
Speeding up
proton therapy
optimization
algorithms using
GPU-acceleration
S. Goudriaan

Image by HollandPTC Image by: tudelft.nl

Speeding up
proton therapy
optimization

algorithms using
GPU-acceleration

by

S. Goudriaan
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Friday July 14, 2023 at 1:00 PM.

Student number: 5082978
Project duration: February 22, 2023 – July 14, 2023
Thesis committee: Prof. dr. ir. M. B. van Gijzen, TU Delft, supervisor

Dr. ir. D. Lathouwers, TU Delft, supervisor
Dr. P. M. Visser, TU Delft
Dr. Z. Perko, TU Delft

Acknowledgements
I would like to thank my supervisors Martin van Gijzen and Danny Lathouwers for giving me the op-
portunity to take this unique and relevant assignment as my bachelor graduation project. The weekly
meetings with them were of great value to my progress in the project. Their openness and patience
during these meetings, and their amazing support throughout the project is greatly appreciated. Their
sense of humor made the weekly meetings, and further communication via e-mail genuinely enjoyable.
Furthermore I would like to thank my family for providing me with the opportunity to fully commit to my
studies, without having to worry about anything else, and for all the support they have given me leading
up to this moment.

S. Goudriaan
Delft, July 2023

i

Abstract
Proton irradiation therapy is a powerful form of cancer treatment, promising better dose conformity as
compared to conventional radiotherapy. Due to the complex scattering properties of protons, the opti-
mization process that is needed to accurately target the cancer cells whilst causing minimal damage to
the surrounding healthy tissue and minimizing detrimental effects, is very time-consuming. This means
that the CT scan it is based on has lost part of its accuracy in describing the to be irradiated tissue. To
account for this, the surrounding tissue is irradiated more to ensure effective treatment, reducing dose
conformity and thus increasing the probability of detrimental side effects.
To solve this problem, a new proton therapy method concept, called Online Adaptive Proton Ther-
apy, or OAPT, calls for a CT scan to be taken about 30 seconds before the treatment, allowing the
planned treatment to be adapted to any anatomical changes that have occurred since the previous
scan where the original treatment planning was based on. The computations required for this adap-
tation, and the required quality assurance, currently still take significantly longer than 30 seconds on
current computational hardware, making the concept not yet viable in its current form. However, using
GPU acceleration, parts of the algorithm that is used for this can be significantly sped up to reduce
overall computational time, potentially making the concept viable for real world application.
In this thesis, the research question ”How can GPU-offloading decrease computation time for proton
therapy dose calculations?” is answered by accelerating two model algorithms representative of two
time-consuming steps in the proton therapy optimization process and analyzing the performance, on
an NVIDIA V100S GPU, of the accelerated code. Furthermore, a model is postulated and validated to
characterize and predict the performance of a GPU accelerated algorithm.
Using OpenACC, both algorithms achieved speedups between 30x and 440x excluding data transfer
time, and between 0.88x and 40x including data transfer time, with both values depending on the prob-
lem size, with larger problems yielding larger speedups.
Further research is needed on the validity of the derivedmodel on different hardware and for different al-
gorithms. Furthermore, additional research on the effect of implementing these accelerated algorithms
on the total computation time of the real world algorithm is advised.

ii

Contents

1 Introduction 1
1.1 Proton therapy . 1

1.1.1 How it works . 1
1.1.2 Advantages over conventional radiotherapy . 1
1.1.3 State of the art . 2

1.2 Scope of this thesis. 3
1.2.1 Research question . 3
1.2.2 General approach and restrictions. 3
1.2.3 Outline of the report . 3

2 The proton transport problem 4
2.1 Physical background . 4

2.1.1 The linear Boltzmann equation . 4
2.1.2 The Fokker-Planck equation . 5
2.1.3 Boundary conditions . 5

2.2 The numerical algorithm . 6
2.2.1 Numerical method and discretization . 6
2.2.2 matvec . 7
2.2.3 Plane sweep . 7

3 Parallel computing 9
3.1 Scientific computing in Fortran. 9

3.1.1 General structure . 9
3.1.2 Available compilers . 9
3.1.3 Parallel computing support. 9

3.2 CPU vs GPU based programming. 10
3.2.1 Architectural differences . 10
3.2.2 Differences in performance scaling . 10

3.3 GPU offloading implementation . 11
3.3.1 Standard parallel: do concurrent . 11
3.3.2 OpenACC . 11
3.3.3 OpenMP . 12
3.3.4 NVIDIA CUDA Fortran . 12
3.3.5 Trade-off . 12

3.4 Modeling GPU-acceleration potential . 12
3.4.1 Available parallelism and execution time . 12
3.4.2 Data transfer time . 14
3.4.3 Miscellaneous factors . 15

4 Experimental method 16
4.1 Acceleration process . 16

4.1.1 Directives and clauses . 16
4.1.2 Data movement optimization. 17
4.1.3 Mapping threads across levels of parallelism . 17
4.1.4 Exposing more parallelism . 18
4.1.5 Further optimizations . 18
4.1.6 data representation. 18

iii

Contents iv

4.2 Performance measurements. 19
4.2.1 Hardware . 19
4.2.2 Compilers . 19
4.2.3 Compiler options . 19
4.2.4 Code segments . 21
4.2.5 System clock . 22
4.2.6 Profiling tools . 22

5 Results and discussion 23
5.1 Plane sweep . 23

5.1.1 Pinned memory . 25
5.1.2 Multicore . 25
5.1.3 Data representation . 26
5.1.4 Gfortran and ifx . 27
5.1.5 Correctness . 27

5.2 Matvec . 28
5.3 General implementation considerations . 29
5.4 Applying the general performance model . 30

5.4.1 Execution time . 30
5.4.2 Data transfer time . 34
5.4.3 Discussion of the model . 35

6 Conclusion 36
6.1 The performance model . 36
6.2 Acceleration results . 37

A Model code 38
A.1 Matvec model code. 38
A.2 Plane sweep model code . 44

B Accelerated code 51
B.1 Accelerated matvec model code. 51
B.2 Accelerated plane sweep model code. 57

C Performance measurement tables 67
C.1 Matvec . 67
C.2 Plane sweep . 69

1
Introduction

1.1. Proton therapy
In the economically developed world, cancer is the leading cause of death, and has been for the past
decades. New methods are constantly being developed and improved to cure this disease. Proton
irradiation therapy, often referred to as just ”proton therapy”, is a form of cancer irradiation therapy
(often referred to as radiotherapy), where cancerous tumors are bombarded with ionizing radiation to
break apart cancerous cells (Uilkema, 2012). In this section, the concept of proton therapy will be briefly
introduced. The section will be concluded with a short analysis of the current state-of-the-art in proton
therapy, as well as the problem this thesis aims to help solve some issues with the current methods
applied in this field.

1.1.1. How it works
As introduced earlier, proton therapy is a form of cancer irradiation therapy. As the name implies, proton
therapy makes use of protons, which are positively charged subatomic particles. It uses those protons
to irradiate the cancerous tumor, with the aim of breaking the cancerous cells apart. In a proton therapy
clinic, protons are accelerated in a small particle accelerator and carefully delivered to a targeted area
in the patient.
As any form of ionizing radiation, protons can just as easily damage healthy cells as it can damage
cancer cells. As damaging too many healthy cells can cause undesired side effects, an important con-
sideration when planning any form of radiation therapy, is minimizing this damage to healthy cells.
The amount of damage caused by ionizing radiation in a given area directly correlates with the energy
deposition in that area. Therefore, this energy deposition is used as a measure for damage caused. In
irradiation therapy, treatment planning is an optimization process, where, in general, the energy depo-
sition is to be simultaneously maximized inside the tumor, while being minimized in the healthy tissue
and vital organs around it (Levin et al., 2005).

1.1.2. Advantages over conventional radiotherapy
The fundamental difference between proton therapy and conventional radiotherapy, is the type of radi-
ation used. Conventional radiotherapy uses photons, which have a very long range, depositing energy
relatively evenly spread over their trajectory. Proton therapy, as introduced earlier, uses protons, which
have a finite range and deposit most of their energy at the end of their range. The range of a proton
depends on the medium it travels to, and the initial kinetic energy supplied to the proton. Proton therapy
utilizes those properties to more precisely control where the energy is deposited.
In figure 1.1, the relative delivered dose of proton therapy is compared with the relative dose in conven-
tional radiation therapy, as function of penetration depth. The area between the vertical dotted lines
is the irradiated tumor. The black curve depicts the relative energy deposition using photons, the blue
curves depict the dose distribution of protons at different energy levels, and the red curve depicts the
superposition of the individually modulated protons energy deposition. As can be seen in the figure,
the relative dose delivered in the tumor region by the protons is significantly higher, as compared to the

1

1.1. Proton therapy 2

photons, whilst the opposite is true for the range outside the tumor, where healthy tissue is situated.
This gives proton therapy a significant advantage regarding dose conformity, which means that more
of the total dose is delivered in the tumor, sparing the healty tissue and critical organs around it.

Figure 1.1: Relative dose distribution obtained using photons, compared to the relative dose distribution of proton irradiation
therapy, as function of depth. The area in between the vertical dotted lines is the irradiated tumor. This figure was extracted from
Levin et al., 2005.

1.1.3. State of the art
In order to optimize the dose conformity as mentioned earlier, a special CT scan is needed to determine
the exact position of the tumor, as well as critical organs, and to model the scattering properties of the
medium. Those scattering properties are needed to accurately determine the behavior and energy de-
position of the protons, as elaborated in section 2.1. As stated in a recent paper by Burlacu et al., 2023,
the optimization process is currently very long, meaning that anatomical varieties, such as weight loss,
which are to be expected over the course of the often weeks long treatment process, are likely to have
a significant impact on the accuracy of the delivered dose. To account for this in current state-of-the-art
therapy planning, the dose distribution is robustly optimized to guarantee a sufficient dose is delivered
in the tumor. A consequence of this, however, is that the surrounding tissue is still damaged more than
ideal, increasing the likelihood of detrimental side effects.
A more ideal approach would be to implement a concept called ”Online Adaptive Proton Therapy”, or
OAPT for short, where a CT scan is made approximately 30 seconds before the protons are delivered,
such that the therapy plan can be adapted to any anatomical changes that occurred before the scan
took place. This increases the accuracy of the anatomical model as compared to the actual tissue
during the session.
However, as stated in Burlacu et al., 2023, currently the computations required to re-optimize the
planned treatment to account for those anatomical variations, and the required quality assurance pro-
cess, take far longer than 30 seconds. To overcome this issue, a deterministic algorithm is presented
in the paper. Running sequentially, that is on a single CPU core, this algorithm still takes too long to
complete. However, if some time-consuming steps in this algorithm can be accelerated using GPU
offloading, this algorithm may be viable for use in the quality assurance and re-optimization steps.

1.2. Scope of this thesis 3

1.2. Scope of this thesis
In this section, the scope of this thesis is defined, introducing the research question, and summarizing
the approach taken to answer it, as well as summarizing the relevant restrictions put in place to control
the scope of the thesis. At the end of this section, an outline of the report is provided, summarizing the
scope of each individual chapter.

1.2.1. Research question
The following question is central to this thesis:
”How can GPU-offloading decrease computation time for proton therapy dose calculations?”
This research question has two separate interpretations that are both relevant to this thesis. The first
interpretation asks for themethodsGPU offloading can be implemented to decrease computation time,
whilst the second interpretation asks for how much computation time can be reduced using GPU of-
floading. This thesis aims to answer both questions at the same time, by accelerating two pieces of
model code that are representative of two of the main ingredients of the algorithm used in those cal-
culations, documenting the acceleration process, analyzing the performance of the accelerated code,
and developing a model to predict the performance of similar algorithms.

1.2.2. General approach and restrictions
The starting point of this thesis is a set of two model algorithms designed to execute one step each in
the linear Boltzmann solver that is used in the proton therapy dose calculation and optimization process.
The aim is to find the following three things:

1. A method of accelerating the numerical algorithms in Fortran.

2. A measure of the performance improvements accelerating those algorithm brings.

3. A model to predict the accelerated performance of similar algorithms.

Each item in this list is a step in completing the next item on the list. Therefore the general approach
of this thesis is to compare multiple available methods, choose the one that best fits the application,
implement the chosen method, test and evaluate its performance, and derive and validate a general
model to describe its performance.
Because this thesis is to be completed in a limited time frame, the scope is subject to the following
restrictions:

1. Not all available methods can be investigated. There are many different ways to implement GPU
acceleration, with only limited time to pick one of them.

2. The algorithms to be accelerated, are simplified model problems, which are still representative of
the algorithms in the real world application. Implementation in the real world algorithm requires a
few more adaptations, which are outside the scope of this thesis.

3. The performance of the accelerated code is only tested on a single hardware configuration. How-
ever, performance portability is still considered when choosing the method of acceleration.

4. Ease of implementation is an important consideration in choosing the acceleration method.

1.2.3. Outline of the report
Now that the scope of this thesis is defined, it is time to outline the contents of this report.
In the next chapter, the physical and numerical problem relevant to the investigated algorithms are
explored. Afterwards, the relevant concepts about GPU acceleration are introduced, as well as the
methods that were considered to achieve this in chapter 3. In the same chapter, a general model is
postulated to characterize the performance of GPU accelerated code. In the chapter after that, the
acceleration process, the method of measuring performance, and the hardware the (accelerated) code
is tested on are introduced. In chapter 5, the results of those measurements are presented, the model
is applied and evaluated, and the validity of the results is discussed. Finally, the thesis will be closed
off with a conclusion summarizing the results and providing a few suggestions for future research.

2
The proton transport problem

As stated in the previous chapter, this thesis aims to determine the GPU-acceleration potential of an
algorithm used to solve proton transport problems for proton therapy applications. In this chapter, the
physical background of this transport problem is explained in more detail, as well as a more in-depth
analysis of the algorithm of interest.

2.1. Physical background
Transport of heavy charged particles, and protons in particular, is relevant in many important appli-
cations (Zheng-Ming & Brahme, 1993). However, this thesis will focus on one specific medical appli-
cation: proton irradiation therapy for cancer treatment. As briefly described in section 1.1.1, proton
therapy works by irradiating a targeted tissue with protons, which deposit their energy, and therefore
cause the most damage, in a narrow region near the end of their trajectory. To minimize the damage
done to healthy tissue, and maximize the damage in the tumor, the trajectory and energy deposition of
the protons must be accurately modeled.
The most accurate method for modeling this energy deposition, is based on simulating each proton
individually and the probabilistic paths it could follow due to its interactions with the irradiated tissue.
However, as these simulations, also known as Monte Carlo simulations, are very computationally ex-
pensive, this method is not feasible for use in proton therapy planning. Therefore a deterministic ap-
proach is used for this purpose. This approach is described in more detail later in this chapter, but first
the background of the proton transport problem, and the associated equations, is explained.

2.1.1. The linear Boltzmann equation
A central equation to particle transport problems is the linear Boltzmann equation. The Boltzmann equa-
tion governs how (on average) the protons scatter as a result from their interactions with the medium
they travel through, as well as the resulting energy deposition. Its validity for proton therapy applica-
tions is supported in chapter 3 of ”Proton Therapy Planning using the 𝑆𝑁 Method with the Fokker-Planck
Approximation” by Uilkema, 2012. Leaving out the time dependent variable, which is not relevant for
proton therapy as only the steady-state solution is relevant here, the linear form of the steady state
Boltzmann equation reads

Ω̂ ⋅ ∇𝜙(𝑟, 𝐸, Ω̂) + 𝜎𝑡𝜙(𝑟, 𝐸, Ω̂) = ∫
4𝜋
∫
∞

0
𝜎𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ → Ω̂)𝜙(𝑟, 𝐸′, Ω̂′)𝑑𝐸′𝑑Ω̂′. (2.1)

Here 𝜙(𝑟, 𝐸, Ω̂) denotes the angular flux at position 𝑟 of particles of energy 𝐸 traveling along unit vector
Ω̂, 𝜎𝑡 is the total scattering cross section and 𝜎𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ → Ω̂) being the differential cross sec-
tion of particles at position 𝑟 scattering from energy state 𝐸′ to 𝐸 and change direction from Ω̂′ to Ω̂
simultaneously. The derivation of this equation is beyond the scope of this thesis and can be found
in chapter four of ”Nuclear reactor analysis” by Duderstadt and Hamilton, 1976. As further elaborated
by Uilkema, 2012, as well as by Duderstadt and Hamilton, 1976, the first term of equation 2.1 is the
streaming term, describing the free movement of the particles through the domain, the second term

4

2.1. Physical background 5

describes the particles which change direction and/or energy due to all forms of scattering, and the
integral term describes all particles scattering from other (higher) energies and different directions to
energy state 𝐸 and direction Ω̂, at 𝑟. This third term is often referred to as the ”Boltzmann scatter op-
erator”.
Solving equation 2.1 would deliver all the information needed to calculate both the average trajectory
and energy deposition of the particles. Due to the near-singular shape of 𝜎𝑠 in the angular domain
for charged particles, however, as shown by Uilkema, 2012, things are not as easy when dealing with
protons. This is because deterministic numerical methods would commonly need to use (Legendre)
polynomials to approximate 𝜎𝑠, which need very high orders of polynomials to approximate such a steep
function with any degree of accuracy. This, together with the very finely discretized angular and ener-
getic grid needed to simulate the many collisions accurately, makes directly solving this equation in its
current form unpractical for application in the field of proton therapy (and many other fields). Therefore
an approximation is needed: the Fokker-Planck equation.

2.1.2. The Fokker-Planck equation
To arrive at this approximate form of equation 2.1, the first step is to split the Boltzmann scatter operator
and with it the two cross sections in three parts: 𝜎𝑎 for absorption, i.e. proton is absorbed by the nucleus,
𝜎𝑒 for elastic scatter (no kinetic energy lost), and 𝜎𝑖𝑛 for inelastic scatter. The equation now has the
following form:

Ω̂ ⋅ ∇𝜙(𝑟, 𝐸, Ω̂) = ∫
4𝜋
∫
∞

0
𝜎𝑠,𝑎(𝑟, 𝐸′ → 𝐸, Ω̂′ → Ω̂)𝜙(𝑟, 𝐸′, Ω̂′)𝑑𝐸′𝑑Ω̂′ − 𝜎𝑡,𝑎𝜙(𝑟, 𝐸, Ω̂)

+ ∫
4𝜋
𝜎𝑠,𝑒(𝑟, 𝐸, Ω̂′ → Ω̂)𝜙(𝑟, 𝐸, Ω̂′)𝑑Ω̂′ − 𝜎𝑡,𝑒𝜙(𝑟, 𝐸, Ω̂)

+ ∫
∞

0
𝜎𝑠,𝑖𝑛(𝑟, 𝐸 + 𝑄 → 𝐸, Ω̂)𝜙(𝑟, 𝐸 + 𝑄, Ω̂)𝑑𝑄 − 𝜎𝑡,𝑖𝑛𝜙(𝑟, 𝐸, Ω̂).

