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Executive Summary

A popular class of methods for solving Fluid-Structure Interactions (FSI) problems
computationally are the moving mesh deformation methods. These methods gener-
ally involve deforming the fluid domain so that it conforms to the structure as it under-
goes changes. An efficient and robust moving mesh technique involves interpolation
of displacements using Radial Basis Functions (RBFs). But it is noticed that large de-
formations in the computational domain restrict the applicability of RBF methods due
to resulting poor mesh quality. This further worsens the accuracy of the simulation by
introducing additional numerical errors. The standard practice to overcome this de-
ficiency has been to introduce the computationally expensive step of re-meshing the
entire domain.

The current thesis aims to tackle this issue of poor mesh quality caused due to
large deformations of the structure by introducing localized corrections in regions of
poor quality. But deforming the mesh, then calculating the quality and then apply-
ing corrections would become an expensive operation of its own. Therefore, firstly a
methodology is devised to predict the state of the mesh after the deformation apriori
to performing the deformation step. It is found that the gradient information from the
deformation functions can be utilized to accurately predict the various algebraic mesh
quality metrics. The algorithm is tested on 1D and 2D meshes and grid convergence
studies are performed to validate the predicted quality with the actual quality post-
deformation. The theoretical framework for the 3D prediction algorithm is also laid out.

Once the mesh quality is predicted, based on a user-defined threshold, if the quality
is deemed to be poor in a certain region then localized corrections are implemented to
improve the mesh quality. These corrections are introduced in the form of enrichment
functions on additional control points within the domain. The gradient of the deforma-
tion function is constrained using these functions such that a good quality and smooth
mesh deformation is obtained post-deformation. Multiple enrichment functions are ini-
tially tested in 1D in a global sense. The findings from this analysis are then carried
forward to analyze where to introduce these additional control points for local correc-
tions and the nature of the correction itself.

Finally, the methodology is tested on 2D unstructured grids. It is found that the
imposition of gradients is more complicated in the 2D sense as global information can
not be used directly as in the 1D case. Therefore, a parametric study is performed
to analyze if a logical conclusion can be made with regard to the imposition of the
gradients. It is found that such a logical trend is not clear, therefore the strategy is
modified such that the interpolation coefficients are imposed explicitly instead based
on data available from eigen decomposition of the deformation gradients. It is found
that this strategy performs admirably when compared to the results obtained from the
standard RBF model. In conclusion, the method significantly improves the robust-
ness of the mesh deformation process by ensuring that large deformations can be
accommodated in the domain without huge computational costs.

xv





1
Introduction

In the current chapter, the motivation behind selecting this particular topic for a
thesis is provided along with a brief description of the background information required.
Furthermore, the questions that are aimed to be answered at the end of the thesis are
framed following which a brief overview of the structure of the report is presented.

1.1. Motivation
The study of FSI has been of paramount importance to engineers since scientists

began to note that the complex interactions between a deforming body and a fluid
could lead to catastrophic structural failures, as was noted in the infamous case of
the Tacoma narrows bridge collapse, which occurred due to aeroelastic flutter caused
by the development of Von Karman vortex streets[6]. Such interactions showcased
that it is not always possible to study structural and fluid mechanics in a decoupled
architecture. Furthermore, it was noted that the research on FSI is a critical neces-
sity in various other domains as well, such as arterial flows in medical sciences[2,
4], wind turbine design[3, 24], flows in automobile and aircraft engines, partially filled
liquid containers[37] and so on. Since experimental analysis is a very costly oper-
ation and sometimes is too complex to be implemented, it is necessary to develop
robust and efficient computational methods that can accurately capture this complex
multi-physical interaction and provide reliable results. Over the years, several differ-
ent methods have been developed with this aim.

But it is noticed that a lot of challenges are involved when solving for large structural
deformations due to issues with computational efficiency and poor mesh quality. The
issue with poor mesh quality is especially critical as large deformations can often lead
to inversion of cells within the domain thereby leading to the termination of simula-
tions. One of the way around this problem is to introduce a remeshing step whenever
the mesh quality becomes too low. But this method is computationally very expen-
sive. Therefore, the objective of the current thesis is to develop a novel framework of
predicting the quality of the mesh deformation without actually deforming the mesh,
so that additional constraints can be introduced into the deformation step such that
the mesh quality does not fall below a certain user-defined threshold.

1.2. Background
In order to solve an FSI problem, there are two approaches that can be undertaken,

based on whether the solver performs structural as well as fluid mechanics calcula-
tions in a single framework, or whether a modular approach is utilized by integrating
two separate CFD and CSM solvers, then coupling their solutions together using a
pre-defined interface. The monolithic approach i.e. the singular framework approach

1
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leads to better computational efficiency as it does not involve any coupling algorithms
between the solid and the fluid domain. On the other hand, mathematically it is pre-
ferred to solve the structural mechanics in a Lagrangian framework (FEM) where every
node in the structural mesh is accounted as a structural particle and moves according
to the deformation load applied. Whereas, the fluid domain is preferably treated under
an Eulerian framework (FVM) as it is a purely conservative method i.e. since the fluxes
are defined over the cell faces, which are common for adjacent cells, the conserva-
tion laws hold true even at a local level. Both these formulations are incompatible
with each other. Furthermore, solving the structural mechanics involves differential
equations with higher order in comparison to the Navier-Stokes equations leading to
increased complexity. Hence, it is generally preferred to use modular or partitioned
solvers while solving FSI problems as they allow the structural and fluid mechanics to
be solved under two different grids. The results from one mesh to the other are trans-
ferred using a coupling algorithm along the pre-defined interface. The only disadvan-
tage is convergence becomes difficult to achieve under certain conditions. Therefore
partitioned solvers are generally preferred due to their greater flexibility. A depiction
of the various facets of partitioned solvers is presented in Figure 1.1

Structural Solver Fluid Mesh Deformation Fluid Solver

Interface 

Displacement

Moving 

Domain

Interface

Forces

Figure 1.1: Steps involved in partitioned solvers for FSI

The objective of the current thesis is focused on the fluid mesh deformation part in
the figure above. Since the deformation of a structure leads to a change in the fluid
domain boundary as well, it is important that the structural displacements are accu-
rately captured in the fluid mesh. Otherwise, at each time step a re-meshing algorithm
needs to be applied, which would generate a completely new mesh with the new con-
nectivity. This becomes more difficult when complex geometries are involved as they
require an unstructured mesh, which usually requires significant user input in order
to produce a good mesh. Furthermore, this approach would consume a lot of com-
putational power and time, especially when large or well-refined domains are involved.

Therefore, in order to capture structural deformations on the same mesh and avoid
having to re-mesh the entire domain, several methods have been developed which
can be broadly classified into two categories: fixed mesh approaches and moving
mesh approaches. As the names suggest, fixed mesh methods utilize a fixed back-
ground mesh for the fluid domain, over which the structural presence is administered
using various methods. The moving mesh methods, on the other hand, are based on
an ALE formulation[26, 15], where the fluid mesh deforms along with the solid body
to conform to its new shape/location post-deformation. This conformity is maintained
through a mapping algorithm, which is based on the location of the solid at the current
time step. Based on whether the mesh is structured or unstructured, the technique
utilized to perform this mapping might differ. Fixed mesh methods can perform well
when the structure undergoes large displacements as a rigid body. But, they tend to
perform poorly when the structure itself is deforming due to poor boundary layer cell
quality, which is a major problem as capturing boundary layer dynamics accurately is
of critical importance for FSI applications. Therefore, the current thesis will concen-
trate on the moving mesh approach. A succinct description of the computational effort
required for several of the moving mesh approaches is provided in Table 1.1.
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Figure 1.2: Remeshing at each time step as the particle moves within the domain. Top: at t, Bottom: at 𝑡 + 𝛿𝑡 [25]

Method Computational effort
1 Master-Slave coupling
2 Lineal springs Heavy (𝒪 (𝑁grid )
3 Torsional springs Heavy (𝒪 (2 ⋅ 𝑁grid ))
4 Semi-torsional springs Heavy (𝒪 (𝑁grid ))
5 Least Squares Very Heavy
6 Solid Body Elasticity Very Heavy
7 Laplacian Smoothing Heavy (𝒪 (𝑁grid ))
8 Biharmonic operator Heavy (𝒪 (2 ⋅ 𝑁grid ))
9 Radial basis function interpolation Medium (𝒪 (𝑁boundary ))

Table 1.1: Computational cost of different moving mesh methods[40]

Among all the interpolationmethods, the RBF formulation generates themost sparse
system and hence, will be selected for further study in this report.

The fluid mesh is deformed after every time step based on the displacement of the
structure from the previous time step or from its initial position i.e. based on the relative
displacement method or absolute displacement method. Each method has its own
advantages and disadvantages that need to be considered before implementation.
Furthermore, the deformation step introduces several challenges as the truncation
error varies with every time step due to variations in cell size and can also lead to
instances with hanging nodes[10]. These hanging nodes. depicted in Figure 1.3, lead
to a poor quality mesh after deformation as they do not have sufficient neighbouring
nodes which leads to a mismatch in equilibrium balance. In some cases with large
deformations, the cell itself might get inverted leading to negative volumes/degenerate
cells, which have an adverse effect on the stability and accuracy of the solution. These
considerations would be further discussed in chapter 2
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Figure 1.3: Elements depicting hanging nodes: Edge 𝐸𝑧 is a hanging edge with two children 𝐸1,𝑧 , 𝐸2,𝑧 [10]

The general remedy for poor quality meshes due to large deformations in the mov-
ing mesh set-up in the past has been to introduce remeshing with completely new
connectivity from scratch[32, 31]. But in recent years, more efficient methods have
been introduced such as a mixture of fictitious domain and ALE methods[14, 12],
which provide greater robustness for large deformations.

Therefore, from the above discussion, it can be deduced that it is a very interesting
challenge to develop a method of deforming meshes which will ensure a better quality
of meshes when undergoing large deformations. But in order to do so in a computa-
tionally efficient manner, there is a lot of scope for further research. This leads to the
possibility of implementing localized corrections to the deforming mesh using the RBF
interpolation method whenever the quality of a cell goes below a certain threshold.

1.3. Research Objectives
In light of the literature study performed before the beginning of this project, the

following research question, which forms the basis of this report is arrived at:

”When a structure undergoes large deformations or displacements within the do-
main, can the application of localized enrichment functions within the domain improve
mesh deformation quality and computational efficiency?”

In order to answer the research question posed above, it is necessary to consider
the multiple facets involved in the implementation of the localized correction algorithm.
Therefore, it is important to frame sub-questions that will help ensure all the underlying
considerations are accounted for:

1. How do the localized enrichment functions help the mesh deformation algorithm
perform better in comparison to the regular RBF interpolation-based mesh defor-
mation method?

• Is there a significant gain in the final quality of the obtained mesh?
• How significant is the gain in quality in comparison with the computational
resources expended?

2. Which mesh quality metric should be utilized for setting the threshold?

• Is it possible to predict when/where to perform the mesh quality calculation?
• How cheap is this operation?

3. How much effect will there be on the accuracy of the final displacement due to
localized interpolation of displacements?

• Can control point reduction algorithms be applied to the local RBF correction
algorithm without having any detrimental effect on the mesh quality?

4. How is the mesh quality and efficiency impacted when control point reduction
algorithms are applied to the entire system?
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• What is an acceptable level for the error tolerance and how does it impact
the mesh quality and efficiency of the algorithm?

By framing these sub-questions it is possible to provide an in-depth performative
analysis of the algorithm being developed in comparison to the original algorithm as
well as its derivatives that have been developed to overcome the challenges associ-
ated with large deformations. Furthermore, the ALE method in itself is not the most
efficient mesh deformation algorithm. Even if the developed algorithm provides very
accurate results, it would not be acceptable at the cost of an exponential increase in
computational time. Therefore, it is of paramount importance to ensure that the com-
putational cost involved in order to implement this localized optimization is minimized.

1.4. Structure of Report
The current report is structured as follows: chapter 2 looks at the theoretical knowl-

edge available in the literature on the RBF mesh deformation methods including the
methodology, optimization routines and the various mesh quality metrics available.
Chapter 3 delves into the methodology of predicting mesh quality without having to
deform the mesh. Chapter 4 then goes on to explain in a 1D setup, how to utilize the
predicted quality information in order to impose enrichment functions in the domain
to constrain sharp gradients in the deformation. Chapter 5 then goes on to expand
the enrichment methodology in 2D and the challenges associated with it. Finally, 6
provides the conclusions that could be drawn from the current project and gives sug-
gestions on how the current work can be expanded in the future.





2
Theoretical Background

The current chapter provides a theoretical foundation required for the current thesis.
Firstly the methodology of the conventional RBF interpolation-based mesh deforma-
tion is described in section 2.1. Then the types of RBFs that can be utilized in order
to perform the interpolation are presented and an analysis is also presented on which
functions perform this process optimally to fulfil the research objectives. Furthermore,
the necessity of utilizing the polynomial function in the formulation and the choice of
displacement method that would be ideal for the application of the current thesis is
discussed.

Furthermore, section 2.2 provides a discussion on the various optimization algo-
rithms available in the literature that can be utilized to make the mesh deformation
process more streamlined. Special emphasis is put on the greedy algorithm devel-
oped by Rendall and Allen[38, 39] and its subsequent derivative algorithms to make
sure that the efficiency of the current approach can be further improved. This is a
critical section of the implementation as moving mesh methods are very computation-
ally taxing when the grid size becomes large. Further adding a localized interpolation
step will surely drive the efficiency lower, which might lead to a situation where the
computational cost is not realistic with regards to the solution accuracy.

Finally, the mesh quality metrics that are best suited to qualify as the base criterion
for implementing the localized corrections are discussed in section 2.3. The choice
of the criterion is of critical importance to maintain high efficiency, as performing the
large calculations involved in calculating mesh quality after each deformation step is
not a feasible operation. Therefore, it is necessary to analyze which mesh properties
have the most significant impact on the final quality of the mesh. An important con-
sideration to make while looking at the mesh quality is that it is recommended to look
at the minimum value of the selected qualifying criterion rather than considering the
average quality over the entire mesh. The minimum quality metric is more significant
because even a single degenerate element can cause the whole simulation to fail as
demonstrated by deBoer, Schoot and Bijl[7].

2.1. RBF Interpolation Method for Mesh Deformation
The use of RBF based interpolation techniques has become quite popular for per-

forming mesh deformations since it does not require any grid connectivity informa-
tion[7]. Initially a projection method is used to transfer the known displacement values
from the structural boundary points to the fluid mesh interface. Then the RBF inter-
polation method utilizes the boundary node displacement values at the interface to
interpolate the displacements of the internal nodes of the fluid mesh. The RBFs oper-
ate in such a way that the displacement from the boundary points can be transferred

7
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to the internal points using an interpolation function, ’s’, which can be represented in
the domain as a sum of basis functions, given as:

𝐬(𝐱) =
𝑁𝑏

∑
𝑗=1
𝜸𝑗𝜙(‖𝐱 − 𝐱𝑏𝑗‖) + 𝐩(𝐱), 𝑗 ∈ [1, 𝑁𝑏] (2.1)

where, 𝐱 represents [𝑥, 𝑦, 𝑧] and 𝑥𝑏𝑗 are called as centres and represent the bound-
ary points at which the displacements are already known. The RBF’s extend from
these centres in a symmetric fashion. The function might be global or local in nature
i.e. the function at these centres can affect all the internal points within the domain
regardless of location or the function can exert influence only over a certain range de-
termined by the support radius. The choice of the domain of influence has an impact
on the smoothness of the final solution and is discussed in detail in subsection 2.1.1.

Furthermore, 𝑁𝑏 in Equation 2.1 is the number of boundary points, p is a polynomial
set incorporating the three spatial directions, 𝜙 is the chosen basis function and 𝛾𝑖 is
a weighting coefficient. The polynomial coefficients, 𝛽𝑖 and the weighting coefficients
are evaluated based on the interpolation conditions, which are given as:

𝐬(𝐱𝐛𝐣) = 𝐝𝐛𝐣 (2.2)
𝑁𝑏

∑
𝑗=1
𝜸𝑗𝐪(𝐱𝐛𝐣) = 0 (2.3)

where 𝐝𝐛𝐣 is the discrete values of the displacements of the boundary nodes which
is already known, 𝐪 represents all the polynomials with degrees lower than or equal
to the polynomial 𝐩. The first interpolation condition ensures that the interface loca-
tion on the fluid mesh coincides with the displacement values that are attained from
the structural mesh. While the second interpolation condition ensures that the con-
tribution of the shape functions does not represent anything that can be represented
by just using the polynomial. Thereby, allowing a unique solution to be obtained for
a given problem. For this to be possible, the interpolation matrix has to be positive
definite[9], which implies that the RBF has to be positive definite, which is generally
the case apart from some exceptions such as the thin plate spline. The degree of the
polynomial is dependent on the type of basis function being used.

Using the above conditions, it is possible to calculate the values of the weighting
coefficients and the polynomial coefficients by solving the system:

[𝐝𝐛0 ] = [
𝜙𝑏𝑏 𝑃𝑏
𝑃𝑇𝑏 0 ] [

𝜸𝑖
𝜷𝑖] , 𝑖 = 𝑥, 𝑦, 𝑧 (2.4)

Here, 𝜙𝑏𝑏 is the interpolation matrix of the size𝑁𝑏×𝑁𝑏 comprising the evaluated ba-
sis functions and P is a 𝑁𝑏×4matrix represented by [1 𝑥𝑏 𝑦𝑏 𝑧𝑏]. Therefore, in the
end, the size of the system that has to be solved in Equation 2.4 is (𝑁𝑏+4)×(𝑁𝑏+4).
This system can be easily solved using fast iterative methods[11] or using PoU ap-
proach[38] and is usually far more efficient than other moving mesh approaches,
where generally matrix sizes of 𝑁𝑖𝑛×𝑁𝑖𝑛 are encountered, where 𝑁𝑖𝑛 is the total num-
ber of interior nodes in the mesh.

After the polynomial and weighting coefficients are obtained, the displacements of
all the internal mesh nodes can be calculated by applying the interpolation function to
the internal nodes:
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𝐝𝐢𝐧𝐣 = 𝑠(𝐱𝑖𝑛𝑗) =
𝑁𝑏

∑
𝑗=1
𝜸𝑖𝜙(‖𝐱𝑖𝑛𝑗 − 𝐱𝑏𝑗‖) + 𝐩(𝐱𝑖𝑛𝑗), 𝑗 ∈ [1, 𝑁𝑖] (2.5)

Equation 2.5 can be written in the matrix form as,

[𝐝𝐢𝐧0 ] = [𝜙𝑖𝑛𝑏 𝑃𝑖𝑛] [
𝜙𝑏𝑏 𝑃𝑏
𝑃𝑇𝑏 0 ]

−1

[𝐝𝐛0 ] , 𝑖 = 𝑥, 𝑦, 𝑧 (2.6)

(a) Initial mesh (b) Interpolation function and final mesh

Figure 2.1: Visualization of RBF interpolation for mesh deformation[7]

2.1.1. Types of RBF interpolation functions
As mentioned earlier, the RBF interpolation functions can be broadly classified into

two categories i.e. global support RBF and local support RBF. Functions with global
support have an influence on all the mesh nodes within the domain which leads to a
smoother solution. But this happens at the expense of efficiency as the underlying
matrix to be solved becomes relatively dense. Therefore, generally it is preferred to
utilize locally supported RBFs which have zero influence in the domain after a certain
support radius. They can be represented as:

𝜙(𝑥) = {𝑓(𝑥) ≥ 0, 0 ≤ 𝑥 ≤ 1,
0, 𝑥 > 1 (2.7)

𝑓(𝑥) is generally constructed in such a way that it scales with the support radius of
the function. As the support radius increases, the function becomes more smoother
and hence, more accurate. On the other hand, it leads to denser matrix systems,
thereby increasing computational costs.

