil Small Strain would be most suitable for the modelling of quay 

walls.  

The most accurate would be to use the Hardening Soil Small Strain. This soil model is used in 

the base model.  

A drained analysis is performed, as mostly sand is present, with only small clay layers in 

between, allowing pore pressure to dissipate quickly. Furthermore, no backfill will be placed behind 

the quay, so no excess pore pressures are expected.  

 

 
Table 18 Characteristic Soil Parameters PLAXIS 

Top level 
layer  
[m NAP] 

Soil type γ 
[kN/m

3
] 

γsat 

[kN/m
3
] 

ϕ 
[⁰] 

c 
[kN/m

2
] 

𝑬𝒐𝒆𝒅
𝒓𝒆𝒇

  

[kN/m
2
] 

m 

+5,1 Sand, clean, loose 17 19 30 0 15000 0,5 

-4,0 Clay, slightly sandy, weak 15 15 22,5 0 1500 1 

-5,5 Sand, clean, loose 17 19 30 0 15000 0,5 

-10,0 Sand, slightly silty clayey 18 19 27 0 35000 0,5 

-14,0 Sand, clean, loose 17 19 30 0 15000 0,5 

-21,0 Clay, slightly sandy, weak 15 15 22,5 0 1500 1 

-23,0 Sand, clean, solid 18 20 32,5 0 75000 0,5 

 

 

For the following parameters a ratio is defined: 

 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

= 𝐸50
𝑟𝑒𝑓

 and 3 ∗ 𝐸50
𝑟𝑒𝑓

= 𝐸𝑢𝑟
𝑟𝑒𝑓

 

The stiffness ratio used above is the default ratio. The used ratio between 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

= 𝐸50
𝑟𝑒𝑓

 holds 

mainly for sandy soils. For clay it is normally the case that 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

< 𝐸50
𝑟𝑒𝑓

. The influence of this 

assumed ratio should be small as only small clay layers are present.  

 𝜓 = max (0, 𝜑 − 30)  

For frictional materials, sands, the angle of dilatancy is determined by the above formula. In 

case of clay or peat the angle is equal to zero. (Plaxis bv, 2017) 

 𝑅𝑖𝑛𝑡 = 0,8 

The ratio of the interface shear strength is determined with the Handbook Quay Walls 

(Broeken & de Gijt, 2013), this gives a ratio of 𝑅𝑖𝑛𝑡 of 0,8 to 0,9. 

 

For the Hardening Soil Small Strain two additional parameters are required. These are: 

 𝛾0,7 = 10−4 

This parameter describes the shear strain for which the shear modulus is reduced to 70% of 

its small strain value. A value based on experience is used. (van der Giessen & Wolters, 

2015). The assumed value for 𝛾0,7 is mostly reasonable for sandy soils. The stiffness of the 

clay layers is lower and thus the value of 𝛾0,7 should be higher for the clay layers. It is 

assumed that the influence of this is limited, as the clay layers are small relative to the sand 

layers.  
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 𝐺0 = 1,2 ∗ 𝐸𝑢𝑟
𝑟𝑒𝑓

 

𝐺0represents the shear strain at very small strain. A value based on experience is used. (van 

der Giessen & Wolters, 2015) 

The parameters 𝛾0,7 and  𝐺0 are assumptions based on experience. It is however, always preferred to 

use parameters which can be based on in-situ tests. As these tests are not available the values are 

assumed.  

As advised by the PLAXIS Materials Model, for any parameter not mentioned, the default value is 

used. 

 

Structures 

 

In the structures step, the geometry of the quay is defined, the structural parts and the loads are 

defined.  

The geometry is defined as: 

 Ground level  NAP + 5,10 m 

 Design depth  NAP - 8,90 m 

The next step is to include the structure in the model. The structure is an anchored combi-wall with 

the characteristics and dimensions as shown in chapter 4. The combi-wall consists of two parts with 

different characteristics. The top part consists of both sheet piles and tubular piles, while the bottom 

part has only the tubular piles. In PLAXIS these parts are modeled as two different plate elements.  

