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Abstract 
Methodology 

Agriculture is an important sector to provide in our needs. Since 2000, the arable land per 

farmer increased with 66%. To help farmers managing their increasing amount of arable land, 

it is important to develop new techniques in example based on remote sensing data. One of 

the key parameters for agricultural management is the water availability in the area. The water 

availability can be clarified with help of two different soil water properties, soil water holding 

capacity and soil moisture content. The aim of this study is to estimate soil water properties at 

a scale of 30 meters based on bare soil surface reflectance and thermal infrared image 

analysis. In this study, two newly developed models are proposed to determine the spatial 

patterns of soil wetness. The first model is based on bare soil surface reflectance, named as 

SoilGrids30m, a spatial estimation model for clay content and organic matter content in the 

study area. These estimates are then used as input of pedotransfer functions to obtain spatial 

estimates of soil water holding capacity in the study area. The second model is based on the 

relation between the normalized difference vegetation index and the crop temperature, named 

as the soil wetness indicator. The soil wetness indicator is a representative of soil moisture 

content in the root zone of crops. Both models are evaluated against the soil moisture content 

estimates obtained from SEBAL. Soil water holding capacity is not directly related to soil 

moisture content. The hypothesis is therefore, soils with a high soil water holding capacity will 

tend to have higher soil moisture content estimates and vice versa during a long period of 

drought. The year 2018 has been used as reference year because of the extreme drought 

conditions in the months May until July. 

Conclusions 

The SoilGrids30m model improved the estimation of clay content and organic matter content 

in the study area compared to the existing coarser SoilGrids250m and SoilGrids1000m 

models. Especially, the organic matter content estimates significantly improves with help of the 

SoilGrids30m model. However, the influence of adding bare soil surface reflectance to the 

model was relatively low for both clay content (37%) and organic matter content (13%). The 

influence of bare soil surface reflectance only improved the clay content estimates compared 

to the SoilGrids1000m model. In all other cases, the target variable estimates did not improve 

by adding bare soil surface reflectance data. It can therefore be concluded that the 

improvement of the SoilGrids30m model is due to the use of a larger set of observation data 

from the study area and not because of the input of bare soil surface reflectance data.  

The obtained soil water holding capacity estimates with help of pedotransfer functions did not 

show reliable results compared to the soil moisture estimates of SEBAL. The highly empirical 

pedotransfer functions are the main cause of the unreliable results but also seepage and 

irrigation are important factors that could have played a role. In future work it would therefore 

be recommended to avoid using pedotransfer functions calibrated in other regions than the 

study area.  

The results of the soil wetness indicator showed a clear correlation with the soil moisture 

content estimates from SEBAL. The soil wetness indicator is therefore a simple and reliable 

tool to recognize spatial patterns of wetness. In example for precision agriculture, the soil 

wetness indicator could be used for irrigation management. The relative representation of the 

soil wetness indicator could determine the distribution of irrigation within a field. 
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1. Introduction 
Agriculture is an important sector to provide in our needs. Since 2000, the amount of agriculture 

farmers in the Netherlands has dropped with more than 40% (CBS, 2018). While the total 

arable land has dropped with 6% (CBS, 2018). This results in an increase of arable land per 

farmer from 17.4 hectares to 28.9 hectares (+66%) (CBS, 2018). To help farmers managing 

their increasing amount of arable land, innovative developments have evolved quickly. The 

available data from satellites and the possibilities with drones could be useful tools to manage 

the increasing arable land per farmer.       

At the moment, precision agriculture is facing a big problem because of the lack of good soil 

maps. Common soil maps, like Stiboka in the Netherlands, are too coarse for precision 

agriculture. Therefore, other techniques have been developed such as Veriscans and mole 

scans. These scans are labor-intensive and mainly based on empirical relations. Therefore, 

these techniques are not favorable for precision agriculture on larger scales. There have to be 

alternative ways, which should give a better representation of soil properties useful in precision 

agriculture.  

One of the key parameters for agricultural management is the water availability in the area. 

The water availability can be clarified with help of two different soil water properties, soil water 

holding capacity and soil moisture content. Soil water holding capacity is defined as the 

maximum available water content in a soil for plant uptake (O'Geen, 2012). Both parameters 

are dependent on soil properties such as soil texture and organic matter content. It is therefore 

important to have “good” soil maps for a better understanding of the soil water properties in 

the area. 

This study will use two newly developed models, a qualitative and a quantitative model, to 

determine the spatial patterns of soil wetness in the study area. The newly developed 

quantitative model will be named as SoilGrids30m. SoilGrids30m is inspired by the concepts 

of SoilGrids250m and SoilGrids1000m (Hengl et al., 2017; Hengl et al., 2014). The 

SoilGrids30m model uses bare soil surface reflectance to estimate physical soil properties. In 

this study, only clay content and organic matter content will be estimated. These physical soil 

properties will be translated into soil hydraulic properties with help of pedotransfer functions. 

The last step is to apply the water retention curve to obtain spatial estimates of soil water 

holding capacity. 

The newly developed qualitative model will be named as the soil wetness indicator and is 

based on the concepts of the Trapezoid method (Yang et al., 2015). The soil wetness indicator 

uses thermal infrared satellite images, which are a reflection of root-zone soil properties. Crops 

react on a deficit of water content in the soil. Low water content will reduce the transpiration 

rate of a plant and causes the stomata to close. This process coincides with a temperature 

increase of the plant (Rutter et al., 1958; Xu et al., 2008; van den Bersselaar et al., 2005; 

Anderson et al., 2007). Numerous studies have shown that the temperature of the crops, 

obtained from thermal infrared data, compared with air temperature has a relationship with the 

soil moisture content (Bastiaanssen et al., 2006; Yang et al., 2015; Hatfield et al., 2008).  

A third model, Surface Energy Balance Algorithm for Land, will be used to evaluate the two 

newly developed models. The Surface Energy Balance Algorithm for Land (SEBAL) uses the 

energy balance to estimate some aspects of the hydrological cycle such as soil moisture 

content (Bastiaanssen et al., 1995). Furthermore, SEBAL will be used to consistently pre-

process all images used in this research.   
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The aim of this study is to estimate soil water properties at a scale of 30 meters based on bare 

soil surface reflectance and thermal infrared image analysis. With help of two newly developed 

models, the spatial patterns of soil wetness will be estimated. The output of SoilGrids30m 

model will be used to estimate the soil water holding capacity. Soil water holding capacity is 

not directly related to soil moisture content. The hypothesis is therefore, soils with a high soil 

water holding capacity will tend to have higher soil moisture content estimates and vice versa 

during a long period of drought. The year 2018 has been taken as reference year because of 

the extreme drought conditions in the months May until July. The soil wetness indicator is a 

qualitative measure of soil moisture conditions and is therefore directly related to soil moisture 

content. Both models will be evaluated with the soil moisture content estimates of SEBAL. 

SEBAL is a globally validated and applied model (Bastiaanssen et al., 2005) and will therefore 

be used as base for this study.  

1.1. Problem statement 
For this study, two parts of the electromagnetic spectrum will be used, visible and near infrared 

(VNIR) remote sensing and thermal infrared (TIR) remote sensing. One of the most common 

used techniques is VNIR remote sensing (Khanal et al., 2017), based on bare soil surface 

reflectance soil properties can be estimated. In contrary, TIR remote sensing is used in a lesser 

extent because of the limitation in high-resolution thermal images (Khanal et al., 2017). TIR 

remote sensing could be an interesting technique because the crop temperature is a direct 

reflection of the available water in the root zone. Both parts of the spectrum will be used to 

have an independent way of finding the spatial patterns of wetness in the study area. 

Soil water holding capacity can be inferred from soil maps, which are usually not accurate 

enough to provide these data. The common used soil map in the Netherlands is Stiboka, which 

is available on a scale of 1:50.000. Farmers use additional techniques to get a more detailed 

map of their own fields such as Veriscans and mole scans. These methods are labor-intensive 

but gives, on a local-scale, information about soil moisture content and soil composition. The 

International Soil Reflectance and Information Centre (ISRIC) has introduced a new method 

to estimate several soil properties. ISRIC recently developed a global soil mapping model at a 

scale of 250 meters called SoilGrids250m. SoilGrids250m is based on 150.000 soil samples 

used for training and a stack of 158 remote sensing-based explanatory variables of soil (Hengl 

et al., 2017). The results give a good first estimate of soil properties at locations all over the 

world (Hengl et al., 2017). The freely accessible SoilGrids estimates, at a scale of 250 meters, 

are too coarse for precision agriculture. Therefore, a new model will be developed at a 

resolution of 30 meters based on Landsat 8 images. The soil water holding capacity can then 

be determined based on the obtained soil properties from the newly developed SoilGrids 

model. 

Each crop field could be seen as a real time thermometer of the root zone soil properties. A 

deficit of water will cause an increase of the crop temperature (Rutter et al., 1958; Xu et al., 

2008; van den Bersselaar et al., 2005; Anderson et al., 2007). VNIR remote sensing of the 

plant stress level is generally delayed because of the water storage in the plant itself. Due to 

this difference, TIR remote sensing is an interesting technique to directly measure the spatial 

variability of soil water properties. 
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1.2. Research objectives 
The aim of this study is to estimate soil water properties at a scale of 30 meters based on bare 

soil surface reflectance and thermal infrared image analysis. This will be done with help of 

three different models. First, a newly developed soil mapping model will be introduced based 

on concepts of the SoilGrids250m and SoilGirds1000m models from ISRIC (Hengl et al., 2017; 

Hengl et al. 2014). Clay content and organic matter content will be estimated with help of 

remote sensing-based explanatory variables and soil samples. These soil properties are used 

as input for pedotransfer functions, which provides van Genuchten parameters from which the 

soil water holding capacity can be determined.  

The second model is also a newly developed model named as the soil wetness indicator. 

Relative Crop Temperature (RCT) is set against the Normalized Difference Vegetation Index 

(NDVI). The RCT is crop temperature minus instantaneous air temperature. In this model, the 

theorem is that a high positive RCT suggest a deficit of water in the root zone of crops (Yang 

et al., 2015). The magnitude of high RCT changes with NDVI value. Higher NDVI values are 

areas with more vegetation cover and therefore areas with a higher demand of water. In these 

areas, the magnitude of high RCT is generally lower than in areas with lower NDVI values. 

Vice versa, low RCT suggest a proper amount of available water for plant uptake.  

The third model is SEBAL, an existing model that will be used among other things to estimate 

soil moisture content. SEBAL estimates soil moisture content based on the energy balance. 

The soil moisture estimates of SEBAL will be used as reference to evaluate both newly 

developed models. All three models are a representation of the spatial variability of soil water 

properties in the study area. In this study, two different objectives can be pointed out. On the 

one hand the evaluation of a newly developed bare soil surface reflectance model along with 

the conversion to water holding capacity. On the other hand the qualitative determination of 

soil water properties based on thermal infrared image analysis.   

The main research question for this study is formulated as follows:  

“Do the newly developed models of bare soil surface reflectance and thermal infrared image 

analysis improve the spatial estimation of soil water properties in the Noordoostpolder region, 

The Netherlands?”  

A number of sub-questions are formulated to help answering the research question: 

 Bare soil surface reflectance 

- What generic framework is recommended for the newly developed 

geostatistical SoilGrids30m model and under which conditions should the 

generic framework be applied? 

- How to obtain a reasonable set of explanatory variables to estimate physical 

soil properties? 

- To what extent can visible and near infrared bare soil surface reflectance 

provide information of physical soil properties (clay content and organic matter 

content)? 

- What is the performance of geostatistical model SoilGrids to estimate physical 

soil properties (clay content and organic matter content)? 

- Do the estimates of soil hydrological properties based on the SoilGrids model 

help to interpret the spatial patterns of observed water stress indicated by 

SEBAL? 
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 Thermal infrared image analysis 

- Does the soil wetness indicator, based on LST and NDVI, help to interpret the 

spatial patterns of observed water stress indicated by SEBAL? 

1.3. Report structure 
In chapter 2, background information is given about remote sensing of soil moisture. 

Furthermore, the SEBAL model is elaborately explained and previous work of the two newly 

developed models will be discussed. Chapter 3 provides information of the study area, 

characteristics of the used crop types and soil properties and a systematic explanation of the 

newly developed models. In chapter 4, the results of the newly developed models will be 

analyzed. The results will also be evaluated with the soil moisture estimates by SEBAL. The 

results given in chapter 4 will be discussed and recommendations will be given in chapter 5. 

The conclusions regarding to the overall project will be presented in chapter 6.  
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2. Background 

2.1. Remote sensing of soil moisture 
Soil moisture is a key parameter to monitor surface climatology, hydrology and ecology. It is 

used to monitor drought, predict floods, assist crop productivity, forecast weather and to link 

water, energy and carbon cycles (Brown et al., 2011). A variety of remote sensing techniques 

has been developed for soil moisture retrieval. These techniques are based on the 

characteristics of soil moisture content in different parts of the electromagnetic spectrum 

(Figure 2.1). Three different type of sensors will be discussed: radar, microwave and optical 

sensors. Radar is an active sensor; microwave and optical remote sensing are passive 

sensors.  

 

Figure 2.1 Remote sensing sensor types (Moreira, 2013) 

2.1.1. Radar and microwave remote sensing 

Radar and microwave remote sensing are widely used techniques mainly because of two 

reasons, it is independent on lighting conditions (day or night) and it can penetrate through 

clouds. Two main elements of radar and microwave remote sensing are the polarisation and 

frequency. Polarisation depends on the wavelength; the physical characteristics of the 

antenna; the reflecting material. The wavelength and the physical characteristics of the 

antenna are both known, therefore differences in physical characteristics of the reflected 

material can be assigned to the soil moisture conditions of the Earth’s surface. Special 

designed satellite sensors to monitor soil moisture conditions with radar and microwave remote 

sensing are SMAP from NASA and SMOS from ESA.  

Passive microwave sensors  

A passive microwave satellite sensor measures radiated and reflected energy of the Earth. 

The measured energy can be, emitted by the atmosphere; reflected by the Earth’s surface; 

emitted by the Earth’s surface; transmitted from the subsurface. The radiated energy at 

microwave lengths is a function of the dielectric constant of the Earth’s surface at that specific 

place. The dielectric constant depends on the soil-water configuration and thus on the soil 

moisture content (Wagner et al., 2007).  
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Active radar sensors  

An active radar satellite sensor transmits pulses of microwave radiation. The intensity of the 

backscattered signal depends on the geometry and the dielectric properties of the Earth’s 

surface at each specific location. The soil moisture content is determined by finding a 

relationship between the backscatter coefficient and the dielectric constant. Such a model has 

a high sensitivity to the geometry features of the Earth’s surface, which makes it hard to find a 

correct relationship (Wagner et al., 2007).  

2.1.2. Optical remote sensing 

Radiated energy by the Sun is reflected by the Earth’s surface, the reflected energy can be 

measured with optical sensors. An optical sensor is a passive sensor and thus sensitive to 

lighting and cloudy conditions. Optical sensors acquire images at different spectral bands at 

the same time (multispectral images). Optical remote sensing consists of visible and near 

infrared remote sensing and thermal infrared remote sensing.   

Visible and near infrared remote sensing  

Based on multispectral images it is possible to determine spectral characteristics of the Earth’s 

surface. Each feature on the Earth’s surface has its own spectral signature. The spectral 

signature depends on the chemical and physical properties of an object. Typical spectral 

signatures of different vegetation types are shown in Figure 2.2. The strong contrast between 

reflectance in the visible and near infrared part is for example an indicator for the greenness 

of an area or also known as the normalized difference vegetation index (NDVI). The greenness 

of an area could be an indicator of drought conditions. As shown in Figure 2.2, the spectral 

signature of dry-yellow grass is clearly different from the spectral signature of normal green 

grass. The NDVI rate for normal green grass would therefore be significant larger than the 

NDVI rate from dry-yellow grass. Among with the NDVI many different indices exists that are 

all based on spectral signatures.   

 

Figure 2.2 Spectral signatures for different types of vegetation ("Vegetation Spectral Signature Cheat Sheet", 
2017) 
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Thermal infrared remote sensing  

All objects with a temperature greater than zero Kelvin emits thermal radiation. This is 

measured in the thermal infrared part of the electromagnetic spectrum. Several algorithms are 

developed to convert thermal radiation into land surface temperatures. Land surface 

temperatures of vegetated areas depends on the amount of available water for plant uptake. 

A deficit of water could lead to stress in the plant that coincide in an increase of the temperature 

of the plant, this process has a clear relationship with the soil moisture content in the area as 

shown in numerous studies (Bastiaanssen et al., 2006; Yang et al., 2015; Hatfield et al., 2008). 

2.2. The Surface Energy Balance Algorithm for Land model: SEBAL 
The Surface Energy Balance Algorithm for Land model (SEBAL) uses the energy balance to 

estimate some aspects of the hydrological cycle (Bastiaanssen et al., 1995). The net energy 

driving the hydrological cycle is the incoming energy minus the energy heating the soil/air and 

the energy reflected back into space. SEBAL requires visible, near-infrared and thermal-

infrared remote sensing data to estimate land surface characteristics. In addition, SEBAL 

requires meteorological data (air temperature, humidity, wind speed, solar radiation) and soil 

physical data (saturated soil moisture content, field capacity, wilting point). Important outputs 

from SEBAL are evapotranspiration, biomass growth, water deficit and soil moisture content. 

SEBAL has been applied and validated for different water management related purposes 

(Bastiaanssen et al., 2005) and can be applied at local scale (plot level) as well as at global 

scale.  

2.2.1. Introduction to SEBAL 

SEBAL is a sophisticated energy balance model, which calculates the energy exchanges 

between land and atmosphere. On each individual pixel, SEBAL computes a complete 

radiation and energy balance along with resistances for momentum, heat and water vapour 

transport. The resistances are a function of state conditions such as soil water potential, which 

is a measure for soil moisture content, wind speed and air temperature change. The SEBAL 

model is comprised of 25 computational steps to calculate hydrological aspects such as 

evapotranspiration, biomass growth, water deficit and soil moisture (Allen et al., 2002). 

The principal steps of the SEBAL model to derive evapotranspiration values are shown in 

Figure 2.3. Evapotranspiration can be associated with the latent heat flux, which is part of the 

surface-energy balance. The surface-energy balance is shown in equation 2.1, where 

𝑅𝑛 (𝑊𝑚2) is the net radiation; 𝐺0 (𝑊𝑚2) is the soil heat flux; 𝐻 (𝑊𝑚2) is the sensible heat 

flux; 𝜆𝐸 (𝑊𝑚2) is the latent heat flux associated with evapotranspiration. 

 𝑅𝑛 = 𝐺0 + 𝐻 + 𝜆𝐸     [𝑊𝑚2] 2.1 
 

 

SEBAL converts satellite radiances into land surface characteristics (surface temperature, 

vegetation index, surface albedo and leaf area index). The net radiation and soil heat flux are 

computed with simple conversions of these land surface characteristics and meteorological 

data. The sensible heat flux is calculated with a so-called “self-calibration” procedure. “Hot” 

and “cold” pixels are selected to set the boundary conditions for the energy balance. The “cold” 

pixels are full vegetated and well-irrigated crop surfaces. The land surface temperature and 

near-surface air temperature are assumed to be similar for “cold” pixels. The “hot” pixels are 

dry and bare soil surfaces where the evapotranspiration is assumed zero (Allen et al., 2002). 

SEBAL calculates the net radiation, soil heat flux and sensible heat flux to compute the latent 

heat flux. This procedure will be explained in more detail along with the basic formulas in 
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chapter 2.2.4. All formulas shown in paragraph 2.2 are obtained from the advanced training 

and users manual of SEBAL (Allen et al., 2002) unless stated otherwise.  

 

Figure 2.3 Schematic view of energy balance and evapotranspiration computations with SEBAL ("SEBAL a scientific 
description", n.d.) 

       

2.2.2. Method of application of SEBAL in current research 

The SEBAL model is used for three reasons: 1) to consistently pre-process all images used in 

this research; 2) to obtain estimates of the Normalize Differenced Vegetation Index (NDVI) and 

the Land Surface Temperature (LST) from the area of interest; 3) to obtain estimates of the 

soil moisture content from the area of interest. For evaluations between different models, it is 

important to pre-process all data in the same way; otherwise the differences found in the 

comparisons could also be due to differences in pre-processing the data. For this reason, all 

images used in this research are consistently pre-processed with SEBAL. The second 

application of SEBAL is to obtain NDVI and LST data that are used for the soil wetness 

indicator. The third application of SEBAL are the soil moisture estimates, which are used for 

calibrating the soil mapping model.  

In this research, the latest version of pySEBAL (v3.4) is used. The pySEBAL code is 

continuously under development and changes from time to time. It is therefore important to 

use an up to date version of pySEBAL. The input of the pySEBAL code is an Excel file, which 

contains the folder path of the input files (digital elevation model and satellite images), folder 

path of the output files, meteorological parameters and soil parameters. The digital elevation 

model is used as the geospatial reference to clip all satellite images. The pySEBAL code 

generates georeferenced rasterized tiff-files for every computed step in the SEBAL process 

and stores the tiff-files in the specified output folder.    

  



 

9 
 

2.2.3. Image pre-processing SEBAL 

This research uses level-1 Landsat 8 images for all of the analysis. Level-1 products of Landsat 

8 images are radiometrically and terrain-corrected data products (USGS, 2016). These images 

are supplied in digital numbers which have to be converted to top of atmospheric spectral 

radiances first and then to top of atmospheric reflectance’s. SEBAL uses a slightly different 

way to convert digital numbers into pixel reflectance data (Allen et al., 2002) than suggested 

in the USGS manual (USGS, 2016). The spectral radiance (𝐿𝜆) is computed as follows: 

 𝐿𝜆 =
𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛

𝑄𝐶𝐴𝐿𝑚𝑎𝑥 − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛
∗ (𝐷𝑁 − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛) + 𝐿𝑚𝑖𝑛     [𝑊/𝑚2/𝑠𝑟/𝜇𝑚] 2.2 

 

Where, DN is the degree of greyness of each pixel; 𝐿𝑚𝑎𝑥 and 𝐿𝑚𝑖𝑛 are calibration constants of 

the sensor; 𝑄𝐶𝐴𝐿𝑚𝑎𝑥 and 𝑄𝐶𝐴𝐿𝑚𝑖𝑛 are the highest and lowest range of values for rescaled 

radiance in DN. All of these parameters are band specific and can be found in the product’s 

metadata file.  

The top of atmospheric reflectivity of a surface pixel is defined as the ratio of the reflected 

radiation flux to the incident radiation flux. It is computed using the following equation: 

 𝜌𝜆 =
𝜋 ∗ 𝐿𝜆

𝐸𝑆𝑈𝑁𝜆 ∗ 𝑐𝑜𝑠𝜃 ∗ 𝑑𝑟
     [−] 2.3 

 

Where, 𝐿𝜆 is the spectral radiance for each band computed with equation 2.2; 𝐸𝑆𝑈𝑁𝜆 is the 

mean solar exo-atmospheric irradiance for each band (𝑊/𝑚2/𝜇𝑚), see Table 2.1; 𝑐𝑜𝑠𝜃 is the 

cosine of the solar incidence angle from nadir; 𝑑𝑟 is the inverse squared relative Earth-Sun 

distance.  

Band ESUN [W/m2/µm] 

2 1973.28 

3 1852.68 

4 1565.17 

5 963.69 

6 245 

7 82.106 
Table 2.1 Mean solar exo-atmospheric spectral irradiances Landsat 8 

2.2.4. NDVI, LST and soil moisture retrieval in SEBAL 

Three outputs generated with SEBAL are key to this research: the NDVI, LST and soil moisture 

content. Within the multispectral remote sensing data, the NDVI is one of the most well-known 

and applied vegetation index. The NDVI is a simple and fast method to identify vegetated areas 

and their condition. The LST is used as thermometer of crops and is therefore a representative 

of the water availability in the root zone of crops. The soil moisture content defines the total 

water content in a soil and is therefore a useful indicator of drought conditions (Yang et al., 

2015; Sreelash et al., 2017). 

NDVI 

The NDVI can be computed with the reflectivity values found in equation 2.4 and is the ratio of 

the differences in reflectivity for the near-infrared band (𝜌5) and the red band (𝜌4) to their sum. 

  𝑁𝐷𝑉𝐼 =
𝜌5 − 𝜌4

𝜌5 + 𝜌4
     [−] 2.4 
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Values of NDVI ranges between -1 and +1, where negative values are related to waterbodies, 

snow, ice or clouds and positive values indicate vegetation cover. Dense vegetation, such as 

forests, have a NDVI of in between 0.6 and 0.9; shrubs or agriculture have a NDVI of in 

between 0.2 and 0.5; bare soils are indicated with a NDVI lower than 0.2 (Carlson et al., 1997).  

LST 

In this research the land surface temperature is estimated with help of a split window algorithm. 

In 1975, McMillin was the first who proposed to use a split window algorithm to accurately 

retrieve sea surface temperatures (McMillin, 1975). The algorithm takes advantage of the 

availability of two thermal infrared bands, which enables the atmospheric correction. The 

differing amounts of absorption occurring in the different thermal bands are used to estimate 

atmospheric effects (Sobrino et al., 1996). SEBAL computes the land surface temperature 

slightly different than proposed by Sobrino (Sobrino et al., 1996), see equation 2.5. 

 
𝑇𝑠 =  𝑇𝐵,10 + 𝐶1(𝑇𝐵,10 − 𝑇𝐵,11) + 𝐶2(𝑇𝐵,10 − 𝑇𝐵,11)

2
+ 𝐶0 + 

(𝐶3 + 𝐶4𝑊)(1 − 𝜀𝐵,10)    [𝐾] 
2.5 

 

Where, 𝑇𝐵,10 and 𝑇𝐵,11 are the top of atmosphere brightness temperatures of band 10 and band 

11 from Landsat 8 calculated according to equation 2.6; 𝜀𝐵,10 is the land surface emissivity of 

band 10 from Landsat 8 calculated according to equation 2.7/2.8; W is the atmospheric water 

vapor pressure calculated according to equation 2.9; 𝐶0-𝐶4 are split-window coefficient values 

according to Table 2.2. 

Constant Value 

C0 -0.268 

C1 1.378 

C2 0.182 

C3 54.3 

C4 -2.238 
Table 2.2 Split-window coefficients (Jiménez-Muñoz et al., 2014) 

The top of atmosphere brightness temperature is calculated in the same manner as proposed 

by USGS (2016). For both bands, 10 and 11, the top of atmosphere brightness temperature 

can be calculated as follows: 

 
𝑇𝐵 =

𝐾2

𝐿𝑁 (
𝐾1
𝐿𝜆

+ 1)
     [𝐾] 

2.6 

 

Where, K1 and K2 are thermal conversion constants that can be found in the product’s 

metadata file; 𝐿𝜆 is the spectral radiance calculated according to equation 2.2. 

The land surface emissivity is the ratio of thermal energy emitted from a surface to that of a 

black body with the same temperature. Assuming the Earth without vegetation cover is the 

black body, the Earth’s emissivity will change according to the amount of vegetation cover per 

area. The amount of vegetation cover per area is indicated as the leaf area index (LAI). If the 

NDVI is greater than zero, two situations are distinguished to calculate the land surface 

emissivity (Allen et al., 2002). Equation 2.7 for 𝐿𝐴𝐼 < 3 and equation 2.8 for 𝐿𝐴𝐼 ≥ 3. 

 𝜀 = 0.95 + 0.01 ∗ 𝐿𝐴𝐼     [−] 2.7 
 𝜀 = 0.98     [−] 2.8 
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The atmospheric water vapor pressure is computed with help of meteorological data and is 

based on the Penman-Monteith method (Allen et al., 1998). There are several ways to compute 

the atmospheric water vapor pressure according to the Food and Agriculture Organization of 

the United Nations (FAO). SEBAL does this procedure with help of the relative humidity, see 

equation 2.9. 

 𝑊 =
𝑅𝐻𝑖𝑛𝑠𝑡

100
∗ 𝑒𝑠𝑎𝑡,𝑖𝑛𝑠𝑡     [𝑘𝑃𝑎] 2.9 

 

Where. 𝑅𝐻𝑖𝑛𝑠𝑡 is the relative humidity at satellite overpass time [%]; 𝑒𝑠𝑎𝑡,𝑖𝑛𝑠𝑡 is the saturated 

water vapor pressure calculated according to equation 2.10.  

 𝑒𝑠𝑎𝑡,𝑖𝑛𝑠𝑡 = 0.6108 ∗ exp (
17.27 ∗ 𝑇𝑖𝑛𝑠𝑡

𝑇𝑖𝑛𝑠𝑡 + 237.3
)     [𝑘𝑃𝑎] 2.10 

 

Where, 𝑇𝑖𝑛𝑠𝑡 is the air temperature at satellite overpass [K]. 

Soil moisture content  

SEBAL computes the soil moisture content as a function of the evaporative fraction (Allen et 

al., 2002). Bastiaanssen et al. (1997) was the first who found a relationship between soil 

moisture and evaporative fraction, which resulted in equation 2.11.  

