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Abstract

Distributed surface roughness elements characterise Thermal Protection Systems (TPS) typical of supersonic
and hypersonic flows. The presence of these distributed roughness elements cause an increase in drag and
heat transfer. As opposed to incompressible flow over roughness elements, there are very few experimental
and numerical studies on supersonic flow over roughness. The most fundamental computational technique
wherein, all scales of turbulence is resolved is Direct Numerical Simulation (DNS). The cost of performing
DNS of fully resolved roughness is even higher than canonical DNS because of the refined mesh needed to
solve the roughness elements. To overcome this limitation, the current thesis aims at exploring low cost al-
ternatives to DNS of fully resolved roughness for studying the effect of drag and heat transfer in supersonic
flow over rough walls. DNS results from fully resolved full channel cube roughness for Mach 2 and Mach 4 at
friction Reynolds number Reτ ≈ 500,1000 are analyzed. The results from the low cost models are compared
against the fully resolved roughness simulated using full channels. Three lower-cost alternative, namely DNS
of minimal channel flow of fully resolved roughness, DNS of modelled roughness and resolved RANS are con-
sidered. As for the DNS of minimal channel flow, it is found that the velocity shift ∆U+ is predicted accurately
and therefore the added drag. However, it cannot be used to predict the temperature field because of lack
of outer layer similarity for the thermodynamic statistics. As for the modeled roughness, an extension of the
model by Busse and Sandham originally developed for incompressible flows is considered. In this case the
roughness geometry is substituted by the additional drag and heat transfer that it induces on the flow, which
take the form of source terms in the momentum and energy equations. We perform 17 DNS simulations with
modeled roughness and compare the results to the fully resolved simulation. We find that the parametric
forcing method is able to predict the velocity shift with good accuracy, although recovering the equivalent
roughness height from the model parameters can only be done a posteriori. The model is able to qualitatively
reproduce the temperature field, but thermodynamic statistics are inaccurate when compared to DNS of the
fully resolved geometry. The final computational technique is RANS. In real case applications, RANS require
the use of wall functions, and in the case of rough walls knowledge of the equivalent roughness height k+

s is
necessary. We attempt to see if RANS of fully resolved roughness can be used to estimate the velocity shift
∆U+ and therefore k+

s by limiting ourself to the linear Spalart-Allmaras (SA) model. It is found to be inaccu-
rate in computing the mean velocity profile at k+ ≈ 40 with improvements in accuracy observed for k+ ≈ 80
when compared with the results from DNS for cube roughness element. However, the accuracy is still low to
be used for estimating k+

s .

U.Cadambi Padmanaban

Delft, November 2021
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1
Introduction

The presence of surface roughness on supersonic flows has known to have detrimental effects in the form
of increased skin-friction drag. This has been reported in the measurements by Gaudet and Winter (1973)
where effects of different type of ’excrescences’ on skin-friction drag is investigated. The detrimental effects
of surface roughness is mainly seen over Thermal Protection Systems1. The present study focuses on ablation,
a source of roughness that is very relevant to supersonic flows. This occurs over heat shields that form the
TPS of space launchers, re-entry vehicles, and supersonic flight.

The advent of TPS can be traced back to World War II. There was a necessity for the development of rel-
evant technology to safeguard systems from excessive thermal loads and design materials to act as thermal
barriers to prevent failure. In the context of manned space missions, for example, there is an added respon-
sibility of also protecting the crew from the system failure that could be fatal (Venkatapathy et al., 2009). The
lack of TPS was a contributing factor towards a decelerated advancement in space launchers (Uyanna and
Najafi, 2020). The TPS are classified depending on the mechanism that is used for the heat removal process
and the materials that are used in doing so. The classifications is schematically depicted in Figure 1.1.

Figure 1.1: Thermal protection systems types with examples

The active and passive TPS offer a major drawback in terms of adding a weight penalty to the overall
payload of space vehicles. In order to offer suitable means of protection against thermal loads and not add
substantial weight to the overall system, the semi-passive TPS is preferred. It is implemented mostly through
ablation. This is a method that involves heat absorption through the loss of material. It was demonstrated
that there are a number of plastics reinforced with organic fibers that leave behind a carbonaceous structure
upon decomposition into a gas when exposed to a high-temperature environment (Sutton, 1960). Uyanna
and Najafi (2020) give a classification of these ablative materials as charring or non-charring materials based
on the organic matrices that are used. In non-charring ablatives, there is no residue that is formed on the
layer. Instead, the evolution of gasses from the ablatives causes a disturbance to the convective heat transfer
to the material surface.

1hereafter referred to as TPS

1
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Figure 1.2: Process of ablation, figure adapted from (Uyanna and Najafi, 2020)

In the case of charring ablative materials as depicted in Figure 1.2, there is a formation of a charred layer
due to heat transfer. Upon reaching a specified temperature, the material is eroded through surface shear,
sublimation, or heat, leading to the formation of a porous charred layer and hot gasses. These gasses take
away the heat from the incoming flow, percolate into the pyrolysis zone and provide insulation to the virgin
material by increasing the internal pressure. The benefits of such ablatives are multi-fold: low density, great
mechanical strength, good thermal insulation capabilities, and high heat shock resistance (Natali et al., 2018).
These properties have made charring ablatives a preferred choice in today’s thermal protection systems. The
presence of charring ablative TPS leads to the formation of orderly distributed roughness elements. Research
as early as 1968 at the Ames Research Center in NASA by Canning et al. (1968) confirmed the presence of these
orderly distributed roughness elements. Canning et al. (1968) was among the first to study the roughness
pattern over ablative surfaces using a body of revolution that was made from Plexiglas. The observations
indicated turbulent wedges and grooves, that serves as a confirmation of preliminary studies. In addition
to that, a novel discovery, which was the presence of cross-hatching on the surface due to the interlacing of
longitudinal grooves, was also made. This pattern was also confirmed by Larson and Mateer (1968).

1.1. Roughness elements
Canning et al. (1968) defined the roughness elements that were formed due to the cross-hatching patterns as
diamond elements. They even extended their results to include the conditions that were conducive to their
formation. The results that were obtained point towards a supersonic flow that is a requirement for the for-
mation of the flow patterns. To confirm this, experiments were conducted by Larson and Mateer (1968) on
similar bodies of revolution using the same material and observed that the patterns were absent in a subsonic
flow (Larson and Mateer, 1968). Since supersonic flow has been established as a basic requirement for the
formation of roughness patterns, it was suggested that the origin of the formation of these patterns was pres-
sure disturbances (Laganelli and Nestler, 1969). Another important result is that these patterns spread out
around the body uniformly in the lateral and stream-wise directions which indicate a uniform distribution of
the elements.

In addition to supersonic flow, Canning et al. (1968) also noticed the presence of transitional or turbulent
boundary layer in regions of the roughness pattern that resembles diamond-shaped elements. Investigation
of the Plexiglas flow model indicates initial laminar regions close to the tip of the body that did not develop
these patterns. Further downstream, where the flow was at the end of the transitional and beginning of the
turbulent region, the start of pattern formation was observed. The results also perfectly concurred with previ-
ous studies that were conducted on the visualization of flow in the region of roughness elements (Mochizuki,
1961). Although this was a necessary condition for the formation of the pattern, it was not sufficient. Lar-
son and Mateer (1968) indicate that in addition to the presence of a turbulent boundary layer, the boundary
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Figure 1.3: Typical roughness patterns developed on bodies of revolution of low temperature ablative
materials at free stream Mach number M∞ = 5.3, figure adapted from (Stock, 1975)

layer thickness δ is also an important parameter. The argument was that a thin boundary layer concerning
equivalent roughness height ks would allow proximity of the shock waves generated due to the roughness el-
ements and the surface. This would enable better interaction and minimum viscous diffusion of the pressure
disturbances that served to create the patterns (Laganelli and Nestler, 1969, Larson and Mateer, 1968).

Although there is no preference for the type of material used to observe the roughness pattern in super-
sonic turbulent flow conditions, it is essential that the material under investigation be ablative (Laganelli
and Nestler, 1969, Larson and Mateer, 1968). There have been attempts at explaining the mechanism for the
generation of these uniformly distributed roughness patterns on ablative surfaces. Canning et al. (1968) pos-
tulated longitudinal vortices that was also supported by Larson and Mateer (1968) and Laganelli and Nestler
(1969). A study conducted later, revealed that there is no relation between the longitudinal vortices and the
formation of the patterns (Stock, 1975). All the studies that were conducted around the generation of rough-
ness patterns over ablative materials were experimental in nature. A very recent numerical study that was
conducted in an attempt to reveal the mechanism responsible for pattern generation was also not successful
(Trevino and Candler, 2015). Despite the study being on subliming ablative materials, it is safe to say that the
mechanism responsible for the generation of roughness pattern is not yet fully understood or agreed upon.
The current study, however, does not focus on the method of formation of roughness elements. The anal-
ysis is performed for an already existing roughness pattern on a geometry, also known as frozen roughness
geometry.

Despite a noticeable dearth in available instrumentation and techniques, an experimental investigation
of supersonic flow over rough walls to understand the difference in the structure of the boundary layer com-
pared to a smooth wall was carried out by Goddard Jr (1959). The study also intended to explore any Reynolds
and Mach number effects on the skin-friction drag at supersonic speed and draw comparisons with the in-
compressible counterpart. The paper presents some very interesting results - some of which are valid till date.
40 years following this study, the experimental work of Latin and Bowersox (2000) on supersonic flow over dif-
ferent roughness types provides information on mean flow and turbulence statistics of supersonic flow over
rough walls. The investigation of supersonic turbulent boundary layer properties over rough surfaces gained
momentum following the work of Latin and Bowersox (2000).

The studies carried out on ablative materials clearly indicate that roughness in supersonic flow is a topic
that requires investigation. Unlike supersonic flows, incompressible boundary layer studies over rough walls
have been more prevalent. The study of incompressible rough wall boundary layers can be traced back to
the seminal work of Nikuradse et al. (1950) where skin-friction drag was experimentally ascertained by the
use of water flowing through roughened pipes. Subsequent work by Hama (1954) and a detailed summary by
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Clauser (1954) provide a solid knowledge base for incompressible roughness. This was later followed by many
other studies by Perry et al. (1969), Krogstad et al. (1992), Jiménez (2004), Flack and Schultz (2014). All these
studies collectively agree that the presence of surface roughness introduces a downward shift in the stream-
wise mean velocity profile ũ(y) when scaled by the friction velocity uτ =

√
τw /ρw where τw is the wall shear

stress and ρw is the fluid density at the wall. This velocity shift is known as the Hama roughness function
∆U+ and indicates the momentum deficit in the boundary layer. Incompressible roughness finds applica-
tions in roughness induced surfaces on hulls of ships and excrescences on turbine blades due to cavitation
(Wu and Christensen, 2007). Despite the advancement in research in the area of incompressible roughness,
its supersonic counterpart has progressed rather slowly. The lack of sufficient technology to carry out precise
measurements may have been a contributing factor (Czarnecki, 1966).

The state of roughness is characterised by the equivalent roughness Reynolds number k+
s = ks uτ/νw

where ks is the equivalent roughness height and νw is the fluid kinematic viscosity at the wall. While studying
roughness, it became apparent that there can be a large variation in the roughness geometry and topogra-
phy. To reconcile these variations and have a common ’denominator’ against which the effect of roughness
of different geometry can be compared, the equivalent roughness height k+

s is used. It is the hypothetical
sand grain roughness size that is expected to produce the same drag as a rough surface of interest (Chung
et al., 2021). Care should be taken to not ascribe this as a geometrical property; it is estimated a posteriori.
The usage of k+

s is inspired by the work of Nikuradse et al. (1950). The classification of surfaces ensues based
on k+

s . For k+
s / 5, the flow is considered hydraulically smooth and does not add any additional drag com-

pared to a smooth wall. With an increase in the roughness Reynolds number (5/ k+
s / 80), the flow becomes

transitionally rough accompanied by contributions of both pressure and viscous drag. For k+
s ' 80, the flow

enters the fully rough regime where ∆U+ and by extension, the skin-friction coefficient no longer depends
on the Reynolds number.

In addition to flow regimes, the incompressible roughness community have consensus on the Townsend’s
outer layer similarity hypothesis. According to this, the outer flow is not affected by the presence of the rough-
ness elements expect for the role it plays in setting the boundary condition through uτ. This hypothesis sim-
plifies the analysis of rough walls. In case of supersonic flow over roughness, a lot of the aspects that have
general consensus in case of incompressible roughness is still not conclusive. For instance, Goddard Jr (1959)
mentions the onset of rough behaviour at k+

s ' 10 as opposed to k+
s ' 5. In case of supersonic flows, there

exists discontinuities such as shocks and expansion waves that do not have an incompressible counterpart.
These discontinuities disrupt the flow in ways that are not fully clear. As mentioned before, the study of su-
personic flow over roughness has taken a backseat owing to the lack of sufficient instrumentation. After the
pioneering work by Latin and Bowersox (2000), there have been limited experimental work by Ekoto et al.
(2008), Peltier et al. (2016) and Kocher et al. (2018) with almost no computational work except the ones by
Tyson and Sandham (2013) and Sharif and Guo (2007). The coming section attempts to gather the findings
from these studies.

1.2. Experimental studies on supersonic roughness
It was mentioned earlier that the experiment of Goddard Jr (1959) was the first of its kind which was later
followed by Latin and Bowersox (2000). It is interesting to see that the number of experimental studies on
turbulent boundary layer over roughness in supersonic flow are very few (Ekoto et al., 2008, Kocher et al.,
2018, Peltier et al., 2016). However, the results obtained are crucial and will be reviewed. Before proceeding,
it should be noted that an ’incompressible’ turbulent boundary layer refers to the case when M∞ < 0.3 where
M∞ = u∞/c∞ is the ratio of the free-stream velocity u∞ and the free-stream speed of sound c∞ (Wenzel
et al., 2018). The extensive work carried out in the Direct Numerical Simulation (DNS) of the compressible
turbulent boundary layer by Wenzel et al. (2018) show that compressibility effects kick in as early as M∞ > 0.3
with 2% variation in the properties compared to incompressible results and as high as 20% variation in the
properties at M∞ = 0.85 (Wenzel et al., 2018).

The first extensive experimental studies detailing the turbulent statistics in addition to the mean ve-
locity profile was conducted by Latin and Bowersox (2000). The study was conducted for M∞ = 2.9 and
ReE = 2.0×107 where ReE denotes the Reynolds number at the edge of the boundary layer. Three sand grain
roughened and two uniformly distributed rough surfaces were investigated along with comparisons drawn
to a smooth surface. The distributed two-dimensional (2D) roughness elements were in the form of square-
shaped transverse bars and three-dimensional (3D) roughness elements in the form of cubes. The range
of k+

s = 100− 570 of the roughness elements that were investigated corresponds to the fully rough regime.
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Figure 1.4: Topology of 3D roughness element depicted in top, front and isometric views along with dimen-
sions studied by Latin and Bowersox (2000)

Since the roughness height of the sand grit papers were not known a priori, they were estimated using a con-
focal Laser Scan Microscope (LSM) with the mean calculated as k. Laser Doppler velocimetry (LDV), hot
wire anemometry (HWA), and schlieren photography were the techniques used to obtain measurements of
the flow properties. The transverse square bars had dimensions of 0.56×0.56mm along the streamwise and
wall-normal directions with the bar spanning the entire width of the test-bed and a λ = 2.18mm. The cubic
roughness elements had dimensions of l ×b ×h = 0.56×0.56×0.56mm along streamwise, wall-normal and
spanwise directions respectively with a similar λ= 2.16mm as in the case of the 2D roughness element. The
schematic of the roughness topology of the 2D roughness element along with dimensions is depicted in detail
in Figure 1.5. Similar schematic for the 3D case is shown in Figure 1.4. By measuring the mean and turbulent
flow properties at different streamwise locations, it was confirmed that the current investigation was of a zero
pressure gradient, equilibrium boundary layer.

The van Driest transformed inner layer mean velocity profile (uD ) scaled by friction velocity (hereby re-
ferred to as the inner variables), reported by Latin and Bowersox (2000), displays a logarithmic variation in
the overlap layer. In addition, there is a downward shift in the mean velocity profile of the roughness case
compared to the smooth wall case. The purpose of using van Driest transformed mean velocity profile is
to account for compressibility effects, such that the transformed velocity follows the incompressible law of
the wall in the overlap layer given by u+

D
= (1/κ)log (y+)+B where κ and B are constants. The mean ve-

locity profiles investigated in the defect form (uD −uD∞ )/uτ show a very good collapse for the smooth wall
and roughness profiles. This lends weight to the success of the van Driest transformation applied to rough
wall flows with adiabatic walls. The inner variable scaled velocity and with outer variable scaled wall normal
distance shows a collapse of the mean velocity profile for all roughness types upto y/δ ≈ 0.6 except the 2D
roughness. This hints at a possibly disparate mechanism in case of the 2D roughness. Upon closer examina-
tion, it is seen that the ratio λ/k where λ is the wavelength (indicated graphically in Figure 1.5) is ≈ 3.9. Perry
et al. (1969) classify this type of roughness as ’d-type’. Therefore, it is not surprising to notice the difference in
mixed scaled mean velocity profile.

The mean streamwise and wall-normal velocity fluctuations (ũ′2, ṽ ′2) scaled by mean streamwise velocity
ũ shows a good collapse for all roughness types except for the 2D roughness. This also confirms the differ-
ence in turbulence production mechanism of the 2D roughness element. Additionally, the density scaled
(ρ/ρw )1/2 turbulent fluctuations behave differently. A collapse of the density scaled turbulent fluctuations of
different roughness types is observed only for the streamwise turbulent fluctuations and not the wall-normal
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Figure 1.5: Topology of 2D roughness element depicted in top, front and isometric views along with dimen-
sions studied by Latin and Bowersox (2000)

fluctuations (Latin and Bowersox, 2000). The density fluctuations, that play a crucial role in Morkovin hy-
pothesis was also studied. According to Morkovin hypothesis, the compressible turbulent boundary layer
properties will behave the same as its incompressible counterpart provided the mean density variations are
taken into consideration (Morkovin, 1962). The hypothesis hinges on considering the density fluctuations to
be negligible. It was observed that the difference in the peak value of density fluctuations between smooth
and rough walls increases with increasing sand grain roughness height. These density fluctuations are also
influenced by the nature of roughness and the topology.

The experimental studies by Ekoto et al. (2008) provides an extension of the results obtained by Latin and
Bowersox (2000) by including another roughness type - the diamond roughness element. This experimen-
tal study explores the turbulence production mechanisms to explore the relation between observed physical
mechanisms and roughness types. The effects of periodic roughness on the turbulent boundary layer at
M∞ = 2.86 and Reθ = 60,000 is characterized through experiments. Schlieren photography is performed with
a knife edge aligned such that it produces gradients in density in the wall-normal direction along with particle
image velocimetry (PIV), pressure-sensitive paint (PSP) and pitot pressure tubes. The viscous scaled equiva-
lent sand grain roughness height k+

s ≈ 100 indicates that the flow is in the fully rough regime. Measurements
were also conducted for the smooth wall case to offer a comparison with the rough wall properties. The
behavior of a canonical sand-grain type roughness, as was shown by Latin and Bowersox (2000) can be repre-
sented by a 3D roughness element with cubes of equal separation. This is the first type of roughness element
investigated, hereby referred to as the square roughness element. A small difference is that the cavity between
two adjacent roughness elements is hemispherical. The ratio λ/w = 2 indicates that this type of roughness
element might be d-type. Just as in the case of incompressible flow, we expect the formation of stable vortices
inside the roughness grooves (Perry et al., 1969).

The square roughness element had a length and width, corresponding to the dimensions in the stream-
wise and spanwise directions of 1.59mm each with a depth of 0.79mm and λ = 3.18mm. The diamond
roughness element had a major axis length of 9.0mm, spanwise width of 1.59mm and depth of 0.79mm.
The topology and dimensions of the elements are depicted in Figure 1.6b and Figure 1.6a. The Schlieren
photography results indicate the absence of strong gradients in case of square roughness element that are
present in the diamond roughness element. These waves penetrate well into the domain. This also indicates
that the roughness crest in case of diamond roughness element is supersonic with the element protruding
well into the supersonic region of the flow. The same cannot be said regarding square roughness element and
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Figure 1.6: Roughness topology studied by Ekoto et al. (2008) for Reθ ≈ 60,000, M∞ = 2.86 and the associated
dimensions for (a) Square roughness element and (b) Diamond roughness element

the smooth wall case.

The mean velocity profile of the smooth wall scaled by inner variables collapses well with the theoretical
mean velocity profile calculated by using the logarithmic relation in the overlap layer and applying the van
Driest compressibility transformation. There is also a downward shift in the overlap layer of the mean ve-
locity profile for the square roughness element. Defect profiles scaled by outer variables reported by Ekoto
et al. (2008) show a perfect collapse for the smooth wall compressible, incompressible and square roughness
element mean velocity profiles along with the results obtained from theory. Ekoto et al. (2008) report the
Reynolds shear stress profile −ρũ′v ′ scaled by τw . The profile shows a good collapse for the square rough-
ness element with the smooth wall case. The Reynolds shear stress profile of the diamond roughness element
displays a reduction in Reynolds shear stress of almost 30% compared to the other two cases in the boundary
layer outer region. For comparison, the compressible and incompressible smooth wall Reynolds shear stress
profile of Luker et al. (2000) and Klebanoff (1955) respectively was added. The principal strain rate is defined
as dũ/d y with extra strain rates as d ṽ/d x,d ṽ/d y and dũ/d x. The principal strain rates are known to have
significant values for the smooth and square roughness element with extra strain rates being negligible for
both. However, Figure 1.7 reported by Ekoto et al. (2008) showing the contours of d ṽ/d x extra strain rate
for the diamond roughness pattern indicate that their presence cannot be ignored and contribute towards
turbulence production mechanisms.

Peltier et al. (2016) conducted experiments that involves the influence of cross-hatched (diamond) rough-
ness pattern with k+

s = 600 on a M∞ = 4.9, Reθ = 63000 turbulent boundary layer. A quick look at the rough-
ness Reynolds number shows that it is 6 times the value used in Ekoto et al. (2008), although the roughness
heights are the same. They used PIV for the quantitative determination of properties and schlieren photogra-
phy provided a qualitative description. The dimensions and topology of the roughness elements were similar
to those used by Ekoto et al. (2008) (refer to Figure 1.6b for more details) in their experiments. The mean
velocity profiles and turbulent stresses were estimated for the rough wall case and comparisons were drawn
to the smooth wall counterpart. Flow structures in the logarithmic layer of the flow over roughness were
also postulated and compared to its smooth wall counterpart. The Schlieren flow visualization of the rough
wall reported by Peltier et al. (2016) shows alternating light and dark bands indicative of alternating high and
low-density regions. Latin and Bowersox (2000) and Ekoto et al. (2008) report that these bands correspond
to shocks and expansion waves. They penetrate well into the boundary layer implying a breakdown of the
wall similarity (Peltier et al., 2016). The mean velocity profile in outer variables for the rough wall is shifted
downward indicating a momentum deficit caused by the reduced velocity close to the wall. The inner variable
scaling follows the logarithmic profile in the overlap region with the downward shift of ∆U+ ≈ 12−13. These
results provide further support to the results from Latin and Bowersox (2000) and Ekoto et al. (2008).Peltier
et al. (2016) reported the variation of Reynolds shear stress (−ũ′v ′ scaled by u2

∞) with the streamwise direc-
tion scaled by outer variables, at different wall-normal locations. The profile shows a highly oscillatory trend
with large amplitudes especially for wall-normal distances close to the wall. The amplitude of the oscillations
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Figure 1.7: Contours of d ṽ/d x extra strain rate for flow over diamond roughness element at Reθ ≈ 60,000 and
M∞ = 2.86 with k+

s ≈ 100 reported by Ekoto et al. (2008) at x/δr e f = 15.9. Flow is from left to right and the
roughness elements are at the bottom

reduces as the edge of the boundary layer is approached (y/δ≈ 0.7), showing that roughness element effects
penetrate well into the outer region of the boundary layer.