Multiple studies have been conducted on the performance of various RBFs in order
to analyze their effect on scattered data andmesh quality. A comprehensive study was
performed by deBoer, van der Schoot and Bijl[7], who recorded the effectiveness of
eight locally supported RBF’s given byWendland[46] along with six globally supported
RBF’s.
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No. Name 𝑓(𝜉)
1 CP 𝐶0 (1 − 𝜉)2
2 CP 𝐶2 (1 − 𝜉)4(4𝜉 + 1)
3 CP 𝐶4 (1 − 𝜉)6 (353 𝜉

2 + 6𝜉 + 1)
4 CP 𝐶6 (1 − 𝜉)8 (32𝜉3 + 25𝜉2 + 8𝜉 + 1)
5 CTPS 𝐶0 (1 − 𝜉)5
6 CTPS 𝐶1 1 + 20

3 𝜉
2 − 40𝜉3 + 15𝜉4 − 8

3𝜉
5 + 20𝜉𝑧2 log(𝜉)

7 CTPS 𝐶23 1 − 30𝜉2 − 10𝜉3 + 45𝜉4 − 6𝜉5 − 60𝜉3 log(𝜉)
8 CTPS 𝐶2𝑏 1 − 20𝜉2 + 80𝜉3 − 45𝜉4 − 16𝜉5 + 60𝜉4 log(𝜉)

Table 2.1: RBF’s with local support[46], studied in[7]

In Table 2.1, 𝜉 represents 𝑟/𝑅, implying that the RBFs are scaled with respect to
the support radius chosen by the user.

No. Name Abbreviation 𝑓(𝑥)
9 Thin plate spline TPS 𝑥2 log(𝑥)
10 Multiquadric biharmonics MQB √𝑎2 + 𝑥2

11 Inverse multiquadric biharmonics IMQB √ 1
𝑎2+𝑥2

12 Quadric biharmonics QB 1 + 𝑥2
13 Inverse quadric biharmonics IQB 1

1+𝑥2
14 Gaussian Gauss e−𝑥2

Table 2.2: RBF’s with global support studied in [7]

In general, with regards to interpolation of scattered data, the multi quadratic bihar-
monic (MQ) performed best[22]. But, deBoer, Schoot and Bijl[7] found that in terms of
mesh quality, five RBFs produced high-quality meshes after deformation. But, Wend-
land’s 𝐶2 continuous basis function with compact support (CP 𝐶2)[46] and Thin Plate
Spline(TPS) functions perform better in terms of efficiency. The functions are given
as:

• CP 𝐶2: 𝜙(𝜉) = (1 − 𝜉)4+ (4𝜉 + 1)

• TPS: 𝜙(𝑥) = 𝑥2𝑙𝑜𝑔(𝑥)
The TPS function is a global basis function which leads to a dense system. Further-

more, evaluating the logarithmic function involves greater computational costs leading
to lower efficiency of the algorithm compared to the 𝐶𝑃𝐶2 function. This leads to the
general preference of the CP 𝐶2 function for mesh deformation methods due to greater
efficiency as showcased in multiple studies[8, 38, 39]. Therefore, for the current study,
it was decided to utilize the CP 𝐶2 function for further analysis.

2.1.2. Polynomial function
As discussed in earlier sections, the polynomial function ensures that a unique so-

lution is attained. This is especially useful when the structure undergoes rigid body
translation or rotation within the domain, allowing the recovery of the exact movement.
However, when the structure undergoes elastic deformation, the polynomial function
does not provide any additional benefits and hence, can be neglected from the for-
mulation, especially while using Wendland’s 𝐶2 RBF which is strictly positive definite,
thereby making the interpolation condition represented in Equation 2.3 to be empty[5].
Furthermore, it was found by Rendall and Allen[38] that the polynomial function can
cause far-field boundary nodes to deform, which are supposed to remain stationary.
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Furthermore, as seen from Equation 2.4 the polynomial functions are present at the
ends of the interpolation matrix, which increases the bandwidth of the entire matrix.
This leads to the loss of sparseness that is obtained by the usage of locally supported
RBFs. This leads to an overall loss in efficiency for very little gain in quality as shown
in Figure 2.2, which depicts a prismatic block undergoing severe rigid translation and
rotation[17]. Hence, it is prudent to ignore the addition of the polynomial function un-
less a globally supported function like the TPS is used, which leads to the interpolation
matrix remaining dense regardless of the presence of the polynomial function. Since
only locally supported basis functions will be used in the current study, it is safe to
ignore the polynomial term in the formulation without an adverse impact.

Figure 2.2: Effect of polynomial term [17]

2.1.3. Choice of displacement method
An important consideration to make when implementing the ALE formulation is

whether the displacements are considered in an absolute sense or relative sense.
As explained in the earlier sections, absolute displacement implies that the displace-
ments of the internal nodes after each time step are based on the location of the same
nodes in the initial original mesh. Whereas, for relative displacements, the movement
of the nodes is based on the location of the same nodes in the previous time step. A
visual representation of the mesh orthogonality of a rotating block for both methods
after one cycle is represented in Figure 2.3.

Under the absolute displacement method, the interpolation matrix is built with re-
gard to the initial position of the mesh nodes. This leads to the advantage that the
interpolation matrix has to be constructed only once, which increases efficiency. This
is especially useful when the structure undergoes periodic deformations as the mesh
can always return to its initial configuration, which leads to a higher mesh quality over
time.

Whereas, relative displacements generally provide a more accurate interpolation
scheme when large displacements are involved. This happens because the interpola-
tion is performed over a smaller displacement i.e. from the previous time step instead
of the initial time step. But, it has to be noted that in cases of periodic motions, they
perform poorly when compared to absolute displacements as small interpolation er-
rors accumulate over each time step as shown in Figure 2.3. Therefore, the meshmay
not return to its original configuration at the end of the periodic motion leading to lower
mesh quality. But, in the case of non-periodic motions, relative displacements perform
better than absolute displacements. Therefore, the relative displacement method will
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be utilized in the current study since the main area of interest is large deformations,
which might not be necessarily periodic in nature.

(a) Absolute displacement for 90° rotation of block (b) Relative displacement for 90° rotation of block

(c) Absolute displacement for periodic motion after one cycle (d) Relative displacement for periodic motion after one cycle

Figure 2.3: Visualization of mesh orthogonality for a rotating block[13]

2.2. Optimization Strategies
2.2.1. Types of optimization strategies

The ALE-basedmoving mesh approaches are found to be very robust and accurate
for small structural displacements and ensure that the conservation properties are al-
ways satisfied. But, problems arise whenever strong deformations or even topological
changes of the interface lead to a degeneration of the computational mesh. To deal
with large structural displacements, re-meshing has to be introduced, which leads to
increased computational costs and completely new connectivity. Furthermore, topol-
ogy changes are sometimes difficult to capture as well. The ALE methods are also
computationally very expensive, especially in cases involving 3Dmeshes, which is not
ideal. Several optimization strategies have already been developed to ensure that the
time taken by these methods is reduced without loss in accuracy as discussed in this
section. These optimization strategies can be coupled with parallel computing algo-
rithms to further increase their efficiency as shown by Gao et al.[23], Wang et al.[44]
and Gillebaart et al.[24].

A multi-step approach was presented by Floater and Iske[21] that sought to perform
the interpolation on a coarse set of boundary nodes initially. This step was followed
by interpolating on a refined set of selected boundary nodes, whilst further reducing
the size of the support radius. These steps are repeated until a satisfactory accuracy
level is obtained for the interpolation. The general algorithm for a multi-step approach
is depicted in Figure 2.4. Wang et. al.[44] further developed this multi-step mesh de-
formation method for RBF interpolations. They utilized a ’double-edge’ greedy sup-
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porting point selection algorithm using a multi-level subspace method (MLDRmethod)
where the deformation procedure is divided into several classes which can be solved
in parallel, thereby, increasing efficiency[45].

Figure 2.4: Multi-step method algorithm for RBF interpolation based mesh deformation[44]

Figure 2.5: Multiscale optimization procedure[28]
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Furthermore, a multi-scale method was devised by Kedward et al.[28]. In this
method, an initial subset of boundary nodes is selected. After each iteration, a new
boundary node is added to this set, which maximizes the separation distance of the
active set of support nodes as shown in Figure 2.5. Even though this method leads to
the addition of all boundary points into the active set, an increase in efficiency can be
obtained by selecting an optimal support radius.

Volume node-based reduction algorithms can also be utilized to improve the effi-
ciency of the RBF algorithm. These algorithms ensure that the internal nodes at which
displacements need to be calculated are minimized. This can be done by restricting
the deformation area by utilizing an enclosing box in which the nodes can be deformed
and has zero displacements on its surface[34]. Furthermore, using restricted wall
functions[47] or performing interpolations initially on a background cartesian grid[19]
can reduce the overall data size.

2.2.2. Greedy Algorithm
The most common data reduction algorithm used for mesh deformation methods is

the boundary node-based reduction algorithm which was developed by Jakosson and
Amiognon[27]. This method was further developed by Rendall and Allen[38, 39], who
proposed the most popular boundary-node-based data reduction algorithm in use,
called the Greedy algorithm. This method is based on error-driven data reduction.
The procedure begins with constructing a support set of nodes on the basis of a ran-
domly selected set of boundary nodes. It then goes on to solve the interpolation matrix
and then computes the interpolation error. The node which comprises the maximum
interpolation error is then added to the support set. The error is generally calculated as
the difference between the interpolated value and the known boundary point displace-
ments. This process is repeated until the error goes below the pre-defined acceptable
tolerance in the final solution. Then all the internal nodes are moved to their new lo-
cations based on the interpolated displacement values.

The inversion of the interpolation matrix in order to calculate the weighting coeffi-
cients every time a control point is added to the support set was found to be a costly op-
eration. Therefore, Rendall and Allen further developed this ”full point” greedy method
in order to form the greedy ”one point” algorithm. In this method, the inversion step
is not carried out after the addition of every control point, but instead, an approximate
correction is applied based on the maximum error, and the calculated displacements
are updated. The correction constant is based on the value of the basis function at
the maximum error point and is given by:

𝛽𝛽𝛽 = 𝑓𝑚𝑎𝑥
𝜙(0) (2.8)

Using this, the interpolation coefficient of the maximum error point is approximated as:

𝛼𝛼𝛼𝑛𝑒𝑤𝑚𝑎𝑥 = 𝛼𝛼𝛼𝑚𝑎𝑥 +𝛽𝛽𝛽 (2.9)

Therefore, the basis function can be corrected at the rest of the internal nodes as:

𝑓𝑛𝑒𝑤𝑖𝑛 (𝑟) = 𝑓𝑖𝑛(𝑟) +𝛽𝛽𝛽𝜙(‖𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑖𝑚𝑎𝑥‖) (2.10)

After performing this step, the errors are re-calculated based on the corrected dis-
placements and known displacements. This process is repeated iteratively until the
error goes below the tolerance level. Due to the application of an approximate cor-
rection, this method is not as accurate as the full point greedy algorithm. Therefore,
generally, a combination of both these methods is used where the one-point algo-
rithm is implemented, but after every, say n iterations, the full point approach is used
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to calculate the displacements. Thereby, ensuring that the interpolation coefficients
are calculated correctly every once in a while so that the cumulative error reduces.
The efficiency of this method in comparison to the full point and one point methods
individually is presented in Figure 2.6, where the full update is performed after ten
iterations.

Figure 2.6: Convergence study of error for the three greedy algorithms[38]

The total computational cost of the greedy algorithm is estimated to be 𝒪(𝑁4𝑐 +
𝑁2𝑐𝑁𝑏), where 𝑁𝑐 is the support nodes and 𝑁𝑏 is the total boundary nodes[20]. The
first part involving the fourth-order term corresponds to the computational costs asso-
ciated with solving the algebraic interpolation system, while the second part is associ-
ated with the calculation of the interpolation errors at the boundary nodes. Therefore,
in order to have an efficient algorithm, 𝑁𝑐, should be minimized.

2.2.3. Customized greedy algorithms
In order to reduce the size of the support set, 𝑁𝑐, Li et al.[30] developed a modified

greedy model which would select the support set nodes based on error peaks. The
nodes with error peaks above a certain user-defined threshold would be added to the
support set, which would increase the efficiency as it allows the addition of multiple
points at the same time while ensuring that multiple points are not selected from the
same region as shown in Figure 2.7. The initial boundary displacement is calculated
based on the selected support set as,

𝐝𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝐛 = 𝝓𝑏𝑐𝝓−1𝑐 𝐝𝐜 (2.11)

where 𝑑𝑠 are the displacement values of the boundary nodes in the support set,
𝑑𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑏 is the approximated displacements of all the boundary nodes and the sub-
script ”c” represents the support set. The interpolation errors are, therefore, calculated
as,

𝝐 = 𝐝𝑏 − 𝐝𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑏 (2.12)

Once the error is reduced to an acceptable level by incorporating additional points
in the support set, the new optimal support set is used to calculate the interpolation
coefficients of the RBF, shown in Equation 2.4.
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Figure 2.7: Selection of support set nodes based on user-defined error threshold[30]

A summary of the computational cost of a few custom greedy optimization algo-
rithms in order to build the initial RBF model, given in Equation 2.11 while selecting
the nodes for the support set is provided in Table 2.3.

Method Computational Cost
Greedy[38] 𝑁4c

4 [1 + 𝑂 (
1
𝑁c
)]

MLDR [45] 𝑁4c
4M [1 + 𝑂 (

M
𝑁c
)]

Error threshold based Greedy[30] 𝑁4c
4𝐿 [1 + 𝑂 (

𝐿
𝑁c
)] − (𝐿−1)2

4𝐿

Table 2.3: Computational cost of several optimization methods[30]

where M is the average number of support points specified at each level[45] and L
is the assumed average number of nodes added to the support set after every itera-
tion[30].

Furthermore, methods to reduce the order of the cost associated with solving the
algebraic interpolation matrix system were developed by multiple authors. Selim et
al.[41] utilized an incremental Lower-Upper (LU) decomposition algorithm. Thismethod
reduced the order of the first term of the computational cost of the conventional greedy
algorithm from𝑁4𝑐 → 𝑁3𝑐 . Fang et al.[18] suggested the implementation of a recurrence
Cholesky (RC) decomposition scheme which further reduced the order of the first term
to 𝑁3𝑐 /2 with the use of parallel computation. Generally, 𝑁𝑏 is far greater in size than
𝑁𝑐, therefore, Strofylas et al.[43] proposed a multi-grid clustering algorithm that would
reduce the number of boundary nodes, thereby leading to greater efficiency. But, this
model is complicated in nature, which reduces its applicability to mesh deformation
methods and hence, will not be in the scope of the current study.

Furthermore, Fang et. al.[20] developed a grouping-circular-based(GCB) algorithm
which divides all the boundary nodes into m groups. It calculates the local interpolation
error of each group and approximates it as the global interpolation error. This allows
the utilization of all the boundary nodes in order to calculate the error. This method
leads to the reduction in the interpolation error calculation cost from𝒪(𝑁2𝑐𝑁𝑏) → 𝒪(𝑁3𝑐 ).
The performance of the GCB algorithm in comparison with the traditional greedy al-
gorithm is provided in Figure 2.8.
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(a) Maximum interpolation error histories with regards to
computational time

(b) Global maximum interpolation error histories with regards to support
node-set size

Figure 2.8: Convergence study of conventional greedy and GCB greedy algorithm[20]

Therefore, with the aim of reducing the computational costs associated with the
RBF interpolation, especially when a local interpolation, associated with optimizing
the local mesh quality, has to be performed as well. It was decided to utilize the
GCB algorithm developed by Fang et al.[20] as it accounts for all the boundary nodes,
thereby increasing accuracy while being highly efficient at the same time. Addition-
ally, the greedy algorithms can be coupled with a volume node reduction method as
well to further increase efficiency. The greedy algorithm would reduce the number
of control points selected, while the volume node reduction will ensure an optimized
mesh update step[35].

2.3. Mesh Quality Metrics
In this section, the mesh quality metrics that are best suited to perform as a base

criterion for implementing the localized corrections are discussed. The choice of the
criterion is of critical importance to maintain high efficiency, as performing large calcu-
lations after each deformation step is not a feasible operation. Therefore, it is neces-
sary to look into which mesh properties have the most significant impact on the final
quality of the mesh. An important consideration to make while looking at the mesh
quality is that it is recommended to look at the minimum value of the selected quali-
fying criterion rather than considering the average quality over the entire mesh. The
minimum quality metric is more significant because even a single degenerate element
can cause the whole simulation to fail as demonstrated by deBoer, Schoot and Bijl[7].

One of the primary objectives of the current research is to ensure that the mesh
quality does not deteriorate when the structure is subjected to large deformations.
Initially, when no deformation is applied, it is assumed that the mesh produced has
optimal quality and is sufficient to resolve complex boundary layer phenomena as well.
However, as the mesh deforms, the size and angle of the element begins to change
as well. In order to define the quality of the mesh, a parameter is required that can
track these fundamental metrics. In order to do so, a set of Jacobian matrices are
used to quantify the quality of the mesh[29]. The Jacobian matrix comprises of ba-
sic information such as size, orientation, shape and skewness. These qualities are
especially important because, in case of large deformations, the cells become highly
skewed and can even lead to negative volumes which is not desirable at all. Further-
more, the calculation of the Jacobian is a robust method which can be applied to any
mesh, be it structured or unstructured.

The Jacobian matrix of a cell node is a 𝑑 × 𝑑 matrix, where d is the dimension of
the mesh element. It is denoted by 𝐀𝐤, where 𝑘 = 0, 1, 2, ..., 𝑛 − 1 represents the node
numbers. The numbering of the nodes along with the Jacobians of commonly used
cell types has been presented below.
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𝐀𝐤 =
Jacobian for triangular cell

[𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+2 − 𝑥𝑘
𝑦𝑘+1 − 𝑦𝑘 𝑦𝑘+2 − 𝑦𝑘] , 𝐀𝐤 = (−1)𝑘

Jacobian for tetrahedral cell

[
𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+2 − 𝑥𝑘 𝑥𝑘+3 − 𝑥𝑘
𝑦𝑘+1 − 𝑥𝑘 𝑦𝑘+2 − 𝑦𝑘 𝑦𝑘+3 − 𝑦𝑘
𝑧𝑘+1 − 𝑧𝑘 𝑧𝑘+2 − 𝑧𝑘 𝑧𝑘+3 − 𝑧𝑘

]

𝐀𝐤 =
Jacobian for quadrilateral cell

[𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+𝑎 − 𝑥𝑘
𝑦𝑘+1 − 𝑦𝑘 𝑦𝑘+𝑎 − 𝑦𝑘] , 𝐀𝐤 =

Jacobian for hexahedral cell

[
𝑥𝑎 − 𝑥𝑘 𝑥𝑏 − 𝑥𝑘 𝑥𝑐 − 𝑥𝑘
𝑦𝑎 − 𝑥𝑘 𝑦𝑏 − 𝑦𝑘 𝑦𝑐 − 𝑦𝑘
𝑧𝑎 − 𝑧𝑘 𝑧𝑏 − 𝑧𝑘 𝑧𝑐 − 𝑧𝑘

]

The indices (a,b,c) are takenmodulo n, except for the hexahedral cell which depend
on k and vary for the showcased example cell as follows:

Node (k) 0 1 2 3 4 5 6 7
a 1 2 3 0 7 4 5 6
b 3 0 1 2 5 6 7 4
c 4 5 6 7 0 1 2 3

Table 2.4: Index numbering convention for Jacobian matrices

(a) Triangular element (b) Tetrahedral element

(c) Quadrilateral element (d) Hexahedral element

Figure 2.9: Numbering convention for construction of Jacobian[33]

The determinant of the Jacobian matrices, 𝐀𝐤, is found to be directly proportional
to the area of the cell in 2D and volume of the cell in 3D, therefore 𝛼𝑘 = 𝑑𝑒𝑡(𝐀𝐤). Fur-
thermore, metric tensor matrices can be obtained using 𝐀𝑇𝐤𝐀𝐤. These tensor metrics
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are found to be symmetric with either three or six (depending on the element dimen-
sion being 2D or 3D) distinct elements represented by 𝜆𝑘𝑖𝑗, where i,j = 1,2...,d.