 𝜃 = 𝜃𝑠𝑎𝑡 ∗ exp (
𝛬 − 𝑎

𝑏
)     [𝑐𝑚3/𝑐𝑚3] 2.11 

 

Where, 𝜃𝑠𝑎𝑡 is the saturated soil moisture content fixed to 0.45 [𝑐𝑚3/𝑐𝑚3] in this research; Λ 

is the evaporative fraction according to equation 2.12; a and b are curve-fitting parameters 

respectively 1.0 and 0.421 (Scott et al., 2003).    

 Λ =
𝑅𝑛 − 𝐺0 − 𝐻

𝑅𝑛 ∗ 𝐺0
     [−] 2.12 

 

Where, 𝑅𝑛 is the net radiation at the surface [𝑊/𝑚2] according to equation 2.13; 𝐺0 is the soil 

heat flux [𝑊/𝑚2] according to equation 2.14; H is the sensible heat flux [𝑊/𝑚2] according to 

equation 2.15.  

The net radiation is the first computational step in the SEBAL procedure. The net radiation 

uses the surface radiation balance equation according to equation 2.13. 

 𝑅𝑛 = (1 − 𝛼)𝑅𝑠,𝑖𝑛 + 𝑅𝑙,𝑖𝑛 − 𝑅𝑙,𝑜𝑢𝑡 − (1 − 𝜀)𝑅𝑙,𝑖𝑛     [𝑊/𝑚2] 2.13 
 

Where, 𝛼 is the surface albedo; 𝑅𝑠,𝑖𝑛 is the incoming shortwave radiation calculated based on 

meteorological data; 𝑅𝑙,𝑖𝑛 and 𝑅𝑙,𝑜𝑢𝑡 are the incoming and outgoing longwave radiation and are 

computed with the Stefan-Boltzmann equation; 𝜀 is the surface emissivity calculated with 

equation 2.7/2.8.   
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The soil heat flux is the rate of heat storage into the soil and vegetation due to conduction 

(Allen et al., 2002). It is a difficult term to determine because of the high dependency on soil 

type and land classification. Bastiaanssen (2000) has developed an empirical equation 

representing values near midday, see equation 2.14.  

 
𝐺

𝑅𝑛
=

𝑇𝑠

𝛼
∗ (0.0038𝛼 + 0.0074𝛼2)(1 − 0.98 ∗ 𝑁𝐷𝑉𝐼4)     [−] 2.14 

 

Where, 𝑇𝑠 is the surface temperature in ̊C; 𝛼 is the surface albedo; NDVI is the normalized 

differenced vegetation index calculated according equation 2.4. The soil heat flux (G) is then 

calculated by multiplying equation 2.14 with 2.13.  

The sensible heat flux is the rate of heat loss to the air by convection and conduction due to 

temperature differences (Allen et al., 2002). The computation of the sensible heat flux is quite 

elaborate, as explained in the introduction of SEBAL it works with a self-calibration procedure 

to determine the boundary conditions of the energy balance. The sensible heat flux is 

computed as follows: 

 𝐻 =
𝜌 ∗ 𝑐𝑝 ∗ 𝑑𝑇

𝑟𝑎ℎ
     [𝑊/𝑚2] 2.15 

 

Where, 𝜌 is the air density [𝑘𝑔/𝑚3]; 𝑐𝑝 is the air specific heat and is fixed to 1004 [J/kg/K]; 𝑑𝑇 

is the temperature differences in Kelvin; 𝑟𝑎ℎ is the aerodynamic resistance to heat transport 

[𝑠/𝑚].  

The self-calibration procedure takes place between the estimation of the temperature rate, the 

aerodynamic resistance and the sensible heat flux itself. The model starts with initial estimates 

of the temperature rate based on the selected “hot” and “cold” pixels and the aerodynamic 

resistance based on meteorological data. From there the iterative process starts, first the 

temperature rate is computed based on a linear relation between the temperature and 

temperature rate; secondly an estimate of the sensible heat flux is computed; lastly the 

aerodynamic resistance is corrected with help of the Monin-Obukhov theory. This iterative 

procedure takes place until the values for the temperature rate and the aerodynamic resistance 

stabilizes at the “hot” pixel. The final values for the temperature rate and the aerodynamic 

resistance are used to determine the sensible heat flux for each pixel. Further details of the 

procedure can be found in the SEBAL Advanced Training and Users Manual (Allen et al., 

2002). 

2.3. Previous work newly developed models 

2.3.1. SoilGrids30m 

The SoilGrids30m model is based on a widely used spatial estimation technique regression-

kriging. In 1951, a South-African mining engineer, Krige, proposed the fundamentals of the 

ordinary-kriging technique. The ordinary-kriging technique initially has been developed to 

predict the most likely distribution of gold in a mine based on samples from a few boreholes 

(Krige, 1951). In 1963, a French mathematician, Matheron, formulated the theoretical 

fundamentals of the ordinary-kriging technique (Matheron, 1963). Burgess and Webster (1980) 

were the first who applied ordinary-kriging for soil study purposes and encouraged soil scientist 

to use the ordinary-kriging technique as a spatial estimation method. Since then, the ordinary-

kriging technique has been widely used in various forms of soil sciences (McBratney et al., 

2000). In 1969, Matheron introduced a new kriging technique called universal-kriging. 

Universal-kriging is a hybrid model that combines a simple or multi-linear regression model 



 

13 
 

with ordinary-kriging. It computes the trend along with residuals simultaneously and gives a 

combined kriging variance. In 1994, Odeha et al. suggested to extract the trend from the 

residuals, krige the de-trended residuals and sum them afterwards, this technique is known as 

regression-kriging (Odeha et al., 1994). The separation between the two models allows 

regression-kriging to use arbitrarily complex regression methods (Hengl et al., 2007).  

2.3.2. Soil wetness indicator 

Back in 1975, Idso et al. (1975) already found a distinct relation between the surface radiant 

temperature of bare soil and soil wetness. Vegetated areas are a lot more complex to relate to 

soil wetness. Not only because of the irregular geometry and spatial distribution of vegetation 

but also because leaf temperatures tends to remain close to air temperature (Idso et al., 1975). 

Nemani and Running (1989) were the first who demonstrated a physical relationship between 

NDVI and surface radiant temperature. They found a marked divergence between a dry and a 

moist day in the NDVI-LST plot. This difference could be assigned to a change in soil moisture 

content. In 1990, Price proposed a method to infer regional scale evapotranspiration by relating 

variations of satellite-derived surface temperature to a vegetation index (Price, 1990). Gillies 

and Carlson (1995) used this concept for the estimation of regional patterns of surface moisture 

availability and fractional vegetation in the presence of spatially vegetation cover. In 1997, this 

method for the first time was denoted as the triangle method (Gillies et al., 1997). The triangle 

method is based on the physical relationship between the land surface temperature and 

apparent vegetation cover, i.e. the NDVI. The boundaries of the pixel envelope are derived 

based on the scatter plot feature space between the inverse relationship of the land surface 

temperature and the NDVI (Gillies et al, 1997). Figure 2.4 shows an example of the triangle 

method used to validate the method by Gillies et al. (1997). The warm edge correlates with 

lower soil moisture content values and the cold edge correlates with higher soil moisture 

content values.  

 

Figure 2.4 Example of scatter plot of NDVI versus surface radiant temperature (Gillies et al., 1997) 
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However, the triangle method also has its limitations. According to Moran et al. (1994), the 

distinction between well-watered vegetation and water-stressed vegetation is not represented 

in the triangular space. Both situation appear to have the same surface temperature in the 

triangular space. Moran et al. (1994) proposed a trapezoidal space instead of a triangular 

space. Where the temperature of full-vegetated areas represents a range between wet and 

dry areas, see Figure 2.5. In this study, the trapezoidal space will be used as the basis for a 

qualitative analysis of the soil moisture content in the area denoted as the soil wetness 

indicator.   

 

Figure 2.5 The hypothetical trapezoidal space (Moran et al., 1994) 
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3. Methods and materials 

3.1. Study area 
The study area is located in the central-northern part of the Netherlands called the 

“Noordoostpolder”, see Figure 3.1. It has been created in waters of the “Zuiderzee” and is 

artificially drained since 1942. The old seabed is generally full of minerals with good soil 

structures for agricultural purposes. Therefore, the area has a high density of agricultural 

fields/farmers. The area is chosen because of two reasons, the high density of agricultural 

fields and the variability in soil types.     

 

Figure 3.1 Geographic location study area and crop types in 2018 

The study area consists of approximately 85% of fields for agricultural purposes. 

Approximately half of it is used for crops in open air such as sugar beet, onion, potato, maize, 

wheat, flowers, etc. The other half is used for cattle and greenhouses ("Landbouw; gewassen, 

dieren en grondgebruik naar gemeente", 2018). In this study, the focus will be on sugar beet 

and winter wheat of which the geographical distribution of the fields in the study area for 2018 

are shown in Figure 3.1. 

The variability in soil types in the study area is important in finding relationships between soil 

types and soil moisture content. The distributed soil map by the Dutch government contains a 

wide range of different soil types ("Dataset: Basisregistratie Ondergrond (BRO)", 2018). Based 

on De Vries et al. (2003), the wide range of soil types are rearranged into eight soil classes, 

shown in Figure 3.2. The area mainly consists of clayey soils along with calcareous extremely 

low clayey soils and calcareous sandy soils. For this study, it is important to have a wide range 

of clay content. According to Figure 3.2, there is enough variability in the area to meet this 

requirement.  
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Figure 3.2 Geographic location of soil classes in study area 

Climate 

The climate of the Noordoostpolder region is a maritime climate with moderately warm 

summers and cool winters, and typically high humidity. In Figure 3.3, the monthly weather data 

of 2018 for the single KNMI station in the Noordoostpolder region is shown. The KNMI station 

is located in Marknesse, central-east in the Noordoostpolder region. The year 2018 has been 

used as reference year because of the extreme dry weather conditions. As shown in Figure 

3.3, the months April to July all have higher evapotranspiration rates than precipitation rates. 

This results in a decrease of the groundwater storage with as consequence a decrease of the 

groundwater level. Crops react on a deficit of water content in the soil. Low water content will 

reduce the transpiration rate of the plant and causes the stomata to close. This process 

coincides with a temperature increase of the plant (Rutter et al., 1958; Xu et al., 2008; van den 

Bersselaar et al., 2005; Anderson et al., 2007). For this study, it is therefore important to 

measure the crop temperatures in dry conditions to see significant differences between 

different soil classes and crop types.  
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Figure 3.3 Monthly precipitation, evapotranspiration and mean temperature KNMI station Marknesse 2018 

 

3.2. Crop characteristics 
Sugar beet  

In the Netherlands, sugar beet is the main resource for the production of sugar (FAO – Sugar 

beet, n.d.). Sugar beet originally has a life cycle of two years but for the production of sugar, 

the crops are harvested within one year. In the second development stage high concentrations 

of sugar is created in the leaves of the plant that is mainly used for the growth process 

(vegetative state, see Figure 3.4). Later on in the growth process, the sugar concentration is 

mainly stored in the roots of the plant. The sugar yield depends both on root size and sugar 

concentration, which mainly depends on climate, water supply and nitrogen level in the soil. In 

general, the sugar percentage in the roots lies between 15 and 20 percent of the root its weight 

(FAO – Sugar beet, n.d.). Sowing of the seeds occurs in spring (March-April) and normally 

needs a growing period of 140 to 160 up to 200 days. Harvesting commonly takes place in 

autumn (September-October).   

In this study, it is favourable to measure the crop temperatures in dry periods along with a 

water deficit. In the vegetative and yield development stage, water deficits could lead to lower 

sugar yields. While, a surplus of water in the ripening stage could lead to a decrease of the 

sugar yield (FAO – Sugar beet, n.d.). As explained and shown in paragraph 2.1, in April to July 

the water supply balance was negative. During 2018, the vegetative and yield development 

stages coincide with relatively dry periods. Therefore, it should be taken into account that 

farmers possibly irrigated their crops during these development stages.  
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Figure 3.4 Duration of different growth periods sugar beet (FAO  – Sugar beet, n.d.) 

 

Winter wheat  

In the Netherlands, winter wheat is by far the most cultivated type of wheat (FAO – Wheat, 

n.d.). Winter wheat seeds are sowed from October to half December. It requires a period of 

frost in the early development stages (Dormancy period, see Figure 3.5) in favor of the growth 

process. When the head development stage starts the strong resistance against frost is lost. 

The winter wheat yield depends on the number of heads per plant, the number of grains per 

head and the size of heads, which mainly depends on climate and water supply (FAO – Wheat, 

n.d.). The total growing period of winter wheat ranges from 180 to 250 days. Harvesting 

commonly takes place in the summer (end of July – August). 

As mentioned with the sugar beet, it is favourable to measure the crop temperatures in dry 

periods along with a water deficit. In the establishment and tillering development stage it is 

important to have sufficient water supply in favour of the winter wheat yields. In the next 

development stages, dormancy and head development, slight water deficits may have little 

effect on production yields. The flowering period is most sensitive to water deficit, it will reduce 

the number of heads per plant, head size and number of grains per head. During the yield 

formation stage, water deficiency could reduce the grain weight and possibly causes shrivelling 

of grains (only combined with hot, dry and strong wind). The ripening stage is a drying-off 

period where a water deficit has a slight effect on the yield (FAO – Wheat, n.d.). During 2018, 

the flowering and yield formation development stages coincide with relatively dry periods. 

Therefore, it should be taken into account that farmers possibly irrigated their crops during 
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these development stages.   

 

Figure 3.5 Duration of different growth periods wheat (FAO - Wheat, n.d.) 

3.3. Soil characteristics 
Soil texture  

Soil texture determines the infiltration rate of a soil, which is important for i.e. irrigation 

management. Coarse textured soils (sands and loamy sands, see Figure 3.6) have a high 

infiltration rate and a low water retention rate. This can be explained by the pore size of the 

soils, which are generally large with limited ability to retain water (O’Geen, 2013). On the other 

hand, fine textured soils (clays, sandy clays and silty clays, see Figure 3.6) have a low 

infiltration rate and a high water retention rate. Remark, high water retention rate does not 

mean a higher availability of water for crop use. This has to do with the attraction force of a 

soil on the available water, which is at some point stronger than the plant water uptake force. 

Therefore, the best conditions for crops are generally loamy textured soils, which are in 

between coarse and fine textured soils (O’Geen, 2013).  
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Figure 3.6 Soil texture triangle (Plant and Soil Sciences eLibrary, n.d.) 

Soil organic matter  

Organic matter is a source of nutrients, which stimulates the crop growth. It also acts like a 

sponge, therefore the amount of water a soil can hold will increase with increasing amount of 

organic matter. In contrary with for instance clayey soils, almost all water absorbed by organic 

matter will be available for crop use (Funderburg, 2016). 

3.4. Overall methodology 
The aim of this study is to estimate soil water properties at a scale of 30 meters based on bare 

soil surface reflectance and thermal infrared image analysis. With help of two newly developed 

models, the spatial patterns of soil wetness will be estimated. The output of SoilGrids30m 

model will be used to estimate the soil water holding capacity. Soil water holding capacity is 

not directly related to soil moisture content. The hypothesis is therefore, soils with a high soil 

water holding capacity will tend to have higher soil moisture content estimates and vice versa 

during a long period of drought. The soil wetness indicator is a qualitative measure of soil 

moisture conditions and is therefore directly related to soil moisture content. Both models will 

be evaluated with the soil moisture content estimates of SEBAL. Furthermore, a generic 

framework will be proposed for the SoilGrids30m model and the performance of the models 

will be tested. The methodology will be explained with help of Figure 3.7.  

The first model, SoilGrids30m, is based on the SoilGrids250m and SoilGrids1000m model 

(Hengl et al., 2017; Hengl et al., 2014). SoilGrids30m is a model to translate bare soil surface 

reflectance into physical soil properties. A common way to obtain physical soil properties in the 

Netherlands is with help of the Stiboka soil map. The Stiboka soil map is based on a database 

of soil samples collected over the years therefore the spatial and temporal resolution are 

generally too coarse for precision agriculture. The disadvantages of the Stiboka soil map will 

be improved with the development of the SoilGrids30m model.  

The obtained physical soil properties from the SoilGrids30m model are translated into van 

Genuchten parameters with help of pedotransfer functions. The van Genuchten parameters 

are the input of the water retention curve to estimate soil water holding capacity. The soil water 
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holding capacity is an important parameter for irrigation management and has a direct 

influence on the crop growth.  

The SoilGrids30m model only gives estimates of fixed physical soil properties, which limits the 

model to be able to estimate soil moisture content. Soil moisture content is the available water 

present in a soil and depends on i.e. weather conditions and irrigation. Soil moisture content 

is therefore a dynamic process that cannot be determined with fixed physical soil properties. 

Instead, soil water holding capacity will be determined which is a fixed soil water property.  

This study will be focused on dry conditions. Areas with a high water holding capacity should 

have a higher soil moisture content than areas with a low soil water holding capacity. An 

evaluation will be made to see if there is indeed a clear relationship visible between the soil 

water holding capacity and the total soil moisture content during dry periods in the study area.   

The estimated soil water holding capacity will be determined with help of an automated soil 

mapping model, pedotransfer functions and the water retention curve, all of these steps have 

their inaccuracies and therefore the reliability of this approach depends on these inaccuracies. 

Furthermore, this approach is based on for instance the reflectance of the soil top layer, which 

does not have to have the same soil properties as in the root zone.  

The second model is based on the concepts of the Trapezoid method (Yang et al., 2015), 

which will be named as the soil wetness indicator. The soil wetness indicator is a qualitative 

measure of moist conditions in the study area. For each pixel, the NDVI and the relative crop 

temperature (RCT) will be calculated with help of the SEBAL model. The RCT is the difference 

between land surface temperature and the instantaneous air temperature. The model is a 

relative representation of the at date situation/conditions. Each day the pixel envelope differs 

because it depends on the local weather conditions and the growth stage of the vegetation. 

With help of an RCT-NDVI plot, the wetness of each pixel can be determined. In this model, 

the wetness of a pixel is relative to the wetness of all pixels together. Based on the RCT-NDVI 

density plot, the boundaries of the pixel envelope will be determined. The boundaries are used 

to gradually divide the pixel envelope into classes from dry to wet. Each pixel can then be 

assigned to a class of wetness.  

The third model used in this study is SEBAL, which will be used for different purposes. In the 

first place, SEBAL will be used to have a uniform way to pre-process all images used in this 

study. Furthermore, the total soil moisture content estimated by SEBAL will be used to evaluate 

the results of the SoilGrids30m model and the soil wetness indicator.  



 

22 
 

 

Figure 3.7 Flowchart overall methodology 

 

3.5. Spatial estimation of surface soil properties using remote sensing data 

3.5.1. Spatial estimation technique: regression-kriging 

The fundamental of spatial estimation is predicting target values at unvisited locations. The 

spatial variation in predicted target values often correlates with environmental properties such 

as land use, elevation, slope, etc. These environmental properties can be summarized with 

the term SCORPAN: Soil classes or properties; Climate; Organisms, vegetation, fauna or 

human activity; Relief; Parent material; Age; n – spatial position (McBratney et al., 2003). 

Including SCORPAN properties to a spatial estimation technique often improves estimation 

accuracy (Hengl et al., 2019). In this study, this will be done with help of the regression-kriging 

technique, which uses explanatory variables along with soil samples. As mentioned in 

paragraph 2.3.1, regression-kriging consists of two separate parts, the ordinary-kriging model 

and the simple or multi-linear regression model.  

Ordinary-kriging can be described as an interpolation technique where the estimation at a 

location is a linear combination of observations nearby. The weight that is given to each 

observation depends on the degree of (spatial) correlation (Hengl et al., 2007). Ordinary-

kriging is denoted as a best linear unbiased predictor, “best” because it minimizes the variance 

of the errors; “linear” because its estimates are weighted linear combinations of the 

observations; “unbiased” because the mean residual is equal to zero. Furthermore, ordinary-

kriging does not only provide an estimate but also the variance of an estimate. Ordinary-kriging 

is formulated according to equation 3.1 (Hengl et al., 2007).  

 �̂�(𝑠0) = ∑ 𝜆𝑖 ∗ 𝑧(𝑠𝑖)

𝑛

𝑖=1

 3.1 

Where, �̂�(𝑠0) is the predicted value of the target variable at an unvisited location (𝑠0); 𝑧(𝑠𝑖) are 

the observations; 𝜆𝑖 are the weights of each observation with respect to the unvisited location 

(𝑠0). 
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The SoilGrids30m model uses a multi-linear regression model to estimate the regression 

coefficients between the target variable and the explanatory variables at the sample location. 

At the unvisited locations, the estimated regression coefficients along with the known 

explanatory variables are used to predict the value of the target variables. The Multi-linear 

regression model is formulated according to equation 3.2 (Hengl et al., 2007).  

 �̂�(𝑠0) = ∑ �̂�𝑘 ∗ 𝑞𝑘(𝑠0)

𝑝

𝑘=0

;      𝑞0(𝑠0) ≡ 1 3.2 

 

Where, 𝑞𝑘(𝑠0) are the values of the explanatory variables at the unvisited locations (𝑠0); �̂�𝑘 

are the estimated regression coefficients; 𝑝 is the number of explanatory variables. 

As mentioned in paragraph 2.3.1, regression-kriging combines ordinary-kriging and multi-linear 

regression. The multi-linear regression model is used to fit the explanatory variations from the 

explanatory variables and ordinary-kriging is used to fit the residuals. The regression-kriging 

model is formulated according to equation 3.3 (Hengl et al., 2007).    

 �̂�(𝑠0) = �̂�(𝑠0) + �̂�(𝑠0) = ∑ �̂�𝑘 ∗ 𝑞𝑘(𝑠0)

𝑝

𝑘=0

+ ∑ 𝜆𝑖 ∗ 𝑒(𝑠𝑖)

𝑛

𝑖=1

 3.3 

Where, �̂�(𝑠0) is the fitted trend from the multi-linear regression model; �̂�(𝑠0) is the interpolated 

residual from the ordinary-kriging model; 𝑒(𝑠𝑖) is the residual at location 𝑠𝑖. 

3.5.2. Data input 

Observations 

A set of 518 soil samples from the study area have been extracted from "BISNederland" (n.d.). 

However, the amount of useful soil samples is significantly lower because of two constraints. 

Firstly, the SoilGrids30m model only focusses on bare soil surface pixels because these pixels 

can be directly related to physical soil properties of the top layer. Bare soil generally is denoted 

with an NDVI value within the range of 0.0 and 0.2 (Carlson et al., 1997), all values outside 

this range can be related to i.e. vegetation or waterbodies. Secondly, if at any location, at pixel 

level, information from one or more explanatory variable(s) is missing or it is an outlier the pixel 

will be left out of the analysis. Therefore, only profile observations that meet both constraints 

will be used for the analysis. 

Explanatory variables  

In this study, the applied data can be categorized based on SCORPAN properties. Table 3.1 

shows an overview of all explanatory variables applied in this study. Remote sensing is a 

technique that allows to obtain soil characteristics from a study area in the order of hundreds 

of square kilometers. Therefore, the majority of the explanatory variables are defined by 

reflectance data obtained from Landsat 8 images. The amount of soil reflectance depends on 

the scattering and absorption properties of a soil (Weidong et al., 2002). Which in their turn 

depends i.e. on soil composition, physical structure, land cover, etc. A second set of data is 

related to the relief properties of the area. Although the study area can be considered as a flat 

area, the height of the area gradually decreases from East to West. Numerous studies have 

already shown a relationship between relief and soil properties (Pachepsky et al., 2001; 

Sobieraj et al., 2002; Ceddia et al., 2009). Therefore, the elevation, slope and aspect are 

implemented in terms of the relief parameters. Additional, categorical information about soil 

classes and soil parent material are added to complete the explanatory variables dataset.  
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Explanatory 
variable 

Abbrevi
ation 

SCOR
PAN 

Formulation Short description Source 

Soil class  S Categorical map Type of soil https://www.p
dok.nl 

Blue B2 O  Clay spectral signature Casa et al. 
(2013) 

Green B3 O  Clay spectral signature Casa et al. 
(2013) 

Red B4 O  Clay spectral signature Casa et al. 
(2013) 

Near Infrared B5 O  Organic matter 
absorption band 

Summers et 
al. (2011) 

Short-wave 
Infrared 1 

B6 O  Clay and organic 
matter absorption 
band 

Summers et 
al. (2011) 

Short-wave 
Infrared 2 

B7 O  Clay and organic 
matter absorption 
band 

Summers et 
al. (2011) 

Enhanced 
Vegetation Index 

EVI O 
2.5 ∗

𝐵5 − 𝐵4

𝐵5 + 6 ∗ 𝐵4 − 7.5 ∗ 𝐵2 + 1
 

Health and amount of 
vegetation 

USGS (2017) 

Modified Soil 
Adjusted 
Vegetation index 

MSAVI O 𝐵5 + 0.5 − 0.5 ∗ 

√(2 ∗ 𝐵4 + 1)2 − 8 ∗ (𝐵4 − 𝐵3) 

Reduced soil 
background effect for 
health and amount of 
vegetation 

USGS (2017) 

Normalize 
Differenced 
Moisture Index 

NDMI O 𝐵5 − 𝐵6

𝐵5 + 𝐵6
 

Crop water stress level USGS (2017) 

Brightness Index BI O 

√
𝐵42 + 𝐵32 + 𝐵22

3
 

Average reflectance 
magnitude 

Forkuor et al. 
(2017) 

Coloration Index CI O 𝐵4 − 𝐵3

𝐵4 + 𝐵3
 

Soil color Forkuor et al. 
(2017) 

Hue Index HI O 2 ∗ 𝐵4 − 𝐵3 − 𝐵2

𝐵3 − 𝐵2
 

Primary colors Forkuor et al. 
(2017) 

Redness Index RI O 𝐵42

𝐵2 ∗ 𝐵33
 

Hematite content Forkuor et al. 
(2017) 

Saturation Index SI O 𝐵4 − 𝐵2

𝐵4 + 𝐵2
 

Spectral slope Forkuor et al. 
(2017) 

Albedo  O  Diffuse reflection of 
solar radiation 

SEBAL 

Emissivity  O  Surface effectiveness 
in emitting thermal 
radiation 

SEBAL 

Surface 
roughness 

 O  Deviation of surface 
reflectance in the 
direction of the normal 
vector 

SEBAL 

Land use BRP O Categorical map Type of land cover https://www.p
dok.nl 

Nitrogen  O  Nitrogen level SEBAL 

Elevation  R  Height above sea level SEBAL 

Slope  R  Inclination of land 
surface from horizontal 

SEBAL 

Aspect  R  Direction the slope 
faces 

SEBAL 

Geomorphology  P Categorical map Parent material https://www.p
dok.nl 

Table 3.1 Overview explanatory variables SoilGrids30m  
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Three SCORPAN properties, climate; age; n – spatial position, are not mentioned yet. The age 

and spatial position of each pixel has not been applied at all. The area has been evolved due 

to human activities; therefore, it does not contain i.e. high mountains, moderate hills or major 

rivers that could have an influence on the spatial position of the soil properties. Furthermore, 

the area is relatively small and therefore differences in spatial position are also relatively small. 

The information available about the age of the soils in the area is too coarse, with as result a 

constant value for the whole area. Without noticeable differences within an explanatory 

variable, the explanatory variable does not add any new information to the model and should 

be left out of the analysis. In terms of climate properties, an extra set of data has been created 

by taking the difference, for all obtained explanatory variables based on reflectance, between 

a moist day and a dry day image. Sandy soils i.e. have a higher water permeability than clayey 

soils. The difference between a moist and dry date, per explanatory variable, could give extra 

information about soil properties. Meteorological data obtained from the KNMI weather station 

in “Marknesse” has been used to select a moist date and a dry date. The dry date is on 5 

January 2017 as shown in Figure 3.8. The moist date is on 10 March 2017 as shown in Figure 

3.9.  

 

Figure 3.8 Weatherdata KNMI station Marknesse prior to dry date SoilGrids30m 
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Figure 3.9 Weather data KNMI station Marknesse prior to moist date SoilGrids30m 

3.5.3. Spatial estimation of surface soil properties 

The goal of the SoilGrids30m model is to estimate surface soil properties. Due to the available 

observations, only target variables clay content and organic matter content will be estimated. 

Each target variable will be estimated separately with its own model created in the statistical 

programming language R. The model consists of six modules as shown in Figure 3.10, the R-

scripts of all modules can be found in Appendix A until Appendix E. 

Collecting and preparing data  

The first module is collecting and preparing the data. Preparing the data is done in five different 

steps, the first step is a pre-prepping step. All data should, be rasterized (also categorical data); 

have the same resolution; have the same projection. The second step is to select only bare 

soil surface pixels, with a range between 0.0 NDVI and 0.2 NDVI, as explained in the 

observations part of paragraph 3.5.2. The third step is to detect all outliers based on the boxplot 

theory. In this model, all outliers and non-bare soil pixels are set to “NA”. The fourth step is to 

remove explanatory variables without any variation in the data. The fifth step is to standardize 

the data. All applied explanatory variables operate in different ranges of absolute values. To 

prevent the model to be dominated by explanatory variables with significant higher absolute 

values, they will all be standardized using a z-score according to equation 3.4 (Levi & 

Rasmussen, 2014).  

