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Abstract
The relationship between real-world traffic and pavement raveling is unclear and
subject to ongoing debates. This research proposes a novel approach that extends
beyond traditional correlation analyses to explore causal mechanisms between
mixed traffic and raveling. This approach incorporates the causal discovery
method, and is applied to five Dutch porous asphalt (PA) highway sites that have
substantial data sets. Findings indicate a nonlinear relationship between traffic
volume and raveling, with road age emerging as a shared contributor. The results
also suggest that the degree towhich different vehicle types contribute as a causal
factor for raveling varies with carriageway configurations and lane characteris-
tics. This underlines the need for targeted maintenance strategies. Challenges
remain due to confounding correlations among traffic variables, necessitating
further development of causal discoverymodels. This studymay not conclusively
resolve the debate on to what extent traffic contributes to raveling, but we argue
we provide sufficient evidence against rejecting this hypothesis.

1 INTRODUCTION

Maintaining high-quality pavement performance is a
fundamental need for facilitating effective road transporta-
tion. Because of various kinds of distresses, performance
deteriorates over time. Raveling—the dislodgement of
aggregates from a pavement surface—stands out as a
primary form of damage to porous asphalt (PA) pavements
(Zhang et al., 2016). Such pavements are widely used
across the Netherlands, Japan, New Zealand, France,
Germany, Italy, and Spain. PA pavements are favored for
their noise reduction properties (Donavan, 2014; Ghafoori,
2019), enhanced safety in wet conditions (Takahashi,
2013), and other benefits associated with their high poros-
ity (Wang et al., 2021). A comprehensive understanding of
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raveling is of a vital importance for these road authorities
to preserve road quality and optimize maintenance costs.
The susceptibility of pavement to raveling is generally

understood to be strongly associated with its mix design,
construction quality, and the environmental conditions
(Abouelsaad & White, 2021). It is probably for this reason
that existing raveling studies have primarily concentrated
on material variants (Mo et al., 2010, 2014; Van Loon &
Butcher, 2003; You et al., 2018), production and paving
specifications (Kuennen, 2013; Van Reisen et al., 2008; You
et al., 2018), and aging process (Hagos, 2008; Jing, 2019;
Opara et al., 2016).
While the factors have been extensively explored, traffic

generating shear forces that can lead to aggregate dislodge-
ment (De Visscher & Vanelstraete, 2017; Kuennen, 2013;
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Zhang et al., 2020) has not been deeply delved into apart
from the effects of traffic axle loads (Ghadi et al., 2023).
Simulating traffic affecting raveling involves challenges
(Nicholls et al., 2019). A key difficulty is accurately repli-
cating the traffic and environmental conditions to which
a pavement is exposed (Barzegari & Solaimanian, 2019;
Zhang et al., 2020). The variability of traffic patterns and
real-world conditions, combined with the fact that ravel-
ing is a process that unfolds over several years, requires
the generation of numerous elements for a realistic simula-
tion. The requirement dramatically increases the demand
for computational power and time (Hospodka & Hofko,
2019). Although advancements in collecting observational
data offer potential solutions to the issue, the relationship
between traffic and raveling remains inconclusive and is
subject to ongoing discussion. Many field analyses sug-
gest a positive correlation between traffic flow and raveling
(Jain et al., 2005; Miradi, 2009). However, these findings
are not undisputed. Henning and Roux (2012) investigated
the open-graded PA in New Zealand and did not find
significant correlations between axle loads and initiation
of raveling. Similarly, Abouelsaad and White (2020) con-
cluded that traffic flow was not necessarily a contributing
factor to raveling, as instances of raveling were observed
on runway pavements both with and without substantial
traffic. Nicholls et al. (2016) presented that traffic played
a significant role in early-stage raveling, especially due
to intense shear forces at the tire–pavement interface,
commonly observed on newly constructed roundabouts.
However, its contribution to long-term raveling appeared
to diminish, with factors like aging and weather taking
precedence. As such, current evidence for the relationship
between traffic and raveling is not only inconclusive, but it
is also characterized by varied interpretations.
To contribute to the discussion, this study proposes

an innovative approach to examine the causal mecha-
nisms between raveling and traffic using (a) large amounts
(multiple years) of observational data and (b) a novel com-
bination of causal discovery techniques. Traditionally, the
relationship between raveling and traffic are investigated
by laboratory tests and correlation-basedmodels, but these
approaches have limitations in providing conclusive evi-
dence. Laboratory experiments necessarily oversimplify
actual traffic conditions, particularly in terms of simu-
lating a pavement’s long-term exposure to varying traffic
conditions. Observational studies (using field data), even
when employing advanced machine learning models as
elucidated by Attoh-Okine (2001), primarily find correla-
tions. They are valuable, but also inconclusive in terms
of evidence for causal patterns. This limits their ability to
differentiate between direct causes, indirect causes, and
(confounding) variables that are correlated to the direct or
indirect causes, but are not causative themselves.

Therefore, the study proposes causal discovery to delve
deeper into causal aspects of the relationship between traf-
fic and raveling. Causal discovery is a data-driven approach
to examine whether causal relationships between vari-
ables are plausible (Glymour et al., 2019). Limited models
have been applied to learn causal effects from perfor-
mance (Cai et al., 2023) and rutting data (Zhang et al.,
2023), but there is a gap in raveling research. Vari-
ous models have emerged with distinct methodologies.
Constraint-based models infer causal structures by test-
ing for (in)dependencies observed in the data set (Guo
et al., 2020). Score-based models, on the other hand, eval-
uate causal structures based on how well they fit the
data, assigning scores to reflect this fit (Guo et al., 2020).
Both types have their roots in frameworks developed for
Gaussian distributions (Shimizu et al., 2006). In con-
trast, functional causal models (FCMs) are designed with
non-Gaussian data in mind, positing that causal relation-
ships manifest as mathematical functions of the variables
involved (Glymour et al., 2019). Besides, such a model
can also quantify causal effects, which is known as causal
inference (Glymour et al., 2019).
Causal discovery and inference models have undergone

significant evolution to reduce model requirements and
expand their applicability. One of the original constraint-
based models, the Peter–Clark (PC) algorithm has been
refined to accommodate latent variables (Spirtes et al.,
1999), enhance computational speed (Colombo et al., 2012),
and adaptively handle time-series data (Huang et al.,
2020). The score-basedmodels such asGreedyEquivalence
Search (GES) (Chickering, 2002) have been extended to
achieve faster computation speed, using the strengths of
constraint-based models (Ogarrio et al., 2016). The Lin-
ear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu
et al., 2006), a fundamental FCM, has been developed
into two directions. The first emphasizes rapid compu-
tation (Shimizu et al., 2011), and relaxes the constraints
on variables, removing the strict necessity for them
to be independent and identically distributed (Hyväri-
nen et al., 2010). The second direction has tailored
LiNGAM to handle nonlinear cases (Zhang & Hyväri-
nen, 2012), without relying on Markov equivalent class
(Hoyer et al., 2008; Peters et al., 2014), and incorpo-
rating latent variables (Maeda & Shimizu, 2022; Xie
et al., 2020).
Based on the model requirements and assumptions,

the research outlines criteria for selecting an appropri-
ate model to investigate causal relationships, specifically
aimed at assisting researchers in identifying the most suit-
able causal discovery models for their particular cases. By
the criteria, the study identifies the most fitting model for
analyzing observational data related to raveling and traffic.
The proposed criteria are as follows:
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WANG et al. 3

TABLE 1 Characteristics of causal discovery models regarding the selection criteria.

