
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Improving Cross-View
Matching with
Self-Supervised
Learning
Master Thesis

Jianfeng Cui

Improving
Cross-View

Matching with
Self-Supervised

Learning
Master Thesis

by

Jianfeng Cui

Student Name Student Number

Jianfeng Cui 5225256

Supervisor: J.F.P. Kooij, Z. Xia

Project Duration: February, 2022 - November, 2022

Faculty: Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft

Cover: Photo by Kayle Kaupanger on Unsplash (Modified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

https://unsplash.com/photos/LrWvF1F3Chc

Contents

1 Introduction 1
1.1 Visual geo-localization and cross-view matching . 1
1.2 Self-supervised learning . 3
1.3 Research question and main contributions . 5

2 RelatedWorks 8
2.1 Cross-view matching open challenges and methods . 8

2.1.1 Drastic change in viewpoint . 9
2.1.2 Orientation misalignment . 10
2.1.3 Center location misalignment . 11
2.1.4 Temporal scene changes . 11

2.2 Self-supervised learning and contrastive learning . 12
2.2.1 MoCo, SimCLR and MoCov2 . 13
2.2.2 BYOL, SimSiam . 15

2.3 Related works: summary . 17

3 Method 19
3.1 Self-supervised pre-training by contrastive learning . 20

3.1.1 The contrastive learning framework: MoCov2 . 20
3.1.2 Different pre-trained weights . 23

3.2 Image Retrieval Architecture and Loss Function . 24
3.2.1 The image retrieval framework . 25
3.2.2 The soft-margin triplet loss . 25

3.3 Feature distribution visualization and uniformity metric 25
3.4 Add uniformity loss and data augmentation directly . 27

3.4.1 Uniformity loss . 27
3.4.2 Data augmentation . 27

4 Experiments 29
4.1 Datasets and evaluation metrics . 29
4.2 Implementation details . 31
4.3 Cross-view matching with contrastive learning pre-training 31
4.4 Verification on swapped dataset . 33
4.5 Feature distribution . 34

4.5.1 Settings . 34
4.5.2 Observations and findings . 37

4.6 Uniformity loss and data augmentation . 37

5 Conclusion 40
5.1 Answers to the research questions . 40
5.2 Discussion and future works . 41

References 42

i

Contents ii

6 Appendix 46
6.1 The network architectures . 46
6.2 MoCov2 data augmentation . 47
6.3 Localization heatmap . 47
6.4 Visualization of feature map . 48
6.5 A unified version of MoCov2 and cross-view matching . 49

1
Introduction

In the past few years, there has been great interest and progress in the field of Intelligent Vehicles for
both academia and industries. Intelligent Vehicles are considered a promising way that could reduce
road accidents and traffic congestion, to achieve safer and more efficient transportation in the future.

According to SAE International (Society of Automotive Engineers), there are 6 levels of autonomous
driving, ranging from no driving automation (level 0) to full driving automation (level 5) [8]. Currently,
it is already very common to see the application of various driver assistant systems installed onmodern
vehicles, e.g., lane keeping, and adaptive cruise control. However, these driver assistant systems are
limited to aid the driver, while the driver is responsible for overall control of the vehicle or under certain
driving conditions. There are still many technical challenges to be solved.

One of the key challenges for vehicles with high driving automation is localizing the vehicle in the
environment. An autonomous vehicle that aims to travel from one place to another need to be aware
of its location globally. Many sensors could be utilized to help localization, such as by sensing the
local environment (e.g., by the camera, Radar, or LiDAR) or the vehicle’s ego-motion (e.g., odometry,
Inertial Navigation System). GNSS (Global Navigation Satellite System), such as GPS, could provide
absolute and global positioning information to determine the geographic position of an object (i.e., geo-
localization). Furthermore, different information from different sensors could also be merged together
to improve robustness.

In this chapter, we briefly describe two main topics related to our work: cross-view matching and
self-supervised learning. And then we propose our research question and introduce our work in the
last sub-section.

1.1. Visual geo-localization and cross-view matching
Geo-localization is the process of determining the geographic location of an object or person using
various methods. Specifically, visual geo-localization is the task of identifying the location where the
image was captured only based on its visual information [40]. Once the location of the image has been
determined, it can be displayed on a map, allowing the user to see exactly where the photo was taken.
This can be useful for a variety of applications, such as providing location-based information or services.
It has great potential for noisy GPS correction [4, 56] and navigation [27, 32] in crowded cities.

A major technique to perform visual geo-localization tasks is image retrieval, which is based on
query-reference image matching. The query image is the image that is being used to determine the
location where it was captured. The reference image is an image with a known location that is being
compared to the query image in order to determine the location. For example, if a person takes a picture
with their smartphone andwants to determine the location, the query imagewould be the picture that he
took, and the reference image would be a known image from a database of known locations. The query

1

1.1. Visual geo-localization and cross-view matching 2

and reference images would be compared using image recognition algorithms or other techniques, and
the location of the query image would be determined based on the correspondence between the two
images. In general, the query image is the input to the geo-localization process, and the reference
image is the source of information that is used to determine the location of where the query image was
captured.

Visual geo-localization can be performed using different types of images, including satellite imagery
and ground-level imagery. Due to the complete coverage and easy access of satellite images fromGoogle
Map API [1], a thread of works [61, 42, 49, 54, 23, 24, 55, 16] focuses on cross-view geo-localization,
where the ground-level images are query images and satellite images are reference images. Figure 1.1
visually shows the idea of cross-view matching. The availability of abundant satellite images all over
the world naturally forms a huge database for us to perform visual geo-localization at a very low cost.
Researchers are able to establish their own databases for different regions and cities, including both
rural [28, 57] and urban areas [50, 61]. Otherwise, collecting ground-level images to establish the
reference image database requires us to navigate over the target area with well-equipped localization
devices and subsequent data preparation, which consumes huge labor and financial resources.

Figure 1.1: Cross-view matching: match query ground-level images to reference satellite images. Based on image appearances,
query ground-level images are matched with reference satellite images (indicated by red arrows). Tagged locations of reference

images are the final location predictions for the queries (indicated by blue arrows). The figure is taken from [52]

In order to find the correspondences between the query and reference images,metric learning [30]
is introduced. In metric learning, the goal is to learn a distance function that maps objects from a
dataset to points in an embedding space such that the distances between the points accurately reflect
the similarity between the corresponding objects. This is typically done by defining a loss function that
measures the quality of the learned distance metric and then using optimization algorithms to find the
parameters of the distance function thatminimize the loss. Once the distance function has been learned,
it can be used to compute the similarity between objects in the dataset bymapping them to points in the
embedding space and thenmeasuring the distance between the points. For example, in imagematching,
the objects may be images and the embedding space may be a space in which the distance between two
images reflects their similarity. By mapping the images to points in the embedding space, it becomes
possible to compare their distances anddeterminewhich images are themost similar. Typically, the loss
function is designed to pull the representations of similar images (e.g., a query and its positive reference
sample) close together and push dissimilar ones (e.g., a query and its negative reference sample) far
apart in the embedding space. By using an embedding space, the learned distance function can be
applied to the objects in the dataset in a consistent and meaningful way. Figure 1.2 briefly shows the
idea of cross-view matching by metric learning.

However, such cross-view matching systems suffer from many open challenges, in which a major
one is the drastic viewpoint change between ground-level and satellite images. Ground and satellite

1.2. Self-supervised learning 3

Figure 1.2: Cross-view matching by metric learning. The gray sphere represents the embedding space. The blue square, blue
triangle, and red triangle represent the projected data point of the query ground-level image, positive reference satellite image,

and negative reference satellite image, respectively. The figure is taken from [52]

views contain very different visual contents, i.e., building facades, trees, and cars occupy the majority
of ground image scenes, while satellite images mainly contain buildings, tree tops, and road structures.
This challenge causes problems in using traditional handcrafted features such as SIFT [29] to com-
pare similarities [23]. Therefore, concerning the great success of image feature extractors utilizing
neural networks [3, 10, 18], most trending cross-view matching methods adopt neural networks for
learning image representations which are highly related to the topic of deepmetric learning. Generally,
researchers train a two-stream CNN (Convolutional Neural Network) framework and employ metric
learning loss [23, 49] to train the network.

Apart from the drastic viewpoint change, in cross-view matching, there are also many other chal-
lenges including orientationmisalignment [28, 43, 49], center locationmisalignment [61] and temporal
scene changes [38]. These open challenges pose higher requirements for image representations gener-
ated by the neural network. A good representation in cross-viewmatching is expected to be semantically
rich, aware of geometric information, and even invariant to the temporal scene changes.

1.2. Self-supervised learning
Another field of research area related to this work is self-supervised learning. In recent years, self-
supervised learning methods [22, 36, 58, 20, 11, 34, 13, 53, 33, 21, 5, 7, 15] have achieved significant
performance on various vision tasks by representation learning even without human-tagged labels for
training.

To start with, supervised learning is a type of machine learning where a model is trained to make
predictions based on a set of labeled data. In supervised learning, the data is labeled with the correct
output or target, which the model uses to learn how to make predictions on new data. The label is the
correct output or target for a given input, and it is used by the model to learn the relationship between
the input and the correct output. For example, in image classification, the input might be an image and
the labelmight be the correct category or class that the image belongs to (e.g. “cat” or “dog”). Themodel
would then use the labeled data to learn how to make predictions on new images, such as whether a
given image is of a cat or a dog. The goal of supervised learning is to minimize the difference between
the predicted output and the correct label so that themodel canmake accurate predictions on new data.

Then, by definition, self-supervised learning is a version of unsupervised learning where data itself
provides supervision [25]. In order to train deep neural networks, a large amount of labeled data is
generally needed to achieve better performances in visual applications. To relieve the cost of annotat-
ing large-scale datasets, various self-supervised learning methods are designed to learn general image
features from unlabeled raw images without using human-tagged labels. Technically, the difference be-
tween unsupervised and supervised learning is that themodels in the first work with unlabeled datasets
while the latter work with labeled data. Consequently, unsupervised learners have no idea about e.g.

1.2. Self-supervised learning 4

the names, classes, or values the inputs are assigned with. While supervised learners learn on the basis
of examples, unsupervised learners mostly try to find meaning or structure within the data. By design,
unsupervised learners could be used to exploit (hidden) useful structures in the data which have the
potential to be deployed as models that learn data-specific features, store large datasets efficiently or
generate new realistic samples.

To intuitively interpret the idea of self-supervised learning, Figure 1.3 is presented to show an ex-
ample that designs a self-supervised scheme for image depth estimation [12]. The framework is an
auto-encoder, in which the encoder (part 1) is a traditional convolutional neural network with stacked
convolutions and pooling layers that maps the left image I1 of the rectified stereo pair into disparities
(scaled inverse depth). The decoder (part 2) takes the right image I2 and the encoder output as in-
puts, which synthesizes a backward warp image Iw by moving pixels from the right image I2 along the
scan-line. By constructing a reconstruction error (Part 3) to match the reconstructed image Iw with
the encoder input, the network learns to predict correct depths. It could perform single-view depth
estimation during test time. In this way, rather than learning with direct human-annotated labels, the
model forms supervision by itself.

Self-supervised learning approaches like the example above are task-specific. In fact, most existing
self-supervised learning methods follow a general scheme shown in Figure 1.4. Generally, it has two
phases:

Figure 1.3: A self-supervised scheme for image depth estimation which utilizes stereo image pair. The figure is taken from [12]

1. A pretext task is designed for neural networks to solve and image representations could be learned
through this process for accomplishing the pretext task. Pseudo labels for pretext tasks can be
generated automatically without human tagging.

2. Transfer the pre-trained network to downstream tasks by fine-tuning with human-annotated la-
bels.

Pretext tasks can be predictive tasks, generative tasks, contrasting tasks, or a combination of them.
For example, it could be designed as pretending there is a part of the input we do not know and pre-
dicting it, e.g., hiding some patches over an image and recovering the original pixels [36]. When the
pretext tasks are designed as contrasting tasks, it performs contrastive learning, which is one of the
most representative methods of self-supervised learning. In contrastive learning, a model is trained
to predict the relationship between two input items without the need for human-provided labels. One
common technique used in contrastive learning is random data augmentation, where the input data is
transformed in various ways to create multiple versions of the same data. For example, in image recog-
nition, an image of a cat might be rotated, flipped, or cropped to create multiple versions of the same
image. These augmented versions of the data can then be used as positive examples in the contrastive
learning process, allowing the model to learn to recognize the same object despite differences in its ap-

1.3. Research question and main contributions 5

pearance. Data augmentation can help improve the performance of contrastive learning by providing
the model with more examples to learn from.

Figure 1.4: A typical pipeline of self-supervised learning. The image representation could be learned by training to solve a
designed pretext task. After that, the learned parameters serve as a pre-trained model to solve other downstream visual tasks

by fine-tuning

Downstream tasks are usually common computer vision tasks that we are trying to solve for specific
applications, such as image classification and object detection, which are target tasks that we are trying
to solve for applications. It could also be viewed as a way to evaluate the quality of features learned
by self-supervised learning. These applications can greatly benefit from the pre-trained models when
training data are scarce.

1.3. Research question and main contributions
The above introduction of cross-viewmatching and self-supervised learning brings us to themain topic
of our work. The quality of the learned image features by self-supervised methods could be verified by
the two stages in Figure 1.4: the learned parameters by self-supervised learning are employed as pre-
trained models and then fine-tuned on downstream tasks. The performance of the transfer learning
on these high-level vision tasks demonstrates the generalizability of the learned features. If networks
gained from self-supervised learning can learn general good features, then the pre-trained models can
be used as a good starting point for other vision tasks that require capturing similar features from im-
ages. Therefore, it seems that such self-supervised learning methods relying on pretext tasks could
serve as a general approach to gain good pre-trained weights for plenty of different downstream tasks.
However, although existing self-supervised learning methods have been proven successful in learning
image representations for downstream tasks such as image classification, object detection, and so on,
to the best of the authors’ knowledge, there is currently no or little research verifying the effectiveness
of self-supervised learning methods on cross-view matching. Moreover, notice that a major difference
between cross-viewmatching and other downstream tasks that are already proven can benefit from self-
supervised learning is that cross-view matching requires learning features within two different modali-
ties (i.e., ground-level image and satellite image), while others are always extracting useful feature from
a single-modality image which is consistent with the pretext tasks, despite of their specific downstream
task objectives. This leaves a question of whether general self-supervised learning methods also work
on cross-view matching. Figure 1.5 shows the brief idea of applying self-supervised learning methods
on cross-view matching.