 𝑍𝑖𝑗 =
𝑥𝑖𝑗 − 𝜇𝑗

𝜎𝑗
 3.4 

Where, 𝑍𝑖𝑗 is the z-score of pixel i in explanatory variable j; 𝑥𝑖𝑗 is the untransformed value of 

pixel i in explanatory variable j; 𝜇𝑗 is the mean of explanatory variable j; 𝜎𝑗 is the standard 

deviation of explanatory variable j.  

Data correlation  

The second module is to extract the explanatory data at the observation point locations and 

evaluate the explanatory data based on their correlation to the target variable. The first step is 

creating a spatial dataset that contain all observations along with all explanatory data at the 
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observation locations. The SoilGrids30m model uses 62 different explanatory variables of 

which not all of them has a clear relation with respect to the target variable. A correlation 

threshold will be applied to reduce the number of explanatory variables used for further 

analysis. The explanatory variables are arranged based on their correlation with the target 

variable. The correlation threshold is a percentile value that eliminates the nth percentile 

explanatory variables with the lowest correlation to the target variable. After applying a 

correlation threshold, the first module should be executed again. As earlier mentioned, a soil 

sample location will be left out of the analysis if information at that location from one or more 

explanatory variable(s) is missing or it is an outlier. The correlation threshold will exclude 

explanatory variables from the analysis, which could also lead to an increase of useful soil 

sample locations for the analysis. A higher amount of soil sample locations will be beneficial 

for the results of the model. 

 

Figure 3.10 Flowchart SoilGrids30m model 
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Principal component analysis  

The third module is to create and select principal components for the regression model. 

Principal component analysis (PCA) transforms a set of “correlated” observations into linearly 

uncorrelated variables, called principal components (Alice, 2016). There will be as many 

principal components created as explanatory variables used as input for the analysis. The 

SoilGrids30m model uses, without correlation threshold, 62 explanatory variables as input and 

therefore it will create 62 principal components. The first principal component accounts for the 

largest possible variance. Each subsequent component is orthogonal to all previous 

components and has the subsequent highest variance. All principal components together 

account for 100% of the variance in the model. There are multiple reasons to apply principal 

components instead of using the explanatory variables themselves. In the first place, by using 

PCA the number of input variables for the regression model could be significantly reduced 

(Alice, 2016). A variance threshold can be set to select a subset of principal components that 

account for the threshold amount of variance in the model. This reduction of input variables for 

the regression model could reduce the complexity and the computational effort of the model. 

A second significant benefit of PCA is that it is able to avoid multicollinearity (Alice, 2016). All 

principal components are uncorrelated linear combinations of the explanatory variables. 

Therefore, each principal component will add “new” information to the model without any 

overlap with other principal components. This is certainly not the case when the explanatory 

variables are used instead of the principal components. Furthermore, by using principal 

components the regression model will be less sensitive to overfitting (Alice, 2016). Potential 

benefits comes with potential risks and drawbacks. One of the drawbacks of PCA is the 

decoupling of the relation between explanatory variable and target variable (Alice, 2016). It 

would be more convincing to find relations between explanatory variables and target variables. 

By using principal components, it could make it more difficult to explain what is affecting what. 

Another drawback of PCA is that the principal components are obtained in an unsupervised 

way (Alice, 2016). Which means that the target variable has not been used to determine the 

direction of the principal components. It is therefore not certain that the configuration of the 

principal components is optimal for the estimation of the target variable.  

Regression-kriging 

The fourth and the fifth module together is the regression-kriging technique and has been 

elaborately explained in paragraph 3.5.1. To obtain the final spatial estimation of the target 

variable all soil sample observations, which meet the requirements explained in the first 

module, are used.    

Validation 

The sixth module is the validation of the obtained results based on a n-fold cross-validation. 

After the principal component analysis, the data will be split into a validation set and a trainings 

set. The trainings set will be used to predict the target variable for each pixel that meet all 

requirements as mentioned in the preparation module. The performance of the SoilGrids30m 

model will be evaluated with the validation set with help of three indicators. The first indicator 

is the coefficient of determination, which indicates the amount of variance explained by the 

model (see equation 3.5). 

 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 3.5 

 

Where, 𝑅2 is the coefficient of determination; 𝑆𝑆𝑟𝑒𝑠 is the sum of squares of the residuals; 𝑆𝑆𝑡𝑜𝑡 

is the total sum of squares. The second indicator is the mean absolute estimation error, which 

is the true estimation error of the model (see equation 3.6).  
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 𝑀𝐴𝐸 =
1

𝑛
∑|�̂�(𝑠𝑖) − 𝑧(𝑠𝑖)|

𝑛

𝑖=1

 3.6 

 

Where, 𝑀𝐴𝐸 is the mean absolute estimation error; 𝑛 is the number of observations; �̂�(𝑠𝑖) are 

the estimated values at validation point 𝑠𝑖; 𝑧(𝑠𝑖) are the estimated values at validation point 𝑠𝑖. 

The third indicator is the root mean square estimation error, which is a measure for the 

accuracy of the estimation (see equation 3.7). 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�(𝑠𝑖) − 𝑧(𝑠𝑖))

2
𝑛

𝑖=1

 3.7 

 

Where, 𝑅𝑀𝑆𝐸 is the root mean square estimation error. 

3.5.4. Spatial estimation of soil water holding capacity 

The soil water holding capacity of a soil is the maximum amount of water a soil can hold for 

crop use. To optimize the crop production it is important to know what the maximum available 

amount of water for crop use in a soil is. The soil water holding capacity is defined as the 

amount of water at field capacity minus the amount of water at wilting point (see equation 3.8).  

 𝑊𝐻𝐶 = 𝜃𝐹𝐶 − 𝜃𝑊𝑃 ,     [𝑐𝑚3/𝑐𝑚3] 3.8 
 

The exact definition of field capacity has not been established because field capacity should 

be reached at some equilibrium point, which it never does. This is because water in soil is a 

dynamic process and therefore continuously changing (Kirkham, 2014). In this study, field 

capacity will be seen as the amount of water a soil can hold against gravitational forces and 

when the drainage rate has been decreased (Kirkham, 2014). Wilting point on the other hand 

has a clear definition. Wilting point is related to a deficiency of water for crops in the area and 

is denoted as the point where crops for the first time undergo a permanent reduction in 

moisture content (Kirkham, 2014). Both field capacity and wilting point can be computed with 

help of the water retention curve (Van Genuchten, 1980). The water retention curve is an 

analytical expression between soil water content and soil water potential, also denoted as 

pressure head (see equation 3.9).  

 𝜃(ℎ) = 𝜃𝑟 +
𝜃𝑠 − 𝜃𝑟

(1 + |𝛼ℎ|𝑛)1−1/𝑛 
,     [𝑐𝑚3/𝑐𝑚3] 3.9 

 

Where, 𝜃(ℎ) is the water retention curve [𝑐𝑚3/𝑐𝑚3]; h is the suction pressure or pressure head 

[𝑐𝑚]; 𝜃𝑟 is the residual water content [𝑐𝑚3/𝑐𝑚3]; 𝜃𝑠 is the saturated water content [𝑐𝑚3/𝑐𝑚3]; 

𝛼 is related to the inverse of the air entry suction 𝛼 > 0 [𝑐𝑚−1]; 𝑛 is a measure of the pore-size 

distribution 𝑛 > 1 [−]. Field capacity and wilting point are estimated to be the water content at 

a pressure head of 100cm and 16000cm respectively.  

Input parameters of the water retention curve are also known as soil hydraulic properties. The 

most accurate way to determine soil hydraulic properties are with field measurements. 

However, these measurements are often inconvenient, costly, time consuming and labour 

intensive (Schaap et al., 2001; Wagner et al., 2001). For this study i.e., it is almost impossible 

to have a substantial spatial coverage of the hydraulic properties as large as the study area. 

To overcome these problems many indirect methods have been developed (Rawls & 

Brakensiek, 1989; Wösten et al., 1995; Stolte et al., 1996; Schaap et al., 2001). The 

development of an equation to indirectly estimate soil properties has been termed as 
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pedotransfer function (PTF) for the first time by Bouma (1989). In essence, PTFs translates 

data, which are generally easy to obtain (i.e. soil texture and organic matter), into what we 

need (i.e. soil hydraulic properties). Soil hydraulic databases are used to calibrate the PTFs it 

therefore strongly depends what database has been used, especially from which region. PTFs 

are therefore strongly empirical related models.  

In this study, the available observations only contain clay content and organic matter content 

values. Therefore, the PTFs used to estimate soil hydraulic parameters are based on clay 

content and organic matter content but also on bulk density (introduced as unknown). Four 

unknown soil hydraulic parameters, 𝜃𝑟, 𝜃𝑠, 𝛼, 𝑛, and the bulk density will be estimated with help 

of PTFs. The PTFs to compute bulk density, 𝛼 and 𝑛 are obtained from Wösten et al. (2001), 

see equations 3.10 until 3.12. 

 𝛼∗ = −19.13 + 0.812 ∗ 𝑂𝑀 + 23.4 ∗ 𝐵𝐷 − 8.16 ∗ 𝐵𝐷2 + 0.423 ∗ 𝑂𝑀−1

+ 2.388 ∗ 𝐿𝑁(𝑂𝑀) − 1.338 ∗ 𝐵𝐷 ∗ 𝑂𝑀 
3.10 

 𝑛∗ = −0.235 + 0.972 ∗ 𝐵𝐷−1 − 0.7743 ∗ 𝐿𝑁(𝐶𝑙𝑎𝑦) − 0.3154 ∗ 𝐿𝑁(𝑂𝑀)
+ 0.0678 ∗ 𝐵𝐷 ∗ 𝑂𝑀 

3.11 

 1

𝐵𝐷
= 0.6117 + 0.003601 ∗ 𝐶𝑙𝑎𝑦 + 0.002172 ∗ 𝑂𝑀2 + 0.01715 ∗ 𝐿𝑁(𝑂𝑀) 

3.12 

 

 

 

Where, 𝑂𝑀 is the organic matter content [%]; 𝐵𝐷 is the bulk density [𝑔/𝑐𝑚3]; 𝐶𝑙𝑎𝑦 is the clay 

content [%]. 𝛼∗ and 𝑛∗ are transformed parameters and should be converted according to 

equations 3.13 and 3.14.  

 𝛼 = 𝑒𝛼∗
 3.13 

 𝑛 = 𝑒𝑛∗
+ 1 3.14 

The PTFs to compute 𝜃𝑟 and 𝜃𝑠 are obtained from Scheinost et al. (1997), see equations 

3.15 and 3.16. 

 𝜃𝑠 = 0.85 ∗ (1 −
𝐵𝐷

2.65
) + 0.13 ∗ 𝐶𝑙𝑎𝑦 3.15 

 𝜃𝑟 = 0.0051 ∗ 𝐶𝑙𝑎𝑦 + 0.017 ∗ 𝐶𝑜𝑟𝑔 3.16 

Where, 𝐵𝐷 is the bulk density [𝑔/𝑐𝑚3]; 𝐶𝑙𝑎𝑦 is the clay content [%]; 𝐶𝑜𝑟𝑔 is the organic carbon 

content [%]. To obtain organic carbon content from organic matter content, a division factor of 

two has been applied to the organic matter content, according to Pribyl (2010). The R-script 

for the pedotransfer functions can be found in Appendix F. 
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3.6. Soil wetness indicator 

3.6.1. Data input 

The fundamental idea of the soil wetness indicator is based on the relative crop temperature 

(RCT) and the NDVI. Both input parameters have been computed with help of SEBAL 

according to paragraph 2.2.4. The RCT is the land surface temperature minus the 

instantaneous air temperature. SEBAL computes the land surface temperature based on a 

split-window algorithm, where both band 10 and band 11 (TIR bands) of Landsat 8 are used. 

The NDVI has been determined based on the difference ratio between band 5 and band 4 (NIR 

and red band) of Landsat 8. The used data should meet a couple of requirements to be useful, 

the images should be cloudless; there should be a sufficient amount of vegetation in the area; 

they should be taken during a period of drought; there should be a sufficient amount of fields 

with the same crop type.  

A cloudless image is necessary to be able to measure the reflectance of the Earth surface. To 

be able to measure the crop temperature there should be sufficient amount of vegetation cover 

in a pixel. Without vegetation, the temperatures measured are related to bare soil while it is 

important to measure crop temperatures. A plant with its roots can be seen as a thermometer 

where the crop temperature is a measure for the water availability in the root zone. Crops react 

on a deficit of water content in the soil. Low water content will reduce the transpiration rate of 

the plant and causes the stomata to close. This process coincides with a temperature increase 

of the plant (Rutter et al., 1958; Xu et al., 2008; van den Bersselaar et al., 2005; Anderson et 

al., 2007). Numerous studies have shown that the temperature of crops, obtained from thermal 

infrared data, compared with air temperature has a relationship with the soil moisture content 

(Bastiaanssen et al., 2006; Yang et al., 2015; Hatfield et al., 2008). The base of the analysis is 

therefore, crops with sufficient water will tend to be close to air temperature and crops with a 

deficit of water will show an increase in temperature with respect to air temperature. The water 

availability depends on soil type, which can only be related to crop temperature when external 

influences, such as precipitation and or irrigation, are eliminated. It is therefore important for 

the analysis to use images taken during a longer period of drought, as well for precipitation as 

for irrigation. Therefore, the year 2018 will be used as reference year because of the extreme 

dry conditions, see paragraph 3.1. As mentioned, the images should have sufficient vegetation 

that limits the date range to the growth season. Four dates have been found of cloudless 

satellite images during the growth season, see Figure 3.11 until Figure 3.14 for the 

meteorological summary per date. At three of the four dates, 21 days prior to the Landsat 8 

overpass, the total evapotranspiration is greater than the total precipitation. At 7 May, the 

precipitation from 29 April to 1 May has not been evapotranspirated completely at overpass 

time of Landsat 8. Yet, this day could be useful because 4 days prior to satellite overpass time 

where without precipitation.     

Furthermore, sufficient amount of fields with same crop type should be available at all images. 

Each crop type reacts different to drought conditions, which i.e. depends on the root depth. It 

is therefore important to evaluate the results per crop type to eliminate the influence of different 

crop type properties. Another reason has to do with irrigation management. Each crop type will 

need a different irrigation scheme to have the best growth curve. In this study, sugar beet and 

winter wheat are used for the analysis. Both crop types generally do not need irrigation 

throughout the season in the Netherlands. Furthermore, these crop types generally have a 

sufficient ground coverage to measure mainly the crop temperature instead of the surrounding 

soil. In addition, these crops are frequently present in the area.   
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Figure 3.11 Weatherdata KNMI station Marknesse prior to 21 April 2018 SWI 

 

 

Figure 3.12 Weatherdata KNMI station Marknesse prior to 7 May 2018 SWI 
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Figure 3.13 Weatherdata KNMI station Marknesse prior to 3 July 2018 SWI 

 

Figure 3.14 Weatherdata KNMI station Marknesse prior to 26 July 2018 SWI 
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3.6.2. Procedure to derive soil wetness indicator 

The goal of the soil wetness indicator is to detect patterns of wetness that can be related to 

the total soil moisture content estimated by SEBAL. As explained in the previous paragraph 

only sugar beet and winter wheat will be used for the analysis. The soil wetness indicator can 

be divided into five modules according to Figure 3.15. The soil wetness indicator has been 

completely programmed in Python, the script of each module can be found in Appendix G until 

Appendix K. All modules have been developed in a variable way. This means that the modules 

can be used with multiple and different input parameters, i.e. dates; crop types; initial 

parameters, etc. 

Create buffer zone per field per crop type  

The first module of the soil wetness indicator extracts all pixels per crop type. The land use 

data is freely available in shapefile format offered by the Dutch government 

(https://www.pdok.nl). The analysis of the soil wetness indicator will be done with NDVI and 

LST values obtained from Landsat 8. Landsat 8 operates on a spatial resolution of 30 meters. 

A pixel will therefore cover an area of 30 square meters and could contain not only reflectance 

of vegetation but also parts of roads, houses and or ditches. These objects will have an 

influence in the reflectance magnitude of the pixel. To eliminate these artifacts and to obtain 

the reflectance of only crops of interest a buffer zone of 60 meters will be created around each 

field.  

 

Figure 3.15 Flowchart soil wetness indicator 

Extract LST and NDVI per field per crop type  

The second module has been built with help of two developed functions, a function to extract 

for each field of interest the desired raster values; a function to merge all obtained raster values 

of each field into one overall raster layer. The first function extracts, based on land use 

information, per field the LST and NDVI raster values. Both properties are stored in a separate 

folder and each field has its own raster file. As explained in paragraph 3.6.1, for the analysis 

https://www.pdok.nl/
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the crop temperature relative to the air temperature will be used. Therefore, an extra step to 

obtain the RCT is applied by extracting the air temperature from the estimated land surface 

temperature. The second function merges all the individual field raster files per property into 

one raster file. 

Determine boundaries of pixel envelope  

The third module is to determine the upper and lower boundaries of the pixel envelope. It starts 

with preparing the data used for the analysis. The first step is to extract the air temperature 

from the estimated LST values of SEBAL. The second step is to remove all data that are not 

realistic and or meaningful for the analysis. Two constraints are used to select only realistic 

and meaningful pixels, only NDVI pixel values ranging between 0.0 and 0.9 (excludes 

waterbodies) are used for the analysis; RCT constraint is set based on the boxplot theorem. 

To determine the boundaries subsets with an increment of 0.1 NDVI are used. For each 

increment, the upper extreme RCT value has been determined based on the boxplot theorem. 

Finally, the upper RCT constraint has been set to the highest upper extreme RCT value of all 

increments. The lower RCT constraint has been set to the lowest lower extreme RCT value of 

all increments. After removing all outliers, the boundaries of the trapezoidal space are 

determined. The upper and lower nth percentile has been determined for each increment. 

Based on the upper and lower nth percentile an upper and lower boundary line will be estimated 

with help of linear regression. The final boundaries of the pixel envelope are determined in a 

somewhat subjective way. With help of two constraints the location of the boundaries of the 

pixel envelope can be manually adjusted. The nth percentile is subjective in the way that it can 

be set to any arbitrary number. For the lower boundary the 2th percentile has been applied. For 

the upper boundary, this is always the opposite of the spectrum respectively 98th percentile. 

The second constraint is determined based on a visualization of the percentile values per 

increment. If the percentile value is visually not in line with the expected boundary line, it can 

be left out of the analysis for fitting the final boundary line. This method has been developed 

to have a semi-automated and quick way of detecting the boundaries of a pixel envelope based 

on the same principles.  

Create classes of wetness  

The fourth module is to create classes of wetness based on the boundary lines determined in 

the third module. Based on the number of classes, which is set to 20 for this study, two 

increments are determined. The first increment is determined at the minimum NDVI value of 

0.0; the second increment is determined at the maximum NDVI value of 0.9. Each increment 

is determined as the difference between the upper and lower boundary line at mentioned NDVI 

location divided by the number of classes. Finally, the space between each set of lines will be 

converted to a polygon class and each polygon class can be assigned to a class of wetness. 

The third and fourth module are implemented in one Python script and are calculated in one 

go. 

Assign class of wetness per pixel  

The fifth module combines previous modules, with as result a qualitative representation of the 

wetness of a pixel. Each pixel per crop type, obtained from module 2, will be converted into a 

point class. The obtained polygon classes from module 4 are used to identify to which polygon 

class a point class belongs. Along with the wetness of each pixel, a density plot is made of the 

RCT-NDVI space. The density plot shows the overall pixel density of all pixels of the image on 

top of that the polygons obtained in module 4 are shown and the pixels per crop type obtained 

from module 2 are highlighted.  
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4. Results and analysis 

4.1. Spatial estimation of surface soil properties using remote sensing data 
In this paragraph, the results of three surface soil properties will be discussed: clay content; 

organic matter content; soil water holding capacity. In the first subparagraph, the model 

settings of the SoilGrids30m model will be discussed and the results of clay content and 

organic matter content will be analysed. In the second subparagraph, the results of the soil 

water holding capacity estimates will be analysed.  

4.1.1. Spatial estimation of clay content and organic matter content 

Model set up  

A newly developed spatial estimation model, SoilGrids30m, is used to obtain spatial estimates 

of clay content and organic matter content in the study area. As explained in paragraph 3.5.3, 

SoilGrids30m consists of six modules. Each module is programmed in a variable way such 

that the model can be adjusted easily. Therefore, each step uses initial parameters to set up 

the module as desired.  

In module 1A, all data used for analysis will be aggregated. The data used in this study is 

projected in WGS84/UTM zone 32N with a spatial resolution of 30 meters. Furthermore, an 

extra set of explanatory variables is obtained by taking the differences between a dry and a 

moist date. The dry image date used in this study is 5 January 2017 and the moist image date 

used in this study is 10 March 2017. The used initial parameters for module 1A are shown in 

Table 4.1. 

Initial parameter Parameter value Unit 

Module 1A Data collection  
Projection “EPSG32632” WGS84/UTM zone 32N 

Resolution input “30” [m] 
Image date dry “2017_01_05” [-] 

Image date wet “2017_03_10” [-] 
Table 4.1 Initial parameters used for clay and organic matter content in SoilGrids30m module 1A 

In module 1B, the aggregated data will be prepared for further analysis. Firstly, bare soil pixels 

will be selected based on a NDVI threshold. An upper limit of 0.2 NDVI is set to exclude 

vegetated areas and a lower limit of 0.0 NDVI is set to exclude waterbodies, clouds, snow and 

ice (see Table 4.2). Secondly, all outliers will be removed based on the boxplot theorem and 

lastly, all data will be standardized.  

Initial parameter Parameter value Unit 

Module 1B Data preparation  

Bare soil NDVI threshold 0.2 [-] 
Waterbodies NDVI threshold 0.0 [-] 

Table 4.2 Initial parameters used for clay and organic matter content in SoilGrids30m module 1B 

In module 2A, the model will be specifically set up for the desired target variable to obtain the 

correlation between the explanatory variables and the target variable. A correlation percentile 

threshold will be applied to reduce the number of explanatory variables used for further 

analysis. The explanatory variables are arranged based on their correlation with the target 

variable. The correlation percentile threshold is a percentile value that eliminates the nth 

percentile explanatory variables with the lowest correlation to the target variable. In this study, 

the increment of the correlation percentile threshold is set to 0.05. In example, when a set of 
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60 explanatory variables is used for analysis, for each increment of 0.05 the three explanatory 

variables with the lowest correlation regarding to the target variable will be eliminated.  

Initial parameter Parameter value Unit 

Module 2A Data correlation  

Correlation percentile threshold [0.0-0.95] [-] increments of 0.05 
Table 4.3 Initial parameters used for clay and organic matter content in SoilGrids30m module 2A 

Module 2B is comparable with module 1B but instead of all explanatory variables only the 

selected explanatory variables after setting the correlation percentile threshold are used. The 

initial parameters do not change compared to module 1B, see Table 4.4.  

Initial parameter Parameter value Unit 

Module 2B Data preparation  
Bare soil NDVI threshold 0.2 [-] 

Waterbodies NDVI threshold 0.0 [-] 
Table 4.4 Initial parameters used for clay and organic matter content in SoilGrids30m module 2B 

In module 3, a principal component analysis will be applied on the subset of explanatory 

variables from module 2B. The tuning parameter in module 3 is the minimum variance 

explained threshold. Each principal component explains partly the variance in the model. The 

minimum variance explained threshold sets a minimum value of the variance in the model that 

should be explained by the principal components. A low threshold will give at least one principal 

component for further analysis. A high threshold does not necessarily mean a selection of 

more principal components. This depends on how fine each principal component explains the 

variance of the model. If the variance of the model explained by the first principal component 

is already high then the number of principal components for further analysis could be still one. 

In this study, the threshold for the minimum variance explained has been fixed to 0.99 (see 

Table 4.5). In this way, 99% of the variance in the model will be used to estimate the target 

variables in the area. None of the remaining principal components are significant enough for 

further analysis, i.e. they represent the noise in the used Landsat 8 images. 

Initial parameter Parameter value Unit 

Module 3 PCA  

Minimum variance explained 0.99 [-] 
Table 4.5 Initial parameters used for clay and organic matter content in SoilGrids30m module 3 

In module 4-5, the regression-kriging technique will be applied. In this module, the 

semivariogram settings are set. These settings are used to fit a function that describes the 

degree of spatial dependence of the target variable residuals. For both, clay content and 

organic matter content, an exponential fit is used. The nugget, sill and range differ because of 

the difference in absolute value of both target variables (see Table 4.6).   

Initial parameter Parameter value Unit 

Module 4-5 Regression kriging  

Variogram nugget 5-0.1 [%2] Clay-OM 
Variogram sill 13-0.15 [%2] Clay-OM 

Variogram range 2000-4000 [m] 
Variogram model “Exp”  

Table 4.6 Initial parameters used for clay and organic matter content in SoilGrids30m module 4-5 

In module 6 a cross-validation will be applied. The model will be split up in a training set and a 

validation set. In this study, 70% of the data is used for training and 30% is used for validation. 

The module is set to run 100 times and can therefore be denoted as a 100-fold cross-validation. 

Furthermore, the same semivariogram settings are used as in module 4-5 (see Table 4.7).  
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Initial parameter Parameter value Unit 

Module 6 Validation  

Split coefficient 0.7 [-] 
Number of calculation 100 [-] 

Variogram nugget 5-0.1 [%2] Clay-OM 
Variogram sill 20-0.15 [%2] Clay-OM 

Variogram range 4000 [m] 
Variogram model “Exp” Exponential 

Table 4.7 Initial parameters used for clay and organic matter content in SoilGrids30m module 6 

Correlation percentile threshold analysis  

The correlation percentile threshold has been analyzed more extensively to find out what 

configuration gives the most reliable result. Increments of 5 percentile are used in the range 

from 0th percentile up to 95th percentile. Modules 2A until 4-5 are used for each increment. In 

module 4-5 all soil samples left (after outlier and non-bare soil removal in module 2B) are used 

to obtain the final estimation of the target variable in the area. To measure the goodness of fit 

of the results for each correlation percentile threshold, three performance indicators have been 

applied: coefficient of determination; root mean square error and mean absolute estimation 

error (see paragraph 3.5.3). The results of the analysis for the target variables are shown in 

Table 4.8. For the clay content estimation, the 15th percentile correlation threshold clearly 

shows the best fit of all analyzed percentiles. For the organic matter content, the 75th percentile 

correlation threshold shows the best fit of all analyzed percentiles. These results are also 

shown in Figure 4.1 and Figure 4.2 where the predicted values are plotted with the measured 

values of the soil samples. 

Correlation 
percentile 

Number of 
observations 

R2 RMSE [%] MAE [%] 

Target variable Clay OM Clay OM Clay OM Clay OM 
0th 143 143 0.90 0.61 2.7 0.32 2.3 0.24 
5th 144 143 0.90 0.62 2.7 0.32 2.3 0.24 
10th  144 153 0.93 0.74 2.3 0.27 2.0 0.20 
15th  146 153 0.97 0.74 2.1 0.27 1.9 0.20 
20th  146 155 0.89 0.72 2.7 0.28 2.3 0.22 
25th  146 155 0.89 0.72 2.7 0.28 2.3 0.21 
30th  146 155 0.88 0.72 2.9 0.28 2.5 0.20 
35th  148 156 0.85 0.73 4.8 0.29 4.4 0.22 
40th  148 156 0.91 0.76 14.0 0.28 14.0 0.20 
45th  163 156 0.94 0.73 6.2 0.29 6.0 0.22 
50th  163 156 0.94 0.73 6.2 0.29 6.0 0.21 
55th  163 156 0.95 0.81 6.5 0.25 6.4 0.19 
60th  163 157 0.93 0.82 9.1 0.24 9.0 0.19 
65th  163 158 0.63 0.80 17.0 0.25 17.0 0.18 
70th  163 158 0.64 0.82 17.0 0.24 17.0 0.18 
75th  166 160 0.89 0.83 2.3 0.24 2.9 0.17 
80th  169 161 0.66 0.80 17.0 0.26 16.0 0.19 
85th  169 161 0.75 0.79 16.0 0.26 16.0 0.20 
90th  169 166 0.66 0.76 17.0 0.28 17.0 0.21 
95th  169 171 0.70 0.74 17.0 0.82 16.0 0.78 

Table 4.8 Performance of target variable estimation for different correlation percentile thresholds SoilGrids30m 
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Figure 4.1 Predicted clay content regression kriging results against measured clay content soil samples for 
percentile 15, black line is a 1:1 ratio line and red line is the R2 line 

 

Figure 4.2 Predicted organic matter content regression kriging results against measured organic matter content 
soil samples for percentile 75, black line is a 1:1 ratio line and red line is the R2 line 
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An important note to these results is the precision of the soil sample data, which are integers. 

Especially the organic matter content results clearly show the low quality of the soil sample 

data. In example, the root mean square error values are lower than the precision of the soil 

sample data. The available soil sample data are more indicative numbers than exact numbers. 

