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“There is perhaps no better a demonstration of the folly of human conceits than this

distant image of our tiny world”

Carl Sagan
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Abstract
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With the introduction of Interplanetary Laser Ranging (ILR), the acquired tracking

measurements accuracy of planets can be improved drastically (up to a few millimeters

(Dirkx, 2015)) which can result in an improvement in planetary ephemerides of not

only the planet which is the target of laser ranging but also other bodies in the solar

system due to dynamical coupling between the bodies. A quantitative analysis is per-

formed to analyze how much improvement in the current planetary ephemerides can be

achieved if highly accurate laser ranging observation were to be introduced in the current

planetary ephemerides generation processes. The thesis achieved this by developing an

ephemerides generation model using TU Delft’s Astrodynamic Toolkit (i.e TUDAT) in

which planetary ephemerides are generated for two cases. Once using simulated laser

ranging observations to Mars between 2020 and 2023 and once without utilizing laser

ranging observations. By comparing the estimated planetary ephemerides of the two

cases, it is concluded that laser ranging to Mars resulted in a more stable and close

to a factor of two improvement in ephemerides uncertainty for most of planets. The

ephemerides of the Mars itself sees nearly a factor of ten improvement in uncertainty

which resulted in a significant improvement in the knowledge of asteroid masses. The

estimated mass parameter of 11 of the most perturbing asteroids in the solar system

see more than a factor of ten improvement in their uncertainty which is unprecedented.

Laser ranging to Mars and its cascade effect on the orbit of Mercury resulted in provid-

ing better constraints on PPN parameter γ and Sun’s oblateness parameter J2 allowing

γ to be determined with an uncertainty of 5.5 ×10−8 which is 3 order of magnitude

better than the constraints provided from Cassini experiment (Kopeikin et al., 2007).

An order of magnitude improvement is also observed is Sun’s J2 parameter estimating

it to an uncertainty level of 2.0 ×10−9.
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Chapter 1

Introduction

1.1 Background Information

Currently, radio measurements and optical astrometry are the primary tracking data

of solar system bodies which are then used to generate planetary ephemerides (Fienga

et al., 2011). The state of art ephemerides generation processes, namely JPL’s DE model

(Folkner et al., 2014) and IMCCE’s INPOP ephemerides solutions (Fienga et al., 2011),

make use of all the different types of planetary observations that have been recorded

throughout the history provides so in combination with the dynamical models of the

solar system bodies to estimate the states of the solar system bodies. Table 3.1 provides

a summary of many of the historical missions and observation data types that have been

used up until now in state of the art ephemerides generation models. The dynamical

models used in state of the art ephemerides generation process are mathematical repre-

sentation of the actual dynamics of the solar system and they include various relativistic

accelerations, additional perturbation forces due to non-homogeneous gravity field of the

bodies, the tidal interaction in Earth-Moon system and finally they include nearly 343

asteroids in the simulation (which accounts for nearly 90 % of the mass of the asteroid

belt) which is the case for JPL’s latest ephemerides generation mode, DE431 (Folkner

et al., 2014).

The state of art ephemerides generation models do not solely estimate the ephemerides

but also a number of additional physical parameters (e.g mass of the asteroids in the

asteroid belt) to simultaneously improve the uncertain parameters in the model while

estimating the ephemerides. The ephemerides provided by DE and INPOP are used as

an input in other fields of studies such as conducting relativistic experiments, designing

future space missions etc Pitjeva (2013). Hence constantly improving their accuracy is

of utmost importance in other scientific fields.

With the introduction of Interplanetary Laser Ranging (ILR), the acquired tracking

1
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measurements accuracy can be improved drastically (up to a few millimeters (Dirkx,

2015)) which can result in an improvement in planetary ephemerides.

ILR operating principle is to some extend similar to radio ranging systems. There is a

transmitter system which produces a laser beam at wavelengths of 532 (or 880 and 1064)

nanometer with each pulse length being somewhere between 10 to 100 picoseconds. The

detection system at the space segment triggers a tagging signal upon successful reception

of the transmitted photons and the timing system tags the reception time using using a

very accurate on board clock. Upon detection, the laser pulses are re-transmitted back

to the ground segment to complete the ILR link.

There are a number of factors influencing the precision and accuracy of the ILR which

are very briefly touched upon here. Instability of the clock’s oscillator as well as clock

biases can result in both stochastic and systematic noise on ILR measurements. For

instance, Clocks that use hydrogen frequency standards can achieve very high stability

which results clock noise errors of less than a millimeter for light time duration of 1000

seconds (Bauer et al., 2016). Moreover, delays in tagging the reception times and having

non-calibrated hardware components on both ground and space segment are also among

the sources of having biased LR observations which with proper calibrations and using

state of the art hardware systems, these uncertainties are expected to be at 1 (Exertier

et al., 2006). Environmental errors such as atmospheric turbulence results in random

variations in the optical path length of the transmitted signal. The refraction of the sig-

nal as its propagating through different atmospheric mediums also results in systematic

propagation delays and errors. The atmospheric turbulence can result in sub millimeter

measurement noise (Kral et al., 2005) while the propagation delays can result in a few

millimeter error by utilizing ray tracing method to correct for these delays (Hulley and

Pavlis, 2007).

All of the above source results in a having few millimeter level accuracy for laser ranging,

however having millimeter level observation accuracy for one planet does not translate

into millimeter level accuracy for that planet’s ephemerides. This is because of inconsis-

tencies in our knowledge of solar system bodies’ state. For instance, one planet that has

an ILR link can have tracking data with millimeter level accuracy while other planets

that have radio and radar tracking data have observation accuracy ranging from meters

to kilometers respectively. Ultimately, this can diminish the achievable accuracy of the

ephemerides of the planet with ILR link due to dynamical coupling between bodies in

the solar system.

The above statement can also be reversed. Meaning, if a very accurate ILR observation

link to one planet exists, then it can improve the accuracy of bodies ephemerides that do

not have a very accurate observation link by utilizing the existing dynamical coupling

between solar system bodies. To the date of this thesis, There have been no quantitative

analysis performed to investigate how much improvement can really be achieved if an
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ILR link was to be introduced to a planet in solar system. This provides the basis of

conducting this thesis which its relevance, goals, motivations and layout are provided in

the upcoming Sections.

1.2 Thesis relevance, motivation & objective

To this date, none have conducted a quantitative study to determine the level of im-

provement that one can achieve in planetary ephemerides if an ILR system was to be

implemented. There have been studies where possible influences of ILR on specific cases

have been analyzed, for instance utilizing ILR for better understanding of Martian sys-

tem Dirkx et al. (2014), but none of them have done a comprehensive study for the effect

of ILR on all planetary ephemerides in a full scale solar system simulation. Even though

laser ranging is not yet realized in any actual mission over interplanetary distances, it

can be expected to be utilized in the future missions as it has very high potential and its

feasibility is already tested on a number of occasions. For instance, the scientific returns

of Lunar laser ranging experiment, not only showcases the high potential of laser ranging

and its contribution to scientific body, but also it has provided great inputs in reducing

the technological gap in realizing ILR Williams et al. (2004). The highly accurate laser

ranging observations to Moon are used in the state of the art ephemerides generation

models and have resulted in a much better understanding of Earth-Moon system (Dickey

et al., 1994) and relativistic gravity (Williams et al., 2004).

Moreover, number of tests have already been performed in the past to prove the ILR

feasibility. For instance, in 2004, laser pulses were sent to MESSENGER satellite which

was on its way to Mercury and the laser altimeter on board of MESSENGER (Ca-

vanaugh et al., 2007) also transmitted some laser pulses to ground station (Smith et al.,

2006), successfully completing a two-way ILR link. In this mission, proper time tagging

has been performed which provided range measurements with uncertainties of about

20 centimeter. Even though the satellite’s hardware was not designed specifically for

ILR, it managed to provide highly accurate range measurements. Mars Global Surveyor

detected laser pulses from ground resulting in an improvement in on board clock of this

surveyor by detecting a 10 millisecond offset on its clock (Neumann et al., 2006). As

studies have already proven ILR feasibility and proposed ways to implement them in

future missions (Dirkx, 2015), expecting ILR to be operational in near future is likely.

Hence conducting an analysis on the effect of ILR on planetary ephemerides becomes

very relevant, making the content of this thesis contributing to the current body of

knowledge.
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Therefore, on the basis of what was explained in the previous paragraphs, the main goal

of this thesis can be established. The goal of the master thesis it to conduct a quantita-

tive analysis to investigate how much improvement in the current planetary ephemerides

can be achieved if highly accurate laser ranging observation were to be introduced in

the current planetary ephemerides generation processes. The thesis aims to achieve this

by generating planetary ephemerides using simulated laser ranging observations to a

selected candidate planet. Then comparing the estimated planetary ephemerides with a

set of planetary ephemerides that are generated without using simulated laser ranging

observations. This comparison is done by looking that the errors of the both simulation

results and quantify the improvement in planetary ephemerides errors.

The motivation for conducting this analysis is to ultimately improve the planetary

ephemerides accuracy by utilizing ILR. The question of why having more and more

accurate planetary ephemerides accuracy is important has a number of reasons which

some of them are highlighted below. The planetary ephemerides provide important

information in understanding the evolution of the solar system and its stability. Ad-

ditionally, accurate ephemerides are used to observe relativistic effects (Xie and Deng,

2013). By accurately analyzing how ephemerides are affected due to relativity, one can

also estimate relativistic parameters accurately which is an important science return of

having accurate ephemerides. The accurate estimation of relativistic parameters not

only allows one to further prove the theory of general relativity but also improve the

accuracy of relativistic light-time correction applied to the observations, resulting in an

improvement in overall accuracy of the range measurements. For instance, having ac-

curate ephemerides allows for accurate observation of precession of planets orbits which

is defined as the change in argument of pericenter of the planet’s orbit in each orbital

revolution due to relativistic effects. These accurate observations can be used to test

various theories of relativity or constrain them (Wakker, 2015).
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All in all, the main research question that is aimed to be answered in this thesis is given

as follows.

How much improvement in planetary ephemerides uncertainty (or error)

can be achieved by introducing interplanetary laser ranging observation

in a planetary ephemerides generation process?

The above research question raises the following sub questions

• How much improvement in uncertainty can be achieved for the body where an ILR

link is established?

• By establishing ILR to one body, how much improvement in uncertainty can be

achieved for other bodies which no or very little observations are available?

• How effective is ILR for improving the mass parameter of the bodies in the asteroid

belt?

• How much can ILR contribute in improving the relativistic parameters used in the

ephemerides generation models?

It is important to note that the goal of this thesis is not to necessarily produce plan-

etary ephemerides with absolute accuracy that can compete with the state of the art

ephemerides. But it is to perform a study between two relative cases in order to analyze

the potential of ILR.

Since the scope of this thesis is very broad and can have many possible follow-ups

in the future, taking it into any direction, the simulation model that was developed for

this thesis is decided to be designed in a sandbox fashion. Meaning that anyone inter-

ested into further exploring the possibilities of laser ranging can directly use the code

produced for this thesis 1 and simply tamper with its input values to test any other

desirable hypothesis. Hence the code that is produced in this thesis can be used as a

framework that eliminates the need of having to recreate a new ephemerides generation

model every time a similar study needs to be performed. It is also setup in such a way

that with minimum to no knowledge of TUDAT or C++, one is sill able to use the

simulation model.

1https://github.com/habdolhay/ILRMasterThesis

https://github.com/habdolhay/ILRMasterThesis
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1.3 Thesis Layout

The layout of this thesis is as follows. Chapter 2 explains how the process of developing

an ephemerides generation model and all provides all the required components. Section

2.1 of Chapter 2 opens up by first explaining how the model of the solar system in this

thesis compares to reality, what assumptions come with it and how one can asses the

errors of this model. Then in Section 2.2 all the bodies that are and are not neces-

sary to include in an ephemerides generation are tackled. This is followed by Section

2.3 which specifically purposes a way of including the full effect of the asteroid belt in

the ephemerides generation model both effectively and efficiently without spending too

much computational budget. In Section 2.7, the mathematical representation of all the

acceleration models that should exist in an ephemerides generation model is provided.

Sections 2.4.2 and 2.6 explain how often and from which missions the required planetary

tracking observations are generated as well as what appropriate noise level that put on

top of them ensure the simulated observations represent the actual observations from

real missions. Finally, Chapter 2 ends with Sections 2.9 which explains what parameters

are estimated during the estimation to best answer the research question.

Chapter 3 validates all the choices and assumptions made in the ephemerides gener-

ation model given in Chapter 2 by performing a Known-Input Known-Output test and

comparing its performance with performance of the state of the art ephemerides gener-

ation models.

After validation of the model is complete, Chapter 4 uses the developed model to con-

duct an analysis on the effect of ILR on planetary ephemerides by using the inputs that

were introduced in Chapter 2. Chapter 4 displays in what ways ILR can improve the

planetary ephemerides, the knowledge of asteroid belt as well as the knowledge of the

dynamical parameters of the solar system and relativistic gravity.

Finally, Chapter 5 gives some remarks about the effect of laser ranging on planetary

ephemerides as well as providing a definitive answer to the research question that were

raised in Section 1.2. Chapter 5 ends with a recommendation which opens some ideas on

how one can use the results and the model developed in this thesis to further explore the

capabilities of laser ranging and recommends how one can further improve the results

that were produced in this thesis.



Chapter 2

Simulation Setup

This Chapter is dedicated to describing the scope of the ephemerides generation model

that is developed in this thesis using TU Delft’s Astrodynamics Toolkit (i.e TUDAT)

in order to produce ephemerides that can help answering the question and goal of the

thesis provided in Section 1.2.

First, a top level view of the simulation model, the assumptions related to it and the

criteria used to asses the performance of the estimation are explained in Section 2.1.

Then in Section 2.2 and 2.3, all the bodies that are included in the simulation model

as well as how the solar system asteroids are modeled and treated are explained. After

all the bodies are established, the interplanetary missions to these bodies and their

respective observation schedules are explained in Section 2.4.2. This followed by Sections

2.5and 2.6 which explain the observation models that are used to simulate different

type of observations as well as the process of how and what noise levels are added to

them to make them realistic. All the mathematical models that are used to set up the

acceleration models are given in Section 2.7. In Section 2.8, the integration settings of

the simulation is briefly explained and Finally in Section 2.9, explanations are provided

on which parameters are estimated in this thesis to best answer the research question.

2.1 Reality vs Virtual Reality

In state of art ephemerides estimation processes, observations from actual missions to

different planets are used in an estimation model which consists of a number of dynam-

ical models that attempts to reenact the reality as closely as possible. The state of the

art estimation models are not perfect due to errors in either the parameters that are

used to describe the model, how the model is formulated and in the initial condition

of the estimation. Moreover, the tracking observation themselves are not ideal and are

inherently noisy as they carry errors that exist in reality. Clock biases, hardware er-

rors, atmospheric delays etc all contribute to uncertainty of the available observations.

7
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Consequently, the state of the art ephemerides generation processes estimate planetary

ephemerides using a imperfect estimation model with noisy tracking observations. This

means the outcome of the estimation model (i.e the estimated ephemerides) will contain

a level of uncertainty that are due to these differences.