Moreover, an important property of cross-view matching is that satellite images are globally avail-
able and easily accessed. This differs frommany other common computer vision tasks where the whole

1.3. Research question and main contributions 6

Figure 1.5: The research question: will cross-view matching benefit from self-supervised pre-training by contrastive learning?
The left column: pre-training is performed using standard self-supervised learning methods on ground-level images (in the
blue block) and satellite images (in the green block) separately. The right column: pre-trained models are then transferred to

the downstream task training, which is cross-view matching

data distribution of the test set is unknown. This gives us the potential to make use of the raw satellite
image data as a piece of prior knowledge to enhance the representation extraction. Motivated by the
discussion above, we propose the following research question:

As a downstream task, will cross-view matching benefit from self-supervised pre-training by
contrastive learning?

Furthermore, We divide this question into two sub-questions:

1. Will the performance of cross-view matching be improved by pre-training using contrastive
learning?

2. Howwill the image representations generated by the cross-viewmatching network be different
by pre-training using contrastive learning?

In this work, to answer the first sub-question, we experimented with cross-view matching meth-
ods with the self-supervised learning approach and empirically verified the performance improvement
brought by self-supervised learning. Moreover, to answer the second sub-question and discover the
interpretation, by visualizing the representation distribution in the feature space, we observed differ-
ent behaviors with or without self-supervised pre-training. We summarized the main contributions as
follows:

1. This work verifies the effectiveness of self-supervised contrastive learning on cross-view match-
ing. Self-supervised pre-training brings stable performance improvement on different cross-view
matching network settings.

2. An in-depth interpretation of analyzing the representation distribution in the embedding space.
By self-supervised learning pre-training, before the downstream task fine-tuning epoch starts,

1.3. Research question and main contributions 7

the network can already distinguish images from different cities and generate less homogeneous
representations. A more uniform distribution is achieved through pre-training.

2
Related Works

2.1. Cross-view matching open challenges and methods
Visual geo-localization answers the question of where an image was captured in a region. The task is
commonly addressed as a query-reference matching problem. Typically, the query image is an image
with an unknown location, and references are from an image database with known GPS coordinates.
The scenes captured in the image can experience huge variations, such as under different times and
weather or containing dynamic objects. But useful information like landmarks and buildings does help
the model identify places based on the image appearances.

Traditional visual geo-localization approaches are performed with both the query and reference
image taken from the same viewpoint, usually, both from the ground view [39, 49]. However, the
vehicle cannot assume it has been everywhere before. The ground-view image database with tagged
GPS coordinates commonly requires crowd-sourcing, e.g., photos from Flickr, but the coverage is still
very sparse. Gathering data to establish an area-specific database is also money- and time-consuming.

To address the limitation of ground-view image geo-localization, some researchers have explored
methods using satellite images as references, which is called cross-view image geo-localization. Note
that the satellite image database is almost globally available and easily accessed, by the application of
the GNSS system and also thanks to free public releases of geo-tagged satellite images from companies
such as Google. As a result, in terms of the data source, the matching and localization could be per-
formed all over the world. Existing works for cross-view geo-localization methods generally adopt a
two-stream CNN framework to extract different features for two views, then learn an embedding space
where images from the same GPS location are close to each other.

However, such cross-view retrieval systems suffer from several open challenges. To conclude, there
are mainly four open challenges for the cross-view matching task:

• Drastic change in viewpoint: the scene is contained in two different viewpoints (i.e., ground view
and bird-eye view) in ground-level and satellite images respectively, causing different image con-
tents.

• Orientation misalignment: satellite patch represents the same scene as that of the ground-level
image, no matter what the relative orientation is.

• Center locationmisalignment: the center of the ground-level image and its corresponding ground-
truth satellite image are not exactly aligned, but with offsets.

• Temporal scene changes: the satellite image database can be outdated compared with the cap-
tured ground-level image, causing it hard to be retrieved due to different scene appearances.

In the following sections, we introduce several representative methods in terms of their major tar-
geted challenges.

8

2.1. Cross-view matching open challenges and methods 9

2.1.1. Drastic change in viewpoint
The “cross-view” attribute andusage of satellite images pose themost tricky part of cross-viewmatching.
In this case, the query is a ground-level image, taken from the ground facing front, but the reference
image will be a satellite image patch, which is in bird-eye-view. Ground and satellite views contain very
different visual contents, i.e., building facades, trees, and cars occupy the majority of ground image
scenes, while satellite imagesmainly contain buildings, tree tops, and road structures. This is caused by
the drastic viewpoint change between the two different image sources and serves as the main challenge
for cross-view matching.

A representative approach that addresses this issue is SAFA [42]. By leveraging the prior geometric
knowledge between the two domains, SAFA proposed a pre-processing technique that adopts a polar
transformation on the satellite image. This polar coordinate transforms satellite images, making them
approximately alignedwith a ground-view panorama. Instead of enforcing neural networks to learn the
geometric gap between twomodalities implicitly, SAFA explicitly transforms the satellite images which
roughly eliminates the gap. In doing so, the polar transformation eases the task of learning multiple
correspondences (i.e., geometry and feature representations), which facilitates the network’s conver-
gence. The polar transformer relies on such an observation: pixels lying in the same azimuth direction
in a satellite image approximately correspond to a vertical image column in the ground-level panorama
image. By intuition, polar transformation ”unwraps” the satellite image along the azimuth angles to
convert the image contents in the bird-eye view to a pseudo-ground-level panorama view. In practice,
the polar transformation takes the center of each satellite image as the polar origin and the north di-
rection as the angle of 0 degrees. Therefore, the corresponding panorama image in the dataset of the
satellite image is expected to align well with the center position. Otherwise, the polar-transformed
satellite image will be significantly different from the ground-truth one. However, in practice, since
the database of satellite patches is usually sampled from the satellite map in a certain resolution, for
a ground-level image at a random location, it is not realistic that the perfectly aligned satellite image
is included in the database. Therefore, it is inappropriate to apply polar transformation in real-world
scenarios.

Figure 2.1: SAFA architecture. The figure is taken from [42].

Another approach that tries to solve the drastic viewpoint change is CVFT [41]. Instead of pre-
processing the data samples like polar transformation, the authors of CVFT proposed a Cross-View
Feature Transport (CVFT) layer for domain feature transferring which facilitates cross-domain feature
matching. CVFT explicitlymodels the domain gap between satellite and ground-level images by a trans-
port matrix. The method is inspired by the Optimal Transport (OT) theory, which was originally devel-
oped for finding the optimal transport plan that can best align two probability distributions. Tradition-
ally, Optimal Transport is a linear programming problem that is computationally inefficient. To solve

2.1. Cross-view matching open challenges and methods 10

this problem, a different version of OT called Sinkhorn solver which is based on entropy regularization
was adopted. Finally, the feature transport problem was converted into a convex problem and could be
solved by a Sinkhorn solver.

Another idea of bridging the domain gap between ground-level and satellite images comes from
image synthesizing networks. [57] synthesized ground-level information from top-view satellite inputs.
They learned to map semantic labels from the satellite view to the ground view and use them to create
ground view information. A more recent work [31] proposed to generate ground views from satellite
images by utilizing depth maps and semantic labels. These works explored ways to generate realistic
views and do not explicitly apply them to the geo-localization problem.

[37] proposed a feature fusion training strategy including the use of GAN [14] in which the features
from synthesized satellite views are fused with corresponding ground view features. It is the first to use
pre-trained synthesized images to train a retrieval network for geo-localization. However, it is done
in three stages, not end-to-end. Moreover, they obtained less accurate retrieval results than methods
based on polar transformations. This suggests that while networks like GAN create images that look
more realistic, a transformation relying on geometric information like polar transformation is better to
map the content of the images across the two domains for cross-view matching problems.

Therefore, SAFA-GAN [45] proposed a novel geo-localization method that is trained jointly for the
multi-task setup of both synthesizing ground images from satellite images and retrieving cross-view
image matches. The authors designed a single network for both of these tasks which can be trained in
an end-to-end manner.

The proposed network is composed of a generator that maps the ground view to a synthetic satel-
lite view image, a discriminator which learns to distinguish between the generated satellite views and
real sampled satellite view images, and a SAFA-based retrieval sub-network that is used to extract the
features of satellite and ground-level images for cross-view geo-localization. The intermediate features
from the generator are then reused in a retrieval sub-network for cross-view geo-localization. By using
the intermediate features, the two tasks (image retrieval and image generation) mutually learn from
each other. Thus, the learned feature representation is informative for both tasks.

2.1.2. Orientation misalignment
Another issue related to cross-view matching is orientation misalignment. In a real-world scenario,
typically we want the method to be able to retrieve the correct image patch with the same location
as the query ground-level image, which means the satellite patch represents the same scene as that
of the ground-level image, no matter what the relative orientation is. This issue is addressed as an
orientation misalignment problem. Basically, cross-view matching methods can be divided into two
streams on this problem: 1. simply ignore this misalignment, i.e., directly work with the dataset which
includes misalignment and let the network learn orientation-invariant features 2. explicitly handle the
misalignment by specific design aspects, e.g., predict the relative orientation.

LendingOrientation [28] proposed an efficientmethod to fuse the heading direction of ground-level
images into a network and learnmore robust features. The author borrowed ideas from the color-coded
map and designed a similar mechanism to encode the pixel-wise orientation information. Ground view
and aerial images are both encoded with orientation information separately and fed into a Siamese
model.

Specifically, in the Lending Orientation method, the per-pixel orientations in ground-level are rep-
resented as azimuth and altitude (spherical angles), and those in satellite images are represented as
azimuth and range (polar coordinates). These orientation values are encoded using HSV color chan-
nels, which are concatenated with the original image RGB channels as the total input.

Another novel method addressing the orientationmisalignment issue is DSM [43]. DSM focused on
cross-view geo-localization on limited field-of-view images and their heading orientation. The author

2.1. Cross-view matching open challenges and methods 11

proposed a Dynamic SimilarityMatching (DSM)module tomeasure the feature similarity between two
views in a sliding window manner and estimate the orientation at the same time. Specifically, DSM is
fed with two feature maps from ground image and aerial image feature extractors. DSM slides on the
ground features as to compute the inner product with the aerial features. The location of the highest
inner product value indicated the orientation and similarity. Notice that the polar transformation is
one of the pre-processing steps in this paper.

DSM is the first work that jointly estimates the position and orientation of a query ground image
regardless of its Field-of-View. It is reasonable that the authors named it ”dynamic”: the network is able
to predict the orientation, and then do the shift crop on the panorama image to align the two images
such that they are looking in the same direction.

LearnAlignment [60] studied the effect of alignment information onprevious cross-viewgeo-localization
models. The authors found that (Table 1. in [60]):

• Training with randomly rotated aerial images (the alignment information is therefore not avail-
able) yields a performance drop on the aligned validation set compared with training with aligned
images. But this trained model is able to perform well on the randomly rotated validation set.

• On the other hand, the model trained with aligned images has an extremely low accuracy on the
randomly rotated validation set.

These results indicate that the alignment information indeed has a great impact on accuracy. And
training without alignment information makes the model generalize better.

2.1.3. Center location misalignment
Asmentioned before when discussing the polar transformation proposed by the SAFA network, there is
normally a wrong assumption in existing datasets: each query ground-view image has one correspond-
ing reference aerial-view image whose center is exactly aligned at the location of the query image. This
is not practical for real-world applications, because the query image can occur at arbitrary locations in
the area of interest.

However, few of the cross-view matching methods consider a sub-image level localization beyond
the image-level retrieval or multiple reference images for training. VIGOR [61] is a recent work that
aims to address this issue. VIGOR proposed a new dataset that has a many-to-one correspondence
between ground and satellite views. This dataset densely sampled four cities in the U.S. and grabbed
panoramic images from Google Street View (GSV) [2]. The authors proposed three categories to define
cross-view matching: positive, semi-positive, and negative. The definitions of positive and negative
pairs are the same as in previous datasets. In the semi-positive pairs, the ground view location appears
in the aerial image but not in the center region. By doing so, cross-view geo-localization becomes a
many-to-one retrieval problem rather than a one-to-one retrieval problem. This configuration is closer
to real-life deployment.

The authors also proposed their method to solve the problem. For the image retrieval task, the
proposed model adopted the same architecture as SAFA (without polar transformation). Moreover,
to estimate the offset of the camera locations with respect to the center of the satellite image, an offset
prediction sub-networkwas added. By feeding the concatenation of aerial features and ground features,
this sub-network can predict the camera location on the satellite image. The author also proposed an
IOU-based loss function to guide the network in learning features from semi-positive samples.

2.1.4. Temporal scene changes
Another challenge of referencing a satellite patch is the temporal variation of places. For instance,
after the photographs have been captured, new buildings might appear or vegetation patterns might
change. This means that to cover all variations that could occur in the same location, we need to update

2.2. Self-supervised learning and contrastive learning 12

satellite images from every possible location and at every possible time, which is not practical. The
temporal scene change limits the applicability of existing cross-view image geo-localization methods
and challenges the generalization ability of cross-view matching networks.