Causal discovery models I.I.D.
Causal
sufficiency Gaussian

Markov
condition Linearity

NP-
hardness

Peter–Clark (PC) (Spirtes et al., 2000) y y y y y
CD-NOD (Huang et al., 2020) y y y
Fast Causal Inference (FCI) (Spirtes et al., 1999) y y y y
Really Fast Causal Inference (RFCI) (Colombo et al., 2012) y y y
Greedy Fast Causal Inference (GFCI) (Ogarrio et al., 2016) y y y
Greedy Equivalence Search (GES) (Chickering, 2002) y y y y y
Bayesian network structure search (Yuan & Malone, 2013) y y y y y
REgression with Subsequent Independence Test (RESIT)
(Peters et al., 2014)

y y y y y

Linear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu
et al., 2006)

y y y y y

Direct LiNGAM (Shimizu et al., 2011) y y y y
Vector Autoregression Model LiNGAM (VAR-LiNGAM)
(Hyvärinen et al., 2010)

y y y y

Post-NonLinear (PNL) (Zhang & Hyvärinen, 2012) y y y y
Additive Noise Model (Hoyer et al., 2008) y y y
Repetitive Causal Discovery (RCD) (Maeda & Shimizu, 2022) y y
Generalized Independent Noise (GIN) (Xie et al., 2020) y y

1. Independent and identically distributed random vari-
ables (I.I.D.).

2. Causal sufficiency, that is, no latent variables exist.
3. Gaussian: the variables have Gaussian distributions.
4. Markov condition: variables only depend on the parent

variables and not on variables further up the “ancestral”
chain.

5. Linearity: it is assumed that the functions of variables
are linear. (this criterion only applies to FCMs),

6. non-deterministic polynomial-time hardness: the com-
putation power or time needed to produce a result
substantially increases as the number of variables
grows. Those models developed with the aim of fast
computation are NP-hardness-free.

In Table 1, the “y” cells refer to that the models require
the criteria, whereas the blank cells indicate the criteria
are not required. Table 1 is by no means an exhaustive
list, but a collection of the algorithms that come from a
review paper (Glymour et al., 2019). It is highlighted that
commonly agreed-upon assumptions in the domain of
causal discovery, such as acyclicity (i.e., causal structure
can be represented by directed acyclic graph [DAG]) and
faithfulness (i.e., all conditional independences in true
underlying distribution are represented in DAG) are not
in the selection criteria. Because the models share these
features and do not differ in these regards. More detailed
descriptions of these shared assumptions and DAG can

be found in previous studies (Glymour et al., 2019; Spirtes
et al., 2000). Apart from these assumptions, certain model
variations are excluded. For constraint-based models,
these variations include different conditional indepen-
dence tests, while for score-based models, they involve
different score functions and optimization functions. For
example, the original GES (Chickering, 2002) is equipped
with the score function of Bayesian information criterion
and the local optimization of the greedy algorithm, and
its variants employ generalized score (Huang et al., 2018),
global optimization (Silander & Myllymaki, 2012), and
shortest path (Yuan & Malone, 2013). These distinctions,
however, are not criteria for selection, as they do not
significantly expand model applications.
The research develops the causal discovery model to

discern plausible causal relationships between the fac-
tors, offering a methodological advancement over con-
ventional statistical approaches. The traditional methods
widely adopted by road agencies fall short in distinguish-
ing between mere correlation and genuine causation, a
limitation that the proposed model aims to rectify. The
approach determines whether traffic mix and overall
volume directly cause raveling in a given field. By con-
trolling for influencing factors unrelated to traffic, such
as those tied to materials, structure, and weather, the
research pinpoints the traffic cause of raveling, poten-
tially enhancing raveling prediction and maintenance
strategies.
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4 WANG et al.

F IGURE 1 Methodological framework.

1.1 Paper organization

This paper is organized to showcase the novel approach
in analyzing the causal mechanisms between raveling and
traffic: It begins with a comprehensive review of promi-
nent causal discovery models, establishing a selection
criteria tailored to address the specific needs of model
application. This sets the stage for the methodological
part of the study, where models and tests are meticulously
detailed. Next, the paper delves into the data section,
explaining the processes of data extraction, cleaning, and
selection of the study areas. Following this, the results and
discussions section interprets the findings and contextu-
alizes them within the existing body of knowledge. Lastly,
conclusions are presented.

2 METHODOLOGY

This study presents a comprehensive framework to
examine the causal relationship between raveling and
mixed traffic, as depicted in Figure 1. The requisite data

encompass variables such as raveling, mixed traffic flow,
velocity, location, time, and nontraffic conditions, includ-
ing but not limited to material composition, and structural
and climatic factors.
The methodology begins with the control for nontraf-

fic conditions, through the selection of pavements that
exhibit uniform nontraffic attributes. The step is essential
in causal inference as it mitigates the influence of potential
confounders on the primary relationship being examined.
The control for nontraffic conditions allows for the isola-
tion of the traffic-related effects on raveling. This approach
is particularly pertinent given that the real-world factors
contributing to raveling are diverse and simultaneously
present in road infrastructure.
With the varied spatial–temporal scales of input data

sets in mind, the framework includes the spatial–temporal
alignment model. This model is to tackle the challenge
that arises from the heterogeneity of the spatial–temporal
scales of raveling and traffic measurements, especially
the considerable difference in their temporal resolutions
(Wang et al., 2022). Traffic data are dynamic in the short
term, which is usually collected per minute or hour. Rav-
eling, indicating long-term road deterioration, is measured
over seasons and years. The use of adaptive smoothing and
alignment techniques are necessary to address this discrep-
ancy (Wang et al., 2022), ensuring that the temporal and
spatial dimensions of the data are compatible for analysis.
The alignment can introduce noise due to the loss

of information from long-term aggregation and potential
confounding variables over extended observation periods,
which may impact the outcomes of causal discovery. To
estimate these effects, (conditional) independence tests are
conducted on high-resolution temporal variables. Addi-
tionally, cyclic dependence tests are applied to address
the possibility of cyclic dependencies influencing causal
discovery. The estimated dependence relationships are fur-
ther considered to guide feature selection. Moreover, to
identify traffic-related variables that may causally influ-
ence raveling, feature selection also incorporates domain
knowledge and correlation testing.
Following feature selection, the methodological frame-

work proceeds with the selection and application of the
most appropriate causal discovery model. Model selection
is based on the criteria in Table 1, guiding the choice of
the model fitting the determined features. This research
employs the Constraint-based causal Discovery model
with heterogeneous/NOnstationary Data (CD-NOD)
proposed by Huang et al. (2020), for its robustness in
handling nonlinearity, non-Gaussianity, and nonstation-
ary data. The justification for preferring CD-NOD over
alternative models is detailed in Section 4.3, with the
model parameters set according to significance levels and
categories of time indices. Finally, this methodological
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WANG et al. 5

framework yields the causal graph that reveals the causal
relationships between raveling, traffic flow for different
vehicle classes, pavement age, and road type, offering a
nuanced understanding of the interplay between these
factors.

2.1 Control for nontraffic conditions

In raveling studies, attention is mainly drawn to two pri-
mary phenomena. The recent article by Abouelsaad and
White (2021) underscores these occurrences. The first phe-
nomenon involves the loss of fine aggregate, binder, and/or
filler, a process commonly attributed to aging and referred
to as fretting. The second phenomenon is identified by
the loss of coarse aggregate, which predominantly occurs
due to the action of vehicle tires. Fretting is seen as the
less severe version of raveling, whereas the loss of coarse
aggregate is consideredmore severe (Abouelsaad &White,
2021; Nicholls et al., 2015). It is obvious that in fields these
phenomena coexist, involving both traffic and nontraffic
factors. The nontraffic factors influencing raveling include
oxidative aging and environmental conditions, such as
ultraviolet radiation (Abouelsaad & White, 2020, 2021;
Hagos, 2008), rainfall (Abouelsaad & White, 2020, 2021;
Kringos & Scarpas, 2005; Nicholls et al., 2015; Thube et al.,
2006), and temperature variations (Abouelsaad & White,
2021; De Visscher & Vanelstraete, 2017; Huurman et al.,
2010; Mo et al., 2010). Material and structure properties
also play a vital role, encompassing the adhesion properties
of the bitumen-aggregate system, mixture gradation, and
binder film thickness (Abouelsaad &White, 2021; Nicholls
et al., 2015; Voskuilen et al., 2004).
To focus on the effects of mixed highway traffic,

pavements exhibiting similar nontraffic conditions are
selected. Considering the practical availability of the afore-
mentioned nontraffic variables, the requirements for the
selected pavements are as follows:

(1) The chosen pavements should exhibit uniformity in
both structure and material composition.

