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Bridging Loss-of-Lock in InSAR Time
Series of Distributed Scatterers

Philip Conroy , Simon A. N. van Diepen , Freek J. van Leijen , Member, IEEE,
and Ramon F. Hanssen , Senior Member, IEEE

Abstract— We introduce the term loss-of-lock to describe a
specific form of coherence loss that results in the breakage of
a synthetic aperture radar interferometric (InSAR) time series.
Loss-of-lock creates a specific pattern in the coherence matrix
of a multilooked distributed scatterer (DS) by which it may
be detected. Along with identification, we introduce a new DS
processing methodology that is designed to mitigate the effects of
loss-of-lock by introducing contextual data to assist in the time-
series processing. This methodology is of particular relevance to
regions that suffer from severe temporal decorrelation, such as
northern peatlands. We apply our new method to two subsiding
cultivated peatland regions in The Netherlands which previously
proved impossible to monitor using DS InSAR techniques. Our
results show a very good agreement with in situ validation data
as well as spatial correlation between regions and the natural
terrain.

Index Terms— Coherence, synthetic aperture radar interfero-
metric (InSAR), peatland, subsidence.

I. INTRODUCTION

LAND subsidence in The Netherlands is becoming an
increasingly critical issue as it is closely linked with sea-

level rise, flooding risks, and greenhouse gas emissions due to
peat oxidation [1], [2], which is abundant in the region. Despite
the importance of this issue, it is very difficult to accurately
monitor subsidence rates across the country, and currently,
no land surface time-series data exist with the required levels
of accuracy, length, and spatial extent. Synthetic aperture radar
interferometric (InSAR) is a very promising technique for
monitoring land surface motion at large spatial scales with
frequent temporal sampling. While InSAR techniques employ-
ing stable point scatterers (PS) have been successfully used to
monitor subsidence in The Netherlands [3], [4], [5], these PS’s
are usually found at greater depths and the movement of the
surrounding landscape has had to be indirectly inferred.

So far, it has been impossible to directly observe land
surface motion using distributed scatterer (DS) techniques in
The Netherlands because rapid soil movement, seasonal land-
use changes, and high noise levels result in sudden losses
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Fig. 1. Canonical coherence matrices showing different types of coherence
losses for a set of five subsequent SAR acquisitions. Shaded cells: interfero-
metric combinations that are sufficiently coherent to produce a useful phase
estimation. Empty cells: insufficiently coherent combinations. (a) Intermittent
loss of coherence at epoch tL that does not produce a loss-of-lock, because
coherent interferometric combinations exist that connect epochs preceding
and following tL . Archetype: intermittent snow cover. (b) Loss of coherence
results in a loss-of-lock. There are no sufficiently coherent interferometric
combinations connecting the epochs preceding and following tL . Archetype:
plowing, harvesting.

of interferometric coherence, rendering any such attempt
extremely challenging [6], [7]. Similar problems have been
encountered when attempting to monitor peatland regions of
other countries as well [8], [9].

In this article, we present a novel methodology for dealing
with irreparable losses of interferometric coherence, which we
term loss-of-lock. These events are almost always observed
when attempting to monitor the motion of peatland surfaces
with DS InSAR, however, the term is more general and can
be applied to other circumstances as well. In Section II,
we provide a definition for loss-of-lock as it relates to InSAR,
as well as examples with real data. Section III describes
the methodology we have developed to combat this problem
and enable InSAR monitoring of these challenging regions.
Section IV provides the results of several test areas and their
validation against in situ measurements. Section V provides
discussion, and finally Section VI concludes the article.

II. LOSS-OF-LOCK

A. Definition

Interferometric coherence locks subsequent SAR acquisi-
tions together. While losses of coherence are a common
phenomenon, we differentiate between intermittent losses of
coherence, where an event results in the loss of one or more
epochs, but the overall time series is unaffected [Fig. 1(a)], and
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loss-of-lock, a more serious loss of coherence which results
in an irreparable discontinuity of the time series [Fig. 1(b)].
A loss-of-lock is defined at a given epoch tL such that a
sustained loss of coherence is observed, and no coherent
interferometric combination exists which connects observa-
tions across the epoch in question. At low sample coherences
(<0.1), the distribution of the interferometric phase approaches
a uniform distribution [10]. This means that all useful inter-
ferometric information (i.e., the displacement component of
the interferometric phase) at that epoch is lost. Thus, the time
series is effectively cut at tL , and the information content in the
SAR image stack alone is not sufficient to estimate a connected
set of interferometric phases spanning the entire observation
period without additional information or assumptions.