Seeing theUnseen [38] proposed a novel data augmentation pipeline for cross-view geo-localization.
The author utilized the segmentation map from existing models to cut out the objects (buildings, side-
walks, sky, etc.) in the ground view images to force the network to learn from the unseen objects and
perform unseen object matching. Specifically, an off-the-shelf image segmentation module is used to
obtain class-specific masks corresponding to the ground view image. These masks are used to create
augmented samples in keep and removemode respectively. Finally, the augmented samples along with
their original versions are used for training in a Siamese pipeline. Note that the corresponding satellite
image is kept unchanged.

2.2. Self-supervised learning and contrastive learning
Unsupervised learning is a type of machine learning where a model is trained to find patterns or re-
lationships in a dataset without the need for human-provided labels. In unsupervised learning, the
model is given a dataset andmust discover the underlying structure or relationships within the data on
its own. This is typically done using algorithms that can identify clusters or groups within the data, or
that can learn to represent the data in a lower-dimensional space. Asmentioned before, self-supervised
learning is a type of unsupervised learning where amodel is trained to predict the relationship between
two views of the same input data. For example, in image recognition, a self-supervised model might
be trained to predict whether two different views of the same image (such as the original image and a
horizontally flipped version of the image) are the same or different. The goal of self-supervised learning
is to learn useful representations of the input data that can be used for a variety of downstream tasks.

Following the general self-supervised learning scheme as shown in Figure 1.4, we could categorize
different methods by their pretext tasks. An effective pretext task is reconstructing a corrupted version
of an image so that the network is forced to learn useful features to recover the original image. For exam-
ple, the corruption could be adding noise, hiding some part of the input, or separating image channels
(e.g., depth and color information). Representative approaches include several early works: denoising
autoencoder [47, 48], context encoder [36], and colorization [58]. Moreover, masked autoencoder [20]
produces state-of-the-art performance and effectively makes use of the transformer.

Another effective method as a pretext task is based on visual common sense. For example, we have
the ability to solve a jigsaw puzzle that depicts a scene or object based on our real-life experience. By de-
signing such a pretext task, the network is expected to learn useful features to gain such visual common
sense. Representative methods are reordering shuffled image patches (i.e., Jigsaw [34]) and predicting
the image rotation (i.e., RotNet [13]).

Contrastive learning [17] is a discriminative approach that aims at grouping representations of sim-
ilar samples closer and diverse samples far from each other, as shown in Figure 2.2. In recent years,
many contrastive learning methods achieved state-of-the-art performances, and it is worth mention-
ing that yet even re-implemented with suitable architectures [26], the methods introduced in previous
sections are being outperformed by contrastive methods [21, 5, 7]. Therefore, contrastive learning is
considered the main self-supervised learning approach in our work.

Specifically, in a self-supervised manner for the visual application, the pretext task of contrastive
learning is commonly chosen as instance discrimination: Firstly, one sample from the training dataset
is taken and two transformed versions of the sample are gained by applying appropriate data augmen-
tation techniques. During training, the one augmented images of the original sample are considered a
positive sample of another, and the rest of the samples in the batch/dataset (depending on the method
being used) are considered negative samples. Then, the model is trained to differentiate positive sam-
ples from negative ones. In doing so, basically, the model is forced to learn quality representations to

2.2. Self-supervised learning and contrastive learning 13

identify that two different images are fundamentally containing the same object/scene. This knowledge
is used later for transferring to downstream tasks.

Figure 2.2: Contrastive learning pulls the representations of similar samples together and pushes dissimilar samples away

It could be identified that the notion of contrastive learning is somewhat similar to image retrieval,
while the term ismore commonly used in the field of self-supervised learning. CL trains encoders to per-
form a dictionary-look-up task: the encoded query should be similar to its matching key and dissimilar
to others. The learning could be formulated as minimizing a contrastive loss [17]. The contrastive loss
is a function whose value is low when the query is similar to its positive key and dissimilar to all other
keys (negative keys for the query). In the following sub-sections, several representative contrastive
learning self-supervised learning methods will be introduced.

2.2.1. MoCo, SimCLR and MoCov2
In practice, contrastive learning methods benefit from a large number of negative samples. Momen-
tum Contrast (MoCo) [21] is a successful work that provided competitive results under the common
linear protocol on ImageNet classification. Consider an encoded query q and a set of encoded samples
{k0, k1, k2, ...} that are keys of a dictionary. There is a single key (denoted as k+) in the dictionary that
q matches. The architecture of MoCo is shown in Figure 2.3. In general, the query representation is
q = fq(x

q) where fq is the query encoder network and xq is a query sample. In the same way, the key
representation k = fk(x

k)), where fk is the key encoder and xk is a key sample.

Figure 2.3: Momentum Contrast (MoCo) architecture. The figure is taken from [21].

The authors hypothesized two major properties of the learning method leading to good features:
1. the dictionary is large enough to cover a rich set of negative samples, and 2. the encoder for the
dictionary keys is kept as consistent as possible despite its evolution during training. This motivation

2.2. Self-supervised learning and contrastive learning 14

leads to the core design of the approach around the momentum encoder, which will be described next.
The dictionary of encoded keys is maintained as a queue, which allows us to reuse them from pre-

ceding mini-batches. The samples in the dictionary are progressively replaced: the current mini-batch
is pushed to the dictionary, and the oldest mini-batch in the queue is removed. This method enables
us to flexibly set the size of the dictionary to be an independent hyper-parameter, which could be much
larger than a normal mini-batch size. In addition, removing the oldest mini-batch can be beneficial
because its encoded keys are the most outdated and thus the least consistent with the newest ones.

However, the queue-like dictionarymakes it intractable to update the key encoder fk byback-propagation
because the gradient should propagate to all samples in the queue. Instead of adopting a naive solution
which could be simply copying query encoder fq to fk, MoCo proposed a momentum update to address
this issue:

θk ← mθk + (1−m)θq (2.1)

where θk, θq is the parameters of the key encoder fk andquery encoder fq, respectively. m ∈ [0, 1) is a
momentum coefficient. This momentum updating makes θk evolve smoothly. As a result, although the
keys in the queue are encoded by different encoders (in different mini-batches), the difference among
these encoders can be made small.

In terms of the learning objective, MoCo uses a form of contrastive loss called InfoNCE [35], which
measures the similarity by the dot product. InfoNCE loss is a method used to train a model to dis-
criminate between a sample and a set of negative samples. It is commonly used in the field of natural
language processing (NLP) to train language models but has also been applied to other areas such as
computer vision and recommendation systems. The goal of training amodel with NCE loss is to learn a
function that can predict the probability that a given sample belongs to a target distribution, given a set
of negative samples that do not belong to the target distribution. This is done by defining a probability
distribution over the samples and minimizing the cross-entropy between the model’s predictions and
this distribution.

Another type of contrastive learningmechanism is naturally simplified in an end-to-endmanner. In
this case, the query encoder fq and key encoder fk are both updated end-to-end by back-propagation
during training. It uses samples in the current mini-batch as the dictionary, so the keys are consis-
tently encoded by the same set of encoder parameters. A successful end-to-end model is SimCLR [5],
which basically means ”a Simple framework for Contrastive Learning”. Even with neither specialized
architectures nor management on the memory of keys like MoCo, it outperformed previous works by
that time. The core contribution SimCLRmade is the systematical studying of what major components
enable good contrastive representation learning. The key findings and major components of SimCLR
will be introduced next. The architecture is shown in Figure 2.4.

Firstly, SimCLR proved that the composition of multiple data augmentation operations is crucial
in defining the contrastive prediction tasks that yield effective representations. In addition, unsuper-
vised contrastive learning benefits from stronger data augmentation than supervised learning. Same as
MoCo aswementioned before andmost of themethods in contrastive learning for self-supervised learn-
ing, SimCLR learns representations by maximizing agreement between differently augmented views of
the same data example via a contrastive loss in the latent space. In Figure 2.4, t and t

′
are two specific

sampled augmentations from the same family T . SimCLR sequentially applies three simple augmen-
tations: random cropping followed by resizing back to the original size, random color distortions, and
random Gaussian blur. By analysis, random cropping makes the pretext task involve predictions from
the global to local view or adjacent view. Specifically, the authors also emphasize the effectiveness of
combining random cropping with random color distortion, since most patches from an image share
similar color distribution, which may lead to shortcuts to solve the task.

2.2. Self-supervised learning and contrastive learning 15

Secondly, introducing a learnable nonlinear transformation between the representation and the con-
trastive loss substantially improves the quality of the learned representations. Apart from the encoder
f(·), a small neural network projection head g(·) is set, which maps representations to the space where
contrastive loss is finally applied. The authors use an MLP with one hidden layer to obtain zi = g(hi),
and by experiments, they found it beneficial to define the contrastive loss on zi instead of representa-
tions hi which is commonly used in previous works.

Figure 2.4: SimCLR architecture. The figure is taken from [5].

Thirdly, SimCLR benefits from larger batch sizes (and longer training time). Unlike MoCo which
stores the negative samples in a queue, Since SimCLR adopts an end-to-end manner, the dictionary
size is directly linked with the mini-batch size. In order to accumulate a greater number of negative
samples, it needs large batch sizes. The authors found that in-batch negative example sampling suffices
with larger batch sizes. Training longer also provides more negative examples.

However, in fact, SimCLR is still trained with a batch size of 4096 as a default value to provide good
results, which is not accessible for every researcher since the batch size is limited by the GPU memory
size. The scalability factor with the method remains an issue.

Note that in SimCLR, since the dictionary look-up task is performed within each mini-batch, sam-
ples could serve as both query and keys (i.e., we could flip what is the query and what is the key). There-
fore, the contrastive loss of each batch is constructed as a sum of both ways.

Another finding of SimCLR is that unsupervised contrastive learning benefits more from bigger
models than its supervised counterpart. A hypothesis is that the pretext task is much harder compared
to that of supervised learning.

To summarize, SimCLR mainly proposed three design improvements: 1. substantially larger batch
size (4k or 8k) that is able to provide enough negative samples, 2. replacing the output fully-connected
layer with a small MLP head, and 3. stronger data augmentation. Later on, MoCov2 [7] is proposed
with simple modifications from SimCLR’s design improvements and achieved even better results than
SimCLR. In the MoCo framework, a large number of negative samples are readily available. MoCov2
replaces the fully-connected layer (head) in MoCo with a 2-layer MLP head and extends the original
augmentation by including the blur augmentation in SimCLR. MoCov2 with a batch size of 256 not
only outperformed SimCLR with a batch size of 8192 but also costs much lower GPU memory and
time. In fact, even with the same batch size, the end-to-end manner is still more costly because it back-
propagates to both query and key encoders, while MoCo only back-propagates to the query encoder.
The results suggest that large batches are not necessary for good accuracy, and state-of-the-art results
can be made more accessible.

2.2.2. BYOL, SimSiam
From the approaches introduced in the previous sections, it seems that careful treatment of negative
pairs is essential for contrastive learning, by either simply relying on huge batch sizes like SimCLR, or

2.2. Self-supervised learning and contrastive learning 16

managing memory banks like MoCo or NPID. This prompts the question of whether using negative
pairs is necessary, to make the framework even simpler.

Bootstrap Your Own Latent (BYOL) [15] answered this question, which surprisingly demonstrated
that state-of-the-art results could be achieved evenwithout negative pairs. Basically, the architecture of
BYOL could be compared with MoCov2 as an introduction and for discussion, as shown in Figure 2.6b
and Figure 2.6c. The architecture of BYOL is shown in Figure 2.5. The network’s two branches in
BYOL are termed as an online network and target network. BYOL builds on the concept of momentum
network of MoCo: the parameters ξ of the target network’s encoder fξ and projector gξ are updated by
the exponential moving average (EMA) of parameters θ from the online network. The design aspects
of BYOL will be introduced next.

Figure 2.5: BYOL architecture. The figure is taken from [15].

Firstly, an MLP called predictor qθ is additionally appended at the end of the online network. The
predictor converts zθ (the output of projector gθ) to qθ(zθ) which is finally involved in the loss.

Secondly, BYOL basically formulates the task as a regression task instead of a typical contrastive
learning task since no negative samples are used. The loss function is set as a Mean Squared Error
(MSE) between the normalized outputs of the online and target network:

Lθ,ξ = ∥qθ(zθ)− z
′

ξ∥22= 2− 2 ·
⟨qθ(zθ), z

′

ξ⟩
∥qθ(zθ)∥2 · ∥z

′
ξ∥2

(2.2)

This means BYOL purely tries to convert two augmented versions of the original sample into the
same representation vector, and not (explicitly) push other samples away as approaches using negative
samples. Same as SimCLR, BYOL also symmetrizes the loss Lθ,ξ by flipping the inputs: feeding v

′
to

the online network and v to the target network to compute ˜Lθ,ξ. Therefore, the overall loss is LBYOLθ,ξ =

Lθ,ξ + ˜Lθ,ξ.
Thirdly, the stop-gradient is adopted on the target network branch: the stochastic optimization step

is only performed with respect to θ, but not ξ. Thus, the parameter dynamics are summarized as:

θ ← optimizer(θ,∇θLBYOLθ,ξ , η) (2.3)

ξ ← τξ + (1− τ)θ (2.4)

where optimizer is an optimizer and η is the learning rate.
After dropping the negative samples, it could be noticed that there exists apparently easy solution for

the network to perform the task perfectly by generating collapsed representations. For example, if all
projection vectors zθ and z

′

ξ are the same, then the network only needs to learn the identity function for
qθ in order to achieve perfect prediction. Surprisingly, although BYOL’s objective admits such collapsed
solutions, the authors empirically showed that BYOL does not converge to such solutions.

To summarize, a unified view of the architectures of SimCLR, MoCov2, and BYOL is shown in Fig-
ure 2.6.