As was mentioned in Section 1.2, reproducing ephemerides that compete with state of

the art ephemerides is not part of the scope of this thesis and it becomes very difficult to

achieve. The first reason for complexity of reproducing the state of the art ephemerides

is having very little accessibility to the actual tracking observations of planets as well

as their actual uncertainty budgets. Even if all the observations were to be accessible,

processing these observations and developing an estimation model that exactly reenact

the state of the art estimation models would require a standalone research and extremely

large computational budget to execute, in particular, treatment of asteroids realistically

poses a computational bottleneck to this problem. As this thesis mainly focus on ana-

lyzing two hypothetical cases relative to one another which are not bound to any time

frame, the need to have actual planetary observations becomes unnecessary. It then

becomes much more beneficial to use simulated observations in order to perform this

thesis which provides the most flexibility in terms of testing various hypothetical sce-

narios without having to be limited to actual observations. It allows for defining custom

observation schedule and any desirable or future missions, experimenting with different

observation noise levels etc. This level of freedom allows the model to be a framework

for doing any further research without any limitations or reliance on real missions track-

ing data. In order to maintain consistency and avoid any erroneous estimation due to

having observations from different sources, all observations are internally simulated by

solving planetary state functions using TUDAT’s built-in functionality. 1

In order to simulate the observations, a virtual reality environment needs to be set

up which should reenact what is happening in the actual solar system as accurately

as possible. This virtual reality environment is used as the truth model meaning the

ephemerides that are calculated in this environment are used as an ideal reference point

to compare the estimation results to. The virtual reality is designed to represent the

actual reality, as closely as possible, in which any user defined and hypothetical plane-

tary missions, ground stations etc can exist. Next to this virtual reality environment,

there is the estimation model which is an independent model designed to estimate the

ephemerides that are produced in virtual reality using the simulated observation. This

hierarchy is shown in Figure 2.1 which shows how the virtual reality and estimation

model compares to reality and state of the art ephemerides generation models.

1http://tudat.tudelft.nl/tutorials/tudatFeatures/estimationSetup/

observationSimulation.html

http://tudat.tudelft.nl/tutorials/tudatFeatures/estimationSetup/observationSimulation.html
http://tudat.tudelft.nl/tutorials/tudatFeatures/estimationSetup/observationSimulation.html
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Figure 2.1: Figure showing the difference between the state of art ephemerides
generation models(on the left) and the way the model is setup in this thesis(on the

right)

As can be seen in the left diagram in Figure 2.1, the state of the art estimation mod-

els make use of real observations with real noise budgets in an attempt to estimate

ephemerides in of the real solar system. On the other hand (as can be seen from dia-

gram on the right and in more details, Figure 2.2), in this thesis first the virtual reality

is simulated which computes all planetary ephemerides and simulate the necessary ob-

servations. Then another model is used in an attempt to estimate the ephemerides that

been computed in virtual reality. It becomes clear that if the simulated observations

were to have no noise and there were no differences in the dynamical models of the

estimation model and the virtual reality, then the estimated ephemerides from the es-

timation model would perfectly resemble the ephemerides that were computed in the

virtual reality. This is of course not realistic as it is important to ensure the differences

between virtual reality and estimation model resembles the differences between actual

reality and state of the art ephemerides generation models.

Consequently, one requires to induce the necessary differences between the virtual reality

and estimation model (e.g difference in dynamics, add observation noise, etc) to ensure

the whole system of this thesis becomes a good representation of reality. The main

challenge is to apply a realistic noise level on the observation and a difference between

the dynamical model of virtual reality and estimation model such that the outcome of

the left system in Figure 2.1 matches or come close enough to the outcome of the right

system in Figure 2.1. The estimated ephemerides do not necessarily need to be the same
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for the two systems as long as their relative uncertainty is similar, the setup becomes a

valid representation of reality. This is shown in Chapter 3.

The virtual reality environment attempts to represent the actual solar system dynamics

as close as mathematically and computationally feasible. Throughout this Chapter, all

the required components to setup the virtual reality environment as well as explaining

the settings for the estimation model in order to answer the thesis question are explained.

2.1.1 Representation of true estimation error

Typically after parameter estimation process is performed, the diagonal elements of the

computed covariance matrix of the estimation is used as a mean to get the uncertainty

of the estimated parameters (as explained in Appendix C). Each element along the

diagonal of the covariance matrix is the statistical variance of each of the estimated

parameters. These variances are indicative of how well the estimated parameters were

fitted to the available observations, providing an statistical overview of how confident

the estimated parameters are. This uncertainty is referred to as the formal errors of

the estimation. In orbit determination, the formal errors of the estimated parameters is

believed to be optimistic. The true uncertainty can be up an order of magnitude larger

(Lemoine et al., 2013), in orbit determination of spacecrafts, and it can be a factor of

two to three larger when estimating planetary ephemerides (Folkner, 2010) depending

on how well estimation and observation model is capable of reenacting reality (Folkner,

2010). Also these formal errors need to be propagated in time in order to given some

information about the error evolution over time. This propagation is mainly done using

linear schemes, though other and more complex and accurate schemes are available (Luo

and Yang, 2017), which and are based on a number of assumptions which casts further

shadows over reliability of formal errors as a means to define the uncertainty of the

parameters. Therefore, purely looking at the formal error of the estimation is possible

but does not provide the full picture of the actual uncertainty.

In this thesis, a virtual reality model is developed which acts as a truth model or ref-

erence model and there is an estimation model which attempts to estimate the truth

model as closely as possible. Hence one can directly compare the results of the estima-

tion model with the truth model in order to asses the performance of the estimation

model and how well it can represent the truth model (as shown in Figure 2.2). This

is a great alternative to formal error and eliminates the disadvantages of formal error

and its propagation. This error is called true error and from now on in this thesis all

the computed errors will represent the true error unless it is specified otherwise. The

downside of this method is that the resulting true error becomes only one of the possible

realizations of the uncertainty distribution and if one requires to get an uncertainty level,

it needs to run the simulation multiple times with different initial conditions to get the
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variance of the uncertainty distribution. It also requires to apply a proper difference

between the estimation and the truth model to ensure the true error and its relation to

formal errors is realistic.

Whether this way of representing the error is valid or not is tested and validated in

Chapter 3 which checks how the true error compares the the state of the art planetary

ephemerides formal errors.

2.1.2 Top level simulation diagram

A top level diagram of the simulation that is setup in this Chapter to perform the anal-

ysis is given in Figure 2.2. It is important to note that this is a very top level diagram

of the simulation meaning it does not show every individual function and every single

input and output parameter for each block. It is merely a representative of how the top

level information flow through the simulation, as well as the general inputs and outputs

of the simulation.

It can be seen from Figure 2.2 how virtual reality (i.e truth model) and the estima-

tion model interact. For every block that is shown in the diagram, the corresponding

Section of this thesis is stated in which the inputs and outputs of that block is thoroughly

explained. This is used as a mean to give an idea of how information from different Sec-

tions of this thesis flow together. The text on the arrows indicate what information goes

in and what is expected to come out of each block on a very top level.

It can be seen that there are two independent acceleration models for both estima-

tion model and the truth model. This is done to given user freedom to induce any

desirable differences between the two dynamical models in order to perform different

analysis. In this thesis, the differences between truth and estimation environment are

summarized as follows.

The acceleration models in both virtual reality and estimation model are identical with

the only difference being in the parameters that are used to describe them. In the

estimation model, The planets’ states that are to be estimated are perturbed and the

asteroids’ masses that are to be estimated are also perturbed based on their currently

known confidence level given in literature (Baer et al., 2011) (Konopliv et al., 2011) to

see how the estimation retrieve the true values. The other and more important way that

is used to impose differences between the virtual reality and the estimation environment

is done by adding a realistic noise profile on the observation which are there to account

for various error sources in observations and also unmodeled dynamical forces that are

supposedly exists in truth model but are not accounted for in the estimation model.

Section 2.6.1 illustrates how this noise profile is designed.
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Figure 2.2: A top level simulation diagram displaying the logical flow of the
information and their corresponding Sections. This diagram does not display all the
functions nor all the inputs and outputs of the simulation but its merely a top level

flowchart of information interaction
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2.2 Major bodies in Virtual Reality & Estimation model

The virtual reality (i.e truth model) is modeled in such a way that it reenacts the actual

solar system as closely as possible. Therefore, it requires to include all the major bodies

in the solar system. Whether inclusion of the moons of all planets in the virtual reality

environment is necessary or not, depends on the number of factors to consider which are

explained as follows.

The Moons have a much smaller orbital period compared to the planets (e.g Galilean

moons have orbital periods of between approximately 2 to 17 days). When one compares

the Moons’ orbital periods to the orbital period of the planets which range from about

90 days to more than 100 years, it becomes apparent that a very small integration step

size would become required to accurately propagate their states. During the simulation,

the selected integration step size is generally dominated by fastest moving objects and

inclusion of moons can result in a very high computational effort and time, especially

for simulation periods of multiple years. Moreover, the accumulated numerical errors

of a fast moving object can become very large for long simulation periods which makes

inclusion of moons a hindrance.

Computational effort alone is not the sole reason to consider neglecting the moons.

There exists two other elements that should be examined. First one is how accurately

the orbits of the Moons can be reconstructed in virtual reality model and the second

one is how significant the mutual effect of the moons on their parent planets are (i.e in

terms of how significant these effects are on the ephemerides of their parent planets).

For instance, modeling the Jupiter’s gravity field accurately is required to reconstructs

orbits of the Galilean moons properly as that has a significant effect on their orbits. It

was only recently that JUNO’s Doppler tracking data allowed for an accurate determina-

tion of Jupiter’s gravity field which is still limited to the JUNO’s orbit geometry (Folkner

et al., 2017). The gravity field of other gas giants are much less accurately known hence

making reconstruction of their respective moon’s orbit accurately challenging (Helled

et al., 2010). Hence other than Earth’s moon orbit which is highly accurately known

due to lunar laser ranging and partially Galilean moons, other moons in the solar system

are not very well constrained.

The second factor that was mentioned was the mutual effect of the moons on their

parent planets in terms of how significant these effects are on the ephemerides of their

parent planets. A simple analogy is made to provide a preliminary perspective on the

significance of the moons’ effect on their parent planets ephemerides using Table 2.1.
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Table 2.1: List of some of the major moons and their relative Mass and Distance to
their parent planets

Moon Comparison

Parent Planet Moon name Mass percentage of parent planet Distance to parent planet -[km]

Earth Moon 1.2 % 384,000

Jupiter Ganymade 0.008 % 1070,000

Callisto 0.006 % 1882,000

Io 0.005 % 422,000

Europa 0.002 % 671,000

Saturn Titan 0.024 % 1222,000

Rhea 0.004 % 527,000

Iapetus 0.003 % 3560,000

Dione 0.0002 % 377,000

Tethys 0.0001 % 294,000

Uranus Titania 0.004 % 436,000

Oberon 0.002 % 583,000

Umbriel 0.001 % 266,000

Ariel 0.002 % 190,000

Neptune Triton 0.02 % 354,000

The interaction between Earth-Moon induces a wobble in Earth’s orbit of a few kilo-

meters which if neglected, will cause the Earth’s orbit to behave differently which has

a consequent effect on the orbit of inner planets due to dynamical coupling between

them (Touma and Wisdom, 1994). The moons of gas giants have have much smaller

mass compared to their parent planets which means the effect that those moons induce

on their parents orbits becomes very small and investing the computational effort to

account for those effect becomes superfluous. As can be seen from Table 2.1, Earth’s

Moon which is at a distance of 384,000 kilometers from Earth has a mass of about 1.2

% of Earth. Ganymede, the largest moon in the solar system, is at a distance of nearly

1 million kilometers from Jupiter and has mass of about 0.08 % of Jupiter’s mass. This

makes Ganymede effect (and other Galilean Moons following from same analogy) on

Jupiter’s motion extremely small compared to effect of the Earth’s Moon on Earth. A

similar analogy can be made for moons of other planets which is summarized in Table 2.1

that can be used to conclude that, other than Earth’s Moon, including all other moons

in the virtual reality and estimation model becomes unnecessary as they do not have

any significant effect on the ephemerides of their parent planets (and other planets).
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2.3 Treatment of Asteroids in Virtual Reality & Estima-

tion model

The inclusion of the bodies in asteroids belts is important in the simulation. Asteroid

belt has a significant effect on orbits of inner planets, especially Mars due to this planet

being very close to the main asteroid belt (Standish Jr and Hellings, 1989). Inclusion of

all asteroids in the virtual reality and estimating all of their individual mass parameters

during estimation is not computationally feasible. Hence an alternative is suggested to

be used for this thesis but first a review of how asteroids are treated in the state of the

art ephemerides generation models is provided.

In the state of the art ephemerides generation models, the effect of the 343 asteroids

that theoretically have non negligible effect on the orbit of the Mars are included in the

dynamical models (Viswanathan et al., 2017) (Folkner et al., 2014). All of these aster-

oids are individually propagated and their mass parameters are individually estimated.

The asteroid masses are initialized at the beginning of the estimation using their current

best estimates and from the direct observations of their radius made by WISE Mission

which are translated into mass parameter. 2

The computational budget available for this thesis is not sufficient to treat the aster-

oids the same way as it is treated in state-of-the-art ephemerides generation models.

Therefore, it is only computationally feasible to include a limited number of individual

asteroids in the virtual reality and estimation model. An alternative option is to model

the rest of the asteroids in the asteroid belt by a ring as is proposed by a (Kuchynka

et al., 2010). The results of the study proves that for the ring model to be 99 % effective

(i.e to account for 99 % percent of the effect of the total asteroid belt), a number of

around 300 optimally selected asteroids need to be included individually in combination

with having a ring model for the rest of the asteroids belt. This does not mean that

the ring model becomes completely ineffective if one includes less than 300 individual

asteroids though. The individually included asteroids are selected optimally selected in

order to make the most out of the ring model and this selection is done by solving a

Mixed Integer Quadratic Optimization Problem (MIQP) that selects which asteroids are

optimal to include individually for ring model to be as effective as possible. This anal-

ysis is already performed by (Kuchynka et al., 2010) in which he proposes the optimal

ring characteristic for any number of individually included asteroids. The results of this

study are used as a basis for asteroid treatment in this thesis.

How the ring model and individual asteroids complement each other are explained using

Figures 2.3 and 2.4 (taken from (Kuchynka et al., 2010)) which show the effect of in-

cluding a ring model together with N number of individually included asteroids. Figure

2http://wise2.ipac.caltech.edu/docs/release/neowise/neowise_2018_release_intro.html

http://wise2.ipac.caltech.edu/docs/release/neowise/neowise_2018_release_intro.html
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2.3 shows (in terms of percentage) the magnitude of the remaining perturbations that

are not yet covered after fitting the ring model and including N asteroids individually.

The dotted line represent the case where the selected N number asteroids are the most

perturbing ones and the solid line shows when the N number of asteroids are selected

optimally after solving the MIQP averaged over 100 runs.

Figure 2.3: What portion of the remaining perturbation on Mars’s orbit (in
percentage) are not yet covered after including N asteroids individually in

combination with an asteroid ring. The dotted line represent the case where the
selected N number asteroids are the most perturbing ones and the solid line represent
the case where the selected N number of asteroids based on solving MIQP averaged
over 100 runs(i.e optimal asteroid selection). The gray line represent one of the 100

runs(Kuchynka et al., 2010)

The following example is provided on how to interpret Figure 2.3. For instance, If one

was to include 10 of the most perturbing asteroids individually in the asteroid models

in combination with an asteroid ring model, around 80 % of the remaining perturbation

amplitude would still left to be covered. Figure 2.4 shows the same results but in terms

of range uncertainty in Earth-Mercury (lines c and c′), Earth-Venus (lines b and b′) and

Earth-Mars (a and a′). This Figure indicates how much uncertainty will still be left in

the orbits of Mercury, Venus and Mars after combining a ring model with N number of

individual asteroids.
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Figure 2.4: How much uncertainty will still be left in the orbits of Mercury (lines c
and c′), Venus (lines b and b′) and Mars (a and a′) after combining a ring model with

N number of individual asteroids (after 30 years of simulation). The dotted line
represent the case where the selected N number asteroids are the most perturbing
ones and the solid line represent the case where the selected N number of asteroids

based on solving MIQP (i.e optimal asteroid selection)(Kuchynka et al., 2010)

For this thesis, results from Figures 2.3 and 2.4 are used as a reference point on choosing

how many asteroids to include individually in the virtual reality and estimation model

as well as the complementary ring’s characteristics. Based on some preliminary tests,

propagating more than 20 individual asteroids in virtual reality and estimation model

is not computationally feasible as it uses well over 50 Gigabytes of memory that is

available to conduct the thesis on but this value depends strongly on how long the

simulation is run for. On average for a 30 year simulation time, only around 11 asteroids

is computationally feasible to be included individually which requires 48 Gigabytes of

memory. Hence it becomes apparent that including an asteroid ring in virtual reality

would result in a drastic improvement in the modeling of the solar system asteroid belt.