The input for the two plate elements is: 

 Sheet piles and Tubular Piles 

o Level:    NAP +5,1m  – NAP -12,5 m 

o 𝐸𝐴1 =   6,32 ∗ 106 𝑘𝑁/𝑚 

o 𝐸𝐼 =   5,65 ∗ 105𝑘𝑁𝑚2/𝑚 

o 𝑤 =   2,4 𝑘𝑁/𝑚 

o 𝜈 =   0,2 

 

 Tubular Piles: 

o Level:    NAP -12,5 m – NAP -27,5 m 

o 𝐸𝐴1 =   3,54 ∗ 106 𝑘𝑁/𝑚 

o 𝐸𝐼 =   4,89 ∗ 105𝑘𝑁𝑚2/𝑚 

o 𝑤 =   1,30 𝑘𝑁/𝑚 

o 𝜈 =    0,2 

Also, the anchors need to be specified, the characteristics of the anchors need to be determined per 

running meter. The anchors behave linear elastically. This results in the following input: 

 Specifics of anchor 1  

o Top level   NAP + 1,5 m 

o Model Type:   Fixed-end anchor 

o 𝐸𝐴 =   3,92 ∗ 105 𝑘𝑁/𝑚 

o Angle    42,5 ⁰ 

o Equivalent length 𝐿𝑒𝑞 = 43,5 m 

o Prestress  425 kN 
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 Specifics of anchor 2  

o Top level  NAP + 0,5 m  

o Model Type:   Fixed-end anchor 

o 𝐸𝐴 =   3,92 ∗ 105 𝑘𝑁/𝑚 

o Angle    47,5 ⁰ 

o Equivalent length 𝐿𝑒𝑞 = 39 𝑚 

o Prestress  325 kN 

In the structures step, also the loads must be defined. The loading conditions are assumed to be 

equal to the loads with the Blum model. So, a surcharge of 100 kN/m
2 
is applied on the ground level.  

On the passive side of the quay the weight of the bottom protection is included in the calculation. 

The bottom protection applied is loose rock with a grading of 40-200 kg penetrated with 160 l/m
2
 

underwater concrete. The thickness of this layer is 0,55 m. This weight is calculated as: 

(Timmermans, 2015) 

 

 𝜌𝑠 = 2650 𝑘𝑔/𝑚3 Weight of the stones in bottom protection 

 𝑑 = 0,55 𝑚  Thickness of bottom protection 

 𝑣 = 0,55  Void ratio of bottom protection 

 𝜌𝑐 = 1900 𝑘𝑔/𝑚3 Weight of concrete used to penetrate the protection 

 

 𝑊 =
2650∗0,55∗(1−0,55)+0,160∗1900)

1000
= 9,60 𝑘𝑁/𝑚2 

 

 

Summarizing both the soil input and the structural input, the model is shown in Figure 45.  

 

 

Figure 45 PLAXIS input 
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Mesh 

 

PLAXIS divides the model into a finite number of finite elements. The composition of elements is 

called the mesh. PLAXIS can automatically generate the mesh, but the user has the possibility to 

define the fineness of the mesh. The finer the mesh, the more accurate the result but also the 

computation becomes more intensive. In combination with the 15-Noded elements, a mesh fineness 

of medium is selected. 

 

Flow Conditions 

 

In the step Flow Conditions, the water levels can be defined. It is assumed that the water levels are at 

NAP +0,0 m during the construction phases and during loading conditions the water levels are at: 

 Groundwater level  NAP - 0,34 m 

 Harbor water level   NAP - 0,84 m 

Due to this water level difference, there will be a head difference below the tip of the sheet piles. This 

physically cannot be true, therefore in the staged construction options the pore pressures are 

calculated according to Steady state groundwater flow. PLAXIS then takes into account this head 

difference and ensures an equal water pressure on both sides below the tip of the sheet pile. 

 

Staged Construction 

 

The final step is to define the phases. The phases can be used to simulate the construction of the 

quay and to evaluate different loading conditions. The phases shown in Table 19 are used. These 

phases represent both the construction and the loading conditions of the quay. The settings which are 

not mentioned in Table 19 are set to their default values.  

 

Table 19 Used calculation phases in PLAXIS 

Phase Description 

Initial 
Phase 

In the Initial Phase PLAXIS calculates the initial stresses in the soil using the K0-
procedure. This represents the situation prior to the construction process. 

Phase 1 Placing the combi-wall and reset displacements (strains) to zero, stresses remain 
equal to Initial Phase 

Phase 2 Excavate to NAP + 0,5 m.  