2.3. Related works: summary 17

(a) SimCLR

(b)MoCov2

(c) BYOL

Figure 2.6: A unified view of state-of-the-art self-supervised learning methods. (a) SimCLR, (b) MoCov2, (c) BYOL. The
figure is taken from

https://generallyintelligent.ai/blog/2020-08-24-understanding-self-supervised-contrastive-learning/

SimSiam [6] later on provides an even simpler architecture. It can be thought of as “BYOL without
the momentum encoder” subject to many implementation differences. The authors of SimSiam stated
that the momentum encoder may be beneficial for accuracy, but it is not necessary for preventing col-
lapse. Instead, SimSiam discovered that out of all main design aspects (e.g., stop-gradient, predictor,
batch size, batch normalization, similarity function, and symmetrized loss), the stop-gradient opera-
tion is critical. This discovery can be obscured by the usage of a momentum encoder, which is always
accompanied by a stop-gradient as it is not updated by its parameters’ gradients. SimSiam achieved
state-of-the-art results even with its simple architecture.

2.3. Related works: summary
To conclude, we give a brief summary of the cross-view matching methods in terms of the open chal-
lenges as introduced at the beginning of section 2.1:

• Drastic change in viewpoint: a representative method to address this problem is by transforming
the contents between the twomodalities either at an image level (e.g., polar transformation [42]).
However, polar transformation works under the assumption that the ground-level and satellite
images are perfectly center-aligned, which is not practical in a real-world application. [45] adds an
auxiliary task of synthesizing images from one view to another andmakes use of GAN to generate
useful features, but in theirmethodpolar transformation is still applied and the generator network
synthesizes the ground-level image on the base of a converted view of the satellite image. This
issue remains the major open challenge for cross-view matching.

• Orientation misalignment: [43] explicitly predicts the orientation using the correlation between
feature maps. However, this method also assumes that the ground-level and satellite images are

https://generallyintelligent.ai/blog/2020-08-24-understanding-self-supervised-contrastive-learning/

2.3. Related works: summary 18

center-aligned. Moreover, most cross-view matching methods do not explicitly handle this issue
and purely depend on the data inputs.

• Center location misalignment: one pioneer method proposed a new dataset with offset targets
and predict the offsets in a supervised way [61]. [55] addresses this issue by combining themetric
learning paradigm for image retrieval with dense probabilistic output via a U-Net-like decoder for
local metric localization.

• Temporal scene changes: [38] addresses this issue by designing augmentations for training cross-
viewmatching networks bymasking objects predicted by standard image segmentation networks.
However, during the data augmentation, the masked object classes are manually selected. This
limits the generalization of this approach.

Moreover, the contrastive learning method leads to state-of-the-art performances in the field of
self-supervised learning. Among the most representative ones, MoCo [21, 7] uses a memory bank and
momentum encoder, SimCLR [5] simply uses an end-to-end pipeline with an extremely huge batch size
to keep an identically large amount of negative samples. Then, BYOL [15] totally discards the use of
negative samples and proved that it can also prevent collapsing and learn useful features.

In our work, rather than tackling one specific open challenge of cross-view matching with certain
designs, we experimentally tested the effect of contrastive learning as pre-training to find out the pos-
sibility of generally improving cross-view matching methods by representation learning. In the next
chapter, we explain the method in detail.

3
Method

In thiswork, corresponding to the first research sub-question, we experimentally tested the effect of pre-
training by contrastive learning on cross-view matching. The problem definition, dataset, and overall
method are introduced in section 3.1 and section 3.2. Apart from that, for the second research sub-
question, we plotted and analyzed the feature distributions in the embedding space produced by differ-
ent networks. They are described in section 3.3 and section 3.4.

Figure 3.1: The overall method pipeline. The pipeline is composed of two stages: 1. self-supervised pre-training by contrastive
learning and 2. cross-view matching downstream training

As shown in Figure 3.1, the network pipeline is composed of two stages: 1. self-supervised pre-
training by contrastive learning and 2. cross-viewmatching downstream training. The image backbone
pre-trained by contrastive learning is loaded in the training of the second stage as a starting point. In

19

3.1. Self-supervised pre-training by contrastive learning 20

section 3.1, we introduce contrastive learning self-supervised learning (stage 1) and in section 3.2 the
architecture used for cross-view matching (stage 2) is presented.

We define the dataset as a set ofN sample pairs
{
(xg0, x

s
0), ..., (x

g
N , xsN)

}
, each pair (xgi , x

s
i) consisting

of a ground-level image and its corresponding ground-truth satellite image, where xgi ∈ R3×Hg×Wg and
xsi ∈ R3×Hs×Ws . Hg and Wg are the height and width of the ground-level image, and Hs and Ws are
those of the satellite image.

3.1. Self-supervised pre-training by contrastive learning
In the first stage, we train the image backbone in a self-supervised way using contrastive learning.
Specifically, the method we adopted is MoCov2 [7], which is a representative method that achieved
state-of-the-art performances on ImageNet withmany computer vision tasks. Compared to othermeth-
ods like SimCLR [5], it does not need huge batch sizes (e.g., 4096) such that we are able to perform our
experiments with limited computing resources. In the original work, MoCov2 works with a batch size
of only 256. Moreover, rather than methods like BYOL [15] and SimSiam [6] which only use positive
samples to learn representations, the risk of collapsing is more safely avoided by the use of negative
samples in MoCov2. Although BYOL [15] and SimSiam [6] successfully avoid collapsing in their works,
we consider MoCov2 [7] as a more stable baseline to start with since we will use it on new datasets
and a new downstream task (i.e., cross-view matching). The main working process of MoCov2 will be
introduced next.

3.1.1. The contrastive learning framework: MoCov2
In this section, we introduce the overall contrastive learning framework used in stage 1 of Figure 3.1,
including the data preparation, network architecture, momentum updating mechanism, and loss func-
tion.

The data preparation and network architecture
As shown in Figure 3.1, firstly, a data sample x is taken and applied with stochastic data augmentations,
which generates two transformed versions (v and v′) of the original sample. Note that at this stage the
pre-training is performed independently on ground-level and satellite images. Therefore, x is either
from

{
xg0, ..., x

g
N

}
or

{
xs0, ..., x

s
N

}
. Then, we follow MoCov2’s augmentation pipeline: random crop-

ping and resize, random color distortions, random grayscale, random Gaussian blur and random
horizontal flip. We exhibit Figure 3.2 to show the illustrations of these data augmentations operators.
Figure 3.3 respectively shows two examples of the applied augmentations on the satellite and ground-
level image from the dataset used in our work.

The task can be thought of as training a network for a dictionary look-up task. After the data aug-
mentation step, one augmented sample is then encoded by a query encoder, which is composed of an
image backbone fθ′ and projection head gθ′ sequentially. The backbone extracts feature maps from
augmented data samples. The projection head extracts the representation vector from the feature map
and then maps the representation to the space where the contrastive loss is calculated. We define the
final encoded query representation as q. The other augmented sample is encoded by the key encoder,
which is composed of fξ′ and gξ′ sequentially. We define the encoded query representation as k. In
other words, q = gθ′(fθ′(v)) and k = gξ′(fξ′(v

′)). The two augmented versions of the same original
sample naturally form a positive pair, or equivalently, the current key is the corresponding positive key
for the query sample. All key representations extracted from other augmented samples are considered
as negative keys for the current query sample.

The framework allows different choices of the network, and in our work, for comparison with ex-
isting cross-view matching methods, the architecture of the image backbone (fθ′ and fξ′) is adopted
as VGG16 [44] rather than the commonly used ResNet50 [19] in original contrastive learning methods

3.1. Self-supervised pre-training by contrastive learning 21

(a) Original (b) Crop and resize (c) Crop, resize and flip

(d) Grayscale (e) Color distortion (f) Gaussian blur

Figure 3.2: Illustrations of data augmentation operators. Each augmentation can transform data stochastically with some
internal parameters, e.g., noise level. The figures are from SimCLR [5] (Original image cc-by: Von.grzanka)

(a) The original satellite image (top) and its two
augmented versions (middle and bottom)

(b) The original ground-level image (top) and its two augmented
versions (middle and bottom)

Figure 3.3: Examples of data augmentations used in Figure 3.1. The raw image sample is taken from VIGOR [61]

3.1. Self-supervised pre-training by contrastive learning 22

[21, 5, 7, 6], since VGG16 [44] is widely used in most cross-view matching methods [27, 42, 61]. The
network blocks of VGG16 we used are shown in the appendix. For the projection head, we follow Sim-
CLR [5] andMoCov2 [7] that use anMLP head. Specifically, the architecture of gθ′ and gξ′ is composed
of an average pooling layer and an MLP head with one hidden layer. Therefore, the architecture of gθ′

and gξ′ could be shown in a PyTorch-like style as below:

(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(classifier): Sequential(

(0): Linear(in_features=512, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=128, bias=True)

)

The contrastive loss function and momentum updating mechanism
The authors of MoCo [21] hypothesized that good features can be learned by a large dictionary that
covers a rich set of negative samples, while the encoder for the dictionary keys is kept as consistent as
possible despite its evolution. Therefore, a memory bank is maintained as a queue of representations.
This allows us to reuse the encoded keys from the immediate preceding mini-batches. The size of the
memory bank can be much larger than a typical mini-batch size and can be flexibly and independently
set as a hyper-parameter. The samples in the memory bank are progressively replaced. The current
mini-batch is enqueued to the queue, and the oldest mini-batch in the queue is removed. The queue
always represents a sampled subset of all data. Moreover, removing the oldest mini-batch can be ben-
eficial, because its encoded keys are the most outdated and thus the least consistent with the newest
ones. Based on the query and key representations, a form of contrastive loss function called InfoNCE
[35] is defined as

Lq = − log exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

, (3.1)

where q is the query representation, k+ is the positive key representation, and ki is a key representa-
tion of the memory bank. All saved key representations in the memory bank serve as negative samples
for the query in the current mini-batch. τ is a temperature hyper-parameter. The sum is over one posi-
tive and K negative samples. Intuitively, this loss is the log loss of a (K+1)-way softmax-based classifier
that tries to classify q as q+.

Using a queue can make the dictionary large, but it also makes it intractable to update the key en-
coder by back-propagation (the gradient should propagate to all samples in the queue). A momentum
updating strategy is used to address this issue:

ξ′ ← mξ′ + (1−m)θ′. (3.2)

Here ξ′, θ′ are the parameters of the query encoder fθ′ , gθ′ and key encoder fξ′ , gξ′ , respectively.
m ∈ [0, 1) is a momentum coefficient. This momentum updating makes θk evolve smoothly. As a
result, although the keys in the queue are encoded by different encoders (in different mini-batches),
the difference among these encoders can be made small.

Overall, Algorithm 1 exhibits the pseudo-code of MoCo for stage 1 in Figure 3.1, as described in this
section. For the current mini-batch, the queries and the corresponding positive keys are encoded by
the network. The negative keys are directly from the queue. InfoNCE loss is then calculated and used
for back-propagation. After that, the key network is updated by the query network with momentum,
and the memory bank is updated with the keys of the current mini-batch.

3.1. Self-supervised pre-training by contrastive learning 23

Algorithm 1 Pseudo-code of MoCo in a PyTorch-like style (from [21])

f_q, f_k: encoder networks for query and key
queue: dictionary as a queue of K keys (CxK)
m: momentum
t: temperature

f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples

x_q = aug(x) # a randomly augmented version
x_k = aug(x) # another randomly augmented version
q = f_q.forward(x_q) # queries: NxC
k = f_k.forward(x_k) # keys: NxC
k = k.detach() # no gradient to keys
positive logits: Nx1
l_pos = bmm(q.view(N,1,C), k.view(N,C,1))
negative logits: NxK
l_neg = mm(q.view(N,C), queue.view(C,K))
logits: Nx(1+K)
logits = cat([l_pos, l_neg], dim=1)
contrastive loss, Eqn.(1)
labels = zeros(N) # positives are the 0-th
loss = CrossEntropyLoss(logits/t, labels)
SGD update: query network
loss.backward()
update(f_q.params)
momentum update: key network
f_k.params = m*f_k.params+(1-m)*f_q.params
update dictionary
enqueue(queue, k) # enqueue the current minibatch
dequeue(queue) # dequeue the earliest minibatch

3.1.2. Different pre-trained weights
After training, the backbone of the encoder in stage 2 will be loaded with the parameter weights of the
backbone in the query encoder fθ′ . In our experiments, we conducted the pre-training under various
situations to see how the performance of stage 2 differs. These variants contain:

• If the pre-training starts with randomly initialized network weights or with loaded weights pre-
trained on ImageNet [9]. It is a commonly adopted practice that initializes the network with
weights gained from training on ImageNet [9] by supervised learning in many computer vision
tasks, including most existing cross-view matching methods. Although original MoCov2 [7] and
other self-supervised learning methods [21, 5, 15] do not load ImageNet [9] pre-trained weights
to test the performance of the approach, here we adopt this option as a practical baseline, and
achieve a fair comparison with existing cross-view matching methods. Since the data amount of
the cross-view matching datasets we used for pre-training is extremely smaller than the scale of
ImageNet [9], it is considered beneficial if our pre-training brings further performance improve-
ment.

• If the pre-training is performed on ground-level or satellite images. Due to the drastic change in
viewpoint, following most previous cross-view matching methods, the encoders for the ground-
level and satellite images in stage 2 are not shared. Therefore, the corresponding encoder is natu-
rally expected to load with pre-trained weights on the same image viewpoint. In our experiments,
different combinations of pre-trained weights are tested on the two branches in stage 2.

• For pre-training on the satellite images, it could be performedondifferent dataset splitswith three
options: the training set, the validation set, or the whole dataset (the training set plus validation
set). The availability of the validation set relies on the observation that the satellite images are
all accessible. It is hypothesized that pre-training on the images from the validation set gives the
network the possibility to perceive image features of the target area for evaluation and gain higher

3.2. Image Retrieval Architecture and Loss Function 24

performance. Moreover, making use of the whole dataset relies on the assumption thatmore data
is generally beneficial for the network.

