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Abstract

Phylogenetic networks are a type of directed acyclic graph used to represent evolutionary rela-
tionships that contain events such as hybridization or horizontal gene transfer. When a network
lacks such events it is a phylogenetic tree. Some phylogenetic networks that are not trees can
however be represented as a tree with additional linking arcs, e.g. representing transfer of genetic
materials. We have implemented an algorithm that can be used to determine whether a given
network is tree-based or not. Moreover if the network is not tree-based, the algorithm shows
how it can be made tree-based by adding a minimum number of additional leaves, representing
possible extinct or un-sampled species. We also describe the theory behind the algorithm and
apply it to several synthetic as well as biological datasets.
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1 Introduction

In the last few years there has been an increasing popularity in phylogenetic networks to represent
evolutionary relationships. The benefit such a network has over a phylogenetic tree is that it
allows vertices to have more than one incoming arc. The convergence of arcs is an important
phenomenon in evolution as it can for example describe hybridization or horizontal gene transfer.
These events are also known as reticulate evolutionary events and these vertices are called
reticulations. An example of hybridization can be seen in the mule. It is the offspring of a
female horse and a male donkey. While a mule is not fertile, hybrids in for example plants are
fertile and form new species. If a phylogenetic network has no reticulate evolutionary events it
is simply a phylogenetic tree.

Phylogenetic networks that are not trees can sometimes be seen as trees with additional
linking arcs between vertices of the tree. Francis and Steel [1] defined this class of phylogenetic
networks as “tree-based” and studied them. Since then multiple studies have been carried out
on tree-based networks in a number of papers ([2], [3], [4], [5]). With the study of tree-based
phylogenetic networks a few ways have been described to determine if a phylogenetic network is
tree-based or not. Francis, Semple and Steel [6] described several characterizations of tree-based
networks. They also provided a polynomial time algorithm to find these characterizations. Each
of these characterizations provides an index to see how close an arbitrary phylogenetic networkN
is to being tree-based, based on anti-chains, path partitions and matching in auxiliary bipartite
graphs using previous results from [2] and [5]. Most of these characterizations have been defined
for binary networks so in this thesis all networks are assumed to binary. The property of tree-
basedness can be used in several different fields of research which use phylogenetic networks such
as in viruses, bacteria and plants. Determining whether a network is tree-based, or how close it
is to being tree-based, can be used to determine how “tree-like” the evolutionary history of the
considered species has been.

The characterizations which are used to measure how close a network is to being tree-based
are l(N ), p(N ) and t(N ). The first measure, l(N ), is equal to the amount of extra leaves in a
rooted spanning tree of a network. The second measure, p(N ), is equal to the minimum number
of disjoint paths a network can be partitioned into. The last measure is t(N ), which is equal
to the number of leaves that need to be added to the network for it to be tree-based. Each of
these measures can be seen as a distance from being tree-based and is equal to zero precisely
when the network is tree-based.

The algorithms given by [6] can be followed by hand to calculate these distance measures
of a network to determine if it is tree-based. These algorithms work quick for smaller networks
but becomes a painstaking job when the network is larger. Take for example the Viola network,
based on the viola genus from [7] which holds over 600 species. The viola network can be seen in
Figure 1, each leaf in the network represents a large number of species. If it was to be determined
if the network is tree-based or not, one could manually apply theorems or follow the algorithms
which will take a while to complete.
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Figure 1: The viola network, an example from [2]

To avoid doing all the manual labor we programmed the algorithms for the characterizations
in java. All the user has to do is provide the program with a newick string or an edge set that
represents the network. In this thesis we explain the theory on which the program is based as
well as give some examples on how the algorithm works and, of course, the program itself and
where one can download it from.

The second chapter of this thesis is used to introduce the definition of tree-based networks
and other that are used in this thesis. In Chapter 3 we explain the measures described in [6] and
the algorithms used to find them. In Chapter 4 we explain how the algorithms were programmed.
In Chapter 5 we will apply the algorithm to two synthetic networks used throughout the paper
and to several networks from existing literature.