(2.2)

Here, the assumption is made explicit that inelastic scatter cannot increase the energy of the collid-
ing proton by redefining 𝐸′ as 𝐸 + 𝑄, where 𝑄 denotes the energy transferred from the proton to the
medium. Another assumption that is made already, is that in case of elastic scatter the energy transfer
is negligible, as the protons have a much higher mass as compared to the electrons they interact with
(Burlacu et al., 2023).
The first integral, with 𝜎𝑠,𝑎, can be neglected completely, the effect of the second integral is can be
expressed as a source term 𝑆(𝑟, 𝜙)[1], and the third integral, which accounts for a phenomenon called
”energy straggling” is neglected for scattered protons. Unscattered protons are handled by a separate
ray-tracing algorithm which is outside the scope of this thesis.[2] The equation is solved at a single
energy level (discretization of the energy domain is outside the scope of this thesis), further simplifying
the equation that is solved. This leads us to the equation that is solved by the algorithm relevant to this
thesis:

Ω̂ ⋅ ∇𝜙𝑠(𝑟, Ω̂) + 𝜎𝑡𝜙𝑠(𝑟, Ω̂) = 𝑆(𝑟, 𝜙𝑠), (2.3)

where 𝑆(𝑟, 𝜙) is a source term, representing for instance protons that are ”scattered in” from different
directions or higher energy levels, and 𝜙𝑠 is the flux of scattering protons. This equation is a further
simplified version of what can be found in Lathouwers, 2023, but is sufficient for the scope of this thesis.

2.1.3. Boundary conditions
So far the boundary conditions have been left open. For the purposes of this thesis, those are given
by:

𝜙(𝑟𝑠 , Ω̂) = {
𝜙𝑖𝑛(𝑟𝑠), 𝑖𝑓Ω̂ ⋅ 𝑒𝑠 < 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∀𝑟𝑠 ∈ 𝜕𝑉. (2.4)

Here, 𝜕𝑉 refers to the boundaries of the domain, and 𝜙𝑖𝑛(𝑟𝑠) is a given function denoting the inflow at
the boundaries. This boundary condition is of the non-reentrant type as found in Burlacu et al., 2023.

[1]This source term is also outside of the scope of this thesis.
[2]The reason for this separation, is that unscattered protons are concentrated in a very narrow region, making it hard for most
numerical methods to accurately model them together with the scattered protons.

2.2. The numerical algorithm 6

2.2. The numerical algorithm
Now that we have arrived at the equation that is to be solved for the model problem, it is time to discuss
how it is solved numerically.

2.2.1. Numerical method and discretization
The first step in solving any equation numerically, is choosing which method to use and discretizing
the equation. The method of choice here is discontinuous Galerkin for spatial discretization, and dis-
crete ordinates for angular discretization. The working of this method will be be explained later in this
subsection. Applying angular discretization on equation 2.3, the following equation is obtained:

Ω̂𝑛 ⋅ ∇𝜙𝑛(𝑟, Ω̂) + 𝜎𝑡𝜙𝑠(𝑟, Ω̂) = 𝑆(𝑟, 𝜙𝑛), (2.5)

where Ω̂𝑛 is the nth ordinate of the discretized direction vector space, with 𝜙𝑛 the associated flux. The
source term is now defined by some polynomial for each cell and direction. In the case of the test
algorithm, the source term is set to zero for each cell and direction, but this is not a strict requirement
for the real world implementation. Also note that there still is one more step required to fully discretize
this equation: the spatial discretization, and with that the gradient of 𝜙𝑛, which is still denoted by the ∇
operator, which needs to be implemented numerically. However, this will be touched upon later in this
section, as first the numerical method need to be introduced in more detail.

Discontinuous Galerkin method
The numerical method used for this thesis, is the first order discontinuous Galerkin method, also known
as dG1. This method is a mix of the finite volume and finite element method, approximating the solution
using a first order polynomial for each cell. To solve the system of equations, it does need the values
of the surrounding cells as boundary conditions, making the cells not fully independent. As elaborated
in subsection 2.2.3 however, there is a way to work around that to still allow good parallelism.
The exact formulation of dG1 is outside of the scope of this thesis. Instead, the reader is encouraged
to read more about the general concept of this method in ”Mathematical Aspects of Discontinuous
Galerkin Methods” by Di Pietro and Ern, 2011.

Polynomial basis and the cell-level system of equations
The constants defining the aforementioned polynomial are expressed in vector form, relating to the
original polynomial through a basis. The basis used the model code is of the form {1, 𝑥, 𝑦, 𝑧}, reducing
the first order polynomials to vectors of length four. 𝜙𝑛[𝑒] For instance becomes 𝜙𝑛,𝑒(𝑎, 𝑏, 𝑐, 𝑑), where
𝑎, 𝑏, 𝑐, 𝑑 refer to the coefficients of some polynomial.[3]
The first step to find the system of equations to be solved for each cell is to multiply each term by ℎ𝑗
and integrating over the volume of the cell:

∫
𝑒
ℎ𝑗Ω̂ ⋅ ∇𝜙𝑑𝑟 + ∫

𝑒
𝜎𝑡𝜙ℎ𝑗𝑑𝑟 = ∫

𝑒
𝑆ℎ𝑗𝑑𝑟, for ℎ𝑗 ∈ {1, 𝑥, 𝑦, 𝑧}. (2.6)

Here ℎ𝑗 corresponds to the elements of the polynomial base. In order to discretize equation 2.6, con-
sider the three integrals separately:

∫
𝑒
ℎ𝑗Ω̂ ⋅ ∇𝜙𝑑𝑟 = −∫

𝑒
𝜙(∇ℎ𝑗 ⋅ Ω̂)𝑑𝑟 + ∫

𝑒
Ω̂ ⋅ ∇(ℎ𝑗𝜙)𝑑𝑟 (2.7)

∫
𝑒
𝜎𝑡𝜙ℎ𝑗𝑑𝑟 = 𝜎𝑡∑

𝑖
𝜙𝑖𝑒∫

𝑒
ℎ𝑖ℎ𝑗𝑑𝑟 (2.8)

∫
𝑒
𝑆ℎ𝑗𝑑𝑟 = 0 (given for the test case) (2.9)

Equation 2.7 stems from integration by parts, and equation 2.8 stems from the identity 𝜙 = ∑𝑖 𝜙𝑖𝑒ℎ𝑖.
The second equation reduces further to 𝜙1𝑒 in the case ℎ𝑗 = 1 and to

1
3𝜙

𝑗
𝑒 in the case ℎ𝑗 ∈ {𝑥, 𝑦, 𝑧}. 𝜙𝑖𝑒

[3]Each 𝑒 in 𝜙𝑛[𝑒] referenced earlier actually refers to a set of four elements in the vector �⃗�𝑛 in the computational scheme. For
the definition of the problem and its solution, this is however irrelevant.

2.2. The numerical algorithm 7

here refers to the 𝑖th constant defining the polynomial approximation of 𝜙 in element 𝑒.
Further evaluation of equation 2.7 finally reduces the first integral to:

2𝜙1𝑒 ⋅
⎧⎪
⎨⎪⎩

0, 𝑖𝑓ℎ𝑗 = 1
Ω1, 𝑖𝑓ℎ𝑗 = 𝑥,
Ω2, 𝑖𝑓ℎ𝑗 = 𝑦,
Ω3, 𝑖𝑓ℎ𝑗 = 𝑧,

(2.10)

where Ω𝑖 refers to the 𝑖th index of Ω̂. Using the following relation for the final integral:

∫
𝑒
Ω̂ ⋅ ∇(ℎ𝑗𝜙)𝑑𝑟 = ∫

𝜕𝑒
ℎ𝑗𝜙(Ω̂ ⋅ �̂�)𝑑𝑟, (2.11)

together with the fact that 𝜙 at the upstream boundary of a cell is determined by its neighboring cell
(protons don’t just disappear or appear at a boundary between cells), equation 2.6 is finally ready
to be put in matrix form A�⃗� = �⃗� to be solved using the Krylov method. The exact workings of this
Krylov method, and the exact form of the matrix partially constructed above, are outside the scope
of this thesis. For the purposes of this thesis, it is sufficient to know that the Krylov method works
using moments of vector �⃗� in matrix A. The 𝑛th moment of a vector �⃗� in a matrix is given by this vector
multiplied with matrixA, repeated 𝑛 times: A𝑛�⃗�. The next subsections will introduce the main ingredient
to this method, as well as a preconditioner to help it work efficiently, as those two parts of the algorithm
were accelerated during this project.

2.2.2. matvec
The matvec algorithm is the main ingredient to the application of the Krylov method. For each element
in the grid, it constructs the 4x4 matrix A as mentioned earlier, and defined in more detail in the next
subsection, and multiplies it with a given vector �⃗�. It then subtracts it from a different vector constructed
from the �⃗� given for its upstream neighbors. It adds the result to another given vector for its element
and with that completes the algorithm. The model code used for this algorithm can be found in appendix
A.1. This algorithm is relatively memory intensive and its elements are fully independent, meaning that
it is fully parallel.

2.2.3. Plane sweep
The plane sweep algorithm essentially solves a system A�⃗� = �⃗� for each element by sweeping through
the domain along the Ω̂ vector, evaluating every cell in a ”parallel plane” (as defined later in this sub-
section) before moving to the next.[4] A full description of the role and working of this algorithm can
be found in Kópházi and Lathouwers, 2015, and the model code used for this algorithm is provided in
appendix A.2. In this subsection, a brief summary of the functionality of this algorithm is given, as well
as a more in-depth analysis of its structure. In the summary given, it is assumed that Ω̂ is in the positive
octant, that is, the direction of flow is in the direction of positive 𝑥, 𝑦 and 𝑧. The same algorithm works
the same way in different octants, with slightly different indices.
For each discrete direction Ω̂𝑛 and element 𝑒, the plane sweep algorithm solves the following equation:

A(Ω̂)�⃗�𝑒(𝑖,𝑗,𝑘) = Ω1M𝑥𝑚�⃗�𝑒(𝑖−1,𝑗,𝑘) + Ω2M𝑦𝑚�⃗�𝑒(𝑖,𝑗−1,𝑘) + Ω3M𝑧𝑚�⃗�𝑒(𝑖,𝑗,𝑘−1). (2.12)

In this equation, all bold faced capital letters denote 4x4 matrices and all vectors have a length of four.
In this equation, �⃗�𝑒(𝑖,𝑗,𝑘) is the vector of polynomial constants, as defined in a previous section, in the
element with spatial coordinates (𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘). MatrixA(Ω̂) is built from the following constants and sparse
matrices (and the Ω̂ vector):

A(Ω̂) = Ω̂ ⋅ K+ Ω1M𝑥𝑝 + Ω2M𝑦𝑝 + Ω3M𝑧𝑝 + 𝜎𝑡M. (2.13)
[4]In the case of the model problem, with S=0, the plane sweep algorithm can solve the problem directly. However, because the
plane sweep algorithm assumes that all directions and energy levels are fully independent, it cannot take into account particles
that scatter from higher energy levels or different ordinates. This is why for the real world application, a Krylov method is used,
where both algorithms work in conjunction to solve the proton transport problem.

2.2. The numerical algorithm 8

All other matrices in 2.12 are sparse. The exact values in these matrices are not relevant for now.
For the purpose of this thesis, the parallel structure of this algorithm is the most relevant. As can be
seen from equation 2.12, the system the plane sweep algorithm solves to find �⃗�𝑒(𝑖,𝑗,𝑘), depends on
�⃗�𝑒(𝑖−1,𝑗,𝑘), �⃗�𝑒(𝑖,𝑗−1,𝑘) and �⃗�𝑒(𝑖,𝑗,𝑘−1), which are the �⃗�𝑒(𝑖,𝑗,𝑘) for its upstream neighbors. This means that
the algorithm first has to solve the system for its upstream neighbors before it can solve the system of
a given element. Therefore, there is a strict order in which the elements must be evaluated. However,
as the boundary conditions are of the non-reentrant type, and the modeled flow is along a given vector,
the domain can be divided up into planes of parallelism, with each element in a given plane being
independent from any other element in the same plane. This principle is illustrated in 2D in figures
2.1a and 2.1b, but works in the same way as in 3D, as illustrated in figure 2.2. The main conceptual
difference here is that the planes of parallelism in 3D are lines in the 2D variant.

(a) Example of a 32 grid with three arbitrary vectors in in the first quad-
rant.

(b) Example of a 32 grid, now with the direction of flow between the cells
and parallel ”planes”.

As becomes clear from 2.1a, following any vector in this quadrant, it is impossible to move from cell
2 to cell 3. In figure 2.1b, the vectors are broken down in a horizontal and vertical component (not to
scale) and placed on the cell borders to show how they affect flow from cell to cell. It becomes clear that
it is impossible to move between cells on the same red line, demonstrating the mutual independence
between those cells. The red lines are the 2D equivalent of the planes that are used in our 3D model. In
the 2D example, the number of cells in each parallel ”plane” is, from bottom left to top right, {1,2,3,2,1}.
For the 3D case this is {1, 3, 6, 7, 6, 3, 1}. Until the planes pass one of the corner points, the number
of elements increases quadratically, as demonstrated in section 5.4.1.

Figure 2.2: Example of parallel planes in a 33 cube grid. Here the elements in the grid are exploded for clarity. The image is
projected in parallel to the planes, making them show up as lines.

3
Parallel computing

In this chapter, the basic programming concepts that are relevant for this thesis will be introduced.
Afterwards the hardware of CPUs and GPUs is compared from a programming perspective. Then the
implementation of GPU offloading is discussed, after which a general GPU performance model will be
postulated.

3.1. Scientific computing in Fortran
The algorithms that are accelerated for this thesis are provided in Fortran. Fortran is one of the original
compiled languages and is specifically developed for scientific computing. With compiled language,
it is meant that the source code, which is the program as written by the programmer, as a whole, is
compiled by a specialized compiler to generate an executable file with machine instructions for the
computer hardware. These instructions are often specific to a certain hardware configuration, which
is either the configuration it was compiled on, or a different hardware set as defined by the user using
compiler options. Compiler options are additional instructions provided to the compiler at compile time,
which is the moment the compiler compiles the source code. In this section, the programming language
and its use for this thesis is explained in more detail (“The Fortran Programming Language”, 2022).

3.1.1. General structure
A Fortran source code file generally consists of three parts: Variable declaration, the main program,
and the subroutines and functions.
In the first part, all variables are declared. These variables are either declared as allocatable, or allo-
cated directly. If a variable is allocated directly, the size and shape are already declared, otherwise this
happens later when it is allocated. If external modules are used, they are loaded at the very beginning
of the source code.
In the second part, the main program, functions and subroutines can be called to modify the variables
and perform all sorts of tasks.
In the third part, all the (sub-) routines and functions are declared. These routines and functions can
also be loaded from a separate module at the start of the program.

3.1.2. Available compilers
There are many compilers available for use with the Fortran standard. Each compiler is developed with
a different implementation and different hardware in mind. This means that the compiler choice greatly
impacts the performance on a given set of hardware. The difference in performance that was found
during this thesis, on the hardware as specified in section 4.2.1, will be discussed in section 5.1.4 and
section 5.2. The compilers that are used for this thesis are listed and compared in section 4.2.2.

3.1.3. Parallel computing support
In 2008, a revision of the standard was released, with built-in support for parallel computing with the
use of do concurrent and co-arrays. Many modern compilers also support parallel computing through
compiler directives. This thesis focuses on GPU acceleration. Section 3.3 goes more in depth of the

9

3.2. CPU vs GPU based programming 10

specific considerations that go into choosing which method to use when implementing GPU offloading
for existing code.

3.2. CPU vs GPU based programming
When writing any program, it is important to take into account what hardware it should run on. Because
CPUs and GPUs are designed for different purposes, the hardware is also very different. This means
that when adapting a program written to be run on a single CPU core to run on a GPU, there are many
things to take into account, especially if the program has to perform well. These differences will be
discussed in this section.
When a program is written to take advantage of multiple (CPU or GPU) cores, this process is called
parallelization. When a program is adapted or written to run parts of the code on a GPU, then we say
those parts of the code are offloaded, and the program is accelerated.

3.2.1. Architectural differences
As the code for this thesis is run on NVIDIA Volta and Ampere GPUs, this subsection will mostly focus
on those NVIDIA GPU architectures. Most of it will translate directly to other GPU architectures, but
not everything. Differences with other architectures are outside the scope of this thesis.
In general, the main differences between CPU and GPU hardware, are that a GPU not only has multi-
ple levels of cache memory, but in general also has its own separate high bandwidth memory. Due to
this separated memory, and the comparatively slow connection to the CPU system memory, this is an
important difference that has to be accounted for when implementing GPU acceleration.
Another major difference between CPUs and GPUs, is that in a GPU not every core has its own cache
memory. instead, multiple cores, organized in gangs, will share the same pool of cache memory. This
means that when mapping parallelism to the cores, this sharing of memory between cores has to be
accounted for (“OpenACC Programming and Best Practices Guide”, 2022).
In many modern CPUs, there are multiple kinds of cores, with different levels of efficiency and perfor-
mance. In NVIDIA GPUs, there are also two kinds of cores: CUDA cores, which are good at performing
small numerical tasks, and Tensor cores, more specialized in certain tasks. The main GPU used for this
thesis is an NVIDIA V100S card with 5120 CUDA cores and 640 Tensor cores (“NVIDIA V100 TENSOR
CORE GPU data sheet”, 2020). For the purposes of this thesis, only the CUDA cores are relevant.

3.2.2. Differences in performance scaling
In general, CPUs are faster when dealing with mostly sequential workloads with limited available paral-
lelism. GPUs generally perform better when the work is highly parallel. One thing to take into account,
however, is that due to the separate memory and the limited bandwidth of its connection to the main
CPU memory, the amount of data needed to perform the work that is to be handled by the GPU, needs
to be taken into account. If a lot of parallel work is done on a smaller problem set, a GPU will be very
good at completing this task quickly. However, if the amount of work is smaller as compared to the
data that is needed, then a GPU might still be slower than a CPU due to the data transfer time required
to get all that data to the GPU (“OpenACC Programming and Best Practices Guide”, 2022).
When deciding if it is worthwhile to implement GPU offloading to accelerate a program, it is important to
keep these differences in performance scaling between CPUs and GPUs in mind. If a more precise es-
timate is desired of the performance gains that are attainable using GPU acceleration, this performance
needs to be modeled. A general model to compare acceleration potential between different algorithms
and find an estimate for the attainable speedup, will be postulated in section 3.4. This model takes into
account all factors mentioned in this section.

3.3. GPU offloading implementation 11

3.3. GPU offloading implementation
There are many different ways to accelerate existing code. In this section, the different approaches
that can be taken to implement this will be laid out. For this thesis, important considerations were
performance, ease of implementation (due to the limited time available) with existing code, and to a
lesser extend portability. A solution or program is considered portable if it is effective on many different
systems (combinations of different hardware) or platforms (different software). These considerations
are compared for multiple different approaches, after which a trade-off is made between them to decide
which method would be used.

3.3.1. Standard parallel: do concurrent
One way to implement GPU offloading, is to specify the target GPU at compile time using compiler
options, and use do concurrent to expose parallelism in loops. An advantage of this approach, is that
because do concurrent is part of the Fortran standard (since 2008), every compiler can compile the
resulting code and check if it has been implemented correctly.
There are however some downsides. First of all, that a compiler supports and checks do concurrent
loops, does not mean it actually implements it in parallel. It also requires some minor changes to the
base code, because do concurrent is implemented a bit differently as compared to standard do. Another
downside of this approach is that it does not allow the programmer to regulate memory management.
This means that code with a more complicated parallel structure cannot be accelerated efficiently using
this method.