(2) The configurations of the selected pavements should
remain consistent throughout the observational
period.

(3) The selected pavements should undergo identical con-
struction andmaintenance processes to have compara-
ble levels of quality. When construction, maintenance
details, and quality assessments are challenging to
access, these criteria can be interpreted as select-
ing pavements constructed and maintained within
the same project time frame, under the assumption
that these pavements would have experienced similar
procedures and met the same quality standards.

(4) The chosen pavements should share similar exposure
to weather conditions. These include factors such as
temperature fluctuations, sunlight intensity, moisture,
precipitation, and frost.

This approach minimizes the effects of nontraffic fac-
tors, thereby yielding a more credible causal relationship
between traffic factors and raveling.

2.2 Spatial–temporal alignment model

The spatial–temporal alignment model, depicted in
Figure 1, is utilized to address the issues arising from
the heterogeneous spatial–temporal scales of raveling
and traffic measurements. The authors have previously
proposed a method to align data of raveling and traffic
to identical space and time units (Wang et al., 2022).
These units correspond to the larger resolutions of spatial
and time measurements. To provide a concise overview
and spare readers from referencing the original work,
this paper presents the main equations, encompassing
adaptive smoothing method (ASM) introduced by Treiber
and Helbing (2003), temporal alignment, and spatial
alignment. For an in-depth explanation, readers are
referred to the prior study (Wang et al., 2022).
The main equations, including nonlinear weight func-

tion, traffic count, and mean velocity calculations, are
central to ASM. Equation (1) formulates the continuous
traffic flow by integrating congested and free-flow con-
ditions through an adaptive weighting function. Traffic
counts for various vehicle types and their mean veloci-
ties are then combined as per Equations (2) and (3). These
counts are further detailed in matrix form in Equation (4),
while the velocity data are represented in Equation (5).

�̇�(𝜂, 𝑡𝑞) = 𝜔(𝑞cong, 𝑞free)𝑞cong(𝑞(𝑠, 𝑡), 𝑣(𝑠, 𝑡), 𝜂, 𝑡𝑞)

+ (1 − 𝜔(𝑞cong, 𝑞free))𝑞free(𝑞(𝑠, 𝑡), 𝑣(𝑠, 𝑡), 𝜂, 𝑡𝑞)
(1)

𝑞(𝑠, 𝑡) =

n∑
𝑘=1

𝑞k(𝑠, 𝑡) (2)

𝑣(𝑠, 𝑡) =

∑n

k=1
𝑞k(𝑠, 𝑡)𝑣k(𝑠, 𝑡)∑n

k=1
𝑞k(𝑠, 𝑡)

(3)

{
𝑞k(𝑠, 𝑡)

}
= 𝐐(𝑠, 𝑡) (4)

{
𝑣k(𝑠, 𝑡)

}
= 𝐕(𝑠, 𝑡) (5)

The notation used throughout the above equations is con-
sistent. The symbol �̇� denotes continuous traffic flow with
respect to space 𝜂 and time 𝑡𝑞. 𝜔 is the adaptive weight
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6 WANG et al.

factor, 𝑞cong and 𝑞free are the spatial–temporal lowpass
filters applied specifically to congested and free traffic,
respectively, 𝑞 denotes the total number of the vehicles at
the location 𝑠 during the time 𝑡, and 𝑣 indicates the mean
velocity of 𝑞. The weight 𝜔 ∈ [0, 1] depends upon the fil-
ters 𝑞cong and 𝑞free, according to the traffic theory that a
wave propagates upstream at a constant speed when traffic
is congested, and downstream at free speed in free traffic.
Both 𝑞cong and 𝑞free are derived from 𝑞 and its mean speed
𝑣, and the alignment scale of space 𝜂 and time 𝑡𝑞. 𝜂 is uni-
formly distributed, ranging from 𝑠 + Δ𝑠, 𝑠 + 2Δ𝑠, 𝑠 + 3Δ𝑠,
and so forth. 𝑡𝑞 is also uniformly distributed, ranging from
𝑡 + Δ𝑡, 𝑡 + 2Δ𝑡, 𝑡 + 3Δ𝑡, and so forth.Δ𝑠 andΔ𝑡 are the spa-
tial and temporal resolutions, respectively. 𝑞k represents
the vehicle counts of a kind k at the location 𝑠 during the
time 𝑡. Usually, traffic data collection systems define 𝑠 and
𝑡. 𝑣k is themean speed of a kind k of vehicles 𝑞k counted at
the location 𝑠 during the time 𝑡, and n denotes the number
of vehicle types. The matrices 𝐐 and 𝐕 represent the vehi-
cle counts and velocities, respectively, for various vehicle
types recorded at location 𝑠 and time 𝑡. These matrices can
be exported from traffic data collection systems.
A set of equations are used to align temporal scales of

data. The temporal alignmentmodel aggregates short-time
traffic flow into the target time resolution 𝜏, which corre-
sponds to raveling progression. The primary Equation (6)
computes the cumulative traffic flow 𝑞, consisting of all the
observed flows within the raveling time and an estimate of
flows without observation during this time. Equation (7)
calculates the average flow �̄�, representing the mean
traffic volume over a section during the observed period.

𝑞(𝜂, 𝜏) =

min(𝑡
𝑞
max,𝜏)∑

𝑡𝑞=𝑡
𝑞

min

�̇�(𝜂, 𝑡𝑞) + �̄�(𝜂)

⎛⎜⎜⎝
𝜏 −

min(𝑡
𝑞
max,𝜏)∑

𝑡
𝑞

min

𝑡𝑞
⎞⎟⎟⎠

(6)

�̄�(𝜂) =

∑T

𝑡𝑞=𝑡
𝑞

min
�̇�(𝜂, 𝑡𝑞)

∑T

𝑡𝑞=𝑡
𝑞

min
𝑡𝑞

, T ∈ (𝑡
𝑞

min, 𝑡
𝑞
max] (7)

where �̇� exported from ASM, denotes continuous traffic
flow regarding space 𝜂 and time 𝑡𝑞, 𝑡

𝑞

min
and 𝑡

𝑞
max are the

first and last measurements of 𝑡𝑞, and �̄� is an average flow
traversing on space 𝜂 of a given period T within the entire
observation from 𝑡

𝑞

min
to 𝑡

𝑞
max .

The subsequent Equation (8) determines the cumulative
flow for each vehicle type 𝑞k, assuming that the ratio of a
specific vehicle type to the total flow in a short but suffi-
cient observation period stays consistentwith that of a long
term. This assumption is validated by the research data and
by empirical knowledge of vehicle distribution through-
out road typology. The ratio Ẅk in Equation (9) specifies
the proportion of each vehicle type, calculated by the 𝑝-th

percentile function of the observed ratios 𝐖k.

𝑞𝑘(𝜂, 𝜏) = 𝑞(𝜂, 𝜏)�̈�𝑘(𝜂, 𝜏) (8)

�̈�𝑘(𝜂, 𝜏) = 𝑓(𝐖𝑘, 𝑝), (∀𝑠 ∈ 𝜂, ∀𝑡 ∈ 𝜏, 𝑤𝑘(𝑠, 𝑡) ∈ 𝐖𝑘)

(9)

where 𝑞 resulting from the temporal alignment model rep-
resents the cumulative flow of all vehicles at the space 𝜂

and 𝜏, and �̈�k denotes a set of the vehicle ratios of vehicle
type k corresponding to 𝜂 and 𝜏. 𝑓 is the 𝑝-th percentile
function, and 𝐖k is a set of vehicle ratios 𝑤k at locations 𝑠

within 𝜂 and time 𝑡 within 𝜏. The computation of 𝑤k is to
divide 𝑞k by 𝑞. It is noted that not all the data stations sup-
porting this research are upgraded to include the function
of exporting 𝑞k. In such cases, �̈�k is estimated bymultiply-
ing annual vehicle ratios with a lane vehicle distribution
index derived from the data (Van Beinum et al., 2018).
The spatial alignment model is employed to convert rav-

eling of a high spatial dimension to the resolution 𝜂 in
agreement with the traffic variables. The representative
value of raveling r̈ is computed using the formula given in
Equation (10) by a sample of raveling measured within the
defined space 𝜂.