Perhaps the most recent experimental study of the supersonic turbulent boundary layer over roughness
is presented by Kocher et al. (2018). In addition to the smooth wall and diamond roughness element case,
this study also focuses on the non-uniform roughness pattern defined as the ’realistic’ roughness (Wu and
Christensen, 2010). Such a roughness type is found in turbine blades whose surfaces are damaged by foreign
object and debris, leaving behind an irregular pattern of roughness elements with a great variety of topologi-
cal scales of roughness (Wu and Christensen, 2007). Kocher et al. (2018) performed mean flow and turbulent
statistics studies in a M∞ = 2 turbulent boundary layer using PIV and Schlieren photography techniques. The
measurements were taken at 3 locations along the streamwise direction. The diamond roughness topology
was similar to that of Ekoto et al. (2008) and Peltier et al. (2016) but had a half angle of 26◦ and k = 0.33mm.
Another point of difference was that the bottom edges of the diamond roughness element were inclined at
90◦ to the base as opposed to a hemispherical trough reported in Ekoto et al. (2008). The flow was in the
fully rough regime with k+

s = 270. Figure 1.8a and Figure 1.8b shows streamwise velocity field of the diamond
roughness case from Kocher et al. (2018). The thicker low velocity regions are directly behind the shock wave.
The regions of expansion fans can be identified by observing the velocity vectors that are downstream of a
shock and aligned parallel to the wall. These are regions where the local change in flow direction and com-
pression caused by the presence of shock waves is reverted to the original state. Kocher et al. (2018) reported
wall normal velocity streaks in the contour plot of wall normal velocity that are approximately aligned with
the inclination of the shock waves. The wall normal velocity shows an upward deflection of 10m/s in the
regions where shock waves are present. In regions of expansion waves, the flow re-aligned with the direction
of the free-stream. This result is in line with the previous observations by Ekoto et al. (2008) and Peltier et al.
(2016).

The mean velocity profile, as expected, shows a downward shift in the overlap region when scaled by inner
variables. The outer variable scaling shows the reduction in the velocity close to the wall for the roughness
case symbolic of the momentum deficit and increased drag caused by the presence of roughness. The mean
velocity profile in inner variables from Kocher et al. (2018) clearly indicates a downward shift in the logarith-
mic region for the diamond roughness element of ∆U+ = 4.5. When comparing the ∆U+ = 4.8 obtained by
Ekoto et al. (2008) for Mach 2.9 at k+

s ≈ 100 and ∆U+ = 12−13 obtained by Peltier et al. (2016) for Mach 4.9
flow at k+

s = 600, Kocher et al. (2018) hypothesized that the roughness function could be dependent on the
Mach number. The Reynolds shear stresses for the smooth and diamond roughness element cases reported
by Kocher et al. (2018) converge beyond the edge of the boundary layer suggesting that the roughness effects
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(a) (b)

Figure 1.8: PIV velocity field results of a rough wall with diamond roughness element reported by Kocher et al.
(2018) for Re = 3.0×107 and M∞ = 2.01 and equivalent roughness height (roughness height scaled by friction
velocity uτ), s k+ = 270 for (a) streamwise component and (b) wall normal component Flow is from left to
right and roughness elements are at the bottom

penetrate the boundary layer. Incidentally, the magnitude of the Reynolds shear stress is the highest close to
the wall and is greater for the diamond roughness element when compared to the smooth wall. The contours
of Reynolds stress for the diamond roughness element display a wave-like pattern similar to the Schlieren
photography results. Here, the high magnitude Reynolds stress regions correspond to shock locations and
low magnitude Reynolds stress regions correspond to expansion locations. This serves as a confirmation to
the local distortions caused by the presence of shocks and expansions in case of the diamond roughness el-
ement. The streamwise variation of the Reynolds shear stress was extracted at a location of y/δ = 0.15. The
streamwise periodic variation of the Reynolds shear stress with large amplitudes for the diamond roughness
element as opposed to a relatively flat profile for the smooth wall case, further substantiates the periodic
nature of the distortions caused by the roughness element.

1.3. Computational studies
Experimental studies are a good way to understand the flow physics for most problems. Within the limits
of experimental uncertainties and limited spatial resolution, they provide a realistic picture of the problem.
However, there are some challenges associated with performing experiments in supersonic regime. Measur-
ing the properties close to the wall is an inherent challenge associated with wall bounded flows. Although the
mean flow properties can be captured with relative ease, it was not until the study conducted by Latin and
Bowersox (2000) that the first turbulent statistics for supersonic turbulent flow over roughness was reported.
This is considering that the work on supersonic turbulent boundary layer over roughness started in the 1950s.
The database for supersonic turbulent boundary layer has improved over the last 2 decades, but the work is
not complete.

To expand the body of existing knowledge, more experiments are expected to be performed at higher
Reynolds numbers, representative of actual flow conditions that not only require sophisticated data acquisi-
tion and reduction systems, but also new parameters to be investigated. For example, the measurement of
wall shear stress τw in experiments is a notoriously difficult task (Chung et al., 2021). Additionally, as men-
tioned before, there is no consensus on some very basic aspects of supersonic roughness. Computational
studies offer a solution in this regard. It allows flexibility in setting the parameters to be investigated and
allows control of spatial resolution. There are lucrative options to change the solution strategies and ana-
lyze the changes in results that follow. Despite these options, computational studies of supersonic flow over
roughness is very limited. In this review, two such studies are investigated. The first is a DNS of supersonic
turbulent boundary layer over wavy surfaces. The second is a Reynolds Averaged Navier-Stokes (RANS) study
attempting to validate the experimental results of Latin and Bowersox (2000) and bring out some key areas of
deviation from the experimental results and a possible explanation of the same.
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Tyson and Sandham (2013) performed DNS of compressible turbulent channel flow studies over wavy
surfaces for M∞ = 0.3,1.5 and 3.0. The wavy surface was represented by a sine function with varying am-
plitudes and wavelengths. The type of surfaces investigated lie in the transitionally rough and fully rough
regime. This was an attempt to characterize the effects of compressibility on the mean flow and turbulent
properties. It was discovered that there is presence of shock waves in the case of M∞ = 3.0. The increase in
the Mach number, causes a subsequent decrease in the van Driest transformed mean velocity deficit ∆U+

D
.

The presence of shock waves contributed significantly towards altering the wall normal velocity fluctuations
by increasing them at the shock locations. The increase in Mach number also increases pressure drag con-
tribution towards the overall drag experienced by the surface. The location of maximum pressure along the
wall normal direction of the roughness element also moves towards the peak with an increase in the Mach
number. This study brings out the feature of shock and expansion waves in a supersonic turbulent boundary
layer over roughness to highlight the compressibility effects introduced by them. It identifies the changes
brought about to the mean velocity profile and turbulent fluctuations.

Sharif and Guo (2007) performed a numerical investigation of a Mach 2.7, Re = 2× 107 supersonic tur-
bulent boundary layer over roughness using the k −ω and stress-ω turbulence models. The results were
compared with the experiments by Latin and Bowersox (2000). The roughness element types that were inves-
tigated resembled those used by Latin and Bowersox (2000). In general, the predictions of the stress-ω model
of the boundary layer thickness is less accurate compared to the k −ω model possibly hinting at the inability
of the ω boundary condition to capture the roughness effects close to the wall. The predictions by the turbu-
lence models closely follow the trend observed in the experimental studies - velocity deficit for the rough wall
case indicating momentum loss due to presence of roughness elements. However, both turbulence models
over-predict the velocity profiles. The computational results show good agreement with the experimental
results for small roughness Reynolds number (for example, the 80 grit sand paper where k+

s = 104) and pro-
gressively worsens as the roughness Reynolds number is increased for the 20 Grit plate for which k+

s = 571.
The velocity defect profiles are under-predicted by the turbulence models. However, the smooth surface
predictions by the turbulence models are excellent. A similar increase in the disparity of the inner variable
scaled mean velocity profiles (particular focus on the log law region) is observed with an increasing roughness
height. uτ is under-predicted by almost 15%.

1.4. Reduced order models of distributed roughness
Through the years following the DNS of plane channel flow by Kim et al. (1987), it has been established that
the cost of performing DNS is high. This high computational cost stems from the need to compute a large
range of scales of turbulence. These range from the smallest, known as Kolmogorov scales where dissipation
takes place to the energy-containing largest integral length scales. The size of the domain under study should
be sufficiently large to allow the physics of the large scale to be resolved reasonably well. On the other hand,
the grid resolution needs to be fine to allow the resolution of the Kolmogorov scales. The cost of performing
DNS scales with Re3

τ (Pope, 2001). Here, Reτ = uτh/νw is the friction Reynolds number with uτ the friction
velocity, h the channel half-height in case of channel flows and νw the kinematic viscosity at the wall. For
the case of wall bounded flows with roughness elements, this cost of running DNS is further amplified due
to the grid resolution requirement around the roughness elements. Additionally, the use of the equivalent
sand roughness k+

s is not particularly sufficient when studying roughness. To begin with, it is computed a

posteriori. Secondly, although the equivalent sand grain roughness can be interchanged with the roughness
function in the fully rough asymptotic limit, which gives an idea of the shift in mean velocity profile, there is
no relation between this and the effect of roughness on the turbulent fluctuations. There exists no clear corre-
lation between k+

s and the geometry and topological features of roughness (Chung et al., 2021). To be able to
study supersonic flow over roughness using DNS, a modelling approach has to be adopted to simplify the cost
requirement. Busse and Sandham (2012) have provided a parametric forcing approach to model the effect of
the roughness. An extra force term is added to the momentum equation based on the idea that the effect of
roughness can be substituted by the drag that it induces. The results of Busse and Sandham (2012) show that
the model roughness captures the main flow features of the roughness such as the vertical shift characterised
by the Hama roughness function ∆U+, outer layer similarity, turbulent statistics and mapping between the
roughness height parameter in the modeled roughness to the equivalent roughness Reynolds number. All
these features make it a promising candidate as an alternative to fully resolved roughness simulations.

In addition to the modeled roughness approach, another technique that has gained popularity in reduc-
ing computational cost is the use of minimal-span channel first described by Jiménez and Moin (1991). It
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gained subsequent attention in the study of wall-bounded turbulence by Flores and Jiménez (2010), Hwang
(2013) and Lozano-Durán and Jiménez (2014). It employs Townsend’s outer layer similarity in arguing that
the velocity shift ∆U+ is a result of interaction of the roughness element with the flow within the roughness
sub-layer, a region in the close vicinity of the roughness element. The velocity shift remains constant beyond
this roughness sub-layer well into the outer layer of the flow. Since the quantity of interest from an engineer-
ing perspective is the flow retardation characterised by ∆U+, it is sufficient to have a domain that captures the
near wall cycle and is not required to resolve the largest integral length scales. If a channel flow configuration
is considered with a channel half height of h, the cost of running a DNS will now scale as k+3

s as opposed to
Re3

τ (Chung et al., 2015). There is a potential reduction of (h/ks )3 compared to a conventional DNS. Studies
by Chung et al. (2015) have also shown that using minimal-span channel results in a slight overestimation of
the mean velocity close to the channel centerline. However, this overestimation is present in both smooth
wall and a wall with resolved roughness elements thereby not affecting the velocity shift ∆U+. Although the
minimal-span channel cannot capture the mean velocity of the smooth and rough walls accurately in the
outer layer, the mean velocity shift is not affected and can be accurately recovered. This technique has shown
great promise in studying resolved roughness and can potentially prove to be yet another alternative to full
channel resolved roughness.

1.5. Problem statement
The review on supersonic roughness presents us with a few key observations that will drive the current study.
Firstly, the number of experimental investigations of supersonic roughness is limited - studies by Latin and
Bowersox (2000), Ekoto et al. (2008), Peltier et al. (2016) and Kocher et al. (2018) have been among the only
detailed documentations of supersonic roughness till date. They have provided some preliminary results.
However, there are limitations to performing experiments in terms of the conditions, geometry of roughness
and roughness topology. While it may seem that a computational study would be beneficial in these aspects,
it does not come without challenges. Computationally, performing a DNS would involve elevated costs con-
sidering the resolution requirements close to the roughness element. On the other hand, there are limited
attempts at studying supersonic roughness using RANS models with the only existing one in literature not
showing the required level of accuracy. The modeled roughness approach by Busse and Sandham (2012) has
proven to be useful in studying trends in the mean flow properties and turbulent statistics for incompressible
roughness at a lower cost. However, its extension to supersonic flows and its subsequent ability to model the
energy equation is still not investigated. The minimal-span channel approach has been successful in repli-
cating the mean velocity shift ∆U+ of the full channel simulation but at a much lower cost. This allows the
computation of the drag at an accuracy level comparable with full channel simulations. The investigation
of minimal-span channel for supersonic flows has not yet been carried out. With all these aspects in mind,
the present work aims to assess the accuracy of cheap computational approaches for modelling supersonic
flows over rough walls. In particular, three computational approaches which are cheaper than DNS of fully
resolved roughness will be considered:

1. Parametric forcing of Busse and Sandham (2012)

2. Fully resolved roughness in minimal-span channel

3. Fully resolved roughness using RANS

The following research questions will be answered as part of this work

• Can approaches 1), 2) and 3) be used to accurately predict the drag variation over supersonic roughness,
namely ∆U+ and k+

s ?

• Can approaches 1), 2) and 3) be used to accurately predict the heat transport over supersonic rough-
ness, namely Stanton number?

In this work, an attempt will be made to answer the above research questions by comparing the results of
1), 2) and 3) to the DNS of fully resolved roughness in full channel flow simulation and to experimental data
available in literature.
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1.6. Thesis outlook
The thesis begins with the theoretical background in Chapter 2. Here, the preliminary concepts such as Law
of the wall, mathematical operations such as Reynolds averaging will be discussed along with compressibility
transformations and Reynolds analogy. There is a discussion on roughness provided. Chapter 3 will focus on
numerical methodologies wherein the computational techniques used in this thesis will be expounded along
with the details of the solvers used. The test cases used for the study are presented with the validation of the
numerical methodologies. Chapter 4 presents the results of the study along with its discussion and Chapter 5
closes with conclusions, providing answers to the research questions and recommendations for future work.



2
Theoretical framework

The chapter begins with the introduction of the governing equations of this study, namely the compressible
Navier–Stokes equations. The channel flow configuration and the canonical law of the wall is introduced.
It is shown that the law of the wall can be recovered in the compressible case when using compressibility
transformations. Finally, the effect of roughness on the flow is described.

2.1. Governing equations
Since the study is focused on computational study of supersonic flow over roughness, the starting point of
the analysis is the governing equations. They form the fundamental relations that will be solved for the flow
cases investigated in this thesis. The compressible Navier–Stokes equations for a perfect heat conducting gas
are:

∂ρ

∂t
+
∂ρui

∂xi
= 0 (2.1a)

∂ρui

∂t
+
∂ρui u j

∂x j
=−

∂p

∂xi
+
∂σi j

∂x j
+ f δi 1 (2.1b)

∂ρE

∂t
+
∂ρu j H

∂x j
=−

∂q j

∂x j
+
∂σi j ui

∂x j
+ f u1 +Φ (2.1c)

where the subscript i = 1,2,3 represents the stream-wise, wall-normal and span-wise directions also given by
x, y and z respectively, ρ, the density, p, the pressure, E =Cv T +ui ui /2 the total energy per unit mass, where
Cv is the specific heat at constant volume, and H = E +p/ρ the total enthalpy. The visocus stress tensor σi j

and heat flux vector q j are given by:

σi j =µ

(
∂ui

∂x j
+
∂u j

∂xi
−

2

3

∂uk

∂xk
δi j

)
(2.2)

q j =−kT
∂T

∂x j
(2.3)

where µ is the dynamic viscosity and k =Cpµ/Pr is the thermal conductivity where Pr = 0.72 is the molecular
Prandtl number and Cp is the specific heat at constant pressure. The dependence of viscosity on temperature
is accounted through by power law with exponent 0.76. It is noted that the forcing term f ensures that there
is constant mass-flow rate enforced at each time step. Similarly Φ is a bulk cooling term which is evaluated at
every time step to control the bulk temperature.

2.2. Averaging
2.2.1. Reynolds averaging
Statistical averaged quantities are important while studying turbulent flows. Two types of averages are consid-
ered for Navier–Stokes equations and used in this thesis. Consider a statistically stationary variableφ(x, y, z, t )

13
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over a time interval 0 to T . The ensemble average of this quantity is given by

φ(x, y, z, t ) =
1

∆t

∫t

0
φ(x, y, z,τ)dτ (2.4)

For a Reynolds decomposition, the variable φ(x, y, z, t ) is decomposed into the sum of its ensemble average
and a fluctuating component, given by

φ(x, y, z, t ) =φ(x, y, z, t )+φ′(x, y, z, t ) (2.5)

The second type of average is the spatial average. Spatial average is used for a channel flow configuration
where there is a spatial homogeneity in the streamwise and spanwise directions. It is given by

〈φ(y)〉 =
1

Lx

1

Lz

∫Lx

0

∫Lz

0
φ(x, y, z)d xd z (2.6)

Some rules of the Reynolds averaging process are given below

φ=φ φ′ = 0 φψ′ = 0 (2.7)

where ψ is a similar physical dynamic quantity different from φ. The Reynolds averaging of momentum-
conservation equations yields a product of fluctuating terms, known as the Reynolds stress tensor given by
〈u′

i
u′

j
〉.

2.2.2. Favre averaging
The Reynolds averaging of the compressible Navier–Stokes equations has additional terms generated as a re-
sult of density fluctuations that are absent in the incompressible case. The interpretation of these terms are
necessary. This challenge can be overcome by considering a density weighted average known as Favre averag-
ing. Consider the spatial averaging and decomposition of the quantity φ(x, y, z, t ) into mean and fluctuating
components,

φ(x, y, z, t ) = φ̃(x, y, z, t )+φ′′(x, y, z, t ) (2.8)

where φ̃(x, y, z, t ) is the Favre averaged quantity. Care must be taken to note that φ
′

corresponds to the fluc-
tuating component associated with the Reynolds averaging and φ

′′
is the fluctuating component associated

with the Favre averaging. There are some auxiliary relations that hold in case of Favre averaging.

φ′′ 6= 0 ρφ′′ = 0 ρ̃φ= ρ̃φ (2.9)

The definition of a Favre averaged quantity φ̃(x, y, z, t ) is presented. Multiplying (2.8) throughout by 〈ρ〉 and
performing Reynolds averaging,

〈ρ〉〈φ〉 = 〈ρ〉〈φ̃〉+〈ρ〉〈φ′′〉

〈ρ〉〈φ〉 = 〈ρ〉〈φ̃〉

〈φ̃〉 =
〈ρ〉〈φ〉
〈ρ〉

(2.10)

The Favre decomposition is applied only to velocity, static and stagnation enthalpies. Reynolds decom-
position is used for all other variables. Using this method, the Favre averaged Navier–Stokes equations can
be written as

∂ρ

∂t
+
∂ρũ j

∂x j
= 0

∂ρũi

∂t
+
∂(ρũi ũ j )

∂x j
+

∂p

∂xi
+

∂

∂x j
(ρu′′

i
u′′

j
−σi j ) = 0 (2.11)

∂ρH̃

∂t
+
∂ρH̃ũ j

∂x j
+
∂ũ j p

∂x j
+
∂u′′

j
p

∂x j
+

∂

∂x j
(q j +ρH ′′u′′

j
−uiσi j ) = 0 (2.12)

The turbulent fluctuation term is absent in the continuity equation and the momentum equation has a single

Reynolds stress term ρu′′
i

u′′
j

known as the Favre averaged turbulent stress. Such an averaging process also

ensures that although the density fluctuations are removed from the time averaging process, they are still
captured by measuring instruments. (Bradshaw, 1977).



2.3. Channel flow configuration 15

2.3. Channel flow configuration
This study uses the channel flow configuration. The flow configuration along with its features is described
below along with the simplifications. In addition, the definition of bulk quantities that is used in compressible
flows is also provided.

Figure 2.1: Channel flow configuration setup where 2h is the channel height, Lz is the width of the channel
and Lx is the length of the channel

Consider Figure 2.1 for the setup of a typical channel flow configuration. It consists of two parallel walls
separated by a distance 2h where h is the half-height of the channel. The length of the channel Lx is much
larger than the channel height (Lx /h >> 1). The channel also has a high aspect ratio (Lz /h >> 1). The stream-
wise, wall-normal and spanwise directions are along x, y and z, respectively. The mean flow variation is along
the wall-normal direction. The purpose of having a large aspect ratio is to ensure that the flow is statistically
independent of the streamwise and spanwise directions. Yet another key element is the statistical symmetry
of the flow properties about a plane parallel to the walls at a wall-normal distance of y = h. This way, the flow
statistics at a wall normal distance of y = β and y = 2h −β are the same. The channel walls have a no-slip,
isothermal boundary condition and a fixed temperature. Periodic boundary conditions are imposed in the
streamwise and spanwise directions. The bulk quantities ρb ,ub are defined as

ρb =
1

V

∫

V
ρdV ub =

1

ρbV

∫

b
ρudV (2.13)

where V is the fluid volume. The bulk Reynolds number Reb , temperature Tb and bulk Mach number Mb are
defined as

Reb =
2hρbub

µw
Tb =

1

ρbubV

∫

V
ρuT dV Mb =

ub√
γRTb

(2.14)

where µw is the molecular viscosity of the fluid at the wall. It should be noted that the study also makes use of
an open channel where the height of the channel is h. In this case, the channel mid-plane is a slip wall with
symmetry boundary condition enforced on streamwise velocity, spanwise velocity and temperature.