Loss-of-lock is a diagnostic term in that it is defined based
on conditions in an observed coherence matrix, rather than the
occurrence of a particular scattering phenomenon, although the
coherence losses are ultimately related to physical changes in
the scattering object(s). For instance, a short-lived snowfall
on an otherwise undisturbed and stationary grassland will
result in an intermittent loss of coherence, while a loss-of-
lock may be caused by agricultural activities such as plowing,
or changes in vegetation such as harvesting of crops, resulting
in drastic reconfiguration of the scattering geometry of the
ground, without implying any subsidence.

It is important to note that the presence of a loss-of-lock
event may not be readily apparent from inspecting a displace-
ment (or phase) time series. If one considers an event in which
the mean surface level of the region under observation remains
constant, but the scattering geometry changes drastically (for
instance, by plowing), due to the wrapped nature of phase
observations, the wrapped phase observation following the
event may quite likely fall close to that of the previous epoch,
and both phase unwrapping algorithms and manual inspection
will overlook the change [as shown in Fig. 2(a) and (b)].
Alternatively, it is also possible for large phase differences
to be observed, due to changes in the scattering surface
which are then misattributed as displacements [as shown in
Fig. 2(c) and (d)].

Different sensors will be sensitive to different phenomena
occurring on the ground and in the atmosphere, i.e., a loss-
of-lock observed at C-band may not be observed at L-band.
A more practical description of the phenomena affecting our
study areas is provided in Section II-B.

B. Observed Loss-of-Lock Events

A practical example of loss-of-lock is shown in Fig. 3,
showing sample coherences for the period between January
2020 and May 2021. Two coherent periods (identified with
the red dashed lines) are separated by a substantial amount of
time, but more importantly, it can be seen that there is no sig-
nificantly coherent interferometric combination linking them.
This means that the two periods are effectively disconnected,
and additional information will be required to estimate a time
series spanning the entire observation period. Depending on
the threshold used, an additional loss-of-lock event can be
observed, resulting in three coherent periods, as indicated by

Fig. 2. Two examples (a)–(d) of a loss-of-lock which result in dif-
ferent interpretations, resulting in a perceived change in the displacement
phase at epoch 50. Top (a) and (c): interferometric complex phasors, with
arrows indicating the mean value pre- and postloss-of-lock (blue and red,
respectively). Bottom (b) and (d): resulting unwrapped phases. Blue dots:
true (noisy) displacement phase of the ground level. Red dots: observed
(noisy) displacement phase in the presence of loss-of-lock. Green dashed line:
estimated linear velocity.

Fig. 3. Observed coherence matrix showing loss-of-lock in Sentinel-1
ascending track 88 of a multilooked region near Zegveld, The Netherlands.
The red and magenta dashed lines are added to indicate the disconnected
coherent periods. When or if a loss-of-lock occurs, it depends on the minimum
allowable coherence threshold (discussed in Section II-B).

the magenta lines. This shows that: 1) detecting a loss-of-lock
is dependent on the choice of allowed level of noise versus
the amount of data used and 2) a loss-of-lock can be both a
sudden and/or a sustained condition. This choice of threshold
is discussed further in Section III-E.

III. DS PROCESSING METHODOLOGY

A. Overview

A high-level end-to-end process flow diagram is given in
Fig. 4. The system makes use of two well-established InSAR
software packages, DORIS [11] and DePSI [12] (blue and
red sections of Fig. 4, respectively). DORIS is used to align,
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Fig. 4. Simplified processing flow diagram showing the major steps taken to
create DS time-series estimates from Sentinel-1 Level 1 SLC SAR data with
the aid of spatial and temporal contextual data.

resample, and geolocate the level-1 single-look complex (SLC)
SAR image stack. DePSI is used to create a network of PS
and estimate an atmospheric phase screen (APS), which can
be applied to both the PS and DS phase observations. The
remaining parts of this section are dedicated to describing the
“Contextual Data” and “DS Processing Workflow” sections of
the diagram (yellow and blue sections of Fig. 4, respectively),
which are the novel aspects of this methodology.

B. Spatial Contextual Data and DS Pixel Identification

Three publicly available spatial datasets are combined via
a spatial join operation: cadastral land use (parcel) polygons,
soil maps, and groundwater management zoning (Dutch: peil-
gebied) [13]. The datasets are provided as vector geometries
in geopackage format, allowing for a straightforward combi-
nation of the data. This is accomplished by taking the land
parcel delineations in the cadastral dataset as the base layer
for the spatial join and performing a one-to-one attribution
with the features with the largest overlap. While the cadastral
and groundwater management zones follow similar geographic
boundaries, the soil map has a different spatial structure, and
this one-to-one attribution results in some information loss. For
instance, a parcel mostly composed of peat with a smaller vein
of sand running through it will simply be labeled with the peat
soilcode. This is done to constrain the problem variables and
have only one value per region. This method could be extended
for regions with larger or more heterogeneous parcels by sub-
dividing them either geographically or based on other relevant
contextual information. Finally, the nearest weather station is
found by Voronoi polygonization, and its corresponding ID is