2 Definitions

Definition 2.1. (Phylogenetic Network)
A (rooted binary) phylogenetic network N = (V,E) is a rooted acyclic graph which contains

the following types of vertices:
(i) a unique root vertex with out-degree two.
(ii) tree vertices with in-degree one and out-degree two.
(iii) vertices with in-degree two and out-degree one, called reticulations.
(iv) vertices with in-degree one and out-degree zero, called leaves. In addition, the set of leaves

will be a non-empty finite set X.

In Figure 2 a small example is given of a phylogenetic network with each of these vertices.
Notice that each edge is not drawn as a directed edge, that is because all edges are directed
downwards. This will be the case for all phylogenetic networks in this thesis. The leaves of a
network are often present-day species.
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a b c e d

Figure 2: Example of a phylogenetic network. The reticulation is shown by a blue node.

Take (a, b) = e ∈ E, an edge in a phylogenetic network N = (V,E). Then e is an outgoing
edge of a and an incoming edge of b. In addition, a is a parent of b and b is a child of a. It is
possible for a vertex to have up to two children and it is also possible to have up to two parents,
however, it is not allowed to have both two children and two parents. The incoming edges of a
reticulation are called reticulation edges.

A tree is called a rooted spanning tree of N if it is a rooted subtree of N containing all
vertices.

Now that the basics of phylogenetic networks have been established we can define the prop-
erty which the algorithm is about: The tree-basedness of a phylogenetic network. Here follows
a definition of tree-based networks.

Definition 2.2. A phylogenetic network N = (V,E) on X is a tree-based network if there exists
an E′ ⊆ E such that N ′ = (V,E′) is a rooted spanning tree of N that has all its leaves in X.

Definition 2.3. If N is tree-based we call N ′ a base tree of N .

In Figure 3 two examples are given, the first example is a tree-based phylogenetic network
and the other is an example of a non-tree-based phylogenetic network.
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a b c e d

(a) Example of a tree-based network

a b c e d

(b) A rooted spanning tree of the net-
work in (a)

a b c e d

(c) Example of a non-tree-based network

a b c e d

(d) A rooted spanning tree of the network
in (c)

Figure 3: Example of a tree-based network and a non-tree-based network. The non-tree-based
network in (c) has an extra leaf in the rooted spanning tree displayed in (d) (and it has at least
one extra leaf in every other rooted spanning tree).

The algorithms that we implemented make use of auxiliary bipartite graphs of rooted binary
phyologenetic networks. The first that is used is GN as defined by Francis, Semple and Steel [6].
The other one is ZN defined by Zhang [5]. First the definition of GN is given.

Definition 2.4. Let N = (V,E) be a phylogenetic network on X. Let V1 and V2 be exact
copies of V . Then GN is the auxiliary bipartite graph with vertex bipartition {V1, V2} and an
edge between u ∈ V1 and v ∈ V2 when (u, v) is an edge in N .

Figure 4 shows how GN is created from a phylogenetic network.
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Figure 4: Example of a phylogenetic network and its auxiliary bipartite GN representation.

Bipartite graph GN as defined by Definition 2.4 provides us with a way to check the tree-
basedness of a network. In Chapter 3 a characterization of tree-based networks will be given and
proven based on GN . The characterization was first proven in [6] and complements two previous
characterizations of tree-based networks via matching which were proven in [2] and [5].

The following definition defines ZN . This particular bipartite graph is used to calculate one
of the characterizations in Chapter 3.

Definition 2.5. Let N = (V,E) be a phylogenetic network on X. Let R be the set of reticu-
lations in N and T the set of tree vertices in N that are parents of reticulations. Let ZN be
the auxiliary bipartite graph with vertex set T ∪R and an edge between t ∈ T and r ∈ R when
(t, r) is an edge in N .

Figure 5 shows how an auxiliary bipartite graph ZN is created from the phylogenetic network
in Figure 3c.

1 2 3

4 5
6

(a)
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T R

(b)

Figure 5: In (a) an example of a non-tree-based phylogenetic network is shown and its auxiliary
bipartite graph ZN representation in (b). T = {1, 2, 3} holds all the parents of reticulations
that are tree vertices. R = {4, 5, 6} holds all the reticulations.