Phase 3 Placing anchors at NAP + 1,5 m and NAP + 0,5 m and prestressing top anchor to 
425 kN and bottom anchor to 325 kN. 

Phase 4 Excavate to final depth, NAP – 8,90 m. 

Phase 5 Apply the water level difference : 
Groundwater level NAP - 0,34 m 
Harbor water level  NAP - 0,84 m 
In this phase and the next phase, the pore pressure calculation is set to Steady state 
groundwater flow to ensure that the water pressure below the tip, NAP -12,5,  of the 
sheet piles is equal on both sides. 

Phase 6 Apply surcharge of 100 kN/m
2
 at ground level 
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Results 

 

Using the input defined above, the following results are obtained in phase 6. The x-axis is positive 

defined towards the landside, so a positive deflection is towards the soil and a negative deflection is 

towards the harbor. 

 Moments in wall: 𝑀𝑚𝑎𝑥 = 550,7 𝑘𝑁𝑚  𝑀𝑚𝑖𝑛 = −1337 𝑘𝑁𝑚 

 Deflection wall:  𝐷𝑚𝑎𝑥 = −0,089 𝑚 

 Anchor force 1  𝑇1 = 568,53 𝑘𝑁/𝑚 

 Anchor force 2  𝑇2 = 539,21 𝑘𝑁/𝑚 

 Calculation time 𝑡 = 312 𝑠 

In Figure 46 the moment diagram as output from PLAXIS is shown. 

 

 

 

Figure 46 PLAXIS moment diagram 
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The above presented results are compared to a D-Sheet Piling model that was used for the design of 

the quay. The results of PLAXIS and D-Sheet piling should be in the same order of magnitude. The 

PLAXIS model and D-Sheet Piling model are compared in the SLS conditions. In both of the models 

the characteristic values are used without applying partial factors. The D-Sheet Piling results are: 

 Moments in wall: 𝑀𝑚𝑎𝑥 = 500,7 𝑘𝑁𝑚  𝑀𝑚𝑖𝑛 = −1453,6 𝑘𝑁𝑚 

 Deflection wall:  𝐷𝑚𝑎𝑥 = −0,0589 𝑚 

 Anchor force 1  𝑇1 = 502,5 𝑘𝑁/𝑚 

 Anchor force 2  𝑇2 = 441,9 𝑘𝑁/𝑚 

In general, the results of PLAXIS and D-Sheet Piling are quite similar. The largest difference in the 

results is in the moments, the field moment predicted in D-Sheet Piling is larger than PLAXIS predicts. 

Several reasons can be given for this difference. The major contribution to this difference is caused by 

neglecting arching in D-Sheet Piling. The calculation model of D-Sheet Piling is based on elasto-

plastic springs, these springs are uncoupled and the software is therefore unable to model arching in 

the soil. Arching leads to a reduced field bending moment and an increased support bending moment 

and anchor force. In this case the 𝑀𝑚𝑖𝑛 represents the field moment and the 𝑀𝑚𝑎𝑥 the support 

bending moment. So, the difference in the predicted moments is expected. 

Furthermore, some minor differences are found in the results, these can be contributed due to 

the fact that PLAXIS uses a different soil behavior model. Another minor contribution is expected by a 

difference in pore pressures. In the D-Sheet Piling model the water level difference is not corrected at 

the tip of the sheet pile, i.e. the pore pressures at the tip are not equal at the left and right side of the 

pile. In the PLAXIS model this effect is taken into account as explained in Table 19. 

In chapter 5 Blum calculations have been performed for the quay. In chapter 5 mean values are used. 

The results presented here are based on the characteristic values. Furthermore, the anchor force 

shown here is corrected for its inclination. The anchors are placed with an average angle of 45 ⁰. The 

anchor force as calculated by Blum is only the horizontal component while both PLAXIS and D-Sheet 

Piling show the axial anchor force. For comparison the Blum anchor force is transferred to the axial 

force.  

Furthermore, only one anchor is included in the Blum calculation. The force shown here is 

thus the total anchor force which in reality is divided over two anchors.  