In addition, the variability of organic matter content in the selected soil sample set is too low. 

Therefore, the results of organic matter content are not significant enough to draw firm 

conclusions. It would be more convenient to use a simpler spatial estimation technique such 

as ordinary-kriging. 

Results clay content  

The results of clay content will be analyzed in three ways: based on the contribution of the 

significant explanatory variables; spatial visualization; 100-fold cross-validation results; 

comparison with SoilGrids250m and SoilGrids1000m. First, the contribution of significant 

explanatory variables. As mentioned above, the 15th percentile correlation threshold provides 

the best set of explanatory variables for the spatial estimation of clay content in the study area. 

In total 47 explanatory variables are used for the regression-kriging analysis. In module 3, the 

threshold of 99% variance what should be explained by the principal components has been 

applied. Nine principal components are needed to meet this threshold, see Figure 4.3. Principal 

component 1 explains the most variance in the model in which 14 explanatory variables have 

a significant contribution to this principal component, see Figure 4.4. The red dashed line 

corresponds to a uniform distributed contribution of all explanatory variables. 

 

 

Figure 4.3 Percentage of explained variance for first nine principal components, together > 99% clay content 
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Figure 4.4 Contributions of significant explanatory variables to principal component 1 clay content percentile 15 

The results of the contribution of significant explanatory variables for the other eight principal 

components can be found in Appendix L. Table 4.9 shows an overview of the three highest 

contributors per principal component and Figure 4.5 shows the total contribution of each 

significant explanatory variable according to all nine selected principal components.  

 Total 
contribution 

Highest 
contributor 

2nd highest 
contributor 

3rd highest 
contributor 

 [%] Name [%] Name [%] Name [%] 
PC1 58.1 Albedo wet 9,0 Band 5 wet 8,2 Band 3 wet 8,0 
PC2 12.6 Elevation 14,0 Nitrogen wet 13,1 Band 2 dry 12,9 
PC3 9.7 Nitrogen dry 14,5 Elevation 12,3 Band 5 dry 9,7 
PC4 5.5 Slope 72,4 Elevation 15,6 Band 7 dry 3,4 
PC5 4.8 Band 7 dry 18,2 Slope 17,3 Band 6 dry 14,5 
PC6 4.3 Elevation 36,8 Nitrogen wet 16,1 Band 7 dry 13,7 
PC7 1.7 Band 7 wet 27,1 Band 6 wet 13,0 NDMI difference 10,5 
PC8 1.5 Nitrogen dry 26,8 Nitrogen wet 18,4 Band 2 dry 13,9 
PC9 0.8 Band 2 dry 36,2 Band 4 dry 16,4 SI dry 9,3 

Table 4.9 Three highest contributors per principal component clay content percentile 15 
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According to Figure 4.5, the relief parameters elevation and slope are the most important 

explanatory variables for the spatial estimation of clay content in the study area. As mentioned 

in paragraph 3.5.2, numerous studies already have shown a relationship between relief and 

soil properties (Pachepsky et al., 2001; Sobieraj et al., 2002; Ceddia et al., 2009). In example, 

the elevation and the slope of a landscape controls the distribution of water and sediment 

throughout a region. However, the slope of the area is negligible (see Figure 4.7). The elevation 

in the study area shows a clear gradient from East to West of about 3 meters (see Figure 4.8) 

which could be related to the clay content in the study area. 

 

Figure 4.5 Total contribution of significant explanatory variables for principal components 1 to 9 clay content 
percentile 15 

Figure 4.6 shows the correlation at the soil sample locations between the clay content and the 

selected explanatory variables. According to Figure 4.6, the correlation between clay content 

and the elevation/slope is relatively low. As mentioned in paragraph 3.5.3, one of the 

drawbacks of principal components is the decoupling of the relation between explanatory 

variables and target variable. The relative low correlation between elevation/slope and clay 

content and the high contribution of elevation/slope to the spatial estimation of clay content 

contradicts each other.  

 

Figure 4.6 Correlation plot between clay content and the selected explanatory variables, dark red is a strong 
negative correlation and dark blue is a strong positive correlation 
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Figure 4.7 Slope map study area restricted to estimated clay content values 

 

Figure 4.8 Elevation map study area restricted to estimated clay content values 
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Another interesting result is the absence of differenced explanatory variables (moist vs. dry 

date) as contributor to the spatial estimation of clay content in the study area. As stated in 

paragraph 3.5.2, the differenced explanatory variables could be a logical indicator to see 

differences in reflectance between clayey soils and sandy soils due to a difference in water 

permeability. The lack of influence of the differenced explanatory variables has probably to do 

with a too low contrast between the two dates used. At satellite overpass time, the top layer of 

the soil could already have been dried out as the satellite only measure reflectance of the top 

soil. Even though, the moist date clearly shows a higher contribution to the spatial estimation 

of clay content in the study area than the dry date. 

The second analysis of the clay content estimates will be done based on visualization. The 

visualization has been done with module 4-5 where the regression-kriging model used all soil 

samples located at bare soils and without outliers. The predicted clay content in the study area 

is shown in Figure 4.9 and is based on 146 soil samples. The statistical summary of the 

estimated clay content throughout the study area is shown in Table 4.10.  

Mean Standard deviation Minimum Maximum 

16.18 4.12 2.11 36.32 
Table 4.10 Statistical summary of estimated clay content values in the study area in percentages 

 

Figure 4.9 Predicted clay content in the study area along with the used soil samples 

The regression-kriging model uses a semivariogram to describe the degree of spatial 

dependence of the target variable residuals. The results of the semivariogram can be used as 

indicator to determine if the target variable has a high, moderate or low spatial correlation in 

the study area. According to Cambardella et al. (1994), a low nugget to sill ratio indicates a 

high spatial correlation and vice versa. The semivariogram of the clay content residuals is fitted 

with an exponential model with a nugget of 3.1%2, a sill of 14.1%2 and a range of 1353 meters. 

The nugget to sill ratio is quite low (22%) which indicates a high spatial correlation of clay 

content in the area. Therefore, a large part of the variance of the clay content in the area can 

be assigned to a spatial dependency.  



 

45 
 

Due to the presence of a nugget, kriging as a spatial interpolation technique is not an exact 

estimator anymore (Clarck, 2010). If the kriging model would be fixed to have a nugget of zero 

the predicted clay content map would show discontinuities at the soil sample locations. The 

discontinuities would visually give an unreliable feeling about the results. Clarck (2010) quoted: 

“The less we trust our data the more confident we get in the results.” This quote clearly plays 

a role in the presence of a nugget effect or not. The results with a nugget effect visually give 

better results and therefore more confidence in the outcome of the model with as counterpart 

the loss of kriging as an exact spatial interpolation technique. 

The third analysis is based on the 100-fold cross-validation. The validation results are shown 

in Figure 4.10 until Figure 4.12. For validation, 70% of the data (102 soil samples) has been 

used to train the model and 30% of the data (44 soil samples) has been used to validate the 

obtained results. The results shown are based on 100 runs of the validation module. In each 

run, the model selects randomly 44 validation soil samples. The coefficient of determination 

for 100 runs has a mean value of 0.37, which means that the explanatory variables on average 

only account for 37% of the variance in the model. In Table 4.11, the amount of variance 

explained by the explanatory variables is shown for all three SoilGrids models. The amount of 

variance explained by the explanatory variables of the SoilGrids30m model improves 

compared to the SoilGrids1000m model. However, compared to the SoilGrids250m the 

influence of the explanatory variables is significantly lower. 

Target variable SoilGrids30m SoilGrids250m SoilGrids1000m 

Clay content 37.0% 72.6% 24.4% 
Table 4.11 Amount of variance explained by the explanatory variables for clay content 

The mean absolute estimation error for 100 runs has a mean value of 3.58%, which means 

that the estimated results on average are within a range of ± 3.58%. The root mean square 

error for 100 runs has a mean value of 4.56%, which means that the estimated results on 

average are within a range of ± 4.56%. 
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Figure 4.10 Coefficient of determination of validation set, 100 runs clay content 

 

Figure 4.11 Mean absolute estimation error of validation set, 100 runs clay content 
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Figure 4.12 Root mean square error of validation set, 100 runs clay content 

The fourth analysis is the comparison between SoilGrids30m, SoilGrids250m and 

SoilGrids1000m clay content estimates. In Figure 4.13 and Figure 4.14, the spatial prediction 

of clay content of respectively SoilGrids250m and SoilGrids1000m model are shown. 

 

Figure 4.13 SoilGrids250m predicted clay content in the study area along with the used soil samples for 
SoilGrids30m 



 

48 
 

 

Figure 4.14 SoilGrids1000m predicted clay content in the study area along with the used soil samples for 
SoilGrids30m 

In Table 4.12 and in Figure 4.15 and Figure 4.16, the performance of SoilGrids250m and 

SoilGrids1000m are shown. The performance of SoilGrids30m, in table 1.11, are the mean 

values of the 100-fold cross-validation. According to the performance values, the SoilGrids30m 

model slightly improves the spatial estimation of clay content in the study area. Interestingly, 

the coarser SoilGrids1000m model is a better representation of the clay content in the study 

area than the finer SoilGrids250m model.  

Model R2 RMSE [%] MAE [%] 

SoilGrids30m 0.37 4.6 3.6 
SoilGrids250m 0.14 4.8 3.8 
SoilGrids1000m 0.18 4.7 3.8 

Table 4.12 Performance of all three SoilGrids models clay content 
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Figure 4.15 SoilGrids250m performance figure clay content 

 
Figure 4.16 SoilGrids1000m performance figure clay content 

Results organic matter content  

The results of organic matter content will be analyzed in three ways: based on the contribution 

of the significant explanatory variables; spatial visualization; 100-fold cross-validation results; 

comparison with SoilGrids250m and SoilGrids1000m. First, the contribution of significant 

explanatory variables. As mentioned above, the 75th percentile provides the best set of 

explanatory variables for the spatial estimation of organic matter content in the study area. In 

total 14 explanatory variables are used for the regression-kriging analysis. In module 3, the 

threshold of 99% variance explained by the principal components has been applied. Six 

principal components are needed to meet this threshold, see Figure 4.17. Principal component 

1 explains the most variance in the model in which four explanatory variables have a significant 

contribution to this principal component, see Figure 4.18. The red dashed line corresponds to 

a uniform distributed contribution of all explanatory variables. 

 

Figure 4.17 Percentage of explained variance for first six principal components, together > 99% organic matter 
content 
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Figure 4.18 Contributions of significant explanatory variables to principal component 1 organic matter content 
percentile 75 

The contribution of significant explanatory variables figures to the other five principal 

components can be found in Appendix L. Table 4.13 shows an overview of the three highest 

contributors per principal component and Figure 4.19 shows the total contribution of each 

explanatory variable according to all six selected principal components.  

 Total 
contribution 

Highest 
contributor 

2nd highest 
contributor 

3rd highest 
contributor 

 [%] Name [%] Name [%] Name [%] 

PC1 72.5 Band 6 dry 26.3 Band 7 dry 25.7 Band 4 dry 24.3 
PC2 16.1 Band 2 dry 34.4 Band 6 dry 22.5 Band 7 dry 18.3 
PC3 4.8 Band 2 dry 36.3 Band 4 dry 27.5 NDMI difference 18.6 
PC4 2.7 RI wet 28.6 NDMI difference 27.1 RI difference 26.0 
PC5 2.4 Band 6 dry 24.7 RI wet 22.4 Band 7 dry 14.6 
PC6 1.0 Band 7 dry 35.8 NDMI difference 35.2 Band 6 dry 12.4 

Table 4.13 Three highest contributors per principal component for organic matter content percentile 75 

According to Figure 4.19, the most important explanatory variables are both short-wave 

infrared bands, the blue band and the red band from Landsat 8. Many organic components 

can be assigned to absorption bands in the short-wave infrared region of the electromagnetic 

spectrum (Summers et al., 2011; Rossel & Behrens, 2010; Ertlen et al., 2010). This would be 

an explanation of the high contribution of band 6 and band 7 (Landsat 8 SWIR bands). In 

addition, the blue and red band play a significant role in the spatial estimation of organic matter 

content. According to He et al. (2009), darker soils can usually be related to higher organic 

matter content. This would mean a negative correlation between organic matter content and 

the visible bands of the electromagnetic spectrum. According to the data obtained in module 

2A this is a valid statement. The high contribution of the blue and red band show that the color 

of the soil is an important component in estimating the organic matter content in the study area. 
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Figure 4.19 Total contribution of significant explanatory variables for principal components 1 to 6 organic matter 
content percentile 75 

The second analysis of the organic matter content estimates will be done based on 

visualization. The visualization has been done with module 4-5 where the regression-kriging 

model used all soil samples located at bare soils and without outliers. The predicted organic 

matter content in the study area is shown in Figure 4.20 and is based on 160 soil samples. 

The statistical summary of the estimated organic matter content throughout the study area is 

shown in Table 4.14. 

Mean Standard deviation Minimum Maximum 

2.101 0.274 1.185 3.520 
Table 4.14 Statistical summary of estimated organic matter content values in the study area in percentages 
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Figure 4.20 Predicted organic matter content in the study area along with the used soil samples 

The regression-kriging model uses a semivariogram to describe the degree of spatial 

dependence of the target variable residuals. The results of the semivariogram can be used as 

indicator to determine if the target variable has a high, moderate or low spatial correlation in 

the study area. According to Cambardella et al. (1994), a low nugget to sill ratio indicates a 

high spatial correlation and vice versa. The semivariogram of the residuals was fitted with an 

exponential model with a nugget of 0.091%2, a sill of 0.133%2 and a range of 1779 meters. 

The semivariogram shows a quite high nugget to sill ratio (68.4%) which indicates a moderate 

to low spatial correlation of organic matter content in the study area (Cambardella et al., 1994). 

Therefore, only a small part of the variance of the organic matter content in the area can be 

assigned to a spatial dependency. This can be well explained by the low variability in organic 

matter content in the study area. The soil samples used to train the model are in the range of 

1%-4% of which the majority of soil samples have an organic matter content of 2%. Due to the 

low variability in the available soil samples, the model cannot find a clear spatial pattern. Also 

for the organic matter content, the nugget effect will introduce errors at the soil sample 

locations as explained with the clay content results. 

The third analysis is based on the 100-fold cross-validation. The validation results are shown 

in Figure 4.21 until Figure 4.23. For validation, 70% of the data (112 soil samples) has been 

used to train the model and 30% of the data (48 soil samples) has been used to validate the 

obtained results. The results shown are based on 100 runs of the validation module. In each 

run, the model selects randomly 48 validation soil samples. The coefficient of determination 

for 100 runs has a mean value of 0.133, which means that the explanatory variables on 

average only account for 13.3% of the variance in the model. In Table 4.15, the amount of 

variance explained by the explanatory variables is shown for all three SoilGrids models. For 

the SoilGrids30m model, the percentage is related to organic matter content. For the other two 

models, the percentages are related to soil organic carbon. The amount of variance explained 

by the explanatory variables of the SoilGrids30m model did not improve compared to both 

models. 
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Target variable SoilGrids30m SoilGrids250m SoilGrids1000m 

Organic matter/ 

organic carbon 

content 

13.3% 68.8 % 22.9% 

Table 4.15 Amount of variance explained by the explanatory variables for organic matter/organic carbon content 

The mean absolute estimation error for 100 runs has a mean value of 0.36%, which means 

that the estimated results on average are within a range of ± 0.36%. The root mean square 

error for 100 runs has a mean value of 0.50%, which means that the estimated results on 

average are within a range of ± 0.50%. 

 

Figure 4.21 Coefficient of determination of validation set, 100 runs organic matter content 
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Figure 4.22 Mean absolute estimation error of validation set, 100 runs organic matter content 

 

Figure 4.23 Root mean square error of validation set, 100 runs organic matter content 

The fourth analysis is the comparison between SoilGrids30m, SoilGrids250m and 

SoilGrids1000m clay content estimates. The SoilGrids250m and SoilGrids1000m models do 
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not estimate organic matter content but organic carbon content. To obtain organic matter 

content from organic carbon content, a multiplication factor of two has been applied to the 

organic carbon content (Pribyl, 2010). In Figure 4.24 and Figure 4.25, the spatial prediction of 

organic matter content of respectively SoilGrids250m and SoilGrids1000m model are shown. 

 

Figure 4.24 SoilGrids250m predicted organic matter content in the study area along with the used soil samples for 
SoilGrids30m 

 

Figure 4.25 SoilGrids1000m predicted organic matter content in the study area along with the used soil samples 
for SoilGrids30m 
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In Table 4.16 and in Figure 4.26 and Figure 4.27, the performance of SoilGrids250m and 

SoilGrids1000m are shown. The performance of SoilGrids30m, in table 1.11, are the mean 

values of the 100-fold cross-validation. According to the performance values, the 

SoilGrids250m and SoilGrids1000m models give a bad spatial estimation of organic matter 

content in the study area. Interestingly, the coarser SoilGrids1000m model is a better 

representation of the organic matter content in the study area than the finer SoilGrids250m 

model. 

Model R2 RMSE [%] MAE [%] 

SoilGrids30m 0.13 0.50 0.36 
SoilGrids250m 0.01 24.31 23.48 
SoilGrids1000m 0.01 8.42 8.09 

Table 4.16 Performance of all three SoilGrids models 

 
Figure 4.26 SoilGrids250m performance figure organic matter 
content 

 
Figure 4.27 SoilGrids1000m performance figure organic matter 
content 

 

 

  



 

57 
 

4.1.2. Spatial estimation of soil water holding capacity 

In this subparagraph, the spatial estimation of soil water holding capacity will be analyzed with 

help of some theoretical figures. The rate of soil water holding capacity is mainly determined 

by soil texture and organic matter content. In this study, the soil water holding capacity will be 

estimated only based on clay content and organic matter content obtained from the 

SoilGrids30m model. With help of pedotransfer functions the clay content and organic matter 

content can be converted to soil hydraulic properties from which the soil water holding capacity 

can be determined, see paragraph 3.5.4 for more details. In Figure 4.28, the estimated soil 

water holding capacity content is shown for the study area. In Table 4.17 the statistical 

summary of the soil water holding capacity is shown. 

 

Figure 4.28 Predicted soil water holding capacity content in the study area 

Mean Standard deviation Minimum Maximum 

128.6 9.7 98.4 149.6 
Table 4.17 Statistical summary of estimated soil water holding capacity in the study area in mm/m 

The spatial pattern of the soil water holding capacity estimates seems to be negatively 

correlated to the spatial pattern of clay content estimates (Figure 4.9, paragraph 4.1.1). This 

implies that high clay content estimates cause a low soil water holding capacity and the other 

way around. The high correlation between soil water holding capacity and clay content can 

also be explained by the low variation in organic matter content in the study area. Soil water 

holding capacity is the difference between soil water content at field capacity and at permanent 

wilting point. Figure 4.30 shows a generalized relationship between soil water holding capacity 

and soil textures. Based on Figure 4.29, a simplified soil texture map could be obtained. Low 

estimates of soil water holding capacity in the study area could be related to sandy soils and 

high estimates of soil water holding capacity in the study area could be related to loamy/clayey 

soils. In this study high clay content values are in the range of 25-36%, see Figure 4.9 in 

paragraph 4.1.1. According to the texture triangle in Figure 4.29, the range of high clay content 
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values could correspond to soil texture classes sandy clay loam, clay loam or silty clay loam. 

These texture classes can be used to find the theoretical values of the soil water holding 

capacity, which are respectively 140 mm/m, 160 mm/m and 180 mm/m (see Figure 4.30). High 

clay content values coincide with low soil water holding capacity estimates due to the negative 

spatial correlation between clay content and soil water holding capacity estimates. Low soil 

water holding capacity estimates are in the range of 100-110 mm/m, see Figure 4.28. The 

theory clearly does not correspond with the estimates, as the theory indicates significant larger 

soil water holding capacity values than estimated.  

 
Figure 4.29 Soil texture triangle, in red box the soil textures 
for high clay content in study area (Plant and Soil Sciences 
eLibrary, n.d.) 

 
Figure 4.30 Generalized relationship between soil water 
holding capacity and soil texture (O'geen, 2012) 

An extra check can be made to test if the soil water holding capacity estimates are reliable or 

not. To estimate the soil water holding capacity pedotransfer functions are used of which one 

is to obtain the bulk density based on clay content and organic matter content. Figure 4.32 

shows the predicted bulk density of the study area obtained with help of a pedotransfer 

function. The bulk density is positively correlated with soil water holding capacity. Low values 

of bulk density therefore correspond to low values of soil water holding capacity. Low range of 

bulk density in the study area is between 1.3-1.4 g/cm3 (1300-1400 kg/m3). According to Table 

4.18, this range of bulk density could correspond to silty loam, silt, clay loam, silty clay loam or 

clay. Again, these texture classes can be used to find the theoretical values of the soil water 

holding capacity, which are respectively 190 mm/m, 190 mm/m, 160 mm/m, 180 mm/m and 

120 mm/m (see Figure 4.31). Low soil water holding capacity estimates are in the range of 

100-110 mm/m, see Figure 4.28. Again, the theory does not correspond with the estimates, as 

the theory indicates larger soil water holding capacity values than estimated. According to the 

bulk density, clay content could be a possibility but related to the estimated clay content 

percentages the area does not contain clay soils. 
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Figure 4.31 Soil texture triangle, in red box the soil textures 
for low bulk density in study area (Plant and Soil Sciences 
eLibrary, n.d.) 

 
Table 4.18 Bulk density of different soil types (StructX, n.d.) 

 

 

Figure 4.32 Predicted bulk density in the study area 
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4.2. Spatial evaluation of soil water holding capacity with soil moisture 
estimates 

In this paragraph, the soil water holding capacity will be evaluated against the soil moisture 

estimates from SEBAL. For both sugar beet and winter wheat, the first step is to determine 

which dates are useful for analysis. The second step is to evaluate the results with help of a 

boxplot. The boxplot is used to find consistency between soil water holding capacity and soil 

moisture content. The third step is to evaluate the results with help of a visualization. The 

visualization is used to see if there are interesting spatial patterns visible between soil water 

holding capacity and soil moisture content.  

The hypothesis in this study is that during long periods of drought the soil moisture content will 

reach its minimum; the patterns of minima could be related to the soil water holding capacity. 

As explained in paragraph 3.1, 2018 will be used as reference year because of the long period 

of drought in May until July. Five dates, that meet the requirements for useful images, are used 

for the analysis: 20 March, 21 April, 7 May, 3 July and 26 July. The precipitation rates prior to 

these dates are shown in Table 4.19. According to the precipitation rates, 3 July and 26 July 

clearly had to deal with a long period of drought.   

Date Week prior to 
date [mm] 

2 weeks prior 
to date[mm] 

4 weeks prior 
to date [mm] 

6 weeks prior 
to date [mm] 

20-03-2018 5.3 29.8 32.4 40.8 
21-04-2018 9.9 9.9 57.7 73.5 
07-05-2018 4.1 28.9 39.1 86.8 
03-07-2018 0.0 2.9 13.7 59.1 
26-07-2018 0.0 0.0 0.6 8.5 

Table 4.19 Precipitation rates prior to selected image dates 

Sugar beet  

The first step is to determine which dates can be used to test the hypothesis. In Table 4.20, 

the statistical summary of NDVI values for sugar beet per date is shown. Sugar beet is sowed 

in March/April; the first three dates are therefore mainly based on bare soil surface reflectance, 

hence low mean NDVI values, and can be related to topsoil properties. The mean NDVI values 

in the month July are clearly during full crop coverage and therefore can be related to root zone 

soil properties. For the analysis, 20 March will be used for the top soil properties and 26 July 

will be used for the root zone soil properties.  

Date Mean Standard 
deviation 

Minimum Maximum 

20-03-2018 0.15 0.07 0.00 0.69 
21-04-2018 0.14 0.03 0.08 0.62 
07-05-2018 0.14 0.04 0.08 0.56 
03-07-2018 0.80 0.04 0.45 0.86 
26-07-2018 0.70 0.04 0.40 0.78 

Table 4.20 Statistical summary NDVI values sugar beet 

The second step is to analyze the results based on a boxplot. In Figure 4.33, a boxplot is 

shown of the relation between soil water holding capacity and soil moisture content on 20 

March for sugar beet fields. The width of a box is a relative measure for number of pixels. 

According to Table 4.19, in the week prior to 20 March there was a cumulative amount of 5.3 

mm precipitation. This precipitation rate actually fell 4 days prior to 20 March. It can therefore 

be assumed that the topsoil already dried out after the rainfall at satellite overpass time. The 

result clearly shows a relation between soil water holding capacity and soil moisture content 
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for the topsoil. An increasing soil moisture content coincides with an increasing soil water 

holding capacity. 

 

Figure 4.33 Boxplot soil moisture vs. soil water holding capacity, 20-03-2018 sugar beet   

According to the hypothesis, the month July is the best month to find a relation between soil 

moisture and soil water holding capacity. In July, sugar beet will be in a transition phase from 

vegetative to ripening stage (see paragraph 3.2). The mean NDVI values show a full crop 

coverage of the sugar beet fields and therefore the soil moisture content could be related to 

root zone soil properties. In Figure 4.34, a boxplot is shown of the relation between soil water 

holding capacity and soil moisture content on 26 July for sugar beet fields. The width of a box 

is a relative measure for number of pixels. According to Table 4.19, 4 weeks prior to 26 July 

there was a cumulative precipitation amount of 0.6 mm and 6 weeks prior to 26 July a 

cumulative precipitation amount of 8.5 mm. These precipitation amounts clearly show a long 

period of drought in the area. The result however, shows a small correlation between soil water 

holding capacity and soil moisture content for the root zone. An increasing soil moisture content 

coincides with a small increase in soil water holding capacity. The results of all other dates for 

sugar beet can be found in Appendix M. 
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Figure 4.34 Boxplot soil moisture vs. soil water holding capacity, 26-07-2018 sugar beet 

The third step is to analyse the results based on a visualization. In Figure 4.35 and Figure 4.36, 

respectively the soil water holding capacity and soil moisture content of 20 March are shown. 

Interestingly, the soil water holding capacity in the northern and to a lesser extent southwestern 

part of the study area show relative high values compared to the soil moisture content. In all 

other regions of the study area, the relation between soil water holding capacity and soil 

moisture content is clearly visible. 
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Figure 4.35 Soil water holding capacity map for sugar beet fields 

 

Figure 4.36 Soil moisture content sugar beet fields 20-03-2018 
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In Figure 4.37 and Figure 4.38, respectively the soil water holding capacity and soil moisture 

content of 26 July are shown. The spatial visualization does not show any clear differences in 

spatial patterns between soil moisture content and soil water holding capacity.  

 

Figure 4.37 Soil water holding capacity map for sugar beet fields 

 

Figure 4.38 Soil moisture content sugar beet fields 26-07-2018 
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Winter wheat  

The first step is to determine which dates can be used to test the hypothesis. In Table 4.21, 

the statistical summary of NDVI values for winter wheat per date is shown. Winter wheat has 

been sowed in October/December. Therefore, a sufficient crop coverage will be early in the 

season with as result a high mean NDVI starting from April. The harvesting period of winter 

wheat is at the end of July/August. On 26 July most of the winter wheat has probably already 

been harvested hence the low mean NDVI value. For winter wheat, there is not a clear bare 

soil image. On none of the dates the mean NDVI is lower than 0.2 which is the threshold set 

for bare soil. Therefore, the results are not directly related to the topsoil properties. As already 

mentioned, winter wheat probably already has been harvested on 26 July. The best day to test 

the hypothesis is therefore 3 July 

Date Mean Standard 
deviation 

Minimum Maximum 

20-03-2018 0.25 0.11 0.07 0.73 
21-04-2018 0.64 0.16 0.13 0.84 
07-05-2018 0.77 0.11 0.11 0.87 
03-07-2018 0.58 0.09 0.21 0.80 
26-07-2018 0.31 0.03 0.18 0.72 

Table 4.21 Statistical summary NDVI values winter wheat 

The second step is to analyze the results based on a boxplot. In Figure 4.39, a boxplot is 

shown of the relation between soil water holding capacity and soil moisture content on 3 July 

for winter wheat fields. The width of a box is a relative measure for number of pixels. According 

to Table 4.19, a cumulative precipitation rate of 2.9 mm has fell 2 weeks prior to 3 July, which 

indicate a long period of drought. The spread of the soil moisture content estimates show a 

wide range of soil moisture conditions that can be related to a deficit of available water content 

in the area. However, there does not seem to be a positive correlation between soil water 

holding capacity and soil moisture content as expected. The hypothesis therefore does not 

seem to hold for winter wheat fields during long periods of drought. The results of all other 

dates for winter wheat can be found in Appendix M. 
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Figure 4.39 Boxplot soil moisture vs. soil water holding capacity, 03-07-2018 winter wheat 

The third step is to analyse the results based on a visualization. In Figure 4.40 and Figure 4.41, 

respectively the soil water holding capacity and soil moisture content of 3 July are shown. 