Based on the variants introduced above, we define different pre-trained backbone weights settings
in our experiments on the two different datasets. Table 3.1 shows these combinations on the two net-
work branches (ground and satellite), in which each row represents a pre-training strategy. Moreover,
several terms are defined to represent the pre-training weights:

1. /: randomly initialized weights.
2. ImageNet: pre-trained weights by supervised learning on ImageNet [9].
3. grd or sat: pre-trained weights trained on ground-level or satellite images of the whole down-

stream dataset (e.g., CVACT or VIGOR) using MoCov2 [7]. The pre-training starts from scratch
with randomly initialized weights.

4. grd* or sat*: pre-trained weights trained on ground-level or satellite images of the whole down-
stream dataset using MoCov2 [7]. The pre-training starts from loaded ImageNet [9] weights by
marked with a star *.

5. sat train*: pre-trained weights trained on satellite images of the training set of the downstream
dataset using MoCov2 [7]. The pre-training starts from loaded ImageNet [9] weights.

6. sat val*: pre-trained weights trained on satellite images of the validation set of the downstream
dataset using MoCov2 [7]. The pre-training starts from loaded ImageNet [9] weights.

Note that we set more variations of the satellite image branch because as mentioned before, satel-
lite images are publicly available and pre-training on them yields a more practical application, while
ground-level images from a target area are not usually reachable. Therefore, in most settings, the pre-
trained weights on the ground-level image branch are on the baseline ImageNet.

Table 3.1: Different combination of pre-trained weights in our experiments

Settings Ground-level image branch Satellite image branch Note

/ ImageNet grd* / ImageNet sat sat train* sat val* sat*

1 × × from scratch

2 × × baseline

3 × ×

4 × ×

5 × ×

6 × ×

7 × ×

3.2. Image Retrieval Architecture and Loss Function
In this section, the architecture and loss function used in the downstream cross-view matching (stage
2) training is introduced. Given a set of query ground-level and satellite reference images, our task
objective is to learn an embedding space in which each ground-level query is close to its corresponding
ground-truth satellite image. Specifically, we expect a neural network that is able to perform a projec-
tion from the images to a representation vector. By calculating and comparing the distances between
the representation vectors, we could find the closest satellite image for the given ground-level image.
Similar to section 3.1, it could be also considered as a dictionary look-up task, but now the task is per-
formed on crossed-view images.

Following the dataset definition, each ground-level image and its ground-truth satellite image are
considered a positive pair, while others are considered negative. If there are multiple satellite images

3.3. Feature distribution visualization and uniformity metric 25

covering one ground-level image like VIGOR [61], we consider the nearest one as the positive and avoid
sampling the other neighboring satellite images in the same batch to prevent ambiguous supervision.

3.2.1. The image retrieval framework
The network is composed of two networks with parameters θ and ξ that encode the ground and satellite
images separately. Take the ground-level branch as an example, the backbone fθ converts x

g
i to the

feature map ygi . The pooling module aggregates the feature map and generates the final representation
zgi ∈ Rk, where k is the vector’s dimension. This process is the same for the satellite branch on the input
satellite image, producing the representation of satellite image zsi ∈ Rk.

Specifically, we performed experiments on two existing architectures Siamese-VGG [60] and SAFA
[42]. Both of them use the backbone (i.e., fθ and fξ) VGG16 [44] which is consistent with the backbone
in section 3.1 so that it could be loaded with pre-trained weights. The two architectures differ in the
aggregationmodule (i.e., gθ and gξ). Siamese-VGG [60] serves as a baselinemethod that simply uses an
average pooling module and a fully-connected layer after the image backbone to produce the final rep-
resentation vector. SAFA [42] designed a spatial-aware embeddingmodule to perform the aggregation.
In our work, we re-implemented these methods in PyTorch for better integration with the pre-training
stage and to avoid the risk of accuracy drop due to model conversion between different platforms. The
details of the implementation of the architecture could be found in the appendix.

3.2.2. The soft-margin triplet loss
We adopt the soft-margin triplet loss in [23]. The loss is calculated on a triplet, which is composed
of an anchor za, positive zp, and negative zn. The chosen metric to compute the distance between
representations is L2-Norm. The loss function is defined as

Ltriplet(za, zp, zn) = log
(
1 + γ · exp (dpos − dneg)

)
, (3.3)

where dpos = ∥za−zp∥2 and dneg = ∥za−zn∥2 are the distances of the positive pair (anchor and positive)
and negative pair (anchor and negative). γ is a hyper-parameter adjusting the gradient of the loss, thus
controlling the convergence speed. The triplet loss aims at pulling the positive pair closer and pushing
the negative pair further away. Based on the soft-triplet loss, the total loss is computed as

Ltotal =
N∑
i=0

N∑
j=0
j ̸=i

(
Ltriplet(z

g
i , z

s
i , z

s
j) + Ltriplet(z

s
i , z

g
i , z

g
j)
)
, (3.4)

which pulls the corresponding pair of ground-level and satellite representations closer and pushes all
others from other pair samples away. Intuitively, each ground-level and satellite image representation
can either serve as a query or a key in other triplets. Figure 3.4 gives an illustration of how the total loss
is composed. In total, it sums overN(N −1) single triplet loss. In practice, the loss is calculated within
each mini-batch of size B during the training process.

3.3. Feature distribution visualization and uniformity metric
Pre-trainingweights provide a starting point for the network parameters that will be optimized in down-
stream tasks. In order to interpret the results in previous sections, we performed an in-depth analysis
by visualizing the features generated by different models in the embedding space.

Specifically, the analysis is performed on the experiments using Siamese-VGG [60]. Note that for vi-
sualization, we use t-SNE [46] to perform dimensionality reduction, which converts the output feature
vector zgi and zsi to 2-d dimensional vectors. t-SNE (t-Distributed Stochastic Neighbor Embedding) is a
machine learning algorithm for visualizing high-dimensional data. It is commonly used to reduce the

3.3. Feature distribution visualization and uniformity metric 26

Figure 3.4: Illustration on the composition of triplet losses used for image retrieval training

dimensionality of data to two or three dimensions so that it can be plotted and visualized in a scatter-
plot. It works by first constructing a probability distribution over pairs of high-dimensional data points,
and then minimizing a divergence between the joint probabilities of the low-dimensional embedding
and the high-dimensional data. The embedding is constructed such that similar points in the high-
dimensional space are nearby in the low-dimensional space, while dissimilar points are far apart. It is
is a powerful tool for data visualization and has been widely used in a variety of applications. Using this
technique, we plot the representations of the validation set of the target dataset before the downstream
task training epoch launches, to see the effect of pre-training.

Moreover, in order to analyze the effect of different pre-training, we selected three typical pre-
training combinations:

• Both the ground-level and satellite image branches are loaded with ImageNet [9] pre-trained
weights. This serves as the baseline method.

• The ground-level image branch is loaded with ImageNet [9] pre-trained weights, and the satellite
image branch is loaded with contrastive learning pre-trained weights on the satellite images of
the corresponding dataset. In this case, the encoder for satellite images is expected to be aware
of the features of the satellite images.

• Both the ground-level and satellite imagebranches are loadedwith contrastive learningpre-trained
weights on the ground-level and satellite images of the corresponding dataset, respectively. In this
case, both encoders for ground-level and satellite images are expected to be aware of the dataset.

Additionally, we adopt the methods in [51] to analyze the feature distribution properties in terms of
how uniform the feature distribution is in the embedding space. Two extra plots are generated: 1. fea-
tures in S1 by l2-normalizing features inR2. 2. features density estimation byMises-Fisher (vMF) KDE
on angles (i.e., arctan2(y, x) for each point (x, y) ∈ S1). These two plots further show the distribution
in the embedding space.

We also reported the uniformity metric [51] of the representations to quantify how uniform the dis-
tribution is. The authors of [51] defined the uniformity metric based on the Gaussian potential kernel
(i.e., the Radial Basis Function (RBF) kernel) under the consideration that the metric should be both
asymptotically correct (i.e., the distribution optimizing this metric should converge to uniform distri-
bution) and empirically reasonable with a finite number of points. Specifically, the uniform metric is
defined as the logarithm of the average pairwise Gaussian potential kernel:

Luniform(f ; t) ≜ logEx,y∼pdata exp
(
−t∥f(x)− f(y)∥22

)
. (3.5)

3.4. Add uniformity loss and data augmentation directly 27

Here pdata is the data distribution over Rn, and f :Rn → Sm−1 is an encoder that maps data to L2-
normalized representation vectors of dimension m. Therefore, in our case, three values are reported:
the uniformity metric within the ground-level image features, satellite image features, and the overall
features. They could be defined as

Luniform-ground = log
N∑
i=0

N∑
j=0
j ̸=i

exp
(
−t∥zgi − zgj∥

2
2

)
, (3.6)

Luniform-satellite = log
N∑
i=0

N∑
j=0
j ̸=i

exp
(
−t∥zsi − zsj∥22

)
, (3.7)

Luniform-all = log
2N∑
i=0

2N∑
j=0
j ̸=i

exp
(
−t∥zi − zj∥22

)
, (3.8)

where N is the number of sample pairs, zgi , z
g
j ∈ {z

g
1 , ..., z

g
N} are the representation vectors of the

ground-level images, zsi , z
s
j ∈ {zs1, ..., zsN} are the representation vectors of the satellite images, and

zi, zj ∈ {zg1 , ..., z
g
N , zs1, ..., z

s
N} are among all representation vectors. Note that although [51] uses uni-

formmetric directly as a loss function for optimizing, here the metric value is only for analysis to show
how uniform the features are distributed. Normally, the value is negative, and a lower value indicates
that the features are distributed more uniformly and make use of more space in the embedding space.

3.4. Add uniformity loss and data augmentation directly
We identified two elements that could be beneficial during pre-training: uniformitywithin single-modality
images and strong data augmentation. We try to add these two elements directly in downstream task
training to see if the performance also gets improvements.

3.4.1. Uniformity loss
The learning objective of contrastive learning is identifying two augmented versions of the original im-
age from the same image, pulling their representations closer, and pushing other samples away. This
process internally makes the representation of each sample more unique and might enlarge the rep-
resentations’ occupation in the embedding space letting them be more uniform. We already used the
uniformitymetric in the last section to analyze the feature distribution. In this section, we try to directly
add it to the downstream task training as an auxiliary loss to find out its effect.

Specifically, We define the uniformity loss function as

Luniformity = log
N∑
i=0

N∑
j=0
j ̸=i

exp
(
−t∥zgi − zgj∥

2
2

)
+ log

N∑
i=0

N∑
j=0
j ̸=i

exp
(
−t∥zsi − zsj∥22

)
, (3.9)

which tries to separate ground-level and satellite image features within their modalities respectively.
The uniform loss is added to the total triplet loss to generate the final loss used in this section:

L
′

total = Ltotal + αLuniformity. (3.10)

Here α is a hyper-parameter that weights the uniform loss. We tuned this weight to see the influence
of uniform loss directly applying to the downstream task.

3.4.2. Data augmentation
The strong data augmentations applied in contrastive learning pre-training enable the network to learn
richer features. Moreover, there are few cross-view matching works using data augmentations during

3.4. Add uniformity loss and data augmentation directly 28

training, although it is a frequently used technique within many computer vision tasks. Therefore, we
try to add it directly to the downstream task to see the effect.

We adopt the data augmentation applied in MoCov2 [7] pre-training directly on the downstream
task. The augmentations include random cropping and resize, random color distortions, random
grayscale, random Gaussian blur and random horizontal flip. Note that random cropping and re-
size crops the image and resizes it to the original size. For cross-view matching training, this process
destroyed the alignment between the ground-level image and its corresponding ground-truth satellite
image in the VIGOR [61] dataset with semi-positive samples. Therefore, we also test applying augmen-
tations without random cropping and resize.

4
Experiments

In this section, we present the experiment results and analysis. section 4.3 and section 4.4 show the
main results on the performance of cross-view matching with self-supervised pre-training. Then, sec-
tion 4.5 and section 4.6 present further analysis and experiments.

4.1. Datasets and evaluation metrics
We perform the experiments based on two cross-viewmatching datasets: CVACT [28] and VIGOR [61].
The datasets contain images of both ground-level and satellite views and their correspondences.

CVACT dataset [28]1 is a GPS-tagged cross-view dataset covering 300 square miles of road in Can-
berra, Australia. To collect ground-level and satellite images, the GSV API2 and Google Maps API
were employed. All ground-level images (panoramas) were captured at zoom level 2 at a resolution of
1664×832 pixels and satellite view images were captured at zoom level 20 at a resolution of 1200×1200

pixels. Two sample images in this dataset are presented in the bottom two rows of Figure 4.1. In total,
this dataset contains 128,334 ground-satellite image pairs in which 35,532 pairs are used for training,
8,884 for validation, denoted as CVACT_val, and 92,802 for testing, denoted as CVACT_test. In our
experiments, the results are conducted on CVACT_val.

We also conduct experiments on the VIGOR [61] dataset and its cross-area split, to evaluate the
methods in an urban scenario. VIGOR [61] originally contains 238,696 panoramas and 90,618 aerial
images from four cities, i.e. Manhattan, San Francisco, Chicago, and Seattle. A balanced sampling is
applied to select only two positive panoramas for each satellite image, resulting in 105,214 panorama
images. VIGOR assumes that the queries can belong to arbitrary locations in the target area, and thus
are not spatially aligned to the center of any aerial reference images in both training and test sets. For
each query ground-level image, there are four corresponding ground-truth satellite images, with one of
them tagged as “positive” and the rest three as “semi-positive”. The dense sampling strategy also hugely
increases the difficulty of the retrieval task. VIGOR has two evaluation protocols [36]: same-area and
cross-area, depending on how the training and validation set is divided. Under the same-area setting,
all images are from the same areas. Under the cross-area protocol, the training and validation set
are extracted from non-overlapped, different cities: the training set consists of two cities Seattle and
NewYork, and the validation set consists of two cities SanFrancisco and Chicago.