2.3.1. Relative size metric
Using the parameters obtained above, several mesh quality metrics can be defined.

The relative size metric of the cell denotes the changes in the element size. It can be
defined as:

𝑓𝑠𝑖𝑧𝑒 = 𝑚𝑖𝑛(𝜏, 1/𝜏) (2.13)

where, 𝜏 = ∑𝑛−1𝑘=0 𝛼𝑘/𝛼0𝑘, represents the ratio of the current cell size to the initial cell
size. If the value of 𝑓𝑠𝑖𝑧𝑒 = 1, then the element size has not changed from its initial
size and if 𝑓𝑠𝑖𝑧𝑒 = 0, then the element area becomes zero, making the cell degenerate.

2.3.2. Skew metric
Furthermore, the skew metric can be utilized to identify any distortion in the ele-

ments. It can be defined as follows for different elements:

Triangular: 𝑓skew = √3𝛼
𝜆11+𝜆22−𝜆12

Tetrahedral: 𝑓skew =
3(𝛼√2)2/3

3
2 (𝜆11+𝜆22+𝜆33)−(𝜆12+𝜆23+𝜆13)

Quadrilateral: 𝑓skew =
4

∑3𝑘=0 √𝜆𝑘11𝜆𝑘22/𝛼𝑘

Hexahedral: 𝑓skew =
8

∑7𝑘=0 √𝜆𝑘11𝜆𝑘22𝜆𝑘33/𝛼𝑘

(2.14)

If 𝑓𝑠𝑘𝑒𝑤 = 1, then all the angles within the element are equal and if 𝑓𝑠𝑘𝑒𝑤 = 0, then
the element becomes degenerate.

Figure 2.10: Skewed elements for triangular and quadrilateral elements[16]
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2.3.3. Size-skew metric
In order to keep track of the change in cell size and skewness, a new parameter

called size-skew[29] is defined as:

𝑓𝑠𝑠 = √𝑓𝑠𝑖𝑧𝑒 ⋅ 𝑓𝑠𝑘𝑒𝑤 (2.15)

Variation in the volume of the cell has a relatively lower impact on the quality of the
cell, hence 𝑓𝑠𝑖𝑧𝑒 is introduced under a square root. This allows the cell skewness to
attain a greater weightage. If 𝑓𝑠𝑠 = 1, then it is implied that there is no variation in cell
size and all the angles in the cell are still equal. But, when 𝑓𝑠𝑠 = 0, then the element
becomes degenerate. therefore, it is critical to ensure the value of 𝑓𝑠𝑠 remains as close
as possible to one.

Furthermore, since the size-skew metric can track changes in size and skewness
at the same time, it is more robust in nature and hence, will be utilized as the qualify-
ing criterion for the implementation of the localized RBF corrections to the deformed
mesh. The size-skew metric calculated for the deformed mesh is highly dependant on
the original support radius of the interpolation function as well. The greater the support
radius, the more optimal the quality of the mesh, but as discussed in subsection 2.1.1,
there is a significant trade-off associated with the efficiency of the algorithm with the
support radius of the interpolation function.



3
Mesh Quality Prediction

From the information gathered from the previous chapter on mesh quality metrics,
it can be seen that in order to calculate the quality of a mesh it is necessary to have
the nodal information of the mesh, i.e. the location of the nodes is required to con-
struct the Jacobian matrices. But in cases where the meshes have to be deformed
drastically due to large deformations, it is probable that the quality of the mesh post-
deformation is going to be quite low. This might result in having to re-mesh the entire
domain to improve the quality. Hence, the deformation step itself leads to a waste of
computational time since the final quality is not known apriori.

However, the function that is being used to displace the nodes in the mesh is al-
ready known. It will be showcased in the current chapter that using the gradients of the
deformation function, a reasonable estimate can be made with regards to the mesh
quality in the next time-step without having to actually deform the mesh. An impor-
tant thing to note is that all the deformations performed in the current chapter will be
performed over a single time step in order to test the robustness of the algorithm in
extreme conditions. Additionally, it will be assumed that the initial mesh is ”perfect”,
and hence can be used as a qualifying standard for the quality at future time steps.
The upcoming sections will provide a detailed description of the general approach,
followed by validation on 1D and 2D meshes. Finally, a brief discussion is provided
on how to expand the method to 3D as well.

3.1. Approach
The current section describes the overall strategy to predict the algebraic mesh

quality measures discussed in section 2.3 on a simplical triangular element for conve-
nience’s sake. The element comprises of three nodes as showcased in Figure 3.1a.
The location of the nodes of the cell at the initial time-step, 𝑡𝑛 is given by 𝐱𝑛𝑘, k = 0, 1, 2,
where:

𝐱𝑛𝑘 = [
𝑥
𝑦]
𝑛

𝑘
(3.1)

Now, if the element is within the support radius of an RBF control point, then it will
undergo a deformation such that its new location and displacement at 𝑡𝑛+1 can be
represented as:

𝐱𝑛+1𝑘 = 𝐱𝑛𝑘 + 𝐒(𝐱𝑛𝑘) (3.2)

21
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(a) Deformation of a reference cell at the first time-step from the initial
location in the physical domain.
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(b) Deformation of the cell in the logical domain, where 𝐱0 lies on the
origin

Figure 3.1: Reference deformation of an element in the mesh.

Consider an affine transformation of the physical elements onto a logical domain
where the node, 𝐱0 always lies on the origin as shown in Figure 3.1b. The location of
the nodes in this logical domain can be obtained by subtracting 𝐱0 from the original
nodal locations.

𝐱𝑛+11 − 𝐱𝑛+10 = (𝐱𝑛1 + 𝐒(𝐱𝑛1)) − (𝐱𝑛0 + 𝐒(𝐱𝑛0))

⟹ 𝐱𝑛+11 − 𝐱𝑛+10 = (𝐱𝑛1 − 𝐱𝑛0)⏝⎵⎵⏟⎵⎵⏝
𝑝𝑎𝑟𝑡1

+ (𝐒(𝐱𝑛1) − 𝐒(𝐱𝑛0))⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
𝑝𝑎𝑟𝑡2

Part 2 of the above equation can be approximated using Taylor’s series at an arbi-
trary location, 𝜉, in the interval [𝐱𝑛0 , 𝐱𝑛1] as:

𝐒(𝐱𝑛1) = 𝐒(𝐱0𝜉) + 𝐒(𝐱0𝜉)𝛁(𝐱𝑛1 − 𝐱𝑛𝜉) + ...

𝐒(𝐱𝑛0) = 𝐒(𝐱0𝜉) + 𝐒(𝐱0𝜉)𝛁(𝐱𝑛0 − 𝐱𝑛𝜉) + ...

⟹ (𝐒(𝐱𝑛1) − 𝐒(𝐱𝑛0)) ≈ 𝐒(𝐱0𝜉)𝛁(𝐱𝑛1 − 𝐱𝑛0)

Therefore,
Δ𝐱𝑛+110 ≈ Δ𝐱𝑛10 + (𝐒(𝐱0𝜉)𝛁)Δ𝐱10, 𝜉 ∈ [𝐱𝑛0 , 𝐱𝑛1] (3.3)

Δ𝐱𝑛+120 ≈ Δ𝐱𝑛20 + (𝐒(𝐱0𝜉)𝛁)Δ𝐱20, 𝜉 ∈ [𝐱𝑛0 , 𝐱𝑛2] (3.4)

The expressions obtained in Equation 3.3 and Equation 3.4 can be directly substi-
tuted in the expression to calculate the Jacobian of the cell at 𝐱0 given below:

𝐀0 = [Δ𝐱10 Δ𝐱20] (3.5)

Thereby providing a first order approximation for the Jacobian at a future time-
step based on the gradient of the deformation function in the previous time-step. The
upcoming sections will now concentrate on utilizing this approach to approximate the
algebraic mesh quality metrics discussed in chapter 2 for real meshes comprising of
varying densities of elements in 1D and 2D.
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3.2. 1D Mesh Quality Prediction
In the case of 1D deformation, the mesh quality metric that needs to be monitored

is the size metric as discussed in section 2.3. In a 1D mesh, the nodes just have one
translational degree of freedom. An example of a 1D grid is provided in Figure 3.2.

1D Grid
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Figure 3.2: Example of a 1D Grid with 2 static boundaries and 2 moving boundaries. Nodes have one translational degree of
freedom. Cell centres are depicted in grey.

Since it is assumed that the initial mesh quality is ”perfect” in the current method,
the size metric of any cell at the next time step can be defined as the ratio of the cell
size at that time step and the cell size at the initial time step:

𝑓(1,0)𝑠 = 𝐱1𝑖+1 − 𝐱1𝑖
𝐱0𝑖+1 − 𝐱0𝑖

= Δ𝐱1𝑖+1
Δ𝐱0𝑖+1

(3.6)

Here, Δ𝑥 basically represents the size of the cell created by two adjacent nodes.
Therefore, the quality for each cell can be stored at the cell centre of that particular
cell. Now applying the approach discussed in section 3.1 to the above equation for a
sample deformation showcased in Figure 3.3, Equation 3.6 can be re-written as:

𝑓(1,0)𝑠 = (𝐱0𝑖+1 + 𝐒(𝐱0𝑖+1)) − (𝐱0𝑖 + 𝐒(𝐱0𝑖 ))
𝐱0𝑖+1 − 𝐱0𝑖

= Δ𝐱0𝑖+1 + (𝐒(𝐱0𝑖+1) − 𝐒(𝐱0𝑖 ))
Δ𝐱0𝑖+1

Since the function performing the mesh deformation is known to be real and contin-
uous in the computational domain, Taylor’s expansion can be utilized to re-write the
above equation as discussed in section 3.1 as

𝑓(1,0)𝑠 ≈
Δ𝐱0𝑖+1 + {[����𝐒(𝐱0𝑖+𝜉) + 𝛁𝐒(𝐱0𝑖+𝜉)(𝐱𝑖+1 − 𝐱𝑖+𝜉) + ...] − [����𝐒(𝐱𝑖+𝜉) + 𝛁𝐒(𝐱0𝑖+𝜉)(𝐱𝑖 − 𝐱𝑖+𝜉) + ...]}

Δ𝐱0𝑖+1
Since Δ𝐱 is generally very small, higher order terms can be neglected without sig-

nificant effect to the accuracy of the approximation.
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𝑓(1,0)𝑠 =
Δ𝐱0𝑖+1 + 𝛁𝐒(𝐱𝑖+𝜉)0Δ𝐱0𝑖+1

Δ𝐱0𝑖+1
⟹ 𝑓(1,0)𝑠 = 1 + 𝛁𝐒(𝐱𝑖+𝜉)0

(3.7)

It has to be noted that calculating the gradient at 𝜉 = 0.5, i.e. at the centre of the
two nodes should lead to higher accuracy of the approximation due to the smaller
magnitude of the numerical error. Furthermore, the cell centres are already known
in the mesh and hence would simplify the evaluation process without having to de-
fine additional points. Therefore, it is decided that the gradients of the deformation
function should be calculated at the cell centres in the current work. Furthermore, for
convenience’s sake here onwards the gradient calculated at the cell centre will just be
mentioned as 𝛁𝐒.
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Figure 3.3: Sample 1D deformation using a deformation function, 𝐒.

If the deformation process occurs in multiple time steps, then the quality at the time
step (n+1) can be defined as:

𝑓(𝑛+1,0)𝑠 = Δ𝐱𝑛+1
Δ𝐱0 , 𝑛 ∈ 𝕎 (3.8)

But as discussed before, nodal information at the (𝑛 + 1)𝑡ℎ time-step is not avail-
able before the deformation is performed. Therefore, the above equation needs to
be rewritten in a form that removes its dependence on the requirement of nodal data.
Hence, the above equation is re-arranged as:

𝑓(𝑛+1,0)𝑠 = Δ𝐱𝑛+1
Δ𝐱𝑛 ⋅ Δ𝐱

𝑛

Δ𝐱𝑛−1 ...
Δ𝐱2
Δ𝐱1 ⋅

Δ𝐱1
Δ𝐱0 =

𝑛+1

∏
𝑖=0
𝑓(𝑖+1,𝑖)𝑠 (3.9)

Now applying Taylor’s expansion to the above equation:

𝑓(𝑛+1,0)𝑠 = Δ𝐱𝑛 + 𝛁𝐒𝑛 ⋅ Δ𝐱𝑛
Δ𝐱𝑛 ⋅ Δ𝐱

𝑛−1 + 𝛁𝐒𝑛−1 ⋅ Δ𝐱𝑛−1
Δ𝐱𝑛−1 ...Δ𝐱

0 + 𝛁𝐒0 ⋅ Δ𝐱0
Δ𝐱0 (3.10)
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Only first-order terms of the Taylor expansion are considered in the above equation
as Δ𝐱 is very small.

⟹ 𝑓(𝑛+1,0)𝑠 = ���Δ𝐱𝑛 (1 + 𝛁𝐒𝑛)
���Δ𝐱𝑛 ⋅

����Δ𝐱𝑛−1 (1 + 𝛁𝐒𝑛−1)
Δ���𝐱𝑛−1

...�
��Δ𝐱0 (1 + 𝛁𝐒0)
Δ��𝐱0 (3.11)

⟹ 𝑓(𝑛+1,0)𝑠 =
𝑛

∏
𝑖=0
(1 + 𝛁𝐒𝑖) (3.12)

Therefore, from Equation 3.12,it can be seen that the mesh quality can be analyti-
cally derived based on just the gradient information of the mesh deformation function,
𝐒. Hence, the dependence of the mesh quality on the nodal information at the future
time step is completely eliminated. This ensures that the computationally expensive
step of deforming the mesh does not need to be performed before realizing that the
quality is low. Then having to again go back to the mesh configuration in the previous
time step in order to implement the local enrichment algorithm. The only computa-
tional cost associated with the mesh quality prediction is the storage of the gradient
information of the RBF at the cell centres. This implies that the size of the RBF gra-
dient matrix will be 𝑁 × 𝑁, where N is the number of cells in the domain. Generally,
low quality cells appear in localized clusters post the deformation step, so the theory
of optimizing routines for RBF methods discussed in chapter 2 can be implemented
to reduce the size of the matrix and improve efficiency. This will be discussed in the
upcoming chapters.

It is to be noted that the analytically derived value is still an approximation of the
actual mesh quality as the higher-order terms are ignored in the Taylor expansion.
The comparison of the predicted mesh quality with the actual mesh quality for a ref-
erence grid with twenty cells is showcased in Figure 3.4. The two boundaries move
towards each other by a magnitude of 1.5. It is seen that there is no major effect on
the accuracy of the prediction since the higher-order terms are negligibly small. The
deformation depicted is performed over a single time step. It can also be seen that
the accuracy of the predicted quality is independent of the support radius, r. Further-
more, an interesting observation from Figure 3.4 is that when the cells are stretching
then 𝑓𝑠 > 0, whereas when there is contraction 𝑓𝑠 < 0. The mesh quality crosses the
perfect value, 𝑓𝑠 = 1 at the boundary nodes as based on their movement, one side is
always contracting while the other is expanding.
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Figure 3.4: Comparison of the 1D Mesh quality prediction with the actual mesh quality at the (𝑛 + 1)𝑡ℎ time-step for a grid with
20 cells.
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3.2.1. Grid Independence Study for Mesh Quality Prediction
In order to ensure that the mesh quality prediction is robust, different grids with

varying cell densities (N) are tested as shown in Figure 3.5. It can still be seen that
the quality prediction algorithm forecasts the quality with considerable accuracy.
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Figure 3.5: Comparison of the 1D Mesh quality prediction with the actual mesh quality at the (𝑛+1)𝑡ℎ time-step. Support radius
of RBF, r = 0.4. Boundary displacement magnitude = 0.15 units.

In order to quantify the variation in the actual quality and the predicted quality, the
maximum error in the prediction of the mesh quality is depicted in Figure 3.6a with
variation in the number of cells. The relative error in the prediction is calculated as:

𝜖 = (𝑓
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑠 − 𝑓𝑎𝑐𝑡𝑢𝑎𝑙𝑠

𝑓𝑎𝑐𝑡𝑢𝑎𝑙𝑠
) (3.13)

It can be seen that the magnitude of the maximum relative error in the domain
goes down as the value of N increases due to a reduction in the discretization error.
Furthermore, the RMSE in the mesh quality prediction is showcased in Figure 3.6b.
From these plots, it can be clearly concluded that the error in the quality prediction is
negligible and therefore, this methodology can in fact be used to find regions of poor
quality in the domain in the future time step without having to actually deform the mesh
regardless of the meshing resolution.
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Figure 3.6: Comparison of the 1DMesh quality prediction with the actual mesh quality at the (𝑛+1)𝑡ℎ time-step. The deformation
is performed in a single time step. Error decreases as the number of nodes are increased.

The effect of the deformation magnitude on the accuracy of the prediction is also
showcased in Figure 3.6.
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𝑅𝑀𝑆𝐸 = √
∑𝑁𝑖=1(𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑠 − 𝑓𝑎𝑐𝑡𝑢𝑎𝑙𝑠 )2

𝑁 (3.14)

It can be seen that the maximum error in the domain and the RMSE of the entire
mesh increases as the displacement magnitude increases. This trend can again be
attributed to the fact that the higher-order terms are being neglected in the Taylor
expansion. With increasing displacements, the magnitude of these higher-order terms
also increases. Thereby, resulting in a larger error. But with an increase in the number
of cells, the value of Δ𝐱 reduces thereby lowering the error. It can be noticed that the
rate of convergence of the discretization error is quadratic in nature. Hence, it can be
concluded that the mesh quality prediction algorithm is robust enough to accurately
predict the quality irrespective of the deformation magnitude.

3.3. 2D Mesh Quality Prediction
In the case of 1D grids, the prediction is simple to perform due to the size of the cells

being the only relevant parameter in play. But when it comes to 2D grids, the level
of complexity increases as the nodes now have two translational DOFs. This means
that the predictive algorithm needs to keep track of variations in size, skewness and
aspect ratio, along with orientational information such as rotation and shape of the cell.

As discussed in section 2.3, the Jacobian matrix, 𝐀𝑘 of a cell can be used in order
to keep track of these qualities at the (𝑛 + 1)𝑡ℎ. But the Jacobian is again dependent
on the nodal information which is not available at the current time-step. Therefore,
the methodology devised in section 3.1 eliminates the requirement of the locational
information of the nodes in the Jacobian. This is possible by performing the Taylor
expansion in 2D. Since the dimensions of the Jacobian is dependent on the shape of
the cell, the formulation for the predicted quality will change with respect to varying
element geometries. In the current thesis, two of the most common element shapes
in 2D meshes are selected for analysis, i.e. triangular meshes which are mostly used
in unstructured mesh cases and quadrilateral meshes, which are more common for
structured mesh cases.