The consideration of a channel flow configuration allows simplification of the averaged Navier–Stokes
equations. The streamwise momentum equation shows that there is a balance between the wall-normal
shear stress gradient and streamwise normal stress gradient. The mean momentum balance is given by

µ
d〈ũ〉
d y

−〈ρ〉〈�u′′v ′′〉 = τw

(
1−

y

h

)
(2.15)
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Figure 2.2: Profiles of viscous stress τvi sc (dot-dashed lines) and Reynolds stress τt (dashed lines) in a turbu-
lent channel flow scaled by wall shear stress τw . The solid line indicates the sum of the viscous and Reynolds
stress scaled by τw .

where the first and the second terms on the left hand side are viscous and Reynolds stresses respectively and
τw is the wall shear stress. The mean momentum balance indicates that the sum of the viscous and Reynolds
stress is linear. The profiles of viscous stress and Reynolds stress is shown in Figure 2.2. Further simplification
of Equation 2.15 gives

τ(y) = τw

(
1−

y

h

)
= τvi sc +τt (2.16)

where τ(y) is the total stress given by the sum of viscous stress τvi sc and Reynolds stress τt . At y = 0, τ(0) = τw .
The contribution at the wall is purely viscous and is given by

τw =
(
µ

d〈ũ〉
d y

)

y=0
(2.17)

2.4. Law of the wall

Figure 2.3: Plot indicating mean velocity profile close to the wall showing the segregation of different layers

Turbulent boundary layer flow over smooth walls has been thoroughly studied with well-documented re-
sults in books by Pope (2001), and Schlichting and Gersten (2016). Two prominent documentation of wall
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turbulence was offered by Clauser (1956) and Hama (1954). The theory proposed by Richardson (1922) de-
scribes eddies of small scale responsible for dissipation by action of viscous forces. These small scale eddies
are present close to the wall. The effect of viscosity enforces the no-slip boundary condition bringing the fluid
velocity to zero at the wall. It is evident from (2.16) that close to the wall, kinematic viscosity ν and wall shear
stress τw are important (Pope, 2001). This is used to define viscous length and velocity scales that are relevant
in this region. The friction velocity uτ is defined as

uτ =
√

τw

ρw
(2.18)

where ρw is the fluid density at the wall. The friction length scale is defined as

δv =
νw√
τw

ρw

=
νw

uτ
(2.19)

where νw is the kinematic fluid viscosity at the wall. The friction velocity and length scales can now be used as
scaling parameters for velocity and wall-normal distance close to the wall. The wall-normal distance scaled
by friction length scale is given by,

y+ =
y

δv
(2.20)

where y+ is the distance of the wall measured in wall units. Similarly, the mean velocity scaled by friction
velocity is given by

〈u〉+ =
〈u〉
uτ

(2.21)

where 〈u〉+ is the velocity in wall units or the non-dimensionalised velocity applicable close to the wall where
viscosity dominates. Using uτ and δv , we can define the friction Reynolds number, which can also be inter-
preted as the ratio between the largest and smallest length scales in the fluid.

Reτ =
h

δv
=

uτh

δv
(2.22)

According to Prandtl hypothesis (Prandtl, 1925), 〈u〉+ depends solely on y+ in what is known as the law of the
wall given by

〈u〉+ = f (y+) (2.23)

where f is some function. The magnitude of y+ is important in characterising the different layers close to the
wall. The different layers based on y+ is shown in Figure 2.3. For y+ < 50, there is a domination of viscous
forces in a region known as the viscous-wall region. There is a direct influence of molecular viscosity on the
shear stress (Pope, 2001). However, in the outer layer (y+ > 50), viscosity has a negligible effect. Breaking
the viscous wall region further it is observed that, y+ < 5 constitutes the viscous sub-layer and 5 < y+ <
30 constitutes the buffer layer. The study of the viscous wall region begins by considering (2.17) and non-
dimensionalising y and 〈u〉 by δv and uτ respectively

d〈u〉+

d y
= 1 (2.24)

By integrating (2.24), it is seen that 〈u+〉 = y+ or the mean velocity shares a linear relationship with wall-
normal distance when scaled by wall-units (Kim et al., 1987). At sufficiently high Reynolds numbers, there
exists an overlap layer extending from y+ > 50 to y/h < 0.1 where there is a simultaneous validity of the
relations in the inner and outer layers. The mean velocity can be completely specified by y , h,νw ,τw and ρw .
The functional relationship can be written as

〈u〉 = f1(y,h,νw ,ρw ) (2.25)
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where f1 is some function. Using the viscous wall units, Equation 2.25 can be written as

〈u〉 = uτ f1

(
y

h
,

y

δv

)
(2.26)

since uτ is a constant. In the inner layer, where viscous scales dominate

〈u〉 = uτ fi nner

(
y

δv

)
(2.27)

where fi nner describes the functional relationship in the inner layer and in the outer layer, the velocity defect
form is valid

〈u〉c −〈u〉 = uτ fouter

( y

h

)
(2.28)

where fouter describes the functional relationship in the outer layer. Here, 〈u〉c is the mean velocity at the
center of the channel. Taking derivatives of (2.27) and (2.28)

d〈u〉
d y

=
uτ

δv
gi nner

(
y

δv

)
(2.29)

d〈u〉
d y

=−
uτ

h
gouter

( y

h

)
(2.30)

where gi nner and gouter are derivatives of fi nner and fouter respectively. Since y+ and y/h are independent
of each other, the similarity of (2.29) and (2.30) is possible only if they are both equal to a constant

uτ

δv
gi nner

(
y

δv

)
=

1

κ
=−

uτ

h
gouter

( y

h

)
(2.31)

where κ is the von Karman constant of proportionality. By integrating, the mean velocity profile in the overlap
layer is given as

〈u〉+ =
1

κ
log (y+)+B (2.32)

where B is a constant of proportionality. The region from y+ > 30 to y/h < 0.3 is where the (2.32) holds and
is known as the log-law layer. By performing experiments and simulations, it was found that κ ≈ 0.41 and
B ≈ 5.2.

2.5. Compressible turbulent flows
2.5.1. Compressibility transformations
By virtue of the law of the wall, the universality of mean velocity profile scaled by friction velocity and friction
length scale exists in the viscous and the overlap layers. In case of compressible flows, the law of the wall is
valid only for the transformed velocity and wall-normal coordinate. The goal of the compressibility trans-
formations is to transform the velocity and wall-normal coordinate to ensure this validity of the law of the
wall. Supersonic flows involve large temperature gradients close to the wall, the presence of which, would
lend support to the disparity between the compressible supersonic and subsonic boundary layer properties
in wall-bounded turbulence. However, such a disparity is reconciled when the variation in mean flow proper-
ties that arise due to the variation in temperature in a supersonic boundary layer are suitably accounted for.
This is the premise for the so-called Morkovin hypothesis that forms the basis of compressibility transforma-
tions. The hypothesis states that the dynamics of the compressible boundary layer follow the incompressible
counterpart provided the fluctuating Mach number M ′ remains small (Morkovin, 1962, Spina et al., 1994).
According to Spina et al. (1994), the fluctuating Mach number is the deviation of its instantaneous value from
the mean Mach number. The fluctuating Mach number gives a measure of the compressibility effects. Yet
another Mach number that is frequently used in compressible turbulent boundary layer analysis is the tur-

bulent Mach number Mt defined as,Mt = (�u′
i
u′

i
)1/2/c̃ where u′

i
represents the velocity fluctuation in the i th

coordinate direction and c̃ represents mean speed of sound. The limit for the applicability of the hypothe-
sis is free stream Mach number M∞ ≈ 4−5 (Spina et al., 1994). All compressibility transformations that will
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Transformation Wall distance ( f I ) Mean velocity (g I )
Van Driest (1951) fD = 1 gD = M

Trettel and Larsson (2016) fT = d
d y

(
yR1/2

M

)
gT = M d

d y

(
yR1/2

M

)

Volpiani et al. (2020) fV = R1/2

M 3/2 gV = R1/2

M 1/2

Table 2.1: Compressibility transformations for mean velocity profile and wall normal distance cast into the
form suggested by Modesti and Pirozzoli (2016). M =µ/µw and R = ρ/ρw

be discussed can be conveniently represented using mapping functions as proposed by Modesti and Piroz-
zoli (2016). This allows compact representation of the transformations and also a straightforward method to
implement them in numerical codes. The mapping relations are given by

yI =
∫y

0
f I d y (2.33)

uI =
∫ũ

0
g I dũ (2.34)

where yI and uI are the transformed incompressible wall normal co-ordinate and mean-streamwise velocity
respectively obtained from various transformations, f I and g I are mapping functions for wall distance and
mean velocity respectively. With these transformed coordinates, it is possible to define a transformed friction
Reynolds number

ReτI =
yI (h)

δv
(2.35)

For non-hypersonic flows, Morkovin (1962) postulated that the main effect of compressibility is mani-
fested through variation in mean flow properties. The effect of compressibility on turbulent statistics is neg-
ligible if the r.m.s density fluctuations is small in comparison to the mean density. Yet another perspective is
provided by Smits and Dussauge (2006) wherein a detailed analysis of the Morkovin hypothesis is reported
by making use of the turbulent time and length scales. They explain the similarity in turbulence transport
mechanism of low speed and high speed cases provided variable property scaling is adopted as opposed to
the constant property scaling (example: uτ). Bradshaw (1977) and Spina et al. (1994) report that in the region
close to the wall, there is a zone of constant stress where the normal and shear stress distributions do not vary
with Mach number. In such a zone, the effect of molecular viscosity is negligible and using (2.18) in (2.15)
and neglecting the viscous stress

−ρũ′v ′ = ρw u2
τ

(
1−

y

h

)
(2.36)

The hypothesis reduces the effects of compressibility at the wall to the variation in the mean flow properties.
(2.36) shows that a modification in the scaling approach has to be adopted in the constant stress region. To
achieve the similarity of the Reynolds stresses, it is imperative to consider uτ(ρw /ρ)1/2 instead of uτ as a
scaling parameter (Smits and Dussauge, 2006). This would lead to shear stress distributions of,

−ũ′v ′ ≈
(
ρw

ρ

)
u2
τ

If an assumption is made regarding the validity of the mixing length hypothesis where the size of the eddies
lm is proportional to the perpendicular distance from the wall y , it can be shown that,

τt =−ρũ′v ′ = ρνt
∂ũ

∂y
= ρl 2

m

(
∂ũ

∂y

)2

= ρw u2
τ (2.37)

where νt is the eddy viscosity. The implication of the Morkovin hypothesis is that the size of the stress bearing
eddies is given by lm = κy which is similar to the incompressible turbulent boundary layer. Using this relation
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in (2.37)

ρ(κy)2
(
∂ũ

∂y

)2

= ρw u2
τ (2.38)

∂ũ

∂y
=

(
ρw

ρ

)1/2
uτ

κy
(2.39)

(
ρ

ρw

)1/2 ∂ũ

∂y
=

uτ

κy
(2.40)

∂uD

∂y
=

uτ

κy
(2.41)

where

uD =
∫ũ

0

(
ρ

ρw

)1/2

dũ (2.42)

This implication leads to the logarithmic variation of mean velocity in the overlap layer. This shows resem-
blance to the incompressible turbulent boundary layer case given by

u+
D =

1

κ
log (y+)+B (2.43)

where u+
D

is the inner variable scaled effective mean velocity and the transformation was proposed by Van Dri-
est (1951). The van Driest transformation is closely coupled with the Morkovin hypothesis where it was ex-
plained that the effects of compressibility are manifested in the form of thermodynamic property variations
and are independent of the Mach number upto a certain limit. There is considerable evidence supporting
the hypothesis and the van Driest scaled mean velocity profiles. The review is presented in detail by Smits
and Dussauge (2006). It is worth mentioning that the van Driest scaling is valid for quasi-adiabatic walls and
strictly the overlap region with satisfactory results in the viscous sub-layer.

Despite the tremendous support for the Morkovin hypothesis and its ability to effectively offer scaling
solutions for compressible turbulent boundary layer data, there are a few studies that question its validity, es-
pecially the one regarding the mixing length. Experiments over the years by Maise and McDonald (1968) and
Bradshaw (1977) have lent weight to the dependence of the mixing length lm on the Mach number, more so in
the outer layer. This subsequently invalidates the relation provided by (2.43). Zhang et al. (2012) proposed an
alternate method of scaling that introduces a Mach number invariant mixing length scaling. Notwithstanding
this opposition to the limit of applicability and the subsequent validity of the hypothesis, extensive support
renders this an active area of research (Wenzel et al., 2018).

There is evidence supporting the variation of the intercept B in (2.43) presented by many authors (Cole-
man et al., 1995, Foysi et al., 2004, Maeder, 2000). Danberg (1967) mentions in his study that the intercept in
the log-law relation C, shows an increase with wall heat transfer. These are some of the observations made
that question the validity of the van Driest scaling in effectively allowing a transformation of the mean veloc-
ity profile from the compressible to incompressible case so that it follows the law of the wall, in all conditions
of heat transfer, Reynolds and Mach numbers. Such a transformation is imperative as it obviates the need for
a modified law of the wall; the incompressible law can simply be extended to the compressible case.

The effect of heat transfer is characterized by a non-dimensional quantity,

Bq =
qw

ρwCp uτTw
(2.44)

where qw is the heat transfer at the wall and Cp is known as the specific heat capacity for a constant pressure.
Bq < 0 signifies wall cooling. In order to show the variations in the mean velocity profile for cooled walls
(heat transfer away from the wall), Trettel and Larsson (2016) performed DNS of a compressible turbulent
channel flow at Mach 1.7, Reτ = 663 with a Bq = −0.053 that signifies weak heat transfer and another case
with Mach 3.0, Reτ = 650 with a Bq =−0.131 that displays relatively strong heat transfer effects. When the van
Driest transformed mean velocity profile in inner variables of these two results were compared with the DNS
of incompressible channel flow by Moser et al. (1999), the DNS results of the mean velocity profile reported
by Trettel and Larsson (2016) show a reasonably good collapse with the DNS results reported by Moser et al.
(1999) for the case of weak heat transfer (Bq =−0.053). In contrast, the van Driest transformed mean velocity
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profile of the case with strong heat transfer (Bq = −0.131) shows significant deviations from the reference
incompressible mean velocity profile by Moser et al. (1999). The differences are attributed to the increase in
the log-law layer intercept B and the viscous sub layer slope (Trettel and Larsson, 2016). This is depicted in
Figure 2.4.

UVD
+

y+

Incompressible turbulent channel flow from DNS Re�                     = 587

van Driest transformed Mach 3.0 Bq = -0.131  Re�  = 650

Trettel and Larrson (2016) transformed Mach 1.7 Bq = -0.053  Re�  = 663

Figure 2.4: Comparison of van Driest transformed mean velocity profile of compressible flow with mild cool-
ing at Mach 1.7, Reτ = 663 and strong cooling at Mach 3.0, Reτ = 650 reported by Trettel and Larsson (2016)
with incompressible results from Moser et al. (1999) at Reτ = 587

Trettel and Larsson (2016) proposed a transformation that takes care of varying Reynolds and Mach num-
bers along with provisions for heat transfer. This transformation is based on two important conditions - the
log-law condition and the stress balance condition. Trettel and Larsson (2016) remarked that the latter is an
important component of a compressibility transformation since the momentum conservation between the
raw form (compressible) and transformed form (incompressible) has to be respected. They argue that the
van Driest transformation adjusts the velocity gradients of a variable density flow to a constant density one.
While this may result in a matching slope of the velocity gradient, it violates the stress-balance condition
Trettel and Larsson (2016). This was one of the major drawbacks of the van Driest transformation. The trans-
formed mean velocity and wall-normal co-ordinate is presented in Table 2.1. Three experimental and one
DNS study was used to validate the transformation for a supersonic flow over a boundary layer. In case of the
channel flow, the results from Moser et al. (1999) was used for validation.

Huang et al. (1995) heuristically proposed to use the semi-local scaling approach wherein the flows with
property variations can use the scaling given by u∗

τ = (τw /ρ)1/2 with a length scale δ∗v = µ/ρu∗
τ . The results

also include a semi-local scaled wall normal distance given by y∗ = y/δ∗v and the associated Reynolds number
Re∗τ . The verification of this scaling approach was performed by Patel et al. (2015) where it was established
well that the proposed transformations are indeed valid. In fact, Re∗τ was also later derived by Trettel and
Larsson (2016).

The topic of compressibility transformations is still being studied with improvements being made to the
scaling of near wall mean velocity and wall-normal co-ordinates for a range of Reynolds and Mach numbers,
and wall thermal conditions. The most recent study by Volpiani et al. (2020) enforces the universality in
viscous sub-layer and the Morkovin scaled shear stress analytically, while calibrating the other parameters
using a wide range of DNS data. The transformation proposes a power law relation with coefficients a and
b. The transformed mean velocity and wall-normal coordinate is given by Table 2.1. Since both density
and viscosity ratios depend on the temperature ratio T /T w , a provision was made to incorporate this using
the ideal gas relation. The search space for the coefficients of the power law was explored with the goal
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of minimizing the L1 norm of the difference between the transformed streamwise mean velocity and the
incompressible streamwise mean velocity, particularly in the log-law region that extends from y+ ≈ 40 to
y+ ≈ 100 for the present DNS data. The calibration of the coefficients was done using boundary-layer test
cases ranging from Mach numbers of 2 to 6 and wall thermal conditions of adiabatic and strongly cooled. It
was observed that the range that produces the lowest error for a is 1.4−1.7 and for b is 0.4−0.6. To produce
the final transformation relation, values of a = 1.5 and b = 0.5 were chosen. It should be noted that this
transformation has been tested upto a maximum Reτ ≈ 650.

2.5.2. Strong Reynolds Analogy
In compressible flows, the presence of the energy equation with temperature and density being additional
unknowns can prove to be challenge from a computational perspective. A way to correlate the two equa-
tions would prove largely beneficial in solving them. This is where the Reynolds analogy plays a key role.
The underlying concept of a Reynolds analogy is the similarity of the momentum and energy equations when
the molecular Prandtl number is unity. This is very advantageous, since consideration of such an analogy
would provide a coupling between the temperature and velocity, which would necessitate solving either the
momentum or energy equation. Such an analogy was first applied to steady laminar flows with zero pres-
sure gradient and later extended to turbulent flows in what is known as the Strong Reynolds analogy (SRA).
Before exploring the SRA, it is imperative to consider a few definitions first. The eddy viscosity µt and eddy
conductivity kt is defined as:

µt =
−ρũ′v ′

∂ũ/∂y
(2.45)

kt =
−Cpρṽ T̃ ′

∂T̃ /∂y
(2.46)

where u′, v ′ represent the streamwise and wall normal fluctuations and T ′ represents the temperature fluctu-
ation (Smits and Dussauge, 2006). This allows for the definition of a turbulent Prandtl number Prt and mixed
Prandtl number Pm given by:

Prt =
µt Cp

kt
=

−ρũ′v ′(∂ũ/∂y)

−ρṽ T̃ ′(∂T̃ /∂y)
(2.47)

Pm =
(µ+µt )Cp

(k +kt )
(2.48)

By modifying (2.11) and (2.12) a little, the zero pressure gradient, steady 2D Favre averaged momentum and
energy equation can be written,

ρũ
∂ũ

∂x
+ρṽ

∂ũ

∂y
=

∂

∂y

(
(µ+µt )

∂ũ

∂y

)
(2.49)

ρũ
∂H̃

∂x
+ρṽ

∂H̃

∂y
=

∂

∂y

(
(µ+µt )

[
∂H

∂y
+Cp (P−1

m −1)
∂T̃

∂y

])
(2.50)

(2.49) and (2.50) are reported in Smits and Dussauge (2006) and become equivalent when Pm = 1, in which
case if a solution exists for ũ, then the solution for H̃ takes the form: H̃ = aũ +b where a and b are constants
determined by the boundary conditions. Experimental study by Kistler (1959) and Morkovin (1962) show that
most of the total temperature variations T0, and by extension, H (since H =Cp T0) take place close to the wall
and the variation of T0 away from the wall is negligible. The mean and the fluctuation of H can be written as,

H = H̃ +H ′ = h̃ +h′+
1

2
(ũi +u′

i )(ũi +u′
i )

H̃ = h̃ +
1

2
(ũi

2)

H ′ = h′+ ũi u′
i +

1

2
(u′2

i )

Cp T ′
0 =Cp T ′+ ũi u′

i +
1

2
(u′2

i ) (2.51)
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The term (u′2)/2 is negligible and it was suggested by Morkovin (1962) that for an adiabatic case, T ′
0 << T ′

and (2.51) takes the form Cp T ′+ ũi u′
i
≈ 0. The discussion provided by Smits and Dussauge (2006) uses this

relation, and puts forward the following relations

√
T ′2

T̃
= (γ−1)M

2

√
u′2

ũ
(2.52)

Ru′T ′ =
u′T ′

√
u′2

√
T ′2

≈−1 (2.53)

�v ′T ′ =−
ũ

Cp
ũ′v ′ (2.54)

�v ′T ′

T̃
=−(γ−1)M

2 ũ′v ′

ũ
(2.55)

�v ′T ′
0 = �v ′T ′+

ũ

Cp
ũ′v ′ = 0 (2.56)

where M = ũ/
√

γRT̃ . R is the gas constant, γ is the ratio of specific heats Cp and Cv (specific heat at constant
volume). The relations in (2.52) - (2.56) are collectively the 5 SRA relations that were presented by Morkovin
(1962). A detailed study of these relations are presented in Cebeci and Smith (1974), Guarini et al. (2000),
Smits and Dussauge (2006).

The SRA relations are valid only for quasi-adiabatic flows and starts showing deviations when there is heat
transfer at the walls (Gaviglio, 1987, Huang et al., 1995). This led to the formulation of the various other SRA
relations, one of which, developed by Gaviglio (1987) is given by,

√
T ′2/T̃

(γ−1)M
2
p

u′2
ũ

≈
1

c(1−a(∂T̃0/∂T̃ )
(2.57)

where c = 1 and a = 0 recovers the original SRA. In the study by Guarini et al. (2000), they analyze the accuracy
of the modified SRA and the constants a and c used by Huang et al. (1995) and Gaviglio (1987). Their conclu-
sion is that a = 1 and c = Prt as proposed and used by Huang et al. (1995) is the most accurate. In conclusion,
care must be taken while applying the SRA or the so called modified SRA while keeping the conditions at the
wall in mind. This can be crucial when considering the relationship between mean skin friction and wall heat
transfer coefficient.

The relationship between velocity and temperature is an important one. With such relations, accurate
predictions of velocity profiles can be used for estimating the temperature profile. A popular temperature-
velocity relation, based on Reynolds analogy was put forward by(Walz, 1959). However supersonic flows at
high Mach numbers with wall heat flux showed deviations from this profile as documented by Duan and
Martin (2011). A modified relation was proposed by Zhang et al. (2014) to overcome these limitations and
extend the applicability to non-adiabatic walls given by

T

T w

= 1+
Tr g −T w

T w

ũ

ũe
+

Te −Tr g

T w

(
ũ

ũe

)2

(2.58)

where Tr g = Te + rg ũ2
e /(2Cp ), rg = 2Cp (T w −Te )/ũ2

e −2Pr qw /ũeτw where qw is the wall heat flux. Since this
thesis uses a strongly cooled wall, (2.58) will be useful in computing the temperature profile using the mean
velocity profile.