This would make it possible for the virtual reality environment to reenact reality to a

much closer level. It would also be possible to completely exclude the ring and only

include 11 asteroids in virtual reality which would significantly simplify the dynamical

model of the virtual reality as the acceleration model of the ring does not need to be

modeled anymore. But excluding the ring means a significant portion of the dynamical

effect on the solar system bodies are being neglected. It is estimated that ring will have

a lumped effect of a few kilometers on the orbit of Mars as also shown in Figure 2.5

which is best to be included to ensure the virtual reality model developed in this thesis

reenact the actual solar system as closely as it can. .
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Figure 2.5: How much uncertainty will still be left in the orbits of Mars after
combining a ring model with N number of individual asteroids (after 30 years of

simulation). The dotted line represent the case where the selected N number asteroids
are the most perturbing ones and the solid line represent the case where the selected

N number of asteroids based on solving MIQP (i.e optimal asteroid selection)
averaged over 100 runs. The gray line is one of the 100 runs. (Kuchynka et al., 2010)

2.3.1 Asteroids selection process

The question of which asteroids to include is already answered by (Kuchynka et al.,

2010) which is based on solving MIQP using a Monte Carlo approach with 100 different

runs. In all runs, a number of asteroids had a probability of 98 % - 100 % of being

selected to be the optimum ones to include individually. Among these asteroids, a list of

the 20 asteroids with an effect of higher than 100 meters on Mars’s orbit (over 30 years)

are provided in Table 2.2 along with their nominal mass parameter which is the current

best estimate of these asteroid masses. These values are called nominal values (or true

values) as they are used in the truth model to generate the true reference ephemerides.

The masses themselves are also used as a reference to compare the estimated asteroid

mass parameters to in order to see the relative improvement that one can achieve with

laser ranging (see Section 4.2). The first 11 asteroids shown in Table 2.2 are included

individually in virtual reality and their masses are estimated during the estimation

as computationally, including more asteroids becomes unfeasible. These asteroids are

complemented with a ring with characteristics shown in Section 2.3.2.
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Table 2.2: List of 20 most optimum asteroids to include individually in Virtual
Reality along side the ring model (ordered based on their mass parameter)

Asteroid Name Nominal µast [km3/s2]

1 Ceres 63.18

4 Vesta 17.74

2 Pallas 14.08

10 Hygiea 5.84

31 Euphrosyne 3.58

704 Intermanta 2.60

511 Davida 2.56

15 Eunomia 2.11

3 Juno 1.99

52 Europa 1.75

48 Doris 1.73

16 Psyche 1.52

532 Herculina 1.15

29 Amphitrite 1.03

9 Metis 0.98

7 Iris 0.97

6 Hebe 0.83

324 Bamberga 0.75

19 Fortuna 0.55

24 Themis 0.53

2.3.2 Modeling the asteroid belt as a ring

The theory behind modeling the asteroid belt as a ring is directly based on the analy-

sis performed by (Kuchynka et al., 2010) which assumes the ring has a fixed radius of

2.8 AU and is treated as an object with its center is at barycenter of the solar system

coinciding with the ecliptic plane. Both mass and radius of the ring can be adjusted

depending on how many asteroids are to be included individually, but as also shown in

analysis done by (Kuchynka et al., 2010), its simpler to fix one of the parameters (e.g

ring radius) and only adjust the other one based on how many asteroids are included.

Therefore in this thesis, the ring’s radius is set for a fixed value of 2.8 AU and only the

mass of the ring is adjusted that as a function of the number of asteroids that are to

be individually included. The mass of the ring is directly and linearly proportional to

the amplitude of the perturbation that it induces on the planet orbits (i.e Earth-Mars

distance). Based on values that are provided by (Kuchynka et al., 2010), when including

50 of the most optimum asteroids individually, the amplitude of the perturbation will be

at 472m which corresponds to a ring mass of 2.1879× 1020kg. Using the left Figure 2.5
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one can extrapolate the mass for every possible N up to N = 500 using a simple linear

relation Mring = C ×Ampperturbation with constant C being equal to C = 4.6353× 1017.

Assuming the inclusion of only 11 optimum asteroids, the optimum mass of the ring will

become 4.6353 × 1020kg. After selecting the ring’s properties, its perturbation on all

planets needs to be included in the acceleration models. The mathematical formulation

of a force acting on planets due to the presence of a ring as well as its validation are

shown in Section 2.7.

To summarize, the complete solar system asteroid belt is modeled as 11 individually

propagated asteroids shown in Table 2.2 that are optimally selected using MIQP analy-

sis complimented with a ring that has a mass of 4.6353× 1020kg with a radius of 2.8AU

centered at the solar system barycenter. Theoretically, this combination is capable of

covering approximately 95 % percent of the total perturbation of the complete asteroid

belt in the solar system judging by Figure 2.3 produced by (Kuchynka et al., 2010).

This means, the virtual reality model developed in this thesis is capable of accurately,

yet within the computational limitations, model the asteroid belt of the solar system

making the scientific return of this thesis more valuable.

2.4 Simulation and observations time schedule

As the scenario that is to be tested in this thesis is most likely to happen in the near

future, it is desirable to select a time frame in a the future which this scenario is expected

to happen. There is also the capability of testing the hypothesis of what would have

happened if laser ranging was implemented in the past but that would not be a very

desirable or useful result as it is best to look on how much improvement one can make

in the future.

The simulation time frame for this thesis is selected to be from 2020 to 2050. The

reasoning for the start date is because of a number of important space missions are

planned to become operational around that date, as shown in Table 2.3, making it an

interesting and realistic choice of starting date for the simulation. The selected duration

for estimation is very much tied to the computational budget that is available for this

thesis and some preliminary tests have shown that performing more than 30 years of

simulation is not computationally feasible with the asteroid combination shown in Sec-

tion 2.3. However, long computational time spans are required to fully or at least mostly

reconstruct the orbits of the planets. Uranus and Neptune have orbital periods beyond

100 years (i.e 111 and 170 years respectively) which means 30 years covers nearly one-

fifth of their orbits. Ideally, one would require the estimation to cover at least one full

orbit with observations covering the whole orbit as well to have a properly constrained

orbit determination problem however in reality that is not the case. For instance, Nep-

tune’s observation history does not completely cover one full orbit of Neptune, which
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result in its uncertainty becomes very large compare to other well constrained orbits

(Folkner et al., 2014). Before that though, in the following subsection, some of the most

significant future interplanetary missions are presented which is used to justify why the

aforementioned time frame is a good time frame to choose to conduct this experiment.

2.4.1 Selected missions & Candidate planets for laser ranging

The confirmed missions are provided in 2.3.

Table 2.3: List of upcoming interplanetary missions that can be used for
interplanetary tracking

Parent Planet Mission name Operational time span

Mercury BepiColombo 2025-2027(28)

Venus Venera-D 2026-2029

Mars Mars 2020 2020-2022(25)

ExoMars 2020 2020-2021

Mangalyaan 2 2022-2023(25)

Jupiter JUICE 2030-2034

Any of the missions that are shown in Table 2.3 can potentially be target of testing

the laser ranging concept. In this thesis, for sake of simplicity, the observations are

done to surface of the target planets rather than an orbiter around it. The reason for

this decision is that it eliminates the requirement of defining each specific’s mission

orbit geometry as well as estimating orbiter’s orbital parameters. In state of the art

ephemerides generation processes, first the orbit of the orbiter around the target planet

is determined accurately, then using the observation from the ground stations on Earth to

the orbiter, the planetary ephemerides are determined. Having this process in this thesis

adds a lot of complexity to the whole simulation and does not make any contribution

towards answering the thesis question as the research question requires a laser ranging

link to be available to a target planet, regardless of how this link is established.

When only laser ranging to surface of a planet is considered, then Mars becomes the

only realistic candidate for having a laser link end. Venus has very dense atmosphere

for laser ranging to be feasible due to susceptibility of visible light to refraction in dif-

ferent mediums. But that is not the driving factor of why Mars has been selected as

the candidate planet to simulate laser ranging observations for. As also discussed by

(Turyshev et al., 2004), In terms of scientific outcome, Mars is also one of the most

interesting targets for testing laser ranging as its orbit is the most significantly effected

by the asteroid belt. The masses of the many bodies in the asteroid belt are not so
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accurately determined due to limited direct observations of them. This has made range

measurements to Mars one of the significant contributing factor in improvement of the

knowledge of asteroid masses. Hence accurate laser ranging to Mars can possible esti-

mate these masses to potentially better accuracy which in return improves the orbit of

Mars as well as other planets. The period of laser ranging to Mars is selected to be 3

years which is long enough to observe some the effect on asteroid masses while it is not

too long. This duration is also inline with missions duration to Mars that are given in

Table 2.3.

2.4.2 Observation Schedule

In this Section, the observation type and schedule used for each planet as well as the

conditions that are used to ensure the simulated observations are physically feasible

are explained. In order to determine a realistic observation schedule of each mission as

well as selecting a realistic noise budget for each of them, a number of points are to be

considered which are explained as follows. These points are derived based on analyzing

literature and used as the main guideline to form assumptions regarding observation

schedules selected in this thesis.

• Astrometric observation to gas giants, be it a transit observation of their Moons or

a direct observation of the planet itself, are all assumed to be direct angular obser-

vation of that planet for sake of simplicity in simulating them in the observation

model.

• It is assumed that ground stations (e.g Flagstaff) continue the current trend of

direct angular observation to gas giants during the estimation period used in this

thesis (i.e 2020 to 2050). This trend is shown in Figures provided by (Folkner et al.,

2014) which shows how frequently observations to different planets are taken as

well as the INPOP’s observation database 3. These trends are used as the main

guideline for selecting the angular observation frequencies and the observation

ucertainty budget for Jupiter, Saturn, Uranus and Neptune that are shown in

Table 2.4.

• It is assumed that ground stations (e.g Arecibo) seize to conduct any direct radar

ranging to inner planets during the estimation period used in this thesis (i.e 2020

to 2050). Hence, the missions to inner planets provided in Table 2.3 are the only

source of range observations to these planets. The reason for this assumption is

because these radar stations have not been conducting any radar range observa-

tions in more than a decade or so as can be seen by actual observation schedules

shown in(Viswanathan et al., 2017), (Folkner et al., 2014) and INPOP’s observa-

tion database.

3http://www.geoazur.fr/astrogeo/?href=observations/base

http://www.geoazur.fr/astrogeo/?href=observations/base
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• It is assumed the observations that are made to the the missions that are given

in Table 2.3 are mainly direct range observations (i.e radio range) and there are

no angular observations made to these missions (e.g VLBI). The reason for this

is directly derived from observation schedule of actual past missions shown in

(Viswanathan et al., 2017) and (Folkner et al., 2014). As an example, there have

been 25,000 range observations to Venus Express from 2007 to 2012. In the same

time interval, only 46 VLBI observations have been made of this mission which

are done very inconsistently with accuracy that is less than the accuracy of range

observations. Hence the range observations to Venus Express trumps the VLBI

observations as they are done during the same time interval and range observations

having higher accuracy. This is also true for other planets which show mainly range

observations to their orbiters or landers. It is indeed true that VLBI observations

has been very beneficial in determining planetary ephemerides, for instance, as

also shown in Table 3.1, VLBI observation of Magellan from 1990 to 1995 has

been the only source of accurate observation to Venus during that time period

which allowed for accurate determination of Venus ephemerides during that time

period. This is because there were no better observations available during that

time period so including them is beneficial and essential. Hence for simplicity in

this thesis, only consistent range observations done to missions shown in Table 2.3

are used as the main mean to determine the orbit of their respective planet.

• Observation schedule of missions provided in Table 2.3 are selected based on sched-

ule of similar interplanetary missions used in past. Same is true for their induced

noise profile which is selected based on combination of noise budget of the past

missions. Studies shown for BepiClombo mission indicate that it can achieve range

observation accuracy of at least few meters but optimistically, these uncertainty

can be reduced to less than a meter by doing the observation in a 5-way link config-

uration while exploiting various reduction techniques explained in (Tommei et al.,

2010). In this thesis observations to BepiClombo are assumed to be a direct range

observations to this mission hence it assumes a conservative uncertainty budget

of a few meters rather than the optimistic sub meter level one. To compare this

uncertainty budget to past missions to Mercury, one can look at MESSENGER

mission which managed to achieve range observation uncertainty of around 10 me-

ters (Viswanathan et al., 2017) which shows range observation accuracy of a few

meters is indeed realistic.

Venera-D range observation accuracy is directly taken from Venus Express range

observation accuracy as there are not yet conclusive studies on uncertainty budget

of this mission and the missions have similar characteristics(Zasova et al., 2017),

Venus Express achieved range uncertainty of about 10 meters which is also the

value chosen for Venera-D mission. Similar justification is used for future Mars

missions as studies shown that they are expected to continue the current trend
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range observation accuracy to Mars (Kuchynka and Folkner, 2013). Mars Odyssey

and Mars Express both achieved range observation uncertainty of about 5 meters

folkner2014planetary which is also what is selected for the future Mars missions.

For JUICE, the observation uncertainty is selected based on missions characteris-

tics presented in (Plaut et al., 2014).

• All the different missions to Mars that are shown in Table 2.3 are summarized into

one mission or linkend from 2020 to 2025 for simplicity of observation scheduling

and systematic noise implementation.

Based on the above assumptions, the observation schedule to each individual planet can

be determined. A summary of the observations to all the planets and different missions

are provided in Table 2.4 which is mainly gathered from (Viswanathan et al., 2017) and

schedules shown in (Folkner et al., 2014).

Table 2.4: Observation scheduling of each link for each planet. Each line represent
one link

Observation Scheduling

Planet Duration Frequency Type σ of the noise

Mercury 2025 to 2028 6 Obs per hour repeated every day BepiClombo radio range ±3 m

Venus 2026 to 2029 6 Obs per hour repeated every day Venera-D radio range ±10 m

Mars 2020 to 2025 6 Obs per hour repeated every day Combined Mars mission radio range ±5 m

2020 to 2023 6 Obs per hour repeated every day Hypothetical laser ranging phase ±5 mm

Jupiter 2030 to 2034 6 Obs per hour repeated every day JUICE radio range ±100 m

2020 to 2050 180 obs per 90 days repeated every 90 days Direct astrometric ±200 mas

Saturn 2020 to 2050 180 obs per 90 days repeated every 90 days Direct astrometric ±200 mas

Uranus 2020 to 2050 180 obs per 90 days repeated every 90 days Direct astrometric ±200 mas

Neptune 2020 to 2050 180 obs per 90 days repeated every 90 days Direct astrometric ±200 mas

2.4.3 Observation viability conditions

The simulated observations are based on solving light time equation shown in Section

2.5 which is completely theoretical and do not consider whether the ground station is

physically capable of making the observation. Hence, to ensure the simulated observation

are physically possible, are a number of conditions are applied that checks whether the

simulated observation is feasible or not. If any of the conditions provided below are not

satisfied when solving the light time equation, then that observation is removed from

the list of feasible observations.

• Planet’s elevation angle with respect to the ground station: For ground

station to be able to observe the planet, it needs to be in line of sight of the station.

The target planet’s center of mass is selected a minimum of 2.5 degrees elevation

angle with respect to the ground station to ensure the planet is in line of sight of

the ground station.
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• Moon osculation: Even though this can be a rare occurrence, the Moon is set

not to break the line of sight of target planet and the ground station.

• Sun avoidance angle: The Sun is set not to block the ground stations from

making the observations to target planets. On one hand, the observation noise

scales up the closer the station is pointed towards the Sun due to solar flux but on

the hand, to capture the relativistic effects, its best to have observation as close

to Sun as possible as the effect of Sun’s gravity on electromagnetic wave becomes

larger the closer it is passing from it. This allows for getting better constraints for

PPN parameter γ when utilizing laser ranging (see Section 2.9.3). In this thesis,

the Sun avoidance angle is selected to be larger than 1 degree for laser and radio

ranging observations to capture this effect as good as possible.