3.3.1. Triangular Unstructured Grids
For a triangular cell as shown in Figure 3.7b, the Jacobian, 𝐀𝑘, has the dimensions

of 2 × 2 and is given at the time-step, (n+1) as:

𝐀𝑛+1𝑘 = [𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+2 − 𝑥𝑘
𝑦𝑘+1 − 𝑦𝑘 𝑦𝑘+2 − 𝑦𝑘]

𝑛+1

(3.15)

where, 𝑘 = 0, 1, 2 and 𝛼 = 𝑑𝑒𝑡(𝐀𝑘) represents twice the area of the triangular
element. Now consider that 𝐱 represents the x and y location of a particular node
such that:

𝐱 = [𝑥𝑦] (3.16)

This implies that Equation 3.15 can be written as

𝐀𝑛+1𝑘 = [𝐱𝑘+1 − 𝐱𝑘 𝐱𝑘+2 − 𝐱𝑘]
𝑛+1

(3.17)

Consider the first term of the above equation. It can be re-written using Taylor
expansion as:
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(𝐱𝑘+1 − 𝐱𝑘)𝑛+1 = (𝐱𝑘+1 − 𝐱𝑘)𝑛 + (𝐒(𝐱𝑘+1) − 𝐒(𝐱𝑘)𝑛

⟹ (Δ𝐱𝑘+1)𝑛+1 = (Δ𝐱𝑘+1)𝑛 + 𝛁𝐒𝑛𝑐𝑐 ⋅ (Δ𝐱𝑘+1)𝑛 (3.18)
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Figure 3.7: Example of a triangular unstructured grid

Therefore, substituting the value of Δ𝐱𝑘+1 in the above equation and doing the same
for Δ𝐱𝑘+2, the Jacobian, 𝐀𝑘 can be written as:

𝐀𝑛+1𝑘 = [Δ𝑥𝑘+1 Δ𝑥𝑘+2
Δ𝑦𝑘+1 Δ𝑦𝑘+2]

𝑛

+ [
𝜕𝐒𝑥
𝜕𝑥

𝜕𝐒𝑥
𝜕𝑦

𝜕𝐒𝑦
𝜕𝑥

𝜕𝐒𝑦
𝜕𝑦
]

𝑛

[Δ𝑥𝑘+1 Δ𝑥𝑘+2
Δ𝑦𝑘+1 Δ𝑦𝑘+2]

𝑛

(3.19)

⟹ 𝐀𝑛+1𝑘 = [𝕀 + [
𝜕𝐒𝑥
𝜕𝑥

𝜕𝐒𝑥
𝜕𝑦

𝜕𝐒𝑦
𝜕𝑥

𝜕𝐒𝑦
𝜕𝑦
]

𝑛

] [Δ𝑥𝑘+1 Δ𝑥𝑘+2
Δ𝑦𝑘+1 Δ𝑦𝑘+2]

𝑛

(3.20)

Here the identity matrix component represents the initial quality of the mesh. If
we assume that the initial quality of the mesh is optimal or that is the target mesh
quality that can be attained, then in order to save some computational cost, it would
be possible to ignore the identity matrix. But, as discussed in section 2.3, the size-
skew metric is the most ideal metric to characterize the quality of a cell in 2D. This
metric is given as:

𝑓𝑠𝑠 = 𝑓𝑠 ⋅
√3𝛼

𝝀11 + 𝝀22 − 𝝀12
(3.21)

where, 𝑓𝑠 = 𝑚𝑖𝑛(𝛼/𝑤,𝑤/𝛼). Here, ’w’ is the reference area of an ideal cell. The
denominator in the above equation refers to the elements present in the matrix:

𝝀 = 𝐀𝑇𝑘𝐀𝑘 = [
𝝀11 𝝀12
𝝀21 𝝀22] (3.22)

Therefore, it is noticed that if the initial quality of the mesh is neglected, then the
magnitudes of the terms in 𝝀 is very small. Therefore, the quality prediction becomes
undefined. Hence it is not possible to disregard the initial quality of the mesh from the
formulation.
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Furthermore, in the gradient matrix, the principle diagonal terms give information
with regard to the size of the cell i.e. whether the cell is stretching or contracting in a
particular dimension. While the off-diagonal terms provide information with regard to
skewing. If the off-diagonal terms are equal, it implies that the cell is rotating which is
not a major issue in most cases. Depending on the type of mesh deformation, each of
these terms might have a varying level of importance which can be parameterized by
the user. For example, stretching of a cell at the same rate in all directions in the case
of a structured quadrilateral grid is not as important as contraction which can lead to
inverted elements in future time steps.

In order to test the prediction algorithm, the mesh depicted in Figure 3.7a, is de-
formed using a regular RBF deformation. The structure is translated in the y-direction
by 0.2 units and rotated by 30 degrees in the anti-clockwise direction. The actual
mesh quality is plotted on the undeformed and deformed grid in Figure 3.8.

(a) Undeformed grid (b) Deformed Grid

Figure 3.8: Actual 2D Mesh quality at the (𝑛 + 1)𝑡ℎ time-step.

Now in order to compare the performance of the 2D mesh quality prediction, the
mesh quality at (𝑛 + 1)𝑡ℎ time-step from the predicted algorithm before performing
the deformation, and the actual quality of the mesh post-deformation is compared in
Figure 3.9. The qualities are plotted on the undeformed grid in order to clearly visualize
which cells from the initial reference grid are deteriorating. It can be clearly seen that
the qualities obtained from the prediction algorithm do not vary much from the actual
quality.

Grid Independence Study for Mesh Quality Prediction
In order to test the robustness and accuracy of the algorithm with varying mesh

sizes, a grid independence study is conducted. Figure A.1 showcases the qualitative
comparison between the actual mesh quality and the predicted quality. It is seen that
all the trends from the actual mesh quality are accurately captured by the predicted
quality.

But to quantify the accuracy of the prediction, the maximum relative error and the
RMSE of the predicted mesh quality are plotted in Figure 3.10 for a varying number
of cells. The error is calculated for a 0.2 unit displacement in the positive y-direction
and a rotational magnitude of 30°. It is noticed that the rate of convergence of the
error is quadratic in nature. The error in the domain reduces as the number of cells
increase since Δ𝑥 reduces. Hence, the prediction becomes increasingly accurate with
an increase in N. But, it has to be noted that for even coarse meshes, the magnitude
of the maximum error and RMSE are well within acceptable limits.
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(a) Actual Quality, N = 1386 (b) Predicted Quality, N = 1386

Figure 3.9: Comparison of the 2D Mesh quality prediction with the actual mesh quality at the (𝑛+1)𝑡ℎ time-step. Support radius
of RBF, r = 0.4.
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Figure 3.10: Variation in maximum relative error and RMSE with the number of cells. Error decreases as the number of cells are
increased.

Effect of Deformation Magnitude on Mesh Quality Prediction

To ensure that the mesh quality prediction can accurately capture cases where
large deformation magnitudes are prevalent, the methodology is tested on the coars-
est grid with N = 416 over a range of displacements and rotation magnitudes in a
single time-step. The minimum edge length in the mesh was 0.04 units. The error in
the mesh quality prediction increases as the magnitude of deformation is increased as
shown in Figure 3.11. But the errors obtained are very low in magnitude. Therefore,
it can be safely concluded that the mesh prediction methodology works regardless of
the deformation magnitude.
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Maxium Absolute Error for Size-Skew Prediction
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Figure 3.11: Variation in maximum error and RMSE with displacement and rotational magnitudes at N = 416.

3.3.2. Quadrilateral Structured Grids
Unlike the triangular cells, the quadrilateral cells are non-simplical and hence their

shape can not be determined by the use of a single Jacobian matrix[29]. The Jacobian
matrix, 𝐀𝑘 defined by at each node of the quadrilateral is given as:

𝐀𝑛+1𝑘 = [𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+3 − 𝑥𝑘
𝑦𝑘+1 − 𝑦𝑘 𝑦𝑘+3 − 𝑦𝑘]

𝑛+1

(3.23)

where, 𝑘 = 0, 1, 2, 3 and the area of the quadrilateral is given by (𝛼𝑘 +𝛼𝑘+2)/2 with
𝛼𝑘 = 𝑑𝑒𝑡(𝐀𝑘). This area of the quadrilateral is independent of the node. But the Ja-
cobian itself is not independent of the node, four matrices are obtained by taking the
formulation 𝐀𝑇𝑘𝐀𝑘. But since the Jacobian of the quadrilateral cell also has the dimen-
sion of 2 × 2 like the triangular Jacobian with the only difference being the numbering
of the nodes, Equation 3.20 can be used to formulate the Jacobian at each node.

Using this formulation the size-skew metric can be predicted at the (𝑛 + 1)𝑡ℎ time-
step, as discussed in section 2.3 using the equation:

𝑓𝑠𝑠 = 𝑓𝑠 ⋅
4

∑3𝑘=0
(√𝝀𝑘11𝝀𝑘22)

𝛼𝑘

(3.24)

where, 𝑓𝑠 = 𝑚𝑖𝑛(𝛼/𝑤,𝑤/𝛼). Here, ’w’ is the reference area of an ideal cell. The
denominator in the above equation refers to the elements present in the matrix, 𝐀𝑇𝑘𝐀𝑘.

The mesh quality prediction algorithm is tested on a structured 2D quadrilateral
mesh as depicted in Figure 3.12 utilizing the regular RBF interpolation-based mesh
deformation algorithm. A square-shaped structure is displaced by 0.15 units in the
positive x-direction and a rotation of 15° is applied to it in the anti-clockwise direction
with the rotation centre located outside the structure at (x,y) = (0.3,0.5). The actual
mesh quality calculated post-deformation is showcased in Figure 3.12 on the unde-
formed and deformed grid respectively.
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Figure 3.12: Actual 2D Mesh quality at the (𝑛 + 1)𝑡ℎ time-step.

The predicted mesh quality obtained using the formulation in Equation 3.20 and
Equation 3.24 without deforming the mesh is compared with the actual mesh quality
obtained post-deformation in Figure 3.13. Again the qualities are plotted on the unde-
formed grid in order to qualitatively visualize what the magnitudes of the mesh quality
metric are in a clear fashion. It can be seen that the predicted mesh quality varies
slightly from the actual mesh quality. The prediction algorithm showcases a larger
effect on the surrounding of the block than is actually observed. Therefore, in order
to see the reason behind this variance a grid convergence study is performed and the
mesh qualities are compared quantitatively.
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Figure 3.13: Comparison of the predicted 2D Mesh quadrilateral mesh quality with the actual mesh quality at the (𝑛 + 1)𝑡ℎ
time-step. Support radius of RBF, r = 0.4.

Grid Independence Study
The qualitative plots for the grid convergence study are provided in Figure A.2. It

is noticed that the quality prediction follows the trends of the actual quality relatively
well. But slight discrepancies in the magnitudes of the prediction are noticed. In order
to quantitatively analyze the difference between the predicted and the actual mesh
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quality, the maximum absolute error and the RMSE for the mesh quality prediction is
depicted in Figure 3.14 for the various number of cells, N. It can be seen that the mag-
nitude of both errors decreases as the number of cells in the domain increase. This
is to be expected as the discretization error reduces. But unlike the triangular mesh,
the rate of convergence of the maximum relative error and the RMSE are different.

Even though the formulation of the mesh quality prediction for both triangular and
quadrilateral grids is similar, differences are noticeable in terms of the magnitudes of
the errors in the prediction. The prediction algorithm functions in a far more accurate
manner for the triangular grid than the quadrilateral grid. This can be attributed to
the way in which the size-skew metric is calculated for both shapes. This metric for
triangular cells, being simplical in nature, is dependent only on one Jacobian matrix,
whereas, for the quadrilateral cell, the Jacobian at all four nodes has to be taken into
account. This leads to the magnitude of the discretization error in the calculation of
the size-skew metric being at least four times the magnitude of that observed in the
triangular cell.

On the other hand, even if the magnitudes of errors are larger when compared to
the triangular cell, the prediction is still accurate up to the first decimal point even for
the large cases of rotational and translational deformations as shown in Figure 3.15
for the RMSE and accurate up to second decimal place for the maximum relative error.
This level of accuracy is more than sufficient since the goal of the quality prediction
algorithm is to estimate where bad quality cells might appear in order to introduce new
RBF control points as discussed in chapter 4.
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Figure 3.14: Variation in maximum error and RMSE of the cell mesh quality prediction with respect to the number of cells in the
domain
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Maxium Absolute Error for Size-Skew Prediction
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Figure 3.15: Variation in maximum error and RMSE of the cell mesh quality prediction with respect to various translational and
rotational deformation magnitudes for the coarsest grid, N = 121.

3.4. Discussion
3.4.1. 3D Mesh Quality Prediction

It is noticed that the step from 2D mesh quality prediction to 3D is not complicated.
The only difference in the formulation is that the dimension of the Jacobian matrix
increases by the order of one. The principal diagonal elements of the predicted Jaco-
bian still represent how the volume of the cell changes in a particular direction while
the off-diagonal terms represent the skewing of the cell along a particular axis.

It is to be noted that the differences observed between the triangular and quadri-
lateral mesh quality predictions are expected to be observed in the tetrahedral and
hexahedral mesh quality prediction as the tetrahedral cell is simplical in nature and
its properties can be defined by the use of a single Jacobian whereas the hexahedral
cell is non-simplical,

Tetrahedral Unstructured Grids
The Jacobian of the tetrahedral cell can be described using the equation below as

discussed in section 2.3.

𝐀𝑛+1𝑘 = [
𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+2 − 𝑥𝑘 𝑥𝑘+3 − 𝑥𝑘
𝑦𝑘+1 − 𝑦𝑘 𝑦𝑘+2 − 𝑦𝑘 𝑦𝑘+3 − 𝑦𝑘
𝑧𝑘+1 − 𝑧𝑘 𝑧𝑘+2 − 𝑧𝑘 𝑧𝑘+3 − 𝑧𝑘

]

𝑛+1

(3.25)

Expanding the formulation obtained in Equation 3.20 to three dimensions as show-
cased below,

Δ𝐱1𝑘+1 = Δ𝐱0𝑘+1 + ∇𝐒(𝐱0𝑘+1)Δ𝐱0𝑘+1 (3.26)
The predicted Jacobian matrix for time-step (n+1) is derived as:

𝐀𝑛+1𝑘 = [
Δ𝑥𝑘+1 Δ𝑥𝑘+2 Δ𝑥𝑘+3
Δ𝑦𝑘+1 Δ𝑦𝑘+2 Δ𝑦𝑘+3
Δ𝑧𝑘+1 Δ𝑧𝑘+2 Δ𝑧𝑘+3

]

𝑛

+
⎡
⎢
⎢
⎢
⎣

𝜕𝐒𝑥
𝜕𝑥

𝜕𝐒𝑥
𝜕𝑦

𝜕𝐒𝑥
𝜕𝑧

𝜕𝐒𝑦
𝜕𝑥

𝜕𝐒𝑦
𝜕𝑦

𝜕𝐒𝑦
𝜕𝑧

𝜕𝐒𝑧
𝜕𝑥

𝜕𝐒𝑧
𝜕𝑦

𝜕𝐒𝑧
𝜕𝑧

⎤
⎥
⎥
⎥
⎦

𝑛

[
Δ𝑥𝑘+1 Δ𝑥𝑘+2 Δ𝑥𝑘+3
Δ𝑦𝑘+1 Δ𝑦𝑘+2 Δ𝑦𝑘+3
Δ𝑧𝑘+1 Δ𝑧𝑘+2 Δ𝑧𝑘+3

]

𝑛

(3.27)
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Furthermore, from section 2.3, the size-skew metric for the tetrahedral cell is de-
fined as:

𝑓𝑠𝑠 = 𝑓𝑠 ⋅
3(𝛼√2)

2
3

3
2(𝝀11 + 𝝀22 + 𝝀33) − (𝝀12 + 𝝀23 + 𝝀13)

(3.28)

where, 𝝀𝑖𝑗 represent the elements of the matrix 𝐀𝑇𝐀 and 𝛼 represents the determi-
nant of the Jacobian 𝐀𝑘.

Hexahedral Structured Grids
As mentioned previously, the hexahedral cell is similar to the quadrilateral cell and

is in fact non-simplical in nature. Therefore, the jacobian has to be calculated at all
eight nodes of the hexahedron in order to predict the quality of the cell accurately. The
Jacobian of the hexahedron is given as:

𝐀𝑛+1𝑘 = [
𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+3 − 𝑥𝑘 𝑥𝑘+4 − 𝑥𝑘
𝑦𝑘+1 − 𝑦𝑘 𝑦𝑘+3 − 𝑦𝑘 𝑦𝑘+4 − 𝑦𝑘
𝑧𝑘+1 − 𝑧𝑘 𝑧𝑘+3 − 𝑧𝑘 𝑧𝑘+4 − 𝑧𝑘

]

𝑛+1

(3.29)

The formulation of the predicted Jacobian is in fact same as the formulation for the
tetrahedral cell-derived in Equation 3.27. Therefore using the Jacobian, the symmetric
matrix 𝝀 can be obtained as, 𝝀 = 𝐀𝑇𝐀. Therefore, for the eight Jacobian matrices, 𝐀𝑘,
eight 𝝀𝑘 matrices are obtained. Using which, the size-skew metric can be predicted
using the formula:

𝑓ss = 𝑓𝑠 ⋅
8

∑7𝑘=0 ((√𝝀𝑘11𝝀𝑘22𝝀𝑘33) / (𝛼𝑘))
2/3 (3.30)

Therefore it can be seen that the algebraic mesh quality metrics discussed in chap-
ter 2 can be easily predicted without having to deform the mesh. The algorithm is
validated in the case of 1D and 2D meshes, while the theoretical foundation for 3D
meshes is laid out. The 3D case can not be validated due to time constraints and will
be left as a recommendation for future work.





4
Local Enrichment Correction Algorithm:

1D Model

The methodology of the local enrichment function-based mesh deformation im-
provement method will be first expounded in a concise manner for a 1D setup in the
current chapter, before being expanded into multiple dimensions in future chapters.
The current chapter initially discusses the framework and the motivation behind the
implementation of the local enrichment correction methodology. Following this, tech-
nical details with regard to the methodology will be presented in terms of where and
what kind of corrections need to be performed in order to improve the minimum quality
of the mesh. The results presented in the current chapter will showcase the variation
between the mesh quality obtained using just the standard RBF method and the lo-
calized enrichment correction algorithm such that a clear distinction can be made in
terms of the effectiveness of the developed algorithm. An important point to note is
that all the results showcased in the current chapter are for deformations which have
been performed over a single step in order to

4.1. Approach
As discussed in chapter 2, the RBF interpolation works on the basis of interpolat-

ing the prescribed displacements at the boundary nodes to the internal nodes of the
mesh within a certain radius. But the standard RBF interpolation method is not robust
enough to handle large displacements to the structure within the domain. Therefore a
mesh quality prediction algorithm was introduced in chapter 3, such that the regions
with poor quality are preempted before performing the intensive deformation step. Af-
ter identifying such problematic regions in the domain, it needs to be ensured that the
mesh does not contain elements with quality below a certain user-defined threshold
post the deformation step. Therefore, it would seem to be viable to introduce addi-
tional control points in these regions upon which additional enrichment functions can
be imposed in order to constrain the deformation of the internal nodes, hence improv-
ing the minimal quality of the mesh. These additional control points would be fictitious
in nature and would be utilized only as a computational constraint in the deformation
algorithm. In simpler terms, this means that the additional control points would have
no physical presence in the domain, unlike the original boundary nodes, which drive
the movement of the internal nodes due to the presence of the RBF on them. The goal
of applying these local enrichment corrections is to smoothen the overall deformation
process, in order to avoid sharp gradients with respect to the deformation magnitudes
between the nodes in the domain.