2.6. Effect of surface roughness
2.6.1. Incompressible flows
The pioneering work on rough wall flows is attributed to Nikuradse et al. (1950) who conducted experiments
on the flow of water in pipes roughened by sand. Perhaps the most crucial result was the identification of
three regimes in the flow where the resistance to the flow of water is dependent on the average roughness
height k. For values of k that are comparatively smaller than δ, it is reported that the rough wall behaves
similarly to its smooth wall counterpart in terms of offering resistance to the flow. When the magnitude of k
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is comparable to δ, it is observed that there is an increase in the resistance to the water flow with an increase
in Reynolds number (Nikuradse et al., 1950). Finally, when the magnitude of k is large enough in comparison
to δ, there is no change observed in the resistance to the flow of water with an increase in Reynolds number.
The schematic description of roughness is shown in (2.5). The roughness heigh k is a geometric parameter
and λ, the pitch of the roughness element defined as the distance between two successive leading edges of
the crests of the roughness elements.

Clauser (1956) used k+ = kuτ/νw , known as the roughness Reynolds number, that is calculated based on
the height k of the roughness element to arrive at similar results. A sufficiently small value of k+ would imply
that the roughness element would lie well inside the viscous sub-layer, offering no changes in the resistance
to the flow. Such a surface is known as hydraulically smooth. As the magnitude of k+ increases, there is a
regime that involves a change from smooth to rough behavior which is defined as transitionally rough. The
term, ’fully rough’, is assigned to the case with a sufficiently high value of k+ and indicates the complete
disappearance of the laminar sub-layer accompanied by the absence of inner layer dependence on viscosity
(Clauser, 1956). Schlichting and Gersten (2016) introduce equivalent sand grain roughness height ks and the
equivalent roughness Reynolds number k+

s = uτks /νw in terms of it. Chung et al. (2021) provides a definition
for ks as the hypothetical sand grain roughness height that is expected to produce the same drag as the rough
surface of interest. This poses a problem that ks cannot be determined a priori. Additionally, there is no
direct relation between ks and the geometrical roughness parameter such as k. This definition allows the
assignment of limits to characterize a hydraulically smooth (k+

s . 5), transitionally rough (5 . k+
s . 80) and

fully rough regime (k+
s & 80) (Nikuradse et al., 1950, Wu and Christensen, 2007).

Figure 2.5: Schematic of a typical 2D rough surface

In fully rough flows, the surface shear due to viscosity in the case of smooth flows is replaced by the form
drag on the roughness elements (Raupach et al., 1991). A similar explanation was provided by Furuya et al.
(1976) who conducted experimental studies of a turbulent boundary layer on flat plate roughened by trans-
verse wires. Another interpretation offered by Flack and Schultz (2014) to explain the different regimes is in
terms of the perturbations caused due to the existence of roughness. In the case of a hydraulically smooth
surface, the perturbations caused due to the roughness elements are damped by the strong presence of the
viscous layer. However, as these perturbations grow in strength with increasing k+

s , it is observed that the vis-
cosity is no longer able to damp the perturbations caused by the roughness elements until it reaches a point
where the dominant mechanism is simply the form drag on the elements. This argument is also supported
and expounded mathematically by Jiménez (2004).

When discussing roughness, a concept that comes to mind is the Townsend outer layer similarity hy-
pothesis (Townsend, 1980). There have been studies that provide tremendous support for the hypothesis by
Jiménez (2004), Flack et al. (2005), Kunkel et al. (2007) and Chung et al. (2014). The underlying assumption is
that the behaviour of the smooth wall and rough wall is similar away from the wall. The function of roughness
is to set the boundary conditions through the friction velocity. This is based on the dimensional argument as
presented in (2.28) where uτ and h are important in the outer layer. The effect of roughness is confined to
a region very close to the wall (y < yr ) where yr is the height of the roughness sub-layer. Assuming that the
yr ≈ 3k, the condition for outer layer similarity to hold is k/h / 1/40 (Jiménez, 2004). However, this cannot
be guaranteed but the review by Flack and Schultz (2014) specify that outer layer similarity holds in the case
of sufficiently large scale separation. Leonardi et al. (2007) propose that checks at higher h/k and fixed k+ is
required to gauge the validity of the hypothesis.

The effect of roughness is to produce a downward shift in the logarithmic layer of the viscous scaled mean
velocity profile. This shift in velocity is known as the Hama roughness function ∆U+ = ∆U /uτ. In the hy-
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draulically smooth regime, the logarithmic law of the wall relation holds

〈us〉+ =
1

κ
log (y+)+B (2.59)

where 〈us〉+ and y+ respectively are the smooth wall mean-velocity and wall normal coordinate. As the value
of k+ increases and enters the transitionally rough regime, the same logarithmic law of the wall relation holds
in y/k

〈ur 〉+ =
1

κ
log

( y

k

)
+BR (k+) (2.60)

with the exception of the intercept BR (k+) which is no longer a constant but depends on the roughness
Reynolds number and the roughness topography (Chung et al., 2021). The term 〈ur 〉+ is the mean velocity of
the rough wall. This effect of roughness depicted through the shift in the smooth-wall mean velocity profile is
shown in Figure 2.6. The shift is quantified as ∆U+. For k+ >> 1, BR (k+) no longer depends on the roughness
Reynolds number but only depends on the roughness topography and approaches a finite value BR (Chung
et al., 2021). The velocity shift or Hama roughnes function ∆U+ is defined as the difference between (2.59)
and (2.60)

∆U+(k+) = 〈us〉+−〈ur 〉+ =
1

κ
log (k+)+B −BR (k+) (2.61)
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Figure 2.6: Mean velocity profile of a smooth wall and rough wall scaled by friction velocity uτ and friction
length scale δv . Solid line represents the smooth wall mean velocity profile and dashed line represents the
rough wall mean velocity profile. The Hama roughness function is given by ∆U+.

For ∆U+ > 0, there is a momentum deficit caused due to the downward shift in the mean velocity profile
in wall units. The flow incurs an additional drag penalty. The description of Hama roughness function so far
has been in terms of k+. However, k+

s is a better parameter since it accounts for the drag producing features of
the surface despite not having an explicit relationship with geometrical parameters. Additionally, ks serves as
a common parameter that allows the comparison of different roughness types. It is also capable of collapsing
the roughness functions of different roughness types on a single theoretical profile in the fully rough limit.
(2.61) can be written in terms of k+

s by multiplying k+ with a factor ks /k. This is particularly an important
result and one that will be used in the thesis.

∆U+(k+
s ) =

1

κ
log (k+

s )+B −BS (k+
s ) (2.62)

In the fully rough regime, BS (k+
s ) attains a finite value (BS ≈ 8.5) (Schlichting and Gersten, 2016). Without

the fully rough condition, BS and BR remain as functions of k+
s and k+ respectively. The Hama roughness

function in the fully rough regime is given by

∆U+ =
1

κ
log (k+

s )+B −BS (2.63)
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The variation of ∆U+ with k+ and k+
s is depicted in Figure 2.7a and Figure 2.7b respectively. Assume

there exists two different roughness types identified by the letters P (depicted by triangles) and Q (depicted
by circles). When ∆U+ is calculated and plotted against k+, there is a gradual increase in the ∆U+ with k+.
In this region, BR (k+) or the intercept in (2.60) is not constant. For large values of k+, the Hama roughness
function asymptotes to a constant intercept BR which no longer depends on k+. An important observation is
that the intercept BR is different for different roughness types. Additionally, the profiles do not collapse onto
the theoretical relation of Hama roughness function given by (2.61) as seen in Figure 2.7a. To ensure that the
two roughness types collapse onto a single profile, it is essential to multiply k+ with ks /k which is different
for the two roughness types (ks /k = 5 for P and ks /k = 0.25 for Q). It is seen in Figure 2.7b that the profiles
of the two different roughness types collapse onto the relation given by (2.61) along with the roughness data
of Nikuradse et al. (1950). The usage of k+

s seems to allow a seamless collapse of the profiles since now the
intercept BS is constant for all roughness types in the fully rough limit.
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Figure 2.7: Variation of ∆U+ with (a) k+ and (b) k+
s for two roughness geometries P (triangles) and Q (circles).

Dashed line is the theoretical ∆U+ relation in the fully rough regime and the Nikuradse et al. (1950) roughness
(squares) co-inciding with the theoretical profile in the fully rough limit.

A concept to consider while studying the outer layer similarity in rough wall turbulent boundary layers is
the virtual origin. Defined as wall offset by Chung et al. (2021). The outer layer of the flow does not always
perceive the origin to be at y = 0. This causes issues in analysis of ∆U+ for cases with strong roughness effects.
The rough wall mean velocity profile is not exactly shifted parallel to the smooth wall mean velocity profile in
the log-law region. This results in a non-horizontal ∆U+ profile when plotted against y+. To resolve this issue,
the origin of the rough wall is set at y = ǫ as depicted in Figure 2.8. The value of ǫ can be set anywhere from
the roughness trough to the roughness crest based on the distribution of the roughness elements. Since the
current thesis does not deal with very sparse or very densely packed roughness elements, the virtual origin is
set at a height that will provide a near horizontal ∆U+ profile when plotted against y+.

ε

y

roughness element crest

Figure 2.8: Schematic depiction of virtual origin for rough surfaces
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2.6.2. Compressible flows
The discussion on surface roughness is incomplete without the study of drag and heat transfer. It is important
to see the variation in drag introduced by the presence of roughness on a surface in comparison with a smooth
surface. To characterise this, the drag variation of a rough surface in comparison to a smooth surface is given
by

Dv = 1−
C f

C f s
= 1−

1
(
1− ∆U+

U+
cs

)2 Rc

Rcs

(2.64)

where Rc = 〈ρc〉/〈ρw 〉, the skin-friction coefficient C f = 2τw /(ρcU 2
c ), Uc = 〈ũ〉(h) is the channel centerline

velocity and subscript s indicates smooth surface. The Hama roughness function ∆U+ can be given as

∆U+ =U+
cs −U+

c ≈ 〈ũs〉+(y)−〈ũr 〉+(y), 100 < y+ < 0.30Reτ (2.65)

where the second identity holds in the case of outer layer similarity. Hence it is important to correctly predict
the Hama roughness function ∆U+ to ensure accurate quantification of the skin-friction coefficient.
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Figure 2.9: Staton number and skin-friction coefficient augmentation using (2.69). The solid lines indicate
α1 = 0.4,1.3 and the dashed lines indicate the case when St/Sts =C f /C fs .

One of the important aspects of supersonic flows is the heat transfer. It is important to characterize the
heat transfer at the surface due to viscous heating. In supersonic flows, the high speed of the fluid in the
freestream is brought to zero at the wall over a very thin region. In the region close to the wall, this results in
heating of the fluid due to viscosity offered by the fluid and the presence of the no-slip boundary condition at
the wall. The viscosity ensures dissipation of kinetic energy which is manifested as increase in temperature of
the fluid. A non-dimensional parameter known as the Stanton number is used to characterize the rate of heat
transfer at the wall. The Stanton number is the ratio of the heat transfer coefficient to the thermal capacity of
the fluid. It is given by

St =
qw

ρuCp (Tw −Tr )
(2.66)

where Tr is the recovery temperature given by

Tr = Tc

[
1+

γ−1

2
r M 2

c

]
(2.67)

where r is the recovery factor and Mc and Tc are the Mach number and temperature at the channel centerline
respectively. The recovery factor can be thought of as the amount of kinetic energy recovered from the flow.
The stagnation temperature T0 of a fluid is defined as the temperature that it attains when it is isentropically
brought to rest on an insulated wall from the free-stream region of the flow. On the other hand, the recovery
temperature is the temperature the fluid attains when it is brought to rest on an insulated wall from the
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viscous region. Due to this, the process of bringing the fluid to rest is not fully isentropic and not all of the
kinetic energy is dissipated. The recovery factor is given as

r =
Tr −T

T0 −T
(2.68)

where T is the static temperature.
When studying drag and heat transfer over roughness elements, it is important to characterise the effect

of one relative to the other. This is done by using an augmentation formula for heat transfer given by Hill et al.
(1980) as

St

Sts
≈

C f

C fs


1+α1

√√√√T w

T e

C f

2
k0.45Pr 0.8


 (2.69)

where α1 is a constant that can be varied from 0.4 to 1.3. This was also documented by Bowersox (2007) while
documenting the results of supersonic flow over rough surfaces. The plot of (2.69) is shown in Figure 2.9. It is
clear from Figure 2.9 that for the case of non-adiabatic walls, the increase in heat transfer due to roughness
element compared to smooth wall case is less pronounced compared to increase in skin friction coefficient
(Bowersox, 2007). This is because of the additional pressure drag provided by the roughness, which does not
have an equivalent for the heat transfer.



3
Numerical Methodologies

The thesis uses four different numerical methods to study compressible flow over roughness. They are 1)
DNS of resolved roughness using immersed boundary method (IBM) 2) Resolved roughness in minimal-span
channel 3) DNS of modeled roughness using parametric forcing approach by Busse and Sandham (2012) and
4) RANS of fully resolved roughness using body fitted grid. This chapter introduces the three methodologies
along with the solvers that will be used. Additionally, the results from validation simulations for the three
methods will also be presented.

3.1. Full channel DNS with Immersed Boundary Method
The most fundamental computational technique in terms of providing a complete, comprehensive picture of
the entire range of scales that constitute turbulence is Direct numerical simulation (DNS). It was first used by
Orszag and Patterson Jr (1972) for simulating homogeneous isotropic turbulence and then used by Kim et al.
(1987) for simulating turbulent channel flow at friction Reynolds number Reτ = 180. The plane channel flow
simulation was later followed by advances incorporating pressure gradients, heat transfer, transpiration, and
roughness. Despite possessing the capability of providing flow statistics over a large range of length and time
scales, DNS is computationally demanding because the cost of performing DNS scales with the Reynolds
number (Re3).

In case of compressible flows, the study by Coleman et al. (1995) serves as a standard where DNS was
carried out for a supersonic turbulent flow in a plane channel with isothermal walls. When it comes to com-
pressible flows, in addition to the already existing cost constraint posed by DNS, the additional complexities
will be expounded. Compressible flows have discontinuities such as shocks that require certain modifications
to the solver. One of the most baffling issues that researchers face while studying flows with turbulence and
shocks is the contradictory nature of solution methodologies that are required to study these two features.
The presence of shocks, that are very thin regions with width of the order of a few mean free paths has to be
represented accurately on a grid. This is done by adding artificial dissipation that ’smears’ the shock across
a few grid points. This may resolve the issue of shock representation on a finite grid. But, it is detrimental to
the small scales of turbulence as artificial dissipation adds to the physical dissipation.

A solver capable of handling these discontinuities in compressible flows is required if a highly accurate
dataset of compressible flow over roughness is to be generated. The DNS solver used in this thesis is a high-
fidelity, compressible solver STREAmS (Supersonic TuRbulEnt Accelerated navier-stokes Solver) for the DNS
of canonical wall-bounded turbulent flows namely supersonic plane channel, zero-pressure-gradient devel-
oping over a flat plate and shock wave/turbulent boundary layer interaction (Bernardini et al., 2021). It is
capable of producing highly accurate results for a wide range of Mach numbers, from low subsonic to hy-
personic flows. The solver is highly-parallelised through message passing interface (MPI) parallelisation and
can be used on modern high performance computing (HPC) platforms. The convective terms are discretised
using a hybrid energy-conservative shock capturing scheme in locally conservative form making use of the
approximation of arbitrary order put forward by Pirozzoli (2010). The shock capturing abilities depend on
the usage of Lax-Friedrichs flux vector splitting and weighted non-oscillatory (WENO) reconstruction. To
switch between energy preserving and shock capturing regions, the solver makes use of the modified version
of the Ducros shock sensor (Ducros et al., 1999). The time advancement is through a three-stage, third-order
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Runge-Kutta scheme.

Figure 3.1: Visual description of the Ghost-Point-Forcing Method (GPFM) by De Vanna et al. (2020). Grey
points correspond to the fluid region and blue points correspond to the ghost region. The two are separated
by a solid line (boundary). φg , φ f and φi p represent the fluid properties in the ghost, fluid regions and at the
image point respectively. Dashed lines represent the tangent to the point (marked with a cross) where φb , the
boundary condition is defined.

Two types of methods can be used to generate computational grids required to perform DNS of resolved
roughness. The first one is the Body Fitted Grid Method and the second, is the Immersed Boundary Method
(IBM). The former employs a body fitted grid to the surface of the roughness element. The latter allows for
the roughness element or any geometry to cut across the cells of the computational grid. There are various
kinds of IBM that have been studied over the last two decades. In this thesis, the Ghost-Point-Forcing Method
(GPFM) is used as described in De Vanna et al. (2020). In GPFM, the computational domain is divided into
three regions: the fluid region, the solid region and the ghost region. Let the flow property at the solid, fluid
and ghost region be represented as φs , φ f , φg respectively. The ghost region consists of layers that are present
within the solid region. For every ghost point, a corresponding point in the fluid region is identified as the
image point where the flow property is φi p as shown in Figure 3.1. Each image point has an associated unique
ghost point. The surface of the solid is equidistant from the the ghost point and its associated image point. It
is also perpendicular to the line connecting it with the ghost and image points respectively. Once the image
point is identified, the flow properties such as velocity, density and temperature are interpolated using the
neighbouring grid points (φ f 1,φ f 2,φ f 3 and φ f 4 in Figure 3.1) where these flow properties are stored. The
boundary condition φb is then used to reflect the flow properties onto the ghost point.

φg = 2φb −φi p (3.1)

There are three layers of ghost nodes defined. The properties calculated on these ghost nodes serve as the
boundary condition on the object surface. The geometry of the solid body is presented in OFF format. The
computational geometry library CGAL (The CGAL Project 2021) is used to perform ray-tracing algorithm used
to flag the grid points as solid points and fluid points. The ray-tracing algorithm works by shooting a ray in
a random direction from every cell. If this ray crosses a surface an odd number of times, the cell is located
within the solid object. However, if the ray crosses a surface an even number of times, the cell is located
outside the solid boundary. The solution at the image point is interpolated from its neighbouring points
using an inverse interpolation.

The DNS of fully resolved roughness using a full channel is carried out on cube roughness elements. This
is defined as a 3D roughness since three separate dimensions are required to fully describe the geometry of
the roughness element. The DNS dataset of the cubes was already available and is only analyzed in this thesis.
The setup of the 3D roughness is explained first. The roughness elements are cubes placed on the channel
walls. 3D resolved roughness is computationally the most expensive because of the complete resolution of
the region close to the roughness elements. Additionally, three independent values are required to fully de-
scribe the roughness element. The dimensions of the domain is given by 6h ×2h ×3h with constant mesh
spacing in the streamwise and spanwise directions. The distribution of mesh points in the wall-normal direc-
tion is based on an error function which clusters the points close to the roughness crest. Periodic boundary
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conditions are enforced on the streamwise and spanwise boundaries and no-slip isothermal boundary con-
ditions on the channel walls. The computations are initiated with a parabolic velocity profile with superposed
random perturbations and uniform values of density and temperature. The bulk cooling term Φ ensures that
constant bulk temperature is controlled at every time step. It is evaluated at every time step to such that only
35% of the bulk flow kinetic energy is used to increase the wall temperature namely Tw = Tb(1+0.35ΠM 2

b
)

where Π= 0.178. For the case of Mb = 2, this gives

Tw = Tb

(
1+0.35×0.178×22)

(3.2)

Tb

Tw
=

1

1.2492
≈ 0.8 (3.3)

Similarly for the case of Mb = 4, the bulk temperature is set to Tb/Tw = 0.5.

Lz
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k

�ow direction

x
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z

Figure 3.2: Schematic of the channel wall with cube roughness element. Lx is the streamwise domain length,
Lz is the spanwise domain length and k is the geometrical roughness height

The DNS dataset is developed using the strategy of fixing the roughness height k/h and varying the friction
Reynolds number. The roughness Reynolds numbers is given by k+ = k/δv . The friction Reynolds number is
set at Reτ ≈ 500 and Reτ ≈ 1000 which corresponds to two roughness Reynolds numbers, k+ ≈ 40 and k+ ≈ 80
respectively. The spacing between two roughness elements is 2k. A schematic of the channel wall with the
roughness elements is shown in Figure 3.2. The choice of the roughness Reynolds numbers is to ensure
that there is one case in the transitional regime and another one in the fully rough regime. Two separate
supersonic cases are considered at Mb = 2 and Mb = 4. Smooth wall supersonic channel flow simulations are
carried out at matching bulk Mach number and friction Reynolds numbers. This will allow comparison and
also aid in the calculation of Hama roughness function ∆U+.

3.2. Minimal-span channel DNS using Immersed Boundary Method
According to the physical setup of the channel flow configuration, the large value of the length of the chan-
nel along with a high aspect ratio means that the size of the domain under study increases. A larger domain
requires greater computational resources if all the turbulent length scales are required to be sufficiently re-
solved. This problem of a large domain can be partially overcome with the use of a minimal-span channel.
Jiménez and Moin (1991) studied the minimal flow units of wall turbulence by using a reduced streamwise
and spanwise domain. They concluded that the near-wall turbulent cycle can be captured with a span-
wise domain length of 100ν/uτ. Future studies by Jiménez and Pinelli (1999), Flores and Jiménez (2010)
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and Hwang (2013) also support the results of minimal-flow units. The work of Flores and Jiménez (2010)
demonstrated that the minimal-span channel can be used to capture the logarithmic layer of turbulent flows.

Figure 3.3: Geometric description of minimal-span channel as derived from full channel. L+
x and L+

z represent
the viscous scaled domain lengths along streamwise and spanwise directions respectively. The size of the
domain in the streamwise direction L+

x ≈ 2−3L+
z is per the recommendation of Chung et al. (2015)

A more systematic study on minimal channel is offered by Chung et al. (2015). They investigated the ef-
fect of two different spanwise domain lengths with varying streamwise domain lengths on the mean flow and
turbulent statistics. The condition for choosing a spanwise domain length proposed by Jiménez and Moin
(1991) is further extended. It was observed that there is a close match between the mean velocity profile of
full and minimal-span channels up to a wall normal height y+

c ≈ 0.4L+
z provided this lies in the logarithmic

layer (Chung et al., 2015). This region was termed as the ’unconfined’ region meaning that the turbulence is
faithfully captured without being constained due to the minimal span. The criteria for choosing the spanwise
dimension was put forward as Lz ' max(100ν/uτ,k/0.4,λr,z ) where λr,z is a characteristic spanwise length
scale. It is also recommended that the streamwsie domain length would benefit from being 1000 viscous
units. As such, it was proposed to ensure L+

x ' max(1000ν/uτ,3Ly+,λr,x ) where λr,x is some characteristic
streamwise length scale. The simulations performed by Chung et al. (2015) however, indicated that it is ac-
ceptable to have L+

x ≈ 2−3L+
z . A very important result is the applicability of minimal-span channel for the

resolved roughness cases. Chung et al. (2015) used sinusoidal roughness element of h/k = 18 and performed
simulations for full channel and minimal-span channel incompressible flow over smooth and rough walls at
Reτ ≈ 180. The mean velocity profile adapted from Chung et al. (2015) for this particular case is presented
in Figure 3.5. The full channel results are shown in solid and dashed lines without square symbols and the
minimal-span channel results are shown with solid and dashed lines with square symbols. The inset shows
the velocity shift in both cases. The simulation was performed in a domain with L+

z ≈ 141 so the extent of
unconfined region would then be y+

c = 0.4L+
z = 0.4×141 ≈ 54. The vertical dashed line in Figure 3.5 clearly

shows that the roughness element is well inside y+
c ≈ 54 ensuring the validity of the results obtained using

minimal-span channel. Although the minimal-span channel is unable to capture the mean velocity profile of
smooth and rough walls in the outer layer, the mean velocity shift is not altered. This confirms the soundness
of the choice of minimal-span channel in this thesis to study resolved roughness. The physical description of
the minimal-span channel that will be used in this thesis is shown in Figure 3.3. A portion of the full channel
is taken out to graphically explain the concept of minimal-span channel.