Interestingly, the soil water holding capacity south and east from the middle of the study area 

show relative low values compared to the soil moisture content estimates. In all other regions 

of the study area, there are no clear differences between soil water holding capacity and soil 

moisture content. 
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Figure 4.40 Soil water holding capacity map for winter wheat fields 

 

Figure 4.41 Soil moisture content winter wheat fields 03-07-2018 
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4.3. Soil wetness indicator 
For the analysis of the soil wetness indicator, four different dates have been analyzed as 

mentioned in paragraph 3.6.1. The trapezoidal space for each date has been determined semi-

automatically by visually select the 2nd and 98th percentile values that are in line with the density 

plot. The soil wetness indicator is based on the temperature profile of crops. As explained, 

crops can be seen as local thermometers of the root-zone water availability. It is therefore 

important for the analysis to measure only vegetated areas and not bare soil surfaces. In this 

paragraph, the dates for analysis will be selected for each crop type based on the crop 

coverage (NDVI).  

Sugar beet  

The vegetation coverage of sugar beet for the four available dates is shown in Table 4.22. On 

3 July and 26 July, the vegetation coverage of sugar beet is sufficient for further analysis. It is 

interesting to see the decrease in NDVI from the 3 July to 26 July. According to paragraph 3.2, 

in July sugar beet will be in the end of the yield stage or beginning of the ripening stage. 

Therefore, there could be two explanations of the decrease in NDVI in the month July. One, at 

the end of July the ripening stage has started and leaves fail to recover with as result leaves 

turning into yellow/brownish colors (FAO, 2019). Two, there is a severe deficiency of water in 

the area due to the drought period in the months before. According to the FAO (2019), a 

deficiency of water causes the leaves to become dark green that coincides with an increase in 

the NDVI. Only severe deficiency of water would result in a decrease in NDVI due to the dying 

process of the leaves.  

Date Mean  Standard 
deviation 

Minimum Maximum 

21-04-2018 0.14 0.03 0.08 0.62 
07-05-2018 0.14 0.04 0.08 0.56 
03-07-2018 0.80 0.04 0.45 0.86 
26-07-2018 0.70 0.04 0.40 0.78 

Table 4.22 Statistical summary NDVI values sugar beet 

To determine root-zone soil properties, it is important to measure only crop temperatures. 

Therefore, it is important to have a dense crop coverage on the fields of interest. According to 

the NDVI, it could be concluded that the crop coverage is high for the month July and therefore 

the measured LST can be directly related to the root-zone water availability. In Table 4.23, the 

statistical summary of the instantaneous air temperature and RCT is shown for two dates in 

July picked based on the NDVI. The RCT values are relative crop temperatures with respect 

to instantaneous air temperature. The hypothesis of the soil wetness indicator is that the 

temperature of a crop will increase relatively to the air temperature if there is a deficiency of 

water in the root-zone of the crops. According to Table 4.23, the mean air temperature on 3 

July is 8 Kelvin lower compared to 26 July but the mean crop temperature is 4 Kelvin higher. 

This negative correlation would suggest that indeed on 26 July the sugar beet has started the 

ripening phase. On 3 July the mean relative crop temperature is significantly higher than the 

air temperature, which could indicate a deficiency of water in the area. Both dates will be 

evaluated against the SEBAL soil moisture estimates. The resulting trapezoidal space for 3 

July 2018 and 26 July 2018 are shown in Figure 4.42 and Figure 4.43. 

Date Instantaneous air 
temperature 

Mean  
(RCT)  

Standard 
deviation  
(RCT) 

Minimum 
(RCT) 

Maximum 
(RCT) 

03-07-2018 295.30 7.45 1.02 4.15 13.98 
26-07-2018 303.43 3.45 1.27 0.56 9.98 

Table 4.23 Statistical summary sugar beet temperatures in Kelvin, RCT=relative crop temperature 
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Figure 4.42 NDVI-RCT density plot of all pixels in study area along with sugar beet pixels on 03-07-2018 

 

 

Figure 4.43 NDVI-RCT density plot of all pixels in study area along with sugar beet pixels on 26-07-2018 

Winter wheat  

The vegetation coverage of winter wheat for the four available dates is shown in Table 4.24. 

On 21 April, 7 May and 3 July, the vegetation coverage of winter wheat is sufficient for further 
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analysis. The NDVI increases as the winter wheat is developing in time. Harvesting of winter 

wheat generally takes place at the end of July or in August. The decrease of the NDVI values 

suggests that the ripening phase took place in July.  

Date Mean  Stand. dev. Minimum Maximum 

21-04-2018 0.64 0.16 0.13 0.84 
07-05-2018 0.77 0.11 0.11 0.87 
03-07-2018 0.58 0.09 0.21 0.80 
26-07-2018 0.31 0.03 0.18 0.72 

Table 4.24 Statistical summary NDVI values winter wheat 

As mentioned before, it is important to have a dense crop coverage on the measured fields of 

interest. According to the NDVI it could be concluded that the field crop coverage is high 

starting end April onwards until begin July. Therefore, the measured LST can be directly related 

to the root zone water availability. In Table 4.25, the statistical summary of the instantaneous 

air temperature and RCT is shown for three dates picked based on the NDVI. According to 

Table 4.24 and Table 4.25, the crop temperature seems to correlate negatively with the NDVI. 

Decreasing NDVI values coincide with increasing crop temperatures and vice versa. Based on 

this it could be concluded that indeed the ripening phase has started in the month July. 

Therefore, 21 April, 6 May and 3 July will be evaluated against the SEBAL soil moisture 

estimates to find if there is consistency between the two models. The resulting trapezoidal 

space for the selected three dates are shown in Figure 4.44 until Figure 4.46. 

Date Instantaneous air 
temperature 

Mean  
(RCT) 

Stand. dev. 
(RCT) 

Minimum 
(RCT) 

Maximum 
(RCT) 

21-04-2018 291.70 6.63 2.32 2.98 14.77 
07-05-2018 295.36 4.02 1.89 1.09 12.99 
03-07-2018 295.30 9.20 1.53 3.35 16.34 

Table 4.25 Statistical summary winter wheat temperatures in Kelvin, RCT=relative crop temperature 

 

Figure 4.44 NDVI-RCT density plot of all pixels in study area along with winter wheat pixels on 21-04-2018 
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Figure 4.45 NDVI-RCT density plot of all pixels in study area along with winter wheat pixels on 07-05-2018 

 

Figure 4.46 NDVI-RCT density plot of all pixels in study area along with winter wheat pixels on 03-07-2018 
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4.4. Spatial evaluation of soil wetness indicator with soil moisture 
estimates 

In this paragraph, the soil wetness indicator will be evaluated with the soil moisture estimates 

from SEBAL. The hypothesis of the soil wetness indicator is that the crop temperature will 

increase relatively to the air temperature if there is a deficiency of water in the root-zone. Based 

on the RCT-NDVI density plot shown in paragraph 4.3, classes of wetness are determined. 

Low classes of wetness indicate sufficient amount of water availability in the area and vice 

versa. To find consistency between both methods the spatial patterns of wetness will be 

compared with help of a density plot and a spatial visualization for each crop type. First, the 

evaluation with a boxplot will be analyzed and second the spatial visualization will be analyzed.  

Sugar beet  

The first step is to evaluate the soil wetness indicator with soil moisture content with help of a 

density plot. In paragraph 4.3, two dates have been selected for the evaluation of sugar beet 

fields: 3 July and 26 July 2018. In Table 4.26 and Table 4.27, the statistical summaries of soil 

moisture content and the soil wetness indicator are shown for 3 July and 26 July. 

 Mean Standard 
deviation 

Minimum Maximum 

Soil moisture (SEBAL) [-] 0.313 0.025 0.151 0.396 
Classes soil wetness indicator 10.334 1.772 3.000 18.000 

Table 4.26 Statistical summary SWI-SM plot sugar beet fields 03-07-2018 

 Mean Standard 
deviation 

Minimum Maximum 

Soil moisture (SEBAL) [-] 0.291 0.025 0.160 0.353 
Classes soil wetness indicator 8.609 1.706 3.000 16.000 

Table 4.27 Statistical summary SWI-SM plot sugar beet fields 26-07-2018 

In Figure 4.47 and Figure 4.48, the density plots are shown between the soil wetness indicator 

and soil moisture content for 3 July and 26 July. For both dates, the results clearly show a 

negative correlation. According to both figures, low soil classes are related to high soil moisture 

content and vice versa that is in agreement with the hypothesis. According to the precipitation 

rates in Table 4.19 paragraph 4.2, the drought period prior to 26 July is much longer than for 

3 July. The statistical summary of soil moisture content also shows a decrease of available 

water in the study area for sugar beet fields. However, the statistical summary of classes of 

wetness indicate that there is more water available in the study area on 26 July compared to 

3 July. It can be concluded that the soil wetness indicator is a good indicator to find areas of 

wetness in sugar beet fields. However, the classes are determined relative to the at date pixel 

envelope and therefore the changes in soil moisture content due to a long period of drought 

are not comparable with the changes in classes of wetness.  
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Figure 4.47 Density plot of soil moisture content vs. soil wetness indicator for sugar beet fields on 03-07-2018 

 

Figure 4.48 Density plot of soil moisture content vs. soil wetness indicator for sugar beet fields on 26-07-2018 

The second step is to evaluate the results with help of a spatial visualization, see Figure 4.49 

until Figure 4.52. For a better visualization, the color palette of the soil wetness indicator has 

been reversed because of the negative correlation between soil wetness indicator and soil 

moisture content. On both dates, the spatial patterns of wetness correspond to each other. It 
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could therefore be concluded that the soil wetness indicator for sugar beet fields give good 

results. 

 

Figure 4.49 Soil wetness indicator map for sugar beet on 03-07-2018 

 

Figure 4.50 Soil moisture content map for sugar beet on 03-07-2018 
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Figure 4.51 Soil wetness indicator map for sugar beet on 26-07-2018 

 

Figure 4.52 Soil moisture content map for sugar beet on 26-07-2018 
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Winter wheat  

The first step is to evaluate the soil wetness indicator with soil moisture content with help of a 

density plot. In paragraph 4.3, three dates have been selected for the evaluation of winter 

wheat fields: 21 April, 7 May and 3 July 2018. In Table 4.28 until Table 4.30, the statistical 

summaries of soil moisture content and the soil wetness indicator are shown for 21 April, 7 

May and 3 July. 

 Mean Standard 
deviation 

Minimum Maximum 

Soil moisture (SEBAL) [-] 0.224 0.061 0.055 0.329 
Classes soil wetness indicator 11.239 2.875 4.000 20.000 

Table 4.28 Statistical summary SWI-SM plot winter wheat fields 21-04-2018 

 Mean Standard 
deviation 

Minimum Maximum 

Soil moisture (SEBAL) [-] 0.228 0.043 0.042 0.300 
Classes soil wetness indicator 10.037 2.359 3.000 20.000 

Table 4.29 Statistical summary SWI-SM plot winter wheat fields 07-05-2018 

 Mean Standard 
deviation 

Minimum Maximum 

Soil moisture (SEBAL) [-] 0.278 0.034 0.124 0.415 
Classes soil wetness indicator 7.609 3.112 1.000 17.000 

Table 4.30 Statistical summary SWI-SM plot winter wheat fields 03-07-2018 

In Figure 4.53 until Figure 4.55, the density plots are shown between the soil wetness indicator 

and soil moisture content for 21 April, 7 May and 3 July. For all three dates, the results clearly 

show a negative correlation. According to all three figures, low soil classes are related to high 

soil moisture content and vice versa, that is in agreement with the hypothesis. According to the 

precipitation rates in Table 4.19 paragraph 4.2, the drought period prior to 3 July is much longer 

than the drought periods prior to 7 May and 21 April. However, the statistical summary of soil 

moisture content shows an increase of available water in the study area for winter wheat fields.  
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Figure 4.53 Density plot of soil moisture content vs. soil wetness indicator for winter wheat fields on 21-04-2018 

 

Figure 4.54 Density plot of soil moisture content vs. soil wetness indicator for winter wheat fields on 07-05-2018 



 

78 
 

 

Figure 4.55 Density plot of soil moisture content vs. soil wetness indicator for winter wheat fields on 03-07-2018 

The second step is to evaluate the results with help of a spatial visualization, see Figure 4.56 

until Figure 4.61. For a better visualization, the color palette of the soil wetness indicator has 

been reversed because of the negative correlation between soil wetness indicator and soil 

moisture content. On all three dates, the spatial patterns of wetness correspond to each other. 

It could therefore be concluded that the soil wetness indicator for winter wheat fields give good 

results. 
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Figure 4.56 Soil wetness indicator map for winter wheat on 21-04-2018 

 

Figure 4.57 Soil moisture content map for winter wheat on 21-04-2018 
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Figure 4.58 Soil wetness indicator map for winter wheat on 07-05-2018 

 

Figure 4.59 Soil moisture content map for winter wheat on 07-05-2018 
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Figure 4.60 Soil wetness indicator map for winter wheat on 03-07-2018 

 

Figure 4.61 Soil moisture content map for winter wheat on 03-07-2018 
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5. Discussions and recommendations 

5.1. Spatial estimation of surface soil properties using remote sensing data 
Clay and organic matter content  

The results of the SoilGrids30m model outperformed the existing SoilGrids250m and 

SoilGrids1000m models. Especially the result for organic matter content are significantly better 

than the two coarser existing SoilGrids models. However, the improvement for the clay content 

model is small. Therefore, it is arguable whether it is worth it to apply a newly developed 

SoilGrids30m model instead of the existing models for clay content estimates in other regions. 

It would be interesting to test the model in different regions to see if the results consistently 

improve the clay content and organic matter content estimates compared to the two coarser 

SoilGrids models.  

The SoilGrids30m model is based on bare soil surface reflectance remote sensing data. 

According to Carlson et al. (1997), bare soils are indicated with an NDVI value in between 0.0 

and 0.2. According to Gandhi et al. (2015), bare soils are indicated with an NDVI value in 

between 0.0 and 0.1. In this study, the suggestion of Carlson et al. (1997) has been used but 

it is arguable if a lower NDVI would be better for the estimation of clay and organic matter 

content. With an NDVI value of 0.2, there could already be small parts of vegetation in a square 

pixel of 30 meters. To avoid the influence of vegetation completely it would be better to use a 

lower bare soil NDVI threshold of in example 0.1.  

The spatial estimation of clay and organic matter content is done with help of explanatory 

variables and soil samples. The used explanatory variables are chosen based on the 

SCORPAN properties but not all properties are applied in this study. For the clay content 

estimates, the elevation and slope played an important role based on the contribution to the 

selected principal components. However, the correlation between the elevation/slope and clay 

content is low. Allice (2016) stated that due to the use of principal component analysis, the 

relation between an explanatory variable and the target variable is decoupled. The decoupling 

is clearly shown with the high contribution of elevation and slope in the selected principal 

components and the low correlation between elevation/slope and clay content. For organic 

matter content estimates, band 6 and band 7 played an important role based on the 

contribution to the selected principal components. According to Summers et al., 2011; Rossel 

& Behrens, 2010; Ertlen et al., 2010, many organic components can be assigned to absorption 

bands in the short-wave infrared region of the electromagnetic spectrum (band 6 and band 7 

of Landsat 8) that could be an explanation of the high contribution of these bands. As 

mentioned above, the decoupling between the explanatory variables and the target variable 

due to the use of principal component analysis makes it difficult to find out what is affecting 

what. The found relations between the target variables and the explanatory variables from the 

principal component analysis are therefore somehow coincidental relations. Bottom-line, for 

every outcome there could be a possible explanation found. 

In this study, a selection of explanatory variables has been made based on the SCORPAN 

properties. There are dozens of explanatory variables that can be used as input for the 

SoilGrids30m model that makes the selection of explanatory variables used for this study 

somehow subjective. The model could be extended with several explanatory variables some 

examples are shown below.  

- Time series of climate conditions, vegetation indices and soil indices;  

- More detailed lithology and geomorphology maps; 

- Hyperspectral images to use the absorption bands related to clay and or organic matter; 
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- Ground water table depth. 

Instead of time series, the difference between a wet and a dry date has been used. The results 

of the differenced explanatory variables did not had as much influence as initially was 

expected. It is difficult to measure the reflectance of a wet soil because there should be a 

cloudless moment when the soil is still wet due to precipitation in the whole study area. To test 

the hypothesis of differenced explanatory variables it would be better to use reflectance data 

obtained from drones or airplanes that do not have to deal with cloudless circumstances and 

do not depend on specific overpass time.  

The analysis also depends on the available soil samples in the study area. Due to outlier 

removal and the restriction to use only bare soil pixels, the amount of soil samples available 

for analysis decreases significantly to approximately 150 soil samples (30% of total). 

Coincidently, the variability in organic matter content of the soil samples left is very low. 

According to McBratney et al. (2003), a perfect set of soil samples should, one have enough 

variability, two have a homogeneous spread throughout the study area and three be dense 

enough. Therefore, it could be argued if the set of soil samples available in this study was 

sufficient to do the analysis with. Due to the low variability in organic matter content, it would 

be recommended to use a simpler estimation technique such as ordinary kriging, which can 

use all soil samples available in the area.  

The model itself uses two thresholds to adjust the model as desired, the correlation threshold 

and the minimum variance explained threshold. The correlation threshold is to select a set of 

explanatory variables to use for further analysis based on their correlation to the target variable. 

For this study, a range from 0 to 95 percentile with an increment of 5 percentile has been 

analyzed. With an increment of 5 percentile, two or three explanatory variables will be left out 

of the analysis each time. The model could be analyzed more extensively by setting the 

percentile value in such a way that an increment removes only one explanatory variable each 

time. Furthermore, the minimum variance explained threshold is to select a set of principal 

components that accounts for the threshold amount of variance in the model. In this study, this 

threshold has been fixed to 99 percent. According to Kim et al. (2005), the obtained set of 

principal components can be decomposed into three parts: the first principal component 

represent an effect that influences all explanatory variables, followed by a set of principle 

components representing synchronized fluctuations affecting groups of explanatory variables, 

all remaining principal components represents randomness in for example the Landsat 8 

images. The question is how many principal components should be selected to have a 

minimum loss of information and a maximum reduction of data. Rea et al. (2016) suggested 

two new methods based on a heat map and change in eigenvector angle that could be applied 

to find the optimal number of principal components. The SoilGrids30m model could be further 

automated by applying a method proposed by Rea et al. (2016) that make the model less 

subjective. 

Soil water holding capacity  

To estimate soil water holding capacity, pedotransfer functions are used. Pedotransfer 

functions translate “easily” to obtain data into data that is not so easily to obtain. In this study, 

clay content and organic matter content are used as input for the pedotransfer functions to 

transform them into soil hydraulic parameters. Databases of known soil hydraulic parameters 

are used to calibrate the pedotransfer functions; the outcome therefore strongly depends on 

what database has been used. Each area will have its own characteristics in soil hydraulic 

parameters depending on what type of soils there are. Pedotransfer functions are therefore 

strong empirical functions. The soil samples available in the study area only contain clay 

content and organic matter content. However, the pedotransfer functions related to only clay 

content and organic matter content are scarce. For this study, only one set of pedotransfer 
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functions has been found to obtain soil hydraulic parameters. Three of five pedotransfer 

functions are calibrated based on a database of Dutch soils; the other two are calibrated based 

on a database of local German soils. The use of pedotransfer functions calibrated on 

databases from two different regions could already lead to wrong assumptions. Furthermore, 

the pedotransfer functions related to Dutch soils are specifically calibrated for clayey soils. 

According to the soil samples in the study area, the range of clay content is 2-36%. There are 

clearly areas that do not fall in the category of clayey soils. The use of pedotransfer functions 

calibrated with different databases and the restriction to use them for clayey soils makes the 

pedotransfer functions even more unreliable. The reliability of the pedotransfer functions could 

be improved in two different ways. One, a new set of pedotransfer functions can be developed 

and calibrated on a database related to the study area. Two, use pedotransfer functions based 

on more input parameters such as sand content or silt content. The latter point is only possible 

if there is more information available at the soil sample locations, which is not the case for the 

soil samples used in this study. A new survey should be executed to obtain the additional input 

parameters. 

The drought period during May until July should result in a significant water deficiency 

throughout the study area, assuming no irrigation was applied to the fields of interest. 

According to the soil moisture estimates from SEBAL, the crops had a sufficient amount of 

water available during the drought period. There are five possible explanations: the soil water 

holding capacity is extremely high in the study area, the crop rooting depth increases 

significantly in time, local precipitation, farmers did irrigate their fields or seepage played a 

significant role in the study area. According to FAO – sugar beet (n.d.), the evapotranspiration 

rate of sugar beet is 5 to 6 mm/day in normal conditions. The drought period took place from 

May until July, with a total precipitation rate of 71.7 mm in 87 days. Based on these numbers 

there should be at least 360 mm of water in the soil for crop growth, during the drought period 

(assuming the available water in the soil was in equilibrium state before May). In addition, the 

FAO – winter wheat (n.d.) and FAO – sugar beet (n.d.), also stated that for both crop types 

normally all water would be extracted from the first 1.2 meters of soil (rooting depth). Assuming 

a fixed root depth of 1.2 meters during the drought period, at least a soil water holding capacity 

of 300 mm/m is necessary to have a sufficient water supply for crop growth in the drought 

period. According to Rousseva et al. (2017), a soil water holding capacity of +300 mm/m is 

extremely high. Therefore, it is not to be expected that the soil water holding capacity in the 

area has a magnitude of in the range of +300 mm/m. It would also mean that the estimated 

soil water holding capacity in the study area would be off with more than a factor of two.     

Another possibility is the rooting depth that has been fixed to 1.2 meters in the previous 

calculation. Crops uses their roots to provide themselves with sufficient water. The root depth 

of a crop will increase as the growth season progresses. The increasing root depth provides 

the crops of water from deeper soil layers. However, the rooting depth mainly depends on the 

bulk density of a soil (Lipiec et al., 2003) in which soil compaction plays an important role 

(Lipiec et al., 2003; Håkansson et al., 2000). Roots will find their way into the ground with help 

of existing cracks, pores and wormholes (Lipiec et al., 2003). Due to compaction these rooting 

paths could be affected which makes it harder for roots to reach greater depths. Therefore, 

soils with a high bulk density could reduce the rooting depth of crops. This statement would 

suggest that there should be a negative correlation between the soil water holding capacity 

and the bulk density. The results of this study show a positive correlation that could indicate 

that there are no clear indications of compaction throughout the study area. Furthermore, deep 

roots often follow the same existing cracks, pores and wormholes and therefore the area to 

extract water from will decrease (Brown et al., 1987). The estimated mean soil water holding 

capacity in the study area is 130 mm/m. To reach the requirement of having 360 mm of water 

available for crop use, the root depth should be at least 2.75 meters. According to the FAO – 
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winter wheat (n.d.) and FAO – sugar beet (n.d.), these root depths are not common. In addition, 

the estimated soil water holding capacity shows significant lower magnitudes. This would 

indicate that the rooting depth also did not play a significant role in the available water content 

during the drought period.  

Three external factors are left that could explain the water availability according to the soil 

moisture estimates of SEBAL: local precipitation, irrigation and or seepage. None of the 

mentioned external factors has been accounted for in this study. In the study area, there is 

only one KNMI weather station located that has been used for precipitation analysis. Therefore, 

local precipitation cannot be ruled out. However, the months May until July were extremely dry 

and it can be assumed that in these months local precipitation has been minimal. The extreme 

drought conditions during these months brings up the next possible explanation. Farmers 

always try to create perfect crop development conditions. During long periods of drought, 

farmers could decide to irrigate their crops. Irrigation could artificially keep the water supply at 

the right level for crop growth. To minimalize the probability of irrigation throughout the season, 

sugar beet and winter wheat has been used for the analysis. These crop types have a low 

demand of water and generally do not need irrigation in the Dutch climate. The last explanation 

is the natural process seepage, which is present in the area. The study area is an artificial 

drained area and is mainly located below sea level. Groundwater in subsoil layers from higher 

located places will, under pressure, flow to lower located areas where it could reach the surface 

layer. This natural process could take place on larger scales but also on smaller scales. 

According to a paper by Bastiaanssen (2005), the Noordoostpolder area is having a seepage 

rate of approximately 340 millimetre per year. This is a significant positive seepage rate in the 

study area, which means that it should be taken into consideration. In this study, the 

assumption has been made that seepage does not play a role because of the extreme dry 

conditions in the months May until July. However, seepage and irrigation both could play an 

important role in the supply of water for crop growth in the study area and kept the soil moisture 

content in the area at a sufficient level for crop growth. Furthermore, the estimation of soil 

water holding capacity could be too low. With for example a soil water holding capacity of 200 

mm/m the rooting depth should be minimal 1.8 meters, which is reasonable for both crop types 

(FAO – winter wheat, n.d.; FAO – sugar beet, n.d.).  

As stated by van der Kwast (2009), hydrological parameters cannot directly be extracted from 

remote sensing data and therefore ground observations are a necessity to validate the results.  

The estimated soil water holding capacity in the study area could not be validated because 

there are no ground observations available. Therefore, it cannot be determined what the 

reliability of the soil water holding capacity estimates is. This can only be done when there are 

measurements of soil hydraulic parameters available in the study area. It would therefore be 

recommended to validate the model in an area with known soil hydraulic parameters. 
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5.2. Soil wetness indicator 
For both crop types, sugar beet and winter wheat, the soil wetness indicator is a good spatial 

indicator of relative wetness. It is a relative indicator because the classes of wetness only 

represents the wetness compared to the at date crop/weather conditions. Therefore, it is not 

possible to obtain soil moisture estimates from the soil wetness indicator. However, the soil 

wetness indicator gives a quick first indication of the wetness conditions in the area without 

any difficult computations. 

The goal of the soil wetness indicator is to find patterns of wetness based on the relation 

between NDVI and relative crop temperatures. The relative crop temperature is a measure of 

the root-zone soil properties that give an insight in the water availability at a greater depth than 

the topsoil. To have an unbiased representation of the water availability in the root zone it is 

important to measure only crop temperatures. However, the spatial resolution of 30 meters 

causes an aggregation of temperatures consisting of vegetation and bare soil. This problem 

has partly been solved by introducing a buffer space of 60 meters around each crop field. It is 

though not possible to avoid the temperature influences of uncovered soils like spray paths. It 

is one of the reasons why for this study sugar beet and winter wheat has been used because 

of their great soil coverage. It would be interesting to see what the results of the model would 

be with centimetre scale images from drones in example. At centimetre scale, almost all soil 

pixels can be eliminated and the relative crop temperature will be a better representative of the 

root zone soil water availability.  

If there is a sufficient water supply available, crops will not show signs of stress and the relative 

crop temperature will stay low. As consequence, there will be no significant differences 

noticeable in the study area. Three external factors could provide the crops of sufficient water 

supply that are not taken into account in this study: local precipitation, irrigation and or 

seepage. All three factors are already explained in the previous paragraph.  

The model itself is subjective while the user can use tuning parameters to obtain the “best” 

results. The visually inspection of boundary percentile values that are not in line of expectation 

is dependent on the interpretation of the user of the model. With this subjectivity, it is possible 

to obtain different results by different users. The model is therefore only a simple indicator of 

the soil wetness patterns in the study area. To improve the model and to take away the 

subjectivity of the model, the boundaries of the pixel envelope should be determined 

automatically.   

Other additional recommendations can be made about the crop type and the available images. 

In this study only sugar beet and winter wheat has been used for analysis because of the 

mentioned reasons. It could be interesting to see if there are significant differences between 

other crops such as potato, onion, maize, etc. Furthermore, the moment in time of the images 

are fixed because of the dependency of satellite overpass time and cloud cover. To have a 

better representation of the soil wetness indicator it could be interesting to have more images 

spread throughout the season in example with drone images.  
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6. Conclusions 
In this study, two newly developed methods are proposed to determine the spatial patterns of 

soil wetness in the study area. On the one hand, the SoilGrids30m model to estimate clay 

content and organic matter content that are used as input of pedotransfer functions to estimate 

soil water holding capacity. On the other hand, the soil wetness indicator to determine spatial 

patterns of wetness in the study area.  

The SoilGrids30m model improved the estimation of clay content and organic matter content 

in the study area compared to the existing coarser SoilGrids250m and SoilGrids1000m 

models. Especially, the organic matter content estimates significantly improves with help of the 

SoilGrids30m model. However, the influence of adding bare soil surface reflectance to the 

model was relatively low for both clay content (37%) and organic matter content (13%). The 

influence of bare soil surface reflectance only improved the clay content estimates compared 

to the SoilGrids1000m model. In all other cases, the target variable estimates did not improve 

by adding bare soil surface reflectance data compared to the SoilGrids250m and 

SoilGrids1000m models. It can therefore be concluded that the improvement of the 

SoilGrids30m model is due to the use of a larger set of observation data from the study area 

and not because of the input of explanatory variables.  

After a long period of drought, the soil moisture estimates of SEBAL showed a relative high 

and wide range of soil moisture content in the study area per crop type. Three factors could be 

appointed as the cause of the relative high and wide range of soil moisture content: seepage, 

irrigation and or a high and wide range of soil water holding capacity in the study area. 