𝑟(𝜂, 𝜏) = 𝑓(𝐑, 𝑝) (∀𝑠𝑟 ∈ 𝜂, 𝑟(𝑠𝑟, 𝜏) ∈ 𝐑) (10)

where 𝑓 is the 𝑝-th percentile function of a sample accord-
ing to descriptive statistics. In the computation of 𝑟, the
sample 𝐑 is a set of raveling measurements 𝑟 at time 𝜏 and
locations 𝑠𝑟, where 𝑠𝑟 are within space 𝜂.

2.3 Dependence tests

The alignment potentially influences the outcomes of
causal discovery due to the loss of information from
long-term aggregation and the emergence of confounding
variables over extended observation periods, introducing
data noise. To estimate the potential impacts and guide the
selection and redefinition of features in next step, depen-
dence tests are undertaken in two main steps. Initially,
influences of temporal aggregation on the variables are
estimated by (conditional) independence tests. Second, the
extent of dependencies, particularly cyclic ones, among
traffic variables are evaluated across varied time frames
through cyclic dependence tests.

2.3.1 (Conditional) independence tests

(Conditional) independence tests are conducted of the
variables with high dimensions, pertaining to traffic flows.
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WANG et al. 7

(Conditional) independence is set as the null hypothe-
sis 𝐻0 as shown in Equation (11), and the alternative
hypothesis 𝐻𝐴 in Equation (12) indicates (conditional)
dependence.

H0 ∶ 𝑥 ⟂⟂ 𝑦 ∣ 𝑧, 𝑥 ≠ 𝑦 ≠ 𝑧 (11)

HA ∶ 𝑥 ⟂̸⟂ 𝑦 ∣ 𝑧, 𝑥 ≠ 𝑦 ≠ 𝑧 (12)

where 𝑥, 𝑦 denote variables from the flow matrix 𝐐 or the
cumulative traffic flow 𝑞, and 𝑧 denotes a variable from 𝐐

or 𝑞 in a conditional independence test or an empty set in
an independence test.
To assess the strength of the evidence against the null or

alternative hypothesis, a significance level is set (typically
5% in this research), which is the threshold for determining
statistical significance. This level, chosen based on conven-
tional standards for hypothesis testing, is then compared
with the p-value of the tests. The p-value is derived using
the kernel conditional independence (KCI) test, as intro-
duced by Zhang et al. (2011). The KCI test is selected for
its proficiency in managing high-dimensional data and its
nonreliance on any assumptions regarding the underlying
data distributions. It functions by calculating the kernels
of data. The test statistic is calculated using the trace of the
matrix product by normalizing and multiplying the ker-
nels, and the p-value of the test is determined by a gamma
approximation according to the mean and variance of the
independent sample kernel values (Zhang et al., 2011).

2.3.2 Cyclic dependence tests

Cyclic dependence tests are conducted to detect depen-
dencies that form cycles, which could potentially distort
the outcomes of causal discovery. Identifying such recur-
ring dependencies is crucial for accurate causal analysis.
For these tests, the PC algorithm is utilized, as introduced
by Spirtes et al. (2000), which is grounded on hypothe-
sis testing exemplified by Equations (11) and (12). Under
the premise that the data satisfy the Markov condition and
faithfulness, these tests enable the construction of an undi-
rected independence graph G* and its DAG DAG* that
represents the interdependencies of traffic flow as:

(1) if 𝑥 ⟂⟂ 𝑦 ∣ 𝑧, 𝑥 and 𝑦 are separated by 𝑧 in G*,
(2) if 𝑦 ∉ 𝑃𝐴𝑥, ∀𝑒𝑥𝑦, 𝑒𝑦𝑧 ∈ G*, 𝑑𝑥𝑦, 𝑑𝑧𝑦 ∈DAG*,

where 𝑥, 𝑦, 𝑧 are nonidentical variables from the flow
matrix 𝐐 or the cumulative traffic flow 𝑞, 𝑃𝐴𝑥 denotes
the parent variable(s) of 𝑥 in the undirected independence
graph 𝐆 ∗, 𝑒𝑥𝑦 and 𝑒𝑦𝑧 indicate the edges 𝑥 – 𝑦 and 𝑦 – 𝑧,
respectively, and 𝑑𝑥𝑦 and 𝑑𝑧𝑦 are the directed edges 𝑥 → 𝑦

and 𝑧 → 𝑦, respectively. The edge such as 𝑒𝑥𝑦 illustrates the
existence of a causal relationship between variables, and
the directed edge 𝑑𝑥𝑦 shows 𝑥 is a direct cause of 𝑦. It is
highlighted that G* and DAG* have no unique solution if
a Markov equivalence class exists.

2.4 Feature selection

The process of feature selection serves as a critical step in
the methodological framework in Figure 1. The primary
objective of feature selection in this study is to identify
variables that demonstrate a potential causal relationship
with the outcome variable. Such identification aids in
uncovering the fundamental causes of the phenomena
under study. The secondary objective is to enhance the
overall performance of the causal discovery process by
focusing on the features that exhibit robustness against
both temporal aggregation and cyclic dependencies. To
this end, this section describes the step-by-step process
involved in selecting features for the causal discovery
model. The proper consideration of domain knowledge is
essential in identifying and classifying the pertinent fea-
tures linked to traffic and pavement raveling in the initial
phase of the feature selection process. Correlation testing
is then performed to further identify the variables showing
significant correlation with raveling. The final stage com-
prises a thorough examination of dependent tests to detect
any potential distortion due to the cumulative nature of
this study.

2.4.1 Domain knowledge

The initial phase of the feature selection process begins
with an appropriate consideration of domain knowledge,
which helps discerning and categorizing the relevant fea-
tures related to raveling and traffic factors. This step is
guided by established theoretical frameworks of statisti-
cal causal inference within the literature (Guo et al., 2020;
Peng & Xu, 2023), which delineate the key variables of a
causal model into treatments, outcomes, and confounders.
A treatment is assumed in a studied question to cause the
outcome, and a confounder refers to the confounding vari-
able that causally influences both the treatment and the
outcome (Guo et al., 2020; Peng & Xu, 2023). Within this
study framework, traffic flow is defined as the treatment,
while pavement raveling is characterized as the outcome.
A significant step is to identify potential confounders that
can influence both the treatment and the outcome.
The identification of confounders is according to

domain knowledge on raveling, as detailed in the recent
review articles (Abouelsaad & White, 2021; Nicholls et al.,
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8 WANG et al.

2015). A combination of traffic loads and aging is expected
to impact most raveling cases (Abouelsaad &White, 2021),
leading to the identification of vehicle classes and pave-
ment age as confounders. Therefore, a preliminary set
of features is determined: raveling, traffic flow, age, and
vehicle classes.

2.4.2 Correlation testing

Correlation testing is performed to ensure that the features
used in the model have strong correlation with raveling.
Spearman’s correlation coefficient is utilized to assess the
strength of the relationships among the preliminary fea-
tures, because the coefficient is well-suited to both linear
and nonlinear relationships, given its rank-based nature.