2.5 Observation models

In this Section, the models that are used to simulated range and angular observations

are presented. In order to simulate the observation between the two bodies, first the

light time between the two bodies are determined. Equation 2.1 shows how the light

time, tLT , between two bodies are computed. In this Equation, with ∆t1 refers to the

first order relativistic time correction due gravitational potential of the involved bodies

(i.e the 1
c2

term presented in full light time equation provided by (Moyer, 2005) and rr

and rt are the positions of the receiving and the transmitting ends of the link. Since

transmitter and receiver are moving relative to one another and speed of light is not

infinite, the true light time is approximated iteratively. This is done by dividing the

distance between receiving and the transmitting ends at t = tt by the speed of light.

Then using the calculated light time, the displacement that both transmitter and receiver

go through during that time is computed and from the newly computed positions, a new

light time is then computed. This process is repeated until the change in light time at

each iteration becomes negligibly small.

tLT = tr − tt =
|r̄r − r̄t|

c
+ ∆t1 (2.1)

After computing the light time between the two desired bodies (i.e transmitting and

receiving ends) then that information can be used in order to simulate the desired

observation from the position function of those bodies. In the following subsections, the

observation models for simulating one-way range, two-way range and angular position

are provided. The below Equation is as a function of the transmission time.
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2.5.1 One-way range simulation model

The one-way range is simulated using Equation 2.2. In this Equation, t1 is the time where

the signal is transmitted from the transmitter and the time at reception is t1 + t(LT )

with t(LT ) being light time value that is computed used Equation 2.1.

h
(1)
tt=t1

= |r̄r(t1 + tLT )− r̄t(t1)| (2.2)

2.5.2 Two-way range simulation model

For two-way range, which is the configuration used for laser ranging in this thesis,

Equation 2.3 is used which is just the summation of two one-way ranging configuration.

Equation 2.3 assumes that there is no delay between the reception and re-transmission

time and re-transmission is done instantaneously. Equation 2.3 also does not include the

additional ∆t term in case the laser ranging is done asynchronously as in this thesis, echo

ranging is assumed (i.e signal is re-transmitter back to the ground station as soon as it

is received by the receiver), In Equation 2.3, t1 is the time where the transmitter first

transmit the signal towards the receiver and t2 is the time when the receiver receivers

and re-transmits the signal back to the ground station. The below Equation is as a

function of the transmission time.

h
(2)
tt=t1

= |r̄r(t1 + tLT1)− r̄t(t1)|+ |r̄t(t2 + tLT2)− r̄r(t2)| (2.3)

2.5.3 Angular position simulation model

The angular observations are declination, h(δ), and right ascension, h(Ω), of the planets

relative to the ground stations. These observations are computed using Equation 2.4 in

which x and z denote the Cartesian components of the position vector of the receiver or

transmitter at times tamps shown in the equation.

h
(δ)
tt=t1

= sin−1

(
zr(t1 + tLT )− zt(t1)

|r̄r(t1 + tLT )− r̄t(t1)|

)
h

(Ω)
tt=t1

= cos−1

(
xr(t1 + tLT )− xt(t1)

|r̄r(t1 + tLT )− r̄t(t1)|cos(δ)

) (2.4)

2.6 Observation noise treatment

The observations that are simulated in this thesis are based on solving the state equation

between the two bodies. So a realistic noise profile needs to be put on the observations

to reenact the limitations that are available in the actual observations. The noise profiles

are divided into stochastic and systematic noise which come from different sources in
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the observation environment. Systematic noise represent the noise that is typically time

dependent and it also includes the environmental sources that leave a certain specific

signature on the observations. For instance atmospheric interference, solar activity or

even presence of unmodeled forces which leave their signature on the observations, either

as short period or long period variations. Stochastic noise consist of random walk that

is present in the recorded observations which come from sources that were explained in

Section 1.2.

The total noise that is applied on the observation is the summation of stochastic and sys-

tematic noise depending on the observable type that is used which is shown in Equation

2.5 with h being a realization of an observation

hreal = hideal + δhsys + δhstoch (2.5)

The stochastic component of the noise is simply realized by sampling a normal dis-

tribution function with a user-defined standard deviation. The systematic component

however, slightly more complex to implement correctly. Section 2.6.1 explains how the

systematic noise is defined in this thesis. In case when the Virtual Reality and the esti-

mation model are dynamically identical, the dominating factor on the residuals become

the noise profile that is applied on the observation. In Section 3.3 the induced noise

profile on the observations as well as the effect that it has the post-fit residuals and

converged solution of the problem are shown. This gives an insight on how sensitive are

the estimated orbits to the profile of the noise as well as give some ideas on the reliability

of the noise function purposed in this Section.

2.6.1 Systematic noise function

Modeling systematic noises correctly is generally very challenging as it requires one to

exactly know the noise sources, their mathematical formulation or a general idea of how

they behave and finally, how different sources interact with each other when added to-

gether or superimposed.

In this thesis a number of linkends and missions are created each having their unique

characteristics depending on the target planet and the missions type. Hence the sys-

tematic noise of the observations for each linkend and mission is typically unique to

that mission and is defined based on the mission characteristics. Designing individual

systematic noise profile for each of these linkends based on their specific mission charac-

teristics is not only technically challenging to achieve but also very tedious to do. Also

it will drastically the flexibility of the developed simulation model as it will only become

capable of analyzing one specific case or mission. One the achievements of this thesis is

to have a sandbox and an open framework to test any possible hypothesis in the future

without having to redesign the whole model from scratch and by only adjusting very
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simple input parameters.

To maintain flexibility of the developed simulation model and at the same time elimi-

nate the tedious process of designing a unique noise profile from scratch for every single

linkend of mission that is added to the simulation, the best approach would be to gen-

eralize the systematic noise generation process. This is done in a way that a realistic

systematic noise can be generated for each mission by simply adjusting a number of

input parameters to tamper with the behaviour of the noise profile for each specific

mission. This process make noise generation in this simulation a global approach but

yet specific enough to be applicable to independent missions.

There are theoretical methods for generating time dependent noise such as the one

purposed by (Timmer and Koenig, 1995) in which spectral theory is utilized to generate

a non deterministic time series which illustrates a ( 1
f )β spectrum (Timmer and Koenig,

1995). Inspired by the aforementioned method, a simplistic approach is purposed in this

thesis which at its core follows a similar procedure as the one given in (Timmer and

Koenig, 1995) yet it is slightly more simplified to apply in this thesis. More specifically,

the newly purposed process eliminates the need to generate the noise in frequency do-

main and subsequently the requirement of transformation and representation of noise in

the time domain as all the operations are directly performed in the time domain. This

process is explained in the following paragraph. Th downside of this method is that it

requires a number of trial and errors with various settings in order to generate a noise

profile that seems realistic. Another downside is that this noise profile is generated theo-

retically therefore it will never be based on actual events that happen in reality hence it

becomes very complex to actually know whether this theoretically modeled noise covers

the superposition of full spectrum of noise sources that exists in reality.

The idea behind the systematic noise generation function is to superimpose a number

of randomly defined trigonometric functions (i.e sine or cosine) that their amplitude,

phase and frequency are selected randomly from a pre-defined domain bounded by a set

of user defined values. The boundaries of amplitude and frequency domain are care-

fully selected such that the noise profile capture the signature of both short and long

noise variations that exists in reality while the magnitude of the noise remain within

the required bounds which are given as σ in Table 2.4. In this process, each individual

missions has its own set of amplitude or frequency domain which allows the noise profile

to be unique to each linkend.

To make sure the systematic noise profile remain realistic, the timespan of each mission

is divided into a number of arcs and a unique noise profile is added to the observations

per arc. This eliminates the issues of having one single behaviour dominating the whole

noise profile which is inline with reality. For instance, in reality it can be observed that

a certain noise signature might only be present during a certain timespan. To avoid
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having discontinuity in the noise profile, the noise values are set to accumulate over

time, meaning that the information from the previous arcs are carried over to the next

arc resulting in a continues and realistic behaviour of noise. The term realistic here does

not necessarily mean the generated noise profile directly and accurately represent what

is happening in reality. The idea is that it merely tells the estimation model that there

exists a certain non deterministic time dependent behaviour in the simulated observa-

tions which its shape is similar to what have been observed in the uncertainty budgets of

actual observations. This results in the estimation to be performed in an environment

that is closer to what happens in reality. This is believed to be more realistic than

performing a simulation with only having Gaussian noise or even no noise at all as those

approaches typically result in overly optimistic errors. The mathematical formulation

of the generated noise function is given in Equation 2.6

δhsys(t,i) =

i∑
i=1

n∑
n=1

A(i,n)sin(2πf(i,n)t+ φ(i,n)) (2.6)

In Equation 2.6, δhsys(t,i) represent the systematic noise at time t of the ith arc, i represents

the number of arcs the observation timespan is divided to and n represents the number

of trigonometric functions that are added together. Only sine function is selected as

cosine is just a phase shifted sine which makes no difference for this process. Values

A(i,n), f(i,n) and φ(i,n) represent the amplitude, frequency and phase of the sine function

at ith arc of nth function.

To ensure the input frequency domain represent the actual output noise frequency which

is un-tampered by time, the time vector per arc is normalized between 0 and 1, ensuring

the noise behaves according to the given frequency domain independent of the value of

time. The parameters in the systematic noise function are selected using trial and error

and fine tuning until the noise profile looks desirable. The frequency values are selected

from a domain of between -10 and +10 which resulted in producing noise profiles that

cover short and long period variations with overall. The amplitude domain is between

−σ and +σ of the observation uncertainty of each mission and the phase domain se-

lected between −2π and 2π for each arc. Section 3.3 explains on which observations the

systematic noise profile are applied to, shows the applied noise profile themselves, the

effect they have on the the estimation results (i.e verification) are provided in Section

3.3. After fine tuning. a list of settings that are selected to produce the noise profile

with are shown in Table 2.5.
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Table 2.5: List of settings used for systematic noise profile (for Equation 2.6)

Number of arcs - i 10

Number of superimposed functions - n 10

Phase domain - φ [-2π, 2π]

Frequency domain - f [-10,10]

Amplitude domain - A [-σ,σ] (Table 2.4)

2.7 Acceleration settings

The acceleration model that is used in both Virtual Reality and estimation model follow

from an extended point mass Newton’s acceleration. The full equations of motion is

shown in Equation 2.7 which shows all the different acceleration models that are used

to describe the motion of the bodies in solar system.

¨̄ri = ¨̄ri,pm + ¨̄ri,SunJ2 + ¨̄ri,Schwarz + ¨̄ri,Lens + ¨̄ri,ring (2.7)

In Equation 2.7, ¨̄ri is the total acceleration that ith body undergoes which is the combi-

nation of all the acceleration models that the body is affected by. Each of the individual

component of the equations of motion and their mathematical term are given in Equa-

tions 2.9 to 2.12. The accelerations are computed in a barycenteric ecliptic coordinate

system (i.e ECLIPJ2000 as defined by Navigation and Ancillary Information Facility
4) which its xy-plane lies in the ecliptic plane with its x-axis pointing towards vernal

equinox which is at the intersection of mean ecliptic plane with mean equator of epoch

J2000 5.

1. Point mass acceleration: The first component is ¨̄ri,pm which is the point mass

acceleration between all the bodies mentioned in Section 2.2 (i.e Sun, Mercury,

Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus and Neptune) as well as the

individually propagated asteroids shown in Table 2.2. In Equation 2.8, i and j are

the bodies undergoing and exerting the acceleration with Mj being the mass of

the exerting body. r̄i,j is the vector position vector between body i and j.

¨̄ri,pm =
∑
i 6=j

GMj

r3
ij

r̄i,j (2.8)

4https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html
527th International Astronomical Union General Assembly, Resolution B3, 2009

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html
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2. Sun’s oblateness effect: Equation 2.9 (Standish and Williams) is computed in

Sun’s body reference fixed frame with J2 being the Sun’s oblateness coefficient and

P (f) being the Legendre polynomial function of degree n. Angle φ represent the

planet’s latitude with respect to the Sun’s body fixed frame. This acceleration is

added to the point mass acceleration show in Equation 2.8 after its transformed

into a barycenteric ecliptic reference frame that was mentioned earlier in this sectio.

Details on how this transformation is done can be found in Chapter 5 of (Petit

and Luzum, 2010).

¨̄ri,SunJ2 = −GMSun

r2

(
J2
R2
s

r2

 2P2(sinφ)

0

−cosφP ′2(sinφ)

) (2.9)

Pn(f) =
1

(−2)nn!

dn

dfn
(1− f2)n

3. Sun’s Schawrzchild relativistic correction: This relativistic term has the

largest effect on the planetary ephemerides compared to the other two and provides

a relationship between the two PPN parameters β and γ, allowing the estimation

of either of this parameters during the estimation process. This effect is only

accounted between Sun and other bodies and not between every bodies in the

solar system. The reason for this is the magnitude of this effect is the largest for

the Sun only and it becomes extremely small between other bodies which can be

seen by looking at Equation 2.10. (Petit and Luzum, 2010)

¨̄ri,Schwarz =
GMSun

c2r3
i

([
2(β + γ)

GMSun

ri
− γ ˙̄ri · ˙̄ri

]
r̄i + 2(1 + γ)(r̄i · ˙̄ri) ˙̄ri

)
(2.10)

This acceleration scales with mass of the exerting body as well as inverse of the

speed of light squared which makes the Sun the most dominant body to consider.

4. Sun’s Lens-Thirring effect: This is another important relativistic effect to con-

sider which has the second most significant relativistic effect. This effect takes into

account the secular precessions of the argument of pericenter of the planets that

are orbiting an spinning body (i.e Sun). Therefore, it is a function of the angular

momentum of the body it is orbiting. Equation 2.11 provides the mathematical

expression of this effect (Petit and Luzum, 2010) with parameter Ī being the an-

gular momentum vector of the Sun. Sun’s angular momentum is assumed to only

have a component in polar direction and the other component are assumed to be

negligibly small (i.e Izz = 190× 1039[kgm
2

s ] which Ixx and Iyy assumed to be zero

with z representing the polar direction).

¨̄ri,Lens = (1 + γ)
GMSun

c2r3
i

(
3

r2
(r̄i × ˙̄ri)(r̄i · Ī) + ( ˙̄ri × Ī)

)
(2.11)
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5. Ring’s acceleration: The ring acceleration model is provided in Equation 2.12

extracted from (Kuchynka et al., 2010) which shows the acceleration due to a thin

ring with homogeneous mass on a point mass any where in space.

¨̄ri,ring = − 2GMring

πα(1− β)Γ
3
2

[
αE(β)r̄p + ((1− α)K(β)− E(β))rring ī

]
(2.12)

With parameters α, β and Γ defined in Equation 2.13

α =
2rprringcos(I)

r2
p + r2

ring

β =
2α

1 + α

Γ = r2
p + r2

ring + 2rringrpcos(I)

(2.13)

In Equations 2.12 and 2.13, rp is the position vector of the point mass subject to

the acceleration, rring is the radius of the ring. Angle I is the angle between the

vector from the center of the ring to the a point mass p (i.e r̄p) and its projection

on the ring’s plane. Vector ī is the unit vector in the direction of the projected

vector r̄p on the ring’s plane. Finally, Functions E(β) and K(β) represents the

first and second order elliptical integral provided in Appendix A. The ring’s plane

coincides with the plane of ecliptic with its origni at the barycenter of the solar

system while its characteristics were already provided in Section 2.3.2. It is also

required to compute the partial derivative of this acceleration model with respect

to the estimated parameters for the estimation but computing the derivatives of

Equation 2.12 analytically is extremely tedious. Hence the partials for this func-

tion are computed numerically using the method described in Appendix B. This

acceleration model was not part of TUDAT’s library of verified acceleration models

and is implemented in TUDAT by the author himself. Hence its implementation in

TUDAT needs to be validated to ensure its accelerations are computed correctly.

This is validation done in Section 3.2.