According to the Stiboka soil map (https://www.pdok.nl/), a wide range of soils are available in 

the study area, from sandy soils to clayey soils. The wide range of soils corresponds to a wide 

range of soil moisture content from SEBAL. The soil water holding capacity estimates in the 

study area are in the range of 100 to 150 mm/m, which is a relatively low and small range. 

These estimates therefore do not correspond to the soil moisture content estimates from 

SEBAL and the Stiboka soil map.  An important step in obtaining soil water holding capacity is 

the use of pedotransfer functions. Only one set of pedotransfer functions could be found that 

is applicable for this study. This set was calibrated based on different soil hydrological 

databases and some of them are specifically calibrated for clayey soils only. It can therefore 

be concluded that the pedotransfer functions used in this study are not sufficient for reliable 

results. The high empirical level of the pedotransder functions makes them highly unreliable. 

Therefore, the use of pedotransfer functions in general would not be recommended. Only if the 

pedotransfer functions are calibrated based on soil properties from the study area itself it would 

be useful for further analysis. 

With the soil wetness indicator an easy and simple model has been introduced based on two 

parameters: normalized differenced vegetation index and the land surface temperature. The 

results of the soil wetness indicator showed a clear correlation with the soil moisture content 

estimates from SEBAL. The soil wetness indicator is therefore a simple and reliable tool to 

recognize spatial patterns of wetness. In example for precision agriculture, the soil wetness 

indicator could be used for irrigation management. The relative representation of the soil 

wetness indicator could determine the distribution of irrigation needs within a field.  

In theory, both developed models are promising but in practice there are always unforeseen 

factors that play an important role. Especially in the estimation of soil water holding capacity 

there is a lot of space for improvement. In example, the contribution of explanatory variables 

to the spatial estimation of clay content and organic matter content is too low. The relation 

between environmental properties and clay content and organic matter content is proven but 

https://www.pdok.nl/
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clearly difficult to obtain with the SoilGrids30m model. Furthermore, the use of pedotransfer 

functions are unreliable and therefore new approaches or pedotranfer functions specifically 

obtained from the study area are highly recommended to derive soil hydrological properties. 

Overall, it can be concluded that there is still a long way to go for precision agriculture and the 

development of data driven estimations of natural processes.  
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Appendix A. SoilGrids30m R-script 

module 1 
Module 1A: data collection 

## clean environment 

rm(list = ls()) #clean memory 

 

## Set libraries 

library(rgdal) 

library(raster) 

 

## Set working directory 

setwd("~/Thesis/Data") 

 

## Input parameters 

Projection = "EPSG32632" 

Resolution_input = "30" 

ImageDate_dry = "2017_01_05" 

ImageDate_wet = "2017_03_10" 

 

## Read-in covariates remove outliers and fill outliers with nearest 

neighbour function 

ImageDate_dry_date <- as.Date(ImageDate_dry, "%Y_%m_%d") 

DOY_dry = strftime(ImageDate_dry_date, format = "%j") 

DOY_dry = ifelse(substr(DOY_dry, 1,1) == 0, substr(DOY_dry, 2,3), DOY_dry) 

DOY_dry = ifelse(substr(DOY_dry, 1,1) == 0, substr(DOY_dry, 2,2), DOY_dry) 

Year_dry = strftime(ImageDate_dry_date, format = "%Y") 

ImageDate_wet_date <- as.Date(ImageDate_wet, "%Y_%m_%d") 

DOY_wet = strftime(ImageDate_wet_date, format = "%j") 

DOY_wet = ifelse(substr(DOY_wet, 1,1) == 0, substr(DOY_wet, 2,3), DOY_wet) 

DOY_wet = ifelse(substr(DOY_wet, 1,1) == 0, substr(DOY_wet, 2,2), DOY_wet) 

Year_wet = strftime(ImageDate_wet_date, format = "%Y") 

 

## Load data 

NDVI_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_ndvi_",Resolution_input,"m_",Year_dry,"_",DOY_dry,".tif")) 

NDVI_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_ndvi_",Resolution_input,"m_",Year_wet,"_",DOY_wet,".tif")) 

 

B2_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_spectral_reflectance_B2_",Resolution_input,"m_",Year_dry,"_",D

OY_dry,".tif")) 

Exp_var_stack <- B2_dry["band1"] 

names(Exp_var_stack)[1] <- "SPC_SEBAL_B2_dry" 

 

B2_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_spectral_reflectance_B2_",Resolution_input,"m_",Year_wet,"_",D

OY_wet,".tif")) 

Exp_var_stack$SPC_SEBAL_B2_wet <- B2_wet$band1 

 

B3_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_spectral_reflectance_B3_",Resolution_input,"m_",Year_dry,"_",D

OY_dry,".tif")) 
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Exp_var_stack$SPC_SEBAL_B3_dry <- B3_dry$band1 

 

B3_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_spectral_reflectance_B3_",Resolution_input,"m_",Year_wet,"_",D

OY_wet,".tif")) 

Exp_var_stack$SPC_SEBAL_B3_wet <- B3_wet$band1 

 

B4_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_spectral_reflectance_B4_",Resolution_input,"m_",Year_dry,"_",D

OY_dry,".tif")) 

Exp_var_stack$SPC_SEBAL_B4_dry <- B4_dry$band1 

 

B4_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_spectral_reflectance_B4_",Resolution_input,"m_",Year_wet,"_",D

OY_wet,".tif")) 

Exp_var_stack$SPC_SEBAL_B4_wet <- B4_wet$band1 

 

B5_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_spectral_reflectance_B5_",Resolution_input,"m_",Year_dry,"_",D

OY_dry,".tif")) 

Exp_var_stack$SPC_SEBAL_B5_dry <- B5_dry$band1 

 

B5_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_spectral_reflectance_B5_",Resolution_input,"m_",Year_wet,"_",D

OY_wet,".tif")) 

Exp_var_stack$SPC_SEBAL_B5_wet <- B5_wet$band1 

 

B6_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_spectral_reflectance_B6_",Resolution_input,"m_",Year_dry,"_",D

OY_dry,".tif")) 

Exp_var_stack$SPC_SEBAL_B6_dry <- B6_dry$band1 

 

B6_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_spectral_reflectance_B6_",Resolution_input,"m_",Year_wet,"_",D

OY_wet,".tif")) 

Exp_var_stack$SPC_SEBAL_B6_wet <- B6_wet$band1 

 

B7_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_spectral_reflectance_B7_",Resolution_input,"m_",Year_dry,"_",D

OY_dry,".tif")) 

Exp_var_stack$SPC_SEBAL_B7_dry <- B7_dry$band1 

 

B7_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_spectral_reflectance_B7_",Resolution_input,"m_",Year_wet,"_",D

OY_wet,".tif")) 

Exp_var_stack$SPC_SEBAL_B7_wet <- B7_wet$band1 

 

Elevation <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/proy_DEM_",Resolution_input,"m.tif")) 

Exp_var_stack$SPC_SEBAL_Elevation <- Elevation$band1 
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Aspect <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/aspect_",Resolution_input,"m.tif")) 

Exp_var_stack$SPC_SEBAL_Aspect <- Aspect$band1 

 

Slope <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/slope_",Resolution_input,"m.tif")) 

Exp_var_stack$SPC_SEBAL_Slope <- Slope$band1 

 

Surface_roughness_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_LS8_surface_roughness_",Resolution_input,"m_",Year_dry,"_",DOY

_dry,".tif")) 

Exp_var_stack$SPC_SEBAL_Surface_roughness_dry <- 

Surface_roughness_dry$band1 

 

Surface_roughness_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_LS8_surface_roughness_",Resolution_input,"m_",Year_wet,"_",DOY

_wet,".tif")) 

Exp_var_stack$SPC_SEBAL_Surface_roughness_wet <- 

Surface_roughness_wet$band1 

 

Emissivity_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_tir_emissivity_",Resolution_input,"m_",Year_dry,"_",DOY_dry,".

tif")) 

Exp_var_stack$SPC_SEBAL_Emissivity_dry <- Emissivity_dry$band1 

 

Emissivity_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_tir_emissivity_",Resolution_input,"m_",Year_wet,"_",DOY_wet,".

tif")) 

Exp_var_stack$SPC_SEBAL_Emissivity_wet <- Emissivity_wet$band1 

 

Albedo_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_surface_albedo_",Resolution_input,"m_",Year_dry,"_",DOY_dry,".

tif")) 

Exp_var_stack$SPC_SEBAL_Albedo_dry <- Albedo_dry$band1 

 

Albedo_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_surface_albedo_",Resolution_input,"m_",Year_wet,"_",DOY_wet,".

tif")) 

Exp_var_stack$SPC_SEBAL_Albedo_wet <- Albedo_wet$band1 

 

Nitrogen_dry <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_dry,"/Co

variates/LS8_nitrogen_",Resolution_input,"m_",Year_dry,"_",DOY_dry,".tif")) 

Exp_var_stack$SPC_SEBAL_Nitrogen_dry <- Nitrogen_dry$band1 

 

Nitrogen_wet <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/",ImageDate_wet,"/Co

variates/LS8_nitrogen_",Resolution_input,"m_",Year_wet,"_",DOY_wet,".tif")) 

Exp_var_stack$SPC_SEBAL_Nitrogen_wet <- Nitrogen_wet$band1 

 

Exp_var_stack$SPC_EVI_dry <- 2.5*(B5_dry$band1-

B4_dry$band1)/(B5_dry$band1+6*B4_dry$band1-7.5*B2_dry$band1+1) 
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Exp_var_stack$SPC_EVI_wet <- 2.5*(B5_wet$band1-

B4_wet$band1)/(B5_wet$band1+6*B4_wet$band1-7.5*B2_wet$band1+1) 

 

Exp_var_stack$SPC_MSAVI_dry <- B5_dry$band1 + 0.5 - 

0.5*sqrt((2*B4_dry$band1+1)^2 - 8*(B4_dry$band1-B3_dry$band1)) 

 

Exp_var_stack$SPC_MSAVI_wet <- B5_wet$band1 + 0.5 - 

0.5*sqrt((2*B4_wet$band1+1)^2 - 8*(B4_wet$band1-B3_wet$band1)) 

 

Exp_var_stack$SPC_NDMI_dry <- (B5_dry$band1-B6_dry$band1) / 

(B5_dry$band1+B6_dry$band1) 

 

Exp_var_stack$SPC_NDMI_wet <- (B5_wet$band1-B6_wet$band1) / 

(B5_wet$band1+B6_wet$band1) 

 

Exp_var_stack$SPC_BI_dry <- 

sqrt((B4_dry$band1^2+B3_dry$band1^2+B2_dry$band1^2) / 3) 

 

Exp_var_stack$SPC_BI_wet <- 

sqrt((B4_wet$band1^2+B3_wet$band1^2+B2_wet$band1^2) / 3) 

 

Exp_var_stack$SPC_CI_dry <- (B4_dry$band1-B3_dry$band1) / 

(B4_dry$band1+B3_dry$band1) 

 

Exp_var_stack$SPC_CI_wet <- (B4_wet$band1-B3_wet$band1) / 

(B4_wet$band1+B3_wet$band1) 

 

Exp_var_stack$SPC_HI_dry <- (2*B4_dry$band1-B3_dry$band1-B2_dry$band1) / 

(B3_dry$band1-B2_dry$band1) 

 

Exp_var_stack$SPC_HI_wet <- (2*B4_wet$band1-B3_wet$band1-B2_wet$band1) / 

(B3_wet$band1-B2_wet$band1) 

 

Exp_var_stack$SPC_RI_dry <- B4_dry$band1^2 / (B2_dry$band1*B3_dry$band1^3) 

 

Exp_var_stack$SPC_RI_wet <- B4_wet$band1^2 / (B2_wet$band1*B3_wet$band1^3) 

 

Exp_var_stack$SPC_SI_dry <- (B4_dry$band1-B2_dry$band1) / 

(B4_dry$band1+B2_dry$band1) 

 

Exp_var_stack$SPC_SI_wet <- (B4_wet$band1-B2_wet$band1) / 

(B4_wet$band1+B2_wet$band1) 

 

Exp_var_stack$SPC_diff_B2 <- B2_dry$band1 - B2_wet$band1 

 

Exp_var_stack$SPC_diff_B3 <- B3_dry$band1 - B3_wet$band1 

 

Exp_var_stack$SPC_diff_B4 <- B4_dry$band1 - B4_wet$band1 

 

Exp_var_stack$SPC_diff_B5 <- B5_dry$band1 - B5_wet$band1 

 

Exp_var_stack$SPC_diff_B6 <- B6_dry$band1 - B6_wet$band1 

 

Exp_var_stack$SPC_diff_B7 <- B7_dry$band1 - B7_wet$band1 

 

Exp_var_stack$SPC_diff_Surface_roughness <- Surface_roughness_dry$band1 - 

Surface_roughness_wet$band1 

 

Exp_var_stack$SPC_diff_Emissivity <- Emissivity_dry$band1 - 

Emissivity_wet$band1 
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Exp_var_stack$SPC_diff_Albedo <- Albedo_dry$band1 - Albedo_wet$band1 

 

Exp_var_stack$SPC_diff_Nitrogen <- Nitrogen_dry$band1 - Nitrogen_wet$band1 

 

Exp_var_stack$SPC_diff_EVI <- Exp_var_stack$SPC_EVI_dry - 

Exp_var_stack$SPC_EVI_wet 

 

Exp_var_stack$SPC_diff_MSAVI <- Exp_var_stack$SPC_MSAVI_dry - 

Exp_var_stack$SPC_MSAVI_wet 

 

Exp_var_stack$SPC_diff_NDMI <- Exp_var_stack$SPC_NDMI_dry - 

Exp_var_stack$SPC_NDMI_wet 

 

Exp_var_stack$SPC_diff_BI <- Exp_var_stack$SPC_BI_dry - 

Exp_var_stack$SPC_BI_wet 

 

Exp_var_stack$SPC_diff_CI <- Exp_var_stack$SPC_CI_dry - 

Exp_var_stack$SPC_CI_wet 

 

Exp_var_stack$SPC_diff_HI <- Exp_var_stack$SPC_HI_dry - 

Exp_var_stack$SPC_HI_wet 

 

Exp_var_stack$SPC_diff_RI <- Exp_var_stack$SPC_RI_dry - 

Exp_var_stack$SPC_RI_wet 

 

Exp_var_stack$SPC_diff_SI <- Exp_var_stack$SPC_SI_dry - 

Exp_var_stack$SPC_SI_wet 

 

#Soilmaps 

#Import mask layer 

mask <- 

readGDAL(paste0("C:/Users/TUDelftSID/Documents/Thesis/Data/BRP/Mask/Mask_NO

P_",Resolution_input,"m_",Projection,".tif")) 

mask_raster <- raster(mask) 

 

#Create soilmap raster 

Soilclass <- 

readOGR(paste0("Bodemkaart/Bodemkaart_1_50000_is_25m_resolutie/SoilMap_NOP_

",Projection,".shp")) 

Soilclass_r <- rasterize(Soilclass, mask_raster, field="Soil_ID") 

Exp_var_stack$SMU_Soilclass <- Soilclass_r@data@values 

 

Geomorphology <- 

readOGR(paste0("Bodemkaart/Geomorfologie_1_50000/Geomorfologisch_NOP_",Proj

ection,".shp")) 

Geomorphology_r <- rasterize(Geomorphology, mask_raster, field="GENESE_ID") 

Exp_var_stack$SMU_Geomorphology <- Geomorphology_r@data@values 

 

BRP_2018 <- 

readOGR(paste0("BRP/brpgewaspercelen_2018/",Projection,"/BRP_Gewaspercelen_

2018_NOP_",Projection,".shp")) 

BRP_2018_r <- rasterize(BRP_2018, mask_raster, field="CROP_ID") 

Exp_var_stack$SMU_BRP_2018 <- BRP_2018_r@data@values 

 

BRP_2017 <- 

readOGR(paste0("BRP/brpgewaspercelen_2017/",Projection,"/BRP_Gewaspercelen_

2017_NOP_",Projection,".shp")) 

BRP_2017_r <- rasterize(BRP_2017, mask_raster, field="CROP_ID") 

Exp_var_stack$SMU_BRP_2017 <- BRP_2017_r@data@values 
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BRP_2016 <- 

readOGR(paste0("BRP/brpgewaspercelen_2016/",Projection,"/BRP_Gewaspercelen_

2016_NOP_",Projection,".shp")) 

BRP_2016_r <- rasterize(BRP_2016, mask_raster, field="CROP_ID") 

Exp_var_stack$SMU_BRP_2016 <- BRP_2016_r@data@values 

 

#Save multiple objects 

save(Exp_var_stack, NDVI_dry, NDVI_wet, Resolution_input, Projection, mask,  

     file = 

"Bodemkaart/SoilMapping_kriging/SoilGrids_model/Module_1/1A_Data_collection

.RData") 

 

Module 1B: data preparation 

## clean environment 

rm(list = ls()) #clean memory 

 

## Set libraries 

library(rlist) 

 

## Set working directory 

setwd("~/Thesis/Data") 

 

load("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Module_1/1A_Data_colle

ction.RData") 

 

## Count different type of predictors 

SPC_SEBAL_number <- grep("SEBAL", names(Exp_var_stack), fixed = TRUE) 

SMU_number <- grep("SMU", names(Exp_var_stack), fixed = TRUE) 

 

## Remove vegetation, NA and 0 valued pixels use only SEBAL variables and 

SMU  

NDVI_thrh_high = 0.2 #Bare soil threshold 

NDVI_thrh_low = 0.0 #Waterbodies threshold 

Exp_var_stack.df_BS <- 

as.data.frame(Exp_var_stack@data[,c(SPC_SEBAL_number, SMU_number)], 

drop=FALSE) 

Exp_var_stack.df_BS <- lapply(Exp_var_stack.df_BS, function(x){ifelse((x == 

0 |  

                                                                      

NDVI_dry$band1 > NDVI_thrh_high |  

                                                                      

NDVI_wet$band1 > NDVI_thrh_high | 

                                                                      

NDVI_dry$band1 <= NDVI_thrh_low |  

                                                                      

NDVI_wet$band1 <= NDVI_thrh_low | 

                                                                      

is.na(mask$band1)), yes = NA, no = x)}) 

Exp_var_stack.df_BS <- as.data.frame(Exp_var_stack.df_BS) 

Exp_var_stack@data[,c(SPC_SEBAL_number, SMU_number)] <- Exp_var_stack.df_BS 

 

## Remove outliers use only SEBAL variables 

Exp_var_stack.df_outlier <- 

as.data.frame(Exp_var_stack@data[,c(SPC_SEBAL_number)]) 

Outlier_indices <- unique(do.call(c,lapply(Exp_var_stack.df_outlier, 

function(x){which(x %in% boxplot.stats(x)$out)}))) 

Exp_var_stack@data[Outlier_indices,] <- NA 

 

## Remove data without variation 
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Exp_var_stack.df_variation <- as.data.frame(Exp_var_stack@data) 

sd_list <- do.call(c,lapply(Exp_var_stack.df_variation, 

function(x){ifelse(sd(x, na.rm = TRUE)==0, yes = 1, no = NA)})) 

No_variation_col <- names(which(sd_list == 1)) 

No_variation_col <- list.append(No_variation_col, ifelse(grep("SEBAL", 

No_variation_col)>0, yes=sub("SEBAL","diff",names(which(sd_list == 1))))) 

No_variation_col <- unique(do.call(c,lapply(No_variation_col,  

                                      function(x){grep(substr(x, 1, 

nchar(x)-4), names(Exp_var_stack))}))) 

Exp_var_stack@data <- Exp_var_stack.df_variation[,!names(Exp_var_stack) 

%in% names(Exp_var_stack[No_variation_col]), drop = FALSE] 

 

## Count different type of predictors 

SMU_number <- grep("SMU", names(Exp_var_stack)) 

 

## Standardize data drop Soil Map Units (SMU) 

Exp_var_stack.df_standardized <- as.data.frame(Exp_var_stack@data[,-

c(SMU_number)]) 

Exp_var_stack.df_standardized <- lapply(Exp_var_stack.df_standardized, 

function(x){(x - mean(x, na.rm=TRUE)) / sd(x, na.rm=TRUE)}) 

Exp_var_stack.df_standardized <- 

as.data.frame(Exp_var_stack.df_standardized) 

Exp_var_stack@data[,-c(SMU_number)] <- Exp_var_stack.df_standardized 

 

#Save multiple objects 

save(Exp_var_stack, Resolution_input, Projection, mask,  

     file = 

"Bodemkaart/SoilMapping_kriging/SoilGrids_model/Module_1/1B_Data_prep.RData

") 
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Appendix B. SoilGrids30m R-script 

module 2 
Module 2A: data correlation 

## clean environment 

rm(list = ls()) #clean memory 

 

## Set libraries 

library(sp) 

library(rgdal) 

library(corrplot) 

 

## Set working directory 

setwd("~/Thesis/Data") 

 

## Load data to environment 

load(file = 

"Bodemkaart/SoilMapping_kriging/SoilGrids_model/Module_1/1B_Data_prep.RData

") 

 

## Create observation location dataset 

# Read-in pointsamples                                         

SoilSamples <- 

readOGR(paste0("Bodemkaart/SoilMapping_kriging/SoilSamples/SoilSamples/Soil

Samples_",Projection,".shp")) 

# Remove spatial duplicates 

SoilSamples <- remove.duplicates(SoilSamples) 

SoilProperty <- SoilSamples["Lutum"] 

names(SoilProperty)[1] <- "Clay" 

 

# Add explenatory data to predictor object and inspect correlation 

SoilProperty_df <- over(SoilProperty, Exp_var_stack) 

SoilProperty@data[,2:(length(SoilProperty_df)+1)] <- SoilProperty_df 

 

# Remove all rows which contain NA values 

row.has.na <- apply(SoilProperty@data, 1, function(x){any(is.na(x))}) 

SoilProperty <- SoilProperty[!row.has.na,] 

 

## Check correlation between target variable and explanatory variable 

Corr_thrh = 0.15 

Percentile = "15p" 

 

# Create correlation matrix 

correlation <- cor(SoilProperty@data) 

# Adjust correlation row soilproperty to obtain only positvie values from 

low to high 

cor_adj <- 

as.data.frame(abs(abs(correlation[1,2:length(correlation[1,])]))) 

# Extract rownmaes based on correlation threshold 

perc <- quantile(cor_adj[,1], Corr_thrh) 

cor_rownames <- rownames(cor_adj)[cor_adj >= perc] 

 

# Create correlation matrix 

correlation_name <- cor(SoilProperty_name@data) 

 

png(file = 

paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_2/Corrpl

ot.png"),  
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    width = 750, height = 150) 

corrplot(correlation_name[length(correlation_name[,1]),1:(length(correlatio

n_name[,1])-1), drop=FALSE], method = "circle", cl.pos='n', tl.col="black") 

dev.off() 

 

##Save data to environment 

save(cor_rownames, Percentile, file = 

"Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_2/2A_Data_cor_C

lay.RData") 

 

 

Module 2B: data preparation 

## clean environment 

rm(list = ls()) #clean memory 

 

## Set libraries 

library(rlist) 

 

## Set working directory 

setwd("~/Thesis/Data") 

 

## Load object 

load("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Module_1/1A_Data_colle

ction.RData") 

load("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_2/2A_Data_

cor_Clay.RData") 

 

## Eliminate all explanatory variables based on correlation threshold 

Exp_var_stack <- Exp_var_stack[which(names(Exp_var_stack) %in% 

cor_rownames)] 

 

## Count different type of predictors 

SPC_SEBAL_number <- grep("SEBAL", names(Exp_var_stack), fixed = TRUE) 

SMU_number <- grep("SMU", names(Exp_var_stack), fixed = TRUE) 

 

## Remove vegetation, NA and 0 valued pixels use only SEBAL variables and 

SMU  

NDVI_thrh_high = 0.2 #Bare soil threshold 

NDVI_thrh_low = 0.0 #Waterbodies threshold 

Exp_var_stack.df_BS <- 

as.data.frame(Exp_var_stack@data[,c(SPC_SEBAL_number, SMU_number)], 

drop=FALSE) 

Exp_var_stack.df_BS <- lapply(Exp_var_stack.df_BS, function(x){ifelse((x == 

0 |  

                                                                         

NDVI_dry$band1 > NDVI_thrh_high |  

                                                                         

NDVI_wet$band1 > NDVI_thrh_high | 

                                                                         

NDVI_dry$band1 <= NDVI_thrh_low |  

                                                                         

NDVI_wet$band1 <= NDVI_thrh_low | 

                                                                         

is.na(mask$band1)), yes = NA, no = x)}) 

Exp_var_stack.df_BS <- as.data.frame(Exp_var_stack.df_BS) 

Exp_var_stack@data[,c(SPC_SEBAL_number, SMU_number)] <- Exp_var_stack.df_BS 
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## Remove outliers use only SEBAL variables 

Exp_var_stack.df_outlier <- 

as.data.frame(Exp_var_stack@data[,c(SPC_SEBAL_number)]) 

Outlier_indices <- unique(do.call(c,lapply(Exp_var_stack.df_outlier, 

function(x){which(x %in% boxplot.stats(x)$out)}))) 

Exp_var_stack@data[Outlier_indices,] <- NA 

 

## Standardize data drop Soil Map Units (SMU) 

Exp_var_stack.df_standardized <- as.data.frame(Exp_var_stack@data[,-

c(SMU_number)]) 

Exp_var_stack.df_standardized <- lapply(Exp_var_stack.df_standardized, 

function(x){(x - mean(x, na.rm=TRUE)) / sd(x, na.rm=TRUE)}) 

Exp_var_stack.df_standardized <- 

as.data.frame(Exp_var_stack.df_standardized) 

Exp_var_stack@data[,-c(SMU_number)] <- Exp_var_stack.df_standardized 

 

## Create observation location dataset 

# Read-in pointsamples                                         

SoilSamples <- 

readOGR(paste0("Bodemkaart/SoilMapping_kriging/SoilSamples/SoilSamples/Soil

Samples_",Projection,".shp")) 

# Remove spatial duplicates 

SoilSamples <- remove.duplicates(SoilSamples) 

SoilProperty <- SoilSamples["Lutum"] 

names(SoilProperty)[1] <- "Clay" 

 

# Add explenatory data to predictor object and inspect correlation 

SoilProperty_df <- over(SoilProperty, Exp_var_stack) 

SoilProperty@data[,2:(length(SoilProperty_df)+1)] <- SoilProperty_df 

 

# Remove all rows which contain NA values 

row.has.na <- apply(SoilProperty@data, 1, function(x){any(is.na(x))}) 

SoilProperty <- SoilProperty[!row.has.na,] 

 

#Save multiple objects 

save(Exp_var_stack, SoilProperty, Resolution_input, mask, Percentile, 

     file = 

"Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_2/2B_Data_prep_

cor_Clay.RData")   
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Appendix C. SoilGrids30m R-script 

module 3 
Module 3: principal component analysis 

## clean environment 

rm(list = ls()) #clean memory 

 

## Set libraries 

library(FactoMineR) 

library(factoextra) 

 

## Set working directory 

setwd("~/Thesis/Data") 

 

# Load multiple objects 

load(file = 

"Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_2/2B_Data_prep_

cor_Clay.RData") 

 

## Count different type of predictors 

SPC_number <- grep("SPC", names(Exp_var_stack), fixed = TRUE) 

SMU_number <- grep("SMU", names(Exp_var_stack), fixed = TRUE) 

 

# Selecet Soil Predictive Components (SPC) and Soil Map Units (SMU) 

SPC <- SoilProperty[,c(SPC_number+1)] 

SMU <- SoilProperty[,c(SMU_number+1)] 

 

# PCA 

PCA <- prcomp(SPC@data, scale. = FALSE) 

PCA_var <- PCA$sdev^2 

Contribution_expvar <- PCA_var/sum(PCA_var) 

cum_contribution_expvar <- cumsum(Contribution_expvar) 

var <- get_pca_var(PCA) 

 

# Minimum variance explained threshold 

Var_exp_thrh = 0.99 

sdev_trh <- length(which(PCA$sdev > 1)) 

var_trh <- length(which(cum_contribution_expvar <= Var_exp_thrh)) + 1  

PC_number <- max(sdev_trh, var_trh) 

Exp_var_contrib.df <- as.data.frame(var$contrib[,1:PC_number]) 

 

# Scree plot 

png(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_3/Sc

reeplot_Clay_",Percentile,".png"), 

    width = 750, height = 500) 

fviz_eig(PCA, addlabels = TRUE, ncp=PC_number, main = paste0("Scree plot 

percentile ",  

                                                             

substr(Percentile, 1, nchar(Percentile)-1)), 

         xlab="Principal components") + 

  theme(text = element_text(size = 15), 

        axis.title = element_text(size = 15), 

        axis.text = element_text(size = 15), 

        plot.title = element_text(hjust = 0.5)) 

dev.off() 

 