3.3.2. OpenACC
Alternatively, GPU acceleration can be implemented using OpenACC compiler directives. Those direc-
tives are placed in the original code in the form of special comments (marked by !$ACC for OpenACC)
and give the compiler instructions about when it should move what data and how to map the available
parallelism to the cores of the GPU.
OpenACC recognizes three different levels of parallelism: gangs, workers and vectors, in order from
course to fine parallelism. Here each gang has its own pool of cache memory, with workers and vec-
tors within each gang sharing the same pool. This principle is shown schematically in figure 3.1 and
explained in more detail in “OpenACC Programming and Best Practices Guide”, 2022. OpenACC is

Figure 3.1: OpenACC’s three levels of parallelism.

specifically designed for GPU offloading, but it also supports multi-core CPUs. For which of the two it
generates code can be determined using compiler options at compile time. Because it is specifically
designed for easy GPU offloading, OpenACC is relatively easy to implement and generally yields good
performance.

3.4. Modeling GPU-acceleration potential 12

3.3.3. OpenMP
Another method for GPU acceleration, is through OpenMP compiler directives. In OpenMP, these
directives are marked by !$OMP. OpenMP is a standard, designed for multi-core processors. It does
support GPU offloading, but as it is not fully specialized, doing so is more involved as compared to
OpenACC (meaning that it takes more directives to achieve the same performance and doesn’t allow
for as much control).

3.3.4. NVIDIA CUDA Fortran
NVIDIA CUDA Fortran is a language based on Fortran, that directly supports GPU offloading. Of the
options, this option is simultaneously the hardest to implement (it requires a whole separate language
and the entire code would need to be rewritten) and the one with the highest performance potential.
CUDA Fortran is also designed to be optimized specifically for a given GPU architecture, making the
code the least portable of the options.

3.3.5. Trade-off
In table 3.1, the different implementation methods for GPU acceleration are ranked and compared to
OpenMP. 0 means that the option is about as good/bad considering the relevant criterion, +/- means
it’s better/worse and ++/- - means it’s a lot better/worse, than OpenMP. The clear winner here is Open
ACC, which is why this option was chosen for this thesis.

Method/criterion Performance Implementation Portability
Std parallel - - ++ +
OpenACC + ++ 0
OpenMP 0 0 0
CUDA Fortran ++ - - - -

Table 3.1: Trade-off table ranking the different implementation methods that were considered for this thesis. From best of worst
the meaning of the symbols is: ++, +, 0, - and - -.

3.4. Modeling GPU-acceleration potential
Amdahl’s Law[1] models the parallel performance of a (semi-) parallel algorithm on a multi-core pro-
cessor, based on sequential code performance, the amount of work that can be run in parallel, and
the number of parallel processors (cores) available. Despite its age and the fact that the law has often
been misinterpreted, the basic principle behind this law is a good starting point for predicting parallel
performance for any (massively) parallel processor. When assessing the performance of GPU accel-
erated code, it is however necessary to also consider the time it takes to move the required data to
and from the GPU, because a GPU (device) has its own separate memory, and the connection to the
system (host) memory only has limited bandwidth. Another thing to take into account, is that due to
the large number of parallel cores on a GPU, the number of parallel cores the code can actually take
advantage of can be significantly lower than the number of cores available. This amount of available
parallelism is measured by the number of available parallel threads. These two factors are explained
in more detail later in this section.

3.4.1. Available parallelism and execution time
Similar to the execution time for parallel processors in Amdahl’s Law as referenced before, the execu-
tion time 𝑇𝑝 of a parallel section of code on a GPU can be estimated by, assuming that each available
thread takes approximately the same amount of time to complete, the following estimator:

�̂�𝑝 =
�̃�𝑠
𝑁𝑇

⋅ (1 + (𝑁𝑇 − 1)//𝑁𝐶). (3.1)

[1]The formulation of this (ancient) mathematical law from 1967 characterizing parallel computing performance and speedup
compared to sequential, as well as the necessary footnotes for its interpretation, can be found in Shi, 1996. Note that the
diminishing returns for most practical problems at the time predicted by this law were often misused as an argument against
the development of massively parallel processors.

3.4. Modeling GPU-acceleration potential 13

Here �̃�𝑠 represents the sequential execution time of the section of code, adjusted for GPU hardware
speed[2]. 𝑁𝑇 is the number of parallel threads and 𝑁𝐶 the number of cores available. 𝑥//𝑦 denotes the
quotient when dividing 𝑥 by 𝑦, which is equal to 𝑥

𝑦 rounded down to the next integer. In other words,
calculating 𝑥//𝑦 is the same as calculating 𝑥/𝑦, but ignoring everything after the decimal point in the
result. This operator is commonly used in simple computer algorithms and integer algebra. The fac-
tor in brackets calculates how many cycles the GPU needs to complete all the threads, as it can only
complete 𝑁𝐶 threads per cycle.

Equation 3.1 is derived as follows:
The parallel execution time is divided up in a number of cycles that take �̃�𝑠

𝑁𝑇
to complete (which is the time

it takes a single GPU core to complete a single thread). This rests on two assumptions: all individual
cores on the GPU are equal, and every individual thread takes an equal time (or work) to complete. The
first assumption is, for modern higher-end GPUs, generally true, and the second assumption depends
on the algorithm to be evaluated. If the amount of work between threads differs, the estimator should
be used as a range, the extremes given by �̃�𝑠

𝑁𝑇
and𝑊 �̃�𝑠

𝑁𝑇
, where𝑊 denotes how many times more work

the longest thread is as compared to the average. Where in this range the parallel time falls depends
on the scheduler and is outside the scope of this thesis.
The number of cycles is given by the term in brackets: (1 + (𝑁𝑇 − 1)//𝑁𝐶) and denotes how many
times the GPU needs to run 𝑁𝐶 cores in order to complete 𝑁𝑇 threads, as it can only work on at most
𝑁𝐶 threads simultaneously. This can be calculated by taking the number of full cycles 𝑁𝑇//𝑁𝐶, and
adding one more cycle for the remaining threads, making 1+𝑁𝑇//𝑁𝐶. This approach however creates
a new problem: if 𝑁𝑇 = 𝑁𝐶, then the GPU does not need to complete the extra cycle, because there
won’t be any remaining threads after the full cycles. To account for this, one is subtracted from the
number of threads, making the number of cycles (1 + (𝑁𝑇 − 1)//𝑁𝐶). Multiplying the estimated time it
takes to complete one cycle with the number of cycles yields equation 3.1.
Because in the real world not all threads take exactly an equal amount of time to complete, and because
many different factors may affect the performance of a GPU, the estimate given by equation 3.1 is likely
to be optimistic. It can however help in comparing GPU-acceleration potential of different algorithms.
In a later section, these factors will be discussed and fittable form of the model is proposed to account
for these factors.
If 𝑁𝑇 >> 𝑁𝐶, i.e. when the number of parallel threads is many times higher than the number of cores,
then

�̂�𝑝 ≈
�̃�𝑠
𝑁𝐶
. (3.2)

In most applications where GPU-acceleration is effective, this approximation is valid.[3]
On the contrary, if 𝑁𝐶 ≥ 𝑁𝑇, i.e. the number of parallel cores is higher than or equal to the number of
parallel threads, then

�̂�𝑝 =
�̃�𝑠
𝑁𝑇
. (3.3)

For many algorithms, the number of available threads is however not a simple constant, but varies from
section to section. This means that �̂� will have to be defined as the sum over all the sections of the
algorithm. In summation form, this leads to the following estimator:

�̂�𝑝 = �̃�𝑠
𝑁

∑
𝑛=1

𝑓(𝑛)
𝑁𝑇(𝑛)

⋅ (1 + (𝑁𝑇(𝑛) − 1)//𝑁𝐶). (3.4)

Here, 𝑁 denotes the number of sections the algorithm is divided in, 𝑓(𝑛) denotes the fraction of total
work the 𝑛th section represents, and 𝑁𝑇(𝑛) the number of threads each section could utilize.
[2]This is necessary to account for themany architectural differences betweenGPUs and CPUsmentioned in the previous section.
�̃�𝑠 can be estimated using �̃�𝑠 ≈ 𝑐𝑇𝑠, where 𝑐 is some unknown constant depending on the kind of operations the algorithm
consists of and what hardware is being compared.

[3]This formulation is the same as Amdahl’s law for multi-core processors. This makes sense, as for multi-core processors, the
number of cores is relatively small as compared to the number of cores on a GPU.

3.4. Modeling GPU-acceleration potential 14

So far it was assumed that within the same region all threads take the same amount of work. If on
top of that, it is assumed that even across all regions, all individual threads take the same amount of
sequential work to complete, then 𝑓(𝑛) takes the form 𝑓(𝑛) = 𝑁𝑇(𝑛)

𝑁𝑇
. Here, 𝑁𝑇 = ∑

𝑁
𝑛=1𝑁𝑇(𝑛) denotes

the total number of threads across all regions. Equation 3.4 takes the form

�̂�𝑝 =
�̃�𝑠
𝑁𝑇

𝑁

∑
𝑛=1

1 + (𝑁𝑇(𝑛) − 1)//𝑁𝐶 . (3.5)

Note that this equation now reduces to a single fraction calculating the time a single cycle would take,
and a simple sum calculating the total number of cycles needed to complete all the threads.
Because this equation doesn’t give a lot of insight of how efficiently each section makes use of all the
cores, the occupancy rate 𝑂(𝑛) of a few problems will be calculated to visualize this better.[4] This
quantity is an estimate for which fraction of available cores can be used in section 𝑛, and defined by

𝑂(𝑛) ∶= 1
𝑁𝐶

⋅ 𝑁𝑇(𝑛)
1 + (𝑁𝑇(𝑛) − 1)//𝑁𝐶

. (3.6)

Often, like in Amdahl’s law, a direct expression of the expected speedup is desired. Using the same
definition of speedup as in this well known law, and plugging in equation 3.5 to estimate 𝑇𝑠, the speedup
is estimated by:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ≈ 𝑇𝑠
�̂�𝑝
= 𝑐𝑁𝑇 ⋅ [

𝑁

∑
𝑛=1

1 + (𝑁𝑇(𝑛) − 1)//𝑁𝐶]−1. (3.7)

Where 𝑐 = 𝑇𝑠
�̃�𝑠
is the constant introduced at the beginning of this section to relate the sequential CPU

speed to the GPU hardware speed.

3.4.2. Data transfer time
Now that the model has been postulated to predict the time it takes for the GPU to complete a given
algorithm, it is time to look into the data transfer time.
To determine the data transfer time, two things are needed: the amount of data that is moved to and
from the device, and the effective data transfer rate of the connection between the host and the device.
These quantities can both be estimated from the data intended to be moved to and from the GPU, and
tested with a different program. In the case of modeling acceleration potential, direct calculation may
be preferred.
One thing to keep in mind when determining the effective data transfer rate, is that the effective data
transfer rate, in the real world, is system dependent and is often significantly lower than the specifi-
cations given by the GPU manufacturer. Two causes of this may be: bottlenecks in the connection
between the CPU and the GPU (the bandwidth between two parts of a system is only as large as the
smallest bandwidth of any part of the connection) and package scheduling (data is moved in packages
at maximum bandwidth, but between packages, the throughput is zero) gaps.
The amount of data to be moved between the host and the device can be determined by following these
steps:

1. Asses which variables need to be transferred to and from the GPU. If possible, variables should
be created on the device instead of transferred.

2. Determine the size of the variable elements. For double precision real (float) variables, this is
8 bytes by default, for integers and normal (single precision) real variables, this depends on the
compiler (not determined by the fortran standard), however, it can be defined manually.

3. Determine the size of the variables by multiplying the element size by the variable dimension.

4. Add up all the variable sizes to find the total amount of data that needs to be moved to and from
the device.

[4]Note that this is not the same 𝑂 as the 𝒪, which is often used to denote the order of scaling of an algorithm or quantity.

3.4. Modeling GPU-acceleration potential 15

After completing these steps, the resulting number can be divided by the effective data transfer rate
to find the expected data transfer time. If the total completion time, including data transfer time, for
the accelerated program is desired, then this number can be added to the calculated �̂�𝑝, found by
applying equation 3.5, in order to find the total time it would take the accelerated program to complete
the algorithm including data transfer time. Dividing the sequential time by this estimate will yield the
expected speedup including data transfer time.

3.4.3. Miscellaneous factors
In theory, the two parts of the model above should be sufficient to predict the performance of the code
with some degree of accuracy. However, in practice, there are more factors to take into account, such
as kernel initialization time, natural variability of the system performance and memory allocation time.
These factors are hard to predict and will be the main cause of inaccuracies of the model. Therefore, to
asses performance of a given problem, it is advisable to test the hardware with an already accelerated
program with a similar structure, to get a more accurate prediction of how well the newly accelerated
program would perform. To account for kernel initialization times, another constant may be added to
the estimator �̂�𝑝. Accommodating these unknowns, equation 3.5 may take the following form:

�̂�𝑝 = 𝛼
𝑇𝑠
𝑁𝑇

𝑁

∑
𝑛=1
(1 + (𝑁𝑇(𝑛) − 1)//𝑁𝐶) + 𝛽𝑁 + 𝛾𝑁𝑇 . (3.8)

Here 𝛼, 𝛽 and 𝛾 are fit parameters to account for unknowns such as hardware speed differences,
kernel initialization times and cache memory allocation. 𝛼 determines how the cycle time relates to
the sequential CPU time and accounts for hardware differences. 𝛽 relates the execution time with the
number of parallel regions 𝑁, its main purpose is to account for kernel initialization and closing time,
which means that it scales linearly with the number of parallel regions (as a kernel is started at the
beginning of each region and closed at the end of said region). 𝛾 relates the execution time with the
total number of threads (and with that problem size) and is there to account for cache memory allocation
and access. The reason it was assumed that 𝑇𝑠 ∝ 𝑁𝑇, and not 𝑇𝑠 ∝ 𝑁𝑇𝑙𝑜𝑔(𝑁𝑇) or just 𝑙𝑜𝑔(𝑁𝑇), which
would be how most memory operations usually scale, is that for the accelerated program, copies of the
variables are moved between memory pools (different levels of cache). The number of time a given
set of variables needs to be transferred between memory locations scales with 𝑁𝑇. This model will be
applied, calibrated and compared to the performance data in section 5.4.1.

4
Experimental method

In this chapter, the experimental method used to determine how much the calculations can be sped up
using GPU offloading, is explained in detail. This includes the process of modifying the model code
and optimizing for performance, as well as the method used to measure its performance.

4.1. Acceleration process
Now that the model code has been introduced, it is time to introduce the process of acceleration. The
process used for this thesis, as introduced in section 3.3, is using OpenACC directives that tell the
compiler what section should run in parallel on the GPU and what data to move between the host
(CPU) memory and the device (GPU) memory. For more information about OpenACC and the process
of GPU acceleration, please refer to “OpenACC Programming and Best Practices Guide”, 2022, on
openacc.org.

4.1.1. Directives and clauses
The following directives have been used in accelerating the model code:

• data construct

• parallel loop construct

• routine

A full overview of all available OpenACC directives and their clauses can be found in “OpenACC API
2.7 REFERENCE GUIDE”, 2018, on openacc.org.

Data construct
The data construct is used to explicitly declare when certain objects are copied between host and device
memory. The data construct surrounds a structured block of (device) code. For the data construct, the
following clauses are used:

• copyin(list), on entering the structured block, objects in list are copied from host memory into
device memory.

• copyout(list), on entering the structured block, objects in list are allocated in device memory.
On exiting the structured block, those objects copied from device memory into host memory and
deallocated from device memory (unless specified otherwise).

• create(list), on entering the structured block, objects in list are allocated in device memory.

16

4.1. Acceleration process 17

Parallel loop construct
The parallel loop construct is used to explicitly declare parallelism for the next loop(s). The following
clauses are used:

• independent, specifies that all loop iterations can be executed independently. This is usually
redundant in this context.

• gang, distributes loop iterations over gangs (coarse grains of parallelism, as introduced in 3.3.2).

• vector, distributes loop iterations over vectors (fine grains of parallelism, as introduced in 3.3.2).

• num_gangs(N), explicitly declares that the number of gangs should be at most N.

• vector_length(N), explicitly declares that the length of each vector should be at most list.

• private(list), objects in list will be private to each thread, such that each thread has its own copy.

• present(list), explicitly declares that objects in list are already in device memory and should thus
not be copied in when entering the loop.

• default(none), prevents compiler from implicitly determining data attributes for any object ref-
erenced in the loop (the use of implicit attributes is considered bad practice and often leads to
errors).

• collapse(N), collapses the next N loops to distribute their combined iterations more efficiently
over the treads.

Routine
If a routine should be executed on the device, a routine directive should be added to its definition to
tell the compiler to generate device code for it. In the case of the model code, the independent loops
already generate enough parallelism available to almost fully utilize the entire GPU, thus the seq clause
was used to generate sequential code for each subroutine.

4.1.2. Data movement optimization
Moving data between the host and the device takes time. Relative to the time the device actually
spends performing its tasks this is often very large, given the large amount of work a modern GPU can
perform simultaneously. Therefore minimizing data movement should be top priority in the acceleration
process. This can for instance be done by strategically placing data directives outside any loops and
avoiding routines that implicitly initiate data transfers inside loops that run on the device. One example
of this will be discussed in section 4.1.5.

4.1.3. Mapping threads across levels of parallelism
As introduced in 3.3.2, OpenACC recognizes three separate levels of parallelism. As the three levels
are handled very differently by the GPU, it is often worth it to test a few different levels of parallelism
and different vector lengths or number of gangs to test which configuration yields the best results. Keep
in mind that specifying vector length may harm the portability of the code, as different GPUs will have
slightly different optimal vector lengths, so if the code needs to run on many different GPUs, it may be
best to let the compiler determine the vector length automatically. (“OpenACC Programming and Best
Practices Guide”, 2022)
One thing to also keep in mind when testing different configurations of gangs, workers and vectors, is
that because the three levels of parallelism access memory in different ways (remember for example
that only gangs have their own cache). This means that whenever this structure is changed, the code
needs to be tested again and compared to the original code to check for correctness. During the
experiments, it was for example found that most loops performed best with a gang-vector structure,
and that distributing threads among multiple workers often led to incorrect results.

4.1. Acceleration process 18

4.1.4. Exposing more parallelism
If the number of parallel threads available isn’t already large enough to fully utilize the GPU, more
parallelism can be exposed by restructuring loops and adapting subroutines. However, as the original
code already has way more parallelism available than the GPU can take advantage of, potential gains
should beminimal. This step in the acceleration process is also relatively time-consuming when applied
to existing code as it often requires large portions of the code to be completely restructured. One
example where more parallelism was added, is the plane sweep algorithm, as in this case the first and
last few planes don’t have enough parallelism to fully take advantage of the many cores of a GPU. The
results of this will be analyzed in section 5.1.