2.4.3 Analysis of dependence tests

A thorough analysis of the dependence tests is to verify if
the study’s cumulative nature might have introduced any
distortions. Given the relationships of dependence and
conditional dependence between traffic variables across
different levels of temporal aggregation, the focus is on
those features exhibiting consistent dependence relation-
ships, regardless of time aggregation. Two scenarios are
of particular interest. In one scenario, short-term traffic
variablesmay show dependence relationships that become
insignificant as aggregation extends toward long-term
pavement raveling progress. This phenomenon could
potentially be associated with information loss due to
temporal aggregation. In another scenario, relationships
between certain short-term traffic variables, initially
independent, may display dependence when aggregated
over the long term. This may be indicative of confounding
variables surfacing due to extended observation periods.
In terms of cyclic dependence, the ideal case is to

select features with none cyclic dependencies. However,
in instances where such dependence is inevitably present,
as is in this study, the strategy involves redefining the
features to reduce cyclic dependencies. For example, the
analysis uncovers cyclic dependencies among various
vehicle classes within traffic flow, requiring a decrease in
the number of considered vehicle classes to limit these
cyclic dependencies.

2.5 Model selection tests

This section presents the tests in relation to the proposed
model selection criteria in Table 1. The criteria and the

corresponding tests are designed for identifying the most
appropriate causal discovery models for a particular
scenario. Via the method, the study pinpoints the most
suitable model for analyzing observational data con-
cerning ravel and traffic. The tests leverage correlation
analyses and normality assessments. The tests can con-
firm whether a case study satisfies the conditions of I.I.D.,
Gaussian distribution, and linearity. Regarding the other
three criteria (i.e., causal sufficiency, Markov condition,
and NP-hardness), evaluations and certain assumptions
are formulated based on existing knowledge.

2.5.1 Independent and identically
distributed random variables

Two statistical tests are proposed to help differentiate
between I.I.D. and time-series characteristics: the correla-
tion between two consecutive measurements of a feature,
and the correlation between measurements of a feature
and its time sequence of measurements. Spearman’s cor-
relation coefficient is used for these tests because it is
not confined to linear relationships. If the correlations
are weak, the case study is assumed to fulfill the I.I.D.
requirement. Identifying I.I.D. characteristics is usually
also feasible based on the data generation process.

2.5.2 Linearity

𝑅2 of linear regression is a commonmeasure of linearity. To
identify if a studymeets the criterion of linearity, the linear
correlation of every dependent variable and the indepen-
dent variable is tested. When all the 𝑅2 are (roughly) equal
to 1, the study case has the characteristics of linearity.

2.5.3 Gaussian

A normality test is to identify if a sample follows Gaussian
distribution. Skewness and kurtosis are the widely used
indicators. According to the Fisher–Pearson definition,
skewness 𝑆 is formulated as the ratio of the third cumulant
to the 1.5th power of the second cumulant. The kurtosis 𝐾

(based on Fisher’s formula) is the fourth central moment
divided by the square of the variance and subtracted
by three. A standard Gaussian distribution has both
skewness and kurtosis of zero, and the closer the values
are to zero, the more analogous the variable is to Gaussian
distribution. Moreover, the condition of Gaussian is
met when all the features in a study case are (nearly)
normally distributed.
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WANG et al. 9

2.5.4 Causal sufficiency

In terms of causal sufficiency, no latent variable is the key
to satisfy this condition. According to the recent review
papers of raveling (Abouelsaad & White, 2021; Nicholls
et al., 2015), a few traffic factors are identified to be
related to raveling. This research supposed the knowl-
edge is sufficient, and investigates these factors as well as
the confounders.

2.5.5 Markov condition

The Markov condition assumes that the state of an entity
at a given moment depends only on its previous stage, dis-
regarding states from further in the past. The assumption
simplifies the analysis of time-series data bymitigating the
complexity involved in modeling temporal dependencies.
The assumption aligns with modeling pavement raveling,
as it mirrors the actual deterioration process: The extent
of future raveling is directly influenced by the current
condition, which itself evolved from previous states.
The assumption especially fits roads with maintenance
histories. Because after maintenance, the future condition
depends on the new state rather than the historical
condition sequence.
Building on the concept, causal discovery models oper-

ate on the premise that variables acting as children and
ancestors are independent, given the variables identified
as parents. The models equipped with Markov condition
construct a unique DAG when the assumption holds
(Spirtes et al., 2000). Thus, the suitability of a case for the
Markov condition can also be validated from the model
outcomes. The model selection for this study is made
based on the potential to choose the models that have the
restriction of Markov condition.

2.5.6 NP-hardness

TheNP-hardness problem indicates that finding a solution
becomes quickly infeasible as the number of variables
increases. Koivisto and Sood (2004) and Silander and
Myllymaki (2012) have presented the feasible cases with
26 and 33 variables. In practice, the influence of an
NP-hardness problem is related to computation power,
which is not a significant restriction with regard to the
workstations supporting this research.

2.6 Causal discovery based on CD-NOD

Based on the model selection test previously discussed,
the CD-NOD proposed by Huang et al. (2020) is chosen
as the suitable model to uncover the causal relationships

between traffic, raveling, and potential confounding vari-
ables. It has the capacity to analyze nonstationary data
where the underlying process changes across domains
and/or over time. Emerging from the foundational struc-
ture of the PC algorithm (elaborated in Section 2.3), this
model is designed to address changes in causal structures
over domain and/or time index. It functions based on the
model in Equation (13).

𝑣𝑖 = 𝑓𝑖 ( 𝑃𝐴𝑣𝑖
, 𝑔𝑖(𝜏∗), 𝜃𝑖(𝜏

∗), 𝜖𝑖 ) (13)

where for every variable 𝑣𝑖 , it is formulated as a function
𝑓𝑖 of its parent variable(s) 𝑃𝐴𝑣𝑖

, confounder(s) 𝑔𝑖 , param-
eters 𝜃𝑖 relating to time index 𝜏∗, and a disturbance term
𝜖𝑖 . In this research, 𝑣𝑖 denotes the flow of each vehicle
type and the traveling resulting from the spatial–temporal
alignment model. 𝜏∗ is the time index, obtained by dis-
cretizing time 𝜏 into given levels. For instance, given a
5-year interval, a road section in service for less than 5 years
receives a label of 1. If the section has been in service for
more than 5 but less than 10 years, it is labeled as 2, and
so forth.
This research implements three steps of the CD-NOD

developed by Huang et al. (2020). At first, it identifies the
(conditional) independence among variables and between
variables and confounders. As expressed in Equation (11)
and Equation (12), it conducts hypothesis tests for con-
ditional independence. In these tests, the variables 𝑥, 𝑦,
𝑧 refer to 𝑣𝑖; or one of the variables refer to 𝜂∗ or 𝜏∗

and the other two denote 𝑣𝑖 . Although the original CD-
NOD established by Huang et al. (2020) does not specify
a method of such a test, this study uses KCI (elabo-
rated in Section 2.3) because it is advanced with regard to
handling dimensionality and free from data distribution
assumptions. Second, it identifies the undirected indepen-
dence graph 𝐆. Section 2.3 describes how to illustrate an
undirected independence graph based on (in)dependence
relationships. CD-NOD adjusts the corresponding edges
in the graph when the changes in distribution shifts over
domain and time index is detected according to Equa-
tion (13). The last step is to estimate the causal directions
of 𝐆. Grounded in the PC algorithm, it determines causal
directions based on the detected graph and the conditional
independence, as elaborated in Section 2.3. Additionally,
CD-NOD constructs the changing causal module(s) in the
existence of domain and/or time indexes based on Hilbert
Schmidt Independence Criterion (HSIC) introduced by
Gretton et al. (2007).

2.7 Sensitivity analysis

The purpose of the sensitivity analysis in this study is
to ascertain how specific model inputs and parameters
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10 WANG et al.

TABLE 2 Summary of data used in the analysis.