# Total contribution per explanatory variable 
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png(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_3/To

tal_contrib_expvar_Clay_",Percentile,".png"), 

    width = 750, height = 500) 

fviz_contrib(PCA, choice="var", axes = 1:PC_number, top = 19) + 

  ggtitle(paste0("Total contributions of significant explanatory variables 

for all selected principal component")) + 

  theme(text = element_text(size = 15), 

        axis.title = element_text(size = 15), 

        axis.text = element_text(size = 15), 

        plot.title = element_text(hjust = 0.5)) 

dev.off() 

 

# Contribution plot per principal component 

plot_list = list() 

for (i in 1:PC_number) { 

  top_number <- length(which(var$contrib[,i] > 

(100/length(Contribution_expvar)))) 

  p = fviz_contrib(PCA, choice = "var", axes = i, top = (top_number+1)) + 

    ggtitle(paste0("Contributions of significant explanatory variables to 

principal component ", i)) + 

    theme(text = element_text(size = 15), 

          axis.title = element_text(size = 15), 

          axis.text = element_text(size = 15), 

          plot.title = element_text(hjust = 0.5)) 

  plot_list[[i]] = p 

} 

 

# Save contribution plot per principal component 

for (i in 1:PC_number) { 

  

png(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_3/Co

ntrib_dim_",i,"_Clay_",Percentile,".png"), 

      width = 750, height = 500) 

  print(plot_list[[i]]) 

  dev.off() 

} 

 

# Create dataframe with all variables for regression kriging 

PCA_dataset <- SoilProperty["Clay"] 

PCA_dataset@data <- data.frame(Clay = SoilProperty$Clay, 

PCA$x[,c(1:PC_number)], SMU@data) 

colnames(PCA_dataset@data)[2:(PC_number+1)] <- colnames(PCA$x)[1:PC_number] 

 

PCA_eigenvectors_SPC <- data.frame(PCA$rotation[,1:PC_number]) 

colnames(PCA_eigenvectors_SPC)[1:PC_number] <- 

colnames(PCA$rotation)[1:PC_number] 

 

# Create mask stack 

mask_SPC <- mask["band1"] 

mask_SPC@data[2:(length(Exp_var_stack@data)+1)] <- Exp_var_stack@data 

mask_SPC.df <- as.data.frame(mask_SPC@data) 

 

mask_RK <- mask["band1"] 

for(i in 2:length(PCA_dataset@data)){ 

  ifelse(grepl("PC",names(PCA_dataset@data[i]), fixed=TRUE), 

         yes = mask_RK@data <- cbind(mask_RK@data,  

                                     

data.frame(rowSums(data.frame(mapply(`*`,PCA_eigenvectors_SPC[,(i-1)], 

                                                                          

mask_SPC.df[,2:(length(mask_SPC.df)- 
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length(SMU_number))]))))), 

         no = mask_RK@data <- cbind(mask_RK@data, 

data.frame(eval(parse(text = 

paste0("Exp_var_stack$",names(PCA_dataset[i]))))))) 

} 

colnames(mask_RK@data) <- c(names(PCA_dataset@data)) 

names(mask_RK)[1] <- "band1" 

 

# Save multiple objects 

save(PCA_dataset, mask_RK, Resolution_input, Percentile, 

     file = 

"Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_3/3_PCA_Clay.RD

ata") 
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Appendix D. SoilGrids30m R-script 

module 4-5 
Module 4-5: Regression-kriging 

## clean environment 

rm(list = ls()) #clean memory 

 

## Set libraries 

library(gstat) 

library(raster) 

library(rgdal) 

library(caret) 

 

## Set working directory 

setwd("~/Thesis/Data") 

 

## Load object 

load(file = 

"Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_3/3_PCA_Clay.RD

ata") 

 

source("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_4-

5/RK_function_Clay.R") 

 

## Regression kriging 

# Properties semi variogram 

VG_nugget = 5 

VG_psill = 13 

VG_range = 2000 

VG_model = "Exp" 

 

# Run for final result 

mask_RK.df <- as.data.frame(mask_RK@data) 

 

# Regression kriging function 

RK_output <- RK(PCA_dataset, mask_RK, mask_RK.df, VG_nugget, VG_psill, 

VG_range, VG_model) 

 

TrainData.rk <- RK_output[[1]] 

Variogram_exp <- RK_output[[2]] 

Variogram_fit <- RK_output[[3]] 

 

# Plot semivariogram 

png(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_4-

5/Semivariance_Clay_",Percentile,".png"), 

    width = 750, height = 500) 

plot.new() 

plot(Variogram_exp, Variogram_fit, main=list(paste0("Semivariogram 

percentile ", 

                                                    substr(Percentile, 1, 

nchar(Percentile)-1)) , cex=1.5), 

     xlab = list("Distance [m]", cex=1.5), 

     ylab=list("Semivariance [%^2]", cex=1.5), 

     pch=16, cex=1.5, col="black") 

legend("center", bty="n", legend=paste("Nugget =", 

format(Variogram_fit[1,2], digits=2), "[%^2]", 

                                        "\nSill =", 

format(Variogram_fit[2,2], digits=2), "[%^2]", 
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                                        "\nRange =", 

format(Variogram_fit[2,3], digits=2)), "[m]", cex=1.5) 

dev.off() 

 

# Write result to tif file 

TrainData_RK_raster_predict = raster(TrainData.rk, layer=4) 

writeRaster(TrainData_RK_raster_predict, 

paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_4-

5/predict_RK_" 

                                                

,Resolution_input,"m_Clay_",Percentile,".tif"),  

            overwrite = FALSE) 

 

writeOGR(obj=PCA_dataset, 

dsn=paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_4-

5"),  

         layer=paste0("PCA_dataset_Clay_",Percentile), driver="ESRI 

Shapefile") 

 

# Validation result 

PCA_dataset$predict <- over(PCA_dataset, TrainData.rk)$predict 

 

Performance <- postResample(PCA_dataset$predict, PCA_dataset$Clay) 

 

png(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_4-

5/Predict_result_Clay_",Percentile,".png"),  

    width = 750, height = 500) 

plot(PCA_dataset$Clay, PCA_dataset$predict, main=paste0("Regression kriging 

results percentile ", 

     substr(Percentile, 1, nchar(Percentile)-1)),  

     xlab="Measured clay content [%]", ylab="Predicted clay content [%]",  

     cex.lab=1.5, cex.axis=1.5, cex.main=1.5, pch=3) 

abline(fit <- lm(predict ~ Clay, data=PCA_dataset@data), col='red') 

abline(0,1, col='black') 

legend("topleft", bty="n", legend=paste("Number of observations =", 

format(length(PCA_dataset), digits=2), 

                                        "\nR2 =", 

format(summary(fit)$adj.r.squared, digits=2), 

                                        "\nRMSE =", format(Performance[1], 

digits=2), 

                                        "\nMPE =", format(Performance[3], 

digits=2)), cex=1.5) 

dev.off() 

 

# Analysis with SoilGrids250m 

Clay_SoilGrids250m <- 

readGDAL("Bodemkaart/SoilGrids250m_Clay_0m_UTM32N.tif") 

PCA_dataset$Clay250m <- over(PCA_dataset, Clay_SoilGrids250m)$band1 

Performance250m <- postResample(PCA_dataset$Clay250m, PCA_dataset$Clay) 

 

png(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_4-

5/SoilGrids250m_result_Clay_",Percentile,".png"),  

    width = 750, height = 500) 

plot.new() 

par(mar=c(5,5,5,1)) 

plot(PCA_dataset$Clay, PCA_dataset$Clay250m, main=paste0("Regression 

kriging results percentile ", 

                                                        substr(Percentile, 

1, nchar(Percentile)-1), " SoilGrids250m"),  

     xlab="Measured clay content [%]", ylab="Predicted clay content [%]",  

     cex.lab=2, cex.axis=2, cex.main=2, pch=3) 
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abline(fit <- lm(predict ~ Clay250m, data=PCA_dataset@data), col='red') 

abline(0,1, col='black') 

legend(x=min(PCA_dataset$Clay) - 2.5, y=max(PCA_dataset$Clay250m) + 2.75, 

bty="n",  

       legend=paste("\nR2 =", format(Performance250m[2], digits=2), 

                                        "\nRMSE =", 

format(Performance250m[1], digits=2), 

                                        "\nMPE =", 

format(Performance250m[3], digits=2)), cex=2) 

dev.off() 

 

# Analysis with SoilGrids1000m 

Clay_SoilGrids1000m <- 

readGDAL("Bodemkaart/SoilGrids1000m_Clay_0m_UTM32N.tif") 

PCA_dataset$Clay1000m <- over(PCA_dataset, Clay_SoilGrids1000m)$band1 

Performance1000m <- postResample(PCA_dataset$Clay1000m, PCA_dataset$Clay) 

 

png(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_4-

5/SoilGrids1000m_result_Clay_",Percentile,".png"),  

    width = 750, height = 500) 

plot.new() 

par(mar=c(5,5,5,1)) 

plot(PCA_dataset$Clay, PCA_dataset$Clay1000m, main=paste0("Regression 

kriging results percentile ", 

                                                         substr(Percentile, 

1, nchar(Percentile)-1), " SoilGrids1000m"),  

     xlab="Measured clay content [%]", ylab="Predicted clay content [%]",  

     cex.lab=2, cex.axis=2, cex.main=2, pch=3) 

abline(fit <- lm(predict ~ Clay1000m, data=PCA_dataset@data), col='red') 

abline(0,1, col='black') 

legend(x=min(PCA_dataset$Clay) - 2.5, y=max(PCA_dataset$Clay1000m) + 2.25, 

bty="n",  

       legend=paste("\nR2 =", format(Performance1000m[2], digits=2), 

                                        "\nRMSE =", 

format(Performance1000m[1], digits=2), 

                                        "\nMPE =", 

format(Performance1000m[3], digits=2)), cex=2) 

dev.off() 

 

Regression-kriging function 

# Function for regression kriging 

RK <- function(RK.data, mask_RK, mask_RK.df, VG_nugget, VG_psill, VG_range, 

VG_model) { 

  # Fit a linear regression model and inspect the results 

  TrainData.lm <- lm(Clay~., data = RK.data@data) 

   

  # Append residuals to dataset 

  RK.data$residuals <- TrainData.lm$residuals 

   

  # Regression prediction 

  TrainData.trend <- predict(TrainData.lm, newdata = mask_RK.df) 

   

  # Set prediction outside mask to NA 

  TrainData.trend <- ifelse(test = is.na(mask_RK$band1), yes = NA, no = 

TrainData.trend) 

   

  # Set predictions smaller than 0 to 0 

  TrainData.trend <- ifelse(TrainData.trend<0, yes = 0, no = 

TrainData.trend) 
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  # Define gstat object and compute experimental semivariogram 

  gpb <- gstat(formula = residuals~1, data = RK.data) 

  vgpb <- variogram(gpb) 

   

  # Define initial semivariogram model 

  vgmpb <- vgm(nugget = VG_nugget, psill = VG_psill, range = VG_range, 

model = VG_model) 

  show(plot(vgpb,vgmpb)) 

   

  # Fit semivariogram model 

  vgmpb <- fit.variogram(vgpb, vgmpb, fit.method = 7) 

  show(plot(vgpb,vgmpb)) 

   

  # Krige the residuals 

  TrainData.rk <- krige(formula = residuals~1, locations = RK.data, newdata 

= mask_RK, model = vgmpb, beta = 0) 

   

  names(TrainData.rk)[1] <- "resid" 

  TrainData.rk$trend <- TrainData.trend 

   

  # Set kriged residuals and variance outside mask to NA 

  TrainData.rk$resid <- ifelse(test = is.na(mask_RK$band1), yes = NA, no = 

TrainData.rk$resid) 

   

  TrainData.rk$var1.var <- ifelse(test = is.na(mask_RK$band1), yes = NA, no 

= TrainData.rk$var1.var) 

   

  # Obtain RK prediction 

  TrainData.rk$predict <- TrainData.rk$trend + TrainData.rk$resid 

   

  # Set predictions smaller than 0 to 0 

  TrainData.rk$predict <- ifelse(TrainData.rk$predict<0, yes = 0, no = 

TrainData.rk$predict) 

 

  RK_output <- list(TrainData.rk, vgpb, vgmpb) 

   

  return(RK_output) 

} 

 

  



 

112 
 

Appendix E. SoilGrids30m R-script 

module 6 
Module 6: validation 

## clean environment 

rm(list = ls()) #clean memory 

 

## Set libraries 

library(gstat) 

library(rlist) 

library(caret) 

library(raster) 

 

## Set working directory 

setwd("~/Thesis/Data") 

 

## Load object 

load(file = 

"Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_3/3_PCA_Clay.RD

ata") 

 

source("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_4-

5/RK_function_Clay.R") 

 

## Split data for validation run 

Data_split = 0.7 

smp_size <- floor(Data_split * nrow(PCA_dataset)) 

 

mask_RK.df <- as.data.frame(mask_RK@data) 

 

TrainData_RK <- list() 

Rsq_list <- list() 

MAE_list <- list() 

RMSE_list <- list() 

Variogram_nugget <- list() 

Variogram_sill <- list() 

Variogram_range <- list() 

Calc_num <- 100 

for(i in 1:Calc_num){ 

  # Create validationset and trainingsset 

  validateIndexes <- sample(seq_len(nrow(PCA_dataset)), size = smp_size) 

  TrainData <- PCA_dataset[validateIndexes, ] 

  ValidateData <- PCA_dataset[-validateIndexes, ] 

   

  RK.data <- PCA_dataset[validateIndexes,] 

   

  #Properties semi variogram 

  VG_nugget = 5 

  VG_psill = 13 

  VG_range = 2000 

  VG_model = "Exp" 

   

  # Run regression kriging function 

  RK_output <- RK(RK.data, mask_RK, mask_RK.df, VG_nugget, VG_psill, 

VG_range, VG_model) 

   

  TrainData.rk <- RK_output[[1]] 

  Variogram_fit <- RK_output[[3]] 
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  Variogram_nugget <- list.append(Variogram_nugget, Variogram_fit[1,2]) 

  Variogram_sill <- list.append(Variogram_sill, Variogram_fit[2,2]) 

  Variogram_range <- list.append(Variogram_range, Variogram_fit[2,3]) 

   

  # Add Trainingsdata to list 

  TrainData_RK[[paste0("Set_",i)]] <- TrainData.rk 

   

  # Validate result 

  ValidateData$predict <- over(ValidateData, TrainData.rk)$predict 

   

  Performance <- postResample(ValidateData$predict, ValidateData$Clay) 

   

  Rsq_list <- list.append(Rsq_list, Performance[2]) 

  MAE_list <- list.append(MAE_list, Performance[3]) 

  RMSE_list <- list.append(RMSE_list, Performance[1]) 

} 

 

# Plot validation results 

png(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_6/Pe

rf_MAE_Clay_",Percentile,".png"), 

    width = 750, height = 500) 

hist(unlist(MAE_list), breaks=100, main="Histogram of mean absolute 

estimation error", 

     xlab="MAE [%]", ylab="Frequency [-]", cex.lab=1.5, cex.axis=1.5, 

cex.main=1.5) 

legend("topright", bty="n", legend=paste("Number of runs = ",Calc_num, 

                                         "\nMAE mean =", 

format(mean(unlist(MAE_list)), digits=3),"%"), cex=1.5) 

dev.off() 

 

png(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_6/Pe

rf_RMSE_Clay_",Percentile,".png"), 

    width = 750, height = 500) 

hist(unlist(RMSE_list), breaks=100, main="Histogram of root mean square 

error", 

     xlab="RMSE [%]", ylab="Frequency [-]", cex.lab=1.5, cex.axis=1.5, 

cex.main=1.5) 

legend("topright", bty="n", legend=paste("Number of runs = ",Calc_num, 

                                         "\nRMSE mean =", 

format(mean(unlist(RMSE_list)), digits=3),"%"), cex=1.5) 

dev.off() 

 

png(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_6/Pe

rf_R2_Clay_",Percentile,".png"), 

    width = 750, height = 500) 

hist(unlist(Rsq_list), breaks=100, main="Histogram of coefficient of 

determination", 

     xlab="R2 [-]", ylab="Frequency [-]", cex.lab=1.5, cex.axis=1.5, 

cex.main=1.5) 

legend("topright", bty="n", legend=paste("Number of runs = ",Calc_num, 

                                         "\nR2 mean =", 

format(mean(unlist(Rsq_list)), digits=3)), cex=1.5) 

dev.off() 

 

#Save multiple objects 

save(TrainData_RK, Variogram_nugget, Variogram_range, Variogram_sill, 

Rsq_list, MAE_list, RMSE_list, 

     file = 

paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module_6/6_vali

dation_Clay_",Percentile,".RData")) 
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Appendix F. Pedotransfer function 

R-script  
Pedotransfer functions 

rm(list = ls()) #clean memory 

 

# Load libraries 

library(rgdal) 

library(raster) 

 

# Set working directory 

setwd("~/Thesis/Data") 

 

## Parameters 

Resolution <- "30" 

Projection <- "EPSG32632" 

 

## Read in data 

SoilProperty <- 

readGDAL(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/Clay/Module

_4-5/predict_RK_", 

                                Resolution,"m_Clay_15p.tif")) 

names(SoilProperty)[1] <- "Clay" 

OM <- 

readGDAL(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/OM/Module_4

-5/predict_RK_", 

               Resolution,"m_OM_70p.tif")) 

SoilProperty$OM <- OM$band1 

 

#Remove values without information of Clay and or OM 

SoilProperty$OM <- ifelse(test=is.na(SoilProperty$Clay), yes=NA, 

no=SoilProperty$OM) 

SoilProperty$Clay <- ifelse(test=is.na(SoilProperty$OM), yes=NA, 

no=SoilProperty$Clay) 

 

#PTFs 

SoilProperty$BD <- 1 / (0.6117 + 0.003601*SoilProperty$Clay + 

0.002172*SoilProperty$OM^2 +  

                          0.01715*log(SoilProperty$OM)) #g/cm3, input is in 

percentages  

 

SoilProperty$Theta_s <- 0.85*(1-SoilProperty$BD/2.65) + 

0.13*(SoilProperty$Clay/100) #cm3/cm3, input: BD=g/cm3, clay=g/g 

 

SoilProperty$Theta_r <- 0.51*(SoilProperty$Clay/100) + 

0.0017*((SoilProperty$OM/100*1000)/2) #cm3/cm3; factor 2 see Pribyl, 2010, 

input: clay=g/g, OM=g/kg 

 

SoilProperty$alpha = exp(-19.13 + 0.812*SoilProperty$OM + 

23.4*SoilProperty$BD - 8.16*SoilProperty$BD^2 + 

  0.423*SoilProperty$OM^(-1) + 2.388*log(SoilProperty$OM) - 

1.338*SoilProperty$BD*SoilProperty$OM) #1/cm, input in percentages 

 

SoilProperty$n <- exp(-0.235 + 0.972*SoilProperty$BD^(-1) - 

0.7743*log(SoilProperty$Clay) - 0.3154*log(SoilProperty$OM) + 

  0.0678*SoilProperty$BD*SoilProperty$OM) + 1 #input in percentages 
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SoilProperty$Theta_fc <- SoilProperty$Theta_r + (SoilProperty$Theta_s - 

SoilProperty$Theta_r) /  

  ((1+abs(SoilProperty$alpha*-100)^SoilProperty$n)^(1-1/SoilProperty$n)) 

#cm3/cm3 

 

SoilProperty$Theta_wp <- SoilProperty$Theta_r + (SoilProperty$Theta_s - 

SoilProperty$Theta_r) /  

  ((1+abs(SoilProperty$alpha*-16000)^SoilProperty$n)^(1-1/SoilProperty$n)) 

#cm3/cm3 

 

SoilProperty$WHC <- 1000*(SoilProperty$Theta_fc - SoilProperty$Theta_wp) 

#mm/m 

 

## Write output to a .tif file 

WHC_tif <- raster(SoilProperty, layer=10) 

writeRaster(WHC_tif, 

paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/WHC/WHC_",Resolution

,"m_",Projection,".tif"),  

            overwrite = TRUE) 

 

## Write output to a .tif file 

BD_tif <- raster(SoilProperty, layer=3) 

writeRaster(BD_tif, 

paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/WHC/BD_",Resolution,

"m_",Projection,".tif"),  

            overwrite = TRUE) 

 

Visualization 

rm(list = ls()) #clean memory 

 

# Load libraries 

library(rgdal) 

library(rlist) 

library(ggplot2) 

library(viridis) 

library(lubridate) 

library(outliers) 

 

# Set working directory 

setwd("~/Thesis/Data") 

 

Projection = "EPSG32632" 

Resolution = 30 

Croptype = "Sugarbeet" 

Croptype_adj = "sugar beet" 

 

# Read in data crop type 

SoilProperty <- 

readGDAL(paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/WHC/WHC_buf

fer/WHC_merged/WHC_", 

                                Croptype,"_",Resolution,"m_merged.tif")) 

 

names(SoilProperty)[1] <- "WHC" 

 

Outliers <- which(SoilProperty$WHC %in% 

boxplot.stats(SoilProperty$WHC)$out) 

SoilProperty$WHC[Outliers] <- NA 
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SOM_date <- c("2018_03_20", "2018_04_21", "2018_05_07", "2018_07_03", 

"2018_07_26") 

SOM_date_adj <- c("20-03-2018", "21-04-2018", "07-05-2018", "03-07-2018", 

"26-07-2018") 

 

for(i in 1:length(SOM_date)){ 

  date <- dmy(SOM_date_adj[i]) 

  Day <- yday(date)  

  Year <- year(date) 

  SEBAL_moisture <- 

readGDAL(paste0("SEBAL/SEBAL_output/NOP/",Projection,"/Soil_Moisture_SEBAL/

", 

                                    

"LS8_LS8_Total_soil_moisture_",Resolution,"m_",Year,"_",Day,".tif")) 

  SEBAL_moisture$band1 <- ifelse(test = is.na(SoilProperty$WHC), yes = NA, 

no = SEBAL_moisture$band1) 

  SEBAL_moisture$band1 <- SEBAL_moisture$band1 / 0.45 

  SoilProperty$WHC <- ifelse(test = is.na(SEBAL_moisture$band1), yes = NA, 

no = SoilProperty$WHC) 

   

  SoilProperty$SEBAL_moisture <- SEBAL_moisture$band1 

   

  # Increment data 

  df <- data.frame(SoilProperty$SEBAL_moisture, SoilProperty$WHC) 

   

  # Remove rows with NA 

  row.has.na <- apply(df, 1, function(x){any(is.na(x))}) 

  df <- df[!row.has.na,] 

   

  increment = 0.05 

  WHC_subset <- list() 

  WHC_mean <- list() 

  WHC_median <- list() 

  WHC_std <- list() 

  WHC_increment_start <- list() 

  WHC_increment_end <- list() 

  WHC_count <- list() 

  for(j in 1:(1/increment)){ 

    count = j*increment 

    WHC_subset <- list.append(WHC_subset, 

                              subset(df$SoilProperty.WHC 

,df$SoilProperty.SEBAL_moisture > (count-increment) &  

                                       df$SoilProperty.SEBAL_moisture < 

count)) 

  } 

   

  # Boxplot 

  png(file = 

paste0("Bodemkaart/SoilMapping_kriging/SoilGrids_model/WHC/Boxplot_WHC_SM_"

, 

                    Croptype,"_",Resolution,"m_",Year,"_",Day,".png"),  

      width = 750, height = 500) 

  bp <- boxplot(WHC_subset, cex.lab=1.5, cex.axis=1.5, cex.main=1.5, 

                xlab = "SEBAL total soil moisture [-]", 

                ylab = "Soil water holding capacity [mm/m]", 

                main = c(paste("Total soil moisture content vs. soil water 

holding capacity"), paste(SOM_date_adj[i], Croptype_adj)),  

                varwidth = TRUE, 

                notch = TRUE, 

                col = "lightgray", 
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                names = c("0-0.05","0.05-0.1","0.1-0.15","0.15-0.2","0.2-

0.25","0.25-0.3","0.3-0.35","0.35-0.4","0.4-0.45","0.45-0.5", 

                          "0.5-0.55","0.55-0.6","0.6-0.65","0.65-0.7","0.7-

0.75","0.75-0.8","0.8-0.85","0.85-0.9","0.9-0.95","0.95-1.0")) 

  dev.off() 

} 
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Appendix G. SWI module 1  
Module 1A: buffer zone 

import geopandas as gpd 

from Trapezoid.Module_1.Shapefile_buffer import buffer 

 

Projection = ["EPSG32631", "EPSG32632"] 

CropType = ["Sugarbeet", "Winterwheat"] 

bufferDist = -60 

 

for i in range(len(Projection)): 

    for j in range(len(CropType)): 

        inputfn = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\BRP\brpgewaspercelen_2018\%s\BR

P_%s_2018_NOP_%s.shp" % (Projection[i], CropType[j], Projection[i]) 

        outputBufferfn = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\BRP\brpgewaspercelen_2018\%s\Bu

ffer\%s" % (Projection[i], CropType[j]) 

 

        FileName = "BRP_%s_2018_NOP_%i" %(CropType[j], bufferDist) 

         

        # Create bufferzone 

        schema, Output_shp, geomBuffer_list = buffer(inputfn, 

outputBufferfn, bufferDist, FileName) 

 

        # Copy attribute columns from original shapefile to new shapefile 

        gdf_in = gpd.read_file(inputfn) 

        gdf_out = gpd.read_file(Output_shp) 

        for k in range(len(schema)): 

            gdf_out[schema[k]] = gdf_in[schema[k]] 

 

        index_out = [] 

        for l in range(len(geomBuffer_list)): 

            if geomBuffer_list[l].IsEmpty(): 

                index_out.append(l) 

            else: 

                continue 

 

        # Write to raster file 

        gdf_out.drop(gdf_out.index[index_out], inplace=True) 

        gdf_out.to_file(Output_shp) 
 

Module 1B: buffer zone function 

import os 

from osgeo import ogr 

from shutil import copyfile 

 

def buffer(inputfn, outputBufferfn, bufferDist, FileName): 

    inputds = ogr.Open(inputfn) 

    inputlyr = inputds.GetLayer() 

 

    shpdriver = ogr.GetDriverByName('ESRI Shapefile') 

    outputBufferds = shpdriver.CreateDataSource(outputBufferfn) 

    bufferlyr = outputBufferds.CreateLayer(FileName, 

geom_type=ogr.wkbPolygon) 

    featureDefn = bufferlyr.GetLayerDefn() 

 

    schema = [] 
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    ldefn = inputlyr.GetLayerDefn() 

    for n in range(ldefn.GetFieldCount()): 

        fdefn = ldefn.GetFieldDefn(n) 

        schema.append(fdefn.name) 

 

    geomBuffer_list = [] 

    for feature in inputlyr: 

        ingeom = feature.GetGeometryRef() 

        geomBuffer = ingeom.Buffer(bufferDist) 

        geomBuffer_list.append(geomBuffer) 

 

        outFeature = ogr.Feature(featureDefn) 

        outFeature.SetGeometry(geomBuffer) 

        bufferlyr.CreateFeature(outFeature) 

 

    FileName = FileName + ".shp" 

    Output_shp = os.path.join(outputBufferfn, FileName) 

 

    copyfile(inputfn.replace('.shp', '.prj'), Output_shp.replace('.shp', 

'.prj')) 

    copyfile(inputfn.replace('.shp', '.qpj'), Output_shp.replace('.shp', 

'.qpj')) 

 

    return schema, Output_shp, geomBuffer_list 
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Appendix H. SWI module 2  
Module 2A: extract LST and NDVI data per field 

import time 

from datetime import timedelta 

from datetime import datetime 

from Trapezoid.Module_2.get_raster_per_polygon import 

get_raster_per_polygon 

import os 

import geopandas as gpd 

from Trapezoid.Module_2.Merging_tif_files import Merging_tiff_files 

from Trapezoid.Metadatafile_reader import build_data 

import glob 

start_time = time.monotonic() 

 

Image_date = ["2018_03_20", "2018_04_21", "2018_05_07", "2018_07_03", 

"2018_07_26"] 

T_inst = [6.23, 17.92, 22.21, 22.15, 30.28] #See Excel input file SEBAL 

Crop_type = ["Sugarbeet", "Winterwheat"] 

buffdist = -60 

Property_name = "LST" 

Property_folder = "Output_vegetation" 

Raster_inputfile = "LS8_LS8_surface_temp_sharpened" 

 

for i in range(len(Crop_type)): 

    for j in range(len(Image_date)): 

        # Determining the input parameters from metadatafile 

        LANDSAT8_metadata_dir = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_input\Landsat8\%s" 

%(Image_date[j]) 

        file_name = os.path.join(LANDSAT8_metadata_dir, "*[_MTL].txt") 

        file_path = glob.glob(file_name) 

        f = open(file_path[0], 'r')  # open file for reading 

        data = build_data(f) 

        UTM_zone = int(data["UTM_ZONE"]) 

        Projection = "EPSG326%s" % (UTM_zone) 

        Resolution = int(data["GRID_CELL_SIZE_REFLECTIVE"][0:2]) 

        Date = data["DATE_ACQUIRED"] 

        adate = datetime.strptime(Date, "%Y-%m-%d") 