Table 4.1 gives a brief summary of the two datasets we used in our work. Through the experiments
on the two different datasets, the result could be evaluated under both rural and urban image scenery.
Moreover, based on the previous benchmarks, sampling strategy, and data split as introduced above,
we consider image retrieval on CVACT [28] as a relatively easier task compared to VIGOR [61].

1https://github.com/Liumouliu/OriCNN
2https://developers.google.com/maps/documentation/streetview/overview

29

https://github.com/Liumouliu/OriCNN
https://developers.google.com/maps/documentation/streetview/overview

4.1. Datasets and evaluation metrics 30

Figure 4.1: The CVACT dataset. On the left is a satellite image and on the right side is its corresponding ground-level
panorama. The figure is taken from [43].

Figure 4.2: Sample images from VIGOR dataset. On the left are two ground-level images covered by the satellite image on
right. The yellow line in the ground-level images represents the north direction. The color of the star in the satellite image

represents the location of the ground-level image with the same color border. The figures is taken from [61].

Table 4.1: Comparison between the two datasets used in our work

dataset CVACT [28] VIGOR [61]

data split CVACT_val cross-area

data amount training set: 35532, validation set: 8884 training set: 51520, validation set: 53694

area mostly rural mostly urban

generalization The training and validation set cover same or adjacent areas The training and validation set are totally from different cities

4.2. Implementation details 31

We will report the retrieval performance in terms of top-k recall accuracy, denoted as “R@k”. The
k nearest reference neighbors in the embedding space are retrieved based on cosine similarity for each
query. If the ground-truth reference image appears in the top k retrieved images, it is considered as
correct.

4.2. Implementation details
In this section, we list the implementationdetails of the two stages in ourmethod. During self-supervised
pre-training (stage 1), we use SGD as the optimizer. The SGD weight decay is 0.0001 and the SGDmo-
mentum is 0.9. We use a mini-batch size of 128 in 2 GPUs, and the initial learning rate is 0.015. We
train for 200 epochs with the learning rate multiplied by 0.1 at 120 and 160 epochs, taking 14 hours for
training. FollowingMoCov2 [7], the encoder is composed of a backbone and a projector. The backbone
is chosen as VGG16, and the projector is a 2-layer MLP head with an output dimension of 128. The size
of the memory bank is 16384. The updating momentum for the key encoder is 0.999. The temperature
τ in InfoNCE loss is 0.2. For CVACT dataset, the ground-level image size is 112 × 616 pixels and the
satellite image size is 256 × 256 pixels. For VIGOR dataset, the ground-level image size is 224 × 448

pixels and the satellite image size is 224× 224 pixels.
During cross-view matching training (stage 2), we use Adam as the optimizer. The weight decay is

0.0001 and the initial learning rate is 0.0001. We use a mini-batch size of 96 in a single GPU. We train
for 100 epochs with the learning rate, taking 21 hours for training. The backbone is consistent with
stage 1, chosen as VGG16 [44], and the aggregation part uses two settings: 1. global average pooling
plus a shared fully-connected layer as in [60] and 2. spatial-aware embedding module as in [42]. The
output dimension of the representation is 4096. The settings for the image sizes are the same as those
during pre-training.

4.3. Cross-view matching with contrastive learning pre-training
This section exhibits the experiment results corresponding section 3.1 and section 3.2, and mainly an-
swers the first sub-question proposed in the introduction. We performed cross-view matching experi-
ments on the network initialized with different pre-trained weights.

The results of Siamese-VGG [60] and SAFA [42] on CVACT dataset are shown in Table 4.2 and Ta-
ble 4.3. The results of Siamese-VGG [60] and SAFA [42] on VIGOR [61] dataset are shown in Table 4.4
and Table 4.5. The tables follow the definitions as described in subsection 3.1.2.

Table 4.2: Cross-view matching performance of Siamese-VGG [60] using different sets of pre-trained weights on the
ground-level and satellite network branch. The (downstream) training and evaluation are performed on CVACT [28] dataset

using CVACT_val split

Exp. Ground-level image branch Satellite image branch R@1 R@5 R@1%

/ ImageNet grd* / ImageNet sat train* sat val* sat*

1 × × 22.29 51.65 70.17

2 × × 53.20 77.36 95.05

3 × × 63.26 83.51 96.02

4 × × 60.46 81.79 96.07

5 × × 64.90 84.22 96.29

6 × × 65.00 85.21 96.60

Exp 1, 7, 11, and 18 serve as baseline settings that use ImageNet pre-trained weights, which is a
common practice in most of the implementations for cross-view matching. From the comparisons of
the experiments above, the main findings are listed as follows:

• Exp 12. and exp 13.: on the VIGOR dataset, initialized weights that are pre-trained using con-

4.3. Cross-view matching with contrastive learning pre-training 32

Table 4.3: Cross-view matching performance of SAFA [42] using different sets of pre-trained weights on the ground-level and
satellite network branch. The (downstream) training and evaluation are performed on CVACT [28] dataset using CVACT_val

split

Exp. Ground-level image branch Satellite image branch R@1 R@5 R@1%

/ ImageNet grd* / ImageNet sat train* sat val* sat*

7 × × 76.96 88.98 96.58

8 × × 79.01 89.88 96.79

9 × × 78.31 89.24 96.60

10 × × 79.27 90.27 96.99

Table 4.4: Cross-view matching performance of Siamese-VGG [60] using different sets of pre-trained weights on the
ground-level and satellite network branch. The (downstream) training and evaluation are performed on VIGOR [61] dataset

using the “Cross-Area” split setting (the training and validation set are located in separate cities).

Exp. Ground-level image branch Satellite image branch R@1 R@5 R@1%

/ ImageNet grd* / ImageNet sat sat train* sat val* sat*

11 × × 0.50 1.75 29.13

12 × × 3.28 9.21 62.16

13 × × 3.75 10.40 66.45

14 × × 5.29 13.88 69.61

15 × × 5.82 14.64 71.51

16 × × 5.78 14.63 70.87

17 × × 7.35 18.25 76.91

Table 4.5: Cross-view matching performance of SAFA [42] using different sets of pre-trained weights on the ground-level and
satellite network branch. The (downstream) training and evaluation are performed on VIGOR [61] dataset using the

“Cross-Area” split setting (the training and validation set are located in separate cities).

Exp. Ground-level image branch Satellite image branch R@1 R@5 R@1%

/ ImageNet grd* / ImageNet sat sat train* sat val* sat*

18 × × 4.45 11.44 65.02

19 × × 4.89 12.07 68.36

20 × × 7.09 17.06 74.85

21 × × 8.12 18.8 76.68

22 × × 8.18 19.36 75.32

4.4. Verification on swapped dataset 33

trastive learning from scratch on satellite images of the target (downstream) dataset produce an
on-par and slightly higher cross-view matching performance than that of ImageNet pre-trained
weights (3.28 vs. 3.75 on Recall@1).

• Exp 12. and exp 16.: initialized weights that are pre-trained using contrastive learning from Im-
ageNet pre-trained weights on satellite images of the target dataset produce higher performance
than that of ImageNet pre-trained weights (3.28 vs. 5.78 on Recall@1). This is also shown by the
comparison between exp 2. and 5, 7 and 10, and 18 and 22, respectively.

• Exp 14. and exp 15.: on the VIGOR dataset, initialized weights that are pre-trained using satel-
lite images exactly from the validation set of the downstream task achieve higher performance
than that of the training set (5.29 vs. 5.82 on Recall@1). This is also shown by the comparison
between exp 20. and 21. However, the result on the CVACT dataset is the opposite by looking
at the comparison between exp 3 and 4, and 8 and 9. Possible reasons are 1. the training and
validation set in VIGOR cover non-overlapped areas and the appearances differ, while in CVACT
the appearances are similar. 2. the data amounts of the training and validation set in VIGOR are
equivalent, while in CVACT the validation set contains fewer samples.

• Exp 16. and exp 17.: initialized weights that are pre-trained using both ground-level and satellite
images from the whole dataset give us another performance improvement than that of only using
the satellite images (5.78 vs. 7.35 onRecall@1). This is also shownby the comparison between exp
2. and 6. However, different from pre-training on satellite images that could be globally accessed
as prior, pre-training on ground-level images lacks the possibility of a real-world application since
ground-level images from a specific area are not always available.

These findings lead us to draw several conclusions or hypotheses as below:

1. On top of the widely applied ImageNet pre-trained weights, it is an effective way to perform
self-supervised learning using standard contrastive learning methods on the cross-view match-
ing dataset to generate pre-training weights for downstream task training. It is hypothesized that
training on satellite images gives the network new knowledge on features in an aerial view for
identifying places, while they are relatively rare in the normal ImageNet data.

2. If the localization task is aimed at a specific target area or city, it could be beneficial to collect
dense satellite image patches covering the area to create a training set that is large enough for
self-supervised pre-training, rather than using data from other areas. In a real-world scenario,
the satellite images are all available to fetch from the remote sensing satellites, using e.g., GSV
[2]. Self-supervised pre-training on the target area or city satellite images can sometimes give a
best practice for training a cross-view matching network.

4.4. Verification on swapped dataset
In order to verify the main findings in section 4.3, extra experiments are performed using Siamese-
VGG [60] on a swapped version of VIGOR [61] dataset. Specifically, the downstream task training is
performed on the validation set of VIGOR and evaluated on the training set. The results are shown in
Table 4.6.

Note that in Table 4.6 the pre-trained weights are termed the same as that of Table 4.4, e.g., “sat
train*” still means the original training set split in VIGOR, but in fact, serves as the set for evaluation
in the four experiments in this section. The results are consistent with the main finding in section 4.3:
the performances of the network pre-trained directly with the satellite images from the validation set
(Exp 24.) is higher than those from the training set (Exp 25.).

Besides, one detailed different result is: by comparing exp 25. and exp 26., this time initialized
weights that are pre-trained using satellite images from the whole dataset achieve slightly better per-
formance than that of only the validation set (6.41 vs. 6.46 on Recall@1).

4.5. Feature distribution 34

Table 4.6: Cross-view matching performance of Siamese-VGG [60] using different sets of pre-trained weights on the
ground-level and satellite network branch. The (downstream) training and evaluation are performed on VIGOR [61] dataset

using a swapped “Cross-Area” split setting (the training and validation set are swapped on the original split).

Exp. Ground-level image branch Satellite image branch R@1 R@5 R@1%

/ ImageNet grd* / ImageNet sat sat train* sat val* sat*

23 × × 3.87 10.01 57.91

24 × × 6.41 15.12 68.83

25 × × 5.58 13.40 64.52

26 × × 6.46 15.39 69.11

4.5. Feature distribution
This section exhibits the experiment results of section 3.3 andmainly answers the second sub-question
proposed in the introduction.

4.5.1. Settings
Overall, for both datasets, CVACT [28] and VIGOR [61], we plotted the feature distributions of 3 exper-
iments respectively to see the effect of pre-training on certain branches. They include settings of:

• Both image branches are loaded with baseline ImageNet pre-trained weights: exp 2. for CVACT
[28] and exp 12. for VIGOR [61].

• The ground-level image branch is loaded with ImageNet pre-trained weights, and the satellite
image branch is loaded with self-supervised pre-trained weights on satellite images: exp 5. for
CVACT [28] and exp 16. for VIGOR [61].

• Both image branches are loaded with self-supervised pre-trained weights on ground-level and
satellite images respectively: exp 6. for CVACT [28] and exp 17. for VIGOR [61].

Furthermore, for each experiment, as introduced in section 3.3, we generated 3 plots:

• Features in R2 by t-SNE dimensionality reduction

• Features displayed in S1 by l2-normalizing on features in R2

• features density estimation by Mises-Fisher (vMF) KDE on angles (i.e., arctan2(y, x) for each
point (x, y) ∈ S1)

And the calculated uniformity metric is reported in the text of the corresponding sub-figure’s cap-
tion. A lower value indicates a more uniform feature distribution.

The plots are shown in Figure 4.3 and Figure 4.4 for the two datasets ([28] and [61]) respectively.
Note that in Figure 4.3, the red dots represent feature vectors of ground-level images and the blue dots
represent satellite images. In Figure 4.4, since VIGOR [61]’s validation set contains two different cities,
the plot considers features of two image viewpoints (i.e., ground-level and satellite) and two cities in
the validation set (i.e., SanFrancisco and Chicago):

• Red: ground-level image features of SanFrancisco

• Blue: satellite image features of SanFrancisco

• Orange: ground-level image features of Chicago

• Green: satellite image features of Chicago

4.5. Feature distribution 35

(a) Pre-training on ImageNet (exp 2.).
Luniform-ground: -0.92, Luniform-satellite: -1.33, Luniform-all: -1.48

(b) Pre-training on ImageNet and satellite images of CVACT dataset (exp 5.).
Luniform-ground: -0.93, Luniform-satellite: -2.76, Luniform-all: -1.92

(c) Pre-training on ImageNet and both ground-level and satellite images of CVACT dataset (exp 6.).
Luniform-ground: -2.21, Luniform-satellite: -2.75, Luniform-all: -2.64

Figure 4.3: Representations of CVACT [28] validation set on R2 and S1 before downstream task training epochs. Column 1:
features in R2 by t-SNE dimensionality reduction. Column 2: features displayed in S1 by l2-normalizing on features in R2.
Column 3: features density estimation by Mises-Fisher (vMF) KDE on angles (i.e., arctan2(y, x) for each point (x, y) ∈ S1).