The DNS of transverse bar roughness elements in a minimal-span channel is considered. The DNS of this
roughness type has been performed in this thesis. The dimensions along the streamwise and wall-normal di-
rections are the same as that of 3D roughness element (k/h = 0.08). The only difference is that the roughness
element extends throughout the entire spanwise direction. This way, two independent values are sufficient
to fully describe the roughness element earning it the name of 2D roughness element. The schematic of a
channel wall with bar roughness elements is shown in Figure 3.4. In addition to being an open channel, the
computational domain is also a minimal-span channel. The dimensions of the box is 1.68h×1h×0.75h. The
choice of the spanwise domain size is motivated by the results from MacDonald et al. (2017). For a roughness
height of k = 0.08, the influence of roughness extends up to y = 3k = 0.24 from the roughness crest or y = 0.32
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Figure 3.4: Schematic of the channel wall with bar roughness element. Lx is the streamwise domain length,
Lz is the spanwise domain length and k is the geometrical roughness height

from the wall. The spanwise domain length should be chosen in such a way that the roughness element and
its region of influence is immersed in the unconfined area, given by yc = 0.4Lz . For y = 0.32, this would be
Lz = 0.32/0.4 = 0.8. Considering this as an upper limit, a spanwise domain length of Lz /h = 0.75 has been
chosen with the streamwise domain length being Lx /h = 1.68. The simulations are performed at Reτ ≈ 500
and Reτ ≈ 1000 giving two roughness Reynolds number k+ ≈ 40,80 at Mb = 2. The channel height is h = 1
with a slip wall at the channel mid-plane enforcing symmetry boundary conditions on u1, u3 and forcing
u2 = 0. The details of the test cases are tabulated in Table 3.1.

3.3. DNS with parametric forcing
Due to the high cost of performing DNS in general and more so for compressible flows, an alternative ap-
proach should be adopted. In case of roughness, the cost of performing DNS is further exacerbated by the
resolution requirements close to the roughness element. A more fundamental issue in studying roughness is
the inability to ascribe the equivalent sand grain roughness ks to the measured topological features (Chung
et al., 2021). The estimation of ks is done a posteriori and is not known before hand. A simpler and low-cost
model is required to overcome these challenges. It is also necessary to correlate the topological features of
roughness to a parameter and increase the confidence in the model to represent roughness effects.

The central theme of the thesis is the model developed by Busse and Sandham (2012). The goal of the
model is to explore the effect of roughness using a distributed drag force. This is done by introducing an
additional force term in the momentum equation that consists of three parameters - a roughness height pa-
rameter, a roughness factor and a shape function. Collectively, they are known as the roughness force term.
The roughness force term will be represented as Γi and is given by:

Γi =αi Fi (y, Hi )ρui |ui | (3.4)

where αi is the roughness factor, Fi (y, Hi ) is the roughness shape function and Hi is the roughness height
parameter. The subscript i = 1,2,3 denotes the co-ordinate directions of streamwise along x, wall-normal
along y and spanwise along z respectively. The nature of the term ui |ui | has a damping effect (Busse and
Sandham, 2012). Since the thesis involves study of channel flow, only the streamwise forcing term is relevant.

Γ1 =αF1(y, H1)ρu1|u1| (3.5)

A short description of each of the parameters in the roughness force term will be provided to understand their
functionality.
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Figure 3.5: Incompressible mean velocity profile of smooth wall full channel (solid line) and full channel wall
with sinusoidal roughness (dashed lines) compared against smooth wall minimal-span channel (solid line
with square symbols) and sinusoidal roughness minimal-span channel (dashed line with square symbols) at
Reτ ≈ 180, h/k = 18 in a domain with spanwise dimension scaled by δv of L+

z ≈ 141 adapted from Chung et al.
(2015). The vertical dashed lines indicate the wall normal location of the roughness element crest. The figure
inset shows the mean velocity shift ∆U+ = u+

s −u+
r as a difference of smooth and rough wall mean velocity

profile of full and minimal-span channels.

The roughness factor αi has dimensions of line density [L−1] and represents the density of roughness
elements. Dense roughness would have a higher value of the roughness factor whereas sparse roughness
would have a lower value. Busse and Sandham (2012) performed DNS to quantify the effect of varying α on
the mean velocity profile. By fixing the roughness shape function and roughness height parameter, different
combinations of α1, α2 and α3 were studied setting the parameters to either 1 or 0. It was observed that the
wall-normal roughness factor α2 contributed the least towards the shift in mean-velocity profile. For this
reason, α2 was set to 0. In addition, α1 = α3 = α was also ensured. An important observation was that for
α= 1, the variation of Hama roughness function ∆U+ was negligible with roughness function except for the
lower and upper extremes of roughness factors.

The roughness height parameter Hi can be thought of as an indication of the effect of the physical rough-
ness height. It is known that an increase in the physical roughness height increases the magnitude of the
Hama roughness function. Busse and Sandham (2012) report that although there exists no explicit relation-
ship between the roughness height parameter and the physical roughness height, the roughness height pa-
rameter increases with increase in physical roughness height. The roughness shape function Fi (y, Hi ) gives
the expression that identifies the region of influence of the roughness in a domain. The input is the rough-
ness height parameter and the wall normal distance. Depending on the wall-normal distance, the roughness
shape function exerts the influence of roughness on the flow. To simplify the analysis, Busse and Sandham
(2012) introduce an auxillary parameter η(H) which is defined by:

H =
∫η(h)

0 F (y, H)yd y
∫η(h)

0 F (y, H)d y
(3.6)

in case of a channel flow where h denotes the channel half-height. It was observed that the Hama roughness
function ∆U+ increases for increasing roughness height parameter and roughness factor. Different combina-
tions of roughness height parameter and roughness factor produce almost the same result in velocity defect
profile in the outer layer which also collapses with the smooth wall profile. The exception is for extremely
rough cases; this observation is in line with the expectation of the rough wall velocity defect profile to show
universal behaviour in accordance with the outer layer similarity for mean velocity profile.
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Busse and Sandham (2012) use six different shape functions, but they found little differences between
them, and they suggested the use of a step function.

F (y, H) =
{

1 y ≤ η(H)
0 y > η(H)

(3.7)

By using (3.7) and integrating (3.6), η(H) = 2H .
The parametric forcing approach that was introduced and studied by Busse and Sandham (2012) is for

incompressible flows. The same model requires an extension to compressible flows to conduct study of su-
personic flow over roughness. This will require the modification of the energy equation in addition to the
momentum equation. The force term in the momentum equation is given by

Γm =αF1(y, H1)ρu1|u1| (3.8)

Notice the inclusion of ρ in (3.8) due to the compressible nature of the flow. In case of the energy equation,
two terms are added. The first one is representative of the work done by the roughness force term which is
simply a product of the velocity and the force term. The second, is a term that accounts for the additional
heat transfer caused by the roughness and can be called the roughness heat transfer term.

Σh = ρu2
1|ui |F1(y, H1)α+ρu1Cp (Tw −Tr )F1(y, H)α (3.9)

The second term in (3.9) is motivated by the idea that the heat transfer is proportional to qw ∝ ρuCp (Tw −Tr )
just the same way the additional force term is proportional to D ∝ ρu2/2. This adds the effect of roughness
to the heat transfer which is incorporated in the energy equation. It is worth mentioning that Tr in (3.9) is
calculated using the local Mach number and not the Mach number at the channel centerline.

The simulations for modeled roughness are performed in an open channel box of dimensions 3.12h ×
1h ×1.5h. As opposed to the resolved roughness case, the strategy adopted in the modeled roughness case
is to increase the roughness height parameter for a fixed friction Reynolds number of Reτ. Specifically, the
auxiliary parameter η(H) is increased from η(H) = 0.01 to η(H) = 0.08. This is done since the implementation
of the modeled roughness force term in the solver is such that, the auxiliary parameter can be provided as an
input. Therefore, increasing the auxiliary parameter is much easier than progressively increasing the friction
Reynolds number. The box profile is chosen since it closely resembles the available resolved roughness data of
transverse rectangular bars and cubes. The legend for the cases of modeled roughness is explained. The first
two letters denote the magnitude of the auxiliary parameter η(H) with K 1,K 2 and so on upto K 8 denoting
η(H) = 0.01,0.02 to η(H) = 0.08 respectively. The last two letters indicate the Mach number with Mb = 2
represented as M2 and Mb = 4 represented as M4.

3.4. Reynolds Averaged Navier–Stokes
The goal of the thesis is to explore the possibility of reducing the cost of running rough wall simulations of su-
personic flows. A computational method that is very popular in industry and can be performed easily at a low
cost is the Reynolds Averaged Navier–Stokes (RANS) simulations. By performing Reynolds averaging on the
Navier–Stokes equations, the RANS equations are obtained. As described in subsection 2.2.1, the averaging
procedure introduces the Reynolds stress which is the root cause of the closure problem. RANS models are
broadly based on two different approaches; the first one stems from an analogy between the Reynolds stress
and the viscous stress in what will be called the eddy viscosity models. These are also known as first-order
closures. The second one, known as the Reynolds stress models are second-order closures and postulate a
transport equation for the Reynolds stress. These models are out of the scope of the study and will not be
elaborated. Eddy viscosity models are based on the eddy-viscosity hypothesis according to which, it is pos-
sible to relate the Reynolds stress to the mean strain rate tensor. For incompressible flow, this can be given
as,

ai j =−2νT Si j Si j =
1

2

(
∂ui

∂x j
+
∂u j

∂xi

)
(3.10)

where, the anisotropic Reynolds stress tensor ai j =−u′
i
u′

j
−2/3δi j K , where K is the turbulent kinetic energy

and −u′
i
u′

j
is the Reynolds stress tensor and νT , the eddy viscosity.

The model proposed and expounded by Spalart and Allmaras (1992) (SA model) is used in this thesis. It
is also calibrated on mixing layers, wakes and flat plate boundary layers and is based on a transport equation
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for νT (Spalart and Allmaras, 1992). The model has shown tremendous success and is widely accepted and
used to date. In its most general form, the SA model is a balance between the material derivative of eddy
viscosity and production and diffusion terms. The material derivative of a quantity β is given by

Dβ

Dt
=

∂β

∂t
+~u.∇β (3.11)

In case of near wall region, an additional destruction term is added to account for the blockage effect of the
wall. The transport equation for νT is given by

Dν̃

Dt
= cb1(1− ft2)S̃ν̃−

[
cw1 fw −

cb1

κ2
ft2

](
ν̃

d

)2

+
1

σ

[
∂

∂x j

(
(ν+ ν̃)

∂ν̃

∂x j

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
(3.12)

where the turbulent eddy viscosity is computed using

νT = ν̃ fv1 fv1 =
χ3

χ3 + c3
v1

χ=
ν̃

ν
(3.13)

Additional definitions are given by

S̃ =Ω+
ν̃

κ2d 2
fv2 Ω=

√
Wi j Wi j (3.14)

where Ω is the magnitude of vorticity and d is the distance from the field point to the nearest wall and

fv2 = 1−
χ

1+χ fv1
(3.15)

fw = g

[
1+ c6

w3

g 6 + c6
w3

]
(3.16)

g = r + cw2(r 6 − r ) (3.17)

r = mi n

[
ν̃

S̃κ2d 2

]
(3.18)

ft2 = ct3exp(−ct4χ
2) (3.19)

Wi j =
1

2

(
∂ui

∂x j
−
∂u j

∂xi

)
(3.20)

The values of the constants are provided in Spalart and Allmaras (1992). The wall and free-stream boundary
conditions are given by

ν̃w al l = 0 ν̃ f ar− f i el d = 3ν∞−5ν∞ (3.21)

where ν∞ is the free-stream kinematic viscosity. The SA model was originally developed for incompressible
flows. The modified equations to account for compressibility is given by

Dρν̃

Dt
= cb1(1− ft2)ρS̃ν̃−

[
cw1 fw −

cb1

κ2
ft2

]
ρ

(
ν̃

d

)2

+
1

σ

[
∂

∂x j

(
ρ(ν+ ν̃)

∂ν̃

∂x j

)
+ cb2ρ

∂ν̃

∂xi

∂ν̃

∂xi

]
(3.22)
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Resolved Roughness

C ase Mb Reτ ReτT ReτV Reb k+ Tb/Tw Lx /h Ly /h Lz /h Nx Ny Nz ∆x+
∆y+

∆z+ St ×10−3 C f ×10−3

Smooth 2 488 697 681 11039 0 0.8 6 2 3 512 384 384 5.71 0.96−4.63 3.96 2.49 3.81
Smooth 2 1003 1431 1403 25077 0 0.8 6 2 3 1024 688 768 5.87 0.97−5.88 4.07 2.04 3.14
Rough 2 498 740 665 6831 39.85 0.8 6 2 3 3088 384 1536 0.97 0.98−4.73 1.01 5.16 10.04
Rough 2 1034 1551 1377 13922 82.62 0.8 6 2 3 3088 688 1536 2.08 1.00−6.06 2.09 4.44 10.28

Smooth 4 493 1662 1580 20094 0 0.5 6 2 3 512 384 384 5.81 0.97−4.71 4.02 6.98 2.81
Smooth 4 995 2972 2874 39650 0 0.5 6 2 3 1024 688 768 5.83 0.96−5.83 4.04 5.71 2.42
Rough 4 516 1711 1349 12591 41.48 0.5 6 2 3 3088 384 1536 1.00 1.07−4.92 1.05 12.88 5.93
Rough 4 1069 3660 2668 24435 85.76 0.5 6 2 3 3088 688 1536 2.08 1.04−6.28 2.17 13.44 6.31

Minimal-span channel

C ase Mb Reτ ReτT ReτV Reb k+ Tb/Tw Lx Ly Lz Nx Ny Nz ∆x+
∆y+

∆z+ St ×10−3 C f ×10−3

Smooth 2 511 749 714 12044 0 0.8 1.68 1 0.75 96 192 64 8.94 0.40−3.58 5.99 2.29 3.52
Smooth 2 1068 1484 1505 27729 0 0.8 1.68 1 0.75 96 192 128 9.34 0.85−9.34 6.25 1.73 2.91
Rough 2 466 708 721 8660 37.26 0.8 1.68 1 0.75 840 192 64 0.93 0.37−3.26 5.45 4.60 7.21
Rough 2 1111 1694 1512 17526 88.86 0.8 1.68 1 0.75 840 192 128 2.22 0.89−7.78 6.50 3.84 7.84

Table 3.1: DNS dataset of supersonic channel flow over resolved roughness with cubic roughness elements and minimal-span channel flow with transverse bar
roughness elements. Reτ = uτh/νw is the friction Reynolds number with uτ, h and νw respectively the friction velocity, channel half height and kinematic viscosity
at the wall, ReτT and ReτV are the transformed friction Reynolds numbers according to Trettel–Larsson (Trettel and Larsson, 2016) and Volpiani (Volpiani et al., 2020)
transformations respectively, Reb = 2hρbub/µw the bulk Reynolds number with ρb , ub the bulk density and bulk velocity respectively and µw , the dynamic viscosity
at the wall. k+ is the roughness Reynolds number. Tb/T w is the ratio of bulk temperature to temperature at the wall, Lx /h ×Ly /h ×Lz /h is the length along the
streamwise, wall-normal and spanwise directions respectively scaled by the channel half-height h with Nx , Ny , Nz indicating the number of mesh points along the
same directions. ∆x+, ∆y+, ∆z+ is the viscous scaled mesh spacings in the same direction. St and C f represent the Stanton number and skin-friction co-efficient
respectively.



38
3.N

u
m

ericalM
eth

o
d

o
lo

gies

Modeled Roughness

C ase Mb Reτ ReτT ReτV Reb η(H) H+ Tb/Tw Lx /h Ly /h Lz /h Nx Ny Nz ∆x+
∆y+

∆z+ St x10−3 C f x10−3

Smooth 2 474 681 663 10806 − − 0.8 3.12 1 1.5 192 192 128 7.70 0.38−3.32 5.55 2.49 3.77
K1M2 2 474 674 662 10560 0.01 2.37 0.8 3.12 1 1.5 192 192 128 7.70 0.37−3.32 5.55 2.61 3.94
K2M2 2 473 684 656 9583 0.02 4.73 0.8 3.12 1 1.5 192 192 128 7.69 0.37−0.33 5.54 2.84 4.75
K3M2 2 476 690 657 8616 0.03 7.13 0.8 3.12 1 1.5 192 192 128 7.73 0.38−3.33 5.57 3.17 5.91
K4M2 2 482 706 658 7425 0.04 9.63 0.8 3.12 1 1.5 192 192 128 7.83 0.38−3.37 5.64 3.73 8.09
K5M2 2 484 713 655 6720 0.05 12.10 0.8 3.12 1 1.5 192 192 128 7.86 0.38−3.39 5.64 4.04 9.90
K6M2 2 475 706 637 6023 0.06 14.25 0.8 3.12 1 1.5 192 192 128 7.72 0.38−3.33 5.56 4.56 11.78
K7M2 2 478 722 635 5793 0.07 16.71 0.8 3.12 1 1.5 192 192 128 7.76 0.38−3.34 5.59 4.89 12.79
K8M2 2 478 722 629 5335 0.08 19.13 0.8 3.12 1 1.5 192 192 128 7.77 0.38−3.35 5.60 5.38 15.01

Smooth 4 478 1443 1374 17348 − − 0.5 3.12 1 1.5 192 192 128 7.77 0.38−3.35 5.60 1.31 1.43
K1M4 4 483 1406 1379 17174 0.01 2.41 0.5 3.12 1 1.5 192 192 128 7.84 0.38−3.38 5.65 1.26 1.48
K2M4 4 486 1523 1371 16134 0.02 4.85 0.5 3.12 1 1.5 192 192 128 7.89 0.39−3.40 5.69 1.34 1.69
K3M4 4 485 1515 1340 14588 0.03 7.28 0.5 3.12 1 1.5 192 192 128 7.88 0.38−3.40 5.68 1.49 2.04
K4M4 4 492 1479 1314 12892 0.04 9.83 0.5 3.12 1 1.5 192 192 128 7.98 0.39−3.44 5.76 1.65 2.64
K5M4 4 493 1677 1286 12053 0.05 12.32 0.5 3.12 1 1.5 192 192 128 8.01 0.39−3.45 5.77 1.84 2.99
K6M4 4 501 1704 1270 11387 0.06 15.03 0.5 3.12 1 1.5 192 192 128 8.14 0.40−3.14 5.87 2.01 3.42
K7M4 4 500 1647 1225 10725 0.07 17.50 0.5 3.12 1 1.5 192 192 128 8.12 0.40−3.50 5.86 2.28 3.80

RANS

C ase Mb Reτ ReτT ReτV Reb k+ Tb/Tw Lx Ly Lz Nx Ny Nz

Smooth 2 505 652 659 22500 - 0.8 0.075 2 0.075 4 128 4
Smooth 2 1047 1351 1370 50000 - 0.8 0.075 2 0.075 4 128 4
Rough 2 493 649 631 18400 39.44 0.8 0.24 2 0.24 30 180 30
Rough 2 1038 1355 1326 34000 83.04 0.8 0.24 2 0.24 30 180 30

Table 3.2: DNS dataset of supersonic channel flow over modeled roughness using parametric forcing approach of Busse and Sandham (2012) and RANS dataset
for smooth and rough wall fully resolved channel flow configuration. Reτ = uτh/νw is the friction Reynolds number with uτ, h and νw respectively the friction
velocity, channel half height and kinematic viscosity at the wall, ReτT and ReτV are the transformed friction Reynolds numbers according to Trettel–Larsson (Trettel
and Larsson, 2016) and Volpiani (Volpiani et al., 2020) transformations respectively, Reb = 2hρbub/µw the bulk Reynolds number with ρb , ub the bulk density and
bulk velocity respectively and µw , the dynamic viscosity at the wall. η(H) is the auxiliary parameter and H+ = (H/h)Reτ is viscous scaled the roughness height
parameter as described in Busse and Sandham (2012). Tb/T w is the ratio of bulk temperature to temperature at the wall, Lx /h ×Ly /h ×Lz /h is the length along the
streamwise, wall-normal and spanwise directions respectively scaled by the channel half-height h with Nx , Ny , Nz indicating the number of mesh points along the
same directions. ∆x+, ∆y+, ∆z+ is the viscous scaled mesh spacings in the same direction. St and C f represent the Stanton number and skin-friction co-efficient
respectively.



3.5. Validation 39

The RANS simulations in this thesis is performed for a channel flow configuration using a low-dissipative
solver for turbulent compressible flows on unstructured meshes as proposed by Modesti and Pirozzoli (2017)
which uses almost the same numerics as in STREAmS but it is implemented inside the popular open source
library OpenFOAM. Conservation properties is ensured on unstructured meshes through localised augmen-
tation of the numerical flux with AUSM pressure diffusive flux (Modesti and Pirozzoli, 2017). Enhanced shock-
capturing capabilities are incorporated through the localised AUSM diffusive flux. The algorithm is described
in detail in Modesti and Pirozzoli (2017). An implementation of the algorithm in OpenFOAM is used for the
simulations in this thesis. OpenFOAM (Weller et al., 1998) is an open source library released under General
Public License (GPL) which is popular among the industry fraternity.

The smooth wall simulations is performed using Ny = 128 at Reτ ≈ 500,1000 and Mb = 2 with clustering
of points close to the walls along the wall-normal direction. This is done to ensure y+ ≈ 1. No-slip, isother-
mal boundary condition applied to the channel walls. The simulation is initialised with a parabolic velocity
profile. The simulations are carried out until steady state was reached. In case of 3D cube roughness, only
one roughness element is simulated and the computational box dimensions are 0.24h × 2h × 0.24h with a
grid size of 30×180×30. Constant mesh spacing is ensured along streamwise and spanwise directions with
clustering of points close to the channel walls along the wall normal coordinate. The cube roughness has
dimensions of k/h = 0.08 with a spacing of 2k units between two roughness elements. This was done to allow
comparison with the available DNS data on the same roughness geometry. The simulations are performed at
Reτ ≈ 500,1000 giving two different roughness Reynolds numbers of k+ ≈ 40,80.

3.5. Validation
Before performing analysis on roughness, it is important to show the confidence in results obtained by the
solver. This can be done by comparing the results against those available in literature. Additionally, it is
important to establish the accuracy of the compressibility transformations in collapsing the compressible
mean velocity profile onto the incompressible log-law relation with the same constants of proportionality.
The validation procedure will be proceed as follows

1. Validation of STREAmS solver for full channel, smooth wall, compressible flow against data available
from Moser et al. (1999).