Fig. 5. Graphical visualization of spatial contextual data in QGIS, based
on land parcel polygons of the region surrounding Zegveld, The Netherlands.
The attributed polygons are shown in green over a background optical satellite
image of the region. A parcel of interest is highlighted with a red border, and
the corresponding contextual group is highlighted in yellow.

added to enable the attribution of (temporal) meteorological
data. An example of such a combined dataset is shown in
Fig. 5.

DORIS provides a coregistered SLC stack along with the
geolocation of each pixel in a grid. Each pixel in the stack can,
therefore, be assigned an ID corresponding to the polygon it
belongs to (Fig. 5). Each polygon is assigned a coordinate
according to its centroid.

C. Coherence Matrix and ESM Phase Estimation

Multilooking is performed on a per-polygon basis. As can be
seen in Fig. 5, the Dutch peatlands are divided into rectangular
parcels surrounded by drainage ditches, which provides us
with a natural set of multilooking boundaries. While parcel
sizes vary in shape and size, in general, the groundwater level
and land cover within a parcel are consistent, atmospheric
delay variability will be negligible (at the sub-mm level)
[14], [15], and a parcel will typically contain 100 pixels.
A minimum number of 50 pixels per polygon is enforced
for noise suppression. Thus, we can ensure ergodicity and
representativity while maximizing the number of equivalent
looks. Following this parcel selection, we also optionally apply
a statistically homogeneous pixel (SHP) test as outlined in
[16]. This can filter out misattributed pixels due to geolocation
errors in the radar and contextual data, as well as the effects of
unwanted scatterers within the region, such as electrical masts,
light posts, trees, and so on.

The complex sample coherence matrix of a multilooked
region, Ĉ , consisting of elements ĉi j is given by

ĉi j =

∑
n∈� Sin S∗

jn√(∑
n∈� |Sin |

2
)(∑

n∈� |S jn |
2
) (1)

where Si, jn contains the complex value of the nth pixel in
SAR images acquired at epochs i and j , the asterisk denotes
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the complex conjugate, and � is the set of all selected pixels
within the multilooked region. We differentiate between the
complex coherence matrix C , and the coherence matrix, 0,
which is the matrix of the magnitudes of the elements of C .
An example of 0̂ of a multilooked parcel is shown in Fig. 3.

An equivalent single main (ESM) [17] set of phases is
estimated using the “Eigendecomposition-based Maximum-
likelihood-estimator of Interferometric phase” (EMI) method,
as described in [18]. This procedure reduces the full set of
all interferometric combinations to a single set of consistent
phases, φ̂, as estimated by the phase of the minimum eigen-
vector of the Hadamard product of the inverse of the sample
coherence matrix with the complex sample coherence matrix,
as given by

(0̂−1
◦ Ĉ)ξ̂ = λξ̂ (2)

where ◦ denotes the Hadamard product, λ is the eigenvalue,
and ξ̂ is the eigenvector. The estimated interferometric phases
are given by

φ̂ = arg{ξ̂}. (3)

Strong decorrelation can hinder the effectiveness of the
ESM phase estimation. In cases in which coherence is com-
pletely lost during a loss-of-lock event, it may be advantageous
to only perform the estimate within the identified coherent
blocks. This can reduce the amount of noise at the input to the
estimator, however, one risks losing useful long-term coherent
information. The decision to perform block-wise estimation
could also be driven by contextual data, that is, a priori
information about the land use/cover which indicates that a
loss-of-lock has occurred, such as knowledge of plowing or
harvesting events.

The estimated ESM phases φ̂ per polygon are then imported
into DePSI as virtual points into the secondary network of
scatterers to apply APS filtering. The locations of the virtual
representative points are given by the centroids of the given
parcel polygon. The APS estimation is based on an initial
primary network of PSs. The filtered phases φ̂APS are read
back out of DePSI following the APS filtering stage.