But then two important questions arise in order to smoothen these deformation
gradients:

37
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1. Where should the control points be introduced?
2. What kind of function should be acting from these control points?
In order to answer the two questions posed above, first a valid test setup needs to

be defined on which the corrections can be performed in order to validate the choices
for the answers. An example of a domain with deformations involving sharp gradi-
ents is showcased in Figure 4.1. The small RBF support radius of 0.2 is selected
explicitly to ensure that the deformation is not very smooth, thereby leading to low
magnitudes of the minimum quality in order to test the robustness of the algorithm be-
ing developed. Therefore, an academic test case for the 1D setup of the localized RBF
correction algorithm is developed comprising twenty one nodes out of which two are
static boundary nodes and two are moving boundary nodes as depicted in Figure 4.2.
The setup can be tested for three general cases representing the phenomena of con-
traction, expansion and translation of the boundaries.
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Figure 4.1: Qualitative depiction of sharp deformation gradients due to compact support RBF’s without local correction. RBF
support radius, R = 0.2.
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Figure 4.2: Test case setup shown for three possible motions of boundaries in 1D.

These cases represent the most fundamental movement of nodes that lead to a
reduction in mesh quality in 1D. But it can be noticed that by studying one of the three
cases, the other cases are automatically covered because if there is contraction or ex-
pansion occurring in some region of the domain, then some other part in the domain
has to automatically be expanding or contracting as seen from Figure 4.2. Therefore,
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the contracting setup is chosen to be studied in depth over the other two cases in the
current chapter as that particular case has the highest likelihood of producing inverted
elements due to the nodes crossing over each other. This is especially apparent in
cases where large deformations are involved. An additional point to note is that in the
current chapter, whenever the mesh quality is mentioned, it refers to the size metric
since parameters such as skewing, rotation, aspect ratio and so on require the pres-
ence of more than just 1D. A size metric of one implies an ideal cell while more or less
than that would imply expansion and contraction respectively.

4.2. Local RBF Control Point Location
The location at which the additional control point is supposed to be added and the

shape of the enrichment function is contingent on whether the correction being per-
formed is local in nature or global. For a global function, since the current test case
exhibits symmetric motion of the boundary nodes with respect to the centre of the do-
main, it would make sense to add the control point at the centre of the domain.

Furthermore, it has been showcased in the previous chapter that the mesh quality
can be accurately predicted at the (𝑛 + 1)𝑡ℎ time-step without having to deform the
mesh to the new location. Since the aim of the methodology is to improve mesh quality
using enrichment functions in regions where poor quality is predicted, a logical guess
would be to add the control points directly in such regions.

Additionally, for the 1D mesh quality prediction test case, it was noticed that the
mesh quality always crosses the value of one (most ideal quality) at the location of the
boundary point. The reasoning behind this is that based on the boundary movement
the nodes on one side of the boundary are always contracting, whereas, on the other
side they will be expanding as can be seen from Figure 3.4. Now from the two cases,
it is known that a contracting setup is more critical for mesh quality as the plausibility of
cell inversions occurring is higher. Therefore, it would also seem to be a plausible idea
to add the control point at the location of the closest boundary point to the poor-quality
region. The reasoning is that the enrichment function can then specifically target the
contraction region on one side and the expansion region on the other side thereby
improving the overall quality of the mesh post-deformation.

Both hypotheses are tested in the current chapter. First by adding local enrichment
control points only at the boundary nodes and then adding them only at the locations
where the worst quality is observed.

4.3. Nature of Correction
Now that the possible locations for the addition of the control points are known, the

nature of the enrichment function needed to improve the mesh quality can be looked
upon in the current section. The enrichment function being used can be either local in
nature or global in nature. The choice of the nature of correction is highly dependent
on the initial mesh parameters. Global mesh corrections would make sense when the
size of the grid is relatively small. If not, the interpolation matrix would become very
dense and would lead to high computational costs, thereby making the method unvi-
able. Furthermore, in terms of a 1D setup, the most ideal deformation would involve
the internal nodes having a linear spread between the moving boundary nodes as
shown in Figure 4.3. It can be seen from Figure 4.3b the ideal displacements have a
constant gradient between the two boundaries, thereby avoiding the sharp gradients
observed in the original displacements. This would ensure that the minimum quality
in the domain is higher, even if the average quality goes down relatively.
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In the previous section, it was hypothesized that the addition of the enrichment
function at either the boundary nodes or the worst quality location could leave to an
improvement in the overall mesh quality. From Figure 4.3a, it can be clearly deduced
that the gradient of the deformation is equal to zero at the location of the boundary
node. Whereas, the highest gradient of deformation will be observed at the worst-
quality locations. Therefore, it can be hypothesized that if the ideal gradient of the
linear interpolation observed is imposed as a constraint at the location of the control
point i.e. at the boundary node or the worst quality location, then it would lead to a
more smooth deformation of the internal nodes.

For a global function, this is relatively simple as the displacement of the moving
boundary nodes and their initial locations are already known. The gradient, ’𝐉’, on
which the internal nodes in between have to lie upon can be calculated as:

𝐉 =
𝐷𝑏1 − 𝐷𝑏2
𝑥𝑏1 − 𝑥𝑏2

(4.1)

where 𝐷𝑏 represents the displacement of the boundary nodes and 𝑥𝑏 represents
the initial location of the boundary nodes. It can be clearly seen from Figure 4.3b that
the ideal displacements have a negative gradient. Therefore, the value of ’q’ will also
be less than zero at the centre of the domain where the control point is added to con-
trol the deformations.

0 0.2 0.4 0.6 0.8 1

x

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

R
B

F
 M

ag
n

it
u

d
e

Internal nodes

Left boundary

Right boundary

Static nodes

(a) RBF functions without local correction

0 0.2 0.4 0.6 0.8 1

x

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

D
is

p
la

ce
m

en
ts

Left boundary

Right boundary

Static nodes

Original Displacements

Ideal Displacements

(b) Ideal displacement of nodes with local corrections

Figure 4.3: Linear variation in nodal displacements

This linearity in the displacement of the internal nodes in critical locations where
low mesh quality is predicted can be achieved in several ways. Even in the case of
local corrections, it is still possible to stitch up multiple enrichment functions in the
domain which would allow this almost linear behaviour in the displacement of the in-
ternal nodes. But in order to save computational cost, it would be ideal to construct
the enrichment function such that it would also be able to have a very localized effect
if necessary. This would allow for a sparse system matrix to be formulated. Since
Wendland’s 𝐶2 function[46] performs well with compact support and is already be-
ing utilized as the RBFs, it would be ideal to construct the enrichment function using
a similar formulation. This would lead to the added advantage that the data already
available in the deformation process can be utilized without having to define new func-
tions.
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4.3.1. Global Correction

In the case of global correction in 1D, only one control point needs to be added
which should have the desired effect on the entire domain. Additionally, in the previ-
ous chapter on mesh quality prediction, it was noticed that the magnitude of the min-
imum mesh quality of the grid is highly dependent on the support radius of the RBF
at the boundary nodes. Larger support radii lead to a smoother deformation thereby
increasing the overall minimal quality when compared to compact support radii. In
order to find the ideal function, multiple variations of the 𝐶2 functions are tested with
a global support radius. The idea is to find an efficient implementation in the global
sense first and then dissect the effect of that function using multiple compact support
enrichment functions.

Looking at the test case, it can be seen that the nodes between the static and
moving boundaries are expanding, while the nodes between the moving boundaries
are contracting. The introduced enrichment function should essentially constrain both
these effects to a considerable extent to preserve quality. This can be done by impos-
ing an enrichment function which prescribes a certain gradient to the deformation at
the location of correction. To obtain a linear trend in the displacements as compared to
the deformation in Figure 4.2a, the imposed function should have a positive gradient
between the static and boundary nodes and a negative gradient between the moving
boundaries as seen from the ideal deformation in Figure 4.3b. The global correction
is introduced at a control point in the centre of the domain as the movement of the
boundary nodes is symmetric in nature. Three variants of the 𝐶2 function that fulfil the
specified requirements are provided as follows:

1. 𝐻1(𝐱, 𝑅𝑙) = (𝐱 − 𝐱𝑐)𝜙(𝑟, 𝑅𝑙)

2. 𝐻2(𝐱, 𝑅𝑙) =
𝜕𝜙(𝑟,𝑅𝑙)
𝜕𝑥

3. 𝐻3(𝐱, 𝑅𝑙) =
𝜕𝜙(𝑟,𝑅𝑙)
𝜕𝑥 𝜙(𝑟, 𝑅𝑙)
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Figure 4.4: Depiction of enrichment function shapes in 1D,
𝑅𝑙 = 1.

where, 𝜙(𝑟, 𝑅𝑙) represents the original 𝐶2 function, r is the distance between the
RBF control points and ’𝑅𝑙’ is the support radius of the enrichment function. All three
functions introduced are dependent on this support radius, thereby making them com-
pact and hence making the correction efficient. Also, 𝑥𝑐 represents the set of fictitious
enrichment control points and the original boundary nodes. (𝒙 − 𝒙𝒄) is a linear func-
tion that can introduce the linearity.

Therefore, a coupled architecture can be formulated incorporating the boundary
conditions from the actual mesh deformation and the imposed gradient condition within
the same system (as no additional polynomial term is being utilized). Therefore the
system that needs to be solved can be represented as:
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[𝐝𝑏𝐉 ] = [
𝜙𝑏𝑐 𝐻𝑏𝑐
∇𝜙𝑏𝑐 ∇𝐻𝑐𝑐] [

𝜸𝐱
𝜷𝐱] (4.2)

where ′𝐉′ represents the imposed condition on the gradient of the deformation at
the location of the enrichment control point as given in Equation 4.1. 𝜸𝐱 and 𝜷𝐱 are
the interpolation coefficients. The above conditions when applied to the chosen test
case depicted in Figure 4.2a yields:

⎡
⎢
⎢
⎢
⎣

0
𝐝𝐛
−𝐝𝐛
0
𝐉

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜙11 𝜙12 𝜙13 𝜙14 𝐻1𝑐
𝜙21 𝜙22 𝜙23 𝜙24 𝐻2𝑐
𝜙31 𝜙32 𝜙33 𝜙34 𝐻3𝑐
𝜙41 𝜙42 𝜙43 𝜙44 𝐻4𝑐
𝛁𝑥𝜙1𝑐 𝛁𝑥𝜙2𝑐 𝛁𝑥𝜙3𝑐 𝛁𝑥𝜙4𝑐 𝛁𝑥𝐻𝑐𝑐

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜸𝟏
𝜸𝟐
𝜸𝟑
𝜸𝟒
𝜷𝐱

⎤
⎥
⎥
⎥
⎦

(4.3)

Once the interpolation coefficients 𝛾𝑥 and 𝛽𝑥 are calculated, the displacements of
the internal nodes can then be calculated using the formulation:

[𝐝𝑖𝑛] = [𝜙𝑖𝑛,𝑏 𝐻𝑖𝑛,𝑐] [
𝜸𝐱
𝜷𝐱] (4.4)

Now that the system matrix has been defined, the effect of the enrichment function-
based correction on the final mesh quality will be compared to the mesh quality using
the standard RBF method on the domain defined in Figure 4.2a. The standard RBF
has a radius of 0.4, while the enrichment function has a support radius of 1. The
boundary nodes move towards each other by a magnitude of 0.15. The deformation
using the standard RBF method is depicted in Figure 4.5 for reference.
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Figure 4.5: Deformation obtained using standard RBF model, 𝑅 = 0.4.

Three plots will be showcased for each enrichment function: the first depicts the
mesh quality using both methods on the undeformed grid along with a depiction of the
deformed grid, the second will showcase the displacement magnitudes of the nodes
within the domain and the final plot will showcase the shapes of the RBFs and the
enrichment functions to provide clarity on the effect of every function acting on the
domain.

1. 𝐻(𝐱, 𝑅𝑙) = (𝐱 − 𝐱𝑐)𝜙(𝑟, 𝑅𝑙)
The enrichment function defined can be expanded as:

𝐻1(𝐱, 𝑅𝑙) = (𝐱 − 𝐱𝑐) (1 −
𝑟
𝑅𝑙
)
4

+
(4 𝑟𝑅𝑙

+ 1) (4.5)

The effect of the enrichment function 𝐻1(𝐱, 𝑅𝑙) when applied at the centre of the
domain is presented in Figure 4.6. Setting the value of ’𝐉’ in Equation 4.3 to the ideal
slope value actually provides good results i.e.

𝐉 =
𝐷𝑏1 − 𝐷𝑏2
𝑥𝑏1 − 𝑥𝑏2

= 0.15 − (−0.15)
0.2 − 0.8 = −0.5
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Figure 4.6: Effect of global enrichment function, 𝐻1(𝐱, 𝑅𝑙) on mesh deformation, 𝑅 = 0.4, 𝑅𝑙 = 1

It can be clearly seen from Figure 4.6a that there is a considerable improvement
in the minimum quality when compared to the standard RBF method. The average
quality of the cells does go down, but its effect is not so significant. The displacements
of the internal nodes do actually fall into a linear pattern as intended as seen from Fig-
ure 4.6b. Furthermore, it is seen from Figure 4.6c that the gradient of the deformation
functions is indeed constrained to the imposed value while ensuring that the boundary
conditions are also satisfied. Hence, this function can be utilized for improvements in
the deformation quality in the future.

2. 𝐻2(𝐱, 𝑅𝑙) =
𝜕𝜙(𝑟,𝑅𝑙)
𝜕𝑥

The enrichment function defined can be expanded as:

𝐻2(𝐱, 𝑅𝑙) =
−20(𝐱 − 𝐱𝑐)(𝑅𝑙 − 𝑟)3

𝑅5𝑙
(4.6)

The effect of the enrichment function 𝐻2(𝐱, 𝑅𝑙) when applied at the centre of the
domain is presented in Figure 4.7. Setting the value of 𝐉 of -0.5 in Equation 4.3 to the
ideal slope value produced improved results as well when compared to the original
standard RBF mesh deformation as seen from Figure 4.7a. The displacements of the
internal nodes also fall into a linear pattern.
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Mesh Quality Comparison
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Figure 4.7: Effect of global enrichment function, 𝐻2(𝐱, 𝑅𝑙) on mesh deformation, 𝑅 = 0.4, 𝑅𝑙 = 1

3. 𝐻(𝐱, 𝑅𝑙) =
𝜕𝜙(𝑟,𝑅𝑙)
𝜕𝑥 𝜙(𝑟, 𝑅𝑙)

𝐻3(𝐱, 𝑅𝑙) =
−20(𝐱 − 𝐱𝑐)2(𝑅𝑙 − 𝑟3

𝑅5𝑙
(1 − 𝑟

𝑅𝑙
)
4

+
(4 𝑟𝑅𝑙

+ 1) (4.7)

The effect of the enrichment function 𝐻3(𝐱, 𝑅𝑙) when applied at the centre of the
domain is presented in Figure 4.8. Setting the value of 𝐉 in Equation 4.3 to the ideal
slope value of -0.5 again improves the minimal quality seen in the domain. Similar
to the other functions, the displacements are also made to be linear in the critical
contraction region.
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Mesh Quality Comparison

Deformed Mesh - Post Correction
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Figure 4.8: Effect of global enrichment function, 𝐻3(𝐱, 𝑅𝑙) on mesh deformation, 𝑅 = 0.4, 𝑅𝑙 = 1

Discussion

The three functions do perform similarly when the original RBF support radius is
large. Therefore, the efficacy of each function was tested by lowering the support ra-
dius of the original RBF, thereby introducing sharper gradients to the deformations.
The results from the comparison are quantified in Table 4.1 and are depicted in Fig-
ure 4.9.

After analysing the results from the three test functions, it can clearly be concluded
that the first function provides the best results and hence can be utilized to further ana-
lyze the mesh improvements when subjected to multiple compact support enrichment
functions to further improve the efficiency as well. Therefore, from here on, whenever
the function, 𝐻(𝐱, 𝑅𝑙) is mentioned, the first function from this sub-section will be used
to obtain all the results unless specifically stated otherwise.

𝐻(𝐱, 𝑅𝑙) = (𝐱 − 𝐱𝑐) (1 −
𝑟
𝑅𝑙
)
4

+
(4 𝑟𝑅𝑙

+ 1) (4.8)
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RBF Support Radius Minimum Quality
Standard RBF

Enrichment
Function

Minimum Quality
Enrichment Corrections

0.2 -0.373
𝐻1 0.262
𝐻2 0.091
𝐻3 -0.006

0.3 -0.056
𝐻1 0.379
𝐻2 0.284
𝐻3 0.242

0.4 0.2185
𝐻1 0.346
𝐻2 0.328
𝐻3 0.329

Table 4.1: Efficacy of the enrichment functions with variation in RBF support radius, R: Enrichment function support radius,
𝑅𝑙 = 1, displacement magnitude = 0.15.

Mesh Quality Comparison

0 0.2 0.4 0.6 0.8 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

f s

H
1

H
2

H
3

Standard RBF

Internal nodes

Left Boundary

Right Boundary

Fixed Nodes

(a) RBF support radius, R = 0.2

Mesh Quality Comparison

0 0.2 0.4 0.6 0.8 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

f s

H
1

H
2

H
3

Standard RBF

Internal nodes

Left Boundary

Right Boundary

Fixed Nodes

(b) RBF support radius, R = 0.3

Mesh Quality Comparison

0 0.2 0.4 0.6 0.8 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

f s

H
1

H
2

H
3

Standard RBF

Internal nodes

Left Boundary

Right Boundary

Fixed Nodes

(c) RBF support radius, R = 0.4

Figure 4.9: Comparison of the three enrichment functions (𝑅𝑙 = 1) for varying RBF support radii. Deformation magnitude = 1.5.

4.3.2. Local Correction
It has been discussed previously that global functions often lead to dense sys-

tem matrices which are computationally very expensive to solve, even if they provide
smooth deformations. This severely restricts their usage in practical applications. Fur-
thermore, global functions can lead to the formation of an ill-conditioned systemmatrix
due to the accumulation of a lot of truncation errors and can cause numerical instabil-
ities. Therefore, it is necessary to formulate a method to mimic the advantages that
were obtained using the global support correction using compact support functions.

This can be achieved utilizing the same 𝐻(𝐱, 𝑅𝑙) defined in Equation 4.8. Instead
of having a single global enrichment function, two compact support functions can be
”stitched” together to provide a similar result. The larger the support radius of these
local enrichment functions, the closer they come to the results attained by the global
function. It has already been discussed in section 4.2 that for compact support enrich-
ment functions the two hypothetical locations at which a control point can be added
are the worst quality locations and the boundary locations respectively. Two compact
support functions are introduced at these locations and are depicted in Figure 4.10 for
reference. It can be seen that the cumulative shape of both the functions combined
resembles the global function shape as seen in Figure 4.4 in the region between the
moving boundaries. The optimal support radius to be utilized would actually depend
on the computational constraints and the magnitude of the quality improvement de-
sired by the user and hence would be subjective to the test case being analyzed.
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(a) Enrichment function at boundary nodes, 𝑅𝑙 = 0.4
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(b) Enrichment functions at worst quality locations, 𝑅𝑙 = 0.4

Figure 4.10: Multiple compact support enrichment functions can be stitched to resemble the single global enrichment correction

The cumulative function shape does differ in regions close to the static nodes when
compared to the global function and would introduce an unnecessary correction in
the opposite of the desired direction. But the magnitude of this correction is relatively
small, so it does not have a significant impact on the overall quality obtained from the
correction function. Also, it can be noticed that unlike the global functions, where the
ideal slope could be specified at the centre of the domain leading to a linear distribu-
tion, the gradients 𝐉 need to be specified at the locations of the local control points,
where it is not possible to use the ideal slope formation specified in Equation 4.1. Fur-
thermore, as discussed in section 4.2, for the 1D case it is plausible to introduce the
control points at the boundary node or at the worst quality locations. For each case,
the optimal value of 𝐉 needs to be calibrated individually. Both hypotheses are tested
in the current analysis to see which would be more beneficial for overall improvement
in the mesh deformation algorithm.