The Blum results are: 

 Moments in wall: 𝑀𝑚𝑖𝑛 = −1086,82 𝑘𝑁𝑚 

 Deflection wall:  𝐷𝑚𝑎𝑥 = −0,087 𝑚 

 Anchor force   𝑇 = 781,81 𝑘𝑁/𝑚 

Relatively larger differences are found with Blum compared to PLAXIS and D-Sheet Piling. This can 

be explained by the approximation used in Blum. This approximation is reasonable if the structure is 

close to failure. As noted before, the quay is not close to failure and thus the results of Blum show a 

larger difference.  

It is concluded that the differences between the calculation models are explainable and thus that the 

PLAXIS model can be used for the calculations.  
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Optimized model 

 

The results found in the base model are obtained after 312 seconds. If one would execute the same 

calculation as done for the model of Blum, BUS with Subset Simulation, on average 3000 calculations 

are required. These 3000 calculations are under the assumption that 500 samples are used in each 

Subset. The total time to evaluate this model would then be 7,2 days. Furthermore, six model runs are 

required to determine the result for the different measurement cases. 

This is too long for the purpose of this thesis. Therefore, optimizations are sought for. These are 

sought in the following settings: 

 15-Noded vs 6-Noded 

 Hardening Soil Small Strain vs Hardening Soil 

 Reducing the number of phases 

 Reducing the number of layers 

 Fineness of mesh 

 Model Boundaries 

 

The results of the optimization process are found in Table 20. Iteratively the base model is changed 

and the results are presented. In green is indicated which optimized model is selected for the 

probabilistic calculations. The optimizations V6, V7, V9 and V10 in which the number of phases and 

the number of soil layers is reduced are explained here: 

Step V6 The Initial Phase and Phase 1 are combined. Phase 5 and Phase 6 are also 

combined. 

 

Step V7 In addition to the steps in V6, also Phase 2 and Phase 3 are combined. 

Step V9  The Clay, slightly sandy, weak layer at NAP – 4 till NAP -5,5 m is removed. Resulting 

in a Sand Loose layer running from NAP 5,1 m till NAP -10 m 

StepV10 In addition to step V9, also the Clay, slightly sandy, weak layer from NAP -21 m till 

NAP -23 m is removed. 

Step V11 In PLAXIS it is possible to locally increase the density of the mesh. This allows a 

higher number of elements in high stress areas. In this optimization step in an area 

between −2 < 𝑥 < 2 the mesh size is increased by a factor 2. 

 

Selection of optimized model 

 

Looking at the results in Table 20 some remarks can be made: 

 Base  →  V1 

The use of the Hardening Soil instead of Hardening Soil Small Strain changes the result 

significantly. The resulting moments and anchor forces change in the order of 5-10% and the 

relative change in displacements is even larger. However, the calculation time is more than 

halved. Due to the much faster calculation time, the Hardening Soil mode will be used. 
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 V1  →  V2/3 

The reduced model size influences the calculated displacements, with only a minor reduction 

of the calculation time. The predicted moments and forces are more or less equal to predicted 

with the larger boundaries. In the probabilistic model the larger model size is used. 

 

 V1  →  V7 

In the process from model V1 to model V7, the results have changed in the order of 1%. This 

change does have the result that the calculation time significantly reduces. Therefore, the 

optimizations in 6-Noded elements, mesh size and phasing are used in the final model. 

 

 V7  →  V8 

Combining Phase 2 and Phase 3, so the first small excavation and the placing of the anchors, 

results in a significant impact on the predicted displacements, while the moments and anchor 

forces remain in the same order of magnitude. As the calculation time does not significantly 

reduce, therefore in the final model five phases will be used. 

 

 V7  →  V9/V10 

Using the same reasoning, reducing the number of soil layers has a significant impact on the 

results and only a minor influence on the calculation time. Therefore, seven layers will be 

used. In this deterministic calculation the influence of the reduced layers on the calculation 

time cannot be determined. In probabilistic calculations this influence might be more 

pronounced due to the fact that fewer variables need to be included. 

 

 V7 →  V11 

The locally increased mesh density has a significant impact on the calculation time. The 

calculation takes almost four times longer, while the results are more or less equal. The global 

coarse mesh seems to be an optimal solution for results and calculation time. 

 

Using the results presented in Table 20 an optimized model is determined. This optimized model uses 

the following settings: 

 Number of Phases   5 phases 

Combining Initial Phase and Phase 1 and combining Phase 5 and Phase 6.  