D. Contextual Enrichment and Grouping

We have now obtained a set of wrapped, multilooked, and
filtered DS phases which are each characterized by the set
of attributes shown in Fig. 5, along with a point coordinate
given by the polygon centroid. The parcels and their esti-
mated phases are grouped together according to their shared
attributes, establishing contextual groups. We contend that
parcels that share the same land use, soil classification, and
belong to the same groundwater management regime should be
expected to behave in a similar fashion. That is, although we
expect to see variations in phase according to differing noise
and clutter conditions, local variations in soil stratigraphy, and
variations in optical depth due to land cover, we expect that
the parcels in a contextual group can be expected to move
according to the same displacement model in the mean sense.
This grouping becomes critical in the context of bridging
loss-of-lock in the parcel time series, which is described in

Sections III-E–III-G. The contextual group corresponding to
the red highlighted parcel of Fig. 5 is indicated in yellow. The
identified contextual groups are then filtered by their number
of members: we have found a minimum of 30 members
is needed to ensure sufficient coverage throughout the year;
however, this value will change depending on the coherence
behavior of the area under investigation.

E. Segment Identification

Due to the loss-of-lock phenomenon, attempting to interpret
the entire ESM time series of phases at once is not possible
and will result in several types of error, such as interpreting a
noise-dominated signal as real deformation, or phase unwrap-
ping errors when transitioning from incoherent to coherent
interferograms [6], [8], [9], [19], [20]. Thus, a different
approach is required.

We begin by identifying which parts of a time series are
of sufficient quality that they contain physically interpretable
information that can be unwrapped with an acceptable degree
of error. Despite using a full-rank method to estimate the ESM
phases (Section III-C), we find that the best quality indicator
we have available is the so-called daisy-chain coherence, γDC,
which is the magnitude of the first off-diagonal of the coher-
ence matrix [corresponding to the indices j = i − 1 in (1)].
These are the coherence magnitudes of the interferograms
with the shortest temporal baseline in the dataset, which for
Sentinel-1 data is six days. In general, we expect these to
be the most coherent interferograms in the dataset, as less
time has passed for decorrelation effects to occur [21], while
orbital baselines for Sentinel-1 are always small, resulting
in negligible baseline decorrelation [14]. We threshold the
daisy-chain coherence to identify sufficiently coherent sub-
sections of the full time series, which we term (temporal)
segments. A segment is a contiguous subset of a time series
in which the coherence is sufficiently high to estimate a
consistent set of interferometric phases. Thus, a segment is
defined by two thresholds: the minimum coherence, and the
minimum number of consecutive coherent epochs, which can
be determined experimentally. In our case, a minimum of five
consecutive epochs with γDC > 0.12 is used as a threshold.

Each contextual group, therefore, contains many coherent
segments: one for each contiguously coherent period of a
parcel, times the number of parcels, times the number of
tracks. By considering such a large number of segments,
we can span loss-of-lock events in one parcel time series with
coherent observations from a neighboring one from the same
contextual group.

F. Temporal Ambiguity Resolution

The identified segments are initially treated as independent
time-series. Temporal phase unwrapping (or ambiguity res-
olution) is performed independently on each segment using
a method aided by a machine learning model, as described
by [22]. The ground surface level of peatlands is extremely
unstable and prone to rapid fluctuations depending on temper-
ature and precipitation levels, so we use a recurrent neural
network (RNN) to aid in making predictions about which
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ambiguity level is correct. This RNN model uses temperature,
precipitation, and day of the year as inputs, which is publicly
available daily weather data. Detailed information about the
implementation and testing of the methodology is provided
in [22].

G. Displacement Model

We have now obtained a collection of temporally unwrapped
segments, which are internally consistent but disconnected
from one another by an unknown vertical shift, 1z, which
represents the unknown displacement history of the DS dur-
ing the loss-of-lock period. Thus, to recombine the coherent
segments, this unknown shift must be estimated. This can be
accomplished with the aid of a displacement model, which can
be used to align all the segments of a contextual group.

A parametric model that relates precipitation and evapotran-
spiration to soil surface displacement at a particular location
has been developed in [23]. This model has been shown to
accurately model shallow soft soil movement in several loca-
tions in The Netherlands with different Holocene lithologies.
While we prefer this model because it is accurate and requires
very little input data, in principle any model can be used with
this method. The model, M , is a function of precipitation,
evapotranspiration, and the Holocene stratigraphy at the mod-
eled location. It is a combination of reversible processes, such
as shrinkage and swell, and irreversible processes, such as soil
oxidation

M
(
x, P(t), E(t)

)
= R

(
x, P(t), E(t)

)
+ I

(
x, P(t), E(t)

)
(4)

where the model is parameterized by the lithology-dependent
unknowns in x , t is the time, P is the daily mean precipitation
[mm], and E is the daily mean reference evapotranspiration
[mm] [24]. R represents the reversible component and I is the
irreversible component of the relative soil surface position.
Daily values for P and E are provided at every weather
station in The Netherlands [25]. The reversible component
is estimated by the scaled cumulative difference between
precipitation and evapotranspiration

R
(
x, P(t), E(t)

)
=

∑
τ

[
xP · P(t) − xE · E(t)

]
(5)

where xP and xE are empirical scaling factors and τ is the
integration time. The irreversible component is approximated
as a linear rate, which is only considered active when R is
negative, indicating drying soil conditions

I
(
x, P(t), E(t)

)
=

t∑
−∞

x I · f
(
x, P(t), E(t)

)
(6)

where x I is a constant, and

f
(
x, P(t), E(t)

)
=

{
0, for R

(
x, P(t), E(t)

)
> 0

1, for R
(
x, P(t), E(t)

)
≤ 0.