4.1.5. Further optimizations
Further improvements in performance can be achieved by performing lower level optimization on the
base code apart from the OpenACC directives. Among those optimizations are eliminating assumed
shape arrays from subroutines and functions in accelerated code, as well as the substitution of more
specialized subroutines and functions in place of fortran intrinsic functions.
Assumed shape arrays require the program to fetch certain metadata from the host memory about the
exact shape of input arrays and need to communicate metadata about the shape of output arrays back
to the host, whenever a subroutine that uses them is called from accelerated code. This causes un-
necessary data transfers which slow down the accelerated code and may cause disappointing returns.
This means that eliminating them from any subroutine that is called from the device has the potential
to significantly improve performance. (Appelhans, 2023)
The fortran standard contains many intrinsic functions for executing basic operations, such as matrix-
matrix products and dot products. These functions are useful for easily building portable code that
doesn’t require the programmer to import or write any new functions or subroutines. These intrinsics
are however often built with cpu programming in mind and are often relatively flexible in their inputs.
These intrinsics may perform very or reasonably well in certain scenario’s, such as cases where large
matrices need to be multiplied from a sequential to coursely grained parallel algorithm, but may actually
be significantly slower or even completely break the program when used in different circumstances.
One relevant example of this issue is the matmul intrinsic function. When used inside a parallel en-
vironment, the matmul intrinsic significantly slowed down the program (for further details see 5.1 and
5.2), and even broke the code completely in nvfortran 22.3, due to the generation of new undeclared
arrays. Replacing it with a dedicated sequential algorithm with explicitly declared arrays solved these
issues.

4.1.6. data representation
One factor that greatly impacts data transfer and computation time is the precision at which data is
represented. One paper focusing on the impact of data representation on GPU accelerated computa-
tional fluid dynamics (cfd), for example, reports cases with performance gains of up to 2.9x without a
significant loss of accuracy. (Witherden & Jameson, 2020)
Until this point, all the calculations for this thesis have been computed at double precision (each floating
point number is represented by 8 bytes, which allows for 16 digits of precision), which means that the
results may be very precise, but this does come at an increased computational cost. The FEM plane
sweep algorithm implementation is also partially tested at single precision (4 bytes instead of 8, yielding
only 7 digits. This is implemented by substituting double precision variables with real(4) ones in the
source code.) to measure the impact precision has on computing times, as well as to find an estimate
to how this impacts the accuracy of the result.

4.2. Performance measurements 19

4.2. Performance measurements
In any experiment, the way things are measured has an impact on the results and is crucial for the
conclusion of the research. That’s why this section will focus on the conditions in which the experiments
are conducted, as well as the methods in which the results in the next chapter have been generated.

4.2.1. Hardware
Both GPU and single core performance have been measured on the GPU nodes of the Delft Blue
supercomputer. Debugging and optimization have for the biggest part been performed on the Apollo
machine at the Faculty of Applied Sciences in Delft. This choice was made because this machine,
contrary to Delft Blue, allows for direct testing with no queues. This however does mean that results
on this machine vary significantly between different runs and from day to day depending on how much
the computational resources are used by other researchers. Additionally, the Apollo machine also has
the NVTX toolbox installed, which contains the profiling tool Nsight, as described later in this section.
The multi core performance has been measured on a separate compute node on the Delft Blue super-
computer. Specification of the hardware on both nodes on Delft blue supercomputer, as well as the
the Apollo machine are provided in table 4.1. (“DelftBlue Hardware”, 2023)

Specification GPU node Delft Blue Compute node Delft Blue Apollo
CPU 2x AMD EPYC 7402

@ 2.80 GHz
2X Intel XEON E5-6248R
@ 3.0 GHz

2x Intel Xeon Silver
4214R @ 2.40 GHz

Number of cores (total) 48 48 24
Memory (GB) 256 192 ?
GPU 4x NVIDIA Tesla

V100S, 32 GB
N/A 3x NVIDIA Ampere

A40, 48 GB

Table 4.1: Hardware available on the different machines. On Delft Blue memory is specified for each run to not cause unneces-
sarily long wait times and allow enough space for other users. On Apollo all memory is always available, but has to be shared
among processes.

4.2.2. Compilers
To test the performance portability of the code, and to provide a more representative comparison for
performance on the CPU, multiple different compilers are tested. A general overview of the compilers
that have been used is provided in table 4.2 below.

Distributor Compiler Version number Accelerator support
Intel ifx 2022.2.0 OpenMP
GNU Gfortran 11.2.0 OpenACC* and OpenMP
NVIDIA nvfortran 22.3 (on Delft Blue) and 22.5 (on Apollo) OpenACC and OpenMP

Table 4.2: Compilers used during the experiments. *According to the documentation, OpenACC support is still in the initial phase
in Gfortran 11.2. (“The GNU Fortran Compiler 11.2.0”, 2021)

4.2.3. Compiler options
When compiling the programs for performance testing, the compiler options that are used have the
potential to greatly impact the performance of the executables. The optimal compiler options depend
on both the compiler itself and the hardware available. In this subsection, the compiler options used
are explained in detail for each tested scenario.

Compiling for single core CPU performance comparison
To calculate the speedup achieved by GPU acceleration, a comparison is needed. For this comparison,
the same source code is compiled and tested on a single CPU core for multiple compilers as well. The
compiler options that are used for this purpose are shown per compiler in table 4.3 and explained in
table 4.7 at the end of this section.

4.2. Performance measurements 20

Compiler Options
Intel ifx -O -inline
GNU Gfortran -O -Winline -ffree-line-length-none
NVIDIA nvfortran -O -Minline

Table 4.3: Compiler commands used for single core performance testing.

Compiling for GPU on Delft Blue
To calculate the speedup achieved by GPU acceleration, the GPU performance of course needs to be
measured. The compiler options that are used for this purpose are shown per compiler in table 4.4 and
explained in table 4.7 at the end of this section.

Compiler Options
Intel ifx <OpenACC not supported>
GNU Gfortran -O -Winline -ffree-line-length-none -fopenacc
NVIDIA nvfortran -O -Minline -acc=gpu -gpu=cc70,cuda11.6 -gpu:pinned

Table 4.4: Compiler commands used for GPU performance testing on the Delft Blue supercomputer.

Compiling for GPU on Apollo
For rough optimization, correctness checking and general bugfixing, the long wait times (often on the
scale of hours) of the queue at Delft Blue makes it not very suitable for quick iterations. Therefore
these processes were often performed on a separate machine called Apollo. As the hardware is slightly
different (see table 4.1) on this machine, the compiler options for nvfortran are slightly different. The
compiler options that are used for this purpose are shown per compiler in table 4.5 and explained in
table 4.7 at the end of this section. The directives used for CPU comparison are the same as earlier.

Compiler Options
Intel ifx <OpenACC not supported>
GNU Gfortran -O -Winline -ffree-line-length-none -fopenacc
NVIDIA nvfortran -O -Minline -acc=gpu -gpu=cc86 -gpu:pinned

Table 4.5: Compiler commands used for GPU performance testing on Apollo.

Compiling for multicore CPU comparison
Because GPU’s are much more expensive than a single CPU core, as a GPU costs at least as much
as a full multi-core CPU, it is only fair to see if GPU performance is that much better as compared to a
multi core CPU. In order to test this, a small number of tests have been performed using the OpenMP
directives in the original model code on the Intel ifx compiler, as well as the OpenACC directives on the
NVIDIA nvfortran compiler, with a multicore cpu as target. The compiler options that are used for this
purpose are shown per compiler in table 4.6 and explained in table 4.7 at the end of this section. The
directives used for CPU comparison are the same as earlier.

Compiler Options
Intel ifx (MP) -O -inline -qopenmp -qmkl
NVIDIA nvfortran (ACC) -O -Minline -ta=multicore

Table 4.6: Compiler commands used for CPU multi-core performance testing on the Delft Blue supercomputer.

4.2. Performance measurements 21

Option Description
-O Tells the compiler to optimize the executable for speed as much as pos-

sible, at the cost of slightly longer compile time and risk of correctness.
By default compilers are very conservative in this, sacrificing performance
for a slightly lower chance of mistakes. Impact on correctness was tested
and no mistakes were found as a result of this option.

-inline/Winline/Minline Tells the compiler to insert functions and short subroutines right where
they are called. This slightly improves performance as it eliminates some
lookup overhead.

-ffree-line-length-none This command is necessary to compile longer lines of code in Gfortran,
as it has a hard line length limit of 132 characters by default (which some
OpenACC statements easily exceed). This is common in legacy compil-
ers, but for modern compilers this portability feature is redundant.

-fopenacc Tells Gfortran to interpret OpenACC directives.
-acc=gpu Tels nvfortran to write accelerator code for a GPU.
-gpu=cc<xy>,cuda<#> Tells nvfortran what compute capability x.y (generation) gpu it is compiling

for. Also tells it what version of cuda it should use (only necessary on Delft
Blue).

-gpu:pinned Tells nvfortran that it should use pinned memory by default. This may
improve memory transfer speed, but comes at a cost of longer variable
initiation time. Mileage varies a lot, so code is also always tested without
this option enabled.

-qopenmp Tells ifx to interpret OpenMP directives.
-qmkl Tels ifx to link the lapack module, which is used in the original code to

solve the 4x4 system.
-ta=multicore Tells nvfortran to use a multicore cpu as target for acceleration.

Table 4.7: A general overview of all relevant compiler options.

4.2.4. Code segments
For this thesis, the performance of the main loop over all elements of the grid and the time it takes
to transfer all necessary data to and from the GPU are of interest, whilst the rest of the code is only
there to support it. This means that the code has to be divided up into segments, over which the time
difference can be measured. The first segment, copy in, starts before the first data is moved to the
GPU and ends before the main loop starts. It measures how long it takes to copy all necessary data
to the GPU. The next segment, ”sweep”[1], contains the main loop over all the elements and measures
how long it takes the GPU to complete the task. The final segment, copy out, starts directly after that
and measures how long it takes to copy all info off of the GPU back to system memory. The first and
final segments are added together to get the final data transfer time, that will be reported next to the
sweep times in the next chapter.

[1]For the purposes of this thesis, the main loop is referred to as ”sweep” in both the plane sweep algorithm and the matvecs
algorithm.

4.2. Performance measurements 22

4.2.5. System clock
Now that the segments of interest have been defined, it is time to define the measuring method. The
time the code spends in a given segment is measured by calling the ”system clock” intrinsic on the
device. It saves the current system time to a variable, which allows the program to simply calculate
the time difference between the two calls responding to both variables. The accuracy of this intrinsic
depends on the system clock rate, which is determined by the typing of the rate variable supplied to
the count_rate parameter on initialization. This dependency varies wildly between different compilers
however. In the model code, a default integer (4 bytes) is used for this, which means that for example
the Intel ifx compiler has a resolution of 100𝜇s whilst NVIDIA nvfortran counts with a resolution of 1𝜇s.
Given the order of magnitude of the time the code spends in a given segment (shortest measured time
in ifx was in the order of hundreds of milliseconds), this however does not cause any problems. To the
reliability of the results. In the lines below, an example is given of how this function is initiated and how
it returns the run time of the enclosed code segment in seconds.

integer :: cr,cm,rate,time0,time1

CALL system_clock(count_rate=cr)
CALL system_clock(count_max=cm)
rate = REAL(cr)

call system_clock(time0)

!!!Code segment!!!

call system_clock(time1)
print *,’run time’,real(stime1-stime0)/rate

4.2.6. Profiling tools
During the debugging and optimization process, a profiling tool called NVIDIA Nsight is used, to verify
that the code is executed as expected and to verify issues like long kernel initiation times and unex-
pected data transfers. It also allows the user to trace specific regions of code using NVTX markers,
to see how long the program spends in those regions, and what kind of behavior correspond to what
region. Using a profiling tool however creates significant performance overhead to trace all processes
that are happening, which means that it cannot be used to accurately measure performance. In fig-
ure 4.1, an example is shown of a GPU profile obtained using this profiler. The bottom track shows
NVTX markers, which show that the GPU is currently carrying out instructions corresponding to the
code region ”plane jump”. In the example, extra data transfers in between parallel regions (caused by
a subroutine using assumed shape arrays) are visible (purple and green lines in the memory track).
Adapting the code to not need those extra data transfers significantly improved code performance.

Figure 4.1: Example of a GPU code profile.

5
Results and discussion

In this chapter, the performance of the accelerated code on the GPU is compared to the sequential
code running on a CPU for multiple different problem sizes, and the general mathematical model as
postulated in section 3.4 is compared to the measured performance of GPU accelerated code. All
results in this chapter were tested using double precision data representation, unless specifically stated
otherwise. The results used to generate the graphs in this chapter are shown in table form in appendix
C. The impact of some different optimizations mentioned in the previous chapter are also included.

5.1. Plane sweep
For the plane sweep algorithm, the problem size is determined by the number of elements in the spatial
discretization grid and the number of sweep directions considered. The problem size (𝑃), i.e. the
number of computations required to solve a case, scales with the following relation:

𝑃 ∝ 𝑁𝑂 ⋅ 𝑁𝐸 , (5.1)

where 𝑁𝑂 denotes the number of orientations of Ω̂, and 𝑁𝐸 denotes the number of spatial discretization
elements in the grid. Note that for a cubic grid of axis length 𝓁, 𝑁𝐸 scales with 𝓁3, if element volume
remains constant.
For sequential code, computation time is usually directly proportional to problem size. For highly parallel
code, this is however not always the case. In figure 5.1, the computation time of the GPU accelerated
code, with and without data transfers, and the sequential code are visualized and compared for different
parameters 𝑁𝑂 and 𝑁𝐸. In figure 5.2, the speedup for those different parameters is visualized and
compared with the relative problem size (relative to the 1𝑥1283 case). In the first two figures, problem
size is also shown, but scaled with the sequential time of the smallest problem for easier comparison.
For case naming, the following naming convention is used: 𝑁𝑂𝑥𝓁3. This convention is chosen because
it also doubles as a representation of the relative problem size: the problem size of 2𝑥2563, for example,
is twice as large as that of 2563 and eight times (23) as large as 2𝑥1283. As will become clear from the
graph, problem size alone is not sufficient to accurately predict how much performance can be gained
using GPU-acceleration. However, larger problems are more likely to benefit as compared to smaller
ones.

23

5.1. Plane sweep 24

1283 4x1283 2563 16x1283 2x2563 64x1283128x128316x2563 20x2563

Parameters

10 1

100

101

102

Ti
m

e(
s)

Finite Element Method plane sweep, lower is better
problem size
gpu nvfortran
data transfer
cpu nvfortran

Figure 5.1: Sweep and data transfer time for different problem size parameters 𝑁𝑂 and 𝑁𝐸, for code run on the GPU and
sequentially on the CPU. The code corresponding to this graph was compiled using nvfortran 22.3, as described in section 4.2.3.
For axb on the x-axis, a represents the number of discrete sweep directions and b the number of elements. The dotted line
represents the relative problem size as calibrated to the 1283 case.

1283 4x1283 2563 16x1283 2x2563 64x1283128x128316x2563 20x2563

Parameters

0

50

100

150

200

Sp
ee

du
p

Speedup vs sequential, higher is better
relative problem size
including data transfer
excluding data transfer

Figure 5.2: Speedup of the GPU accelerated code as compared to sequential CPU code, with and without data transfer time
taken into account. Larger problems seem to allow for higher speedup.

5.1. Plane sweep 25

5.1.1. Pinned memory
As stated in section 4.2.3, instructing the compiler to define variables in pinned memory may improve
performance. As becomes apparent from figure 5.3, defining variables as pinned did however not lead
to consistent performance gains for the plane sweep algorithm.

1283 4x1283 2563 16x1283 2x2563 64x1283128x128316x2563 20x2563

Parameters

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e(
s)

Finite Element Method plane sweep, lower is better
gpu nvfortran
data transfer
gpu pinned nvfortran
pinned data transfer

Figure 5.3: Sweep and data transfer time for various problem sizes, with and without specifying pinned memory.

5.1.2. Multicore
As stated in section 4.2.3, the model code was also tested on a multi-core CPU. The results were
however a bit disappointing for the plane sweeping algorithm; the original OpenMP implementation
for a 2563 element grid performed worse on multiple cores as compared to sequential code: roughly
8 seconds wall-clock time for every iteration of the parallel code, instead of just 5 for the sequential
algorithm, as tested with 16, 24, 32 and 48 cores.
The OpenACC implementation of size 4𝑥1283 has also been tested on a multi-core as described in
section 4.2.3 and was only 20% faster as compared to the sequential code. The result generated
by this multi-core implementation however differs by multiple percentage points from the sequential
implementation, as will be briefly discussed in a later section. As multi-core performance is not the
focus point of this thesis, the cause of these disappointing results on a multi-core CPU has not been
further investigated.

5.1. Plane sweep 26

5.1.3. Data representation
In section 4.1.6, the impact that data representation may have on the code performance is mentioned.
The loss of accuracy as a result of using single precision instead of double precision will be discussed
in a later section. The performance of the 128𝑥1283 with single precision data representation has been
measured for both sequential CPU code and GPU accelerated code and is compared to the relative
performance of its double precision counterparts in figure 5.4. As becomes apparent from the two
graphs, the data transfer time sees the most significant reduction when single precision is used as
opposed to double precision.

Single Precision Double Precision
Data representation

0

10

20

30

40

50

60

Ti
m

e(
s)

Sweep time CPU

Single Precision Double Precision
Data representation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e(
s)

Sweep time GPU
gpu nvfortran
data transfer
gpu pinned nvfortran
pinned data transfer

Figure 5.4: On the left, sweep time for the sequential CPU code is shown for single precision and double precision data represen-
tation. On the right, the data transfer time and sweep time of both representations are visualized for both pinned and non-pinned
GPU code.

5.1. Plane sweep 27

5.1.4. Gfortran and ifx
As compiler choice has a very significant impact on the performance of the resulting executable, multiple
compilers are tested for generating the sequential CPU code. For the GPU code, nvfortran was the only
compiler available on Delft Blue that could compile instructions for the GPU that was used for this thesis.
As both Gfortran and ifx have a limited array size, causing fatal truncation errors when compiling code
for larger problem sizes, only the smaller problems were tested with those two compilers and nvfortran
was chosen as the reference compiler for sequential comparisons instead. The sequential performance
of those three compilers is compared in figure 5.5.

1283 4x1283 2563 16x1283

Parameters

0

2

4

6

8

10

12

Ti
m

e(
s)

Finite Element Method plane sweep time, lower is better
cpu nvfortran
cpu ifx
cpu gf

Figure 5.5: Sweep time of sequential code compiled by nvfortran, ifx and Gfortran (gf) compared. Due to issues with array
representation for larger problems in both ifx and Gfortran, only the smaller problems are compared in this figure.

5.1.5. Correctness
For each test of the accelerated code, the norm of the resulting �⃗� vector[1] was calculated (and summed
for all discrete directions) and compared in order to check the correctness of the result. It was found
that for each set of parameters, all sequential and GPU accelerated code compiled using nvfortran and
Gfortran was always in exact agreement, where ifx deviated from the other two by a very small (roughly
1 ⋅ 10−9%) margin. The latter was also in exact agreement with the original model code, as compiled
with the ifx compiler.
Results generated using single precision deviated by roughly 0.1% from double precision results and
CPU multi-core (using nvfortran with OpenACC) results deviated by roughly 3% from sequential code.
Results generated using ifx with OpenMP were in agreement with results generated using ifx without
OpenMP, but the performance of the parallel code using this method was worse as compared to the
sequential code, as mentioned in a previous subsection.