2.8 Integration settings

The selected integration setting for this simulation is a fixed step size Runge-Kutta-

Fehlberg 78 (Cartwright and Piro, 1992) which is a 7th order integrator. The selected

integrator and its time steps are important to ensure that the estimation results are not

dominated by integration error. To test which time step is sufficiently small enough such

that it does not dominate the true error of the estimation, yet it manages to perform

the simulation within the computational limits of this thesis, a number of tests have

been performed. In this test setup, a 30 year estimation is performed which includes all

the major bodies mentioned in Section 2.2. In this simulation, only the state vector of

Mercury is estimated using ideal (i.e no noise) and consistent observations to Mercury
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over the whole simulation period. This simulation is run for a number of different time

steps, namely 60, 30, 20 and 5 minutes and the estimation results are compared to one

another. Since no noise is present in the observations and the truth and estimation

model are identical, the estimated ephemerides of Mercury will only become limited to

the integration error and numerical precision of the estimation. Conducting this test

allows one to see how large the integration error will on the estimated ephemerides will

be and whether it is the dominating factor in the estimation.

It was found that for all cases, the formal error of the estimation remains the same

as the observation weights for all cases are the same. But when the estimated results

are compared to true values from the truth model, then one can observe the effect of

integration error as that is the only source that causes the difference between the results.

The formal error of the Mercury’s estimated initial position for all were found to be at

less than cm level. The true error of the estimated initial position were also at sub cm

level for all cases expect for the time steps of 60 and 30 minutes which had true error of

3 to 4 cm which are larger than the formal error. An integration time step of 20 minutes

was found to be a good enough choice as it is not either too small that it would take too

much memory to perform the estimation, yet it is small enough that it is small enough

to produce sub cm level estimation results that do not exceed the formal error (i.e do

not dominate the estimation error). It is later proven in Section 4.1, specifically as is

shown in Figure 4.8, that this selection is indeed a valid choice as the errors in estimated

orbit when laser ranging is applied are at a few centimeter level and integration error of

less than cm level is sufficient.

2.9 Parameters for estimation

This section attempts to justify what parameters are and are not estimated as well as the

assumption that goes with estimating each parameter. Justification for estimating plan-

etary state vector, dynamical and relativistic parameters and asteroid mass parameters

are explained individually.

2.9.1 Estimating planetary state vector

The selected planets that their initial position and velocity vector are set to be esti-

mated are Mercury, Venus, Mars, Jupiter, Saturn, Uranus and Neptune. The states of

the Earth and Moon are not estimated during the estimation process because the estima-

tion problem becomes ill-conditioned. All the observations to the planets are simulated

with respect to the Earth which means their positions in space are constrained in an

absolute sense. This however is not the case for Earth itself as there are no constraints

on its position (i.e no absolute observations of the Earth itself are used) and since all
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observations are done relative to the Earth, having Earth as a free parameter will result

in problem to be badly conditioned. Performing a singular value decomposition of the

information matrix for the case when Earth’s state were included as an estimable pa-

rameter displayed much higher singularity compared to a case where Earth’s state were

not included (i.e the condition number of the estimation increased by a factor of 104 to

a value of 1016).

Not estimating the Earth and Moon’s state vector is equivalent of putting a very accurate

apriori uncertainty on their position meaning their position is pretty much determined

by their apriori knowledge. This essentially means that the results that are produced in

this thesis are based on the assumption that the uncertainty in orbit of the Earth (and

Moon) remains unchanged with introduction of interplanetary laser ranging to Mars.

In other words, interplanetary laser ranging to Mars does not significantly improve the

current knowledge of Earth and Moon’s orbit.

This assumption is not ideal but it can be partially justified by the fact that the Earth-

Moon barycenter is currently known to an accuracy of about a few meters and is mainly

determined by the laser ranging that has bee done to the Moon. So getting a significant

improvement in Earth’s position with introduction of laser ranging to a point where

its cascade effect significantly improves the orbit of other planets is far fetched. This

does not mean that there will be no effect as one part of the solar system’s dynamical

coupling is being eliminated from the estimation but since including the Earth causes

ill-conditioned and a diverging problem, fixing the Earth and Moon orbit becomes the

only alternative option.

Neglecting Earth from estimation does not mean that the rest of the results provided

in this thesis will become invalid or invaluable. The effect of laser ranging on orbit of

Mars itself and other planets’ ephemerides, mass parameter of the estimated asteroids

and dynamical parameters can still be investigated. It is expected that inclusion of the

Earth in the estimation will actually make results even better compared to when its not

included since there an additional component is solar system ephemerides that will be

prone to improvements. It will also result in a better correlation between the planets

orbital parameters as no dynamical coupling is neglected. Another way to look at it is

that not estimating the Earth’s state vector means that the effect of laser ranging on

planetary ephemerides is not explored to its full potential.

2.9.2 Estimating asteroid mass parameter

Other than estimating the planetary state vector, the mass parameter of some of the

bodies in the asteroid belt are also estimated (i.e the ones shown in Table 2.2). The

effect of estimating asteroid masses alongside ephemerides is two-folded. One is that

one can directly see the effect of having more accurate ephemerides on getting a better
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knowledge of the asteroid belt which in turn results in further improvement in planetary

ephemerides. An extensive discussion was given in Section 2.3 which explained which

asteroids are selected for estimation and why. To summarize, the mass parameter of the

11 of the most optimally selected asteroid are estimated during the estimation period.

These asteroids are shown in Table 2.2.

2.9.3 Estimating relativistic PPN parameter & Sun’s J2

Relativistic parameters γ and β are both important to be estimated in order to measure

the extend of laser ranging effect on estimating relativistic accelerations. But naturally

there is a very high correlation between the Sun’s J2 effect and the PPN parameters γ

and β as it is quite complex to distinguish the effect of on these parameters. As was

mentioned in Section 2.4.3, a small Sun avoidance angle of 1 degree is selected to better

distinguish Sun’s J2 effect from relativistic acceleration to ultimately de-correlate Sun’s

J2 parameter from γ and β. However this does not entirely eliminate the high correlation

between PPN parameters themselves as these relativistic effects leave similar signatures

on planetary ephemerides as is explained in (Genova et al., 2018) (i.e their effect are

mainly seen in planetary orbits’ precession of their perihelion)

It is common practice in state of the art ephemerides generation processes to fix the

values of γ and β to their nominal values and perform the estimation which is the case

in JPL’s latest ephemerides (Folkner et al., 2014). The argument behind not estimating

PPN parameters in state of the art ephemerides is that their focus is to simply pro-

duce the most accurate ephemerides based on the currently available best estimate of

PPN parameters and not so much about performing relativistic studies. Typically, the

PPN parameters are estimated in an exclusive study which is performed under much

more constrained estimation environment, typically using data for a specific mission

like it is done in (Genova et al., 2018), (Verma et al., 2014) or (Shapiro et al., 2003).

In the studies where the main goal is to conduct relativistic tests and improve PPN

parameters uncertainty budget, specialized techniques are used during the estimation

to constraint PPN parameters γ and β by making using of constraint equations that

provide a solution in form of a direct relationship between these parameters. One of

these constraint equation is the Nordtvedt parameter which provides a solution in form

of a direct relationship between γ and β allowing proper decorrelation and estimation

of PPN parameters (Genova et al., 2018).

As was mentioned in Section 1.2, the focus of this thesis is to mainly produce ephemerides

using interplanetary laser ranging and observe the dynamical coupling between the plan-

etary states. Therefore, performing an extensive relativistic experiments and testing

general relativity is not directly part of the goal of this thesis, so it becomes very much

valid to simply follow the same procedure that is used in (Folkner et al., 2014) and fix
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the PPN parameters to their nominal values and perform the estimation that way. In

other words, completely ignoring the effect of laser ranging on relativistic parameters.

However, the model that is setup in this thesis has the capability of estimating PPN

parameters which can give some preliminary insights on the potential effect of laser

ranging on relativistic parameters as well as their corresponding effect on the planetary

ephemerides, improving overall science return of this thesis. Also estimating PPN pa-

rameters can be used as a verification that the way the models that are setup in this

thesis are working properly and it has the capability to estimate PPN parameters with

the same level of uncertainty as it can be currently achieved in literature which is show-

cased in Section 4.3 and Table 4.2.

The simplest way of estimating the PPN parameters in this thesis while avoiding having

to deal with high correlations between them is to only estimate one of the parameters,

γ. This eliminates the need of using constraint equations which introduce some com-

plexity to implement properly. However, this means a crucial assumption is being made.

With only estimating γ one essentially assumes that the Nordtvedt parameter is equal

to its nominal value, resulting in all relativistic effects to be combined and represented

by γ only. Although estimating γ only does not give the full picture of the effect of

laser ranging on all relativistic parameters, it provides on good insight on laser ranging

potential. For example, if cascade effect of laser ranging results in an improvement in

Mercury’s orbit, then theoretically one should see an improvement in γ and Sun’s J2

uncertainty. By estimating γ with and without interplanetary laser ranging, one can

easily check whether one achieves the expected level of improvement in γ’s uncertainty

which further solidify the results given in this thesis. Since it is assumed that Nordtvedt

parameter is equal to its nominal value, any improvement that is seen in γ can also be

attributed to β as well as they are directly related with Nordtvedt relation.

All in all, apart from the planetary states and asteroid masses, it is decide to esti-

mate PPN parameter γ as well as the Sun’s oblateness parameter (i.e J2) to not only

get an idea on relativistic gravitation but also on the effect of laser ranging on better

determining Sun’s shape.
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2.9.4 Summary of estimated parameters

Table 2.6: List of all estimated parameters with their nominal values that are used
to initialize the simulation

Parameter Number & Name Notation & Unit Nominal value

(1-6) Mercury’s initial position & velocity rm,0 - [m] [-8377752361.207219, -67982946561.26395, -4926303389.157013]

vm,0 - [m/s] [38618.78541881038, -2991.641382662385, -3787.793486511041]

(6-12) Venus’s initial position & velocity rv,0 - [m] [107494157695.4842, 10475228222.92837, -6104078691.231328]

vv,0 - [m/s] [-3176.888982638236, 34728.00359571239, 659.4694270184846]

(12-18) Mars’s initial position & velocity rM,0 - [m] [-197429968937.8544, -132172972866.3419, 2040636733.965869]

vM,0 - [m/s] [14476.83041447877, -17993.3732409705, -732.1140174180481]

(18-24) Jupiter’s initial position & velocity rJ,0 - [m] [78696927591.92229, -776865410111.0364, 1461343537.686944]

vJ,0 - [m/s] [38618.78541881038, 1939.618778997667, -295.249188338075

(24-30) Saturn’s initial position & velocity rS,0 - [m] [567854314153.4276, -1388209698714.721 ,1532088987.268128]

vS,0 - [m/s] [8405.365727700491, 3629.005176386816, -397.7382621617414]

(30-36) Uranus’s initial position & velocity rU,0 - [m] [2426560356277.195, 2426560356277.195, -25109106295.94876]

vU,0 - [m/s] [-3963.027571449441, 5256.19021502804, 70.8835883472557]

(36-42) Neptune’s initial position & velocity rN,0 - [m] [4374142156733.883, -951173880784.4816, -81218851477.3933]

vN,0 - [m/s] [1118.874972727693, 5343.470123633252, -135.8023319747549]

(43) PPN parameter γ γ 1.0

(44) Ceres mass parameter µceres - [km3/s2] 63.18

(45) Vesta mass parameter µvesta - [km3/s2] 17.74

(46) Pallas mass parameter µpallas - [km3/s2] 14.08

(47) Hygiea mass parameter µhygiea - [km3/s2] 5.84

(48) Euphrosyne mass parameter µeuph - [km3/s2] 3.58

(49) Intermanta mass parameter µinter - [km3/s2] 2.60

(50) Davida mass parameter µdavida - [km3/s2] 2.56

(51) Eunomia mass parameter µeunom - [km3/s2] 2.11

(52) Juno mass parameter µjuno - [km3/s2] 1.99

(53) Europa mass parameter µeuropa - [km3/s2] 1.75

(54) Doris mass parameter µdoris - [km3/s2] 1.73

(55) Sun’s J2 parameter J2 2.0 ×10−7



Chapter 3

Validation

This Chapter deals with validating the simulation that is setup in Chapter 2. It at-

tempts to not only answer the questions raised below but also quantify the impact of

the assumptions that were made while modeling the simulation. In particular, it vali-

dates the assumptions made regarding the parameters that are include and excluded in

estimation (Section 2.9), selected observation scheduling (Section 2.4.2), the way the ob-

servation uncertainty and noise budget is treated (Section 2.6) etc. This Chapter starts

with Section 3.1 which mainly answer the following questions and validates the overall

simulation in terms of its general capabilities of producing planetary ephemerides.

• How the planetary orbit uncertainties produced in this validation compare to the

state of the art planetary orbit uncertainty?

• Is the method introduced in Section 2.1 a valid approach for assessing the uncer-

tainty of estimated parameters?

• Is using simulated observations with artificially introduced noise a valid approach?

The strategy for validating the above three points is to perform a simulation using a

similar observation scheduling and simulation settings which were used to generate the

results given in (Folkner, 2010) (i.e JPL’s state of the art model) and asses how well the

models developed in this thesis are capable of converging to the solutions provided by

(Folkner, 2010). Section 3.1 briefly explains the overall settings used for validation and

compare the generated results with the one provided in literature in order to validate

the raised question.

Sections 3.2 and 3.3 in this Chapter are dedicated specifically in validating the im-

plemented asteroid ring model introduced in Section 2.7 and the developed systematic

noise generator introduced in Section 2.6.1. Section 3.3 performs a dedicated study to

quantify the effect of the systematic noise that was put on certain observations. The

38
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results of Section 3.3 are shown in an attempt to display how the systematic noise model

that was designed in Section 2.6.1 contributes in having a more realistic estimation re-

sults and whether the method is robust and realistic as well as determining how sensitive

the ephemerides are to the systematic noise.

3.1 Validation simulation setting & Results

To validate whether the model provided in this thesis is an accurate representation of

reality, an estimation is performed by following a similar settings used by JPL’s DE423

ephemerides generation process using the same and actual observation schedules which

can be found in (Viswanathan et al., 2017) and (Folkner et al., 2014) and the output of

the estimation is compared to the propagated formal uncertainties of DE423 presented

in (Folkner, 2010). The reason why the comparison is done with respect to DE423 (i.e

a version before the latest JPL’s DE430 model) is simply because author had only ac-

cess to the propagated uncertainty of all estimated planet positions for that particular

version which was publicly released. In any case, the main difference between DE423

and DE430 is the inclusion of Moon’s core and mantle interaction and its effect on its

orbit around the Earth as well as the introduction of MESSENGER missions in DE430.

In this validation, the Earth Moon interaction and the MESSENGER mission are not

included so the settings are identical to the one of DE423.

Table 3.1 provides the observation settings that is used for validation. These settings

are directly derived from actual missions observation schedules that are used by JPL

to produce their ephemerides. The post-fit residuals plots provided in (Folkner et al.,

2014) and INPOP’s planetary database 1 were used as the main guideline to get a rough

estimate of frequency of the observations for each mission as well as a realistic noise

budget. The post-fit residuals plots are not repeated in this thesis however, the reader

can compare the values of Table 3.1 and the observation frequency plots and values

provided by (Folkner et al., 2014) for verification.