A few characterizations of tree-based networks based on ZN have been defined by Zhang [5].
These definitions use a matching and a maximal path in ZN . A matching in a graph is a set
of edges without overlapping vertices. A maximal path is a path that cannot be extended to a
longer path.
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Theorem 2.1. Let N be a phylogenetic network. Then the following statements are equivalent:

i) N is tree-based.
ii) ZN has a matching such that each reticulation is matched.
iii) ZN has no maximal path that starts and ends with a reticulation.

In Figure 5 you can use Theorem 2.1 to check that the phylogenetic network is not tree-based,
as ZN does not have a matching such that each reticulation is matched.

You can also conclude that N is not tree-based from the fact that vertex 6 by itself forms a
maximal path that starts and ends at a reticulation.

3 Measures for tree-basedness

A phylogenetic network N is either tree-based or it is not. This allows for measures to be zero
if and only if N is tree-based. If these measures are not zero they show how close N is to
being tree-based. In this section, all of the measures which are found using the algorithms are
defined and a small example is given to show how to calculate them. Francis, Semple and Steel
established three measures to check how close a phylogenetic network is to being tree-based.
These are named l(N ), p(N ) and t(N ). The correctness of these measures will be proven later
in this chapter.

First of all we define l(N ), which looks at the extra leaves of a rooted spanning tree of N :

Definition 3.1. Let N = (V,E) be a phylogenetic network on X. Then l(N ) is equal to the
minimum number of leaves in V −X that must be present as leaves in a rooted spanning tree
of N .

Figure 6 shows an example of what l(N ) represents and how it is measured.

a b c e d

(a) Network

↑

a b c e d

(b) Rooted spanning tree of the
network in (a)

↑
↑

a b c e d

(c) Another rooted spanning
tree of the network in (a)

Figure 6: An example of l(N ). In (b) a rooted spanning tree of the network in (a) is shown
together with a leaf in V −X marked by red. Another rooted spanning tree in (c) shows two
leaves in V −X. The minimum number of leaves that must be present in V −X is one. Thus
l(N ) = 1 which indicates that the network is not tree-based.

The second measure that is defined is p(N ). This measure is calculated by partitioning the
network into vertex disjoint paths and using the number of paths. The definition of p(N ) is as
follows:

Definition 3.2. Let N = (V,E) be a phylogenetic network on X. Then p(N ) is equal to the
minimum number of vertex disjoint directed paths that partition the vertices of N , minus |X|.
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Figure 7 shows an example of what p(N ) represents and how it is measured.

a b c e d

(a) Network

a b c e d

(b) Partition by vertex disjoint paths

Figure 7: An example of p(N ). In (b) can be seen that the phylogenetic network of (a) can be
partitioned by a minimum of six vertex disjoint paths, drawn in thicker black. The number of
leaves that are present in the network is |X| = 5. So the end result p(N ) = 6 − 5 = 1 which
indicates that the network is not tree-based.

The last measure to be defined is t(N ) which is determined by the number of leaves that
need to be added to a network for it to be tree-based. Adding a leaf to a network is done by
splitting an edge with a node and then attaching a leaf to that node. This will make sure the
network stays binary.

Definition 3.3. Let N = (V,E) be a phylogenetic network on X. Then t(N ) is equal to the
minimum number of leaves that need to be added to N so the resulting network is tree-based.

(a) Network

t

(b) Added a single leaf node t

t

(c) A base tree of the network
in (b)

Figure 8: An example of t(N ). From the examples in Figure 6 and 7 we know that the network
of (a) is not tree-based. To determine the measure t(N ) leaves need to be added to the network
until it is tree-based. To start off we add a node to a reticulation edge, then a single leaf t is
added to the node. The network is now tree-based. This can be checked with the other measures
or with the definition. This means t(N ) = 1.