Data Source Data type
Sampling
frequency Unit Features

Raveling (Van Aalst et al., 2023) Time series Annually % The ratio of the total lost aggregate area
to the measurement area per lane

Road (Rijkswaterstaat, 2016) Single data Once - Construction and maintenance date,
structure, material, geographical
location, number of lanes, and lane
type

Traffic (NDW, 2023) Time series Minutely Veh/h, km/h Flow, speed, and vehicle types
Vehicle Van Beinum et al. (2018) Time series Minutely m Vehicle positions and lengths

influence the results. The method used to assess the effect
of each road section is a comparative analysis of the causal
graphs obtained when a specific road section is included
versus when it is excluded. The similarity between the
graphs is estimated based on the cosine similarity of their
correspondingmatrices. The sensitivity of themodel to the
duration of the data collection period is also assessed by a
comparative study. It involves comparing the cosine simi-
larity of the causal graphs based on the data with varying
observation duration, ranging from 3 to 9 years. The sensi-
tivity analysis related to the CD-NOD parameter addresses
the time interval, which determines the time index 𝜏∗. The
sensitivity analysis employs intervals of 1, 3, and 5 years to
encompass the spectrum from short-term changes through
medium-term developments to long-term trends.

3 DATA

The research incorporates a wide range of raveling, road,
traffic, and vehicle data, shown in Table 2. The data used
in this study correspond to the roadways and time periods
where raveling data are available. In the supporting
database, the raveling data majorly come from the PA
networks given that PA is vulnerability to raveling. As
a result, the study areas are all PA pavements. The data
corresponding to the roadways and raveling measurement
periods are extracted from the other databases to ensure
consistency and validity. The extraction process generates
4302 raveling records, 492 road data entries, 1,895,287,910
traffic data entries, and 30,975 vehicle data entries.
The pavement selection ismade to alignwith the defined

requirements in Section 2.1. Pavements are grouped into
subsets based on the same structural and material types
at the same construction time. To maintain consistency
in configurations, the pavements with geographical
location changes are excluded. To meet the condition
of consistent environmental factors, the Dutch climate
database (Institute, 2023) is consulted to ensure that the
selected pavements are within one climatic zone. The data
include five areas of Dutch highways shown in Figure 2,

F IGURE 2 Five study areas on Dutch highways. Source:
Background map source: Rijkswaterstaat (2016).

representing a total distance of 18.6 km and encompassing
information gathered from 2012 to 2020. It is noted that
different areas are considered independently in the model.
It is highlighted that while the methodology is applied

to the PA sites in the study, it is not limited to any partic-
ular material type. The application requirement regarding
materials is that the chosen pavements exhibit uniformity
in both structure and material composition, as the first
requirement in Section 2.1.

3.1 Data cleaning

A data cleaning process is implemented to guaran-
tee the data consistency, validity, and relevance to the
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WANG et al. 11

proposed causal discovery model. This process is pivotal
in fostering a robust analysis of the intricate relationship
between mixed highway traffic and raveling. The proce-
dure unfolds in four distinct steps, which are delineated
in the succeeding subsections.

3.1.1 Data formatting

All data are processed to maintain consistent format-
ting, especially the date format across various data sets.
This procedural uniformity enhances the ease of data
manipulation and integrity throughout the research.

3.1.2 Handling missing data, duplicate data,
and outliers

Data irregularities can impede the accuracy of analyses.
The road data have some missing values, particularly in
road construction and maintenance records and road sur-
face material data, with 49 missing entries in the total 492
data points. Additionally, the traffic data contain minor
missing values—144 days missing in the 9-year total data.
The data are repaired by referring to more original data,
and as a result, 49 entries are replenished with pertinent
information. Themissing values of the traffic data are filled
by referencing the data of the previousweek if the duration
of gaps are less than a week. Longer missing periods are
addressed using a defined process encapsulated in Equa-
tion (6). Another problem is a small number of duplicate
values, predominantly in traffic data. These duplications
representing less than 0.1% of the total data volume are
removed. Outliers are detected in both road and traffic
data, especially where they do not conform to reasonable
maintenance times and speed values. These are treated
appropriately, with removal for road data and correction
of traffic data.

3.1.3 Data integration

Due to themultisource nature of the data, it is necessary to
amalgamate data from various sources into a unified data
set. An approach is employed where road segment infor-
mation is converted into BPS coding (WegenWiki, 2023), a
concatenation of road, direction, distance, lane, and time
fields. Through themethod, each data set can be accurately
matched according to the corresponding fields, enabling
effective data synthesis across multiple databases.

3.1.4 Data transformation

To better fit the proposed causal discovery model, spe-
cific transformations are performed. Measurement dates

of raveling and traffic data are converted to a correspond-
ing time variable, considering the specific time period for
each variable. For instance, the time period of raveling
takes into account the operation start of the road until the
measurement, incorporating road construction and main-
tenance records, and the time corresponding to traffic flow
is the interval between two successive measurements by
an inductive-loop traffic detector. Another transformation
converts the traffic flow per vehicle composition ratio into
the traffic flow per lane per vehicle composition ratio, thus
giving a lane-specific vehicle distribution that aligns with
the perceived traffic pattern on Dutch highways.

4 RESULTS AND DISCUSSION

The section presents the results from the main steps
examining the causal relationship betweenmixed highway
traffic and raveling. This investigation is based on 9-year
field measurements of the selected five PA highway sites.

4.1 Spatial–temporal alignment of
raveling and traffic data

The spatial–temporal alignment model is used to recon-
cile the considerable discrepancies in the spatial–temporal
units of raveling and traffic data. Raveling measurements,
being one-square-meter zonal data with cumulative time
series, are transformed to a spatial scale of 100-m sec-
tions per lane, maintaining its temporal scale. Traffic data,
originally point-based and noncumulative time series, are
adjusted to the same spatial scale while matching the tem-
poral scale of raveling data. The choice of 100-m segments
is because the corresponding pavement management sys-
tems commonly use hectometer (100-m) units, and traffic
variability is relatively low at smaller spatial scales. A
detailed discussion of alignment scales is available in the
previous work (Wang et al., 2022).
Figure 3 demonstrates the transformation of the raw rav-

eling and traffic measurements into the aligned data. Raw
raveling data and their proceeded data have similar pat-
terns, as Figure 3a and Figure 3b indicate. The traffic data
transformation from Figure 3c to Figure 3d shows that, at
the raveling progression time scale, traffic characteristics
become simpler. These characteristics include accumu-
lation increases with service time, and traffic variations
mainly correspond to distinct road configurations, such as
additional lanes for exiting ormerging into themain traffic
stream. Other fundamental characteristics, such as peri-
odicity, are generally observed at shorter scales, making
it challenging to estimate the relationship between them
and road deterioration. The method necessitates that raw
traffic data incorporate information both upstream and
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12 WANG et al.

F IGURE 3 Raw data (a, c) and processed (spatial–temporally aligned and smoothed) data (b, d) pertaining to raveling and traffic. An
example of the overtaking lane in Area I.

downstream of a study area (e.g., the raw data are from six
sensors inside Area I and two sensors at 300-m upstream
and downstream, respectively, in Figure 3c coordinates
−300 m and 6300 m).

4.2 Correlation and dependence
relationships between raveling and traffic
variables

The variables correlated with raveling that exhibit min-
imal cyclic dependencies, and thus are less influenced
by temporal aggregation are selected. Table 3 shows non-
linear correlations between raveling and various traffic

quantities calculated at the previous step. Strong corre-
lations (coefficients greater than.7) emerge when data
are lane-categorized and primarily on the main lanes.
Most correlations for the overtaking lanes are moderate,
between.20 and.65 suggesting influence of driving behav-
ior, the main difference between an overtaking and main
lane. However, data for long-term behavior across lanes
are not available for this study. To address this, the cat-
egorization of lanes (i.e., overtaking or main through
lanes) is considered, which determines driving behav-
ior. Variables correlating with raveling, such as road age,
total traffic volume, individual vehicle class volumes,
and lane categorization, are included in the subsequent
analysis.
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WANG et al. 13

TABLE 3 Spearman correlation coefficients and p-values for the relationships between raveling and traffic of all study areas.