[1]This �⃗� vector is not a vector in the ordinary sense. This vector contains four numbers for each element in the grid, corresponding
to the four first order polynomial constants modeling flux as a linear function through the element cell.

5.2. Matvec 28

5.2. Matvec
Similarly to the plane sweep algorithm, the performance of the GPU-accelerated FEM implementation
of the matvec algorithm has also been tested for multiple problem sizes. Because of the large amount
of available parallelism already available in the matvec algorithm, however, this algorithm has only been
tested with a single flow direction. The sweep and data transfer time of the GPU-accelerated code is,
like for the plane-sweep algorithm, compared to the sequential CPU code in figure 5.6.
For problem size 2563, the matvec algorithm was also run on a multi-core CPU, using nvfortran with
OpenACC. In case of the matvec algorithm, the multi-core CPU generates accurate results and has
good performance. However, if the data is already present at the GPU for a different computation, it
is quicker to execute the matvec at the GPU before transferring data back to the host. The multi-core
performance is included in this figure for comparison purposes.

1283 2563 5123

Problem size

10 3

10 2

10 1

100

101

tim
e(

s)

Finite Element Method matvec sweep time
relative problem size
gpu nvfortran
data transfer
gpu pinned nvfortran
pinned data transfer
cpu nvfortran
cpu multi-core nvfortran

Figure 5.6: Performance of the matvec algorithm, as compiled using nvfortran. The relative problem size is also plotted (as
calibrated to the smallest case), to more clearly represent the scaling between the cases.

Just like with the plane sweep algorithm, the data transfer time is orders of magnitude longer as com-
pared to the time it takes the GPU to execute the algorithm itself. Also of note is the multi core comple-
tion time, which is an order of magnitude better as compared to sequential performance and significantly
better as compared to GPU performance if memory transfer is included. If the data is already on the
GPU, or needs to be on the GPU for a different algorithm, the GPU is significantly faster as compared
to even the mullti-core processor. Again, declaring pinned memory did not yield any performance ben-
efits.
The measured speedup of the GPU-accelerated code as compared to sequential, excluding data trans-
fer, is 360x, 370x, and 440x for problems of sizes 1283, 2563, and 5123 respectively. The same metric
including data transfer would be 0.88x (including data transfer time, the smallest problem is slower on
the GPU, as compared to the CPU), 4.5x, and 7.2x.
These different proportions for the matvec algorithm as compared to the sweep test algorithm can be
explained by comparing the parallel structure, as well as the amount of work versus the amount of data
needed; the matvec algorithm is fully parallel (explaining the large speedup excluding data transfer),

5.3. General implementation considerations 29

but also requires more data to be transferred as compared to the amount of work done by the algorithm,
explaining the large impact data transfer has on the achieved speedup. The achieved CPU multi core
(48 cores) speedup was 19.4x as compared to sequential for problem size 2563.
Like with the plane sweep, the compiler choice also has an impact on the performance. For sequential
execution of the smallest two problem sizes, the sweep time is compared in figure 5.7. Due to some
limitations with the ifx compiler and the gfortran compiler, in defining larger arrays, only the smaller two
problems were tested.

1283 2563

Problem size

0.0

0.5

1.0

1.5

2.0

2.5

tim
e(

s)

Finite Element Method matvec sweep time
cpu gfortran
cpu ifx
cpu nvfortran

Figure 5.7: Which compiler is used has a significant impact on the results. Due to the array size limitations in ifx and Gfortran,
mentioned when discussing the plane sweep algorithm, only the first two sizes are shown.

5.3. General implementation considerations
During this project, a newer version of nvfortran became available (version 23.5). Preliminary testing
with this newer version has shown no changes in performance for the sequential CPU code and GPU-
accelerated code, with a slight reduction in data transfer time. However, more research is needed to
fully rule out any effects this new version may have on the results.
For some larger problem sizes, the plane sweep algorithm requires a lot of data to be stored on the
GPU. The largest problem that was tested, which was case 20𝑥2563 for example, had a �⃗� vector which
took up over 10 GB of memory, with on top of that many more large variables that needed to be stored.
An even larger problem that was tried, case 64𝑥2563, would require over 34 GB of data to be stored
just for the �⃗� vector, which is more then most GPUs have available. When implementing this GPU-
accelerated algorithm in the real world, measures need to be taken to reduce the amount of memory
required on the GPU, if it should be able to handle larger problems.
Significant performance gains can bemade if both algorithms are run back-to back, without first transfer-
ring the data back to the host and to the device again. This could drastically decrease total computation
time, as most of the data transfer time for the plane sweep algorithm is spent at the end, whilst most
of the data transfer time for the matvec algorithm is spent at the beginning. For large problems, the
amount of ”intermediate” data transfer could potentially be up to 90%. To achieve this however, all the
steps in between should also be adapted to run on the GPU. Another hurdle could be memory man-
agement, as both algorithms require large arrays to be stored on the GPU, which do not fully overlap.
All in all, more research is needed before the feasibility of this approach can be determined.
During the project, all code was compiled on a separate node with slightly different hardware, because
this node was directly accessible, making it easier to monitor the compilation process. In a later phase

5.4. Applying the general performance model 30

in the project, the difference in performance was assessed between compiling on a separate node, and
compiling right before runtime on the destination node (which means that the code is run on the same
hardware as the hardware it is compiled on). It was found that there was no difference in compute
performance (i.e. the sweep time was the same), however, the data transfer times were found to be
roughly 20% shorter as compared to compiling on the separate node. This means that the speedup
including data transfer, as documented earlier in this chapter, may be more on the pessimistic side,
with real world performance likely better than reported. One explanation for this behavior, is that cross-
compiling (i.e. compiling on different hardware than the program is run on) may cause the compiler to
make wrong assumptions about the system the code will run on, generating code that may run slower,
or as in this case, move data less efficiently.

5.4. Applying the general performance model
In section 3.4, a general model to estimate the expected speedup of GPU-accelerated is postulated.
In this section, this model will be applied to the test cases and compared to the test results.

5.4.1. Execution time
The amount of available parallelism represents the biggest difference between both algorithms that
were tested. The matvec algorithm, for instance, is fully parallel. This means that estimating the
execution time excluding data transfers can be done by using equation 3.2, as all parallelism is on
a single section and 𝑁𝑇 >> 𝑁𝐶 holds (the smallest test case already has 1283 = 2097152 threads
available). This equation reads

𝑇𝑝 ≈ 𝑐
𝑇𝑠
𝑁𝐶
, (5.2)

where c is some fittable constant depending on the type of operations the algorithm contains, and the
hardware that is compared. In figure 5.8, the model has been fitted to the performance data of the
algorithm on the GPU. In blue, extra measurements have been included to validate the predictions
made by the model.

12832003 2563 3003 3503 4003 4503 5123

Problem size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Sw
ee

p
tim

e
(s

)

Sweep time on the GPU for matvecs algorithm
modeled gpu time
actual gpu time
validation measurements

Figure 5.8: GPU execution time of the matvec algorithm of three different problem sizes, fitted to GPU performance data.

For this algorithm, 𝑐 was found to be roughly equal to 12. The error bars of both the initial data, as the
validation data set, were set to 5%, with an offset of 2 ms, to account for variations encountered when
measuring the performance.

5.4. Applying the general performance model 31

The available parallelism in the plane sweep algorithm, contrary to the matvec, varies as the algorithm
progresses from plane to plane. This means that the estimated execution time for 𝑇𝑝,𝑝𝑙𝑎𝑛𝑒𝑠𝑤𝑒𝑒𝑝 has to
be estimated using equation 3.8. Therefore the following estimator is used:

�̂�𝑝,𝑝𝑙𝑎𝑛𝑒𝑠𝑤𝑒𝑒𝑝 =
𝛼𝑇𝑠
𝑁𝑇

𝑁𝑝𝑙𝑎𝑛𝑒𝑠

∑
𝑛=1

1 + (𝑁𝑇(𝑛) − 1)//𝑁𝐶 + 𝛽𝑁 + 𝛾𝑁𝑇 , (5.3)

where 𝑁𝑝𝑙𝑎𝑛𝑒𝑠 denotes the total number of planes, 𝑇𝑠 denotes the completion time of the sequential al-
gorithm on a CPU, 𝑁𝐶 denotes the number of available cores, and 𝑛 denotes the current plane number
in the summation. Like in the original model, 𝑁𝑇 denotes the total number of threads throughout the
algorithm, whilst 𝑁𝑇(𝑛) denotes the number of threads available in a given section. In figures 5.9 and
5.10, this model (green) is fitted to the GPU performance data (red).
The error bars are determined by the natural variability of the measured performance (which is esti-
mated at 10%) and a constant measuring error of 5 ms. The modeled execution time is shown in green.
The optimal values for the fitting constants, as fitted to both the 1283 and the 2563 problem sets were
found to be: 0.250, 3.28 ⋅ 10−5 and 2.11 ⋅ 10−5 for 𝛼, 𝛽 and 𝛾 respectively.

1 4 16 64 128
Number of ordinates

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sw
ee

p
tim

e
(s

)

Sweep time on the GPU for plane sweep with 1283 spatial elements
fitted model
actual gpu time

Figure 5.9: GPU execution time of the plane sweep algorithm with 1283 elements, tested with different numbers of ordinates.

5.4. Applying the general performance model 32

1 2 16 20
Number of ordinates

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Sw
ee

p
tim

e
(s

)
Sweep time on the GPU for plane sweep with 2563 spatial elements

fitted model
actual gpu time

Figure 5.10: GPU execution time of the plane sweep algorithm with 2563 elements, tested with different numbers of ordinates.

From the graphs it becomes apparent that the model tends to overestimate the time it takes to complete
problems with 1283 elements, whilst underestimating the problems with 2563 elements. However, the
model still correctly describes the results within the margin of error. More research is needed to verify
the accuracy of this model.
To understand why this line is relatively flat (computational time does for example not increase by
fourfold between 1 and 4 ordinates, and is also not eight times larger between the 1283 and 2563
element grids), it is helpful to analyze the available parallelism, as it gives insight in how efficiently
the GPU resources are used. For this purpose, 5.11 shows the available parallelism for each plane in
the three smallest cases of the plane sweep algorithm, and how it maps onto the cores of the Nvidia
A100 GPU, which is the GPU used to perform the measurements during this research. The number of
(CUDA) cores on such a GPU is 5120, according to the spec sheet provided by Nvidia.

5.4. Applying the general performance model 33

0 100 200 300 400 500 600 700 800
Plane number

0

10000

20000

30000

40000

50000

Nu
m

be
r o

f p
ar

al
le

l t
hr

ea
ds

 a
va

ila
bl

e

Available parallelism per plane of the plane sweep algorithm

available parallelism in case 1283

available parallelism in case 4x1283

available parallelism in case 2563

multiple of the number of cores available on A100 GPU

Figure 5.11: Available parallelism for the three smallest plane sweep problems tested for this thesis.

From the graph, it becomes apparent that the smallest problem, 1283, only fully utilizes all available
cores for a fraction of the time, whilst the two bigger problems can fill all cores multiple times over.
This means that the larger cases benefit more from the massive parallelism available on a GPU, as
theorized in section3.4.
To give a clearer intuition of which part of each problem benefits most from the available parallelism,
the theoretical core occupancy is calculated for the smallest three problems. The results are shown in
figure 5.12.

0 500
cycle

0.0

0.2

0.4

0.6

0.8

1.0

Oc
cu

pa
nc

y
ra

te

The 1283 case

0 500 1000 1500
cycle

0.0

0.2

0.4

0.6

0.8

1.0

Oc
cu

pa
nc

y
ra

te

The 4x1283 case

0 500 1000 1500 2000 2500 3000 3500
cycle

0.0

0.2

0.4

0.6

0.8

1.0

Oc
cu

pa
nc

y
ra

te

The 2563 case

Figure 5.12: Theoretical occupancy rate for each theoretical GPU cycle, plotted for the three smallest plane sweep test problems,
all with the same scale.

As becomes clear from the graphs, bigger problems have higher parallelism and as a consequence
have a higher occupancy rate on average. This means that larger problems more efficiently make use
of the GPU resources, leading to a larger speedup as compared to sequential performance. The 1283,
4𝑥1283 and 2563 cases of the plane sweep algorithm have an average occupancy rate of 62.6%, 88.6%
and 88.4% respectively.

5.4. Applying the general performance model 34

5.4.2. Data transfer time
For the test cases evaluated for this thesis, the data transfer time was significantly larger as compared
to the calculation time on the GPU. This means that getting a good estimate of the data transfer time
is very important in order to predict the total run time of the GPU accelerated programs. Note that no
distinction is made between data transfer time in and out of the GPU.
For the matvec algorithm, using double precision variables (each real number is represented by 8
bytes, each integer by 4), the amount of data transferred 𝐷 to and from the GPU is estimated to be
related to problem size 𝑃 (in elements) by the relation 𝐷 ≈ 8 bytes/number ⋅ 8 numbers/element ⋅ 𝑃.
The data quantity and data transfer times for the matvec algorithm are shown in figure 5.13, as well
as the modeled data transfer time. For this algorithm, the offset (additional constant due to factors like
transfer initialization time) was found to be 0.18 seconds and the effective data transfer rate was found
to be 6.2 GB/s. The blue points represent additional measurements to validate the model.
For the plane sweeping algorithm, 𝐷 can be estimated by the relation:

𝐷 ≈ 8 bytes/number ⋅ 4 numbers/element ⋅ 𝑃 + 4 bytes/number ⋅ 2 numbers/element ⋅ 𝑁𝐸 ,

with 𝑁𝐸 the number of spatial elements the remark that most plane sweep cases considered are much
larger than the matvec cases, as here 𝑃 = 𝑁𝐸 ⋅ 𝑁𝑂. The data quantity and data transfer times for the
plane sweeping algorithm are shown in figures 5.14 and 5.15, as well as the modeled data transfer
time. For both grid sizes, the offset was found to be 0.20 seconds and the effective data transfer rate
was found to be 7.1 GB/s for the plane sweeping algorithm.

1283 2003 2563 3003 3503 4003 4503 5123

Problem size

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Da
ta

 tr
an

sf
er

 ti
m

e(
s)

0

2

4

6

8

Es
tim

at
ed

 d
at

a
vo

lu
m

e
(b

yt
es

)

1e9Data transfer time matvecs algorithm
modeled data transfer time
actual data transfer time
validation measurements
estimated data volume

Figure 5.13: Matvec data transfer time.

1 4 16 64 128
Ordinates

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Da
ta

 tr
an

sf
er

 ti
m

e(
s)

0

2

4

6

8

Es
tim

at
ed

 d
at

a
vo

lu
m

e
(b

yt
es

)

1e9Data transfer time plane sweep algorithm with 1283 elements
modeled data transfer time
actual data transfer time
estimated data volume

Figure 5.14: Plane sweep data transfer time with 1283 spatial elements.

5.4. Applying the general performance model 35

1 2 16 20
Ordinates

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Da
ta

 tr
an

sf
er

 ti
m

e(
s)

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 d
at

a
vo

lu
m

e
(b

yt
es

)

1e10Data transfer time plane sweep algorithm with 2563 elements
modeled data transfer time
actual data transfer time
estimated data volume

Figure 5.15: Plane sweep data transfer time with 2563 spatial elements.

5.4.3. Discussion of the model
Because of the scope of this research, the model is only verified for the two algorithms that were
considered, the OpenACC implementation in nvfortran, and on the hardware as defined in section
4.2. To expand its validity to more varied problem sets and hardware combinations, more research is
needed.
Comparing the parameters found to fit the model to the two different models, it was found that the
parameter used to relate �̃�𝑠 to 𝑇𝑠 varied a lot between the two applications. More research into this
discrepancy is advised to better assess the generality of the model.

6
Conclusion

In this thesis, two algorithms relevant for solving the linear Boltzmann equation for proton irradiation
therapy planning applications were accelerated using OpenACC, and a general performance model for
the accelerated code was postulated. In this chapter, the general performance model will be repeated,
a summary of the main results will be given, as well as an answer to the research question: ”How can
GPU offloading decrease computation time for proton therapy dose calculations”. Furthermore, some
suggestions for further research are provided.

6.1. The performance model
The general performance model for GPU accelerated code, as deduced in section 3.4, is characterized
by the following equation for estimating the parallel execution time 𝑇𝑝:

𝑇𝑝 ≈ 𝛼
𝑇𝑠
𝑁𝑇

𝑁

∑
𝑛=1
(1 + (𝑁𝑇(𝑛) − 1)//𝑁𝐶) + 𝛽𝑁 + 𝛾𝑁𝑇 , (6.1)

where 𝑇𝑠 is the total sequential execution time of the algorithm, 𝑁𝑇 is the total number of (parallel)
threads the algorithm has available across all regions, with 𝑁𝑇(𝑛) being the number of parallel threads
available in the local region, 𝑁 the number of parallizable regions the code has, and 𝑁𝐶 the number
of cores available. 𝛼, 𝛽 and 𝛾 are fittable constants, as the scaling of this estimator greatly depends
on the hardware it is run on and the type of instructions the algorithm consists out of. For the plane
sweep algorithm, good fitting constants were found to be 0.250, 3.28 ⋅ 10−5 and 2.11 ⋅ 10−5 for 𝛼, 𝛽
and 𝛾 respectively. The // symbol represents the quotient operator and is described in more detail in
section 3.4. For the matvec algorithm, a simplified model is used, due to the structure being a single
block of many threads:

𝑇𝑝 ≈
𝑐𝑇𝑠
𝑁𝐶
, (6.2)

with 𝑐 = 12 found to be the best fit to model its performance. More research is advised to asses how
the values for these fittable constants could be predicted for an arbitrary algorithm.
Equation 6.1 does not yet take the time it takes to move the required data to and from the GPU into
account. This time can be estimated separately dividing the estimated data volume by the effective
data transfer rate. The prior can be quite easily calculated, while the latter requires a relatively straight-
forward test on the hardware the algorithm is intended to be run on.
The model was found to relatively accurately describe the parallel execution time and data transfer time
scaling of the accelerated code.

36

6.2. Acceleration results 37

6.2. Acceleration results
The speedup achieved for both algorithms was found to vary with problem parameters, with in gen-
eral more parallel and larger problems yielding larger speedups. Using OpenACC, both algorithms
achieved speedups between 30x and 240x excluding data transfer time, and between 1.3x and 40x
including data transfer time, with both values depending on the problem size, with larger problems
yielding larger speedups.
If the amount of data transfer is reduced, the speedup achieved including data transfer time increases
significantly.
This finally brings us to answering the research question: GPU-offloading can significantly decrease
computation time for the main algorithms used in the proton therapy optimization process, with up to
440x improvement on the computation itself.
Further research is advised on how the implementation of those accelerated algorithms in the proton
therapy dose calculation algorithm affects its performance, and how data movement in this implemen-
tation can be minimized.

A
Model code

In this chapter of the appendix, the non-accelerated model code is provided. Note that in this chapter,
as well as in the next one, some lines were broken off to allow the code to fit on the page.