2. Validation of accuracy of minimal-span channel mean velocity profile up to y+
c for the case at Mb =

0.3 and comparison with data from MacDonald et al. (2017). Validation of supersonic minimal-span
channel mean velocity profile.

3. Validation of modeled roughness case implemented in STREAmS with a standard test case from Busse
and Sandham (2012) offered for both open and full channels.

4. Validation of compressible mean velocity profile for full channel computed using RANS SA model against
data from DNS for smooth wall simulations.

3.5.1. STREAmS validation of smooth wall
The Volpiani-transformed (Volpiani et al., 2020) mean velocity profiles for a smooth wall, compressible full
channel flow at Reτ ≈ 500 and Reτ ≈ 1000 at Mb = 2 are shown in Figure 3.6a to Figure 3.6b. Further details
can be gathered from Table 3.3. For purpose of comparison, the smooth wall, incompressible channel flow
data from Moser et al. (1999) is also presented. The transformation by Volpiani (Volpiani et al., 2020)is the
most accurate transformation in accounting for compressibility effects. There is a very good collapse of the
transformed mean velocity with the nearly incompressible profile for both Reτ ≈ 500 and Reτ ≈ 1000 cases.

The mean momentum balance for the full channel smooth wall case of Reτ = 500 in outer and wall units
is presented in Figure 3.7a and Figure 3.7c respectively. The same is presented for Reτ = 1000 in Figure 3.7b
and Figure 3.7d. The profiles in outer units show the expected trend as discussed in section 2.3. Close to the
wall, the viscous contribution dominates and the Reynolds stress is zero. The wall shear stress in this case is
completely due to the viscous contribution. As the center of the channel is approached, the contribution of
the viscous stress drops further such that the sum of the viscous and Reynolds stress tends to a linear profile
as shown by the solid (purple) line. In outer units, it is observed that the crossover point of the viscous and
Reynolds stresses is closer to the wall in case of Reτ = 1000 in Figure 3.7b compared to the Reτ = 500 case in
Figure 3.7a. However, when the same mean momentum balance is depicted in wall units as in Figure 3.7c and
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Figure 3.6: Mean velocity profile of full channel smooth wall compressible flow transformed by Volpiani trans-
formation Volpiani et al. (2020) (downward pointing triangles) at (a) Reτ ≈ 500 and (b) Reτ ≈ 1000, Mb = 2. In-
compressible smooth wall channel flow data by Moser et al. (1999) (circles) included for comparison. Dashed
lines represent incompressible law of the wall given by 〈u+〉 = y+ and 〈u+〉 = (1/κ)log (y+)+B .

Figure 3.7d, it is clearly seen that the crossover point is at y+ ≈ 12. This lies in the buffer layer and indicates the
location where the contribution from viscous and Reynolds stresses is equal. This is also the region where tur-
bulence production is maximum. The mean momentum balance is an indicator of simulation convergence
for a channel flow configuration. The results from Figure 3.7a and Figure 3.7b suggest that the simulations
have converged when the output statistics were collected. The criteria for convergence of the simulation in
this thesis will be linearity of the total stress. The simulations are performed until the sum of the viscous and
Reynolds stress is linear.

STREAmS validation test case

Sl
No

Wall Domain Reτ Mb H+ Lx /h Ly /h Lz /h Nx Ny Nz

1 Smooth Full Channel 488 2 - 6 2 3 512 384 384
2 Smooth Full Channel 1003 2 - 6 2 3 1024 688 768

Table 3.3: Validation data set for DNS of compressible smooth wall, full channel configurations using
STREAmS. Reτ is the friction Reynolds number, Mb is the bulk Mach number, H+ is the scaled roughness
height parameter from Busse and Sandham (2012), Lx /h ×Ly /h ×Lz /h and Nx ×Ny ×Nz is the grid size and
number of points along streamwise, wall normal and spanwise directions respectively.

3.5.2. Minimal-span channel validation
The minimal-span channel is considered next. A standard test case is chosen from MacDonald et al. (2017).
The dimensions of the box Lx /h×Ly /h×Lz /h are 0.5π×2×0.6 and in wall units, L+

x = 930 and L+
z = 354. The

simulation is performed at Reτ ≈ 590 with a grid size Nx×Ny ×Nz of 96×256×72. The test case is incompress-
ible and the details of it are tabulated in Table 3.4. The mean velocity profile from the simulation performed
using STREAmS and compared against the results from MacDonald et al. (2017) is presented in Figure 3.8. The
Volpiani-transformed (Volpiani et al., 2020) mean velocity profile of an open minimal-span channel, smooth
wall, compressible flow is also presented for the purpose of comparison. A very good agreement is observed
between the results of MacDonald et al. (2017) and that obtained from STREAmS. Additionally, a very good
agreement is also seen between full channel Volpiani-transformed Volpiani et al. (2020) mean velocity and
the minimal-span channel mean velocity up to a wall-normal height of y+ ≈ 145. This height is termed as
critical height by MacDonald et al. (2017) and is y+

c ≈ 0.4L+
z . The results from Figure 3.8 confirm the pres-

ence of y+
c which directly confirms the possibility of using minimal-span channel for analysis of rough wall
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Figure 3.7: Mean momentum balance of smooth wall full channel case for (a) Reτ = 500 and (b) Reτ = 1000 in
outer units and (c) Reτ = 500 and (d) Reτ = 1000 in wall units. The solid line represents the sum of the viscous
and Reynolds stresses scaled by wall shear stress τw . The dashed line is the viscous stress where τ= τvi sc and
the dot-dashed line is τ= τt .

Minimal-spam channel validation test cases

Sl
No

Wall Domain Reτ Mb H+ Lx /h Ly /h Lz /h Nx Ny Nz

1 Smooth Minimal-span channel 590 0.3 - 0.5π 2 0.6 96 256 72
2 Smooth Full Channel 488 2 - 6 2 3 512 384 384
3 Smooth Open Channel 474 2 - 3.12 1 1.5 192 192 128
4 Smooth Minimal-span Channel 462 2 - 1.56 1 0.75 96 192 64

Table 3.4: Validation data set for DNS of compressible and incompressible smooth wall, minimal-span chan-
nel configurations using STREAmS. Reτ is the friction Reynolds number, Mb is the bulk Mach number, H+ is
the scaled roughness height parameter from Busse and Sandham (2012), Lx /h×Ly /h×Lz /h and Nx ×Ny ×Nz

is the grid size and number of points along streamwise, wall normal and spanwise directions respectively.
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〈ũ
〉+

,〈
ũ

V
〉+

y+, y+
V

0

5

10

15

20

25

100 101 102 103

y+
c

Figure 3.8: Mean velocity profile of incompressible smooth wall minimal-span channel flow performed at
Reτ ≈ 590 using STREAmS (squares) and extracted from MacDonald et al. (2017) (upward pointing triangles).
The Volpiani transformed mean velocity profile (dashed lines) from a full channel compressible simulation at
Reτ ≈ 500 and Mb = 2 is presented. y+

c is the critical height or the wall-normal height upto which the results
from full channel and minimal-span channel agree with each other.

channel flow MacDonald et al. (2017).
The accuracy of mean velocity up to y+

c is now demonstrated for a case of and open minimal-span chan-
nel compressible smooth wall DNS case. The test cases are presented as 3 and 4 in Table 3.4. Compress-
ible open channel simulation are performed at Reτ ≈ 475 and Mb = 2 with box size Lx /h ×Ly /h ×Lz /h of
3.12×1×1.5 and grid size Nx ×Ny ×Nz of 192×192×128. This is compared against a minimal-span channel
with Lx /h ×Ly /h ×Lz /h = 1.56×1×0.75 and grid size Nx ×Ny ×Nz of 96×192×64. The domain has been
halved along the streamwise and spanwise directions which is expected to increase the speed of execution by
four times. The mean velocity profile transformed using van Driest (Van Driest, 1951), Trettel–Larsson (Tret-
tel and Larsson, 2016) and Volpiani (Volpiani et al., 2020) transformations along with the mean density and
temperature scaled by their corresponding values at the wall and the turbulent normal and shear stresses
are presented in Figure 3.9a to Figure 3.9g. A few things are evident from these figures. Firstly, there is a
an agreement with the full channel and minimal-span channel mean velocity profile up to y+

c . Secondly,
there is a good agreement between the mean temperature and mean density profiles of minimal-span and
full channel cases in Figure 3.9e and Figure 3.9f respectively. Finally, the density scaled turbulent stresses are
compared in Figure 3.9g. The wall-normal and spanwise turbulent normal stresses and the turbulent shear
stress show very good agreement between the minimal-span and full channel cases. The streamwise normal
turbulent stress is slightly under-predicted for the minimal-span channel case as the center of the channel is
approached. This demonstrates that the usage of open minimal-span channel will still give accurate results
when compared against an open channel configuration up to y+

c . This is sufficient to accurately compute
mean velocity shift ∆U+.

3.5.3. DNS of modeled roughness
The validation of the implementation of the roughness term in STREAmS is offered. A standard case is picked
from Table 3.5. The roughness shape function chosen is the box profile. The simulation is performed at
Reτ ≈ 180 and Mb = 0.3. The roughness height parameter scaled by friction length scale is H+ = 10 and
roughness factor α= 1. Since the solver uses η(H)

η(H) = 2H =⇒
2H+

Reτ
= 0.11 (3.23)

A value of η(H) = 0.11 is implemented in the solver. The size of the box is 7h ×3.5h ×2h with a grid size of
128× 128× 128. A comparison of mean velocity profile and turbulent stresses is offered in Figure 3.10a to
Figure 3.10e. It is observed that there is a very good agreement between the results of Busse and Sandham
(2012) and that obtained from the implementation of the model in STREAmS. A small underprediction in
the mean velocity is observed towards the center of the channel in Figure 3.10a. It should be noted that the
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Figure 3.9: Comparison of compressible open channel flow at Reτ ≈ 475, Mb = 2 and Tb/Tw = 0.8 with an
open minimal-span channel: Mean velocity (a) untransformed, transformed by (b) van Driest (Van Driest,
1951) (c) Trettel–Larsson (Trettel and Larsson, 2016) (d) Volpiani (Volpiani et al., 2020) transformations (e)
mean temperature (f) mean density and (g) turbulent stresses. The vertical dashed lines in (a)-(d) indicate
the extent of unconfined region denoted by y+

c up to which open and minimal-span channel mean velocity
profiles collapse on each other. For (a)-(f), The solid line with squares indicate the results from minimal-span
channel and the dashed line, from the full-span channel. For (a)-(d), solid black lines are the incompressible
law of the wall relation 〈u+〉 = y+ and 〈u+〉 = (1/κ)log (y+)+B . For (g), turbulent normal stress along stream-
wise (squares), wall-normal (circles), spanwise (triangles) and shear stress (diamonds) represent minimal-
span channel with dashed, dot-dahsed, dotted and solid lines representing the same quantities for the full
channel counterpart.
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validation case using STREAmS was performed at Reτ = 183. This gives an H+ ≈ 10.06 which is slightly larger
than H+ = 10 used by Busse and Sandham (2012). Since H+ from the solver is slightly higher compared to that
of Busse and Sandham (2012) (10.065 > 10), it is expected that the downward shift in mean velocity profile is
large. At such low Reynolds numbers, the flow properties are very sensitive to small changes in the roughness
height parameter. The small deviation in the mean velocity profile and the subsequent turbulent stresses
could be explained on this basis. Another possibility is the order of accuracy - STREAmS is a 6th accurate
solver whereas the solver used by Busse and Sandham (2012) is 2nd order accurate.

Modeled roughness validation test cases

Sl
No

Wall
Domain
channel

Reτ Mb H+ Lx /h Ly /h Lz /h Nx Ny Nz

1 Modeled roughness Full Channel 183 0.3 10.065 7 2 3.5 128 128 128
2 Modeled roughness Open Channel 183 0.3 9.955 7 1 3.5 128 64 128

Table 3.5: Validation data set for modeled roughness test case from Busse and Sandham (2012) in the full
channel and open channel configurations. Reτ is the friction Reynolds number, Mb is the bulk Mach num-
ber, H+ is the scaled roughness height parameter from Busse and Sandham (2012), Lx /h ×Ly /h ×Lz /h and
Nx ×Ny ×Nz is the grid size and number of points along streamwise, wall normal and spanwise directions
respectively.

A potential way of reducing cost of running simulations is by considering an open channel whose wall
normal height is half of a full channel. The simulations are performed for modeled roughness using an open
channel at the same conditions as that of the full channel. The details of the simulation are given by case 2 in
Table 3.5. The results of mean velocity and turbulent statistics are superposed on the full channel results in
Figure 3.10a to Figure 3.10e. There is a good agreement between the mean velocity, streamwise normal and
turbulent shear stresses. The wall normal turbulent stress in Figure 3.10c for the open channel configuration
goes to zero as the channel mid-plane is approached. This is because of the impermeability boundary condi-
tion set at the channel mid-plane for open channel flow configuration. This boundary condition ensures that
both velocity and the velocity fluctuation are identically zero at the channel mid-plane.

There is a good agreement between the open channel, full channel data obtained using STREAmS and
data from Busse and Sandham (2012) for the wall normal turbulent normal stress upto y/h ≈ 0.7 or y+ ≈ 126
as shown in Figure 3.10c. The scaled roughness height H+ = 10 lies well within this region H+ << 126. This
confirms that usage of an open channel is not detrimental to the near wall dynamics of modeled roughness
and will be used in this thesis to study modeled roughness.

3.5.4. Validation of RANS results of smooth wall

RANS validation test cases

Sl
No

Reτ Reb Mb
Turbulence

Model
Lx /h Ly /h Lz /h Nx Ny Nz

1 500 50000 2 SA 0.075 2 0.075 4 128 4
2 1047 22500 2 SA 0.075 2 0.075 4 128 4

Table 3.6: Simulation dataset of the validation test cases for compressible, full channel, smooth wall RANS.
Reτ is the friction Reynolds number, Mb is the bulk Mach number, Reb is the bulk Reynolds number, Turbu-
lence Model used is SA (Spalart-Allmaras). Dimensions of the box are given by Lx /h ×Ly /h ×Lz /h with grid
size Nx ×Ny ×Nz .

The untransformed mean velocity profile along with mean temperature and mean density profiles com-
puted using RANS with the SA turbulence model at Reτ ≈ 500 and Reτ ≈ 1000 and Mb = 2 is presented in
Figure 3.11a to Figure 3.11f. The results from DNS of compressible full channel smooth wall computed using
STREAmS is also superposed for the purpose of comparison. It is observed that the mean velocity is overpre-
dicted in the viscous wall region for untransformed profiles. In case of the overlap region, the mean velocity
is under predicted. The mean temperature (Figure 3.11c and Figure 3.11d) and mean density (Figure 3.11e
and Figure 3.11f) profiles computed from RANS show a good agreement with DNS data.
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Figure 3.10: Mean flow statistics of incompressible, rough wall, full channel flow (circles) and open channel
flow (squares) at Reτ ≈ 180 and H+ = 10 using parametric forcing approach by Busse and Sandham (2012)
implemented in STREAmS: (a) mean velocity (dashed lines representing incompressile law of the wall rela-
tions for smooth wall) (b) streamwise (c) spanwise (d) wall normal turbulent normal and (e) shear stresses.
Data from Busse and Sandham (2012) (triangles) included for comparison.
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Figure 3.11: Mean flow statistics computed using RANS (squares) of full channel smooth wall compress-
ible flow at Mb = 2, Reτ ≈ 500 (left column of images) and Reτ ≈ 1000 (right column of images): (a,b) un-
transformed, (c,d) mean temperature (e,f) mean density profiles. Compressible full channel smooth wall
DNS results (upward pointing triangles) computed using STREAmS at the same conditions is also pre-
sented for comparison. Dashed lines represent incompressible law of the wall given by 〈u+〉 = y+ and
〈u+〉 = (1/κ)log (y+)+B .





4
Results and discussion

This chapter is aimed at presenting and discussing the extensive set of results obtained through the numerical
simulations performed. It begins with the discussion of smooth wall and 3D resolved roughness using full
channel and 2D resolved roughness using minimal-span channel. The modeled roughness results is then
presented with the results of resolved and minimal-span channel superposed on it. This is done to offer
a direct comparison and explore the possibility of using a modeled roughness approach to substitute the
computationally intensive resolved roughness simulations. The chapter concludes with the results of RANS
SA model being explained.

4.1. DNS using IBM

4.1.1. Full channel
The results of DNS using IBM for full channel 3D resolved roughness with k/h = 0.08 is presented here. The
mean velocity profile and its accompanied compressibility transformations for smooth and rough wall at
Reτ ≈ 500 (circles) and Reτ ≈ 1000 (diamonds), Mb = 2 (solid lines) and Mb = 4 (dashed lines) are shown
in Figure 4.1a to Figure 4.1h. There is a vertical downward shift in the mean velocity profile in case rough
wall Mach 2 at Reτ ≈ 500 and Reτ ≈ 1000 compared to their smooth wall counterparts. This is the Hama
roughness function ∆U+ and represents the momentum deficit caused due to the presence of roughness
elements. The shift is greater in the rough wall case of Reτ ≈ 1000 compared to the case Reτ ≈ 500 since
the roughness Reynolds number k+ ≈ 80 is higher than k+ ≈ 40. The Volpiani-transformed (Volpiani et al.,
2020) mean velocity profile shown in Figure 4.1g and Figure 4.1h for case the smooth wall cases display a very
good agreement with the nearly incompressible law of the wall profiles. On the other hand, the van Driest-
transformed (Van Driest, 1951) (Figure 4.1c and Figure 4.1d) and in particular the Trettel–Larsson transformed
(Trettel and Larsson, 2016) (Figure 4.1e and Figure 4.1f) mean velocity profiles for the smooth wall cases at
Reτ ≈ 500,1000 do not show a very good agreement and are less accurate.

The results at Mb = 4 are reviewed. Figure 4.1g shows that the Volpiani transformation (Volpiani et al.,
2020) is again successful in transforming the mean velocity of the smooth wall case at Reτ ≈ 500 in Figure 4.1g
and Reτ ≈ 100 in Figure 4.1h with a good agreement with the nearly incompressible flow case. This highlights
the accuracy of the Volpiani transformation (Volpiani et al., 2020) at high Mach number. The Trettel–Larsson-
transformed (Trettel and Larsson, 2016) mean velocity profile for the smooth wall case for Mb = 4 at Reτ ≈ 500
in Figure 4.1e and at Reτ ≈ 1000 in Figure 4.1f shows a greater deviation from the nearly incompressible mean
velocity profile compared to the Mach 2 smooth wall case at the same Reynolds number. Upon examining the
rough wall mean velocity profiles, a vertical downward shift is observed as was in the case of Mach 2. However,
the velocity shift observed in all cases (untransformed and using compressibility transformations) for Mb = 2
is not equal to that observed for Mb = 4 despite sharing the same k+. This shows visible compressibility
effects since none of the compressible transformations are capable of accounting for this discrepancy. This
questions the use of roughness Reynolds number in characterising the flow regime in case of compressible
flows.

The untransformed mean velocity defect profiles scaled by uτ is depicted for Reτ ≈ 500 in Figure 4.2a and
for Reτ ≈ 1000 in Figure 4.2b. There is a very good agreement between the smooth wall and rough wall mean
velocity defect profiles for Mb = 2 from y/h ≈ 0.1. This is observed at Reτ ≈ 500 and Reτ ≈ 1000. However,
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Figure 4.1: Mean velocity (a,b) untransformed (c,d) van Driest-transformed (Van Driest, 1951) (e,f) Trettel-
Larsson transformed (Trettel and Larsson, 2016) (g,h) Volpiani-transformed (Volpiani et al., 2020) for smooth
wall (circles) compared against 3D cube roughness (diamonds) at Reτ ≈ 500 (left column of images) and
Reτ ≈ 1000 (right column of images). The roughness height k/h = 0.08 corresponds to k+ ≈ 40 at Reτ ≈ 500
and k+ ≈ 80 at Reτ ≈ 1000. Solid lines with symbols indicate Mb = 2 and dashed lines with symbols indicate
Mb = 4. Dashed lines without symbols indicate incompressible law of the wall relations given by 〈u〉+ = y+

and 〈u〉+ = (1/κ)log (y+)+B . The rough wall profiles have been shifted by ǫ= 0.95k.

the mean velocity defect profiles at Mb = 4 (dashed lines) using the untransformed mean velocity does not
collapse on the profiles at Mb = 2. This displays compressibility effects and the need to account for them
using compressibility transformations. To overcome this, the van Driest transformation (Van Driest, 1951) is
used and the associated mean velocity defect profiles are displayed in Figure 4.2c and Figure 4.2d. Modesti
and Pirozzoli (2016) proposed a parabolic relation for the van Driest-transformed (Van Driest, 1951) mean
velocity defect profile given by

−(〈ũD 〉+−〈ũDc〉+) =
1

2c∗µ

(
1−

y

h

)2
(4.1)

The mean velocity defect profile, untransformed and van Driest-transformed (Van Driest, 1951) with (4.1) is
shown in Figure 4.2a to Figure 4.2d. It can be seen immediately that there is a good collapse observed for the
van Driest-transformed (Van Driest, 1951) mean velocity defect profile and (4.1) compared to the untrans-
formed mean velocity defect profile. Additionally, the mean velocity defect profiles at Mb = 4 also show a
very good collapse with the results from Mb = 2. This collapse of mean velocity defect profiles at Mb = 2 and
Mb = 4 lends weight to the outer layer similarity hypothesis.

Before presenting the results on ∆U+, it is important to justify the significance of using the virtual origin
while estimating it. Throughout the thesis, the virtual origin concept will be used for resolved roughness
while presenting the mean velocity profile. The mean velocity profile incorporated with the virtual origin is
called as shifted profile. The mean velocity profile of the resolved roughness presented without incorporating
the virtual origin is called unshifted profile. Figure 4.3 shows the Hama roughness function ∆U+ calculated
for shifted and unshifted mean velocity profiles at Reτ ≈ 500 and Reτ ≈ 1000. For the unshifted profile, there
is a large uncertainty in ∆U+ over the range 100 < y+ < 0.3Reτ which leads to ambiguity in the accurate value
of ∆U+. On the other hand, the shifted profile reduces this ambiguity in calculating ∆U+ since the profile
of ∆U+ with respect to y+ is horizontal. This represents a perfectly vertical downward shift in mean velocity
profile of a rough wall case. The virtual origin is calculated as follows

ǫ= 0.95k (4.2)

The factor of 0.95 in (4.2) indicates that the virtual origin is close to the roughness crest. This factor is chosen
to ensure that the Hama roughness function ∆U+ is horizontal with respect to y+. This way, ∆U+ can be
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Figure 4.2: Mean velocity defect (a,b) untransformed and (c,d) van Driest (Van Driest, 1951) transformed
profiles at Reτ ≈ 500 (left column of images) and Reτ ≈ 1000 (right colum of images) of smooth wall (circles)
and shifted profile of 3D cube roughness (diamonds) at Mb = 2 (solid lines with symbols) and Mb = 4 (dashed
lines with symbols). The dashed lines without symbols is the relation given by (4.1).
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collected at any wall-normal height in the region 100 < y+ < 0.15Reτ with reduced uncertainty. In this thesis,
the value of ∆U+ will be collected at y+

I
= 250.