 Soil model    Hardening Soil 

 Boundaries    𝑥𝑚𝑖𝑛 = −50,0 𝑚, 𝑥𝑚𝑖𝑛 = +50,0 𝑚 

If smaller boundaries are applied the results change significantly without any change in the 

soil parameters, so these boundaries are chosen. 

 Mesh size    Coarse 

 Number of Nodes per element  6-Noded elements 

 Number of layers   7 layers 

These settings represent the use of the optimized model number V7, as indicated in green. 
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Table 20 Optimization steps 

Model Results per running meter quay Settings:           

  𝑀𝑚𝑖𝑛  
[kNm] 

𝑀𝑚𝑎𝑥 
[kNm] 

𝑇1   
[kN] 

𝑇2   
[kN] 

𝐷𝑡𝑜𝑝 [m] 𝐷𝑚𝑎𝑥   
[m] 

𝑇𝑖𝑚𝑒  
[s] 

# phases Soil 
model 

Boundaries 
[𝑥𝑚𝑖𝑛 − 𝑥𝑚𝑎𝑥] 

Mesh 
Size 

Nodes per 
elements 

# layers 

Base -1373,0 550,70 568,53 539,21 0,006 -0,089 312 7 phases HS-SS3 -50 till +50 Medium 15-noded 7 layers 

V1 -1454,0 381,80 572,81 519,753 0,013 -0,100 123 7 phases HS
4
 -50 till +50 Medium 15-noded 7 layers 

V2 -1454,0 354,60 569,140 517,253 0,013 -0,098 113 7 phases HS -40 till +40 Medium 15-noded 7 layers 

V3 -1459,0 374,30 560,170 510,907 0,014 -0,096 113 7 phases HS -30 till +30 Medium 15-noded 7 layers 

V4 -1449,0 389,60 571,329 519,627 0,014 -0,098 66 7 phases HS -50 till +50 Fine 6-noded 7 layers 

V5 -1445,0 400,70 571,38 518,196 0,014 -0,098 27 7 phases HS -50 till +50 Medium 6-noded 7 layers 

V6 -1448,0 391,40 571,53 516,81 0,014 -0,099 23 7 phases HS -50 till +50 Coarse 6-noded 7 layers 

V7 -1447,0 390,20 572,67 517,42 0,013 -0,099 20 5 phases HS -50 till +50 Coarse 6-noded 7 layers 

V8 -1534,0 393,30 584,54 520,40 0,038 -0,095 16 4 phases HS -50 till +50 Coarse 6-noded 7 layers 

V9 -1293,0 392,90 561,78 496,81 0,011 -0,093 17 5 phases HS -50 till +50 Coarse 6-noded 5 layers 

V10 -1272,0 310,00 570,97 506,79 0,003 -0,087 19 5 phases HS -50 till +50 Coarse 6-noded 4 layers 

V11 -1449,0 386,60 574,531 519,704 0,011 -0,101 60 5 phases HS -50 till +50 Coarse+ 6-noded 7 layers 

 

 

 

 

                                                   
3
 HS-SS = Hardening Soil Small Strain 

4 HS = Hardening Soil 
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Appendix G Results update PLAXIS model 

 

The results of updating the PLAXIS model are presented here. In section 6.3 the results of the update 

for the maximum moment, displacement and anchor force are provided. In this appendix the results of 

the update for each included variable and each of the six cases defined in section 6.3 are shown here 

in Figure 47 till Figure 52. It is chosen to plot the relative change of the posterior distributions. The 

relative change is defined as: 

𝐶ℎ𝑎𝑛𝑔𝑒 =
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝑃𝑟𝑖𝑜𝑟
 

A relative change larger then value one indicates that the posterior value is larger than the prior value. 

If the change is smaller than one, this means a lower posterior value. The red bars represent the 

relative change in posterior mean and the blue bars represent the relative change in posterior 

standard deviation.  
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Figure 47 PLAXIS updated variables case anchor strain high 
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Figure 48 PLAXIS updated variables case anchor strain average 
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Figure 49 PLAXIS updated variables case anchor strain low 
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Figure 50 PLAXIS updated variables case displacements high 
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Figure 51 PLAXIS updated variables case displacements average 
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Figure 52 PLAXIS updated variables case displacements low 
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