A.1. Matvec model code
This is the model code for the matvec algorithm without the directives for GPU-offloading. This code
was made by taking a finite volume example of the existing algorithm and ”translating” it to the finite
element case.

program matvec_test
implicit none

double precision, parameter :: Sigma_t=0.1d0
integer, parameter :: ni=500
integer, parameter :: nj=500
integer, parameter :: nk=500

integer, parameter :: no_elem = ni * nj * nk
integer, dimension(no_elem) :: sweep_order
integer, parameter :: no_planes=ni+nj+nk-2
integer, dimension(no_elem) :: plane_number
integer, dimension(no_planes) :: start_index_in_plane
integer, dimension(no_planes) :: end_index_in_plane
double precision, dimension(3) :: Omega
double precision :: phi_in
integer :: i,j,k,elem,plane,index,sweep_elem,nghb,plane_next,elem_next
double precision, dimension(4*no_elem) :: phi,rhs
double precision :: time1,time2
integer :: dim,nghb_start_index,info,start_index
integer :: cr,cm,rate,stime0,stime1,stime2

double precision, dimension(4) :: elem_rhs,temp_vec
double precision, dimension(4) :: Edge_int_xm,Edge_int_ym,Edge_int_zm
double precision, dimension(4,4) :: M,M_xp,M_yp,M_zp
double precision, dimension(4,4) :: M_xm,M_ym,M_zm
double precision, dimension(4,4,3) :: K_mat
double precision, dimension(4,4) :: elem_mat
double precision, dimension(4) :: matvecprod

CALL system_clock(count_rate=cr)
CALL system_clock(count_max=cm)

38

A.1. Matvec model code 39

rate = REAL(cr)

call system_clock(stime0)

! Fill the mass matrix M = \int_V h_i h_j

M = 0.d0
M(1,1) = 1.d0
M(2,2) = 1.d0 / 3.d0
M(3,3) = 1.d0 / 3.d0
M(4,4) = 1.d0 / 3.d0

! Fill the vol matrix K = \int_V grad h_i h_j

K_mat = 0.d0
K_mat(2,1,1) = 2.d0
K_mat(3,1,2) = 2.d0
K_mat(4,1,3) = 2.d0

! Fill M_xp

M_xp = 0.d0
M_xp(1,1) = 1.d0
M_xp(1,2) = 1.d0

M_xp(2,1) = 1.d0
M_xp(2,2) = 1.d0

M_xp(3,3) = 1.d0 / 3.d0

M_xp(4,4) = 1.d0 / 3.d0

! Fill M_yp

M_yp = 0.d0
M_yp(1,1) = 1.d0
M_yp(1,3) = 1.d0

M_yp(2,2) = 1.d0 / 3.d0

M_yp(3,1) = 1.d0
M_yp(3,3) = 1.d0

M_yp(4,4) = 1.d0 / 3.d0

! Fill M_zp

M_zp = 0.d0
M_zp(1,1) = 1.d0
M_zp(1,4) = 1.d0

M_zp(2,2) = 1.d0 / 3.d0

M_zp(3,3) = 1.d0 / 3.d0

M_zp(4,1) = 1.d0

A.1. Matvec model code 40

M_zp(4,4) = 1.d0

! Fill M_xm

M_xm = 0.d0
M_xm(1,1) = 1.d0
M_xm(1,2) = 1.d0

M_xm(2,1) = - 1.d0
M_xm(2,2) = - 1.d0

M_xm(3,3) = 1.d0 / 3.d0

M_xm(4,4) = 1.d0 / 3.d0

! Fill M_ym

M_ym = 0.d0
M_ym(1,1) = 1.d0
M_ym(1,3) = 1.d0

M_ym(2,2) = 1.d0 / 3.d0

M_ym(3,1) = - 1.d0
M_ym(3,3) = - 1.d0

M_ym(4,4) = 1.d0 / 3.d0

! Fill M_zm

M_zm = 0.d0
M_zm(1,1) = 1.d0
M_zm(1,4) = 1.d0

M_zm(2,2) = 1.d0 / 3.d0

M_zm(3,3) = 1.d0 / 3.d0

M_zm(4,1) = - 1.d0
M_zm(4,4) = - 1.d0

! Set the Omega field to a constant

Omega = (/ 1.d0, 1.d0, 1.d0 /)
Omega = Omega / sqrt(dot_product(Omega,Omega))

! Perform sweep
! We assume the volume and areas to be unity

phi = 1.d0
rhs = 0.d0

call system_clock(stime1)

A.1. Matvec model code 41

call cpu_time(time1)

do elem=1,no_elem
call get_ijk(elem,i,j,k)

! Init matrix and rhs

elem_mat = 0.d0
elem_rhs = 0.d0

elem_mat = Sigma_t * M

! Volumetric streaming term

elem_mat(1:4,1:4) = elem_mat(1:4,1:4) - Omega(1) * K_mat(1:4,1:4,1)-
Omega(2) * K_mat(1:4,1:4,2)- Omega(3) * K_mat(1:4,1:4,3)

! out x+

elem_mat = elem_mat + Omega(1) * M_xp

! out y+

elem_mat = elem_mat + Omega(2) * M_yp

! out z+

elem_mat = elem_mat + Omega(3) * M_zp
! in x-

if (i > 1) then
nghb = get_elem_index(i-1,j,k)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1)

call matvec(M_xm,temp_vec,matvecprod)
elem_rhs = elem_rhs + Omega(1) * matvecprod

else
endif

! in y-

if (j > 1) then
nghb = get_elem_index(i,j-1,k)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1)

call matvec(M_ym,temp_vec,matvecprod)
elem_rhs = elem_rhs + Omega(2) * matvecprod

else
endif

! in z-

if (k > 1) then
nghb = get_elem_index(i,j,k-1)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1)

A.1. Matvec model code 42

call matvec(M_zm,temp_vec,matvecprod)
elem_rhs = elem_rhs + Omega(3) * matvecprod

else
endif

start_index = (elem-1) * 4 + 1
call matvec(elem_mat,phi(start_index:start_index+4-1),matvecprod)
rhs(start_index:start_index+4-1) = rhs(start_index:start_index+4-1) + elem_rhs -

matvecprod !matmul(elem_mat,phi(start_index:start_index+4-1))!
enddo

call cpu_time(time2)
call system_clock(stime2)

print *,’Sweep time cpu’,time2-time1

print *,’Norm rhs’,sqrt(dot_product(rhs,rhs))
print *,’----------------------------------’
print *,’system time:’
print *,’system clock rate’,rate
print *,’prep time’,real(stime1-stime0)/rate
print *,’sweep time’,real(stime2-stime1)/rate

contains
pure subroutine matvec(A,x,y)
!$acc routine seq
implicit none

double precision, intent(in) :: A(4,4),x(4)
double precision, intent(inout) :: y(4)
integer :: i,j

y=0.d0
do i=1,4
do j=1,4
y(i)=y(i)+A(i,j)*x(j)
end do
end do
end subroutine matvec

pure integer function get_elem_index(i,j,k)
implicit none

integer, intent(in) :: i,j,k

get_elem_index = (k-1) * (ni * nj) + (j-1) * (ni) + i

end function get_elem_index

pure subroutine get_ijk(elem,i,j,k)
implicit none

integer, intent(in) :: elem

A.1. Matvec model code 43

integer, intent(out) :: i,j,k

integer :: remainder,remainder_j

k = elem / (ni * nj)
remainder = mod(elem,ni*nj)
if (remainder == 0) then

k = k
else

k = k + 1
endif
remainder = elem - (k-1) * (ni*nj)

!!!!!!!

j = remainder / (ni)
remainder_j = mod(remainder,ni)
if (remainder_j == 0) then

j = j
else

j = j + 1
endif
remainder = remainder - (j-1) * (ni)

!!!!!!!

i = remainder

end subroutine get_ijk

end program matvec_test

A.2. Plane sweep model code 44

A.2. Plane sweep model code
This code is the original model code for the plane sweep algorithm. Note that there are already some
OpenMP directives in the code to run the code on four CPU cores. This was used as a starting point
in the acceleration process.

program sweep_test
use omp_lib
implicit none

! The basis is
! 1, 2x, 2y, 2z. The unit cell is (-1/2,+1/2). So the values are 1 on the bounds

double precision, parameter :: Sigma_t=0.1d0
integer, parameter :: ni=200
integer, parameter :: nj=200
integer, parameter :: nk=200

integer, parameter :: no_elem = ni * nj * nk
integer, dimension(no_elem) :: sweep_order
integer, parameter :: no_planes=ni+nj+nk-2
integer, dimension(no_elem) :: plane_number
integer, dimension(no_planes) :: start_index_in_plane
integer, dimension(no_planes) :: end_index_in_plane
double precision, dimension(3) :: Omega
double precision :: phi_in
integer :: i,j,k,elem,plane,index,sweep_elem,nghb,plane_next,elem_next
double precision, dimension(4 * no_elem) :: phi
double precision :: time1,time2
integer :: dim,nghb_start_index,info,start_index
integer, dimension(4) :: ipiv
double precision, dimension(4,4) :: M,M_xp,M_yp,M_zp
double precision, dimension(4,4) :: M_xm,M_ym,M_zm
double precision, dimension(4,4,3) :: K_mat
double precision, allocatable, dimension(:,:) :: elem_mat
double precision, dimension(4) :: elem_rhs,temp_vec
double precision, dimension(4) :: Edge_int_xm,Edge_int_ym,Edge_int_zm

integer :: qp_x,qp_y,qp_z
double precision, dimension(2) :: points,weights
double precision :: answer,x,y,z

points(1) = +0.5d0 / sqrt(3.d0)
points(2) = -0.5d0 / sqrt(3.d0)
weights(1) = 0.5d0
weights(2) = 0.5d0

! Fill the mass matrix M = \int_V h_i h_j

M = 0.d0
M(1,1) = 1.d0
M(2,2) = 1.d0 / 3.d0
M(3,3) = 1.d0 / 3.d0
M(4,4) = 1.d0 / 3.d0

! Fill the vol matrix K = \int_V grad h_i h_j

A.2. Plane sweep model code 45

K_mat = 0.d0
K_mat(2,1,1) = 2.d0
K_mat(3,1,2) = 2.d0
K_mat(4,1,3) = 2.d0

! Fill M_xp

M_xp = 0.d0
M_xp(1,1) = 1.d0
M_xp(1,2) = 1.d0

M_xp(2,1) = 1.d0
M_xp(2,2) = 1.d0

M_xp(3,3) = 1.d0 / 3.d0

M_xp(4,4) = 1.d0 / 3.d0

! Fill M_yp

M_yp = 0.d0
M_yp(1,1) = 1.d0
M_yp(1,3) = 1.d0

M_yp(2,2) = 1.d0 / 3.d0

M_yp(3,1) = 1.d0
M_yp(3,3) = 1.d0

M_yp(4,4) = 1.d0 / 3.d0

! Fill M_zp

M_zp = 0.d0
M_zp(1,1) = 1.d0
M_zp(1,4) = 1.d0

M_zp(2,2) = 1.d0 / 3.d0

M_zp(3,3) = 1.d0 / 3.d0

M_zp(4,1) = 1.d0
M_zp(4,4) = 1.d0

! Fill M_xm

M_xm = 0.d0
M_xm(1,1) = 1.d0
M_xm(1,2) = 1.d0

M_xm(2,1) = - 1.d0
M_xm(2,2) = - 1.d0

M_xm(3,3) = 1.d0 / 3.d0

M_xm(4,4) = 1.d0 / 3.d0

A.2. Plane sweep model code 46

! Fill M_ym

M_ym = 0.d0
M_ym(1,1) = 1.d0
M_ym(1,3) = 1.d0

M_ym(2,2) = 1.d0 / 3.d0

M_ym(3,1) = - 1.d0
M_ym(3,3) = - 1.d0

M_ym(4,4) = 1.d0 / 3.d0

! Fill M_zm

M_zm = 0.d0
M_zm(1,1) = 1.d0
M_zm(1,4) = 1.d0

M_zm(2,2) = 1.d0 / 3.d0

M_zm(3,3) = 1.d0 / 3.d0

M_zm(4,1) = - 1.d0
M_zm(4,4) = - 1.d0

! Fill Edge_int_xm

Edge_int_xm = 0.d0
Edge_int_xm(1) = 1.d0
Edge_int_xm(2) = - 1.d0

! Fill Edge_int_ym

Edge_int_ym = 0.d0
Edge_int_ym(1) = 1.d0
Edge_int_ym(3) = - 1.d0

! Fill Edge_int_zm

Edge_int_zm = 0.d0
Edge_int_zm(1) = 1.d0
Edge_int_zm(4) = - 1.d0

! Find in which sweep plane elem lies

do k=1,nk
do j=1,nj

do i=1,ni
elem = get_elem_index(i,j,k)
plane_number(elem) = i+j+k-2

enddo
enddo

enddo

A.2. Plane sweep model code 47

! Now do a very poor implementation of getting then sweep order

index=1
do plane=1,no_planes

do elem=1,no_elem
if (plane_number(elem) == plane) then

sweep_order(index) = elem
index = index + 1

endif
enddo

enddo

! Get the start and end indices for each plane

start_index_in_plane(1) = 1
do sweep_elem=1,no_elem-1

elem = sweep_order(sweep_elem)
elem_next = sweep_order(sweep_elem+1)

plane = plane_number(elem)
plane_next = plane_number(elem_next)

if (plane_next /= plane) then
end_index_in_plane(plane) = sweep_elem
start_index_in_plane(plane+1) = sweep_elem+1

endif
enddo
end_index_in_plane(no_planes) = no_elem

! Set the Omega field to a constant

Omega = (/ 1.d0, 1.d0, 1.d0 /)
Omega = Omega / sqrt(dot_product(Omega,Omega))

! Perform sweep
! We assume the volume and areas to be unity

phi = 0.d0

call cpu_time(time1)
do plane=1,no_planes
!$OMP target teams distribute parallel &
!$OMP default(none) &
!$OMP private(start_index,nghb_start_index,elem,i,j,k,info,ipiv,elem_mat,
elem_rhs,nghb,phi_in,temp_vec,sweep_elem) &
!$OMP shared(phi,start_index_in_plane,end_index_in_plane,Omega,K_mat,M,plane,
sweep_order,M_xp,M_yp,M_zp,M_xm,M_ym,M_zm,Edge_int_xm,Edge_int_ym,Edge_int_zm) &
!OMP num_threads(4)
!$OMP do schedule(static)
do sweep_elem=start_index_in_plane(plane),end_index_in_plane(plane)

elem = sweep_order(sweep_elem)
call get_ijk(elem,i,j,k)

! Init matrix and rhs

allocate(elem_mat(4,4))

A.2. Plane sweep model code 48

elem_mat = 0.d0
elem_rhs = 0.d0

! Removal

elem_mat = Sigma_t * M

! Volumetric streaming term

do dim=1,3
elem_mat(1:4,1:4) = elem_mat(1:4,1:4) - Omega(dim) * K_mat(1:4,1:4,dim)

enddo

! out x+

elem_mat = elem_mat + Omega(1) * M_xp

! out y+

elem_mat = elem_mat + Omega(2) * M_yp

! out z+

elem_mat = elem_mat + Omega(3) * M_zp

! in x-

if (i > 1) then
nghb = get_elem_index(i-1,j,k)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1)
elem_rhs = elem_rhs + Omega(1) * matmul(M_xm,temp_vec)

else
phi_in = 1.d0
elem_rhs = elem_rhs + phi_in * Omega(1) * Edge_int_xm

endif

! in y-

if (j > 1) then
nghb = get_elem_index(i,j-1,k)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1)
elem_rhs = elem_rhs + Omega(2) * matmul(M_ym,temp_vec)

else
phi_in = 1.d0
elem_rhs = elem_rhs + phi_in * Omega(2) * Edge_int_ym

endif

! in z-

if (k > 1) then
nghb = get_elem_index(i,j,k-1)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1)
elem_rhs = elem_rhs + Omega(3) * matmul(M_zm,temp_vec)

A.2. Plane sweep model code 49

else
phi_in = 1.d0
elem_rhs = elem_rhs + phi_in * Omega(3) * Edge_int_zm

endif

! Local solve

call dgesv(4,1,elem_mat,4,ipiv,elem_rhs,4,info)
if (info /= 0) STOP ’problem in dgesv’
start_index = (elem-1) * 4 + 1
phi(start_index:start_index+4-1) = elem_rhs

deallocate(elem_mat)
enddo
!$OMP end do
!$OMP end target teams distribute parallel
enddo
call cpu_time(time2)
print *,’Sweep time’,time2-time1

print *,’Norm phi’,sqrt(dot_product(phi,phi))

contains

integer function get_elem_index(i,j,k)
implicit none

integer :: i,j,k

get_elem_index = (k-1) * (ni * nj) + (j-1) * (ni) + i

end function get_elem_index

subroutine get_ijk(elem,i,j,k)
implicit none

integer :: elem,i,j,k

integer :: remainder,remainder_j

k = elem / (ni * nj)
remainder = mod(elem,ni*nj)
if (remainder == 0) then

k = k
else

k = k + 1
endif
remainder = elem - (k-1) * (ni*nj)

!!!!!!!

j = remainder / (ni)
remainder_j = mod(remainder,ni)
if (remainder_j == 0) then

A.2. Plane sweep model code 50

j = j
else

j = j + 1
endif
remainder = remainder - (j-1) * (ni)

!!!!!!!

i = remainder

end subroutine get_ijk

double precision function fi(i,x,y,z)
implicit none

integer :: i
double precision :: x,y,z

if (i==1) then
fi = 1.d0

endif
if (i==2) then

fi = 2.d0 * x
endif
if (i==3) then

fi = 2.d0 * y
endif
if (i==4) then

fi = 2.d0 * z
endif

end function fi

double precision function grad_fi(i,dim,x,y,z)
implicit none

integer :: i,dim
double precision :: x,y,z

grad_fi = 0.d0
if (i==2) then

if (dim==1) grad_fi = 2.d0
endif
if (i==3) then

if (dim==2) grad_fi = 2.d0
endif
if (i==4) then

if (dim==3) grad_fi = 2.d0
endif

end function grad_fi

end program sweep_test

B
Accelerated code

This chapter of the appendix contains the accelerated model code as created during this project. Note
that, like in the previous chapter, some lines of code were broken off in order to fit on the page.