        DOY = adate.timetuple().tm_yday 

        Year = adate.timetuple().tm_year 

 

        BRP_root_dir = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\BRP\brpgewaspercelen_%i\%s\Buff

er" %(Year, Projection) 

        output_root_dir_property_buffer = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output\NOP\%s\%s\%s

" %(Projection, Image_date[j], Property_folder) 

        property_file = "%s_%im_%i_%i.tif" %(Raster_inputfile, Resolution, 

Year, DOY) 

 

        # """ 

        # --Combining property with BRP-- 

        # """ 

        # Reading shapefile 

        FileName = "%s\BRP_%s_%i_NOP_%i.shp" %(Crop_type[i], Crop_type[i], 

Year, buffdist) 

        BRP_path_out = os.path.join(BRP_root_dir, FileName) 

 

        shapefile_gpd = gpd.read_file(BRP_path_out) 
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        # Creating new folder for property 

        dir_name = "%s_buffer" %(Property_name) 

        Output_property_field = 

os.path.join(output_root_dir_property_buffer, dir_name) 

        if not os.path.exists(Output_property_field): 

            os.makedirs(Output_property_field) 

 

        # Creating new folder for croptype 

        dir_name = "%s" %(Crop_type[i]) 

        Output_property_field2 = os.path.join(Output_property_field, 

dir_name) 

        if not os.path.exists(Output_property_field2): 

            os.makedirs(Output_property_field2) 

 

        field_list = range(len(shapefile_gpd)) 

 

        property_path = os.path.join(output_root_dir_property_buffer, 

property_file) 

 

        if Property_name == "LST": 

            T_inst_K = 273.15 + T_inst[j] 

        else: 

            T_inst_K = 0 

 

        # Combining BRP and property 

        get_raster_per_polygon(property_path, shapefile_gpd, field_list, 

Output_property_field2, Image_date[j], T_inst_K) 

 

        """ 

        ---Merging all property.tif files--- 

        """ 

        # File and folder paths 

        dir_name = "Merged_%s" %(Property_name) 

        output_root_dir_merged = os.path.join(Output_property_field, 

dir_name) 

        if not os.path.exists(output_root_dir_merged): 

            os.makedirs(output_root_dir_merged) 

 

        FileName = "%s_merged_%s_buffer_%i.tif" %(Crop_type[i], 

Property_name, buffdist) 

        Output_merged = os.path.join(output_root_dir_merged, FileName) 

 

        # Make a search criteria to select the .tif files 

        search_criteria = "*.tif" 

 

        Merging_tiff_files(Output_property_field2, search_criteria, 

Projection[4:], Output_merged) 

 

end_time = time.monotonic() 

print("Execution time processing: %s" %timedelta(seconds=end_time - 

start_time)) 
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Module 2B: extract LST and NDVI data per field function 

import os 

import rasterio 

import rasterio.mask 

 

def get_raster_per_polygon(raster_path, shapefile_gpd, field_list, 

output_root_dir, Image_date, T_inst_K): 

    """ 

    Get the raster data per polygon 

    :param raster_path: raster path (.tif) 

    :param plot_data: shapefile path or geopandas dataframe containing the 

plot polys (.shp) 

    :param field_list: list of field_id numbers in format: [], 

    to obtain all fields use range(len(shapefile_data)) without [] 

    :param output_root_dir: root dir output path raster files 

    :return: .tif file per requested shapefile feature 

    """ 

    shp_gpd = shapefile_gpd.mask(shapefile_gpd.eq('None')).dropna() 

    for index, row in shp_gpd.iterrows(): 

        with rasterio.open(raster_path) as img: 

            raster_data, out_t = rasterio.mask.mask(img, [row.geometry], 

pad=True, crop=True) 

            if T_inst_K == 0: 

                raster_data = raster_data 

            else: 

                for i in range(raster_data.shape[1]): 

                    for j in range(raster_data.shape[2]): 

                        if raster_data[0][i][j] == -9999: 

                            raster_data[0][i][j] == -9999 

                        else: 

                            raster_data[0][i][j] = raster_data[0][i][j] - 

T_inst_K 

            raster_meta = img.meta.copy() 

 

            raster_meta.update({"driver": "GTiff", 

                         "height": raster_data.shape[1], 

                         "width": raster_data.shape[2], 

                         "transform": out_t}) 

 

        for i in range(len(field_list)): 

            if field_list[i] == index: 

                field_name = "%s_LST_%s_FIELDid_%s.tif" %(Image_date, 

shp_gpd.gewas[index], field_list[i]) 

                output_path = os.path.join(output_root_dir, field_name) 

                with rasterio.open(output_path, "w", **raster_meta) as 

dest: 

                    dest.write(raster_data) 
 

Module 2C: merge all fields into one tif file 

def Merging_tiff_files(dir_path, search_criteria, Projection, Output_tif): 

    import rasterio 

    from rasterio.merge import merge 

    import glob 

    import os 

    from Thermal_images_SelfMade.EPSG_to_Proj4 import from_epsg_code 

 

    q = os.path.join(dir_path, search_criteria) 

    dem_fps = glob.glob(q) 
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    src_files_to_mosaic = [] 

    for fp in dem_fps: 

        src = rasterio.open(fp) 

        src_files_to_mosaic.append(src) 

 

    Proj4 = from_epsg_code(Projection) 

 

    mosaic, out_trans = merge(src_files_to_mosaic) 

 

    out_meta = src.meta.copy() 

 

    out_meta.update({"driver": "GTiff", "height": mosaic.shape[1], "width": 

mosaic.shape[2], "transform": out_trans, "crs": Proj4}) 

 

    with rasterio.open(Output_tif, "w", **out_meta) as dest: 

        dest.write(mosaic) 
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Appendix I.     SWI module 3  
Module 3A: Pixel envelope boundaries 

from Trapezoid.Module_3.Pixel_envelope_boundaries import Class_boundaries 

from Trapezoid.Metadatafile_reader import build_data 

from datetime import datetime 

import os 

import glob 

import rasterio 

import numpy as np 

import pickle 

 

Image_date = ["2018_03_20", "2018_04_21", "2018_05_07", "2018_07_03", 

"2018_07_26"] 

T_inst = [6.23, 17.92, 22.21, 22.15, 30.28] #See Excel input file SEBAL 

# Remove outliers manually detected boundary points 

high_thrh_delete = [[0],[],[],[],[0,1,2,3,8],[0,1,8]] 

low_thrh_delete = [[0],[0],[0],[0],[0,1,2,8],[0]] 

 

for i in range(len(Image_date)): 

    # Determining the input parameters from metadatafile 

    LANDSAT8_metadata_dir = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_input\Landsat8\%s" 

% (Image_date[i]) 

    file_name = os.path.join(LANDSAT8_metadata_dir, "*[_MTL].txt") 

    file_path = glob.glob(file_name) 

    f = open(file_path[0], 'r')  # open file for reading 

    data = build_data(f) 

    UTM_zone = int(data["UTM_ZONE"]) 

    Projection = "EPSG326%s" % (UTM_zone) 

    Resolution = int(data["GRID_CELL_SIZE_REFLECTIVE"][0:2]) 

    Date = data["DATE_ACQUIRED"] 

    adate = datetime.strptime(Date, "%Y-%m-%d") 

    DOY = adate.timetuple().tm_yday 

    Year = adate.timetuple().tm_year 

 

    # Read in all LST and NDVI data 

    NDVI_path = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output\NOP\%s\%s\Ou

tput_vegetation\LS8_ndvi_%im_%i_%i.tif" %(Projection, Image_date[i], 

Resolution, Year, DOY) 

    with rasterio.open(NDVI_path) as img: 

        NDVI = img.read(1) 

 

    LST_path = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output\NOP\%s\%s\Ou

tput_vegetation\LS8_LS8_surface_temp_sharpened_%im_%i_%i.tif" %(Projection, 

Image_date[i], Resolution, Year, DOY) 

    with rasterio.open(LST_path) as img: 

        LST = img.read(1) 

 

    # Correct for instantaneous air temperature 

    LST = LST - (273.15 + T_inst[i]) 

 

    #Remove values which are not representative for analysis 

    NDVI_min = 0.0 

    NDVI_max = 0.9 

    NDVI[NDVI>NDVI_max] = np.nan 

    NDVI[NDVI<NDVI_min] = np.nan 
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    #Determine boundary points per bin based on percentile (low is given 

threshold, high is 100 minus given threshold) 

    Percentile_thrh = 2 

 

    #Number of classes 

    classes = 20 

 

    #Number of bins for density plot 

    nbins = 100 

 

    #Determine the polygons 

    polygons, LST, xi, yi, zi = Class_boundaries(NDVI, LST, Image_date[i], 

low_thrh_delete[i], high_thrh_delete[i], Percentile_thrh, classes, 

NDVI_min, NDVI_max, nbins) 

 

    # Saving the objects: 

    with 

open('C:\Python_projects\Thesis\Trapezoid\Module_3\Pixel_envelope_boundarie

s_%s.pkl' %(Image_date[i]), 'wb') as f: 

        pickle.dump([Projection, LST, NDVI, polygons, nbins, xi, yi, zi], 

f) 

 

Module 3B: Pixel envelope boundaries function 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import stats 

from shapely.geometry.polygon import Polygon 

from Trapezoid.Module_3.Boxplot_outlier import Boxplot_outlier 

from scipy.stats import kde 

 

def Class_boundaries(NDVI, LST, Image_date, low_thrh_delete, 

high_thrh_delete, Percentile_thrh, classes, NDVI_min, NDVI_max, nbins): 

    """ 

    Function to determine the boundary lines for each class 

    :param Image_date: Date of image (2018_07_26) 

    :param Median_thrh: Number of points to determine the median value of 

top and bottom boundary per bin 

    :param low_thrh_delete: Delete indices from points lower boundary in 

list form [] 

    :param high_thrh_delete: Delete indices from points upper boundary in 

list form [] 

    :param classes: Number of classes available for the data 

    :return: Set of y-coordinates (y_start,y_end) for a line, x-coordinates 

are generally (0,1) for NDVI 

    """ 

 

    # Determine high and low percentile values per bin 

    NDVI_split = [] 

    LST_split = [] 

    NDVI_LST = [] 

    NDVI_LST_low = [] 

    NDVI_LST_high = [] 

    LST_min_list = [] 

    LST_max_list = [] 

    for i in range(0, 10): 

        NDVI_idx = np.where((NDVI >= i / 10.0) & (NDVI < i / 10.0 + 0.1)) 

        NDVI_split.append(NDVI[NDVI_idx[0], NDVI_idx[1]]) 

        LST_split.append(LST[NDVI_idx[0], NDVI_idx[1]]) 

 

        # Determine outliers based on boxplot theory 



 

126 
 

        if len(LST_split[i]) != 0: 

            LST_min, LST_max = Boxplot_outlier(LST_split[i]) 

            LST_min_list.append(LST_min) 

            LST_max_list.append(LST_max) 

            LST_split[i][LST_split[i] < LST_min] = np.nan 

            LST_split[i][LST_split[i] > LST_max] = np.nan 

        else: 

            LST_min_list.append(np.nan) 

            LST_max_list.append(np.nan) 

 

        NDVI_LST.append((np.array(NDVI_split[i]), np.array(LST_split[i]))) 

        NDVI_LST[i] = np.asarray(NDVI_LST[i]) 

        NDVI_LST[i] = np.ndarray.transpose(NDVI_LST[i]) 

        mask = ~np.isnan(NDVI_LST[i][:, 0]) & ~np.isnan(NDVI_LST[i][:, 1]) 

        NDVI_LST[i] = NDVI_LST[i][mask] 

 

        # Calculate percentile value of top/bottom values 

        if len(NDVI_LST[i]) > 0: 

            NDVI_LST_high.append(np.percentile(NDVI_LST[i], (100-

Percentile_thrh), axis=0)) 

            NDVI_LST_low.append(np.percentile(NDVI_LST[i], Percentile_thrh, 

axis=0)) 

 

    # Remove boxplot outlier values 

    LST_min = np.nanmin(LST_min_list) 

    LST[LST < LST_min] = np.nan 

    LST_max = np.nanmax(LST_max_list) 

    LST[LST > LST_max] = np.nan 

 

    # Remove nan values and transform to array 

    NDVI_LST_low = np.asarray(NDVI_LST_low) 

    mask = ~np.isnan(NDVI_LST_low[:, 0]) & ~np.isnan(NDVI_LST_low[:, 1]) 

    NDVI_LST_low = NDVI_LST_low[mask] 

 

    NDVI_LST_high = np.asarray(NDVI_LST_high) 

    mask = ~np.isnan(NDVI_LST_high[:, 0]) & ~np.isnan(NDVI_LST_high[:, 1]) 

    NDVI_LST_high = NDVI_LST_high[mask] 

 

    # fit line through points left after threshold 

    NDVI_LST_low_thrh = np.delete(NDVI_LST_low, low_thrh_delete, axis=0) 

    slope_low, intercept_low, r_value_low, p_value_low, std_err_low = 

stats.linregress(NDVI_LST_low_thrh[:, 0], NDVI_LST_low_thrh[:, 1]) 

    y2_low = slope_low * NDVI_max + intercept_low 

 

    NDVI_LST_high_thrh = np.delete(NDVI_LST_high, high_thrh_delete, axis=0) 

    slope_high, intercept_high, r_value_high, p_value_high, std_err_high = 

stats.linregress(NDVI_LST_high_thrh[:, 0], NDVI_LST_high_thrh[:, 1]) 

    y2_high = slope_high * NDVI_max + intercept_high 

 

    LST1_high = slope_high * NDVI_min + intercept_high 

    LST2_high = slope_high * NDVI_max + intercept_high 

 

    LST1_low = slope_low * NDVI_min + intercept_low 

    LST2_low = slope_low * NDVI_max + intercept_low 

 

    lineset = [] 

    lineset.append([LST1_low, LST2_low]) 

    line_start_incr = (LST1_high - LST1_low) / (classes - 2) 

    line_end_incr = (LST2_high - LST2_low) / (classes - 2) 

    for i in range(classes - 2): 

        line_start = lineset[i][0] + line_start_incr 
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        line_end = lineset[i][1] + line_end_incr 

        lineset.append([line_start, line_end]) 

    lineset = np.asarray(lineset) 

 

    polygons = [] 

    for i in range(len(lineset)): 

        if i == 0: 

            polygons.append(Polygon( 

                [(NDVI_min, lineset[i, 0]), (NDVI_min, LST_min), (NDVI_max, 

LST_min), (NDVI_max, lineset[i, 1])])) 

        elif i == len(lineset) - 1: 

            polygons.append(Polygon( 

                [(NDVI_min, lineset[i - 1, 0]), (NDVI_min, lineset[i, 0]), 

(NDVI_max, lineset[i, 1]), 

                 (NDVI_max, lineset[i - 1, 1])])) 

            polygons.append(Polygon( 

                [(NDVI_min, LST_max), (NDVI_min, lineset[i, 0]), (NDVI_max, 

lineset[i, 1]), (NDVI_max, LST_max)])) 

        else: 

            polygons.append(Polygon( 

                [(NDVI_min, lineset[i - 1, 0]), (NDVI_min, lineset[i, 0]), 

(NDVI_max, lineset[i, 1]), 

                 (NDVI_max, lineset[i - 1, 1])])) 

 

    # Create arrays 

    NDVI_array = np.reshape(NDVI, (NDVI.size, 1)) 

    LST_array = np.reshape(LST, (LST.size, 1)) 

 

    # Create dataset 

    data = np.hstack((NDVI_array, LST_array)) 

    mask = ~np.isnan(data[:, 0]) & ~np.isnan(data[:, 1]) 

    data = data[mask] 

    x, y = data.T 

 

    # Evaluate a gaussian kde on a regular grid of nbins x nbins over data 

extents 

    k = kde.gaussian_kde(data.T) 

    xi, yi = np.mgrid[x.min():x.max():nbins * 1j, y.min():y.max():nbins * 

1j] 

    zi = k(np.vstack([xi.flatten(), yi.flatten()])) 

 

    #Make density plot of LST-NDVI field along with class polygons 

    fig, ax = plt.subplots() 

    ax.pcolormesh(xi, yi, zi.reshape(xi.shape), shading='gouraud', 

cmap=plt.cm.GnBu_r) 

    ax.contour(xi, yi, zi.reshape(xi.shape)) 

    plt.scatter(NDVI_LST_low_thrh[:, 0], NDVI_LST_low_thrh[:, 1], 

color='r') 

    plt.scatter(NDVI_LST_high_thrh[:, 0], NDVI_LST_high_thrh[:, 1], 

color='r') 

    for j in range(len(polygons)): 

        x, y = polygons[j].exterior.xy 

        plt.plot(x, y, color='k', alpha=0.25) 

    plt.title("NDVI-LST plot\n%s" % (Image_date)) 

    plt.xlabel("NDVI") 

    plt.ylabel("LST (K)") 

    ax.legend(loc = 'upper right') 

 

    return polygons, LST, xi, yi, zi 
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Module 3C: boxplot outlier function 

import numpy as np 

 

def Boxplot_outlier(Data): 

    Data_array = np.array(Data) 

    Data_array = Data_array[~np.isnan(Data_array)] 

    Data_sort = sorted(Data_array) 

    q1, q3 = np.percentile(Data_sort, [25, 75]) 

    iqr = q3 - q1 

    lower_bound = q1 - (1.5 * iqr) 

    upper_bound = q3 + (1.5 * iqr) 

    return lower_bound, upper_bound 
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Appendix J. SWI module 4  
Module 4A: Assign classes to pixels 

from Trapezoid.Module_4.Pixel_class_assign import Pixel_class_assign 

import rasterio 

import matplotlib.pyplot as plt 

import pickle 

import os 

import numpy as np 

 

#Input parameters 

Image_date = ["2018_03_20", "2018_04_21", "2018_05_07", "2018_07_03", 

"2018_07_26"] 

Image_date_adj = ["20-03-2018", "21-04-2018", "07-05-2018", "03-07-2018", 

"26-07-2018"] 

CropType = ["Sugarbeet", "Winterwheat"] 

CropType_adj = ["sugar beet", "winter wheat"] 

buff_dist = -60 

 

for i in range(len(Image_date)): 

    # Open dataset from module 3 

    with 

open('C:\Python_projects\Thesis\Trapezoid\Module_3\Pixel_envelope_boundarie

s_%s.pkl' % (Image_date[i]),'rb') as f: 

        Projection, LST, NDVI, polygons, nbins, xi, yi, zi = pickle.load(f) 

 

    for j in range(len(CropType)): 

        # Read in land use data 

        NDVI_crop_path = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output\NOP\%s\%s\Ou

tput_vegetation\NDVI_buffer\Merged_NDVI\%s_merged_NDVI_buffer_%i.tif" 

%(Projection, Image_date[i], CropType[j], buff_dist) 

        with rasterio.open(NDVI_crop_path) as img: 

            NDVI_crop = img.read(1, masked=True) 

 

        LST_crop_path = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output\NOP\%s\%s\Ou

tput_vegetation\LST_buffer\Merged_LST\%s_merged_LST_buffer_%i.tif" 

%(Projection, Image_date[i], CropType[j], buff_dist) 

        with rasterio.open(LST_crop_path) as img: 

            LST_crop = img.read(1, masked=True) 

            raster_meta = img.meta.copy() 

 

        # Creating new folder for croptype 

        dir_name = "LST_NDVI" 

        Output_property_field = 

os.path.join(r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output

\NOP\%s\%s\Output_vegetation"  %(Projection, Image_date[i]), dir_name) 

        if not os.path.exists(Output_property_field): 

            os.makedirs(Output_property_field) 

 

        #Apply pixel class assign function 

        Class_data = Pixel_class_assign(LST_crop, NDVI_crop, polygons) 

 

        #Write results to .tif file 

        Output_tif = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output\NOP\%s\%s\Ou

tput_vegetation\LST_NDVI\%s_LST_NDVI_classes_%s.tif" %(Projection, 

Image_date[i], CropType[j], Image_date[i]) 

        with rasterio.open(Output_tif, 'w', **raster_meta) as dst: 
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            dst.write(Class_data, 1) 

 

        #Make density plot of LST-NDVI field along with class polygons 

        fig, ax = plt.subplots() 

        ax.pcolormesh(xi, yi, zi.reshape(xi.shape), shading='gouraud', 

cmap=plt.cm.GnBu_r) 

        ax.contour(xi, yi, zi.reshape(xi.shape)) 

        ax.scatter(NDVI_crop, LST_crop, color='r', alpha=0.1, label="%s 

pixels" %(CropType_adj[j])) 

        for k in range(len(polygons)): 

            x, y = polygons[k].exterior.xy 

            plt.plot(x, y, color='k', alpha=0.25) 

        plt.title("NDVI-RCT plot %s\n%s" % (CropType_adj[j], 

Image_date_adj[i])) 

        plt.xlabel("NDVI") 

        plt.ylabel("RCT (K)") 

        ax.legend(loc = 'upper right') 

 

        #Save figure to .png file 

        figure_output = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output\NOP\%s\%s\Ou

tput_vegetation\LST_NDVI\%s_NDVI_LST_space.png" %(Projection, 

Image_date[i], CropType[j]) 

        plt.savefig(figure_output) 

 

Module 4A: Assign classes to pixels function 

from shapely.geometry import Point 

import numpy.ma as ma 

import numpy as np 

 

def Pixel_class_assign(LST_crop,NDVI_crop, polygons): 

    """ 

    Assign each pixel to class of wetness 

    :param LST_crop: relative land surface temperature compared to the 

instantaneous air temperature of crop specific pixels 

    :param NDVI_crop: normalized difference vegetation index of crop 

specific pixels 

    :param polygons: classes of wetness 

    :return: masked array of classvalue per pixel and density plot 

parameters 

    """ 

 

    # Assign pixels to a class based on polygons from Module 3 

    NDVI_data = ma.getdata(NDVI_crop) 

    LST_data = ma.getdata(LST_crop) 

    class_data = np.copy(LST_data) 

    for i in range(NDVI_data.shape[0]): 

        for j in range(NDVI_data.shape[1]): 

            if NDVI_data[i,j] == -9999 or LST_data[i,j] == -9999: 

                class_data[i, j] == np.nan 

            else: 

                for k in range(len(polygons)): 

                    point = Point(NDVI_data[i,j], LST_data[i,j]) 

                    if polygons[k].contains(point): 

                        class_data[i,j] = k+1 

 

    class_data = ma.masked_values(class_data, -9999) 

 

    return class_data 

 



 

131 
 

Appendix K. SWI module 5  
Module 5: Validation 

import rasterio 

import matplotlib.pyplot as plt 

import numpy as np 

from scipy.stats import kde 

from Trapezoid.Metadatafile_reader import build_data 

from datetime import datetime 

import os 

import glob 

 

Image_date = ["2018_04_21", "2018_05_07", "2018_07_03", "2018_07_26"] 

Image_date_adj = ["21-04-2018", "07-05-2018", "03-07-2018", "26-07-2018"] 

CropType = ["Sugarbeet", "Winterwheat"] 

CropType_adj = ["sugar beet", "winter wheat"] 

number_classes = 20 

nbins = 100 

 

for i in range(len(Image_date)): 

    # Determining the input parameters from metadatafile 

    LANDSAT8_metadata_dir = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_input\Landsat8\%s" 

% (Image_date[i]) 

    file_name = os.path.join(LANDSAT8_metadata_dir, "*[_MTL].txt") 

    file_path = glob.glob(file_name) 

    f = open(file_path[0], 'r')  # open file for reading 

    data = build_data(f) 

    UTM_zone = int(data["UTM_ZONE"]) 

    Projection = "EPSG326%s" % (UTM_zone) 

    Resolution = int(data["GRID_CELL_SIZE_REFLECTIVE"][0:2]) 

    Date = data["DATE_ACQUIRED"] 

    adate = datetime.strptime(Date, "%Y-%m-%d") 

    DOY = adate.timetuple().tm_yday 

    Year = adate.timetuple().tm_year 

    for j in range(len(CropType)): 

        Classes_dir = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output\NOP\%s\%s\Ou

tput_vegetation\LST_NDVI\%s_LST_NDVI_classes_%s.tif" %(Projection, 

Image_date[i], CropType[j], Image_date[i]) 

        with rasterio.open(Classes_dir) as img: 

            Classes = img.read(1) 

 

        Classes[Classes>number_classes] = np.nan 

        Classes[Classes<0] = np.nan 

 

        SM_dir = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output\NOP\%s\%s\Ou

tput_soil_moisture\SOM_buffer\Merged_SOM\%s_merged_SOM_buffer_-60.tif" 

%(Projection, Image_date[i], CropType[j]) 

        with rasterio.open(SM_dir) as img: 

            SM = img.read(1) 

 

        SM[SM>1] = np.nan 

        SM[SM<0] = np.nan 

 

        # Create arrays 

        Classes_array = np.reshape(Classes, (Classes.size, 1)) 

        # Classes_array = abs(Classes_array - number_classes) + 1 

        SM_array = np.reshape(SM, (SM.size, 1)) 
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        # Create dataset 

        data = np.hstack((SM_array, Classes_array)) 

        mask = ~np.isnan(data[:, 0]) & ~np.isnan(data[:, 1]) 

        data = data[mask] 

        x, y = data.T 

 

        # Evaluate a gaussian kde on a regular grid of nbins x nbins over 

data extents 

        k = kde.gaussian_kde(data.T) 

        xi, yi = np.mgrid[x.min():x.max():nbins * 1j, y.min():y.max():nbins 

* 1j] 

        zi = k(np.vstack([xi.flatten(), yi.flatten()])) 

 

        # Make density plot of LST-NDVI field along with class polygons 

        fig, ax = plt.subplots() 

        ax.pcolormesh(xi, yi, zi.reshape(xi.shape), shading='gouraud', 

cmap=plt.cm.GnBu_r) 

        ax.contour(xi, yi, zi.reshape(xi.shape)) 

        plt.title("Soil moisture vs. soil wetness indicator\n%s %s" % 

(CropType_adj[j], Image_date_adj[i])) 

        plt.xlabel("Soil moisture content [-]") 

        plt.ylabel("Soil wetness indicator [-]") 

 

        #Save figure to .png file 

        figure_output = 

r"C:\Users\TUDelftSID\Documents\Thesis\Data\SEBAL\SEBAL_output\NOP\%s\%s\Ou

tput_vegetation\LST_NDVI\%s_SM_SWI_space.png" %(Projection, Image_date[i], 

CropType[j]) 

        plt.savefig(figure_output) 
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Appendix L. SoilGrids30m principal 

component results  
Contribution explanatory variables to each principal component for clay content

 

Figure L.1 Contribution significant explanatory variables to principal component 2 for clay content 
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Figure L.2 Contribution significant explanatory variables to principal component 3 for clay content 

 

Figure L.3 Contribution significant explanatory variables to principal component 4 for clay content 
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Figure L.4 Contribution significant explanatory variables to principal component 5 for clay content 

 

Figure L.5 Contribution significant explanatory variables to principal component 6 for clay content 
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Figure L.6 Contribution significant explanatory variables to principal component 7 for clay content 

 

Figure L.7 Contribution significant explanatory variables to principal component 8 for clay content 
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Figure L.8 Contribution significant explanatory variables to principal component 9 for clay content 

Contribution explanatory variables to each principal component for organic matter 
content 

 
Figure L.9 Contribution significant explanatory variables to principal component 2 for organic matter content 
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Figure L.10 Contribution significant explanatory variables to principal component 3 for organic matter content 

 
Figure L.11 Contribution significant explanatory variables to principal component 4 for organic matter content 
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Figure L.12 Contribution significant explanatory variables to principal component 5 for organic matter content 

 
Figure L.13 Contribution significant explanatory variables to principal component 6 for organic matter content 
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Appendix M. SWHC-SM boxplots  
Boxplot sugar beet 

 

Figure M.1 Boxplot soil moisture vs. soil water holding capacity, 21-04-2018 sugar beet 

 

Figure M.2 Boxplot soil moisture vs. soil water holding capacity, 07-05-2018 sugar beet 
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Figure M.3 Boxplot soil moisture vs. soil water holding capacity, 03-07-2018 sugar beet 
Boxplot winter wheat 

 

Figure M.4 Boxplot soil moisture vs. soil water holding capacity, 20-03-2018 winter wheat 
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Figure M.5 Boxplot soil moisture vs. soil water holding capacity, 21-04-2018 winter wheat 

 

Figure M.6 Boxplot soil moisture vs. soil water holding capacity, 07-05-2018 winter wheat 
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Figure M.7 Boxplot soil moisture vs. soil water holding capacity, 26-07-2018 winter wheat 
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Appendix N. SWI NDVI-RCT plot  
NDVI-RCT plot sugar beet 

 

Figure N.1 NDVI-RCT plot sugar beet 20-03-2018 

 

Figure N.2 NDVI-RCT plot sugar beet 21-04-2018 
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Figure N.3 NDVI-RCT plot sugar beet 07-05-2018 

NDVI-RCT plot winter wheat 

 

Figure N.4 NDVI-RCT plot winter wheat 20-03-2018 
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Figure N.5 NDVI-RCT plot winter wheat 26-07-2018 