Study
area Lane Total traffic Total cars Total trucks

Total short
trucks

Total long
trucks Road age

𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value 𝜌 p-value
I Overtaking .77 <.001 .77 <.001 .78 <.001 .78 <.001 .78 <.001 .78 <.001
I Main .80 <.001 .80 <.001 .80 <.001 .80 <.001 .80 <.001 .81 <.001
II Overtaking .21 .002 .21 .002 .23 <.001 .20 .002 .28 <.001 .50 <.001
II Main .69 <.001 .68 <.001 .71 <.001 .70 <.001 .71 <.001 .70 <.001
III Overtaking .60 <.001 .60 <.001 .67 <.001 .67 <.001 .59 <.001 .81 <.001
III Left main .84 <.001 .84 <.001 .86 <.001 .87 <.001 .84 <.001 .82 <.001
III Right main .54 <.001 .54 <.001 .54 <.001 .54 <.001 .54 <.001 .53 <.001
IV Overtaking .63 <.001 .63 <.001 .62 <.001 .62 <.001 .62 <.001 .65 <.001
IV Left main .36 <.001 .37 <.001 .34 <.001 .34 <.001 .35 <.001 .38 <.001
IV Right main .08 .282 .08 .271 .11 .150 .09 .227 .12 .104 .08 .276
V Overtaking .27 .012 .27 .012 .28 .010 .28 .010 .27 .013 .21 .055
V Left main .61 <.001 .61 <.001 .59 <.001 .59 <.001 .59 <.001 .63 <.001
V Right main .85 <.001 .85 <.001 .84 <.001 .84 <.001 .84 <.001 .88 <.001
I All .42 <.001 .50 <.001 .02 .499 .31 <.001 .01 .641 .75 <.001
II All .14 .007 .19 <.001 −.05 .280 .05 .308 −.04 .453 .56 <.001
III All .34 <.001 .36 <.001 .04 .314 .27 <.001 −.02 .640 .77 <.001
IV All −.15 <.001 −.11 .001 −.32 <.001 −.22 <.001 −.38 <.001 .56 <.001
V All .53 <.001 .53 <.001 .27 <.001 .43 <.001 .12 .031 .59 <.001

F IGURE 4 Cyclic dependencies of vehicle types in the study
areas using the Peter–Clark (PC) algorithm.

Followed by correlation tests, conditional independence
tests are performed for different vehicle types and cumu-
lative time periods. The results consistently indicate an
inherent dependence between the quantity of one type of
vehicle within the traffic flow and that of other vehicle
types. This holds true irrespective of investigating hourly,
daily, weekly,monthly traffic patterns, or even fluctuations
between peak and off-peak traffic periods. Despite the
aggregation of traffic flow necessitated by the nature of rav-
eling development, such accumulation does not alter the
independent and conditionally independent relationships
among the traffic volumes. These observed dependence
relationships are cyclic. They interlink various categories
of vehicles within the traffic flow, as shown in Figure 4.
This is supported by traffic flow theory that the presence

of multiple factors affects the relationship between dif-
ferent vehicle classes. Factors that attribute to the whole
traffic volume as well as each vehicle classes include

traffic demand, time of day, and economic conditions.
Besides, the influencing factors of local traffic patterns
act as confounders in the dynamic interplay among
vehicle classes, like weather, accidents, road works, and
congestion. According to traffic flow theory, these code-
terminants and influencers are the underlying causes of
the observed dependencies. However, it is challenging to
collect sufficient information to capture these confounders
interwovenwithinmultiyear accumulations to achieve the
ideal feature selection free of cyclic dependencies. Never-
theless, to obtain a robust causal discovery outcome, it is
imperative to curtail the complexity of cyclic dependen-
cies, which necessitates considering a reduced selection
of vehicle classes. Thus, the selected features are road age,
total volumes of cars and trucks, and lane categorization.

4.3 Selection of the CD-NODmodel:
Tackling nonlinearity, non-Gaussianity,
and time-series data characteristics

According to the proposed model selection criteria, the
characteristics of the selected features are estimated. Rav-
eling, traffic, and road age exhibit time-series properties.
Because traffic manifests a periodic pattern, and both the
amount of dislodged aggregates on the road and its age
accrue over time. This accumulation suggests a tempo-
ral dependence, whereby subsequent observations are
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14 WANG et al.

influenced by prior ones—a perspective substantiated by
the tests. Throughout the various study areas, a marked
correlation is observed among these variables in tandem
with the sequence of their recordings, particularly in the
linkage between successive observations. Given the data
attributes, the preferred causal discovery models should
eschew I.I.D. assumption. It is highlighted that the tests
utilized in this study violate I.I.D. assumption by detecting
time-series characteristics. While the data indeed exhibit
these characteristics, leading to the choice of a model that
does not rely on this assumption, the absence of such
characteristics does not always imply that the I.I.D. criteria
are met. Other scenarios might necessitate rigorous tests
like independence and comparative distribution tests to
affirm I.I.D. assumption.
Furthermore, the data exhibit non-Gaussian charac-

teristics. Raveling and traffic data across all study areas
display a positive skewness and tend toward platykur-
tic distributions. On the other hand, road age showcases
kurtosis, while lane categorization follows a uniform dis-
tribution. The relationships between raveling and other
features lack linearity, as evidenced by the 𝑅2 values reg-
istering below.54 across all study areas. Only in Area I, a
linear relationship—signified by an𝑅2 exceeding.8—is dis-
cerned between car flow and age. Therefore, the selected
model ought to be able to accommodate non-Gaussian
variables and nonlinear relationships.
The causal discovery model of CD-NOD is selected.

It specifically deals with time-series data, non-Gaussian
data, and nonlinear relationships by employing two
approaches. One is integrating a time index into the identi-
fication of changing causal modules and the estimation of
causal structure, and the other is developing an enhanced
constraint-based and nonparametric method to perform
causal discovery.
The characteristics of the observed data highlight the

potential for enhancing raveling prediction and pavement
management through models capable of addressing
nonlinear and non-Gaussian data. Given the time-series
nature of raveling and traffic characteristics, incorporating
a systematic inspection regimenwithin pavementmanage-
ment practices is recommended. The strategy canmake the
comprehensive monitoring of traffic influence and pave-
ment wear over extended periods, facilitating the develop-
ment of proactive and informed maintenance strategies.

4.4 Causal relationships between
raveling and traffic variables

The causal graphs resulting from theCD-NODmodel, such
as Figure 5 and Figure 6, represent the causal relationships
between mixed traffic flows and raveling, as identified

F IGURE 5 Graphical representation of causal relationships
based on the two-lane study areas (95% significance). Arrows point
from causes to effects. Undirected links indicate bidirectional
relationships, suggesting the conditions to estimate causal
directions are insufficient.

through the observation data of the study areas. Figure 5
and Figure 6 display undirected edges linking the total
counts of cars, trucks, and raveling. In accordance with
traffic flow theory, the model accurately represents the
bidirectional relationship between car and truck volumes.
There is a complex interplay between traffic flows of differ-
ent user classes and overall traffic conditions as illustrated
in the aforementioned dependence test. However, the
model limitations in handling cyclic dependencies become
evidentwith plausible causality directions between vehicle
volumes and raveling.
Analyzing the causal graphs across diverse road con-

figurations offers valuable insights into the correlations
between traffic variables and raveling. The consistency
between these graphs validates the causal discoverymodel.
Graphs of lanes with the same configuration and func-
tionality exhibit similarities. These similar characteristics
discovered from the two-lane highway scenarios are high-
lighted as follows:

(1) In the two-lane highways, raveling and truck volumes
have a direct causal relationship, and in the case of
overtaking lanes, the same relationship exists between
raveling and car volumes.
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WANG et al. 15

F IGURE 6 Graphical representation of causal relationships
based on the three-lane study areas (95% significance). Arrows point
from causes to effects. Undirected links indicate bidirectional
relationships, suggesting the conditions to estimate causal
directions are insufficient.

(2) In the two-lane highways, road age can impact ravel-
ing in two ways: as a direct cause, through the natural
aging process of a road; and as an indirect cause, due to
longer use and increased accumulated traffic volumes
causing a road to ravel.