B.1. Accelerated matvec model code
This code is the accelerated version of the model code provided in appendix A.1. Data and parallel
loop directives have been added to make it run in parallel.

program matvec_test
implicit none

double precision, parameter :: Sigma_t=0.1d0
integer, parameter :: ni=500
integer, parameter :: nj=500
integer, parameter :: nk=500

integer, parameter :: no_elem = ni * nj * nk
integer, dimension(no_elem) :: sweep_order
integer, parameter :: no_planes=ni+nj+nk-2
integer, dimension(no_elem) :: plane_number
integer, dimension(no_planes) :: start_index_in_plane
integer, dimension(no_planes) :: end_index_in_plane
double precision, dimension(3) :: Omega
double precision :: phi_in
integer :: i,j,k,elem,plane,index,sweep_elem,nghb,plane_next,elem_next
double precision, dimension(4*no_elem) :: phi,rhs
double precision :: time1,time2
integer :: dim,nghb_start_index,info,start_index
integer :: cr,cm,rate,stime0,stimepredat,stime1,stime2,stime3

double precision, dimension(4) :: elem_rhs,temp_vec
double precision, dimension(4) :: Edge_int_xm,Edge_int_ym,Edge_int_zm
double precision, dimension(4,4) :: M,M_xp,M_yp,M_zp
double precision, dimension(4,4) :: M_xm,M_ym,M_zm
double precision, dimension(4,4,3) :: K_mat
double precision, dimension(4,4) :: elem_mat
double precision, dimension(4) :: matvecprod

CALL system_clock(count_rate=cr)
CALL system_clock(count_max=cm)

51

B.1. Accelerated matvec model code 52

rate = REAL(cr)

call system_clock(stime0)

! Fill the mass matrix M = \int_V h_i h_j

M = 0.d0
M(1,1) = 1.d0
M(2,2) = 1.d0 / 3.d0
M(3,3) = 1.d0 / 3.d0
M(4,4) = 1.d0 / 3.d0

! Fill the vol matrix K = \int_V grad h_i h_j

K_mat = 0.d0
K_mat(2,1,1) = 2.d0
K_mat(3,1,2) = 2.d0
K_mat(4,1,3) = 2.d0

! Fill M_xp

M_xp = 0.d0
M_xp(1,1) = 1.d0
M_xp(1,2) = 1.d0

M_xp(2,1) = 1.d0
M_xp(2,2) = 1.d0

M_xp(3,3) = 1.d0 / 3.d0

M_xp(4,4) = 1.d0 / 3.d0

! Fill M_yp

M_yp = 0.d0
M_yp(1,1) = 1.d0
M_yp(1,3) = 1.d0

M_yp(2,2) = 1.d0 / 3.d0

M_yp(3,1) = 1.d0
M_yp(3,3) = 1.d0

M_yp(4,4) = 1.d0 / 3.d0

! Fill M_zp

M_zp = 0.d0
M_zp(1,1) = 1.d0
M_zp(1,4) = 1.d0

M_zp(2,2) = 1.d0 / 3.d0

M_zp(3,3) = 1.d0 / 3.d0

M_zp(4,1) = 1.d0

B.1. Accelerated matvec model code 53

M_zp(4,4) = 1.d0

! Fill M_xm

M_xm = 0.d0
M_xm(1,1) = 1.d0
M_xm(1,2) = 1.d0

M_xm(2,1) = - 1.d0
M_xm(2,2) = - 1.d0

M_xm(3,3) = 1.d0 / 3.d0

M_xm(4,4) = 1.d0 / 3.d0

! Fill M_ym

M_ym = 0.d0
M_ym(1,1) = 1.d0
M_ym(1,3) = 1.d0

M_ym(2,2) = 1.d0 / 3.d0

M_ym(3,1) = - 1.d0
M_ym(3,3) = - 1.d0

M_ym(4,4) = 1.d0 / 3.d0

! Fill M_zm

M_zm = 0.d0
M_zm(1,1) = 1.d0
M_zm(1,4) = 1.d0

M_zm(2,2) = 1.d0 / 3.d0

M_zm(3,3) = 1.d0 / 3.d0

M_zm(4,1) = - 1.d0
M_zm(4,4) = - 1.d0

! Set the Omega field to a constant

Omega = (/ 1.d0, 1.d0, 1.d0 /)
Omega = Omega / sqrt(dot_product(Omega,Omega))

! Perform sweep
! We assume the volume and areas to be unity

phi = 1.d0
rhs = 0.d0
call system_clock(stimepredat)
!$acc data

B.1. Accelerated matvec model code 54

!$acc enter data copyin(phi), copyin(rhs),
copyin(omega,M,m_yp,m,k_mat,m_zp,m_xm,m_ym,m_zm,m_xp)
call system_clock(stime1)
call cpu_time(time1)

!$acc parallel loop gang private(elem_mat,elem_rhs,nghb,nghb_start_index,
temp_vec,matvecprod) default(present)
do elem=1,no_elem

call get_ijk(elem,i,j,k)

! Init matrix and rhs

elem_mat = 0.d0
elem_rhs = 0.d0

elem_mat = Sigma_t * M

! Volumetric streaming term

elem_mat(1:4,1:4) = elem_mat(1:4,1:4) - Omega(1) * K_mat(1:4,1:4,1)-
Omega(2) * K_mat(1:4,1:4,2)- Omega(3) * K_mat(1:4,1:4,3)

! out x+

elem_mat = elem_mat + Omega(1) * M_xp

! out y+

elem_mat = elem_mat + Omega(2) * M_yp

! out z+

elem_mat = elem_mat + Omega(3) * M_zp
! in x-

if (i > 1) then
nghb = get_elem_index(i-1,j,k)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1)

call matvec(M_xm,temp_vec,matvecprod)
elem_rhs = elem_rhs + Omega(1) * matvecprod

else
endif

! in y-

if (j > 1) then
nghb = get_elem_index(i,j-1,k)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1)

call matvec(M_ym,temp_vec,matvecprod)
elem_rhs = elem_rhs + Omega(2) * matvecprod

else
endif

! in z-

B.1. Accelerated matvec model code 55

if (k > 1) then
nghb = get_elem_index(i,j,k-1)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1)

call matvec(M_zm,temp_vec,matvecprod)
elem_rhs = elem_rhs + Omega(3) * matvecprod

else
endif

start_index = (elem-1) * 4 + 1
call matvec(elem_mat,phi(start_index:start_index+4-1),matvecprod)
rhs(start_index:start_index+4-1) = rhs(start_index:start_index+4-1) + elem_rhs -

matvecprod !matmul(elem_mat,phi(start_index:start_index+4-1))!
enddo
!$acc end parallel loop

call cpu_time(time2)
call system_clock(stime2)
!$acc exit data copyout(rhs)
!$acc end data
call system_clock(stime3)
print *,’Sweep time cpu’,time2-time1

print *,’Norm rhs’,sqrt(dot_product(rhs,rhs))
print *,’----------------------------------’
print *,’system time:’
print *,’system clock rate’,rate
print *,’prep time’,real(stimepredat-stime0)/rate
print *,’copyin time’,real(stime1-stimepredat)/rate
print *,’sweep time’,real(stime2-stime1)/rate
print *,’copyout time’,real(stime3-stime2)/rate

contains
pure subroutine matvec(A,x,y)
!$acc routine seq
implicit none

double precision, intent(in) :: A(4,4),x(4)
double precision, intent(inout) :: y(4)
integer :: i,j

y=0.d0
do i=1,4
do j=1,4
y(i)=y(i)+A(i,j)*x(j)
end do
end do
end subroutine matvec

pure integer function get_elem_index(i,j,k)
implicit none

integer, intent(in) :: i,j,k

B.1. Accelerated matvec model code 56

get_elem_index = (k-1) * (ni * nj) + (j-1) * (ni) + i

end function get_elem_index

pure subroutine get_ijk(elem,i,j,k)
implicit none

integer, intent(in) :: elem
integer, intent(out) :: i,j,k

integer :: remainder,remainder_j

k = elem / (ni * nj)
remainder = mod(elem,ni*nj)
if (remainder == 0) then

k = k
else

k = k + 1
endif
remainder = elem - (k-1) * (ni*nj)

!!!!!!!

j = remainder / (ni)
remainder_j = mod(remainder,ni)
if (remainder_j == 0) then

j = j
else

j = j + 1
endif
remainder = remainder - (j-1) * (ni)

!!!!!!!

i = remainder

end subroutine get_ijk

end program matvec_test

B.2. Accelerated plane sweep model code 57

B.2. Accelerated plane sweep model code
This code is the accelerated version of the model code provided in appendix A.2. A few things have
been added: first of all the parallel loop directives as mentioned before. Additionally, data directives
have been added, as well as some additional commands and infrastructure adaptations to allow the
parallel execution of multiple discrete directions. Another change as compared to the original model
code, was the replacement of the dgesv function from the LaPack library with a custom made sovler,
and the replacement of the matmul intrinsic with a dedicated matvec function for multiplying vectors
with matrices.

program sweep_test
implicit none

! The basis is
! 1, 2x, 2y, 2z. The unit cell is (-1/2,+1/2). So the values are 1 on the bounds

double precision, parameter :: Sigma_t=0.1d0
integer, parameter :: ni=128
integer, parameter :: nj=128
integer, parameter :: nk=128

integer, parameter :: N= 16!N is the number of directional sweep vectors
integer :: O(N) !O denotes the ordinate belonging to a given vector omega
integer :: dir !extra loopiterator introduced for looping over different omega vectors

integer, parameter :: no_elem = ni * nj * nk
integer, dimension(no_elem) :: sweep_order
integer, parameter :: no_planes=ni+nj+nk-2
integer, dimension(no_elem) :: plane_number
integer, dimension(no_planes) :: start_index_in_plane
integer, dimension(no_planes) :: end_index_in_plane
double precision, dimension(3,N) :: Omega
!Omega is now a matrix with N Omega vectors as its columns
double precision :: phi_in
integer :: i,j,k,elem,plane,index,sweep_elem,nghb,plane_next,elem_next
double precision, dimension(4 * no_elem,N) :: phi
!phi is now a matrix with N phi vectors as its columns
double precision :: time1,time2
integer :: dim,nghb_start_index,start_index
double precision, dimension(4,4) :: M,M_xp,M_yp,M_zp
double precision, dimension(4,4) :: M_xm,M_ym,M_zm
double precision, dimension(4,4,3) :: K_mat
double precision, dimension(4,4) :: elem_mat
double precision, dimension(4) :: elem_rhs,temp_vec,matvecprod
double precision, dimension(4) :: Edge_int_xm,Edge_int_ym,Edge_int_zm

integer :: qp_x,qp_y,qp_z
double precision, dimension(2) :: points,weights
double precision :: answer,x,y,z

integer :: cr,cm,rate,stime0,stimepredat,stime1,stime2,stime3,stime15

CALL system_clock(count_rate=cr)
CALL system_clock(count_max=cm)
rate = REAL(cr)

B.2. Accelerated plane sweep model code 58

call system_clock(stime0)

points(1) = +0.5d0 / sqrt(3.d0)
points(2) = -0.5d0 / sqrt(3.d0)
weights(1) = 0.5d0
weights(2) = 0.5d0

! Fill the mass matrix M = \int_V h_i h_j

M = 0.d0
M(1,1) = 1.d0
M(2,2) = 1.d0 / 3.d0
M(3,3) = 1.d0 / 3.d0
M(4,4) = 1.d0 / 3.d0

! Fill the vol matrix K = \int_V grad h_i h_j

K_mat = 0.d0
K_mat(2,1,1) = 2.d0
K_mat(3,1,2) = 2.d0
K_mat(4,1,3) = 2.d0

! Fill M_xp

M_xp = 0.d0
M_xp(1,1) = 1.d0
M_xp(1,2) = 1.d0

M_xp(2,1) = 1.d0
M_xp(2,2) = 1.d0

M_xp(3,3) = 1.d0 / 3.d0

M_xp(4,4) = 1.d0 / 3.d0

! Fill M_yp

M_yp = 0.d0
M_yp(1,1) = 1.d0
M_yp(1,3) = 1.d0

M_yp(2,2) = 1.d0 / 3.d0

M_yp(3,1) = 1.d0
M_yp(3,3) = 1.d0

M_yp(4,4) = 1.d0 / 3.d0

! Fill M_zp

M_zp = 0.d0
M_zp(1,1) = 1.d0
M_zp(1,4) = 1.d0

M_zp(2,2) = 1.d0 / 3.d0

B.2. Accelerated plane sweep model code 59

M_zp(3,3) = 1.d0 / 3.d0

M_zp(4,1) = 1.d0
M_zp(4,4) = 1.d0

! Fill M_xm

M_xm = 0.d0
M_xm(1,1) = 1.d0
M_xm(1,2) = 1.d0

M_xm(2,1) = - 1.d0
M_xm(2,2) = - 1.d0

M_xm(3,3) = 1.d0 / 3.d0

M_xm(4,4) = 1.d0 / 3.d0

! Fill M_ym

M_ym = 0.d0
M_ym(1,1) = 1.d0
M_ym(1,3) = 1.d0

M_ym(2,2) = 1.d0 / 3.d0

M_ym(3,1) = - 1.d0
M_ym(3,3) = - 1.d0

M_ym(4,4) = 1.d0 / 3.d0

! Fill M_zm

M_zm = 0.d0
M_zm(1,1) = 1.d0
M_zm(1,4) = 1.d0

M_zm(2,2) = 1.d0 / 3.d0

M_zm(3,3) = 1.d0 / 3.d0

M_zm(4,1) = - 1.d0
M_zm(4,4) = - 1.d0

! Fill Edge_int_xm

Edge_int_xm = 0.d0
Edge_int_xm(1) = 1.d0
Edge_int_xm(2) = - 1.d0

! Fill Edge_int_ym

Edge_int_ym = 0.d0
Edge_int_ym(1) = 1.d0
Edge_int_ym(3) = - 1.d0

B.2. Accelerated plane sweep model code 60

! Fill Edge_int_zm

Edge_int_zm = 0.d0
Edge_int_zm(1) = 1.d0
Edge_int_zm(4) = - 1.d0

! Find in which sweep plane elem lies

do k=1,nk
do j=1,nj

do i=1,ni
elem = get_elem_index(i,j,k)
plane_number(elem) = i+j+k-2

enddo
enddo

enddo

!Now get the sweep order

index=1
do plane=1,no_planes

do elem=1,no_elem
if (plane_number(elem) == plane) then

sweep_order(index) = elem
index = index + 1

endif
enddo

enddo

! Get the start and end indices for each plane

start_index_in_plane(1) = 1
do sweep_elem=1,no_elem-1

elem = sweep_order(sweep_elem)
elem_next = sweep_order(sweep_elem+1)

plane = plane_number(elem)
plane_next = plane_number(elem_next)

if (plane_next /= plane) then
end_index_in_plane(plane) = sweep_elem
start_index_in_plane(plane+1) = sweep_elem+1

endif
enddo
end_index_in_plane(no_planes) = no_elem
! Set the Omega field to a constant
Omega = 1.d0 !to ensure the code doesn’t break when larger N is tested
Omega(:,1) = (/ 1.d0, 1.d0, 1.d0 /)
!Omega definition was adjusted to allow definition of N different vectors
distributed across the 8 octants
Omega(:,2) = (/ 1.d0, -1.d0, 5.d0 /)

do dir=1,N !normalisation step adjusted to make sure each Omega vector has length one
Omega(:,dir) = Omega(:,dir) / sqrt(dot_product(Omega(:,dir),Omega(:,dir)))
enddo

B.2. Accelerated plane sweep model code 61

! Perform sweep
! We assume the volume and areas to be unity

phi = 0.d0

call system_clock(stimepredat)
!$acc data copyin(sweep_order,start_index,start_index_in_plane,end_index_in_plane,M,
Omega,K_mat,M_xp,M_yp,M_zp,M_xm,M_ym,M_zm,Edge_int_xm,Edge_int_ym,Edge_int_zm)
copyout(phi,O)
create(matvecprod,nghb,nghb_start_index,elem,i,j,k,elem_mat,
elem_rhs,temp_vec,phi_in,sweep_elem,dir)
call system_clock(stime1)
!while we’re already at the gpu, let’s determine the octant of each omega and make sure
to adapt omega to the original range to not break the code already present
!$acc parallel loop gang num_gangs(N) private(dir) present(Omega) default(none)
do dir=1,N
O(dir) = getO(Omega(:,dir))
!assigns octant number to omega associated with current direction
!the following three lines mirrors negative coordinates for each direction,
because the original code is not equiped to handle negative definite omega vectors
Omega(1,dir) = abs(Omega(1,dir))
Omega(2,dir) = abs(Omega(2,dir))
Omega(3,dir) = abs(Omega(3,dir))
enddo
call system_clock(stime15)
call cpu_time(time1)
do plane=1,no_planes
!$acc parallel loop gang vector collapse(2) default(none)
private(start_index,nghb_start_index,elem,i,j,k,elem_mat,
elem_rhs,nghb,phi_in,temp_vec,sweep_elem,dir)
present(M_zm,M_ym,M_xm,M_zp,M_yp,M_xp,K_mat,Omega,M,sweep_order,phi,Edge_int_xm,
Edge_int_ym,Edge_int_zm,end_index_in_plane,start_index_in_plane)
do dir=1,N !Note that this loop is nested in the planes loop.
This is because only gang level parallelism allows for private variables,
which is required to generate correct results.
Gang parallelism does not work for nested loop directives,
which is why instead both parallel loops are grouped together and collapsed.
do sweep_elem=start_index_in_plane(plane),end_index_in_plane(plane)

elem = sweep_order(sweep_elem)
call get_ijk(elem,i,j,k)
! Init matrix and rhs
elem_mat = 0.d0
elem_rhs = 0.d0

! Removal

elem_mat = Sigma_t * M

! Volumetric streaming term
!in the following lines, Omega and phi slicing were adapted
to account for the new structure of these variables

elem_mat(1:4,1:4) = elem_mat(1:4,1:4) - Omega(1,dir) * K_mat(1:4,1:4,1)-
Omega(2,dir) * K_mat(1:4,1:4,2)- Omega(3,dir) * K_mat(1:4,1:4,3)

! out x+

B.2. Accelerated plane sweep model code 62

elem_mat = elem_mat + Omega(1,dir) * M_xp

! out y+

elem_mat = elem_mat + Omega(2,dir) * M_yp

! out z+

elem_mat = elem_mat + Omega(3,dir) * M_zp
! in x-

if (i > 1) then
nghb = get_elem_index(i-1,j,k)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1,dir)

call matvec(M_xm,temp_vec,matvecprod)
elem_rhs = elem_rhs + Omega(1,dir) * matvecprod

else
phi_in = 1.d0
elem_rhs = elem_rhs + phi_in * Omega(1,dir) * Edge_int_xm

endif

! in y-

if (j > 1) then
nghb = get_elem_index(i,j-1,k)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1,dir)

call matvec(M_ym,temp_vec,matvecprod)
elem_rhs = elem_rhs + Omega(2,dir) * matvecprod

else
phi_in = 1.d0
elem_rhs = elem_rhs + phi_in * Omega(2,dir) * Edge_int_ym

endif

! in z-

if (k > 1) then
nghb = get_elem_index(i,j,k-1)
nghb_start_index = (nghb-1) * 4 + 1
temp_vec = phi(nghb_start_index:nghb_start_index+4-1,dir)

call matvec(M_zm,temp_vec,matvecprod)
elem_rhs = elem_rhs + Omega(3,dir) * matvecprod

else
phi_in = 1.d0
elem_rhs = elem_rhs + phi_in * Omega(3,dir) * Edge_int_zm

endif

call dgesv_gpu(4,elem_mat,elem_rhs)
start_index = (elem-1) * 4 + 1
phi(start_index:start_index+4-1,dir) = elem_rhs

enddo
enddo
enddo

B.2. Accelerated plane sweep model code 63

call system_clock(stime2)
!$acc end data
call cpu_time(time2)
call system_clock(stime3)
print *,’Sweep time’,time2-time1

print *,’Sum of phinorms’,sumnormphi(phi,N)
!here the phinorm calculation was adapted to give a single variable combining
all different directions that were calculated
print *,’octant of each vector omega’,O(:)

print *,’----------------------------------’
!adapted system time to account for contribution ordinate calculation time
print *,’system time:’
print *,’system clock rate’,rate
print *,’prep time’,real(stimepredat-stime0)/rate
print *,’copyin time’,real(stime1-stimepredat)/rate
print *,’ordinate calculation time’,real(stime15-stime1)/rate
print *,’sweep time’,real(stime2-stime15)/rate
print *,’copyout time’,real(stime3-stime2)/rate

contains
pure subroutine matvec(A,x,y)
!$acc routine seq
implicit none

double precision, intent(in) :: A(4,4),x(4)
double precision, intent(inout) :: y(4)
integer :: i,j

y=0.d0
do i=1,4
do j=1,4
y(i)=y(i)+A(i,j)*x(j)
end do
end do
end subroutine matvec

double precision function sumnormphi(phi,N) !added to check correctness between
cpu and gpu, replaces norm of phi in original output
!$acc routine seq
implicit none
double precision :: phi(:,:)
integer :: direc,N
sumnormphi = 0.d0
do direc=1,N
sumnormphi = sumnormphi+sqrt(dot_product(phi(:,direc),phi(:,direc)))
enddo
end function sumnormphi

pure integer function getO(Omega) !added to calculate the octant of each omega vector,
which is relevant to keep track of the original sweep direction in a heterogenous