1http://www.geoazur.fr/astrogeo/?href=observations/base

http://www.geoazur.fr/astrogeo/?href=observations/base
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Table 3.1: Observation scheduling of each observation link for each planet. Each
line represent one observation link (Folkner et al., 2014)

Observation Scheduling

Planet Duration Frequency Type µ and σ of the

noise

Mercury 1980 to 1986 80 Obs per 180 days repeated every year Direct radar 0 ±2 km

1986 to 1998 15 Obs per 90 days repeated every year Direct radar 0 ±2 km

2008 to 2009 1 Obs per year repeated every year MESSENGER radio 0 ±25 m

Venus 1980 to 1983 50 Obs per year days repeated every year Direct radar 0±2 km

1986 to 1996 6 Obs per 7 days repeated every year Direct radar 0±2 km

1990 to 1995 3 Obs per 1 day repeated every year Magellan VLBI 2±4 mas

2006 to 2010 6 Obs per hour repeated every week VEX radio 0 ±15 m

Mars 1980 to 1983 18 Obs per hour repeated every month VIKING radio 0 ±20 m

1997 to 2010 6 Obs per hour repeated every 4 days MRO, MO & MEX radio 0 ±5 m

Jupiter 1992 1 flyby observation Ulysses radio 0 ±100 m

2001 1 flyby observation Cassini radio 500 m ±2 km

1996 to 1998 4 Obs per day every month Galileo VLBI 5± 15 mas

1980 to 2010 35 Obs per 3 months every half a year Direct astrometic 0 ±250 mas

Saturn 1980 to 1982 1 Obs per year repeated every year Voyager radio 250 ±250 m

2004 to 2010 3 Obs per hour repeated every month Cassini radio 0 ±50 m

1985 to 1998 150 Obs per half year repeated every half year Direct astrometric 0±250 mas

1998 to 2010 450 Obs per half year repeated every half year Direct astrometric 0 ±250 mas

Uranus 1980 to 1995 6 Obs per hour every 3 months Direct astrometric 0 ±250 mas

1995 to 2010 400 Obs per half year repeated every half year Direct astrometric 0 ±250 mas

1986 1 flyby observation Voyager radio 0 ±100 m

Neptune 1980 to 1995 6 Obs per hour every 3 months Direct astrometric 0 ±250 mas

1995 to 2010 300 Obs per half year repeated every half year Direct astrometric 0 ±250 mas

1989 1 flyby observation Voyager radio 0 ±10 m

To ensure the converged results match the one from JPL’s model, one needs to ensure

that the dynamical models that are used in this thesis closely represent the one of JPL

and the simulation time frame is similar. The dynamical models are quite similar to one

another with a number of differences which are explained as follows.

The first one is that in JPL’s model, 343 asteroids are individually propagated and esti-

mated while this is impossible to do in this thesis due to computational limits. Therefore,

this is compromised by including a ring and only propagating the 11 of most optimum

asteroids. As was explained in Section 2.3, in theory the combination of the ring and

the individual asteroids should cover nearly 90 % of the asteroid belt’s perturbation but

it would be ideal to individually estimate all 343 asteroids to eliminate any possible

differences.

Apart from the asteroids, one other difference is that the position of the Earth and

Moon are not among the parameters that are estimated however, they are included in

the model and their positions are directly integrated based on the initial conditions pro-

vided by JPL’s DE423 model. Another difference is the duration of the estimation. In

JPL’s model, the estimation starts in 1969 and last until 2050 while including all mis-

sions observations until 2010 but this was not possible to do in this thesis due to limited
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available memory to run the simulation. Hence validation is done from 1980 to 2015.

This time period is selected since most of the significant missions are included during

this time period which means the biggest effects on the planetary ephemerides can be

captured and compared for validation. No a-priori uncertainty are used to regularize

the validation at the start of the estimation and the reason for this is the abundance of

observation at the beginning of the estimation period which provide a good constraint

for the orbits. Having no a-priori uncertainty eliminates the error due to poor selec-

tion of a-priori value as this value is not very straight forward to determine for each

planet. Hence estimation will purely estimate the parameters based on the available

observations.

The error in planets range are shown in the following figures for each of the estimated

planets. The uncertainties that are produced in this validation are errors that are com-

puted based on what was explained in Section 2.1.1 and are compared to uncertainties

given in (Folkner, 2010) which represent the formal errors of JPL’s estimation results.

It was decided to only use Gaussian noise on the observation for this validation which

will result in errors produced in this validation to closely represent the formal errors of

the estimation.

(a) Mercury range error determined during validation process. Computed by subtracting
estimated states from states of truth model

(b) Mercury formal range error estimated in JPL DE423 model (Folkner, 2010)

Figure 3.1: Comparison between Mercury’s range error. The one computed in this
thesis with the one provided by JPL’s DE423 model
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(a) Venus range error determined during validation process. Computed by subtracting
estimated states from states of truth model

(b) Venus range error estimated in JPL DE423 model (Folkner, 2010)

Figure 3.2: Comparison between Venus’s range error. The one computed in this
thesis with the one provided by JPL’s DE423 model

(a) Mars range error determined during validation process. Computed by subtracting
estimated states from states of truth model

(b) Mars range error estimated in JPL DE423 model (Folkner, 2010)

Figure 3.3: Comparison between Mars’s range error. The one computed in this
thesis with the one provided by JPL’s DE423 model
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(a) Jupiter range error determined during validation process. Computed by subtracting
estimated states from states of truth model

(b) Jupiter range error estimated in JPL DE423 model (Folkner, 2010)

Figure 3.4: Comparison between Jupiter’s range error. The one computed in this
thesis with the one provided by JPL’s DE423 model

(a) Saturn range error determined during validation process. Computed by subtracting
estimated states from states of truth model

(b) Saturn range error estimated in JPL DE423 model (Folkner, 2010)

Figure 3.5: Comparison between Saturn’s range error. The one computed in this
thesis with the one provided by JPL’s DE423 model
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(a) Uranus range error determined during validation process.Computed by subtracting
estimated states from states of truth model

(b) Uranus range error estimated in JPL DE423 model (Folkner, 2010)

Figure 3.6: Comparison between Uranus’s range error. The one computed in this
thesis with the one provided by JPL’s DE423 model

(a) Neptune range error determined during validation process. Computed by subtracting
estimated states from states of truth model

(b) Neptune range error estimated in JPL DE423 model (Folkner, 2010)

Figure 3.7: Comparison between Neptune’s range error. The one computed in this
thesis with the one provided by JPL’s DE423 model

As can be seen from the Figures provided in this Section, how the uncertainties pro-

duced in this thesis compared to the state of the art uncertaities can be answered. It

can be seen that the validation is not perfect but the overall magnitude and behaviour

of the uncertainty are quite similar. Venus’s magnitude of uncertainty seems to be un-

derestimated which might show that the observation uncertainty budget selected for

that planet could have been slightly over optimistic. The outer planets uncertainty are
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captured more accurately which could be attributed to the fact that their observation

schedule and uncertainty were reproduced properly. There are certain effects that are

not being captured in the virtual reality such as the short period variations in the outer

planets position. This could be attributed to the fact that the Earth and Moon them-

selves are not being estimated or not estimating all 343 individual asteroids. Also in

this validation, simulated observation directly to planets surface with artificial Gaussian

noise level is used. This is not a very realistic representation of reality as actual ob-

servations are sometimes made of a planet’s Moon or an orbiter around it which adds

additional errors in the observation. All in all, these differences are expected to be

minimized if one corrects for the aforementioned discrepancies between the dynamical

models as well as using actual observations with actual noise budget.These discrepancies

could also result in the results in Figures provided here differ with one another.

The question of whether having a truth and estimation model as a mean to asses the

uncertainty is valid or not is answered positively because the errors that are produced

in this validation are not the estimation formal errors but the difference between the

estimated parameter and the states from a reference truth model. Given that these

uncertainties very well represent the formal errors of the state of the art ephemerides

generation models shows that this method of assessing the error is certainly a valid

way. In other words. the process of having a virtual reality (or a truth model) as a

reference point to compare the estimated results to in order to asses the performance

of the estimation seems to be a valid process. Hence, there is no need to solely rely on

estimation’s formal error compute the planetary uncertainties and avoid the problem of

having overly optimistic results and also eliminates the need of formal error propagation

and assumptions that comes with it.

The question of whether using internally simulated observations instead of actual ones

is valid or not is also answered positively as these results are produced without using

any observations from actual missions. All the observations are simulated internally and

appropriate noise levels are applied on top of them to reenact what is happening in real-

ity. Yet the results are capable of slightly matching the ones where actual observations

are used.

All in all, the overall approach and the ephemerides generation process introduced in

this thesis is validated and is ready for testing any hypothesis regarding interplanetary

laser ranging or any other hypothesis for that matter (more on other possible studies

that can be done using this model is provided in Chapter 5)
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3.2 Validation of asteroid ring model

To validate whether the implemented ring model (see Section 2.7) in this thesis is done

correctly and is in line with what was explained by (Kuchynka et al., 2010), the pertur-

bation on Earth-Mars distance due to the presence of the ring is plotted over 30 years

and compared to the results provided by (Kuchynka et al., 2010). The ring’s radius

is selected to be 2.8 AU and its mass to be 0.34 × 10−10 ×Msun which is exactly the

values used to produce Figure 3.8a in (Kuchynka et al., 2010). Figure 3.8 shows this

comparison and one can see that the results are inline with one another.

(a) Earth-Mars perturbation due to presence of a ring with Mring = 6.726× 1019 at 2.8 AU
distance provided by (Kuchynka et al., 2010)

(b) Earth-Mars perturbation due to presence of a ring with Mring = 6.726× 1019 at 2.8 AU
distance computed in this thesis

Figure 3.8: Validation of ring model implemented in this thesis

There are a number of remarks that should be made about the ring model that is

implemented in this thesis. Firstly, the interaction between the ring and the solar
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system bodies are only one-sided. Meaning the mutual acceleration of the other bodies

on the ring is not accounted for. This causes the solar system’s momentum to become

non-conservative since external momentum is being added to the system which results

in the barycenter of the solar system to shift by a 10 meters over the course of 100 years

(Kuchynka et al., 2010). This is not a big issue for short term simulations like the one

performed here however, it is recommended to account for this if one requires long term

interplanetary orbit propagation. Hence it is recommended to have ring’s position as a

non-fixed parameter in which it changes under the influence of mutual acceleration of

other bodies in the solar system to conserve the system’s momentum. This could explain

the existence of small differences that is seen in Figure 3.8.

3.3 Systematic noise validation & its effect on the estima-

tion results

The systematic noise profile which is induced on the observations attempts to ensure

that a time dependent noise signature which in reality cannot be corrected for is present

during the estimation to result in more realistic results (as was explained in Section

2.6.1). In this Section the induced noise profile on the observations as well as the effect

that it has the post-fit residuals and converged solution of the problem are shown. This

gives an insight on how sensitive are the estimated orbits to the profile of the noise as

well as give some ideas on the reliability of the noise function purposed in Section 2.6.1.

(a) True to formal error ratio histogram for all
the 55 estimated parameters with only

stochastic noise

(b) True to formal error ratio histogram for all
the 55 estimated parameters with both

stochastic and systematic noise

Figure 3.9: Comparison of true to formal error distribution with and without
systematic noise profile
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The effect of systematic noise profile can be directly seen from the post-fit residuals of

the observation of each link end as well as the true error of the estimation. Figure 3.9

shows how the true to formal error distribution changes for all estimated parameters

when systematic noise profile is introduced to the estimation. The induced systematic

noise profiles for each linkend is shown in Figure 3.10. These results are produced using

the same settings that were used to produced the results shown in Chapter 4.

(a) The noise profile that is put on the
BepiClombo’s range observations

(b) The noise profile that is put on the
VeneraD’s range observations

(c) The noise profile that is put on the Mars’s
range observations. (all missions in Table 2.3
are combined under one mission Named Mars

2020)

(d) The noise profile that is put on the Mars’s
laser range observations

Figure 3.10: The systematic noise profile that is put on the observations

The systematic noise causes the true error of most of the parameters to deviate by a

factor in the vicinity of 2 from the formal error. For instance, true to formal ratio of

inner planets’ position error are 1.4, 3.8 and 1.8 for Mercury, Venus and Mars respec-

tively. The ratios for velocity of these planets are 1.5, 1.9 and 2.1 respectively which

are all in agreement with what is suggested by literature for interplanetary ephemerides

(Folkner, 2010). Some of the parameters deviate as large as a factor of 4 to 5, notably

the Venus and asteroid masses, while some other parameters show a ratio closer to one.

These values are not out of ordinary as they very much depend on the noise profile that

is put on the specific linkends. Of course the ratios suggested by the literature are not

strict rules but merely a rough suggestions to give an idea of how realistic formal errors

are with respect to what is actually happening in reality. The fact that the true to
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formal error ratio that is displayed here does not exceed the ones suggested from the

literature and is in agreement with them is indicative of the systematic noise profile to

be a reliable method for producing realistic estimation results.

In other words, the induced systematic noise is carefully selected such that it includes

short and long term variation of noise while maintaining a true to formal error ratio that

is within the realms of what is suggested by the literature. This means that the noise

profile does not cause the true error or the estimation results to significantly deviate from

the case when they are not used while at the same time, its effect is not negligible either.

From Figures 3.10 it can be seen that the systematic noise is only put on the range

observations made to the interplanetary orbiters or landers and not on the astrometic

or direct observations made to the planets. As was also explained in Section 2.4.2, This

is done by analyzing noise budget and post-fit residuals of various missions and link-

ends as well as looking at literature to get an idea of which linkends are relevant for

having systematic noise behaviour. It was observed that observations to interplanetary

orbiters or landers (especially range observations) typically show a time dependent noise

behaviour due to their high observation frequency, presence of clock biases, atmospheric

delays and so on and so forth which typically result a systematic noise signature on

the observations that are not managed to be corrected for (Viswanathan et al., 2017),

(Folkner et al., 2014). Direct astrometric observations that are typically done to outer

planets are largely dominated by stochastic noise as they are typically so infrequent that

do not show any time dependent noise behaviour. Based on those observations, only

the linkends shown in Figure 3.10 are selected to have uncorrected and time dependent

systematic noise while for the rest of the observations’ noise profile is selected to be

Gaussian.

The effect of systematic noise on the post-fit residuals is also interesting to analyze.

A comparison between post-fit residuals of the linkends with and without systematic

noise is provided below

(a) Mercury’s Bepiclombo range residuals with
systematic noise

(b) Mercury’s Bepiclombo range residuals
without systematic noise

Figure 3.11: Comparison of Post-fit residuals of Mercury linkend with and without
systematic noise
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(a) Venus’s Venera-D range residuals with
systematic noise

(b) Venus’s Venera-D range residuals without
systematic noise

Figure 3.12: Comparison of Post-fit residuals of Venus’s range linkend with and
without systematic noise

(a) Mars’s Mars2020 range residuals with
systematic noise (all missions in Table 2.3 are

combined under one mission Named Mars 2020)

(b) Mars’s Mars2020 range residuals without
systematic noise (all missions in Table 2.3 are

combined under one mission Named Mars 2020)

Figure 3.13: Comparison of Post-fit residuals of Mars’s range linkend with and
without systematic noise

(a) Mars’s hypothetical laser range residuals
with systematic noise

(b) Mars’s hypothetical laser range residuals
without systematic noise

Figure 3.14: Comparison of Post-fit residuals of Mars’s hypthetical laser linkend
with and without systematic noise

Judging by the post-fit residuals of the estimation, it can be seen that the induced sys-

tematic noise profile is clearly dominating the shape of the post-fit residuals, except for

the laser linkend. Without systematic noise however, the residuals are simply converged

to the stochastic noise level that was put on the observations.

One interesting observation is the post-fit residuals of the laser linkend which seems to

be unchanged by the introduction of systematic noise. It seems that the laser ranging

linkend is dominated by not the observation uncertainty of that linkend but the uncer-

tainty in the dynamical parameters of the estimation, either the uncertainty in planets

states or the asteroid masses. This is expected as the laser observations are selected to

have a few millimeter level uncertainty while the solution to the observation equation

of this linkend with all the estimated parameters does not come close to this level of
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precision as many of the parameters in the observation equation are uncertain to much

higher levels. This causes the residuals to take shape of those uncertain parameters

which have the largest effect on this linkend. It can be speculated that this particular

shape is related to the uncertainty in Mars’s estimated position which is estimated with

centimeter level accuracy while the observation uncertainty is at millimeter level causing

a deviation between the computed observation equation and the provided observation

accuracy. This is where the dynamical coupling between all the estimated parameters

are displayed which shows how laser ranging attempts to minimize the uncertainty in

all the estimated parameters as best as it can and it absorbs their effects. The esti-

mated uncertainty of the asteroid masses could also be the reason for this shape as they

show very high sensitivity to the laser ranging linkend which are displayed in Figure 4.18.