The first theorem will prove that p(N ) is a correct measure to use when determining the
tree-basedness of a network. The proof is also the algorithm for computing the measure. Before
we prove the theorem we define u(GN ), a measure of GN as defined in Definition 2.4 and prove
Lemma 3.1. Recall that, for a phylogenetic network N = (V,E) on X, the auxiliary bipartite
graph GN has vertex bipartition {V1, V2} and an edge between u ∈ V1 and v ∈ V2 when (u, v) is
an edge in N . u(GN ) equals the number of unmatched vertices of V1 in a maximum matching
in GN .

Lemma 3.1. Let N be a phylogenetic network on X. Then

p(N ) = u(GN )− |X|
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Proof. First we show that p(N ) ≤ u(GN )− |X|. Let M be a matching in GN and U2 the set of
unmatched vertices in V2. For each vertex u ∈ U2, we recursively construct a directed path Pu

in N as follows. Set u = u0 and initially set Pu = u0. If u0 is unmatched in V1, then stop the
process and set Pu = u0; else set Pu = u0u1, where (u0, u1) ∈M . Continue this process with u1.
If u1 is unmatched in V1, then stop the process and set Pu = u0u1; else, when u1 is matched, set
Pu = u0u1u2, where (u1, u2) ∈M . Because N is acyclic, this process will eventually stop at the
last vertex uk which will be added to Pu as it is unmatched in V1. We repeat this construction
for all vertices in U2. Creating a collection P = {Pu : u ∈ U2} of directed paths in N . Since
M is a matching, the paths in P are disjoint. In addition, each vertex of N can be found in a
path from P. If not, suppose there is a vertex v ∈ V that is not on such a path. Clearly, v is
matched in V2. But by reversing the construction above starting at v in V2 we can see that v is
on a path in P. Since each vertex in X is unmatched in V1 (no outgoing edges), and because the
number of paths in P is equal to the number of unmatched vertices in V1 and in V2, it follows
by choosing the maximum matching M that

p(N ) ≤ |P| − |X| = u(GN )− |X|

Now to prove that p(N ) ≥ u(GN )− |X|. Let P be a set of disjoint paths that partition the
vertices of N and let M be a matching of GN obtained in the following way: M = {(u, v) : u
and v are consecutive vertices on a path in P}. The paths in P are disjoint so M is indeed a
matching. Because every vertex of N is on a path in P, the number u1 of unmatched vertices
in V1 is equal to the number of paths in P. Thus by choosing P to be of minimum size

p(N ) = |P| − |X| = u1 − |X| ≥ GN − |X|

The next theorem, which shows that p(N ) = 0 is a correct measure for tree-basedness, uses
Lemma 3.1 in its proof.

Theorem 3.1. Let N = (V,E) be a phylogenetic network on X. Then the following statements
are equivalent:

i) N is tree-based.
ii) GN has a matching of size |V | − |X|.

Proof. Each of the leaves in the network are unmatched in V1, because of this it follows that
GN has a matching of size |V | − |X| if and only if GN has a maximum-sized matching of this
size. With use of Lemma 3.1 we can show that GN has a maximum-sized matching of |V | − |X|
if and only if p(N ) = u(GN ) − |X| = 0. The result follows from p(N ) = 0 if and only if N is
tree-based.

In the following set of figures the algorithm from the proof is used step by step to show how
it works.
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(b) GN for network N in (a)
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(c) Start at the first unmatched vertex in V2, Ver-
tex 1. The matching is displayed with a thicker
line.
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(d) Vertex 1 is unmatched in V1 and connected to
vertex 2. Set P1 = (1 2)
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(e) Repeat the process for vertex 2 and 4. Set
P1 = (1 2 4 a). a is unmatched in V1 so the process
is terminated.
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(f) The next unmatched vertex is vertex 3.

Figure 9: Example of a phylogenetic network and its auxiliary bipartite GN representation.
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(a) The next unmatched vertex is vertex 3. Repeat
the previous steps. 3 is matched to 5. 5 is matched
to c and c is unmatched. P3 = (3 5 c).
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(b) The next unmatched vertex is vertex 6. 6 is
matched to d and d is unmatched. P6 = (6 d).
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(c) The next unmatched vertices are b and e. How-
ever they are also unmatched in V1 resulting in
Pb = (b) and Pe = (e)

1

2 3

4 5 6

a b c d e

(d) Showing disjoint paths in P =
{P1, P3, P6, Pb, Pe}. The number of disjoint
paths is 5, the number of leaves is also 5. So we
see that p(N ) = 5− 5 = 0.