∆
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Figure 4.3: Hama roughness function ∆U+ calculated using (a) shifted (solid lines) (b) unshifted (dashed
lines) Volpiani-transformed (Volpiani et al., 2020) mean velocity profile at Reτ ≈ 500 (lower pointing triangles)
and Reτ ≈ 1000 (squares), Mb = 2 for 3D cube roughness element

The definition of equivalent incompressible roughness height kI is unambiguous in case of incompress-
ible regime (kI = k). However, there are multiple options to consider when defining kI for the compressible
regime. Two such options are considered in this thesis. The first one stems directly from compressibility
transformations for wall normal coordinate

kI = yI (k) (4.3)

(4.3) has the benefit of being consistent with the transformed velocity shift ∆U+
I

. However, it is hard to esti-
mate this from experimental data. The second option considered in this thesis is

k∗ = k
νw

ν(k)
(4.4)

There is a variation in density from the trough to the crest of the roughness element. Such density variations
are suitably accounted for by using (4.3) and (4.4) as the length scales.

The velocity shift of 3D cube roughness elements (solid diamonds) as a function of equivalent roughness
Reynolds number k+

sI
for all compressibility transformations used in this thesis is shown in Figure 4.4a to Fig-

ure 4.4d. A factor of k+
sI

/k+
I
= 1.9 is used for all transformations. The rough wall data from Goddard Jr (1959),

Reda et al. (1974),Berg (1979), Latin and Bowersox (2000) and Ekoto et al. (2008) are included in Figure 4.4b for
the purpose of comparison. It is observed that the ∆U+ for the untransformed mean velocity profile does not
collapse on the asymptotic fully rough profile or the incompressible sand grain roughness data of Nikuradse
et al. (1950). The accuracy of the ∆U+ improves for van Driest and Trettel and Larsson compressibility trans-
formations. The data reported in Figure 4.4b from other supersonic rough wall studies have been performed
at adiabatic wall conditions. The results presented in this thesis are for strongly cooled walls. Therefore, there
is a strong variation in thermodynamic properties in the vicinity of the roughness element crests. These vari-
ation in properties are not suitably accounted for by using k+

s . In case of Mb = 4, there is an even greater
deviation in velocity shift for the untransformed mean velocity profile (Figure 4.4a). The accuracy is seen to
improve and is the best for ∆U+

V
+ in Figure 4.4d.

While using kI ensured that the Volpiani-transformed (Volpiani et al., 2020) mean velocity shift ∆U+
V

col-
lapses well with the incompressible data by Nikuradse et al. (1950), the same cannot be said regarding other
compressibility transformations. The use of (4.4) allows for a better agreement with incompressible data for
all compressibility transformations. The velocity shift as a function k+

s∗ = 1.9k+
∗ for untransformed and com-

pressibility transformations is shown in Figure 4.5a to Figure 4.5d. It is easy to see that ∆U+
I

shows good
correlation with the incompressible data particularly in the case of Volpiani transformed ∆U+

V
when k+

s∗ is
used as shown in Figure 4.5d. The transformed roughness Reynolds number from (4.4) is able to account
for compressibility effects both in the transitionally rough and fully rough regimes. The transitionally rough
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Figure 4.4: Mean streamwise velocity shift ∆U+ (a) untransformed (b) van Driest-transformed (Van Driest,
1951) (c) Trettel–Larsson-transformed Trettel and Larsson (2016) (d) Volpiani-transformed (Volpiani et al.,
2020) at Mb = 2 (solid diamonds) and Mb = 4 (hollow diamonds) for 3D cube roughness with roughness
Reynolds numbers k+ ≈ 40,80 and sand grain roughness Reynolds number k+

s = 1.9k+ and k+
sI

= 1.9k+
I

.
Dashed line is the theoretical asymptotic relation between equivalent sand grain roughness and Hama rough-
ness function given by ∆U+ = (1/κ)log (k+

s )+B −BS . The incompressible roughness data from Nikuradse
et al. (1950) (+ symbols) is also shown. In (b) experimental data of supersonic boundary layer are reported:
Goddard Jr (1959) (squares), Berg (1979) (crosses), Reda et al. (1974) (upward pointing triangles, Latin and
Bowersox (2000) (downward pointing triangles), Ekoto et al. (2008) (left pointing triangles). Incompressible
transitionally rough data for the same geometry is also included from Abderrahaman-Elena et al. (2019) (right
pointing triangles)
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Figure 4.5: Mean streamwise velocity shift ∆U+ (a) untransformed (b) van Driest-transformed (Van Driest,
1951) (c) Trettel–Larsson-transformed (Trettel and Larsson, 2016) (d) Volpiani-transformed (Volpiani et al.,
2020) at Mb = 2 (solid circles) and Mb = 4 (hollow circles) for 3D cube roughness with roughness Reynolds
numbers k+ ≈ 40,80 and sand grain roughness Reynolds number k+

s∗ = 1.9k+
∗ . Dashed line is the theoretical

asymptotic relation between equivalent sand grain roughness and Hama roughness function given by ∆U+ =
(1/κ)log (k+

s )+B −BS . The incompressible roughness data from Nikuradse et al. (1950) (plus symbols) is also
shown. Incompressible transitionally rough data for the same geometry is also included from Abderrahaman-
Elena et al. (2019) (right pointing triangles)
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mean velocity shift ∆U+
V

at Mb = 4 presented in Figure 4.5d is seen to be in close agreement with the incom-
pressible data from Abderrahaman-Elena et al. (2019) for the same roughness geometry. The idea behind
using length scales k∗ and kI is to account for the density variations between the roughness trough and crest.
These length scales allow a better comparison with incompressible data.

The turbulent stresses are discussed next. The density scaled turbulent normal stress profiles are pre-
sented in Figure 4.6a to Figure 4.6f and the density scaled turbulent shear stress profiles in Figure 4.6g to
Figure 4.6h. Both smooth wall and 3D cube roughness results at Mach number Mb = 2,4 are presented in the
same plot for Reτ ≈ 500 and Reτ ≈ 1000 respectively. It is observed that the streamwise turbulent stress peak
shifts towards the channel centerline in case of Mach 2 rough wall compared to smooth wall for Reτ ≈ 500
as seen in Figure 4.6a. The same is observed for the smooth and rough walls at Reτ ≈ 1000 in Figure 4.6b. In
addition, the peak value of the stress is reduced considerably (almost halved) in both cases. There is a gradual
increase in the turbulent stress towards the crest of the roughness element followed by a sudden jump right
above it. The presence of roughness elements cause a disruption in the near wall cycle of turbulence and is
responsible for the reduction in peak of streamwise turbulent stress peak. The roughness elements cause a
break up of the coherent structures in the buffer layer (namely the streamwise vortices) that is responsible
for turbulence production mechanisms. This decrease in peak of streamwise turbulent stress is observed in
the case of incompressible flows as reported in Krogstad et al. (2005), Lee et al. (2011) and Krogstadt and An-
tonia (1999). Included in both plots is the profile from Moser et al. (1999). A good collapse is observed for
the smooth wall case at Mb = 2 with the profile from Moser et al. (1999) indicating that the density scaling is
successful at accounting for compressibility effects at this Mach number. However, in case of Mach 4 (dashed
lines), there is an increase in the stress peak for the smooth wall cases at both Reτ ≈ 500,100 compared to
their smooth wall counterparts at Mach 2 in the buffer layer observed in Figure 4.6a and Figure 4.6b. The dif-
ference between the peak value of streamwise turbulent stress at Mach 2 and Mach 4 is greater at Reτ ≈ 500
compared to Reτ ≈ 1000. An important result noticed in all the cases is the presence of outer layer similarity.
The profiles of smooth and rough walls at Mb = 2 and Mb = 4 collapse on each other beyond y+

r ≈ 140 for
Reτ ≈ 500 and y+

r ≈ 250 for Reτ ≈ 1000 case respectively. This results in yr ≈ 3k. Jiménez (2004) and Raupach
et al. (1991) suggest two to five times the roughness height above the roughness crest as the extent of the
roughness sub-layer. However, as documented in the recent review by Chung et al. (2021), it is not clear if
this is the equivalent roughness height ks or roughness height k. The results obtained here point towards the
usage of k in determining the extent of the roughness sub-layer. This is the wall normal height up to which
the direct effect of roughness is felt by the mean flow. The effect of roughness cannot be neglected in this
region.

The wall normal turbulent stresses are considered next. The density scaled wall-normal turbulent stress
profile for the smooth wall at both Mb = 2 and Mb = 4 collapse well on the nearly incompressible profile
from Moser et al. (1999). This is seen at for both Reτ ≈ 500 and Reτ ≈ 1000 in Figure 4.6c and Figure 4.6d
respectively. The growth in the stress profile is more gradual for the rough wall when compared to the smooth
wall. There is no significant change in the peak stress when the rough wall profile is considered. Yet another
observation is the similarity of the rough wall profiles at Mb = 2 and Mb = 4. This is seen to extend upto
the roughness crest. Beyond the roughness crest, the rough wall profile of Mb = 2 shows a very good outer
layer similarity with the smooth wall profile at both Reτ ≈ 500 and Reτ ≈ 1000. However, a small deviation
is observed in the rough wall profiles at Mb = 4. All wall normal turbulent stresses approach zero at the
wall due to the presence of the impermeable wall boundary condition. The spanwsie turbulent stresses on
the other hand, show a very good outer layer similarity for both Mach 2 and Mach 4 cases at Reτ ≈ 500 and
Reτ ≈ 1000. Additionally, the smooth wall profiles at Mach 4 and Mach 2 collapse on each other and show
good agreement with the profile from Moser et al. (1999) particularly in the outer layer. A similar collapse is
observed between the rough wall profiles at these two Mach numbers beyond the roughness sublayer. The
compressibility effect is not very pronounced for spanwise turbulent stresses as compared to their streamwise
counterpart. The peak stress of rough wall profile is reduced to a greater extent at Reτ ≈ 1000 in comparison
to the reduction in peak at Reτ ≈ 500 for both Mach numbers. Finally, the turbulent shear stress is considered.
A near perfect collapse of the turbulent shear stress profile for smooth wall cases at Mach 2 and Mach 4 with
the data from Moser et al. (1999) indicates that density scaling for turbulent stresses is most successful in
case of shear stresses. In addition, the outer layer similarity also holds very well in both these cases. The peak
value of turbulent shear stress is lower in case of Mach 2 rough wall compared to smooth. The peak is also
shifted slightly towards the channel centerline. The increase in the turbulent shear stress is gradual up to the
roughness crest. This is followed by a steep increase and a subsequent decrease beyond the peak value. The
rough wall Reynolds stress profiles at Mb = 2 and Mb = 4 nearly collapse on each other indicating that the
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Figure 4.6: Density scaled turbulent (a,b) streamwise (c,d) wall-normal (e,f) spanwise and (g,h) shear stress
profile of smooth wall (circles) and 3D resolved cube roughness (diamonds) at Reτ ≈ 500, k+ ≈ 40 (left column
of images) and Reτ ≈ 1000, k+ ≈ 80 (right column of images). Turbulent stress profiles at Mb = 2 are repre-
sented by solid lines and at Mb = 4 are represented by dashed lines with the same symbols. Incompressible
data from Moser et al. (1999) (dot-dashed lines with × symbols) also included.

Mach number effect does not permeate into Reynolds shear stress in case of wall with roughness.

The mean temperature of the flow is a very important quantity in compressible flows as it is used for
estimating the heat transfer coeffecient. Since Tb/Tw = 0.8, there is a strong cooling at the wall. This is par-
ticularly important for dissipation of the energy generated as a result of viscous heating in compressible wall
bounded flows. The mean temperature scaled by wall temperature Tw for Mach 2 smooth and rough wall at
Reτ ≈ 500 is shown in Figure 4.7a and at Reτ ≈ 1000 in Figure 4.7b. Included in Figure 4.7a are the smooth and
rough wall Mach 4 cases. It is observed that there is a steep gradient of mean temperature beyond the rough-
ness crest for both the rough wall cases at Reτ ≈ 500,1000 compared to their smooth wall counterparts in
Figure 4.7a and Figure 4.7b. The mean temperature gradient is much steeper for Mach 4 cases (both smooth
and rough wall) compared to Mach 2. Similarly the mean density scaled by density at the wall ρw for the two
sets of cases is displayed in Figure 4.7c and Figure 4.7d. The mean density variation across the channel wall
normal direction is small for cases Mach 2 smooth and rough wall at Reτ ≈ 500 in comparison to Mach 4 at
the same Reynolds numbers. The mean density peak is at the channel centerline and happens to coincide
with the point of minimum mean temperature. The mean density variation for Mb = 4 cases are a lot steeper
in comparison to the flow cases at Mb = 2.

The temperature fluctuations profiles comparing smooth and rough wall Mach 2 cases at Reτ ≈ 500 and
Reτ ≈ 1000 are shown in Figure 4.8a and Figure 4.8b respectively. The temperature fluctuations are scaled by
T 2
τ = qw /ρwC puτ where qw is the wall heat flux. The peak of the temperature fluctuations for Mach 2 case

smooth and rough walls at Reτ ≈ 500 is comparable as seen in Figure 4.8a. The fluctuations are very small and
do not show an appreciable growth in the viscous sub-layer in the smooth wall case. However, the fluctuations
have a more steep increase up to the roughness crest in the rough wall case. There is a small dip at the crest
of the roughness elements followed by a further increase. The temperature fluctuations for Reτ ≈ 1000 in
Figure 4.8b show a significant increase in the peak value of rough wall compared to smooth wall. The smooth
wall case follows a similar trend of negligible variation in the viscous sub-layer. The Mach 4 smooth and rough
wall temperature fluctuations are also presented in Figure 4.14a for Reτ ≈ 500. It is observed that the peak
value for the smooth wall case at Mach 4 is greater than Mach 2 at this Reynolds numbers. Additionally, it is
also greater than the rough wall temperature fluctuation peak at Mach 4. In case of Reτ ≈ 1000 in Figure 4.8b,
a similar trend in Mach 4 is observed where the peak fluctuation of smooth wall exceeds that of the rough
wall case.

The mean density fluctuations for smooth and rough wall Mach 2 and Mach 4 cases at Reτ ≈ 500 are
depicted in Figure 4.8c. They are scaled by the mean density at the wall ρw . A quick examination of the mean
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Figure 4.7: (a,b) Mean temperature profile scaled by wall temperature T w (c,d) and mean density scaled
by density at the wall ρw for smooth wall (solid lines, circles) and rough wall (solid lines, diamonds) with
roughness height k/h = 0.08 for 3D cube roughness at Reτ ≈ 500 (left column of images), Reτ ≈ 1000 (right
column of images). Mb = 2 data represented as solid lines with symbols and Mb = 4 data represented as
dashed lines with symbols.
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Figure 4.8: (a,b) Mean temperature fluctuations scaled by T 2
τ where Tτ = qw /ρwC puτ where qw is the wall

heat flux (c,d) and mean density fluctuations scaled by density at the wall ρw for smooth wall (solid lines,
circles) and rough wall (solid lines, diamonds) with roughness height k/h = 0.08 for 3D cube roughness at
Reτ ≈ 500 (left column of images) and Reτ ≈ 1000 (right column of images). Mb = 2 data represented as solid
lines with symbols and Mb = 4 data represented as dashed lines with symbols
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density fluctuations plots show that their magnitude is very small (of the order of 10−1) for Mach 2 smooth and
rough wall cases at Reτ ≈ 500. This is particularly important as it forms the basis for the Morkovin hypothesis.
Hence, the usage of mean density scaling to account for the property variations in supersonic flows at Mach
2 is suitably justified. However, as the Mach number is increased, it is observed that the density fluctuations
obtain values that cannot be easily neglected. Particularly, in case of Mach 4, for the smooth and rough walls
at Reτ ≈ 500, it is observed that the magnitude of the peak is almost 6−7 times larger than the Mach 2 case.
In such circumstances, the Morkovin hypothesis is challenged as it is particularly valid till Mb ≈ 5. Since
the van Driest (Van Driest, 1951) transformation is based on the Morkovin hypothesis, the breakdown of the
Morkovin hypothesis is manifested as deviations in mean velocity from the incompressible law of the wall
relations observed in Figure 4.18d. There is a steep increase in the density fluctuations of the Mach 4 rough
wall case at Reτ ≈ 500 beyond the roughness crest (Figure 4.8c). The results at Reτ ≈ 1000 for Mach 2 (solid
lines) and Mach 4 (dashed lines) are shown in Figure 4.8d. The results are included for smooth and rough
walls. As seen in the case of Reτ ≈ 500, the Mach 2 mean density fluctuations are negligibly small. However,
the growth in these fluctuations at Mach 4 for both smooth and rough walls is high. The peak mean density
fluctuation for Mach 4 case of Reτ ≈ 1000 is almost twice as high as compared to the case at Reτ ≈ 500. All
these point towards the breakdown of Morkovin hypothesis.
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Figure 4.9: Staton number and skin-friction coefficient augmentation using (2.69). The solid lines indicate
α= 0.4,1.3 and the dashed lines indicate the case when St/Sts =C f /C fs . The results at Mb = 2 are shown as
solid circles and the results at Mb = 4 are shown as hollow circles.

The Stanton number and skin-friction coefficient augmentation is presented in Figure 4.9. The solid lines
indicate the empirical relation given in (2.69). The figure shows that in case of Mach 2 ,the increase in skin-
friction coefficient of the rough wall is greater compared to the increase in heat transfer. The roughness
Reynolds number does not seem to affect the increase in wall heat transfer of a rough wall compared to a
smooth wall as much as it affects the increase in drag. In case of Mach 4, a similar trend is observed where
the increase in drag is greater compared to increase in heat transfer. The drag is also lower compared to the
Mach 2 cases. The empirical relation (2.69) is able to represent the heat transfer increase as a function of drag
for Mach 2 with α = 0.4 and for Mach 4 with α = 1.3. This is the range put forward by Hill et al. (1980) for
compressible flow over roughness.

4.1.2. Minimal-span channel
The mean velocity profile untransformed and its associated compressibility transformations for minimal-
span channel smooth and rough wall with 2D transverse bar elements at Reτ ≈ 500 is presented in Fig-
ure 4.10a, Figure 4.10c, Figure 4.10e and Figure 4.10g respectively. A general observation that is noticed is
the increase in the mean velocity as the center of the channel is approached. This is a result of the reduced
domain along streamwise and spanwise directions. This does not permit the capturing of the large scale
structures thereby increasing the mean velocity in the outer layer. This increase is also observed for the rough
wall case. Due to this, the velocity shift is not significantly affected. The reduction in the domain does not
affect the near wall cycle of turbulence. The untransformed smooth wall mean velocity profile in Figure 4.10a
does not show a good collapse with the theoretical incompressible law of the wall relation in the log-law re-
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T
〉+

y+
T

5

10

15

20

25

30

100 101 102 103

(f)

〈ũ
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Figure 4.10: Minimal-span channel mean velocity (a,b) untransformed (c,d) van Driest-transformed (Van Dri-
est, 1951) (e,f) Trettel-Larsson transformed (Trettel and Larsson, 2016) (g,h) Volpiani-transformed (Volpiani
et al., 2020) for smooth wall (circles) compared against 2D transverse bar roughness (diamonds) at Mb = 2,
Reτ ≈ 500 (left column of images) and Reτ ≈ 1000 (right column of images). The roughness height k/h = 0.08
corresponds to k+ ≈ 40 at Reτ ≈ 500 and k+ ≈ 80 at Reτ ≈ 1000. Dashed black lines indicate incompressible
law of the wall relations given by 〈u〉+ = y+ and 〈u〉+ = (1/κ)log (y+)+B . The rough wall profiles have been
shifted by ǫ= 0.95k.

gion. The collapse improves almost negligibly for the case of van Driest-transformed (Van Driest, 1951) mean
velocity profile. The Trettel–Larsson-transformed (Trettel and Larsson, 2016) mean velocity profile shows a
greater deviation compared to the previous two cases just as it did for 3D cube roughness mean velocity pro-
files. The Volpiani-transformed (Volpiani et al., 2020) mean velocity profile is yet again the most accurate
compressibility transformation. The trends for Reτ ≈ 1000 case, minimal-span channel smooth and 2D bar
roughened walls are similar to the case of Reτ ≈ 500. The mean velocity shift is greater owing to a larger k+.
The increase in the mean velocity towards the centre of the channel is more prominent in case of Reτ ≈ 1000.
An observation that is crucial is the Trettel–Larsson-transformed (Trettel and Larsson, 2016) mean velocity
profile for rough wall in Figure 4.10f. The shift in transformed mean velocity profile of the rough wall in com-
parison to the smooth wall is greater in comparison to the untransformed profile and other compressibility
transformations. The Volpiani-transformation (Volpiani et al., 2020) has once again proven to be the most
accurate in collapsing the smooth wall compressible minimal-span channel mean velocity profile onto the
nearly incompressible profile.

The untransformed (∆U+) and compressibility transformed mean velocity shift (∆U+
I

) as a function of
k+

s∗ is presented in Figure 4.11a to Figure 4.11d. The equivalent roughness height using the roughness length
scale ks∗ is calculated as k+

s∗ = 1.1k+
∗ . This length scale has been used owing to the prior success in case of

3D cube roughness. The factor ks∗/k∗ is lower compared to the 3D cube roughness element. Included in
Figure 4.11d is the ∆U+ data from DNS of fully resolved 3D cube roughness. The added drag in case of bar
roughness is a lot lower in comparison to the cube roughness element. A good agreement is observed in
Figure 4.11d for k+ ≈ 80 case with the theoretical asymptotic fully rough profile (dashed lines) and the in-
compressible sand grain roughness results from Nikuradse et al. (1950). The k+ ≈ 40 case does not collapse
on the fully rough profile indicating that it is in the transitionally rough regime. This is in stark contrast to
the 3D roughness case where both k+ ≈ 40 and k+ ≈ 80 cases collapsed on the theoretical fully rough profile.
This indicates that the drag producing capabilities of bar roughness element is much lower in comparison
to the cube roughness element going by the equivalent sand grain roughness definition. ks /k ≈ 1.9 for cube
roughness is higher in comparison to ks /k ≈ 1.1 in case of bar roughness element. Yet another peculiar re-
sult observed is in Figure 4.11c. The Trettel–Larsson-transformed (Trettel and Larsson, 2016) mean velocity
shift is much higher in comparison to the others. This could be due to the disparate mechanism of turbu-
lence observed in minimal-span channels of supersonic flows compared to the concepts used to build the
transformation itself.
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Figure 4.11: Mean streamwise velocity shift ∆U+ (a) untransformed (b) van Driest-transformed (Van Driest,
1951) (c) Trettel–Larsson-transformed (Trettel and Larsson, 2016) (d) Volpiani-transformed (Volpiani et al.,
2020) at Mb = 2 (solid triangles) for 2D bar roughness in minimal-span channel with roughness Reynolds
numbers k+ ≈ 40,80 and sand grain roughness Reynolds number k+

s∗ = 1.1k+
∗ . DNS data of fully resolved, full

channel rough wall ∆U+ of 3D cube roughness (solid circles) at k+ ≈ 40 and k+ ≈ 80 is also included. Dashed
line is the theoretical asymptotic relation between equivalent sand grain roughness and Hama roughness
function given by ∆U+ = (1/κ)log (k+

s )+B −BS . The incompressible roughness data from Nikuradse et al.
(1950) (plus symbols) is also shown.
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Figure 4.12: Density scaled turbulent (a,b) streamwise (c,d) wall-normal (e,f) spanwise and (g,h) shear stress
profile of smooth wall (circles) and 2D resolved bar roughness (diamonds) in minimal-span channel at Reτ ≈
500, k+ ≈ 40 (left column of images) and Reτ ≈ 1000, k+ ≈ 80 (right column of images). Incompressible data
from Moser et al. (1999) (dot-dashed lines with × symbols) also included.