(7)

Thus, the model is parameterized by the four unknowns

x = [xP , xE , x I , τ ]. (8)

These parameters depend on the depth and stratigraphy of the
Holocene sequence at a given location, that is, the lithology
of that location. Details on the validation of the model are
provided in [23]. For the test locations shown in Section IV,
the RMSE of the model with validation data is 6.9 mm in
Zegveld, and 4.1 mm in Rouveen.

Now we will show how to accurately estimate these model
parameters, given the sparse unwrapped measurements we
have available. This result can then be used to align the
unwrapped segments of a given contextual group and esti-
mate a continuous displacement time series. The relationship
between the unwrapped phases of the mth segment of a given
DS polygon, φm , and the group displacement model, M ,
is given by

φm(t) =
−4π cos θ

λ
·
[
M(x, P(t), E(t)) + 1zm

]
+ ϵ (9)

where t is the time, θ is the incidence angle, λ is the
wavelength, 1zm is the unknown vertical shift (constant for
a given segment), and ϵ is a combination of noise, phase
unwrapping errors, and model residuals. Equation (9) cannot
be solved in its current form, as the model parameters x must
be known a priori to evaluate the correct 1z. While they can
theoretically be estimated simultaneously, the high degree of
correlation between these unknowns can result in a very poor
estimation. Instead, we note that 1z is common for all phases
within a given segment. Thus, by taking the difference in
time between phases, the 1z term drops out and the model
parameters x can be estimated directly by solving

1φm(t) =
−4π cos θ

λ
· 1M(x, P(t), E(t)) + ϵ1. (10)

Now that the model parameters have been estimated, 1z
for each coherent segment can subsequently be estimated by
taking the average difference between the model and the phase
time series over the coherent period T

1ẑm =

〈
−λ

4π cos θ
· φm(t) − M(x̂, P(t), E(t))

〉
∀ t ∈ T

(11)

where x̂ are the estimated model parameters, and ⟨·⟩ denotes
averaging. This process is repeated for each contextual group
described in Section III-D, so there is one model for every
identified contextual group.

This method can also be used to align the phase observations
of multiple satellite tracks together, provided there is no sig-
nificant horizontal motion, or else that the vertical component
of the displacement phase can be accurately estimated, and
that care is taken to ensure that the same object is used as a
reference point across all tracks.

H. Spatial Ambiguity Estimation

The typical approach to DS InSAR processing involves
applying a minimum cost flow spatial unwrapping algorithm
to the data, such as the well-known SNAPHU algorithm
[26]. However, this approach is not well-suited to peatland
observations due to rapid soil movements and the high degree
of multilooking required [8], [20], [22]. Heterogeneity in both
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the type and depth of the soft soil layer of the Holocene will
result in different responses to the seasonal weather conditions
to which the ground is exposed, leading to spatial differences
in the seasonal amplitude of the reversible displacement. When
combined with high degrees of multilooking, this can create
sharp discontinuities in the downsampled interferogram, which
will essentially lead to aliasing if strong spatial continuity
constraints, such as those in SNAPHU, are applied [27].

For these reasons, direct spatial comparison of phase
changes between adjacent parcels is an error-fraught process
and could result in introducing additional phase unwrapping
errors instead of improving the result. We therefore take
advantage of the mean displacement of the contextual group,
which is the best estimate of how the contextual group of
parcels should behave on average. Since a time series for the
expected mean behavior of the contextual group has already
been estimated, it is now a straightforward process to apply
integer least-squares (ILSs) estimation [28], [29] to refine
the estimated ambiguities of each DS polygon belonging to
the contextual group. The ambiguities are estimated by first
obtaining a float solution, given by

â =
(

AT Q−1
y A

)−1
AT Q−1

y (φ̂DS − φ̂group) (12)

where â are the real-valued float ambiguity corrections, A is
2π times the n × n identity matrix, φ̂DS is the vector of
unwrapped interferometric phases of the given DS polygon,
and φ̂group is the vector of mean unwrapped phase of the
entire contextual group. Q y is the variance–covariance matrix
of the phase observations and can be approximated by the
Cramer–Rao Bound (CRB) [19]. Thus, the covariance between
two interferometric phases φi j and φkl is estimated by

Cov{φi j , φkl} ≈
γi,kγ j,l − γi,lγ j,k

2L · γi, jγk,l
(13)

where L is the effective number of looks [14], and γ is the
magnitude of the sample coherence [as determined by (1)]
of the given interferometric combination, as indicated by the
epoch subscripts i, j, k, and l. Next, integer bootstrapping [30]
can be applied, which provides the most likely integer ambi-
guities as

ǎ =


ǎ1
ǎ2
...