(3) Car and truck flows affect each other.

Despite observed similarities in the two-lane high-
way scenarios, distinctions exist specifically in the main
through lane of Area I. The causal relationship between
raveling and both car volumes and road age lack statistical

F IGURE 7 The model sensitivity to individual road
sections across all the study areas is analyzed by comparing the
causal graphs generated with and without the specific sections. The
similarity of the graphs is estimated by the cosine distance of their
corresponding matrices. (O, M, LM, and RM indicate overtaking,
main, left main, and right main lanes, respectively).

significance, while in the other two-lane scenarios, these
relationships are statistically significant. Two potential fac-
tors can account for the observed differences. The one is
that Area I has a considerably higher volume of trucks,
approximately twice as much as in Area II. This larger vol-
ume of trucks could causemorewear on the road, resulting
in more severe raveling. The other is that the findings for
Area I main lane may be affected by biases in multiple
specific sections as shown in Figure 7.
The three-lane highway scenarios present similarities

across the overtaking andmain lanes, as shown in Figure 6
as noted below:

(1) In the three-lane highways, car volumes serve as a
direct cause of raveling, while truck volumes con-
tribute as a direct cause of raveling only for the main
lanes.
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16 WANG et al.

(2) In the three-lane highways, both direct and indirect
ways that road age causes raveling are observed.

(3) Car and truck flows affect each other.

While similarities exist in the three-lane highway sce-
narios, the results of the main lanes have a difference,
particularly in Area V. No direct causal relationship is
found between the raveling and road age for its overtak-
ing lane, and between raveling and car volumes for its
main lanes. However, both direct and indirect causal rela-
tionships in the other areas are observed. These different
relationships observed between traffic variables and rav-
eling could be due to the higher truck volume in Area V.
This area has twice the truck traffic on its left main lane
than the other study areas, and double on its right main
lane compared to Area III. Although the right main lane of
Area V has the similar total truck volumes as that of Areas
V and IV, its daily truck volume is 1.2 times bigger with
shorter total service time. Moreover, its overtaking lane
has experienced a maintenance during the observation,
which could significantly slow the degradation, obscuring
the correlation between road age and raveling.
The main divergence between two-lane and three-lane

scenarios stems from the differing composition of vehicle
classes as the direct cause of raveling in the overtaking
lanes. In three-lane highway overtaking lanes, car vol-
umes directly affect raveling, with truck volumes acting
indirectly, whereas both vehicle classes have direct causal
relationships with raveling in two-lane scenarios. Trucks
constitute a smaller portion of overtaking lane traffic, espe-
cially in three-lane highways with the “keep right” traffic
rule, as in this study. The finding could guide the allocation
of maintenance resources more effectively, prioritizing
areas identified as high risk due to traffic patterns.
The causal relationships identified among various road

configurations, lane types, and key variables highlight
the necessity of formulating tailored maintenance strate-
gies. The significance of lane categorization points toward
adopting lane-specific approaches to enhance pavement
management. Utilizing the direct causes of raveling allows
for customized intervention strategies. For example, the
impact of road age and the volumes of specific vehi-
cle classes indicates the need to adjust the scheduling
of inspections and preventive maintenance based on real
deterioration patterns and the predominant vehicle types.
The presented results above are from the CD-NOD

model given the 9-year observed data and the setting of
the 1-year interval. As the data collection period increases,
Figure 8 illustrates an upward trend with intermittent
fluctuations in the cosine similarity. With data duration
less than 3 years of the study areas, the model does not

F IGURE 8 The model sensitivity to data collection duration is
evaluated by the comparative study of each study area. It entails
comparing the cosine similarity of causal graphs derived by the data
spanning various periods, specifically from 3 to 9 years.
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WANG et al. 17

yield to reliable results (i.e., with 95% significance). It
indicates that the model exhibits heightened sensitivity
to data duration, with longer periods potentially yield-
ing more reliable outcomes. In addition, compared to the
intervals of 3 years and 5 years, this model finds more
causal mechanisms directly related to road age, includ-
ing the direct relationship between age and traffic flow
and the relationship between age and raveling. In very few
cases, it results in less direct relationships between vehi-
cle volumes and raveling. This may be due to the fact that
roads require exposure to many years of traffic volumes
before any observable distress becomes apparent. Select-
ing an appropriate time interval is thus important, which
is recommended to be based on observation duration and
pavement usage.
It is highlighted that causal model outcomes can be

noticeably influenced by the specific characteristics of one
or more road segments. Figure 7 visually represents the
influence of each road segment on the model outcomes.
When certain road segments are included in the model,
the causal graphs are changed bymore than 40%, meaning
nearly half of the causal links are inconsistent with causal
graphs created when these segments are excluded. These
important segments are mainly located downstream of the
on-ramps or upstream of the off-ramps. The distinguishing
feature of these segments suggests a unique mechanism
of raveling compared to other sections. Specifically, the
causal graphs incorporating these segments exhibit more
direct causal relationships between raveling and traffic.
This implies that the direct correlation between traffic flow
and raveling appears to be more pronounced within these
segments. Given the potential for increased turbulence
and congestion in segments downstream of an on-ramp or
upstream of an off-ramp, these traffic patterns might sig-
nificantly contribute to raveling. However, an important
caveat is that not all road segments positioned downstream
of the on-ramps or upstream of the off-ramps significantly
impact the results. These findings call for further research
into the influence of road segment characteristics and
traffic patterns on raveling.

5 CONCLUSIONS

The relationship between real traffic and raveling is
unclear and characterized by different interpretations of
the previous field studies using correlation approaches.
To contribute to the discussion, the study develops a
new model to delineate plausible causal relationships
between mixed traffic and raveling using field data. A
thorough review of popular causal discovery models was
conducted, and the CD-NOD model was selected. The

research methodology is developed based on this model,
and designed specifically to tackle the challenges related
to confounding variables, the large disparity between the
spatial–temporal scales of raveling and traffic measure-
ments (years vs. minutes), and the relationship between
traffic composition and traffic volume. The methodology
is applied to five Dutch highway sections after metic-
ulous selection of identical nontraffic conditions, and
identifying traffic-related variables with potential causal
influence.
The work reveals several important findings that

enhance the understanding of raveling and can guide
maintenance strategies. The connection between cumu-
lative traffic volume and raveling is nonlinear, exhibiting
a cause-and-effect relationship. In the relationship, road
age acts as a shared contributor, both intensifying the
effect of cumulative traffic volume on raveling through
prolonged use and escalating the raveling process itself
through natural aging. This nuanced understanding can
inform predictive raveling models. This study also high-
lights that not only trucks but cars particularly on over-
taking lanes, can cause raveling, implying the need for
targeted maintenance strategies. Furthermore, the type of
carriageway configuration and specific lane categories play
a crucial role in establishing significant correlations and
meaningful causation between mixed traffic and raveling.
The proposed methodology marks a substantial

advancement, allowing for a clear distinction between
mere correlations and actual causal links affecting rav-
eling due to mixed traffic. The findings from the study
not only provide a deeper understanding of the multi-
faceted relationship between traffic variables and the
distress but also offer practical insights for infrastructure
management. The findings facilitate the development
of more targeted maintenance strategies, which could
result in economic savings and enhanced roadway safety.
The model application to the Dutch network underscores
its practical relevance and potential for broader imple-
mentation. Thus, the research contributions extend from
theoretical modeling to actionable solutions, with the
potential to influence both future research directions and
policy making in civil infrastructure.
Nonetheless, challenges persist in understanding the

isolated impact of specific types of vehicles on pavement
distress due to the complex interplay between traffic flows
of different user classes, leading to unavoidable cyclic
dependencies. This obscures the underlying mechanisms.
Therefore, the acyclic nature of causal discovery mod-
els, including the CD-NOD model, limits their ability to
uncover these cyclic dependencies. This limitation clearly
opens up an avenue for future development of causal
discovery models.
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