All in all, the results that are displayed in this section show that the systematic noise

function that was developed in Section 2.6.1 can be a good enough method to ensure the

estimation environment reenact the reality to a certain extend. The true to formal error

ratio looks realistic and inline with what is suggested from literature and the behaviour

of the uncertainties are not drastically changed. One can still perform the estimation

using purely Gaussian noise profile for all linkends but it has to be remembered that will

result in true errors to resemble formal errors and ultimately result in overly optimistic

error values which was exemplified in Table 4.2.



Chapter 4

Results & Discussion

In this Chapter the results of the simulation that uses all the models and settings ex-

plained in Chapter 2 are shown and discussed. This Chapter compares the results of

two cases both performed between 2020 and 2050 with identical settings described in

Chapter 2 and observation schedules shown in Table 2.4. The only difference between

the two cases is that in one of the cases laser ranging to Mars is activated between 2020

to 2023. Planetary ephemerides, estimated asteroid masses, dynamical and relativistic

asteroid masses are estimated in both cases in an attempt to answer the research ques-

tion provided in Section 1.2.

The layout of this Chapter is as follows. In Section 4.1, the effect of laser ranging

on the planetary ephemerides themselves are looked at and the differences are noted.

The comparison between the estimated asteroid masses as well as the estimated dy-

namical and relativistic parameters for two cases are provided in Sections 4.2 and 4.3

respectively to quantify the effect of laser ranging on these parameters as well.

4.1 Laser ranging effect on planetary orbital parameters

The true error in position and range for the two cases are compared in this Section. The

concept of how this true error is computed and how it differs from the formal estimation

error is shown in Section 2.1.1. These true errors are computed using the following

relations in which r̄i,vr represents the position vector of ith planet computed in virtual

reality model (i.e truth model). Similarly, r̄i,est represent the position vector of ith planet

computed in the estimation model for both cases with and without laser ranging.

δρi = |r̄(i,est)| − |r̄(i,vr)| (4.1)

δr̄i = |r̄(i,est) − r̄(i,vr)| (4.2)

52
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The difference between Equations 4.1 and 4.2 are distinctive as the former represent the

error in the planet’s range while the latter shows the global position error of the planet.

The reason why these two errors are looked at independently is because laser ranging is

capable of providing very precise constraints on the planet’s range specifically and not so

much on planet’s declination or right ascension. It is important to denote the difference

between the two when one is talking about the implementation of interplanetary laser

ranging as it is a much more valuable scientific return if one is able to identify exactly

which components of the orbital elements are improved drastically with the introduction

of laser ranging. Hence looking at range error will provide an additional and a better

insight on the effect of the laser ranging on components of the orbit in which it is ex-

pected to improve the most.

By looking at δρi and δr̄i of the two cases, one can get an idea on how much im-

provement in planetary position is expected when laser ranging is introduced. First the

comparison of the global position error are displayed for all the estimated bodies in the

Figures below. In this Figures, the red line represent the error for the case with laser

ranging to Mars while the blue line represent the error for the case without laser ranging

to Mars.
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(a) Error in Mars’s position vector without utilizing laser ranging to Mars

(b) Error in Mars’s position vector for the case where laser ranging to Mars is utilized

Figure 4.1: Comparison of position error of Mars between the two cases of utilizing
(Red line) and not utilizing laser ranging to Mars (Blue line)

Figure 4.2: Comparison of position error of Mercury between the two cases of
utilizing (Red line) and not utilizing laser ranging to Mars (Blue line)
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Figure 4.3: Comparison of position error of Venus between the two cases of utilizing
(Red line) and not utilizing laser ranging to Mars (Blue line)

Figure 4.4: Comparison of position error of Jupiter between the two cases of
utilizing (Red line) and not utilizing laser ranging to Mars (Blue line)

Figure 4.5: Comparison of position error of Saturn between the two cases of
utilizing (Red line) and not utilizing laser ranging to Mars (Blue line)
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Figure 4.6: Comparison of position error of Uranus between the two cases of
utilizing (Red line) and not utilizing laser ranging to Mars (Blue line)

Figure 4.7: Comparison of position error of Neptune between the two cases of
utilizing (Red line) and not utilizing laser ranging to Mars (Blue line)

The comparison of the range error for all the estimated bodies are are displayed in

Figures below.

(a) Error in Mercury’s range without utilizing laser ranging to Mars

(b) Error in Mercury’s range for the case where laser ranging to Mars is utilized

Figure 4.8: Comparison of range error of Mercury between the two cases of utilizing
(Red line) and not utilizing laser ranging to Mars (Blue line)
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(a) Error in Venus’s range without utilizing laser ranging to Mars

(b) Error in Venus’s range for the case where laser ranging to Mars is utilized

Figure 4.9: Comparison of range error of Venus between the two cases of utilizing
(Red line) and not utilizing laser ranging to Mars (Blue line)

(a) Error in Mars’s range without utilizing laser ranging to Mars

(b) Error in Mars’s range for the case where laser ranging to Mars is utilized

Figure 4.10: Comparison of range error of Mars between the two cases of utilizing
(Red line) and not utilizing laser ranging to Mars (Blue line)
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Figure 4.11: Comparison of range error of Jupiter between the two cases of utilizing
(Red line) and not utilizing laser ranging to Mars (Blue line)

Figure 4.12: Comparison of range error of Saturn between the two cases of utilizing
(Red line) and not utilizing laser ranging to Mars (Blue line)

Figure 4.13: Comparison of range error of Uranus between the two cases of utilizing
(Red line) and not utilizing laser ranging to Mars (Blue line)
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Figure 4.14: Comparison of range error of Neptune between the two cases of
utilizing (Red line) and not utilizing laser ranging to Mars (Blue line)

From the produced results, a number of observations about the influence of the laser

ranging can be made.

First and foremost, Figure 4.10 shows a direct improvement in the orbit of Mars’s posi-

tion vector. One can also see a long term stability of the orbit which can be attributed

to two reasons. First is the very precise determination of the initial condition of the

Mars’s state which means over the long time periods it diverges less compared to a less

accurate initial conditions. The second possible factor, is the improvement in the esti-

mated asteroid masses which indirectly effect the long term stability and accuracy of the

orbits as the perturbation of the asteroid masses are generally accumulated over long

time periods. Improvement in asteroid mass uncertainty is also the reason why the long

term accuracy of the Mars’s orbit more than any other body in solar system as Mars’s

orbit is the most sensitive to asteroid belt.

Figure 4.8 also shows that that the achievable range accuracy of Mars during the time

where millimeter level laser ranging is available can be reduced to a 2-3 centimeters

which is larger than the integration error as was mentioned in Section 2.8. This further

validates that the estimation results are not dominated by the integration errors and

the selected integrator and integration time step are valid.

The second observations is inline with what was expected and explained earlier in this

Section. That is improvement in range uncertainty is much more significant that the im-

provement in other components of the orbital parameters and is the major contributing

factor in improving the global position uncertainty of the planets. Also due to dynamical

coupling between Mars, asteroid belts and other major bodies, having improved position

knowledge of Mars results in improvements in the position knowledge of other major

bodies as well.

The third observation is that laser ranging does not necessarily or consistently con-

tribute to the orbital accuracy of Uranus and Neptune. Because these planets are not

very well constraint due to lack of consistent accurate observation and not a long enough

observation and simulation timespan to cover their full orbit. This can be seen from
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correlation matrices shown Figures 4.15 and 4.16 which indicates the orbital parameters

of these vectors to be highly correlated. This ins inline with what is suggested in liter-

ature and state of the art ephemerides generation processes (Viswanathan et al., 2017),

(Folkner et al., 2014) and the correlation matrix provided by INPOP17 (Verma et al.,

2014).

Laser ranging to Mars does not really better constrained these planets’ orbits, hence

making the conclusion that the orbit of Neptune and Uranus are at the luxury of see-

ing drastic improvements from laser ranging to Mars is overly optimistic and slightly

a premature conclusion at this stage. Uranus seems to see some improvements both

in its range and position uncertainty but given that the correlation of Uranus’s orbital

elements remain high with and without laser ranging, one cannot make a conclusive

remark. Given the current constraints that we have of these planets, not much can be

said about the influence of laser ranging on these planets. A more conclusive analysis

could be performed on the effect of laser ranging on the orbit of these two planets if

their orbits planets had better constraints but that is not the case currently or will not

be the case in the near future as no missions have been planned to these gas giants.

Looking at correlation matrices given in Figures 4.15 and 4.16, it can be observed that

laser ranging to Mars causes elevation of correlation of planetary orbital parameters to

Mars which is expected due to dynamical coupling between Mars and other bodies. Not

estimating the orbit of Earth takes a toll on the correlation values as one of solar system

dynamical coupling chains are eliminated. However, as was mentioned in Section 2.9,

not estimating the Earth is equivalent of having very accurate apriori constraints on

Earth which will result in Earth’s position to be de-correlated from other parameters on

the solar system, slightly elevating the interplanetary correlations.
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Figure 4.15: Correlation between the estimated planetary states for the case
without laser ranging
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Figure 4.16: Correlation between the estimated planetary states for the case with
laser ranging
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Figure 4.17: Full relative correlation matrix which shows the change in correlation
values with introduction of laser ranging (i.e |CorrLaser| − |CorrNoLaser|)
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4.2 Laser ranging effect on asteroid masses

As was mentioned in Section 2.3, the mass of the 11 most optimum asteroids provided in

Table 2.2 are estimated alongside the planetary positions. Due to the significant effect

of the asteroid belt on the orbit of Mars, laser ranging is expected to provide a sig-

nificant improvement in the estimated asteroid masses. The estimated asteroid masses

are compared between the two cases of with and without laser ranging to Mars to see

the extend of the improvement. These values are then compared to the true asteroid

mass parameters, the ones from virtual reality (i.e truth model), in order to get a sense

of the level of uncertainty that is attached to each individual estimated asteroid mass

parameter. These values are shown in Table 4.1.

Table 4.1: Comparison between estimated asteroids mass parameter and their true
value to get an idea of the relative improvement in asteroid uncertainty with

introduction of laser ranging

Asteroid Name True µast

[km
3

s2
] from

truth model

µast without

LR to Mars

[km
3

s2
]

µast with

LR to Mars

[km
3

s2
]

1 Ceres 63.18 62.73 63.16

4 Vesta 17.74 17.83 17.75

2 Pallas 14.08 13.94 14.05

10 Hygiea 5.84 6.44 5.85

31 Euphrosyne 3.58 2.30 3.53

704 Intermanta 2.60 2.81 2.63

511 Davida 2.56 1.49 2.57

15 Eunomia 2.11 1.72 2.09

3 Juno 1.99 1.50 1.93

52 Europa 1.75 1.54 1.74

48 Doris 1.73 3.03 1.81

It can be noticed that laser ranging to Mars, even for a short period of only 3 years,

will result in drastic improvement in the masses of the estimated asteroids. This was

expected as asteroids that have been individually estimated here have up to a few kilo-

meters effect on the orbit of Mars over the period of 30 years (Kuchynka and Folkner,

2013) (e.g Ceres and Vesta with an effect of nearly 10 kilometers on orbit of Mars over

30 years). This justifies why 3 year laser ranging allows for significant improvement in

knowledge of asteroids. Looking at Table 4.1, it does not become possible to assume

that since there 11 asteroids see a large improvement in their mass parameter, the same

level of improvement should be expected to be seen for the rest of the asteroids that
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are not estimated individually. Since the effects of the rest of the asteroids are much

smaller than the ones estimated here and their effects become prominent over longer

period of time, hence one cannot tell whether this level of improvement is expected for

those asteroids as well. Improvement in all asteroid masses is expected with the current

setting but the magnitude of the improvement will for sure differ for each asteroid and

it will be a function of their perturbation on the orbit of Mars. As will be explained in

Chapter 5, it is highly recommended to perform this simulation while estimating more

asteroids individually in the future when the computational budget allows it to get a

better idea of the effect of laser ranging on possibly all of the non-negligibly perturbing

asteroids in the asteroid belt. Judging by studies performed by (Kuchynka and Folkner,

2013) and the results that have been produced here, it is highly likely that a longer

period of laser ranging (maybe close to about 10 years) will probably be required if one

wants to achieve a significant improvement in all 343 non-negligible asteroid masses and

not just the 11 that are estimated here.

The mass of the ring itself is not estimated. The reason for that is the ring mass is

optimally selected to account for the rest of the belts perturbation and its mass is as-

sumed to be ideal and a fixed parameter to ensure the full perturbation of the rest of the

belt, which is theoretically estimated by (Kuchynka et al., 2010), is properly accounted

for. Also estimating the ring’s mass does not result in a conclusive or valuable scientific

return. The ring assumes one lumped mass value for 332 non negligibly perturbing as-

teroids plus around 26,000 other bodies. So there is no way that one can attribute any

improvements that one can see in the ring mass due to introduction of laser ranging to

any of the individual asteroids in the belt. In modern ephemerides generation models,

saying something about improvements in individual asteroid masses, especially those

343 non negligible ones, is what is currently considered a scientifically valuable return.

Stating how much improvement laser ranging can have on belt’s lumped mass in this

thesis does not provide any meaningful or conclusive additions on what is happening

with individual masses in the solar system. It would haven be useful to also estimate the

ring mass if the 343 non-negligible asteroid masses were estimated individually. Then

the ring mass would give insight on the lumped mass of the 26,000 remaining bodies

in the belt which the signature of their effect are believed to be similar to one another

(Kuchynka et al., 2010), allowing one to further improve the knowledge of the belt.

The correlation matrices of the estimated asteroid masses with other parameters are

shown in in Figure 4.18. The inter-correlation between the asteroid masses themselves

are quite high which is expected due to the effect that the asteroid masses they have

on themselves and slightly similar effect signature they have on the orbit of Mars. The

correlation to Mars’s orbital parameters are high and are significantly elevated when

laser ranging introduced which is also expected. The masses show elevated correlations

to inner planets’ positions as well which is due to them having non-negligible effects on

orbit of Mercury and Venus too as was displayed in Figure 2.4. There are some oddly
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high correlations between asteroid masses and some of Neptune’s orbital parameters

which could be related to bad constraints on Neptune’s orbit.

(a) Correlation of asteroid mass parameters with all 55 estimated parameters without any
laser ranging data to Mars

(b) Correlation of asteroid mass parameters with all 55 estimated parameters with laser
ranging data to Mars

Figure 4.18: Comparison of asteroid mass parameters correlation with all 55
estimated parameters between the two cases of with and without laser ranging to Mars

4.3 Laser ranging effect on Sun’s J2 and PPN parameter

γ

Interplanetary laser ranging is a very prolific way of determining relativistic parameters

that exist in the PPN formalism of the Newton’s acceleration model (i.e γ and β) (Dallas,

1977). The reason for this is directly derived from the fact that laser ranging result in

accurate determination of planetary state vector which in turn allows for estimating the

relativistic parameters that exists in the planet’s acceleration model. The estimated

PPN parameter with and without laser ranging to Mars as well as its correlation with
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planetary ephemerides are displayed in this Section. Table 4.2 displays the estimated γ

and Sun’s J2 parameter as well as their true values which are extracted from the virtual

reality model (i.e truth model). The comparison between the two values can be used

to get an idea of the true error of the estimation. Next to this, the formal error of the

estimation is also shown to give insight on the ratio of true to formal error.

Table 4.2: Estimated dynamical and relativistic parameters with and without ILR
compared to their true values to get an indication of the true error of the estimation

as well as the formal error of the estimation.