ǎn

 =



[â1]

[â2 − l21(â1 − ǎ1)]
...[

â2 −

n−1∑
i=1

lni (âi − ǎi )

]
 (14)

where [·] is the rounding operator, ǎ ∈ Zn is the vector of
estimated integer ambiguities, and l are the entries of a lower
triangular matrix L obtained by decomposing the matrix Q−1

y
into L and a diagonal matrix D, such that LDLT

= Q−1
y .

I. Overall Model Test

Finally, a quality check is performed on the estimated
contextual group results to ensure reliability. Overall statistics
of the estimated contextual group parameters are generated
for the entire AOI, and groups are flagged whose parameters

deviate significantly (i.e., greater than 2σ ). The unwrapped
parcel phases are compared to the estimated group model in
flagged groups in which it is suspected that the contextual
group model has been poorly estimated by means of an overall
model test (OMT).

The OMT is performed by comparing the model residuals ê
to the estimated precision of the observations Q y to generate
the test statistic T for each DS polygon

T = êT Q−1
y ê (15)

where N is total number of epochs and the nth element of ê
is given by

ên = 1φ(t = tn) −
−4π cos θ

λ
· 1M(x̂, t = tn). (16)

The operator 1 refers to the fact that we use the differential
daisy-chain phase as defined in (10) to remove the estimated
vertical displacement shifts (the displacement occurring during
the loss-of-lock periods) from the equation.

The test statistic T follows a central chi-squared distribution
with four degrees of freedom, corresponding to the four
unknown model parameters [see (8)], and is compared to
a critical value which follows from a chosen significance
level α. If T exceeds the critical value, then the model does
not follow the observations to within the estimated precision
of the observations at that significance level. In our case,
the precision estimation comes from the CRB, which is the
theoretical lower bound on the best achievable uncertainty.
Thus, while it is correlated with the true uncertainty, esti-
mating the CRB based on the sample coherence [see (13)]
will systematically overestimate the uncertainty of the phase
observations. Therefore, the significance level is chosen more
strictly to compensate for this.

The OMT is performed recursively on flagged groups by
choosing an initial α and removing points that are rejected
by the test. The model parameters of the contextual group
are then re-estimated with the rejected points removed. If the
new model parameters fall below the acceptable threshold then
the group is sustained. If the parameters still deviate, α is
slowly increased and the procedure is performed again. If after
several iterations (ex. 5) the estimated model parameters still
fall outside the accepted bounds, it is concluded that the
model is not suitable for the terrain in question, and the group
result is discarded. In a multiple-hypothesis testing context,
this procedure could be reiterated with an alternative model.

IV. RESULTS

A. Description of Satellite Data Used

Sentinel-1 imagery of two 10 × 10 km regions around
Zegveld and Rouveen, The Netherlands, are used as test sites
for the time period spanning January 2017–December 2022.
In Zegveld, four tracks are used: ascending 088 and 161, and
descending 037 and 110. In Rouveen, three tracks are used:
ascending 015 and 088, and descending 037. The unwrapped
segments of all available tracks are combined (as discussed
in Section III-G) by projecting them onto the vertical after
ensuring that all phases are referenced to the same object. The
common reference point is found by identifying the PS with
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Fig. 6. Comparison between two multilooking strategies of the same area,
color-coded by the region. Solid lines: boundaries of a given multilooking
region. Circles: pixels included in the multilooking. (a) Standard square mul-
tilooking procedure using 300 × 300 m areas. (b) Parcel-based multilooking.

the lowest normalized amplitude dispersion which is visible
in all tracks.

B. Multilooking Based on Contextual Data Versus SHP Test
Only

A comparison between a standard multilooking approach
that employs 300 × 300 m regions and our parcel-based mul-
tilooking approach is shown in Fig. 6(a) and (b), respectively.
As can be seen in the standard approach, despite the use of
an SHP test, pixels from a number of objects that we do not
expect to behave the same way are still averaged together.
This is particularly apparent in the NE and NW corners of
the image, where agricultural fields, residential yards, and
greenery along roadways are all grouped together.