Figure 10: Continuation of the example in Figure 9

The following measure l(N ) is also well defined as it is identical to p(N ).

Theorem 3.2. Let N = (V,E) be a phylogenetic network on X. Then

l(N ) = p(N )

To show that the last measure t(N ) is also well defined we use the following theorem.

Theorem 3.3. Let N = (V,E) be a phylogenetic network on X. Let M be a maximum sized
matching on ZN . Then t(N ) is the number of unmatched reticulations in ZN .

These two theorems have been proven in [6].
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4 Algorithms

In this chapter a pseudocode will be given which shows how the algorithm has been programmed.
The measure that will be computed first is p(N ) in Section 4.1. The second measure l(N ) will
be computed in 4.2 and will also deliver a rooted spanning tree of the network which uses the
vertex disjoint paths created by the algorithm in Section 4.1. Measure t(N ) is computed in
section 4.3. . The programming language that is used is Java. A separate piece of pseudocode
will be given and explained for each of the functions that are used.

The first piece of the algorithm is the main function. The input for the main function can
be a text file containing a newick string or an edge set. The main function is used to read the
text file and call the algorithms used for the other sections. To start of the algorithm a valid
text file needs to be provided. This text file will be converted to an iterable data structure. The
algorithm to convert a given newick string to an iterable data structure has been written by Leo
van Iersel. The algorithm that converts a given edge set has been written by Arthur Mooiman.
With the conversion algorithms we will end up with a single root node which holds information
about its children and several other properties. These children once again have information
about their children and their parents.

After the conversion the work is split up into three other functions. First will be vertexDis-
jointPaths() to calculate the maximum number of vertex disjoint paths in the network and thus
also p(N ). This function can be found in section 4.2. The second function is rootedSpan-
ningTree(). This function creates a rooted spanning tree T of the network with a minimum
number of dummy leaves, see Section 4.2. The last function treeBasedNetwork() constructs a
tree-based network N ′ by adding t(N ) leaves to the network N if necessary.

When each of the different functions is completed the created networks are converted to DOT
format. The original network will be in the text file “DotNetwork.txt”. The rooted spanning
tree will be in the text file “DotSpanningTree”. The tree-based version will be in the text file
“DotTreeBasedVersion”.

Algorithm 1 Main function

Require: newick string or edge set in a text file
n← Read the text file.
Root node N ← An iterable data structure of the network.
Convert the network to DOT format.
p(N )← The number of vertex disjoint paths in the network. (vertexDisjointPaths())
print p(N )
Create a rooted spanning tree of the given network. (rootedSpanningTree())
Convert the created rooted spanning tree to DOT format.
Create a tree-based network of the given network. (treeBasedNetwork())
t(N )← The number of leaves added by treeBasedNetwork().
Convert the created tree-based network to DOT format.

4.1 Vertex disjoint paths

The function which calculates the measure p(N ) will be vertexDisjointPaths. The function
follows the proof of Lemma 3.1. Following the proof a few things need to be done:
• Construct bipartite graph GN by network2BipartiteGn
• Find a maximum matching on GN by findMaxMatching
• Find all unmatched vertices of V2 by findUnmatchedV2
• Find all disjoint paths starting at an unmatched V2 node by findUniqueMaxSequences.
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After these steps we can calculate p(N ) by substracting the number of leaves from the number
of disjoint paths.