Red: ground-level image features. Blue: satellite image features

4.5. Feature distribution 36

(a) Pre-training on ImageNet (exp 12.).
Luniform-ground: -1.08, Luniform-satellite: -1.35, Luniform-all: -1.51

(b) Pre-training on ImageNet and satellite images of VIGOR dataset (exp 16.).
Luniform-ground: -1.04, Luniform-satellite: -2.53, Luniform-all: -1.93

(c) Pre-training on ImageNet and both ground-level and satellite images of VIGOR dataset (exp 17.).
Luniform-ground: -2.05, Luniform-satellite: -2.53, Luniform-all: -2.66

Figure 4.4: Representations of VIGOR validation set on R2 and S1 before downstream task training epochs. Column 1:
features in R2 by t-SNE dimensionality reduction. Column 2: features displayed in S1 by l2-normalizing on features in R2.
Column 3: features density estimation by Mises-Fisher (vMF) KDE on angles (i.e., arctan2(y, x) for each point (x, y) ∈ S1).
Red: ground-level image features of “SanFrancisco” split. Blue: satellite image features of “SanFrancisco” split. Orange:

ground-level image features of “Chicago” split. Green: satellite image features of “Chicago” split

4.6. Uniformity loss and data augmentation 37

4.5.2. Observations and findings
Overall, the three different types of plots reflect the feature distribution qualitatively and the calculated
uniformity metric evaluates it quantitatively. From Figure 4.3, the main observations are:

• Compare Figure 4.3 (a) with (b): from the first column, it could be found that features from
satellite images (blue dots) are more uniform and less homogeneous. This could be shown in
the first column and less obvious in the other two plots. Furthermore, the uniformity metric
verifies this observation, with -2.76 in (b) and -1.33 in (a). Amore uniform satellite image features
distribution also brings the overall feature distribution to be more uniform (-1.92 vs -1.48).

• Compare Figure 4.3 (b) with (c): from the first column, it could be found that features from
ground-level images (red dots) are less homogeneous. In (c), the red dots are clustered into
different parts. This could also be shown in the third column: the features’ occupation in the
hyper-sphere is more average, rather than with peaks in (a) (the red curve). Furthermore, the
uniformity metric verifies our observation, with -2.21 in (c) and -0.93 in (b). A more uniform
satellite image features distribution also brings the overall feature distribution to be more uni-
form (-2.64 vs -1.92).

In Figure 4.4, since the experiments are performed on VIGOR [61] where there includes specific
cities in the data splits, there are more information we could get from it. The main observations are:

• Compare Figure 4.4 (a) with (b): from the first column, it could be found that features from
satellite images (blue and green dots) in (b) clearly separated between each other and form small
blobs. Moreover, the blue and green dots also further distribute into different parts, while in
(a) they stick together and are less centered. This indicates that image features from different
cities are nicely separated. Another spot is that in the second column, more parts of the circle
are occupied, producing a more uniform distribution. Also, in the third column, the black curve
is with smaller peaks, which indicates a more uniform overall distribution. Furthermore, the
uniformity metric verifies our observation, with -2.53 in (b) and -1.35 in (a). A more uniform
satellite image features distribution also brings the overall feature distribution to bemore uniform
(-1.93 vs -1.51).

• Compare Figure 4.4 (b) with (c): we got similar observations for ground-level image features like
those above. From the first column, it could be found that features from ground-level images (red
and orange dots) in (c) are clearly separated from each other and form small blobs. Furthermore,
the red and orange dots also clearly distribute into different parts, while in (b) they are centered
together. Similarly, in the third column, the black curve is even flatter and shows a more uniform
distribution. Then, the uniformity metric verifies these observation, with -2.05 in (c) and -1.04
in (b). A more uniform ground-level image features distribution also brings the overall feature
distribution to be more uniform (-2.66 vs -1.93).

These observations within the experiments lead to consistent conclusions. It could be found that
pre-training by contrastive learning on single-modality images helped the network separate them apart
from each other and produces a more uniform distribution. Therefore, it is hypothesized that a more
separated feature distribution at the beginning of training improves the downstream task performance.

4.6. Uniformity loss and data augmentation
This section exhibits the experiment results of section 3.4. In the previous results, standard contrastive
learning pre-training improves the downstream task performance. We identify two key elements that
could be beneficial during pre-training: uniformity within single-modality images and strong data aug-
mentation. By Figure 4.4 and Table 4.4, it has been shown that more uniform representations as start-
ing points generate eventually better cross-view matching performances. Moreover, the strong data

4.6. Uniformity loss and data augmentation 38

augmentation used in contrastive learning could hugely increase the data amount delivered to the net-
work.

We added these two elements directly in downstream task training to see if the performance also gets
improvements. The experiments are also applied on using Siamese-VGG [60] on the VIGOR dataset
[61]. The results are shown in Table 4.7. Note that these experiments are based on ImageNet pre-
training (exp 12.). Therefore, exp 12. is again added in the tables below for easier comparison.

Figure 4.5: Overall uniformity metric on validation set along fintune epochs

Table 4.7: Cross-view matching performance of Siamese-VGG [60] with uniformity loss. The (downstream) training and
evaluation are performed on VIGOR [61] dataset using the “Cross-Area” split setting (the training and validation set are located

in separate cities).

Exp. α R@1 R@5 R@1%

12 0 3.28 9.21 62.16

27 0.0001 2.94 8.76 63.77

28 0.001 2.69 7.99 60.95

29 0.01 1.2 4.1 46.11

30 0.1 0.24 0.96 23.40

For different α, like in section 4.5, we calculated the overall uniformity metric Luniform-all on the
validation set to see the effect of adding more uniformity loss on the unified loss for optimization. This
is shown in Figure 4.5. It could be seen that the distribution is more uniform (with a lower uniformity
metric value) alongwith largerα. However, as shown in Table 4.7, uniformity lossmakes the cross-view
matching performance even worse. It failed to serve as an auxiliary loss to boost the performance. The
main conclusion from it is that during the finetuning phase, the uniformity objective within each image
viewpoint is not an ideal target for the network to optimize.

Table 4.8: Cross-view matching performance of Siamese-VGG [60] with augmentations. The (downstream) training and
evaluation are performed on VIGOR [61] dataset using the “Cross-Area” split setting (the training and validation set are located

in separate cities).

Exp. Augmentation R@1 R@5 R@1%

12 No aug- 3.28 9.21 62.16

31 MoCov2 aug- 0.45 1.61 30.40

32 MoCov2 aug- w/o random cropping and resize 4.13 11.70 69.42

The results of adding data augmentations are shown in Table 4.8. From the results in Table 4.8,

4.6. Uniformity loss and data augmentation 39

it is shown that MoCov2 [7] augmentations without random cropping and resize improves cross-view
matching performance by a small margin (4.13 in exp 32. and 3.28 in exp 12. at Recall@1). This
meets our common sense that a richer set of data helps the network to improve its performance, and
also verifies that the data augmentations used in self-supervised learning could be a positive element
during training. Till now, since most cross-view matching methods do not use data augmentation and
only a few works are exploring useful augmentation methods (e.g., adopting image segmentation as in
[38]), there could be more future efforts to be paid in this direction.

5
Conclusion

In this chapter, we summarize and conclude our work in terms of the research questions proposed at
the beginning, together with subsequent discussions and future works as well.

5.1. Answers to the research questions
In this work, we experimentally tested the effect of pre-training by performing contrastive learning on
cross-view matching datasets separately for the two branches of the Siamese network, especially for
the branch that encodes satellite images. For interpretation, we also visualized the feature distribution
of different settings in the embedding space to see their behaviors. A major difference is that with
self-supervised pre-training, the features of different image samples or from different cities are more
separated and less homogeneous, resulting in a larger occupation in the embedding space.

Therefore, corresponding to the research question: As a downstream task, will cross-viewmatching
benefit from self-supervised pre-training by contrastive learning? The overall answer is yes. We further
discuss it in terms of the two sub-questions as below.

The first sub-question is:Will the performance of cross-viewmatchingbe improvedbypre-training
using contrastive learning? The answer is yes. Themain experiments are presented in section 4.3 with
quantitative results. We spotted that on top of the widely applied ImageNet pre-trained weights, it is an
effective way to perform self-supervised learning using standard contrastive learning methods on the
cross-view matching dataset to generate pre-training weights for downstream task training. This gives
a hint that self-supervised pre-training may serve as a common approach to improve the existing net-
work method in the application. Compared to the data amount contained in ImageNet (i.e., 1,281,167
images), although the added data for pre-training is much fewer (i.e., 35,532 images in CVACT [28]
and 53,694 images in VIGOR [61]), it yields clearly visible performance improvement. This is very ben-
eficial given the condition that satellite images can be easily accessed with few costs. It is hypothesized
that training on satellite images provides the network with new knowledge on features in an aerial view
for identifying places, while they are relatively rare in the normal ImageNet data.

The second sub-question is: How will the image representations generated by the cross-view
matching network be different by pre-training using contrastive learning? The answer is another
yes. The main works are shown in section 4.5 with qualitative visualizations. By visualizing the feature
distribution in the embedding space, we found that self-supervised pre-training by contrastive learning
on single-modality images (i.e., ground-level view or satellite view) helped the network separate them
apart from each other. We have seen that adding the uniformity loss directly on the downstream task
training does not improve or even results in a worse performance. Therefore, it is hypothesized that
a more separated feature distribution at the beginning of downstream cross-view matching training
improves the downstream task performance.

40

5.2. Discussion and future works 41

Moreover, another main conclusion from our experiments is that if the localization task is aimed at
a specific target area or city, it is beneficial to collect dense satellite image patches covering the area to
create a training set that is large enough for self-supervised pre-training, rather than using data from
other areas. This could be shown from the result comparisons between pre-training on the training, val-
idation and the whole dataset for VIGOR [61] dataset since it provides totally separated cities contained
in the data splits. In a real-world scenario, the satellite images are all available to fetch from the remote
sensing satellites, using e.g., GSV [2]. Self-supervised pre-training on the target area or city satellite
images can sometimes give a best practice for training a cross-view matching network. Possibly this is
because the data distribution and important features are already learned during the pre-training stage
by exhibiting the images for the network.

5.2. Discussion and future works
There are still several limitations to our work. The experiments in our work are performed on only
two network architectures and two datasets. The generalizability of this practice remains to be verified
on more complicated methods, e.g., transformers used in TransGeo [59] or other methods that yield
the most state-of-the-art performances. Moreover, the self-supervised learning method is chosen as
MoCov2 [21] which uses manageable batch sizes and avoids the risk of collapsing by negative samples.
There might be a better approach for self-supervised pre-training or specifically designed pretext tasks
for cross-view matching. Our work provides a basic exploration of the effect of self-supervised pre-
training on cross-view matching and there is still a very wide research area to be studied.

Another limitation of our work is that we focused on the self-supervised scheme by firstly pre-
training the network with pretext tasks and then fine-tuning it with the downstream task. However,
there might be better ways to improve cross-view matching, e.g., in an end-to-end manner. This relies
on the observation that the architectures of cross-view matching and contrastive learning as shown re-
spectively in the two stages in Figure 3.1 clearly share a similar Siamese-like paradigm, as they are both
pulling positive pairs together and pushing negative pairs away. In such a sense, cross-view matching
is essentially a type of contrastive learning, although this term is usually used in the context of self-
supervised learning. However, although cross-view matching and contrastive learning share a similar
architecture, the major difference reflects in the way how they define the input pairs. In cross-view
matching, the query is a ground-level image and the key is the corresponding satellite image, so the
data is labeled because we know the correspondence between these two image sources. In contrastive
learning, the query and key are two augmented versions of the original image, so the correspondence
is automatically formed, thus no human labeling is needed.

During the project, in order to find out the possibility as introduced above, we tried to combine con-
trastive learning architecture with cross-viewmatching to produce a unified version. However, this was
left unfinished due to the time limits of the project. More information could be found in the Appendix.
We hope the current information is still helpful for future works.

References

[1] URL: https://developers.google.com/maps/documentation/maps-static/overview.

[2] Dragomir Anguelov et al. “Google street view: Capturing the world at street level”. In: Computer
43.6 (2010), pp. 32–38.

[3] Relja Arandjelovic et al. “NetVLAD: CNN architecture for weakly supervised place recognition”.
In:Proceedings of the IEEEconference on computer visionandpattern recognition. 2016, pp. 5297–
5307.

[4] Eli Brosh et al. “Accurate visual localization for automotive applications”. In: Proceedings of the
IEEE/CVFConference on Computer Vision and Pattern RecognitionWorkshops. 2019, pp. 0–0.

[5] Ting Chen et al. “A simple framework for contrastive learning of visual representations”. In: In-
ternational conference on machine learning. PMLR. 2020, pp. 1597–1607.

[6] Xinlei Chen and Kaiming He. “Exploring simple siamese representation learning”. In: Proceed-
ings of the IEEE/CVFConference onComputerVisionandPatternRecognition. 2021, pp. 15750–
15758.

[7] Xinlei Chen et al. “Improved baselines withmomentum contrastive learning”. In: arXiv preprint
arXiv:2003.04297 (2020).

[8] SAE On-Road Automated Vehicle Standards Committee et al. “Taxonomy and definitions for
terms related to on-road motor vehicle automated driving systems”. In: SAE Standard J 3016
(2014), pp. 1–16.

[9] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEEConference
on Computer Vision and Pattern Recognition. 2009, pp. 248–255. DOI: 10.1109/CVPR.2009.
5206848.

[10] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. “Superpoint: Self-supervised in-
terest point detection and description”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition workshops. 2018, pp. 224–236.

[11] Carl Doersch, Abhinav Gupta, and Alexei A Efros. “Unsupervised visual representation learning
by context prediction”. In:Proceedings of the IEEE international conference on computer vision.
2015, pp. 1422–1430.

[12] Ravi Garg et al. “Unsupervised cnn for single view depth estimation: Geometry to the rescue”.
In: European conference on computer vision. Springer. 2016, pp. 740–756.

[13] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised representation learning by
predicting image rotations”. In: arXiv preprint arXiv:1803.07728 (2018).

[14] Ian Goodfellow et al. “Generative adversarial nets”. In:Advances in neural information process-
ing systems 27 (2014).

[15] Jean-Bastien Grill et al. “Bootstrap your own latent-a new approach to self-supervised learning”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 21271–21284.