B.2. Accelerated plane sweep model code 64

medium and the orientation of the phi contribution corresponding to this omega
!$acc routine seq
implicit none
double precision,dimension(3),intent(in) :: Omega
getO = int(2*(1-sign(1.d0,Omega(3)))+(1-sign(1.d0,Omega(2)))
+0.5*(1-sign(1.d0,Omega(3))))
end function getO

integer function get_elem_index(i,j,k)
!$acc routine seq
implicit none

integer :: i,j,k

get_elem_index = (k-1) * (ni * nj) + (j-1) * (ni) + i

end function get_elem_index

subroutine get_ijk(elem,i,j,k)
!$acc routine seq
implicit none

integer :: elem,i,j,k

integer :: remainder,remainder_j

k = elem / (ni * nj)
remainder = mod(elem,ni*nj)
if (remainder == 0) then

k = k
else

k = k + 1
endif
remainder = elem - (k-1) * (ni*nj)

!!!!!!!

j = remainder / (ni)
remainder_j = mod(remainder,ni)
if (remainder_j == 0) then

j = j
else

j = j + 1
endif
remainder = remainder - (j-1) * (ni)

!!!!!!!

i = remainder

end subroutine get_ijk

double precision function fi(i,x,y,z)

B.2. Accelerated plane sweep model code 65

!$acc routine seq
implicit none

integer :: i
double precision :: x,y,z

if (i==1) then
fi = 1.d0

endif
if (i==2) then

fi = 2.d0 * x
endif
if (i==3) then

fi = 2.d0 * y
endif
if (i==4) then

fi = 2.d0 * z
endif

end function fi

double precision function grad_fi(i,dim,x,y,z)
!$acc routine seq
implicit none

integer :: i,dim
double precision :: x,y,z

grad_fi = 0.d0
if (i==2) then

if (dim==1) grad_fi = 2.d0
endif
if (i==3) then

if (dim==2) grad_fi = 2.d0
endif
if (i==4) then

if (dim==3) grad_fi = 2.d0
endif

end function grad_fi

pure subroutine dgesv_gpu(n,A,b) !
!$acc routine seq
implicit none

integer, intent(in) :: n
double precision, intent(inout) :: A(4,4),b(4)

integer :: i,row,col,ind
double precision :: p,t
double precision :: maximum !added to replace maxloc

do row=1,n-1
! Partial pivotting: (the next 6 lines have been added because maxloc is not allowed)

B.2. Accelerated plane sweep model code 66

maximum = abs(A(row,row))
ind=row
do i=row+1,n

if (abs(A(i,row)) > maximum) then
maximum = abs(A(i,row))
ind = i

endif
enddo

! Swap rows of A and b

if (ind /= row) then
do col=row,n

t = A(ind,col)
A(ind,col) = A(row,col)
A(row,col) = t

enddo
t = b(ind)
b(ind) = b(row)
b(row) = t

endif

! Eliminate by row subtraction

do i=row+1,n
p = A(i,row) / A(row,row)
A(i,row+1:n) = A(i,row+1:n) - p * A(row,row+1:n)
b(i) = b(i) - p * b(row)

enddo
enddo

! Back substitution

do row=n,1,-1
p = b(row)
do col=row+1,n

p = p - A(row,col) * b(col)
end do
b(row) = p / A(row,row)

enddo

end subroutine dgesv_gpu

end program sweep_test

C
Performance measurement tables

C.1. Matvec

hardware com+op size copy in sweep time copy out data combined
gpu nv pinned 128 2.19E-01 5.60E-04 1.01E-02 2.29E-01 2.30E-01
cpu gf 128 0.00E+00 2.86E-01 0.00E+00 0.00E+00 2.86E-01
cpu ifx 128 0.00E+00 1.46E-01 0.00E+00 0.00E+00 1.46E-01
cpu nv 128 0.00E+00 2.00E-01 0.00E+00 0.00E+00 2.00E-01
gpu nv 128 2.17E-01 5.56E-04 1.00E-02 2.27E-01 2.28E-01
gpu nv pinned 256 2.55E-01 4.11E-03 7.44E-02 3.30E-01 3.34E-01
gpu nv 256 2.59E-01 4.12E-03 7.44E-02 3.33E-01 3.37E-01
cpu nv 256 0.00E+00 1.53E+00 0.00E+00 0.00E+00 1.53E+00
cpu gf 256 0.00E+00 2.24E+00 0.00E+00 0.00E+00 2.24E+00
cpu ifx 256 0.00E+00 1.18E+00 0.00E+00 0.00E+00 1.18E+00
cpu nv multic 256 0.00E+00 7.88E-02 0.00E+00 0.00E+00 7.88E-02
gpu nv pinned 512 1.20E+00 2.63E-02 5.97E-01 1.80E+00 1.82E+00
gpu nv 512 8.86E-01 2.63E-02 6.89E-01 1.57E+00 1.60E+00
cpu nv 512 0.00E+00 1.15E+01 0.00E+00 0.00E+00 1.15E+01
gpu nv 200 2.14E-01 1.72E-03 3.65E-02 2.50E-01 2.52E-01
gpu nv 300 3.65E-01 6.57E-03 1.24E-01 4.89E-01 4.96E-01
gpu nv 350 4.13E-01 9.07E-03 1.99E-01 6.12E-01 6.21E-01
gpu nv 450 7.15E-01 1.91E-02 4.44E-01 1.16E+00 1.18E+00
gpu nv 400 5.08E-01 1.32E-02 2.92E-01 8.00E-01 8.13E-01

Table C.1: Performance data of the matvec algorithm. The first column from the right shows the time including data transfer and
the data column shows the total data transfer time. The sweep time column shows the completion time without data transfers.
The second column shows the compiler that is used, including special options.

67

C.1. Matvec 68

hardware com+op size norm_rhs
gpu nv pinned 128 2.9929513675E+03
cpu gf 128 2.9929513675E+03
cpu ifx 128 2.9929513675E+03
cpu nv 128 2.9929513675E+03
gpu nv 128 2.9929513675E+03
gpu nv pinned 256 8.4518137372E+03
gpu nv 256 8.4518137372E+03
cpu nv 256 8.4518137372E+03
cpu gf 256 8.4518137372E+03
cpu ifx 256 8.4518137385E+03
cpu nv multic 256 8.4518137372E+03
gpu nv pinned 512 2.3886358925E+04
gpu nv 512 2.3886358925E+04
cpu nv 512 2.3886358925E+04
gpu nv 200 5.8388704911E+03
gpu nv 300 1.0719400487E+04
gpu nv 350 1.3505371797E+04
gpu nv 450 1.9683902929E+04
gpu nv 400 1.6498004800E+04

Table C.2: Correctness check, shows norm_rhs value for each run.

C.2. Plane sweep 69

C.2. Plane sweep

hardware com+op size copy in sweep time copy out data combined
cpu nv 128 0 3.12E-01 0 0.00E+00 0.311542
cpu ifx 128 0 3.37E-01 0 0.00E+00 0.3367
gpu nv pinned 128 0.170941 1.03E-02 9.94E-02 2.70E-01 0.28071
gpu nv 128 0.177871 1.02E-02 9.83E-03 1.88E-01 0.197947
cpu gf 128 0 4.29E-01 0.00E+00 0.00E+00 0.429
gpu nv pinned 256 0.223817 3.78E-02 7.59E-02 3.00E-01 0.337605
cpu nv 256 0 3.25E+00 0 0.00E+00 3.248749
cpu ifx 256 0 3.26E+00 0 0.00E+00 3.2561
gpu nv 256 0.278018 3.80E-02 7.58E-02 3.54E-01 0.391757
cpu gf 256 0 4.27E+00 0.00E+00 0.00E+00 4.27
gpu nv pinned 2x256 0.232451 5.57E-02 0.149171 3.82E-01 0.43736
gpu nv 2x256 0.200419 5.84E-02 0.149187 3.50E-01 0.408049
cpu ifx 2x256 0 4.3412 0 0.00E+00 4.3412
cpu nv 2x256 0 5.851106 0 0.00E+00 5.851106
gpu nv pinned 4x128 0.162426 1.88E-02 3.81E-02 2.00E-01 0.219288
gpu nv 4x128 0.194561 1.91E-02 3.74E-02 2.32E-01 0.251091
cpu ifx 4x128 0 1.08E+00 0 0.00E+00 1.0776
cpu gf 4x128 0 1.44E+00 0 0.00E+00 1.438
cpu nv multic 4x128 0 1.49E+00 0 0.00E+00 1.4923
cpu nv 4x128 0 1.92E+00 0 0.00E+00 1.920031
gpu nv pinned 16x128 0.222078 4.09E-02 0.174796 3.97E-01 0.437756
gpu nv 16x128 0.193751 4.08E-02 0.173182 3.67E-01 0.407743
cpu nv 16x128 0 9.58E+00 0 0.00E+00 9.580076
cpu ifx 16x128 0 5.09E+00 0 0.00E+00 5.0916
cpu gf 16x128 0 1.16E+01 0.00E+00 0.00E+00 11.626
gpu nv pinned 16x256 0.317989 3.18E-01 1.809132 2.13E+00 2.44511
gpu nv 16x256 0.217488 3.20E-01 1.203614 1.42E+00 1.740859
cpu nv 16x256 0 5.52E+01 0 0.00E+00 55.17828
gpu nv pinned 20x256 0.216439 3.74E-01 1.654989 1.87E+00 2.245019
gpu nv 20x256 0.225497 3.73E-01 1.55533 1.78E+00 2.154124
cpu nv 20x256 0 8.70E+01 0 0.00E+00 86.98479
gpu nv 64x128 0.17565 1.36E-01 0.614158 7.90E-01 0.925554
gpu nv pinned 64x128 0.191116 1.48E-01 0.60203 7.93E-01 0.941307
cpu nv 64x128 0 2.91E+01 0 0.00E+00 29.07904
cpu nv 64x256 0 2.28E+02 0 0.00E+00 227.6636
gpu sp nv pinned 128x128 0.206989 2.13E-01 0.604368 8.11E-01 1.024527
gpu sp nv 128x128 0.188833 2.43E-01 0.607084 7.96E-01 1.03883
cpu sp nv 128x128 0 5.32E+01 0 0.00E+00 53.22514
gpu nv 128x128 0.179607 2.62E-01 1.203861 1.38E+00 1.645751
gpu nv pinned 128x128 0.184965 2.62E-01 1.203827 1.39E+00 1.650939
cpu nv 128x128 0 5.90E+01 0 0.00E+00 58.99802
cpu sp nv 128x256 0 4.18E+02 0 0.00E+00 417.8268

Table C.3: Performance data of the Plane sweep algorithm. The first column from the right shows the time including data transfer
and the data column shows the total data transfer time. The sweep time column shows the completion time without data transfers.
The second column shows the compiler that is used, including special options.

C.2. Plane sweep 70

hardware com+op size norm_phi
cpu nv 128 369.1216185
cpu ifx 128 369.1216186
gpu nv pinned 128 369.1216185
gpu nv 128 369.1216185
cpu gf 128 369.1216185
cpu nv 256 746.6278093
cpu ifx 256 746.6278093
gpu nv pinned 256 746.6278093
gpu nv 256 746.6278093
cpu gf 256 746.6278093
gpu nv pinned 2x256 1410.792634
gpu nv 2x256 1410.792634
cpu ifx 2x256 1410.792634
cpu nv 2x256 1410.792634
gpu nv pinned 4x128 1437.441846
gpu nv 4x128 1437.441846
cpu ifx 4x128 1437.441846
cpu gf 4x128 1437.441846
cpu nv multic 4x128 1391.020931
cpu nv 4x128 1437.441846
gpu nv pinned 16x128 5866.901269
gpu nv 16x128 5866.901269
cpu nv 16x128 5866.901269
cpu ifx 16x128 5866.901269
cpu gf 16x128 5866.901269
gpu nv pinned 16x256 11863.58196
gpu nv 16x256 11863.58196
cpu nv 16x256 11863.58196
gpu nv pinned 20x256 14850.0932
gpu nv 20x256 1485.093202
cpu nv 20x256 14850.0932
gpu nv 64x128 23584.73896
gpu nv pinned 64x128 23584.73896
cpu nv 64x128 23584.73896
cpu nv 64x256 47701.71681
gpu sp nv pinned 128x128 47149.87
gpu sp nv 128x128 47149.87
cpu sp nv 128x128 47149.87
gpu nv 128x128 47208.52246
gpu nv pinned 128x128 47208.52255
cpu nv 128x128 47208.52255
cpu sp nv 128x256 94778.42

Table C.4: Correctness check, shows norm_phi value for each run.

Bibliography
Appelhans, D. (2023). Best practices for programming gpus using fortran, openacc, and cuda. https:

//www.nvidia.com/en-us/on-demand/session/gtcspring23-S51857/
Burlacu, T., Lathouwers, D., & Perkó, Z. (2023). A deterministic adjoint-based semi-analytical algo-

rithm for fast response change computations in proton therapy. Journal of Computational and
Theoretical Transport, 52(1), 1–41. https://doi.org/10.1080/23324309.2023.2166077

Delftblue hardware. (2023). https://doc.dhpc.tudelft.nl/delftblue/DHPC-hardware/
Di Pietro, D. A., & Ern, A. (2011). Mathematical aspects of discontinuous galerkin methods (Vol. 69).

Springer Science & Business Media.
Duderstadt, J. J., & Hamilton, L. J. (1976). Nuclear reactor analysis. Wiley.
The fortran programming language. (2022). https://fortran-lang.org/en/
The gnu fortran compiler 11.2.0. (2021). https://gcc.gnu.org/onlinedocs/gcc-11.2.0/gfortran/
Kópházi, J., & Lathouwers, D. (2015). A space–angle dgfem approach for the boltzmann radiation

transport equation with local angular refinement. Journal of Computational Physics, 297, 637–
668. https://doi.org/https://doi.org/10.1016/j.jcp.2015.05.031

Lathouwers, D. (2023). A deterministic approach for proton transport.
Levin, W., Kooy, H., Loeffler, J. S., & Delaney, T. F. (2005). Proton beam therapy. British journal of

Cancer, 93(8), 849–854.
Nvidia v100 tensor core gpu data sheet. (2020). https://images.nvidia.com/content/technologies/volta/

pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
Openacc api 2.7 reference guide. (2018). https://www.openacc.org/sites/default/files/inline-files/API%

5C%20Guide%5C%202.7.pdf
Openacc programming and best practices guide. (2022). https://www.openacc.org/sites/default/files/

inline-files/openacc-guide.pdf
Shi, Y. (1996). Reevaluating amdahl’s law and gustafson’s law.
Uilkema, S. B. (2012). Proton therapy planning using the 𝑆𝑁 method with the fokker-planck approxima-

tion.
Witherden, F. D., & Jameson, A. (2020). Impact of number representation for high-order implicit large-

eddy simulations. AIAA Journal, 58(1), 184–197. https://doi.org/10.2514/1.J058434
Zheng-Ming, L., & Brahme, A. (1993). An overview of the transport theory of charged particles. Radi-

ation Physics and Chemistry, 41(4), 673–703. https://doi.org/https://doi.org/10.1016/0969-
806X(93)90318-O

71

https://www.nvidia.com/en-us/on-demand/session/gtcspring23-S51857/
https://www.nvidia.com/en-us/on-demand/session/gtcspring23-S51857/
https://doi.org/10.1080/23324309.2023.2166077
https://doc.dhpc.tudelft.nl/delftblue/DHPC-hardware/
https://fortran-lang.org/en/
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/gfortran/
https://doi.org/https://doi.org/10.1016/j.jcp.2015.05.031
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://www.openacc.org/sites/default/files/inline-files/API%5C%20Guide%5C%202.7.pdf
https://www.openacc.org/sites/default/files/inline-files/API%5C%20Guide%5C%202.7.pdf
https://www.openacc.org/sites/default/files/inline-files/openacc-guide.pdf
https://www.openacc.org/sites/default/files/inline-files/openacc-guide.pdf
https://doi.org/10.2514/1.J058434
https://doi.org/https://doi.org/10.1016/0969-806X(93)90318-O
https://doi.org/https://doi.org/10.1016/0969-806X(93)90318-O

	Introduction
	Proton therapy
	How it works
	Advantages over conventional radiotherapy
	State of the art

	Scope of this thesis
	Research question
	General approach and restrictions
	Outline of the report

	The proton transport problem
	Physical background
	The linear Boltzmann equation
	The Fokker-Planck equation
	Boundary conditions

	The numerical algorithm
	Numerical method and discretization
	matvec
	Plane sweep

	Parallel computing
	Scientific computing in Fortran
	General structure
	Available compilers
	Parallel computing support

	CPU vs GPU based programming
	Architectural differences
	Differences in performance scaling

	GPU offloading implementation
	Standard parallel: do concurrent
	OpenACC
	OpenMP
	NVIDIA CUDA Fortran
	Trade-off

	Modeling GPU-acceleration potential
	Available parallelism and execution time
	Data transfer time
	Miscellaneous factors

	Experimental method
	Acceleration process
	Directives and clauses
	Data movement optimization
	Mapping threads across levels of parallelism
	Exposing more parallelism
	Further optimizations
	data representation

	Performance measurements
	Hardware
	Compilers
	Compiler options
	Code segments
	System clock
	Profiling tools

	Results and discussion
	Plane sweep
	Pinned memory
	Multicore
	Data representation
	Gfortran and ifx
	Correctness

	Matvec
	General implementation considerations
	Applying the general performance model
	Execution time
	Data transfer time
	Discussion of the model

	Conclusion
	The performance model
	Acceleration results

	Model code
	Matvec model code
	Plane sweep model code

	Accelerated code
	Accelerated matvec model code
	Accelerated plane sweep model code

	Performance measurement tables
	Matvec
	Plane sweep