Algorithm 2 vertexDisjointPaths

Require: Network N
Vertices ← All vertices of the network.
Edges ← All edges of the network.
Gn ← The bipartite graph GN of your network. (network2BipartiteGn)
Find the maximum matching on GN . (findMaxMatching)
unmatchedV2 ← Unmatched vertices of Gn.
disjointPaths ← All disjoint paths in Gn starting at a node in unmatchedV2. (findUnique-
MaxSequences)
numOfDisjointPaths ← The number of elements in disjointPaths.
numOfLeaves ← The number of leaves in the network.
p(N )← numOfDisjointPaths - numOfLeaves
return p(N )

The following algorithm, network2BipartiteGn, constructs a bipartite graph GN simply by
going over each edge in the network. This function requires the value num[0], the highest id
number of a vertex. For each edge it puts the first vertex in V1 and the second vertex in V2, where
V1 and V2 are part of GN . It tracks if a vertex has been visited already to prevent duplicating
vertices. This algorithm also creates an initial matching in GN while it is constructing which
will be used in a later algorithm. This matching is not necessarily a maximum matching. At
the end of the algorithm you are left with bipartite graph GN and a matching.

14



Algorithm 3 network2BipartiteGn

Require: edges, Boolean vector to track visited vertices
Create Gn with V 1 and V 2.
for each edge in edges do

startNode ← The first node in edge.
endNode ← The last node in edge.
if startNode has not been visited then

startNode is visited
Add startNode to both V1 and V2

else if startNode has been visited then
startNode ← startNode from V1

end if
if endNode has not been visited then

endNode is visited
Add endNode to both V1 and V2

else if endNode has been visited then
endNode ← endNode from V2

end if
Make startNode a neighbour of EndNode and vice versa.
if Both startNode and endNode are unmatched then

Match startNode to endNode
end if

end for
return Gn, matching M

To continue the algorithm we have the function findMaxMatching. This function finds the
maximum matching in a bipartite graph by using Berge’s lemma [8]. Berge’s lemma states that
a matching M in a graph is maximum if and only if there is no augmenting path with M . An
augmenting path is a path where the start and end vertices are unmatched in M and the path
is alternating edges between in and not in M . The function has to find an augmenting path and
change the matching when it finds one. It will repeat this process until it can no longer find an
augmenting path, thus leaving a maximum matching.
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Algorithm 4 findMaxMatching

Require: Gn, matching M
while There is an augmenting path in Gn (hasAugmentingPath) do

for Each edge in the augmenting path do
if Edge in matching then

Remove edge from matching
else if Edge not in matching then

Add edge to matching
end if

end for
end while

To check whether there is an augmenting path present the following function will return
either true or false. It will also set up the path for findMaxMatching to continue.

Algorithm 5 hasAugmentingPath

Require: Gn, matching M
edgeTo ← Vector to track paths.
unmatchedV1 ← All unmatched vertices in V1
while unmatchedV1 is not empty do

s ← Remove a vertex from unmatchedV1
for Each neighbour t of s do

if Edge (s,t) is forward edge not in matching or backward edge in matching AND t has
not been visited then

t is visited
if t is not matched then

return True and return the path
end if

end if
end for

end while
return False

With the maximum matching found we can continue following the proof of Theorem 3.1.
Let unmatchedV2 be the set of unmatched vertices in V2.

The final part of the algorithm is to find the disjoint vertex paths using findUniqueMaxSe-
quences. A path is created for each vertex in unmatchedV2. Then we take the same vertex but
from V1 and check if it is matched. If it is matched then add that vertex to the current path
and repeat the process. Eventually it will stop at a vertex which is unmatched in V1. Because
we use a maximum matching all of the found paths will be vertex disjoint. After this function
we have a list full of vertex disjoint paths.
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Algorithm 6 findUniqueMaxSequences

Require: Gn, unmatchedV2
paths ← Empty list of lists
for Each vertex nv2 in unmatchedV2 do

p ← empty list
Add nv2 to p
nv1 ← nv2 vertex from V1
while nv1 is matched do

Add the matched vertex to p
nv1 ← matched vertex from V1

end while
Add p to paths

end for
return paths

With the last part of the algorithm completed the only thing left to do is to calculate p(N )
which happens in the first function.

4.2 Rooted Spanning Tree

The function to construct the rooted spanning tree N ′ of the network N will be rootedSpan-
ningTree. This function uses the vertex disjoint paths found by the function in Section 4.1. Each
of the paths in vertex disjoint paths except the path that starts at the root will be extended.
A path in vertex disjoint paths is of the form π = v0v1 . . . vn. This path will be extended to
π′ = wv0v1 . . . vn, where (w, v0) is an edge in N . After each path is extended they will be merged
together to form the rooted spanning tree T .