But first, the formulation provided in Equation 4.3 needs to be expanded to incor-
porate the additional correction function. Therefore, the RBF system to obtain the
interpolation coefficients 𝜸 and 𝜷 can be written as:

⎡
⎢
⎢
⎢
⎢
⎣

0
𝐝𝐛
−𝐝𝐛
0
𝐉1
𝐉2

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝜙11 𝜙12 𝜙13 𝜙14 𝐻1𝑐1 𝐻1𝑐2
𝜙21 𝜙22 𝜙23 𝜙24 𝐻2𝑐1 𝐻2𝑐2
𝜙31 𝜙32 𝜙33 𝜙34 𝐻3𝑐1 𝐻3𝑐2
𝜙41 𝜙42 𝜙43 𝜙44 𝐻4𝑐1 𝐻4𝑐2
𝛁𝑥𝜙1𝑐1 𝛁𝑥𝜙2𝑐1 𝛁𝑥𝜙3𝑐1 𝛁𝑥𝜙4𝑐1 𝛁𝑥𝐻𝑐1𝑐1 𝛁𝑥𝐻𝑐2𝑐1
𝛁𝑥𝜙1𝑐2 𝛁𝑥𝜙2𝑐2 𝛁𝑥𝜙3𝑐2 𝛁𝑥𝜙4𝑐2 𝛁𝑥𝐻𝑐2𝑐2 𝛁𝑥𝐻𝑐1𝑐2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜸1
𝜸2
𝜸3
𝜸4
𝜷𝑥1
𝜷𝑥2

⎤
⎥
⎥
⎥
⎥
⎦

(4.9)

The displacements of the internal nodes can then be calculated using the formula-
tion:

[𝐝𝑖𝑛] = [𝜙𝑖𝑛,𝑏 𝐻𝑖𝑛,𝑐1 𝐻𝑖𝑛,𝑐2] [
𝜸𝑥
𝜷𝑥] (4.10)

Control Points at Boundary Nodes
Initially, the control points are introduced at the boundary nodes and the analysis is

performed. It can be seen from the example showcased in Figure 4.10a that to mimic
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the global function, the gradient imposed for the enrichment function at the control
points (boundary nodes in this case) needs to be positive. Furthermore, since the
boundary nodes are equidistant from the centre of the domain in the current test setup,
it would make sense to impose the samemagnitude of the gradient at both locations as
well such that the correction is symmetric and linear between the moving boundaries.
Since the gradient is the function of the support radius of the enrichment function, this
implies that the same support radius should be used for both functions as well. But
the magnitude of the ideal gradient that needs to be imposed at the boundary nodes to
attain linearity in the movement of the internal nodes between the moving boundaries
is unknown. In order to ascertain the optimal value of the prescribed gradients, a
parametric study is performed to analyze what value of prescribed gradients provides
the optimal deformation as shown in Figure 4.11. The same test setup parameters
that were used for the global correction test case are utilized here. The support radius
of the RBFs is set as 0.4. The variation in the ideal imposed gradient for varying
support radius of the enrichment function is shown in Figure 4.11a. The imposed
gradients are varied with a step size of 0.01. There is only a small range of values
for the imposed gradients which actually makes the final mesh quality better than
the quality obtained from the standard RBF method. It can be noticed that the trend
remains similar irrespective of the support radius. Additionally, the variation in the ideal
gradient with respect to deformation magnitude is also presented in Figure 4.11b to
ascertain whether a generic trend could be identified for the imposed gradient. The
boundary displacements are varied with a step size of 0.01. It is noticed that the ideal
prescribed gradients vary linearly with respect to the deformation magnitude.
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Figure 4.11: Parametric analysis of prescribed gradient values for ideal mesh deformation with control points at boundary nodes,
R = 0.4

It is observed that for 𝑅𝑙 < 0.4, the ideal gradient that needs to be imposed is nega-
tive. This can be attributed to the fact that the support radius of the enrichment function
is so small that it influences a very small portion of the contraction region as seen in
Figure 4.13a. Therefore, its influence is not based on mimicking the global function at
all. The trough of the function is attained before the worst quality location. This allows
the sharp gradients due to the standard RBF to be controlled by the positive gradient
of the enrichment function after the trough leading to a slight improvement in mesh
quality. For 𝑅𝑙 = 0.4, no improvement in the mesh quality is observed at all. This can
be attributed to the enrichment function not being able to influence the worst-quality
region in a positive manner as its peak is always over-arched by the sharpest gradient
region of the RBF, thereby making any correction performed to be an over-correction
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which worsens the quality. Finally, for 𝑅𝑙 > 0.4, there is an improvement in the mesh
quality and the displacements in the contraction region do become linear as seen from
Figure 4.12b, but as the support radius keeps increasing, the two functions cumula-
tively become more or less a global function. Therefore, the system matrix becomes
denser leading to increased computational costs.
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Figure 4.12: Comparison of the performance of enrichment function at boundary nodes with an optimal imposed gradient from
the parametric study: R = 0.4,𝐝𝐛 = 0.15.
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(c) 𝑅𝑙 = 0.6

Figure 4.13: Comparison of the optimal shapes of the RBFs and enrichment functions for different enrichment support radius.
RBF support radius, R = 0.4,𝐝𝐛 = 0.15.

More importantly, it is noticed that trying to copy the effect of the global enrichment
function by imposing the gradient at the boundary node is not a convenient strategy
because originally the gradient of the RBFs at the boundary node is equal to zero, by
forcing the gradient to adhere to the imposed value at the boundary nodes leads to an
over-shoot in the displacement of the internal nodes closest to the boundary nodes
as seen from Figure 4.12b. Furthermore, it is not easy to tell what gradient needs to
be imposed at the boundary node to attain the ideal gradient value at the centre of
the domain as observed in the global enrichment function case. Therefore, since the
gradient at the boundary node does not represent the underlying problematic region
in the mesh, this approach can be concluded to be unsuitable for performing the local
corrections.

Control Points at Worst Quality Locations
Since it was showcased in chapter 3 that the quality of the mesh in the domain is a

function of the gradient of the deformation. Therefore by controlling the gradient at the
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worst-quality location, the quality at that location can be controlled as well. Therefore
the second hypothesis is tested by introducing the local enrichment control points
directly at the locations where the worst quality itself is predicted. This means that the
control points will be placed at the locations where the mesh quality is being sampled
if it is below the user-defined threshold. In the current scenario, as the mesh qualities
are being predicted at the cell centres, the additional control points will coincide with
them. The algorithm first checks whether the predicted quality is under the threshold
at the sampled location and whether it is a local minimum or not, and then applies the
correction function there if the minima condition is satisfied.

𝜕𝑓𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝜕𝑥 = 0 &

𝜕2𝑓𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝜕𝑥2 > 0 (4.11)

This ensures that if multiple cells are present in proximity to each other with quality
predicted to be lower than the threshold, the control point will be added at the worst
quality location. But if there are multiple cells in proximity with the same magnitude
of bad quality, then the control point is added at only one of those locations, thereby
ensuring a smooth and efficient correction.

But in order to understand what gradient needs to be imposed at such locations,
first a similar parametric study is performed with respect to the effect of the prescribed
gradient with varying support radius and magnitude of displacements as in the pre-
vious case. The results from the study are presented in Figure 4.14. It is observed
that, unlike the previous case, there is clear consistency in the values of the gradients
that need to be imposed. It is clear that the ideal gradient that needs to be imposed
should be negative. Furthermore, the value of the imposed gradients 𝐉1, 𝐉2 in Equa-
tion 4.9 are again the same since both the enrichment functions being applied have the
same support radius and the displacements are symmetric as discussed previously.
The magnitudes again vary linearly with respect to the magnitude of the deformation
as seen from Figure 4.14b. It is observed from Figure 4.14a that for compact sup-
port radius of the enrichment function i.e. 𝑅𝑙 = 0.2 → 0.6, the ideal gradient used
in the global corrections i.e. 𝐉 = −0.5 provides very good results. Therefore it can
be said that for compact support corrections using enrichment functions at the worst
quality location in the mesh, the ideal gradient can be imposed based on the already
available information about the movement of the boundary nodes. The resulting mesh
quality and displacements of the internal nodes using (𝐉1, 𝐉2 = −0.5) is showcased in
Figure 4.15 for different support radius of the enrichment function.

It can be seen from Figure 4.16a that there is an improvement in mesh quality for
all the support radii tested. But for 𝑅𝑙 = 0.2, the correction is not very smooth due to
the sharp nature of the gradients of the enrichment function itself, thereby not allowing
for a smooth deformation that is observed in the other cases. Compact supports do in
fact end up performing better than the global corrections as global functions can lead
to over corrections as seen from Figure 4.14b for 𝑅𝑙 = 0.8, where the internal node
closest to the boundary node is displaced way more than it needs to be due to the
large magnitude of the enrichment function. Therefore it can be said that by placing
compact support enrichment functions at the worst quality location and imposing the
ideal gradient using data from the boundary nodes, the desired smooth and linear
translation can be obtained in the mesh deformation.
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Figure 4.14: Parametric analysis of prescribed gradient values for ideal mesh deformation with control points at worst quality
locations, R = 0.4
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Figure 4.15: Comparison of the performance of enrichment function at boundary nodes with an optimal imposed gradient from
the parametric study: R = 0.4,𝐝𝐛 = 0.15.
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(c) 𝑅𝑙 = 0.6

Figure 4.16: Comparison of the optimal shapes of the RBFs and enrichment functions for different enrichment support radius.
RBF support radius, R = 0.4,𝐝𝐛 = 0.15.
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In order to test the robustness of the method for cases where the motion is not sym-
metric. The location of the boundary nodes is changed along with their magnitudes of
displacements. The setup is still targeted at correcting the regions of contraction since
that is the most critical region in 1D deformations as discussed in section 4.1. The re-
sults from this analysis are showcased in Figure 4.17, Figure 4.18 and Figure 4.19
which actually tests the setup where the contraction region actually lies between the
boundary and static nodes. But even for such a movement, the algorithm is able to
accurately assign optimal gradients for the deformation at the worst quality location to
improve the final mesh quality.
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Figure 4.17: Local Enrichment correction results: 𝑅 = 0.4, 𝐝𝐛𝟏 = 0.12, 𝐝𝐛𝟐 = −0.216, 𝑅𝑙 = 0.4, 𝐉1 = 𝐉2 = −0.672.
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Figure 4.18: Local Enrichment correction results: 𝑅 = 0.4, 𝐝𝐛𝟏 = 0.252, 𝐝𝐛𝟐 = −0.06, 𝑅𝑙 = 0.4, 𝐉1 = 𝐉2 = −0.52.

4.4. Discussion
In summary, the concept of enrichment function-based corrections to improve the

mesh quality was introduced in the current chapter. It was showcased that a single
global enrichment function or multiple local support enrichment functions can be uti-
lized to improve the quality of the deformation. This is done by introducing additional
control points either at the centre of the domain (for global) or at the worst quality loca-
tions (for local). The system matrix for the deformation was modified by imposing an
ideal gradient at the location of these control points, thereby obtaining a smooth and
linear deformation. For the global correction, it was obvious in terms of what gradient
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Figure 4.19: Local Enrichment correction results: 𝑅 = 0.4, 𝐝𝐛𝟏 = −0.156, 𝐝𝐛𝟐 = 0.096, 𝑅𝑙 = 0.4, 𝐉1 = −0.3466, 𝐉2 = −0.48.

to impose, but since global functions lead to denser system matrices which are not
efficient to solve, local functions were stitched together to try and mimic the global
action. Parametric studies were performed in order to ascertain the ideal gradient for
the local enrichment functions. It was found that the boundary data could actually be
used in a similar fashion to the global correction to obtain good mesh quality post-
deformation. Furthermore, the methodology was showcased to be robust enough to
work well for various magnitudes and types of deformation for the boundary nodes.
A flow chart describing all the steps involved in the implementation of the enrichment
function-based correction algorithm is shown in Figure 4.20.

Figure 4.20: Flow chart depicting the steps involved in the local enrichment function-based correction algorithm.



5
Local Enrichment Function Algorithm:

2D Model

The current chapter deals with expanding the methodology discussed for the local
corrections in 1D in the previous chapter to 2D. The challenges associated with doing
so are discussed in depth and a pathway is devised in order to overcome said chal-
lenges. In order to do so, an in-depth analysis of what the gradients of the deformation
function mean is explained, followed by how to extract useful information from them
in order to improve the mesh quality. Finally, the methodology is tested on three test
cases which encompass all the facets involved in the deformation of a 2D domain.

5.1. Extrapolation of 1D Framework in 2D
5.1.1. Enrichment Function

In the 1D setup in the previous chapter, it was apparent that a linear interpolation
around the worst quality location would lead to an ideal increase in the minimum qual-
ity of the mesh post-deformation. In order to achieve this result, a control point is
introduced into the domain which constrains the gradients of the deformations of the
internal nodes by the application of an enrichment function. The global enrichment
function which provided ideal results is depicted in Figure 5.1a.

If the same methodology is extrapolated to 2D, then it would appear that when the
enrichment function is introduced at the worst quality location, it should have a planar
action around its vicinity in order to achieve an ideal deformation in that region. In
1D, the corrections have to be made in only one direction whereas, in 2D, the planar
correction has to be accounted for two principle directions as shown in the example
in Figure 5.1b. A simple way to ideally perform the local correction would be to split
enrichment functions into its two underlying components, each performing corrections
in either of the orthogonal directions. Therefore, the enrichment function used in the
1D scenario can be expanded for a 2D grid as:

H = 𝐻𝑥 �̂� + 𝐻𝑦 �̂� (5.1)

where H is the enrichment function and
𝐻𝑥 = (𝑥 − 𝑥𝑐)𝜙(, 𝑅𝑙) (5.2)
𝐻𝑦 = (𝑦 − 𝑦𝑐)𝜙(𝑟, 𝑅𝑙) (5.3)

where, (𝑥𝑐 , 𝑦𝑐) are the location of the control points and (𝑥, 𝑦) are locations in the
domain. 𝜙(𝑟, 𝑅𝑙) represents the RBF i.e. Wendland’s 𝐶𝑃𝐶2 function as presented in
Table 2.1.

55



56 5. Local Enrichment Function Algorithm: 2D Model

-1 -0.5 0 0.5 1

x

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

H

Enrichment Function

Static nodes

Control Point

(a) Enrichment function in 1D (b) Reference planar action around the worst quality location

Figure 5.1: Rationale behind extrapolation of 1D framework

Suppose the control point is to be added at the centre of a reference computational
domain. If the principle directions in which the corrections have to be performed are
assumed to be in the positive x and y directions respectively. Then the enrichment
functions will have an effect as showcased in Figure 5.2. The magnitude of the en-
richment function will depend on the support radius, which is chosen to be 0.5 for this
particular example.

(a) Enrichment function in 1D (b) Enrichment function in 2D

(c) Projection of enrichment function (𝐻𝑥) in xz plane (d) Projection of enrichment function (𝐻𝑦) in yz plane

Figure 5.2: Depiction of the 2D enrichment function
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5.1.2. Coupled Architecture
Now that the functions that are required to perform the corrections are defined,

these enrichment functions need to be incorporated into the RBF system such that
the local corrections can be performed. In the 1D case, it was found that the ideal
way to obtain the interpolation coefficients 𝜸𝑥, 𝜷𝑥 in order to control the quality of the
deformation was by coupling the boundary conditions and imposing the gradient of the
deformation at the location of the control point into a single system as shown below:

[d𝑏J𝑆] = [
𝜙𝑏𝑏 𝐻𝑏𝑐
∇𝜙𝑏𝑐 ∇𝐻𝑐𝑐] [

𝜸𝑥
𝜷𝑥] = [

S𝑥
𝛁S𝑥] (5.4)

It has to be noted that in 1D, all the nodes are essentially moving along a single
principal direction, therefore the enrichment function also has to act only along one
principal direction. Hence, the gradient that needs to be imposed to constrain the
deformation is a one-dimensional vector and has just a single value J𝑆 as denoted in
Equation 5.4. But in the 2D case, not only does the magnitude of the gradient have to
be imposed, but the direction in which the gradient is imposed also has to be defined.
Since there are two principle directions in 2D, J𝑆 would actually be a matrix of size 2×2
and all the components of the gradient can be represented by the Jacobian matrix of
the interpolation function, where:

J𝑆 = [

𝜕𝑆𝑥
𝜕𝑥

𝜕𝑆𝑦
𝜕𝑥

𝜕𝑆𝑥
𝜕𝑦

𝜕𝑆𝑦
𝜕𝑦

] = [J11 J12
J21 J22

] (5.5)

It is important to note that the J𝑆 matrix is just the Jacobian of the interpolation
function and not the Jacobian of the cell in the mesh, which is represented by A𝑘 as
discussed in chapter 3. This method could in fact be generalized for N dimensions,
where the size of the imposed Jacobian would be 𝑁 × 𝑁, which is why a single value
is obtained when 𝑁 = 1. Therefore, the final evaluation matrix for the 2D case can be
represented as:

⎡
⎢
⎢
⎢
⎢
⎣

𝐝𝑥 𝐝𝑦
𝝏𝐒𝐱
𝝏𝐱

𝝏𝐒𝐲
𝝏𝐱

𝝏𝐒𝐱
𝝏𝐲

𝝏𝐒𝐲
𝝏𝐲

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜙𝑏𝑏 𝐻𝑥𝑏𝑐 𝐻𝑦𝑏𝑐

∇𝑥𝜙𝑏𝑐 ∇𝑥𝐻𝑥𝑐𝑐 ∇𝑥𝐻𝑦𝑐𝑐

∇𝑦𝜙𝑏𝑐 ∇𝑦𝐻𝑥𝑐𝑐 ∇𝑦𝐻𝑦𝑐𝑐

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜸𝑥 𝜸𝑦

𝜶𝑥 𝜶𝑦

𝜷𝑥 𝜷𝑦

⎤
⎥
⎥
⎥
⎦

(5.6)

For the 1D deformation, it was quite intuitive what the gradient of the deforma-
tion that needs to be imposed as the condition should be based on the deformation
magnitude and location of the boundary nodes. But in 2D, such a simplification is
not possible because the deformation of the boundary induces not just translations
in the directions of the principle components, but also induces rotation and skewing
of elements. Furthermore, the boundary themselves are not discrete nodal locations
anymore but comprise a larger set of nodes which are continuous in terms of their
connectivity. Therefore, the imposition of the four parameters for the Jacobian matrix
is not so clear. In order to understand the behaviour of the most optimal parameters
that need to be imposed, the test case used in chapter 3 is chosen for performing the
deformations for the 2D methodology as showcased in Figure 5.3. The domain and
internal block specifications are presented in Table 5.1.
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Mesh Details
Nodes 751
Static Nodes 100
Moving Nodes 16
Spacing 0.04
Domain Dimensions
Height 1 unit
Width 1 unit
Centre (0.5,0.5)
Inner Block Dimensions
Height 0.2 unit
Width 0.1 unit
Initial Mesh Quality
Mean Quality 0.94
Minimum Quality 0.67

Table 5.1: Specifications of the 2D domain.