By including parcel cadastral information, we can help
ensure that we are indeed averaging pixels that belong to the
same objects or regions. An SHP test can also still be applied
to remove unwanted pixels from within the parcel boundaries.

C. Coherent Segment Identification and Commonalities

Fig. 7 illustrates the advantage of grouping similar parcels
together into contextual groups. While almost all regions
provide sufficiently coherent (i.e., γDC > 0.12) data over
the winter period, from approximately October to April, the
coherence of most regions drops significantly in the spring

Fig. 7. Chart showing the availability of coherent data over time for a period
of one year for a selection of parcels belonging to the same contextual group.
The y-axis indicates the ID number of a given parcel, and the presence of a
solid line indicates the presence of sufficiently coherent data. The background
is shaded to indicate the relative degree of availability (i.e., the number of
coherent parcels divided by the total number of parcels) such that a white
background indicates complete availability with darker shading as availability
decreases.

and is only intermittently present throughout the summer
period until the following October. However, by combining
the observations of enough similar parcels, we can have a
year-round set of data with which to estimate the parameters of
the displacement model as per (10). The coherence threshold
of γDC > 0.12 was experimentally found to be the highest
value which still ensured sufficient data coverage year-round.

It is interesting to note that there is both a systematic and
a random aspect to the coherence behavior of these regions.
A systematic loss of coherence from April to October is clearly
visible in the majority of parcels, however, the exact timing
of this loss, as well as the intermittent recovery of coher-
ence during the summer, seems to be a random event. This
distribution is visualized by the shading of the background
of Fig. 7. While it is clear that losses of coherence in these
regions are caused by agricultural activities such as mowing
and grazing, as well as changes in the scattering properties
of the medium [21] caused by the drying of the soil and
vegetation over the summer periods, it is unclear why some
parcels seem to show higher coherence levels than others from
the same contextual group at the same moments in time. This
may be caused by some fields being used more intensively for
agriculture than others, for instance, differences in the level of
grazing between various fields.

D. Time-Series Estimation

An example group time-series result is given in Fig. 8.
This result demonstrates how the displacement estimates of
several temporarily coherent regions can be combined together
to produce an unbroken time series of the overall region. The
result matches very well with the available in situ validation
data. Note that the validation data is not available for the
entire span of the time series due to their installation dates.
The difference between the contextual group median result
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Fig. 8. Surface-level time-series results plotted against in situ extensometer
measurements for the period January 1, 2017–December 31, 2022, at the
a) Zegveld and b) Rouveen regions. Gray lines: all segments of all parcels
belonging to the contextual group. Blue line: contextual group median time
series. Red line: Mean of time-series segments of a selected parcel in the
contextual group. Black line: in situ measurement by extensometer of the
same parcel. All the individual coherent segments belonging to the contextual
group are shown in gray for readability.

and the validation data is quantified by the root mean square
difference (RMSD) in Table I. However, it should also be noted
that we do not expect an exact match between the InSAR
and ground-based results, because the InSAR result shows
the average behavior over a large spatial extent, whereas the
ground-based measurement is of a single point. Moreover, the
ground-based results do not capture the influence of the top
five centimeters of soil, due to the position of the extensometer
anchors. Nevertheless, as the major factors driving the motion
are the same for both cases, we see that the agreement between
them is very close, particularly in the observed short-term
dynamics.

E. Effective Number of Looks Over Time

An important factor governing the accuracy of the result
is the effective number of looks [14], shown in Fig. 9. This
number fluctuates throughout the year due to the availability
of coherent segments in the contextual group, as discussed
in Section IV-C. It is important to ensure that there remain

TABLE I
DIFFERENCE BETWEEN INSAR AND EXTENSOMETER ESTIMATES

Fig. 9. Chart showing the effective number of looks over time for the period
January 1, 2017–December 31, 2022, for the same contextual group shown
in Fig. 8(a).

enough coherent observations during the periods in which
most regions are incoherent. If too few coherent observations
are present, then the overall contextual group result can
become biased by the behavior (and noise) of only a few
pixels. The effective number of looks L used at a given time
is given by

L = (No. segments) × (No. pixels/segment) × OSR (17)

where OSR is the oversampling rate given by

OSR =
PRF

BWaz
·

fs,R

BWR
(18)

where PRF is the pulse repetition frequency, fs,R is the range
sampling rate, and BWaz and BWR are the azimuth and range
bandwidths, respectively.

F. Estimated Linear Rates

Approximate linear subsidence rates are shown in Fig. 10.
These rates are estimated by linear regression of the contextual
group mean time series results shown in Section IV-D, how-
ever, it should be noted that the total length of the observation
period (five years) is too short to establish a robust estimate
of the rate. Thus, these results provide an order of magnitude
estimate and can be used to assess the spatial distribution of
subsidence in the area.