Parameter

Name

True value

from Truth

Model

Estimated

value with-

out ILR

Estimated

value with

ILR

Formal Error

without ILR

Formal Error

with ILR

γ − 1 0.0 8.237 ×10−5 5.5 ×10−8 1.49 ×10−5 7.52 ×10−8

Sun J2 2.0 ×10−7 1.704 ×10−7 1.980 ×10−7 1.54 ×10−8 5.48 ×10−10

From Table 4.2, a preliminary conclusion can be made on the significance of laser rang-

ing on testing general relativity as it is capable of reduce the uncertainty on γ from

10−5 level to 10−7. Table 4.2 shows that the true error of the γ without laser ranging is

inline what is suggested in literature and the value that was determined from the Cassini

experiment (Kopeikin et al., 2007). This acts as a verification of the produced results

as well as showing that the relative improvement that is seen due to laser ranging. The

same goes for for the Sun’s oblateness factor which also sees a great improvement which

is not only due to improvement in orbit of Mars itself but also the cascade effect on

laser ranging on orbit of Mercury that experiences the largest perturbation due to Sun’s

oblateness. Also formal errors in Table 4.2 illustrate that the formal errors are more

optimistic by a factor of up to 5 compared to the the true error which was also predicted

in Section 3.3 and it justifies using the systematic noise designed in Section 2.6.1 during

the estimation to get more realistic representation of error.

The correlation between the PPN parameter and the other 54 estimated parameters are

given in Figure 4.19 for both cases. Figure 4.20 shows the correlation of estimated Sun’s

oblateness parameter with the rest of the estimated parameters.
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(a) Correlation of PPN parameter γ with other 54 estimated parameters without any laser
ranging data to Mars

(b) Correlation of PPN parameter γ with other 54 estimated parameters with laser ranging
data to Mars

Figure 4.19: Comparison of γ’s correlation with other estimated parameters
between the two cases of with and without laser ranging to Mars
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(a) Correlation of Sun’s J2 parameter with other 54 estimated parameters without any laser
ranging data to Mars

(b) Correlation of Sun’s J2 parameter with other 54 estimated parameters with any laser
ranging data to Mars

Figure 4.20: Comparison of Sun’s J2’s correlation with other estimated parameters
between the two cases of with and without laser ranging to Mars

Some notable observations can be made by comparing the Figures in 4.19 and 4.20. One

is that PPN parameter γ and Sun’s J2 parameter seem to display very high correlation

(i.e 0.85) for the case when laser ranging is not utilized. For the case where laser ranging

to Mars is utilized, these correlation disappears as very accurate observation to Mars,

and in turn better determination of Mercury’s orbit result allows for better distinction

between the Sun’s gravitational and relativistic effects. This is also helped by selecting a

very small Sun avoidance angle to better distinguish the two effects. Since laser ranging

observations are much more accurate, the effect is more prominently distinguished for

the case where laser ranging is used, completely decorrelating these two parameters.

The reason why small Sun avoidance angle did not help decorrelating the parameter for

the case where laser ranging is not utilized is because the observation accuracy in that

case is not good enough to properly distinguish the two effects.

Figure 4.20 shows that Sun’s J2 effect gets elevated correlation to Mercury when laser

ranging introduced which is expected as Mercury is the planet that is most significantly

effect of the Sun’s gravitation and the more accurately it is known, the better it can

be used to estimated Sun’s oblateness factor. Since laser ranging also improves aster-

oid masses and orbital parameters of other bodies, one can see that Sun’s J2 effect on

their orbit is much more accurately captured as well which is displayed by the elevated

correlations.
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Conclusion & Recommendation

The purpose of this thesis was to illustrate the effect of interplanetary laser ranging

on planetary ephemerides accuracy and answer the research questions posed in Section

1.2, specifically How much improvement in planetary ephemerides uncertainty (or error)

can be achieved by introducing interplanetary laser ranging observation in a planetary

ephemerides generation process. It was shown that due to dynamical coupling between

the bodies in the solar system, introducing a 3 year period of laser ranging to Mars

results in a more stable and more accurate planetary ephemerides. Some of this im-

provement in accuracy and stability is attributed to the improvement in knowledge of

the asteroid masses which see up to a factor of ten improvement in their mass param-

eter uncertainty due to the 3 year period of laser ranging introduced to Mars as was

shown in Section 4.2. Accurate laser ranging to Mars and its cascade effect on other

planetary ephemerides resulted in much better determination of Sun’s oblateness factor

(i.e J2) and PPN parameter γ, improving their uncertainty 2 and 3 orders of magnitude

respectively as was shown in Table 4.2 of Section 4.3. The body that is the target planet

of laser ranging sees a drastic improvement in its orbital uncertainty which was shown

that Mars’s position uncertainty improved from tens of meters level to less than a meter

level accuracy during the laser ranging phase which was apparent by looking at Figure

4.10.

The results that have been produced in this thesis are based on a number of assumptions

explained in Chapter 2 and are under computational limitations. Some of these main as-

sumptions, their impact and recommendation on how to treat them in future studies are

explained in the following. The simulation that is modeled in this thesis is set up in such

a way that it provides a great framework to do further studies and test other hypothesis

based off what was already done here. Any other analysis can be done by making use of

the ephemerides generation model that was already developed in this thesis as it is de-

signed in a way that by simple adjustments of initial inputs of the simulation, any desired

analysis can be performed. That being said, a number of shortcomings that this thesis

70
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could not address and the author suggests to be looked at in the future are provided here.

First and foremost, the ephemerides generation process have been conducted without

estimating the states of Earth and Moon due to getting bad condition numbers and

unreliable and diverging results as was explained in in Section 2.9. This assumption is

equivalent of having very accurate apriori knowledge of these two bodies to a point where

interplanetary laser ranging wont affect their orbits as much. This is of course not true

and it is recommended to estimate the state of these two bodies along side with other

bodies in the future estimation studies to analyze the correlation between the Earth and

other states. This requires some research on how exactly Earth and Moon are treated in

the state of the art ephemerides generation models and how they are constrained such

that the problem does not become ill-conditioned.

The second recommendation is to estimate all 343 non negligible asteroids individu-

ally and extending the timespan of the simulation for longer periods. These two changes

require immense amount of computational budget which was not available at the time

when this thesis was conducted. The reason why these are recommended is that it will

result in having ephemerides generation model that closely represent the state of the

art ones. Also one can analyze the effect of laser ranging on individual asteroid masses

which gives much more insight on how well one can improve the current knowledge of

the asteroid belt from laser ranging. The reason why a wider timespan is recommended

it to properly and fully carry over all the past information and planetary observations

that are available to us into the estimation model which will result in a simulation that

accurately represent our current knowledge of the ephemerides and subsequently the

effect of laser ranging on it. For instance, similar to state of the art models, starting

the estimation from 1969 onward which contains all of the most significant planetary

observations which had a large effect on the current knowledge of the ephemerides. The

developed code for this thesis already has the functionality implemented which allows for

selection of any time span and any number of asteroids to estimate by simply adjusting

its input parameters which allows performing this recommendation with minimum effort

In this thesis only the effect of laser ranging on PPN parameter γ was analyzed under

the assumption that Nordtvedt parameter is equal to its nominal value which results in

all relativistic effects to be represented by one parameter γ. It is recommended that a

more specific analysis to be performed on the effect of laser ranging on relativistic pa-

rameters and its contribution to testing general relativity by using constraint equations

during estimation in order to properly decorrelate and estimate more than one of the

PPN parameters. There are already studies that have been performed to analyze the

effect of laser ranging on relativistic parameters such as (Turyshev et al., 2010) which

can be used as a good guideline for conducting further relativistic studies.

Finally, in this thesis only the effect of laser ranging to one target planet (i.e Mars)
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was investigated as this planet was believed to be the most optimum and realistic can-

didate. However, this thesis can turn into an optimization problem in which one can

investigate the mose cost effective and prolific target and duration for laser ranging such

that one can get the most out of its benefits. This can be a great optimization problem

which help with designing future interplanetary mission in order to get the most out

of them. Also the code developed in this thesis can be used to test any desirable case

without the requirement of having knowledge of TUDAT or C++ for that matter as all

the inputs are easily adjustable.



Appendix A

Elliptical Integrals

The first, K(k), and second, E(k), kind of complete elliptical integrals used in this paper

have the following representations (Bertoli et al., 2014)

K(k) = E(k,
π

2
) =

∫ π
2

0

1√
1− k2sin2x

dx (A.1)

E(k) = E(k,
π

2
) =

∫ π
2

0

√
1− k2sin2xdx (A.2)

With k being the elliptic modulus. The incomplete elliptical integral has boundaries

between 0 and any value but the complete form, which is used in computing the ring

acceleration in this paper, has boundary needs to be between 0 and π
2 . The solution to

the complete elliptical integrals for first and second kind can be represented in terms of

a power series shown below (Bertoli et al., 2014)

K(k,
π

2
) =

π

2

∞∑
n=0

[ 2n!kn

22nn!2

]2
(A.3)

E(k,
π

2
) =

π

2

∞∑
n=0

[ 2n!kn

22nn!2

]2
[

1− k2

2
− k4

8

(2n+ 1)2

(r + 1)(r + 2)

]
(A.4)

These power series are numerically solved for a certain number of n depending on the

required numerical precision.
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Numerical derivative

The partial derivatives of the acceleration model with respect to the estimated param-

eters are required to be computed to populated the state transition matrix. However

the analytically deriving some of those partial derivatives can become very cumbersome

to compute and implement (i.e Equation 2.12). Hence the derivative is computed nu-

merically using the following procedure. Assuming f(x̄, t) is a function which its partial

derivative with respect to parameter xi needs to be computed. Then Equation B.1 is uti-

lized which uses central differencing to numerically compute the derivative of a function

(Smith, 1985).

df(x̄, t)

dxi
=
f(x̄(p,+), t)− f(x̄(p,−), t)

2xp
(B.1)

With x̄(p) representing the perturbed parameter vector x̄ in which only one of its param-

eter, xi, is perturbed. x̄(p,+) stands for a positively perturbed ith parameter and x̄(p,−)

stands for a negatively perturbed ith parameter. The function is evaluated at the two

perturbed instances and the average of the two are selected as the function derivative.

This process is repeated for every parameter in parameter vector x̄ that the function

f is sensitive to. xp represents the magnitude of the perturbation put on perturbed

parameter xi.
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Parameter Estimation process

The main theoretical basis behind this thesis is the process of estimating the state of the

solar system bodies. This is done using the weighted least-square parameter estimation

process which aims to estimate a vector of parameters (containing bodies initial states

and a number of physical and environmental parameters or observation biases that are

to be estimated, such that the actual observation data fit the dynamical model of the

solar system as good as possible by ensuring that the difference between the two are

minimized. The state vector is shown as vector X̄ below which contains initial positions

and velocities of ith body while p̄ contains all the additional estimated parameters.

S̄(t) =



...

xi(t)

yi(t)

zi(t)

ẋi(t)

ẏi(t)

żi(t)
...


X̄ =

[
S̄0

p̄

]

C.1 Inclusion of dynamics

To include dynamics in the parameter estimation process, two steps are considered. First

one is integrating the equations of motion, F , in order to get states in the future(or past)

epochs. F describes the rate of change of state over time is determined by the dynamical

equation of motion which describes the motion of the bodies in the solar system.

˙̄S(t) = F (S̄, t)
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The second step is to implement a functionality in the parameter estimation process

such that a small change in initial state translates into a change in states at any desired

time. This is achieved by state transition matrix φ(or variational equations) which is

a Jaccobian matrix of function F , evaluated at a certain reference state (i.e a matrix

which each elements of it is a partial derivative of F with respect to each of the state

and dynamical parameters) (Schutz et al., 2004)

∆X(t) = φ(t, t0)∆X(t0)

The state transition matrix itself needs to be propagated to future epochs which is done

by using a numerical integration scheme. Hence the variation of state transition matrix

over time is defined as the following (Schutz et al., 2004)

φ̇(t, t0) =
δF

δX

∣∣∣∣
X=Xref

φ(t, t0)

It is typical to divide φ matrix into a sensitivity matrix (i.e containing δF
δp and another

matrix (i.e containing δF
δS ) which improves efficiency in practice but in this discussion,

the combined matrix is used and referred to as φ.

C.2 Inclusion of observations and observation model

The observations data used in parameter estimation process could be range, range-rate or

various angles which do not represent the actual states of the bodies. In fact, a nonlinear

observation equation relate the observation to the actual states. Hence, to write the

relationship between observation and observation equation in a matrix formulation, the

observation equation need to be linearized around a reference state by using a first order

Taylor expansion as shown below (Schutz et al., 2004). The observations are referred to

as ȳ.

ȳ = ȳref +
δȳ

δX

∣∣∣∣
X=Xref︸ ︷︷ ︸
Ĥ

(X −Xref )︸ ︷︷ ︸
∆X

+ε̄

ε̄ in this case is a vector containing observation errors (both systematic and random)

and Ĥ is a matrix that maps the increment of observation to the increment of state.

In least square method, the above is typically rearranged in the following form which

express the increment of observation as a linear combination of design matrix A and the

increments of the state vector S

∆y(t) = Ĥ(t)∆X(t) + ε(t)



Appendix C Parameter Estimation process 77

Above equation can be written in terms of deviation in initial state vector (or in terms

of a deviation in an state vector at time tk) using matrix φ. This translate the above

relation into the following form (Schutz et al., 2004)

∆y(t) = Ĥ(t)φ(t, tk)∆X(tk) + ε(t)

In a weighted least square estimation problem, each observation has a weight assigned to

it which all of them are gathered a weight matrix denoted as W . This matrix is derived

from the observation covariance which is a representative of the observation noise. In

case of uncorrelated Gaussian noise for observation, this matrix is a diagonal matrix

containing 1
σ2 for each observation with σ2 being the variance of the observation.

The least square inversion process involves minimizing the weighted sum squares of the

calculated observation residuals (i.e difference between the actual observation and the

computed one) which is denoted as the following cost function (Schutz et al., 2004)

J =
1

2
εtWε

The assumption and conditions that are used for minimizing this function is discussed in

(Schutz et al., 2004). The minimization will result in Equation C.1 which determines the

best estimate for ∆X such that the weighted sum squares of the calculated observation

residuals are minimized.

∆X(tk) = (HT (tk)WH(tk))
−1HT (tk)W∆y (C.1)

Since this both the observation equation and the dynamic are nonlinear, a number of

iterations are required until the solution can be reached. At each iteration, estimated

state increment is added to the state then computed observation is compared to the

actual observation. If the difference is smaller than a certain preset threshold, the iter-

ation is stopped. If the convergence is not reached, then one shall observe and identify

the source that prevents the computed values to be close the actual ones either in the

observation model or the dynamic.

C.2.1 Estimation formal error

After the estimation is performed, one can extract the covariance matrix of vector X

which the square root of its diagonal elements provide the formal error of the estima-

tion process. The covariance matrix is determined as follows with P−1
apr that is called
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the a-priori covariance matrix which is constructed from the apriori knowledge of each

parameter and it has the square of the standard deviation of each parameter on its

diagonal (Wermuth et al., 2010).

P−1
x = (HTWH)−1 + P−1

apr
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Tommei, G., Milani, A., and Vokrouhlickỳ, D. (2010). Light-time computations for the

bepicolombo radio science experiment. Celestial Mechanics and Dynamical Astron-

omy, 107(1-2):285–298.



Bibliography 82

Touma, J. and Wisdom, J. (1994). Evolution of the earth-moon system. The Astronom-

ical Journal, 108:1943–1961.

Turyshev, S. G., Farr, W., Folkner, W. M., Girerd, A. R., Hemmati, H., Murphy, T. W.,

Williams, J. G., and Degnan, J. J. (2010). Advancing tests of relativistic gravity via

laser ranging to phobos. Experimental Astronomy, 28(2-3):209–249.

Turyshev, S. G., Williams, J. G., Shao, M., Anderson, J. D., Nordtvedt Jr, K. L., and

Murphy Jr, T. W. (2004). Laser ranging to the moon, mars and beyond. arXiv

preprint gr-qc/0411082.

Verma, A., Fienga, A., Laskar, J., Manche, H., and Gastineau, M. (2014). Use of mes-

senger radioscience data to improve planetary ephemeris and to test general relativity.

Astronomy & Astrophysics, 561:A115.

Viswanathan, V., Fienga, A., Gastineau, M., and Laskar, J. (2017). Inpop17a plan-

etary ephemerides. Notes Scientifiques et Techniques de l’Institut de mécanique
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