Figure 5.3: 2D test case comprising a square domain with an internal rectangular block.

Initially in order to simplify the complexity of the problem, a simple deformation in-
volving pure translation of the block along the principle x-direction is selected such that
the setup of the problem becomes similar to the 1D problem whilst still retaining the
2D properties at other places as the RBF function peters out. But as discussed previ-
ously, unlike the 1D problem it is not possible to use global information that is already
known in order to impose the optimal gradient values. Therefore, a parametric study
is initially performed over a support radius, 𝑅0 = 0.2 → 1 for the enrichment function
in order to identify if there is a particular pattern amongst the most optimal imposed
gradient values. But first, the prescribed deformation parameters and the quality ob-
tained using the regular RBF method are presented in Table 5.2. As discussed in the
previous chapters, all deformations are performed over a single time-step. The de-
formation using the regular RBF method is showcased in Figure 5.4a. The variables
of interest that were varied during the parametric seep are also presented in Table 5.3:
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Prescribed Motion
x displacement -0.3 units
y displacement 0 units
Rotation 0 °
Regular RBF Mesh Quality
Mean Quality 0.94
Minimum Quality 0.67

Table 5.2: Parameters for the prescribed deformation and final mesh quality for the regular RBF method

Variable Varied Lower Bound Upper Bound Step Size
RBF Radius × 0.5 0.5 -
Enrichment Function Radius 3 0.2 1 0.2
𝐉11 3 -3 3 0.2
𝐉12 3 -3 3 0.2
𝐉21 3 -3 3 0.2
𝐉22 3 -3 3 0.2

Table 5.3: Variables of interest that were varied during the parametric study

(a) Original deformation of the block using the regular RBF method, R
= 0.5.

(b) Optimal deformation obtained using the enrichment functions, R =
0.5 and 𝑅0 = 0.8.

Figure 5.4: Comparison of the deformation of the mesh using regular RBF and local correction RBF methods.

The resulting optimal deformation from the parametric study is showcased in Fig-
ure 5.4b. It is observed that using the local RBF methodology, it is possible to improve
the minimum quality of the mesh from a degenerate value of -0.25 to 0.26, which is
a considerable improvement. Furthermore, it is noticed that even though the defor-
mation is based purely in the X direction, the result from the most optimal local RBF
correction method implies that needs to be imposed also perform alterations in the Y
direction as shown in Figure 5.5. This is an unusual result because the deformation
has been simplified to a pure 1D translation in a 2D domain. Therefore, a reasonable
guess to have made for the imposed gradients would be that the corrections in the Y
direction are not necessary, thereby implying that J21 and J22 should be equal to zero.
But that does not seem to be the case.

In order to better understand the results obtained from the parametric study, re-
sponse plots of the minimal quality, location of minimal quality and the imposed gra-
dients with respect to the support radius of the enrichment function are showcased in
Figure 5.6. It can be seen as expected, as the support radius of the enrichment func-
tion increases, the minimal quality increases as the effect of the enrichment function
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becomes smoother. Additionally, the location of the minimal quality is clearly seen to
be constrained to a specific region and there are no sudden shifts in terms of the worst
quality location being moved to someplace across the domain. But unfortunately, no
discernible trend can be extracted in terms of the imposed gradients that would pro-
vide the most optimal mesh deformation. While there is a noticeable improvement in
terms of the minimum quality of the mesh, the ideal imposed gradients in fact fluctu-
ate a lot based on the support radius. Hence, it would appear that the methodology
prescribed in the 1D formulation might not be very suitable for more complex setups.

(a) Optimal X displacements obtained using enrichment function (b) Optimal Y displacements obtained using enrichment function

Figure 5.5: Displacements observed for the most optimal formulation of the enrichment function
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(a) Response plot of minimal quality with respect to support radius
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Figure 5.6: Response plots of various parameters with respect to support radius of the enrichment function
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5.1.3. Discussion
Even for a simplified motion i.e. a pure translation in one direction which should be

theoretically very similar to the actual 1D test case since there is no nodal deformation
in the y-direction, it seems that there is no global trend observable in terms of what
the ideal imposed gradient values should be. But it can be clearly seen that even if
the condition that needs to be imposed is not clear, the parametric study does show-
case that there can be considerable improvement achieved in the final mesh quality
using such enrichment functions in the domain. Therefore, a plausible course of ac-
tion would point towards somehow utilizing the known data in the local region of poor
mesh quality instead of depending on a ”global” condition that would immediately fix
the mesh.

The location at which the control point needs to be added is known from the mesh
quality prediction algorithm discussed in chapter 3. Furthermore, the predicted Ja-
cobian values at the control point are also known. Therefore what needs to be seen
is whether these predicted Jacobian values leave some sort of clue in terms of what
the ideal prescribed gradients should be in order to constrain the mesh deformation
process.

5.2. Interpretation of Predicted Jacobians in 2D
As discussed in the previous section, a clear pattern could not be discerned using a

parametric study in order to determine the optimal gradients that need to be imposed
as a constraint for the deformation. But since the location at which the enrichment
function needs to be added i.e. the location at which the worst quality is predicted is
already known along with the nature of the enrichment function that needs to be im-
posed as discussed in the previous section. The logical step would be to analyze the
predicted values of the gradients at the location of the control point and look to some-
how counteract/control these predicted gradients in such a manner that a poor-quality
region is not developed at another location because of trying to make the original worst
quality location perfect. Therefore, an important question that needs to be answered
is whether:

”Based on the predicted values of the gradient of the deformation can something
be said regarding how the particular cell is going to skew or rotate or compress or
expand?”

Now the gradients of the deformation by themselves can not be expected to provide
a clear picture of the shape or size or orientation of a cell in the mesh. The gradients
only provide information in terms of how the cell will change in the next time step
compared to the previous time step. Therefore it is important to incorporate how the
cell actually is in the current time-step in order to accurately extract the geometrical
data of the cell as explained in chapter 3. It was showcased that:

𝐀𝑛+1𝑘 = (𝕀 + J)𝐀𝑛𝑘 = B𝐀𝑛𝑘 (5.7)

where 𝐀𝑛+1𝑘 would give the exact representation of the geometrical properties of the
cell. But it can be seen that the quality of the cell in the future time-step is inherently
dependent on the matrix B as the current methodology assumes that the initial mesh
is ideal in nature and no improvements need to be performed on it, thereby implying
that 𝐀𝑛𝑘 need not be optimized.

Hence, in order to answer the posed question the Bmatrix needs to be interpreted.
Since there are four parameters governing the quality of any particular cell in themesh.
It becomes important to understand what information can be deciphered from each
value of the B matrix in terms of how the cell is eventually going to deform. To do
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so, various matrix decompositions could be utilized from available literature in ge-
ometry morphing and matrix animations[1, 42] to extract useful data. Some of the
most popular choices for matrix decompositions include the Singular Value Decom-
position (SVD), QR decomposition, Polar decomposition and Eigen decomposition.
The framework behind each decomposition and their advantages and disadvantages
are briefly discussed in the upcoming subsections.

5.2.1. Singular Value Decomposition (SVD)
SVD is a very powerful decomposition method generally utilized for dimensional-

ity reduction, data-driven generalizations and geometrical transformations. When it
comes to geometrical transformations, the SVD can be used to map a system of inter-
est into a new coordinate system where it would be easier to interpret the data. In the
present problem at hand, SVD can be utilized to decompose the B matrix as follows:

B = 𝐑𝛼Σ𝐑𝑇𝛽 (5.8)

where 𝐑𝛼 and 𝐑𝛽 are orthogonal matrices and represent the set of left singular and
right singular vectors respectively. While Σ is a diagonal matrix. In geometrical terms,
the decomposition basically implies that firstly 𝐑𝛽 rotates the geometry to its principle
axes, then Σ scales the geometry followed by which 𝐑𝛼 rotates the system back to
its original coordinate system[1]. This implies that the B matrix can be decomposed
into matrices which provide data in terms of just the scaling of the original cell and the
rotation of the cell, which would be very useful in order to constrain unwanted effects
such as excessive rotations or contractions.

One of the main advantages of SVD is that it always exists and is always unique.
But a fundamental disadvantage with this decomposition is that the rotation matrices
can be factored into orthogonal matrices in an infinite number of ways[42]. Therefore,
even for the slightest perturbation in the values of the B matrix, the rotation angle
that can be obtained can be completely different. Furthermore, the computational
cost involved in computing the SVD is very high. Hence, due to its instability and
computational expense, the SVD can not be used in the current application.

5.2.2. QR Decomposition
The QR decomposition basically decomposes an input matrix into two parts as

shown below:
B = 𝐐𝐑 (5.9)

where 𝐐 is an orthogonal matrix which represents the rotational data and 𝐑 is a
lower triangular matrix that represents the scaling data. The advantage of the QR
decomposition is that it is also always unique as the SVD, but it is also stable and
efficient. But the main challenge with using QR decomposition in order to ascertain
how a particular cell is deforming is that it is not invariant to the coordinate basis
being used[42]. That means that if the deformation needs to be mapped onto another
coordinate system for the sake of convenience, then the orthogonal rotation matrix
obtained in both these systems would be completely different, thereby reducing its
physical significance.

5.2.3. Polar Decomposition
The polar decomposition also decomposes an input matrix into two components as

shown below, where 𝐐 is the orthogonal rotational part and 𝐒 is the symmetric positive
definite part which represents scaling.

B = 𝐐𝐒 (5.10)
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The advantages of the polar decomposition include that the factorized forms are
always unique, coordinate independent and stable, unlike the SVD and QR decom-
positions. The decomposition can be performed in a simple and efficient manner as
well. The polar decomposition essentially factors out the closest orthogonal matrix to
B in the Frobenius norm sense[36] i.e:

‖B− 𝐐‖2𝐹 < ‖B− 𝐗‖
2
𝐹 ∀𝐗 ∈ 𝐐(𝑛), 𝐗 ≠ 𝐐 (5.11)

But when the determinant of B is less than zero, then the closest rotation actu-
ally becomes a reflection. Thereby indicating that the cell becomes inverted when
det(B) < 0 as shown below:

𝐐𝑣𝑎𝑙𝑖𝑑𝑐𝑒𝑙𝑙 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 ] , 𝐐𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑐𝑒𝑙𝑙 = [

𝑎 𝑏
𝑏 −𝑎] (5.12)

where 𝑎2 + 𝑏2 = 1. Though the polar decomposition does not in fact provide any
useful information in terms of what is causing the cell to invert. Even if the reason for
inversion is a very high magnitude of contraction with no rotation at all, the rotation
matrix will be obtained as a reflection matrix. For an inverted element, simply flipping
the nodes i.e. correcting for the scaling can lead to a valid cell. But how to improve the
quality of a low-quality skewed/rotated cell is still an unresolved question, especially
since the input matrix for the decomposition does not represent the nodal locations
in the mesh. Therefore, at the current stage, polar decomposition is suggested as a
valid idea for further research in the future.

5.2.4. Eigen Decomposition
Finally, one of the most common and simple decompositions in use is the eigen

decomposition. The eigen decomposition basically factors the input matrix into a set
of eigen values and eigen vectors as shown below:

Bv = 𝜆v (5.13)

where 𝜆 represents the eigen values and v represents the eigen vectors. The eigen
vectors in the current scenario basically represent the principle directions along which
the cell is scaled. The eigen values give the magnitude of the scaling and hence can
actually be referred to as the scaling factors. If either of the scaling factors is negative,
it basically implies that the original principle direction has reversed and hence the cell
becomes inverted. The major disadvantage of using eigen decomposition is that it
does not provide any valuable data on the rotation or shearing of the cell. But it is
extremely useful in determining how the cell is scaling and hence, would be the most
efficient way to identify if a particular cell has inverted or not.
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Figure 5.7: Generic deformations of a reference quadrilateral cell.
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5.2.5. Discussion
As discussed in the previous sub-sections, it is definitely possible to decompose a

given input matrix into multiple factors representing fundamental operations such as
scaling and rotations. These properties have the advantage that they are generic to
all types of cells irrespective of shape or type. But an essential drawback that was
noticed in the decompositions was that there does not seem to be a way to explicitly
factor out the properties such as skewness, orthogonality and so on which are spe-
cific to the type or orientation of the cell. Although it is seen from the SVD, QR and
polar decompositions that the shear can be represented as a rotation and a scaling
operation. Furthermore, even when clear data can be extracted in factors of scaling
and rotation, it is not always intuitively easy to grasp which part needs to be corrected.

Therefore, it is decided that for the current thesis, it would make sense to con-
centrate on ensuring that inverted cells in the domain are corrected as a priority over
specifically targeting individual factors involved in the worsening of mesh quality. In
order to achieve this aim, it would make the most sense to work with eigen decom-
positions as they are relatively inexpensive to compute when compared to the other
decompositions and provide good information with regard to how the cell is scaling
along its principle components. Furthermore, since the main priority is to prevent in-
versions, it would also make sense to concentrate on the size metric for the mesh
quality which is based on the determinant of the Jacobian of the cell and is computa-
tionally less expensive to compute.

5.3. Method of Explicit Iterations
Now that valid geometrical interpretations can be made from the available gradient

information at the location where the enrichment function needs to be added, it is
necessary to come up with a framework to perform the local corrections. As shown
from the parametric study in section 5.1, it is not possible to assign optimal gradients
as an interpolation condition as was done in the 1D setup. Therefore, an explicit
scheme is developed in order to perform the corrections iteratively.

5.3.1. Eigen Corrections
What this essentially means is that once the mesh quality drops below a certain

user-defined threshold, the gradient matrix at that location where the control point
needs to be added, J is obtained from the mesh quality prediction algorithm as dis-
cussed in chapter 3. Then the B matrix is calculated and its determinant is calculated
in order to see how to improve themesh quality at that location. If det(B < 0), it means
the cell is inverted and implies that one of the eigen values is negative as seen from
Equation 5.14. Therefore, a positive scaling factor is introduced as the eigen value so
that the determinant becomes positive. In the case that both eigen values are nega-
tive, the cell might not be identified through the determinant, but it is still invalid due to
the flipping of its orientation. This can occur in extreme cases of distortion, for exam-
ple when a cell is being squeezed in every direction such that it is flipped as shown in
Figure 5.8.

Now a new B matrix is calculated while ensuring that the eigen vectors are still the
same so that the principle axes of the cell are not modified. This would ensure that
the orientation of the cell itself would not change, just that excessive contraction of the
cell is curtailed.

det(B) =∏𝜆 = 𝜆1 ⋅ 𝜆2 (5.14)

But if the cell does not face any problems with inversions, just that its quality is low
due to excessive deformations in one of the principle directions. Then, the corrections
performed are aimed at reducing the ratio between the two scaling factors. Therefore,
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using the eigen corrections, it is possible to construct a new gradient matrix J𝑛𝑒𝑤 at
the location of the control point such that the quality at that location is improved. A
brief description of this methodology is presented in algorithm 1.

Algorithm 1 Methodology for eigen corrections
Require: J
Ensure: det(B) > 0
B = 𝕀 + J
[V, 𝜆] = 𝑒𝑖𝑔(B)
if det(B) ≤ 0 then

for i ←1, 2 do
while 𝜆(𝑖, 𝑖) <= 0 do

𝜆(𝑖, 𝑖)←0.1 � The eigen value is made positive
end while

end for
else

if 𝜆(1, 1) < 𝜆(2, 2) then � Reduce ratio between the scaling
𝜆(1, 1)←𝜆(1, 1) + 0.1

else
𝜆(2, 2)←𝜆(2, 2) + 0.1

end if
end if
B𝑛𝑒𝑤 = V𝜆V−1
J𝑛𝑒𝑤 = B𝑛𝑒𝑤 − 𝕀
dJ = J𝑛𝑒𝑤 − J

5.3.2. Explicit Iterations
It was noticed in the 1D setup that performing a single correction with ideal gradients

imposed at the location of the control points would always ensure a good-quality mesh.
But in the current case, the corrections being made to the gradients are not ideal and
hence provide no guarantee that the overall quality of the mesh is improved. It is
possible that the mesh quality around the local region of the control point improves,
but can eventually lead to the worsening of the mesh quality in some other regions.
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Therefore, a methodology is developed to perform these corrections in an iterative
manner. In order to understand how these iterative corrections are performed, first it
is important to decouple the system presented in Equation 5.6 and ignore the imposed
condition of satisfying gradients. The goal is to find the interpolation coefficients 𝜸𝑥, 𝜸𝑦
such that the mesh quality is improved while satisfying the boundary conditions as
shown below:

[𝐝𝑥 𝐝𝑦] = [𝜙𝑏𝑏 𝐻𝑥𝑏𝑐 𝐻𝑦𝑏𝑐] [
𝜸𝑥 𝜸𝑦
𝜶𝑥 𝜶𝑦
𝜷𝑥 𝜷𝑦

] (5.15)

Therefore, the entire system can be re-written in order to find appropriate interpo-
lation coefficients 𝜸𝑥, 𝜸𝑦 as follows:

[𝜸𝑥 𝜸𝑦] = 𝜙−1𝑏𝑏⏟
Part 1

[ [𝐝𝑥 𝐝𝑦]⏝⎵⎵⏟⎵⎵⏝
Part 2

− [𝐻𝑥𝑏𝑐 𝐻𝑦𝑏𝑐]⏝⎵⎵⎵⏟⎵⎵⎵⏝
Part 3

[𝜶𝑥 𝜶𝑦
𝜷𝑥 𝜷𝑦]

𝑖

⏝⎵⎵⏟⎵⎵⏝
Part 4

] , i = iteration (5.16)

From the above equation, it can be seen that for any 𝜶,𝜷, it is always possible to
obtain 𝜸 such that the boundary conditions are met. However, improving the mesh
quality in the local region around the control point requires 𝜶,𝜷 to be chosen appro-
priately. Now from the eigen corrections, the new gradient matrix at the control point
J𝑛𝑒𝑤 was calculated which ensured that the cell quality was improved compared to
the original J matrix. Therefore, the difference between J𝑛𝑒𝑤 and J i.e. the magni-
tude by which the gradients have to be corrected can be imposed as the interpolation
conditions 𝜶,𝜷 such that the problem with cell inversion or low quality is curtailed.

dJ = J𝑛𝑒𝑤 − J = 𝑐 [𝜶𝑥 𝜶𝑦
𝜷𝑥 𝜷𝑦] (5.17)

To increase the rate of convergence to the optimal quality, the calculated interpolation
coefficients were multiplied with a constant over-relaxation factor. But since improv-
ing the cell quality in a local region can lead to worsening quality in other regions, it
becomes important to predict the quality based on the newly obtained interpolation
coefficients. If it is found that there are still cells with minimum quality lesser than the
user-defined threshold, then another control point would be added in the new location
which would curtail the gradient of deformations in that region in the next iteration.
Therefore, with every iteration, the number of control points would increase and hence
the size of the matrices in part 3 and part 4 of Equation 5.16 would increase in order
to account for the gradient correction at each location of the control point.