The rootedSpanningTree function will split the work up into three parts:
• Find the path in vertex disjoint paths which traverses the root.
• Extend the other paths in vertex disjoint paths.
• Combine the root path and the extended paths to create a rooted spanning tree.

Algorithm 7 rootedSpanningTree

Require: disjointPaths
rootpath ← The path in disjointPaths which traverses the root.
Extend the remaining paths in disjointPaths.
spanningTree ← The combined rootpath and extended paths. (createSpanningTree())

To merge the rootpath and the extended paths we use createSpanningTree. In this function
we create a new vertex for each vertex in rootpath and give them children and parents as they
are ordered. For the extended paths we need to check if a vertex has been created already
before adding new ones. Give each of these vertices children and parents as they are ordered.
After every extended path has been added, the leftover network will be a rooted spanning
tree of N . The rooted spanning tree will be returned in DOT format in a text file named
“DotSpanningTree.txt” .
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Algorithm 8 createSpanningTree

Require: rootPath, extended disjointPaths.
allST ← The vector containing all created vertices.
for each vertex in rootpath do

Create a new vertex and add it to allST.
Give each vertex children and parents as they are ordered.
Label the root vertex as root.

end for
for each path in extended disjointPaths do

Create a new vertex for each vertex in path unless that vertex already exists.
Add children and parents to those vertices as they are ordered.

end for
return The root of the rooted spanning tree.

4.3 Tree-Based Network

In this section the function treeBasedNetwork is explained. The steps taken by this function
coincide with theorem 3.3. The function will provide a tree-based version of the given network
that is closest to the original by adding t(N ) leaves to the network.

To construct the tree-based network the following things need to be done:
• Construct ZN as defined in definition 2.5.
• Find the maximum matching in ZN .
• Find all unmatching reticulations in ZN .
• For each of those reticulations we remove one of their parents in the original network

and replace that parent with a dummy vertex. This dummy vertex has two children, the
reticulation and a new vertex as a leaf. The dummy vertex has the original parent as a
parent.

After all these steps the network is still binary and is tree-based. The function treeBased-
Network breaks the work up into these four steps.

Algorithm 9 treeBasedNetwork

Require: Root vertex N.
rets ← All reticulations of N .
Zn ← Bipartite graph ZN . (network2BipartiteZN())
Find the maximum matching in ZN . (findMaxMatching(Zn))
unmatchedRets ← All unmatched rets in ZN .
Attach leaves to each unmatched reticulation. (attachLeaves())

First of all it finds all reticulations that are present in the network. When those are found
it moves on to network2BipartiteZN to create the bipartite graph ZN . Each of the reticulations
of the network are put into V1. The parents of these reticulations are put into V2 if its a tree
vertex. While doing this, create an edge between the reticulation and the parent. If both of
these are unmatched in ZN , match them to each other. In the end you will end up with ZN
and a matching.
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Algorithm 10 network2BipartiteZN

Require: Each reticulation in the network.
for each reticulation do

Put the reticulation in V1.
Put its parents in V2 if it is a tree vertex.
Create an edge between the reticulation in V1 and its parents in V2.
if both are unmatched then

match both to each other.
end if

end for
return ZN .

For the next step it is required to find the maximum matching in ZN . To do this we reuse
the function4.

With a maximum matching the following step is to find the unmatched reticulations in ZN .
For each of these reticulations we need to add some dummy vertices to the network to make
it tree-based. The function to do this will be attachLeaves, which will also return t(N ), the
number of added leaves, and the tree-based network.

Algorithm 11 attachLeaves()

Require: Root vertex N, unmatched reticulations in ZN .
t← 0.
for Each unmatched reticulation do
t = t+ 1.
Get one of the parents from this reticulation.
Change the child of this parent and the parent of the reticulation to a new vertex.
Add to the new vertex another new vertex as a child and leaf.

end for
return t

When the function is finished you are left with t(N ) and a tree-based version of your network.