[16] Yulan Guo et al. “Soft Exemplar Highlighting for Cross-View Image-Based Geo-Localization”. In:
IEEE Transactions on Image Processing 31 (2022), pp. 2094–2105.

42

https://developers.google.com/maps/documentation/maps-static/overview
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848

References 43

[17] Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality reduction by learning an invari-
ant mapping”. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06). Vol. 2. IEEE. 2006, pp. 1735–1742.

[18] Stephen Hausler et al. “Patch-netvlad: Multi-scale fusion of locally-global descriptors for place
recognition”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 14141–14152.

[19] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 770–778.

[20] Kaiming He et al. “Masked Autoencoders Are Scalable Vision Learners”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2022,
pp. 16000–16009.

[21] Kaiming He et al. “Momentum contrast for unsupervised visual representation learning”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020,
pp. 9729–9738.

[22] Geoffrey E Hinton and Ruslan R Salakhutdinov. “Reducing the dimensionality of data with neu-
ral networks”. In: science 313.5786 (2006), pp. 504–507.

[23] Sixing Hu et al. “Cvm-net: Cross-view matching network for image-based ground-to-aerial geo-
localization”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2018, pp. 7258–7267.

[24] Wenmiao Hu et al. “Beyond Geo-localization: Fine-grained Orientation of Street-view Images
by Cross-viewMatching with Satellite Imagery”. In: Proceedings of the 30th ACM International
Conference on Multimedia. 2022, pp. 6155–6164.

[25] Longlong Jing and Yingli Tian. “Self-supervised visual feature learning with deep neural net-
works: A survey”. In: IEEE transactions on pattern analysis and machine intelligence 43.11
(2020), pp. 4037–4058.

[26] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. “Revisiting self-supervised visual repre-
sentation learning”. In: Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition. 2019, pp. 1920–1929.

[27] Ang Li et al. “Cross-view policy learning for street navigation”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2019, pp. 8100–8109.

[28] LiuLiu andHongdongLi. “Lending orientation toneural networks for cross-viewgeo-localization”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 5624–5633.

[29] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In: International
journal of computer vision 60.2 (2004), pp. 91–110.

[30] Jiwen Lu, Junlin Hu, and Jie Zhou. “Deepmetric learning for visual understanding: An overview
of recent advances”. In: IEEE Signal Processing Magazine 34.6 (2017), pp. 76–84.

[31] Xiaohu Lu et al. “Geometry-aware satellite-to-ground image synthesis for urban areas”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 859–867.

[32] Piotr Mirowski et al. “Learning to navigate in cities without a map”. In: Advances in neural in-
formation processing systems 31 (2018).

[33] Ishan Misra and Laurens van der Maaten. “Self-supervised learning of pretext-invariant rep-
resentations”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 6707–6717.

References 44

[34] Mehdi Noroozi and Paolo Favaro. “Unsupervised learning of visual representations by solving
jigsaw puzzles”. In: European conference on computer vision. Springer. 2016, pp. 69–84.

[35] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with contrastive pre-
dictive coding”. In: arXiv preprint arXiv:1807.03748 (2018).

[36] Deepak Pathak et al. “Context encoders: Feature learning by inpainting”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 2536–2544.

[37] Krishna Regmi and Mubarak Shah. “Generative adversarial for ground-to-aerial image match-
ing”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019,
pp. 470–479.

[38] Royston Rodrigues and Masahiro Tani. “Are These from the Same Place? Seeing the Unseen in
Cross-View Image Geo-Localization”. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision. 2021, pp. 3753–3761.

[39] Torsten Sattler et al. “Large-scale location recognition and the geometric burstiness problem”. In:
Proceedings of the IEEEconference on computer visionandpattern recognition. 2016, pp. 1582–
1590.

[40] Paul Hongsuck Seo et al. “Cplanet: Enhancing image geolocalization by combinatorial partition-
ing of maps”. In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 536–551.

[41] Yujiao Shi et al. “Optimal feature transport for cross-view image geo-localization”. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. Vol. 34. 07. 2020, pp. 11990–11997.

[42] Yujiao Shi et al. “Spatial-aware feature aggregation for image based cross-view geo-localization”.
In: Advances in Neural Information Processing Systems 32 (2019).

[43] Yujiao Shi et al. “Where am i looking at? joint location and orientation estimation by cross-
view matching”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 4064–4072.

[44] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-scale im-
age recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[45] AysimToker et al. “Coming down to earth: Satellite-to-street view synthesis for geo-localization”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 6488–6497.

[46] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.” In: Journal of
machine learning research 9.11 (2008).

[47] Pascal Vincent et al. “Extracting and composing robust features with denoising autoencoders”.
In: Proceedings of the 25th international conference on Machine learning. 2008, pp. 1096–
1103.

[48] Pascal Vincent et al. “Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion.” In: Journal ofmachine learning research 11.12 (2010).

[49] Nam Vo, Nathan Jacobs, and James Hays. “Revisiting im2gps in the deep learning era”. In: Pro-
ceedings of the IEEE international conference on computer vision. 2017, pp. 2621–2630.

[50] Nam N Vo and James Hays. “Localizing and orienting street views using overhead imagery”. In:
European conference on computer vision. Springer. 2016, pp. 494–509.

[51] Tongzhou Wang and Phillip Isola. “Understanding contrastive representation learning through
alignment and uniformity on the hypersphere”. In: International Conference onMachine Learn-
ing. PMLR. 2020, pp. 9929–9939.

References 45

[52] Daniel Wilson et al. “Visual and Object Geo-localization: A Comprehensive Survey”. In: arXiv
preprint arXiv:2112.15202 (2021).

[53] Zhirong Wu et al. “Unsupervised feature learning via non-parametric instance discrimination”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 3733–3742.

[54] ZiminXia et al. “Cross-ViewMatching for Vehicle Localization by Learning Geographically Local
Representations”. In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 5921–5928.

[55] Zimin Xia et al. “Visual cross-view metric localization with dense uncertainty estimates”. In: Eu-
ropean Conference on Computer Vision. Springer. 2022, pp. 90–106.

[56] Amir Roshan Zamir and Mubarak Shah. “Accurate image localization based on google maps
street view”. In: European Conference on Computer Vision. Springer. 2010, pp. 255–268.

[57] Menghua Zhai et al. “Predicting ground-level scene layout from aerial imagery”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 867–875.

[58] Richard Zhang, Phillip Isola, and Alexei A Efros. “Colorful image colorization”. In: European
conference on computer vision. Springer. 2016, pp. 649–666.

[59] Sijie Zhu, Mubarak Shah, and Chen Chen. “TransGeo: Transformer Is All You Need for Cross-
view Image Geo-localization”. In: arXiv preprint arXiv:2204.00097 (2022).

[60] Sijie Zhu, TaojiannanYang, andChenChen. “Revisiting street-to-aerial view image geo-localization
and orientation estimation”. In: Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision. 2021, pp. 756–765.

[61] Sijie Zhu, Taojiannan Yang, and Chen Chen. “Vigor: Cross-view image geo-localization beyond
one-to-one retrieval”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 3640–3649.

6
Appendix

6.1. The network architectures
The image backbone architecture we used in section 3.1 and section 3.2 is VGG16 [44]. The architecture
is listed below in a PyTorch style.

(vgg16): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace=True)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace=True)
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU(inplace=True)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU(inplace=True)
(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(18): ReLU(inplace=True)
(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU(inplace=True)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace=True)
(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(25): ReLU(inplace=True)
(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(27): ReLU(inplace=True)
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace=True)
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

)

The aggregation module of Siamese-VGG [60]:

(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(classifier): Sequential(

(0): Linear(in_features=512, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=128, bias=True)

)

The re-implemented sptial-aware embedding module of SAFA [42]:

46

6.2. MoCov2 data augmentation 47

class SPE(nn.Module):
def __init__(self, fmp_size):

super(SPE, self).__init__()
H, W = fmp_size
self.fc1 = nn.Linear(H*W, H*W//2, bias=True)
self.fc2 = nn.Linear(H*W//2, H*W, bias=True)

def forward(self, fmp):
B, C, H, W = fmp.shape
max pool
fmp_pooled, _ = fmp.max(axis=-3, keepdim=False) #(B, H, W)
spatial-aware improtance generator
x = fmp_pooled.flatten(start_dim=-2, end_dim=-1) #(B, H*W)
x = self.fc2(self.fc1(x)).reshape(B, -1, H*W) #(B, D, H*W)
aggregate
fmp = fmp.flatten(start_dim=-2, end_dim=-1) #(B, C, H*W)

feat = torch.einsum('bci,bdi->bdc', fmp, x) #(B, C, D)
feat = feat.flatten(start_dim=-2, end_dim=-1) #(B, C*D)
return feat

6.2. MoCov2 data augmentation
We listed the data augmentation pipeline in a PyTorch style as below:

augmentation = [
transforms.RandomResizedCrop(img_size, scale=(0.2, 1.)),
transforms.RandomApply([

transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([moco.loader.GaussianBlur([.1, 2.])], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize

]

6.3. Localization heatmap

(a) Localization heatmap of a sample in exp 2. (b) Localization heatmap of a sample in exp 5.

Figure 6.1: Comparison between two experiments on an example of localization heatmap

Given a query, we could plot the localization heatmap by the calculated similarity during image

6.4. Visualization of feature map 48

Figure 6.2: Example of a batch image samples and their corresponding feature map

retrieval. An example is given in Figure 6.1. The cross of the two perpendicular blue dotted lines is
the location of the query ground-level image, and the small red squares are the locations of satellite
images on the map. The deepness of the red color indicates the similarity value. It could be shown that
compared to exp 2., the satellite images around the query position have higher similarity values in the
localization heatmap of exp 5.

6.4. Visualization of feature map
We could plot the feature map generated by the image backbone in cross-view matching (i.e., last layer
output of fθ and fξ) to have an insight of where are the important parts of the image that have high ac-
tivation values. A group of samples of VIGOR [61] of exp 12. is shown in Figure 6.2. It could be roughly
seen thatmany highlights are located at the road structure on both the ground-level and satellite images,
which could be an important clue for image matching.

6.5. A unified version of MoCov2 and cross-view matching 49

6.5. A unified version of MoCov2 and cross-view matching
As mentioned before, we have another stream of work that tries to combine contrastive learning and
cross-view matching in an end-to-end manner, but is left unfinished. In this section, we provide our
implementation as a reference for future researchers.

(a) Original cross-view matching (b) A natural way to add momentum encoder

(c) The proposed unified architecture of cross-view matching

Figure 6.3: Illustrations of introducing MoCov2 [7] momentum encoder to cross-view matching

Specifically, we combined MoCov2 [7]’s design with our cross-view matching architecture. The mo-
tivation is that the large negative memory buffer adopted inMoCov2 [7] plays an important role in con-

6.5. A unified version of MoCov2 and cross-view matching 50

trastive learning, and since cross-view matching also follows such a Siamese-like framework, it could
also be beneficial. Another aspect of the design is that complex data augmentation is also added to the
pipeline.

To achieve this, we introduce the idea step-by-step. As shown in Figure 6.3 (a), the original cross-
view matching uses two encoders q and k without weight-sharing. This is because their data inputs are
different: one is augmented ground-level images G′ and another is augmented satellite images S′.

To consider using a momentum encoder and memory buffer as in Mocov2 [7], a natural way will be
to replace one of the two encoders with a momentum encoder that update weights using the other one,
instead using back-propagation to itself, as explained in section 3.1. However, in terms of cross-view
matching, it does not make sense to update the encoder for satellite images with the one for ground-
level images. Therefore, as shown in Figure 6.3, the source of weights for encoder k is missed (that is
what the question mark stands for).

Therefore, we tried the architecture as shown in Figure 6.3 (c). Essentially, it doubles MoCov2 [7]
so that the momentum encoder in each one could be updated by the query encoder of the other pair.
For example, in Figure 6.3 (c), the left two blue blocks form the first MoCo pair, with the ground-level
image G′ as the query input and the satellite image S′ as the key. The right two blue blocks form the
second pair, where the input data pair is flipped (the query is S′ and the key is G′). Therefore, the
momentum encoder k could be updated by the weights from the query encoder of the other pair, q′,
and in the same way, the momentum encoder k′ could be updated by q. Moreover, in this architecture,
two memory buffers are managed: one for the representations produced by k and another for k′.

The experiments are performed with Siamese-VGG [60] on VIGOR [61] dataset. Training with 40
epochs, the evaluation result is very low (R@1 = 0.28%), while the baseline method is 3.28% by exp 12.
Since there still might be implementation issues, this result does not lead to concrete conclusions. We
hope this section provides extra information about our work and leads to future works.

	Introduction
	Visual geo-localization and cross-view matching
	Self-supervised learning
	Research question and main contributions

	Related Works
	Cross-view matching open challenges and methods
	Drastic change in viewpoint
	Orientation misalignment
	Center location misalignment
	Temporal scene changes

	Self-supervised learning and contrastive learning
	MoCo, SimCLR and MoCov2
	BYOL, SimSiam

	Related works: summary

	Method
	Self-supervised pre-training by contrastive learning
	The contrastive learning framework: MoCov2
	Different pre-trained weights

	Image Retrieval Architecture and Loss Function
	The image retrieval framework
	The soft-margin triplet loss

	Feature distribution visualization and uniformity metric
	Add uniformity loss and data augmentation directly
	Uniformity loss
	Data augmentation

	Experiments
	Datasets and evaluation metrics
	Implementation details
	Cross-view matching with contrastive learning pre-training
	Verification on swapped dataset
	Feature distribution
	Settings
	Observations and findings

	Uniformity loss and data augmentation

	Conclusion
	Answers to the research questions
	Discussion and future works

	References
	Appendix
	The network architectures
	MoCov2 data augmentation
	Localization heatmap
	Visualization of feature map
	A unified version of MoCov2 and cross-view matching