Another beneficial factor for this methodology is that part 1 and part 2 of Equa-
tion 5.16 do not change since the displacements are already known and the RBF
matrix needs to be computed only once. Furthermore, 𝜙𝑏𝑏 is not singular and is sym-
metric, thereby ensuring that it is always easily invertible. In order to gain a complete
understanding of the entire flow process from the beginning, the methodology for per-
forming the explicit corrections is presented in Figure 5.9.
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Figure 5.9: Flow chart for the 2D local correction methodology

5.4. Results
5.4.1. Translation in X direction

Now that the methodology to perform the local corrections has been discussed
in the previous section, it is necessary to see how the method performs in terms of
improving the mesh quality. Therefore, the same test case that was used in the para-
metric study in section 5.1 is again utilized and the properties of the motion can be
obtained from Table 5.2. The user-defined threshold for the minimum quality is set as
0.2 for the current scenario, implying that if the predicted quality exceeds this value,
the mesh will be deformed. Now in many cases of deformations, it may not be pos-
sible to achieve the threshold quality due to the severity of the deformation involved.
Therefore, to ensure that the algorithm does not get into an infinite loop of trying to
constantly improve the mesh to no avail, the number of control points that can be
added is curtailed to 20. Thereby, implying that a maximum of 20 corrections or ex-
plicit iterations will be performed. Furthermore, the support radius for the RBF and
the enrichment function for all the results discussed in this section is set as 0.5. The
results from the method of explicit iterations are showcased in Figure 5.10.

It is observed that the best minimal mesh quality of 0.19 is achieved at the seventh
iteration using this method. After which the quality fluctuates a lot and gets consid-
erably worse. It is also noticed from Figure 5.10e that the convergence between the
predicted mesh quality and the actual mesh quality worsens from the seventh itera-
tion onwards. This anomaly can be chalked up to the extreme case of the translation
involved where it is not possible to further improve the mesh locally. Due to this mul-
tiple control points are added at the same location which ends up counteracting each
other thereby leading to incorrect predictions of the mesh quality as well. But overall,
if the user-defined threshold was not set so high or the magnitude of deformation was
not so severe, the method does seem to improve the overall mesh quality as shown
for other cases in the upcoming sections. A comparison of the original mesh quality
post-deformation using the regular RBF method, the parametric study for imposed
gradients and the method of explicit iterations is provided in Table 5.4.
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(a) Best quality of the mesh observed on iteration 7. (b) Quality of the mesh after 20 iterations

(c) Displacement magnitudes in X direction on the seventh iteration (d) Displacement magnitudes in Y direction on the seventh iteration
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Figure 5.10: Results obtained for the mesh deformation from the method of explicit iterations.
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Regular RBF method
Minimum Quality -0.25
Imposed Gradients: Parametric study
Minimum Quality 0.26

Method of Explicit Iterations
Minimum Quality 0.19

Table 5.4: Comparison of the mesh qualities using the various methods

5.4.2. Translation in X and Y directions

Now that it is seen that for a simple case of 1D translation, the method of explicit
iterations does perform commendably even when encountering large deformations.
It is interesting to see the performance of the algorithm when the deformation takes
place in both directions. Therefore, firstly the same test case is subjected to transla-
tions in both X and Y directions according to the parameters presented in Table 5.5.

Prescribed Motion
X displacement -0.25 units
Y displacement -0.25 units
Rotation 0 °

Support Radius
RBF 0.5 units
Enrichment function 0.5 units

Table 5.5: Parameters for the prescribed deformation and final mesh quality for the regular RBF method

The user-defined threshold quality is still maintained at 0.2 and the maximum num-
ber of iterations remains at 20. It is observed that using the regular RBF method, the
original mesh deformation has a minimum quality of -0.53 while using the explicit it-
eration method it can be improved to approximately 0.2 within 14 iterations as seen
from Figure 5.11 and Figure 5.12. From the results, it is quite evident that the method
of explicit iterations is able to accurately tackle the problematic regions in the mesh
regardless of how convoluted a cell inversion is. It is able to improve the mesh quality
without violating the boundary conditions of the domain. The locations at which the
enrichment functions are being added are showcased in Figure 5.12b and their cumu-
lative effect within the domain is depicted in Figure 5.11e and Figure 5.11f. Further-
more, it is interesting to note that if the threshold value is reduced to a lower margin,
then the number of iterations reduce considerably. This would be very beneficial to
cases with extreme deformations where low-quality elements are expected and are
not considered a huge issue unless encountering invalid elements. For an actual FSI
simulation, the low mesh quality might require a greater number of iterations for the
fluid flow solver to converge, but the complicated and computationally expensive step
of re-meshing can be avoided.
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(a) Mesh quality using the regular RBF method. (b) Best quality of the mesh observed on iteration 9.

(c) Displacement magnitudes in X direction (d) Displacement magnitudes in Y direction

(e) Enrichment function, 𝐻𝑥 magnitude (f) Enrichment function, 𝐻𝑦 magnitude

Figure 5.11: Results obtained for the mesh deformation from the method of explicit iterations.
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Figure 5.12: Convergence properties and control point locations

5.4.3. Validation: Translation and Rotation

Now that it has been shown that the method of explicit iterations works for 2D
motions as well, it would be interesting to validate the quality of the deformation with
other test cases available in the literature. So it is decided to compare the resulting
quality of the mesh post-deformation with the test case used by de Boer et al.[7] and
Mathew[33] due to readily available data with regards to the meshing and deformation
parameters. The test case used in this case was initially used by de Boer et al. to
compare the performance of various kinds of RBFs on mesh deformation and then
by Mathew to compare the performance of the sliding boundary mesh deformation
method. The parameters for the mesh and deformation are provided in Table 5.6.
The initial mesh is showcased in Figure 5.13.

Mesh Details
Nodes 751
Static Nodes 100
Moving Nodes 16
Spacing 0.04

Domain Dimensions
Height 1 unit
Width 1 unit
Centre (0.5,0.5)
Inner Block Dimensions
Height 0.04 unit
Width 0.2 unit

Prescribed Motion
X displacement -0.2 units
Y displacement -0.2 units
Rotation 60 °

Table 5.6: Parameters for the mesh and prescribed deformation
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Figure 5.13: Initial mesh for the translation with rotation case.

(a) Mesh quality using the regular RBF method: Time-steps = 1, R =
2.5

(b) Mesh quality using the regular RBF method: Time-steps = 20, R =
2.5

(c) Mesh quality using the method of explicit iterations - 13 iterations:
R = 0.5, 𝑅𝑙 = 0.5

(d) Mesh quality using the method of explicit iterations - 12 iterations:
R = 2.5, 𝑅𝑙 = 0.5

Figure 5.14: Comparison of mesh quality for regular RBF and method of explicit iterations for various deformation parameters:
translation + rotation.

It has to be noted that even though the mesh and deformation parameters are
similar for both the methods, there are still some differences in terms of the support
radius in use and the number of time-steps utilized to perform the deformation as
depicted in Table 5.7.
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Method Deformation Function Support radius Time Step Iterations Quality

Standard RBF RBF 2.5 1 - -0.57
RBF 20 0.27

Method of explicit iterations

RBF 0.5

1
13 0.27Enrichment function 0.5

RBF 2.5 12 0.27Enrichment function 0.5

Table 5.7: Differences in input parameters between standard RBF and method of explicit iterations

For the current test case, the threshold minimum quality was raised such that the
number of iterations taken by the method of explicit iterations in order to provide the
final mesh quality obtained using the regular RBF method when the deformation is
performed in 20 time steps could be tracked. The difference in qualities of the final
mesh can be seen from Figure 5.14 and Table 5.7. It is observed that when a single
time-step deformation is performed for the regular RBF method, it leads to an invalid
mesh even while using a global support radius. Whereas if the number of time steps
is increased to 20, then the deformation is way smoother and the minimum quality in
the mesh is observed to be 0.27. But if a single time-step is used with the method
of explicit iteration to correct for the low-quality elements, then it is observed that it
takes 13 iterations for the mesh quality to reach the same value as the regular RBF
method in 20 iterations. But on the flip side, it is noticeable that the deformation is no
longer as smooth. This can be attributed to the low values of the support radius se-
lected for the latter. This was done to see how well the enrichment functions perform
whilst simultaneously trying to ensure that the system to be solved does not become
too dense. As the support radius of the RBF was increased, the deformation with the
explicit iteration was indeed observed to be smoother as seen in Figure 5.14d.

Furthermore, there is no discrepancy observed between the predicted mesh qual-
ity and actual mesh quality as shown in Figure 5.15. The locations at which the en-
richment control points are added along with the order in which they are added are
depicted in Figure 5.16.
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Figure 5.15: Convergence properties of predicted and actual mesh quality : translation + rotation
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(a) R = 0.5, 𝑅𝑙 = 0.5 (b) R = 2.5, 𝑅𝑙 = 0.5

Figure 5.16: Location of enrichment control points: translation + rotation

The displacements and the cumulative action of the enrichment functions are de-
picted in Figure 5.17 and Figure 5.18.

(a) Displacement magnitudes in X direction (b) Displacement magnitudes in Y direction

(c) Enrichment function, 𝐻𝑥 magnitude (d) Enrichment function, 𝐻𝑦 magnitude

Figure 5.17: Results obtained for the mesh deformation frommethod of explicit iterations: translation + rotation: 𝑅 = 0.5, 𝑅𝑙 = 0.5
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(a) Convergence properties of predicted and actual mesh quality (b) Locations at which the control points are added

(c) Enrichment function, 𝐻𝑥 magnitude (d) Enrichment function, 𝐻𝑦 magnitude

Figure 5.18: Convergence properties and control point locations: translation + rotation: R = 0.5, 𝑅𝑙 = 0.5

5.5. Discussion
In the current section, the results obtained in this chapter will be summarised. Ini-

tially, it was attempted to extrapolate the 1D methodology directly to the 2D setup.
Since it was not possible to intuitively predict the optimal gradients to impose, a para-
metric study was conducted to ascertain a pattern in the ideal gradients that need to
be imposed with respect to varying support radius for the enrichment function. But
no useful data regarding the gradients could be gathered from the parametric study.
Therefore, it was decided to concentrate on the data that was easily available i.e. the
gradients at the location of the control point. It was hypothesized that by decomposing
the data from these gradients, a logical step could be taken in order to improve the
mesh quality. Various matrix decompositions were analysed for this effect and the
eigen decomposition was chosen for the current study. Using the eigen decomposi-
tion, local corrections were made to the problematic cells such that extreme deforma-
tions of the cells were contained. These corrections were performed in an iterative
manner such that an enrichment function would be added in each iteration to con-
trol the gradient of deformation until the minimum quality exceeds the user-defined
threshold or a certain number of iterations is reached.

The methodology was initially tested on an unstructured grid in which the internal
block translated along the X direction. it was found that the mesh quality could be con-
siderably improved, but it is possible that if the user-defined threshold is too large or
the deformation is too extreme, then the enrichment functions could eventually make
the mesh quality worse as well. Therefore, it is necessary to set a reasonable thresh-
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old for the algorithm to abort. In the current setup, a limit was set on the number of
explicit iterations that could be performed. Furthermore, 2D deformations were also
tested where the block was translated along both X and Y directions. Considerable im-
provement in the mesh quality was observed for a relatively low number of iterations.
Finally, another test case available in the literature was chosen as a validation case.
The original setup utilised a global RBF system. Therefore, the performance of the
method of explicit iterations was analysed while using a compact system such that the
computational expense is reduced(𝑅, 𝑅𝑙 = 0.5). It was found that the latter achieved
a similar level of minimum quality in the domain far more quickly even though the de-
formation was not as smooth. But if the support radius of the original RBF functions
is increased, then the final deformation became smoother as well(𝑅 = 2.5, 𝑅𝑙 = 0.5).



6
Conclusions and Recommendations

6.1. Conclusions
In the current thesis work, localized enrichment function-based corrections are per-

formed to the mesh deformation algorithm in order to improve the quality of the mesh
post-deformation. The corrections are performed whenever the mesh quality falls
below a certain threshold. In order to save computational cost, the mesh quality is
predicted based on the gradients of the RBF deformation function. It was found that
the quality could be predicted to a high degree of accuracy. Grid convergence stud-
ies were performed on 1D meshes, and for unstructured and structured 2D meshes.
Furthermore, a theoretical framework was provided for expanding the prediction al-
gorithm to 3D meshes in the future. Next, the methodology for the application of the
enrichment functions was discussed in detail for a 1D case. In terms of mesh quality
in 1D, it was found that the contraction case was most likely susceptible to cell inver-
sions thereby invalidating the domain. Therefore, this setup was chosen to be studied
in depth.

It was observed that two critical factors come into play in order to perform the cor-
rections. The first is the location at which the correction has to be performed and the
second is the nature of the correction that is performed. Initially, global corrections
were performed to identify useful information which could be utilised in the case of
local corrections as well. It was found that by imposing a gradient as an additional
condition apart from the boundary conditions for the deformation, the mesh quality
could be considerably improved. In the case of local corrections, it was quickly hy-
pothesized that the two probable locations where the corrections had to be performed
ought to be either the worst quality location or the boundary node location as these
are the locations where the most useful data is known. But upon further study, it was
found that adding the enrichment function at the worst quality location provided far
better results and hence, was chosen for performing further study.

Multiple functions were tested to see their suitability to control the gradient of the
deformation at the control point location. It was found that the function provided below
performed most optimally in terms of improving the mesh quality as the magnitude of
the function itself is zero at the control point, while the gradient is not, thereby making
it ideal.

H = (x⃗− x⃗𝑐) ⋅ 𝜙(‖x⃗− x⃗𝑐‖, 𝑅𝑙) (6.1)

Furthermore, the enrichment functions were utilized to make corrections in 2D. But
it was observed that, unlike the 1D case, there was no readily available global gradi-
ent information that could be used to impose an additional condition. Therefore, it was
deemed necessary to modify the 1D methodology such that instead of imposing the
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gradients on the RHS, the interpolation coefficients for the enrichment function would
be imposed instead. This imposition was based upon the corrections applied to the
eigen values of the gradient matrix such that the cell where the control point is being
added is always improved in terms of quality. But it was found that it was not enough
to perform a single correction as the imposed coefficients are not representative of
the ideal deformation.

Hence, the method of explicit iterations was introduced where a control point would
be added at the predicted worst quality region after every iteration in order to en-
sure that threshold quality would be reached after a certain number of iterations. The
methodology was showcased to work successfully for different deformations in the
2D domain. Although it was observed that the method did run into problems when
the deformation magnitudes were too extreme, which would lead to the addition of
control points in the same location multiple times leading to the undermining of the
enrichment functions at that location. This would in turn lead to wrong predictions in
the mesh quality and hence, the actual worst quality and the predicted worst quality
would begin to diverge in terms of both magnitude and location. A comparison of the
explicit iteration method in a single time step was also compared with the regular RBF
method using multiple time steps and it was found that the method did provide suitable
results efficiently.

In conclusion, it is good to now go back and see if the questions raised at the
beginning of the project are answered or not:
1. Q. How do the localized enrichment functions help the mesh deformation algo-

rithm perform better in comparison to the regular RBF interpolation-based mesh
deformation method?

Ans. The localized enrichment functions improve the minimum quality of the
mesh by a considerable margin by smoothing the gradients of the deformation.
They do so by imposing an ideal gradient as a deformation condition as seen in
the 1D case or by adding multiple enrichment functions in an iterative manner till
quality is improved as seen in the 2D case. There is a significant improvement in
quality without too much computational cost.

2. Q. Which mesh quality metric should be utilized for setting the threshold?

Ans. The mesh quality metric that needs to be imposed is the size metric for both
the 1D and 2D cases. For the 1D case, it is the only possibility. For the 2D case,
it is also possible to work with size-skew metric, but since the corrections are
based on eigen decompositions which give scaling information about the princi-
ple axes, it would make sense to consider the area of the cell as the qualifying
metric which is given by the determinant. Furthermore, it is possible to predict
these values with reasonable accuracy.

3. Q. How much effect will there be on the accuracy of the final displacement due
to localized interpolation of displacements?

Ans. No adverse effect is observed in terms of the local enrichments causing
problems with satisfying the boundary conditions. This can be attributed to the
fact that for calculating the interpolation coefficient, the only major concern would
be inverting the RBF system matrix, (But since there is no polynomial function
involved), it is symmetric and non-singular, thereby ensuring accurate boundary
displacements.
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4. Q. How is the mesh quality and efficiency impacted when control point reduction
algorithms are applied to the entire system?

Ans. This question could not be satisfactorily explored due to time limitations in
the current thesis and hence would be recommended for future work.

6.2. Recommendations for Future Work
With regards to future work, there are three key recommendations that are laid out

to be explored, which could not be performed due to time constraints:

6.2.1. Optimization of the algorithm
While a proof of concept has been shown with regards to the robustness and ac-

curacy of the local enrichment function method. There is still considerable scope for
improvement for optimizing the efficiency of the algorithm. The optimization can be
subdivided into two parts:

Mesh quality prediction
In the current thesis, the mesh quality is being predicted for all the cells in the mesh

which is a waste of computational resources becausemost of the time, the poor-quality
regions are very localized in the domain. Therefore, a suggestion for improvement in
this regard is to use a grouping-based mesh quality prediction algorithm. In such a
method, the entire domain would be split into multiple groups where each would com-
prise randomly selected cells in the domain. Then themesh quality would be predicted
over each group and if the quality observed is less than the threshold value, then the
enrichment functions would be added. Then the predictions would be performed on
the other groups such that it is ensured that the enrichment function does not worsen
the quality of the cells in the other groups. This would also increase the efficiency,
as statistically, it is very likely that a problematic region would be identified in a few
trials unless the size of the group is made too small. Therefore, a study should also
be performed in order to find what would the ideal size of the groups be such that the
accuracy and efficiency of the predictions are optimized.

Control point reduction
Furthermore, the current thesis utilizes all the boundary nodes to perform the de-

formation step. This is not necessary as there are many control point reduction al-
gorithms available in literature which allow a lesser number of points to be selected
whilst maintaining accuracy as discussed in chapter 2.

6.2.2. 3D implementation of the enrichment functions
Another important recommendation for future work is to expand the current method-

ology to 3D meshes. The methodology for both the mesh quality prediction and the
addition of enrichment functions in the domain has already been explained theoret-
ically in the current thesis. What remains to be done is actually implementing the
methodology on a 3D test case in order to ensure that everything works smoothly. If
not, what challenges are encountered which were not considered in the current theo-
retical framework need to be explored.

6.2.3. Evaluation of shear/rotation data from gradients
The current thesis does introduce various matrix decompositions in order to gain

a geometrical understanding utilizing the gradient matrix of a cell in the mesh. But
most of these decompositions return some anomalous properties when concerning
rotations and shears which is not entirely consistent with what can be seen on the
mesh. Decompositions such as the SVD, QR and polar have found wide use in pre-
serving geometrical features of matrix animations, but these methods mostly involve
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the usage of the Jacobian of the cell i.e. the nodal data is readily available at the initial
and final stages. What would be an interesting area to research would be to see if
a matrix decomposition can somehow be tweaked such that based on the gradient
matrix as the input, it would be able to provide some sort of insight into how the mesh
will deform.
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A
Mesh Quality Prediction - Convergence

Study

A.1. Trigonal Grid

(a) N = 416 (b) N = 1258 (c) N = 24242

(d) N = 416 (e) N = 1258 (f) N = 24242

Figure A.1: Comparison of the 2D Mesh quality prediction (d,e,f) with the actual mesh quality (a,b,c) at the (𝑛 + 1)𝑡ℎ time-step.
Support radius of RBF, r = 0.4
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A.2. Quadrilateral Grid

(a) N = 529 (b) N = 961 (c) N = 1521

(d) N = 529 (e) N = 961 (f) N = 1521

Figure A.2: Comparison of the 2D Mesh quality prediction (d,e,f) with the actual mesh quality (a,b,c) at the (𝑛 + 1)𝑡ℎ time-step.
Support radius of RBF, r = 0.4
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