5 Examples

This section holds different examples to show what is needed for the algorithm to work and the
various outputs it produces. Each example will start with a newick string and will output the
measures p(N ), l(N ) and t(N ). Alongside these measures there will be three networks in DOT
format: The original network, the rooted spanning tree of the network and a tree-based network
obtained by adding a minimum number of leaves to the original network.

5.1 Example 1

The first example will be the tree-based network used throughout the thesis. The newick string
for this network is:

(((a,b),((c)#H1)),((d,e),#H1));

When the algorithm is run on this newick string it will output the following:
• p(N ) = 0
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• l(N ) = 0
• t(N ) = 0

(a) Network with rooted spanning tree in red. (b) Tree-based version.

As expected the results for all three measures is 0.

5.2 Example 2

The second example will be the non-tree-based network used throughout the thesis. The newick
string for this network is:

((((a,b),(((c)#H1)#H2)),(((#H1)#H3),#H2)),((d,e),#H3));

When the algorithm is run on this newick string it will output the following:
• p(N ) = 1
• l(N ) = 1
• t(N ) = 1

(a) Network with rooted spanning tree in red.

(b) Tree-based version.
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5.3 Example 3

The following example is of a network with around 50 leaves and 104 reticulations. The net-
work can be found on http://phylnet.univ-mlv.fr/recophync/networkDraw.php and is the
network already filled in in the ”Draw this network” window.

When the algorithm is run on this newick string it will output the following:
• p(N ) = 11
• l(N ) = 11
• t(N ) = 11

5.4 Example 4

The following examples are from existing literature and can all be found on http://phylnet.univ-mlv.fr/recophync/networkDraw.php.
The first of these examples is from [9] figure 2. This network is an example ancestral

recombination graph for variation at the yeast gene encoding and flanking sequence. It has two
reticulations and 10 leaves. Each reticulation represents a recombination event. The newick
string of this network is :

((DBVPG\_1373,L\_1374,YJM978)\#H1,((\#H1,(UWOPS03.461.4,UWOPS05.217.3,UWOPS05.227.2),

(Y12)\#H2),((\#H2,Y9),((K11,(YPS606,YPS128),(NCYC110,DBVPG6044))))))

One can also use an edge set to get the same results. Below are the first few edges of the network:

r 94864

r b

b c

c 94864

When the algorithm is run on this network it will output the following:
• p(N ) = 0
• l(N ) = 0
• t(N ) = 0

(a) Network with rooted spanning tree in red.

5.5 Example 5

A larger example which also produces measures which are greater than one is figure 3 from [10].
This example has 31 reticulations and 7 leaves. The newick string or the edge set are simply
too big to place in this thesis. The same holds true for the figure produced by the algorithm.

When the algorithm is run on this network it will output the following:
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• p(N ) = 3
• l(N ) = 3
• t(N ) = 3

5.6 Example 6

The following example is figure 7 of [11]. This network has 5 reticulations and 29 leaves. The
network represents the five largest highways in fungi. Each reticulations represents gene transfer
between the fungi.

When the algorithm is run on this network it will output the following:
• p(N ) = 0
• l(N ) = 0
• t(N ) = 0
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6 Discussion

In this thesis the algorithms have been programmed to determine the tree-basedness of a binary
phylogenetic network. For these algorithms we used several theorems which characterize when a
network is tree-based or not. Each of these theorems are proven specifically for binary networks.
And thus the code written is only proven correct for binary phylogenetic networks.

To expand further one could define each of the measures for non-binary phylogenetic net-
works. This would allow vertices to have an in-degree or out-degree greater than two. The code
could then be expanded to cover more diverse networks.

Another item that can be expanded upon is the base tree that the algorithm produces. The
algorithm provides only one base tree for a given network while a network could have several
other base trees. One could count all the different base trees of a phylogenetic network.

To expand further on the topic of base trees one could provide a network N and a tree T in
N and calculate how close T is to being a base tree of N .
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[11] Gergely J Szöllősi, Adrián Arellano Dav́ın, Eric Tannier, Vincent Daubin, and Bastien
Boussau. szetal. Phil. Trans. R. Soc. B, 370(1678):20140335, 2015. The Royal Society.

24