V. DISCUSSION

A. On the Absence of Contextual Data

It is quite likely that in some cases, additional contextual
data may not be available for the region under investigation,
for instance, in peatland regions in remote locations. In such
a case, additional remote-sensing data may be integrated into
the processing workflow to identify and group common pixels
together, such as the SAR backscatter data, as is done in
the established squeeSAR [16] method, or through the use
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Fig. 10. Color-coded map of estimated linear subsidence rates for the period
January 1, 2017–December 31, 2022, at (a) Zegveld and (b) Rouveen regions.
Parcels with no fill indicate that no estimation has been made at that location.

of semantic segmentation techniques on colocated optical
imagery. A posteriori technique such as T-SNE [31], [32]
can potentially be used to group similarly behaving scatterers
together into contextual groups.

B. Model Reliability and Goodness of Fit

Steps are taken to ensure goodness of fit and reliability of
the estimated model in the OMT (Section III-I). The T -score
of a given parcel [see (15)] is shown in Fig. 11, however,
whether or not that parcel is used in the final rate estimation
depends on the procedure outlined in Section III-I. When
comparing Figs. 10 and 11, it can be seen that some parcels
with a high T -score, and therefore a poor agreement with the

Fig. 11. Color-coded map of estimated goodness-of-fit according to the
T -score value at (a) Zegveld and (b) Rouveen regions. Parcels with no fill
indicate that no estimation has been made at that location.

contextual group model, are discarded from the final result.
These are the ones detected by the iterative testing procedure.
Other parcels with high T -scores are flagged for further
re-evaluation but are not discarded immediately because their
corresponding groups fall within expected bounds. There are
several main causes of error that make a parcel deviate from
the estimated contextual group model:

• Misattribution within the contextual dataset: for example,
errors in the soil map, or incorrect land use classifications.

• Phase unwrapping errors.
• Noise and decorrelation.
• Model parameter estimation errors.
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Often these causes are correlated; a misattributed parcel may
be grouped with a set of other parcels to which it should
not belong and introduce error into the contextual group
model estimation. One region where this is evident is in a
group of central-northern parcels (approximate coordinates:
52.62◦N, 6.13◦E) in the Rouveen area. Although classified as
grassland, it is in fact a large rewilded “Natura-2000” region.
Some of the parcels in this region are more densely covered
with vegetation as opposed to being simple grasslands. This
means that the phase behavior in these parcels is possibly
different from the surrounding areas, and in some cases, the
estimated displacement model may not be valid there. The
OMT procedure can identify this and re-estimate a valid model
with the remaining parcels not discarded by the test. A similar
situation is visible in the SW corner of the Zegveld region
(approximately coordinates: 52.095◦N, 4.75◦E).

C. Mean Displacement Model Versus Mean Phase Change

The use of a mean displacement model is a choice that in
theory could be omitted. One could, for example, simply take
the mean of the daisy-chain differential phase 1φ(t) of the
entire contextual group and integrate it to obtain a relative
position time series. However, in that case, one becomes very
dependent upon a select few sets of measurements during the
low-coherence times, as shown in Figs. 7 and 9. Any biases,
noise, or phase unwrapping errors in these observations would
then be directly propagated into the mean contextual group
time series. Therefore, using the set of all 1φ(t) observations
to estimate a set of global model parameters is a safer option,
provided the model is valid for the contextual group.

VI. CONCLUSION

Loss-of-lock is a permanent loss of coherence between
two or more parts of a time series which is impossible to
repair using the data in the SAR image stack alone. While
decorrelation is a topic that has been discussed at length in the
past, the specific implications of a loss-of-lock event are not
well understood nor has a name been given to the phenomenon
despite its very common occurrence in certain regions around
the world, such as northern peatlands.

We introduced a new DS processing methodology that
makes use of contextual data to reconnect coherent obser-
vations separated by loss-of-lock. With this methodology,
we perform multilooking based on polygons which mark
physically existing divisions in the terrain and assign a set
of attributes and multilooked phases to each polygon. As is
observable from their coherence matrices, most of these phase
histories suffer from loss-of-lock. We combine the observa-
tions of different polygons which we expect to behave in a
similar manner to parameterize a common functional model.
This model is used to align the disparate observations to
estimate a single unbroken time series for the contextual group.

Using this methodology, we have successfully been able to
estimate accurate InSAR displacement time series in several
subsiding peatland regions in The Netherlands which was
previously not possible with InSAR. To our knowledge, this
is the first time that an accurate and validated time series has

been estimated based on direct observation of the peatland
pixels using DS techniques.
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