The streamwise turbulent stress profiles scaled by density for Reτ ≈ 500 is presented in Figure 4.12a. The
data from Moser et al. (1999) is also included to facilitate comparison. The smooth wall minimal-span chan-
nel result (circles) is superposed with rough wall (diamonds) minimal-span channel data. The first obser-
vation is that the streamwise density-scaled turbulent stress profile for smooth wall minimal-span channel
flow shows an excellent agreement with the data from Moser et al. (1999) up to y+ ≈ 10. Beyond this, there
is some over-prediction of the turbulent stress that extends till y+ ≈ 100. However, it has to be noted that
this over-prediction was already observed to exist in the case of 3D cube roughness also in Figure 4.6a and
Figure 4.6b. The agreement of compressible minimal-span channel data with full channel has already been
shown to exist in Figure 3.9g. An added reason could be the size of the domain which is slightly less than
1000ν/uτ for the minimal-span channel test case at Reτ ≈ 500. This local increase in streamwise turbulent
stress has also been reported in the case of incompressible minimal-span channel simulations of streamwise
domain lenth less than 1000ν/uτ (Chin et al., 2010, Toh and Itano, 2005). The turbulent stress profile in the
outer layer shows reasonable agreement with the data from Moser et al. (1999). The key take back from this is
the outer layer similarity observed for the rough wall data. The rough wall streamwise turbulent stress profile
is damped almost completely up to y+ ≈ 20. There is a steep increase till the roughness crest at y+ ≈ 40 and a
good agreement with the smooth wall data beyond y+ ≈ 100. In case of Reτ ≈ 1000 presented in Figure 4.12b,
the smooth wall profile is in closer agreement with the data of Moser et al. (1999). The rough wall profile trend
is similar to that of Reτ ≈ 500. The extent of outer layer similarity observed is sufficient to consider the results
from minimal-span channel as accurate.

The density scaled wall-normal turbulent stress profiles for smooth and rough wall minimal-span channel
at Reτ ≈ 500 are depicted in Figure 4.12c. The smooth wall profile shows a much better agreement with the
data from Moser et al. (1999). In case of rough wall, there is a local peak in the stress observed at y+ ≈ 25
followed by damping upto the roughness crest. Good outer layer similarity of the profile for rough wall is
observed with the smooth wall profile. It should be noted that the wall-normal turbulent stress profile goes
to zero at the channel centerline due to the open channel configuration and the nature of boundary condition
applied to wall-normal velocity at the channel mid-plane. The smooth wall profile at Reτ ≈ 1000 shows slight
deviations from the profile by Moser et al. (1999) in the outer layer as seen in Figure 4.12d. In case of the
rough wall profile, the magnitude of the first peak in stress is almost the same as the second one beyond the
roughness crest. This indicates a strong sense of recirculation in the wall-normal direction. The outer layer
similarity is weakly upheld. Just as in the case of Reτ ≈ 500, the wall normal turbulent stress is damped at the
roughness crest and increases beyond it.

In case of smooth wall, the density scaled spanwise turbulent stress profile at Reτ ≈ 500 in Figure 4.12e, the
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magnitude is underpredicted for most of the channel when compared with the data from Moser et al. (1999).
The spanwise stress profile for rough wall shows an agreement with smooth wall profile in the outer layer.
The trends for minimal-span channel smooth and rough wall streamwise turbulent profiles at Reτ ≈ 1000
(Figure 4.12f) are similar to the case at Reτ ≈ 500. The collapse of smooth and rough wall profiles takes place
closer to the channel centerline. Finally, the density scaled Reynolds shear stress profiles of minimal-span
channel smooth wall show excellent agreement with the nearly incompressible profile of Moser et al. (1999)
at both Reτ ≈ 500 (Figure 4.12g) and Reτ ≈ 1000 (Figure 4.12h). The collapse of rough wall profile in the outer
layer is better at Reτ ≈ 500 compared to Reτ ≈ 1000.
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Figure 4.13: Minimal-span channel (a,b) mean temperature profile scaled by wall temperature T w and (c,d)
mean density scaled by density at the wall ρw for smooth wall (solid lines, circles) and rough wall (solid lines,
diamonds) with roughness height k/h = 0.08 for 2D bar roughness at Mb = 2. Left column of images represent
flow case at Reτ ≈ 500 and right column of images represent flow case at Reτ ≈ 1000.

The mean temperature profile scaled by Tw of smooth and rough wall minimal-span channel cases at
Reτ ≈ 500 is presented in Figure 4.13a and at Reτ ≈ 1000 in Figure 4.13b. It is observed that the peak in
mean temperature of the rough wall case is shifted to just above the roughness crest. The trends in the mean
temperature profile is similar for Reτ ≈ 500 and Reτ ≈ 1000 cases for smooth and rough walls in minimal-span
channel. It is also similar to the 3D cube roughness of full channel. In case of mean density profile scaled by
density at the wall in Figure 4.13c and Figure 4.13d, the point of minimum density is shifted to just above the
roughness crest. This is followed by an increase in the mean density as the channel centerline is approached.
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Figure 4.14: Minimal-span channel (a,b) mean temperature fluctuations profile scaled by T 2
τ and (c,d) mean

density fluctuations scaled by density at the wall ρw for smooth wall (solid lines, circles) and rough wall (solid
lines, diamonds) with roughness height k/h = 0.08 for 2D bar roughness at Mb = 2. Left column of images
represent flow case at Reτ ≈ 500 and right column of images represent flow case at Reτ ≈ 1000.
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Figure 4.15: Staton number and skin-friction coefficient augmentation using (2.69). The solid lines indicate
α = 0.4,1.3 and the dashed lines indicate the case when St/Sts = C f /C fs . The results are indicated as solid
triangles.

The temperature fluctuations for Mach 2 smooth and rough wall minimal-span channel at Reτ ≈ 500
scaled by Tτ is presented in Figure 4.14a. The magnitude of the peak of temperature fluctuations as well as
its profile for the Mach 2 smooth wall case using minimal-span channel (Figure 4.14a) is comparable to that
of full-channel smooth wall at Mach 2 (Figure 4.8a). However, the peak of temperature fluctuations for the
bar roughness at Reτ ≈ 500 is slightly lower compared to its smooth wall counterpart. This is in contrast
to the Mach 2 cube roughness case at Reτ ≈ 500 where it was comparable to its smooth wall counterpart.
In case of Reτ ≈ 1000, the peak of the mean temperature fluctuations is greater for the rough wall when
compared to the smooth wall. The profiles for smooth and rough wall mean temperature fluctuations at
Reτ ≈ 500 and Reτ ≈ 1000 for bar roughness in minimal-span channel resemble that of the cube roughness
in full channel. The density fluctuations scaled by ρw is reported in Figure 4.14c. The plateau of density
fluctuations in the log-law region is observed in case of Mach 2 smooth wall at Reτ ≈ 500 (Figure 4.14c).
However, the peak of density fluctuations is almost 1.5 times in the case of bar roughness counterpart. The
trends are similar for Reτ ≈ 1000 smooth and rough wall cases as shown in Figure 4.14d. The relation between
heat transfer and skin-friction coefficient for 2D bar roughness is presented in Figure 4.15. A first observation
is that the increase in heat transfer of 2D bar roughness at k+ ≈ 40 compared to its smooth wall counterpart is
comparable to the increase in drag of the rough wall compared to its smooth wall counterpart. Additionally,
the heat transfer and drag increase is represented by the lower bound in the empirical relation (2.69) proposed
by Hill et al. (1980).

In addition to averaged profiles of velocity, density and temperature, mean flow fields give a good picture
of the dynamics of the flow. The contour plots of mean streamwise velocity ũ+ along the x − y plane for a
smooth wall and a wall with 2D bar roughness is shown in Figure 4.16a and Figure 4.16b respectively. Included
in the plot is the streamlines. In case of the rough wall, a few interesting things are observed. Firstly, the gaps
in between the roughness elements have a moderately strong recirculation indicated by the negative value
of the mean streamwise velocity and the streamlines in Figure 4.16b. It appears that the direction of rotation
of these vortices is clockwise. These recirculation zones or vortices are stronger close to the upstream face
of the roughness elements. The mean temperature contours on the x − y plane are shown in Figure 4.16g
for smooth wall and in Figure 4.16d for 2D roughness. The smooth wall case displays a higher temperature
close to the wall. This is due to aerodynamic heating where dissipation of kinetic energy of the flow takes
place close to the wall. The mean temperature decreases towards the channel centerline. However, in case
of 2D roughness, the region of high mean temperature extends beyond a thin region close to the wall due to
the roughness elements. The presence of the roughness elements increases the aerodynamic heating as is
observed in Figure 4.16d.

The x − z mean flow field is considered next. The profile is extracted at a wall normal height of y+ ≈ 12
which lies in the buffer layer. This is also the wall normal height at which turbulence production is maximum
indicated by equal contribution of viscous and Reynolds shear stresses. A quick look at Figure 4.16e indicates
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Figure 4.16: Mean flow fields of ũ+ along (a,b) x − y plane at spanwise distance z/h = 0.375 and (c,d) x − z

plane at a given wall normal distance of y+ ≈ 12 of minimal-span channel (a,c) smooth wall and (b,d) 2D bar
roughness at k+ ≈ 40, Reτ ≈ 500, Mb = 2. Mean flow fields of T /Tw along (e,f) x−y plane at spanwise distance
z/h = 0.375 and (g,h) x − z plane at a given wall normal distance of y+ ≈ 12 of minimal-span channel (e,g)
smooth wall and (f,h) 2D bar roughness at k+ ≈ 40, Reτ ≈ 500, Mb = 2.
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(a) (b)

Figure 4.17: Mean flow fields of (a) ũ+ and (b) T /T w along x − z plane at wall normal height y+ ≈ 20 of
minimal-span channel 2D bar roughness at k+ ≈ 40, Reτ ≈ 500, Mb = 2.

the presence of elongated structures of high and low speeds. In general, the flow is expected to organize
itself into recognizable patterns. These include presence of low speed streaks of length L+

x ≈ 1000 and spaced
L+

z ≈ 100 apart (Pope, 2001). In Figure 4.16e, there is a presence of these high and low speed streaks. However,
they are not organized as expected. This is an expected consequence of the minimal span channel. The
channel streamwise length is L+

x ≈ 840 which is smaller than the minimum length of the low speed streaks.
The reduced domain is unable to fully capture these. The mean flow field of streamwise velocity for 2D bar
roughness as shown in Figure 4.16f. It is easy to observe that the elongated high speed streaks that were
present in case of the smooth wall have been broken down. The structures are no longer in the form of
streaks. The roughness elements break down the high and low speed streaks in the buffer layer. This disrupts
the near wall turbulence production cycle and contributes towards the disparity in properties. The mean
temperature contour plot of the x − z plane at the same wall normal height, for the smooth wall is displayed
in Figure 4.16g. The plane is mostly dominated by high temperature regions with pockets of low temperature
regions mostly observed close to the spanwise boundaries. In case of the 2D roughness, Figure 4.16h also
shows a domination of high temperature regions in the plane. However, it is easy to observe the increased
mean temperature of the high temperature region and much smaller pockets of low temperature regions.
This directly supports the profile on the x − y plane.

To get a much better understanding of the flow field, the x − z mean flow field in case of 2D roughness at
y+ ≈ 20 is presented for ũ+ and T /T w in Figure 4.17a and Figure 4.17a respectively. The 2D velocity stream-
lines are included in Figure 4.17a. The flow fields suggests that the region between the first and second 2D

bars from the left, the flow reversal is weak (it is directed along the positive streawise direction). However, the
flow reversal begins immediately after the second roughness element and continues throughout. Recirculat-
ing vortices are observed in the gaps in all except the last one. The direction of the streamlines suggest that
there is good mixing of the flow between the roughness elements. All the gaps are the same in a statistical
sense. The temperature field in Figure 4.17b suggests that the gaps hold fluid at a high temperature.

4.2. Modeled roughness
The results of modeled roughness using the parametric forcing approach by Busse and Sandham (2012) is
presented in this section. The auxiliary parameter η(H) is varied from η(H) = 0.01−0.08 and the simulations
are performed at Reτ ≈ 500. Both Mb = 2 and Mb = 4 are considered to study the effects of varying Mach
number on the effectiveness of the model. The mean velocity profile untransformed, van Driest-transformed
(Van Driest, 1951), Trettel–Larsson-transformed (Trettel and Larsson, 2016) and Volpiani-transformed (Volpi-
ani et al., 2020) at Mb = 2 is presented in Figure 4.18a, Figure 4.18c, Figure 4.18e and Figure 4.18g respectively.
Similarly, the results at Mb = 4 are presented in Figure 4.18b, Figure 4.18d, Figure 4.18f and Figure 4.18h.
The concept of virtual origin is not used in case of modeled roughness. This is because the effect of rough-
ness is distributed in case of the parametric forcing approach as opposed to localised in case of the resolved
roughness. The variations in properties is not as abrupt as in the case of resolved roughness. For this reason,
the logarithmic region of the mean velocity profile for all the roughness cases is shifted downward perfectly
parallel to the logarithmic region of the smooth wall mean velocity profile.

It is observed that with an increase in η(H), the downward velocity shift increases starting from η(H) =
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〈ũ
V
〉+

0

5

10

15

20

25

100 101 102 103

(h)

y+
V

〈ũ
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Figure 4.18: Mean velocity profile (a,b) untransformed (c,d) van Driest-transformed (Van Driest, 1951) (e,f)
Trettel–Larsson-transformed (Trettel and Larsson, 2016) (g,h) Volpiani-transformed (Volpiani et al., 2020) at
Reτ ≈ 500 and Mb = 2 (left column of images), Mb = 4 (right column of images) for modeled roughness using
the approach by Busse and Sandham (2012). The roughness height parameter is varied through an auxiliary
parameter η(H) as η(H) = 0.01 (diamonds), η(H) = 0.02 (upper-pointing triangles), η(H) = 0.03 (squares),
η(H) = 0.04 (downward pointing triangles), η(H) = 0.05 (× symbols), η(H) = 0.06 (left-pointing triangles),
η(H) = 0.07 (star symbols), η(H) = 0.08 (filled circles).Included is the data from 3D cube roughness at Reτ ≈
500 (right pointing triangles) and Reτ ≈ 1000 (+ symbols) and and minimal-span channel 2D bar roughness
(∗ symbols) at k/h = 0.08. The dashed lines indicate the incompressible law of the wall relations: 〈ũ+〉 = y+

and 〈ũ+〉 = (1/κ)log (y+)+B .
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Figure 4.19: Untransformed Mean velocity defect profiles at Reτ ≈ 500, (a) Mb = 2 and (b) Mb = 4 of smooth
wall and modeled roughness. Defect profiles of 3D resolved roughness at k+ ≈ 40 (right pointing triangles)
and k+ ≈ 80 (+ symbols) also included. The legend for modeled roughness is the same as in Figure 4.18a to
Figure 4.18h
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0.01 toη(H) = 0.08. This reinforces the explanation provided for the definition of the roughness height param-
eter H as analogous to the roughness height k. Included in these plots are the results from 3D cube roughness
using full channel at k+ ≈ 40 (right pointing triangles), k+ ≈ 80 (+ symbols) at Mb = 2 and Mb = 4. In addition,
the results from 2D bar roughness (∗ symbols) using minimal-span channel at k+ ≈ 40 performed at Mb = 2
is included. The smooth wall results (circles) show a good agreement with the nearly incompressible law of
the wall relations (dashed lines) for the Volpiani-transformed (Volpiani et al., 2020) mean velocity profile in
Figure 4.18g at Mb = 2 and in Figure 4.18h at Mb = 4. Since the smooth wall mean velocity profile transformed
using the Volpiani transformation (Volpiani et al., 2020) is the most accurate in comparison to the law of the
wall relations, the velocity shift ∆U+ will be determined using this profile. It is very encouraging to notice that
the Volpiani-transformed (Volpiani et al., 2020) mean velocity profile for the Mach 2 cube roughness case at
Reτ ≈ 500 can be represented by the modeled roughness case K4M2 with η(H) = 0.04 (Figure 4.18g). Similarly,
the mean velocity profile of cube roughness at Reτ ≈ 1000 can also be represented with the case K6M2. The
minimal-span channel mean velocity profile of bar roughness at Reτ ≈ 500 and Reτ ≈ 1000 is also seen to
show agreement with the profiles of case K3M2 and K3M5 respectively. These results display the accuracy
in using a modeled approach to represent the effects of roughness in supersonic flows. In case of Mb = 4, it
is observed that the mean velocity profile of cube roughness at Reτ ≈ 500 shows agreement with the mod-
eled roughness mean velocity profile of K4M4 and the mean velocity profile of cube roughness at Reτ ≈ 1000
shows agreement with K6M4. (Figure 4.18h).

The mean velocity defect profile scaled by uτ for the modeled roughness cases is presented in Figure 4.19a
at Mb = 2 and Figure 4.19b at Mb = 4. Superposed on these profiles, is the result from Mach 2 cube roughness
flow cases at Reτ ≈ 500 and Reτ ≈ 1000 in Figure 4.19a and Mach 4 case at Reτ ≈ 500 and Reτ ≈ 1000 in
Figure 4.19b. It is observed that the mean velocity defect profiles of modeled roughness cases K1M2 through
K8M2 collapse on each other and on the smooth wall profile. The mean velocity defect profiles of Mach 2 and
Mach 4 cube roughness at Reτ ≈ 500,1000 are also in agreement with the profiles of the modeled roughness
flow cases. The modeled roughness is capable of displaying outer layer similarity when the roughness height
parameter H is increased. This lends support towards the capability of the model to study resolved roughness
mean velocity profiles. However, in Figure 4.19b, it is observed that the collapse of mean velocity defect
profile of cube roughness at Reτ ≈ 500 is not perfect on the profiles of the modeled roughness flow cases. The
Reτ ≈ 1000 cube roughness profile at Mach 4 also shows slight deviation from the rest of the profile computed
using modeled roughness.
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Figure 4.20: Roughness function ∆U+
I

for untransformed (∗ symbols), van Driest-transformed (Van Dri-
est, 1951) (upper pointing triangles), Trettel–Larsson transformed (Trettel and Larsson, 2016) (circles) and
Volpiani-transformed (Volpiani et al., 2020) as a function of H+/H+

nor m at (a) Mb = 2 and (b) Mb = 4 where
H+

nor m = 1.31. Dotted lines indicate ∆U+
I

(H+/H+
nor m) = 5.2log (H+/H+

nor m)−3 (Busse and Sandham, 2012)

The process of representing the velocity shift as a function of equivalent sand grain roughness height in
case of modeled roughness is not so straightforward. The first step is to estimate H+

nor m which will be used
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to scale the roughness height factor H+. This is done by choosing a factor which ensures that ∆U+
V

from the
modeled roughness cases can be fit on curve given by the equation

∆U+
I (H+/H+

nor m) = 5.2log (H+/H+
nor m)−3 (4.5)

Busse and Sandham (2012) performed DNS simulations by varying α, F (α, H) and H in (3.4) for the modeled
roughness and estimated the velocity shifts in all cases. They showed that when scaled by H+

nor m , all the
data fit on the curve given by (4.5). The factor turns out to be H+

nor m = 1.31 and will be used throughout the
reminder of the thesis. It should be noted that H+

nor m is calculated by considering the Volpiani-transformed
(Volpiani et al., 2020) mean velocity shift ∆U+

V
owing to its accuracy in transforming the compressible mean

velocity to match the incompressible law of the wall relations.
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Figure 4.21: Mean velocity shift as a function of k+
s∗ for 3D cube roughness (circles) and as a function

of (H+
I

/H+
nor m)p where p = 2.23 for modeled roughness using parametric forcing approach by Busse and

Sandham (2012) (squares). The profiles (a) untransformed (b) van Driest-transformed (Van Driest, 1951)
(c) Trettel–Larsson-transformed (Trettel and Larsson, 2016) and (d) Volpiani-transformed (Volpiani et al.,
2020). The solid symbols represent the flow case at Mb = 2 and the hollow symbols represent the flow case
at Mb = 4 in case of modeled roughness. The dashed line is the theoretical asymptotic fully rough relation
∆U+ = (1/κ)log (k+

s )+B −BS

The velocity shift as a function of scaled roughness height parameter H+ using modeled roughness is pre-
sented for the case of Reτ ≈ 500, Mb = 2 in Figure 4.20a and Mb = 4 in Figure 4.20b. By using an H+

nor m = 1.31,
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it is clearly observed that there is a good match between ∆U+
V

and the theoretical profile. The mean veloc-
ity shift untransformed, van Direst-transformed (Van Driest, 1951), Trettel–Larsson-transformed (Trettel and
Larsson, 2016) in Figure 4.20a are not very accurate. In case of modeled roughness at Mb = 4, the deviation
from the theoretical profile of the untransformed and van Driest-transformed (Van Driest, 1951) mean ve-
locity shifts (Figure 4.20b) are a lot more when compared to their respective deviations from the theoretical
profile of modeled roughness at Mb = 2. This highlights the effect of compressibility, accentuated with the
increase in Mach number and the importance of the Volpiani-transformation (Volpiani et al., 2020) in ac-
counting for these compressibility effects. It also displays the receding power of van Driest-transformation
(Van Driest, 1951) in accounting for compressibility effects with increasing Mach numbers.

There exists a relation between the scaled roughness height parameter and equivalent sand grain rough-
ness which will be discussed. The fully rough asymptotic relation in terms of scaled roughness height param-
eter is given by (Busse and Sandham, 2012)

∆U+
I (H+

I /H+
nor m) =

1

κ
log ((H+

I /H+
nor m)p )+B −BS (4.6)

where p is an exponent that is used to relate the scaled roughness height parameter with the equivalent sand
grain roughness height. By using the Volpiani-transformed (Volpiani et al., 2020) mean velocity shift as a
function of scaled roughness height parameter, it is estimated that p ≈ 2.23. Therefore, the relation

k+
sV = (H+

V /H+
nor m)2.23 (4.7)

holds. The exponent p ≈ 2.23 is very close to that obtained by Busse and Sandham (2012) (p ≈ 2.08). The result
of using this exponent to represent the relation between the scaled roughness height parameter and velocity
shift for untransformed and compressibility transformed mean velocity profiles is presented in Figure 4.21a
to Figure 4.21d. The result of mean velocity shift as a function of k+

s∗ for 3D resolved cube roughness in full
channel and 2D bar roughness in minimal-span channel is also included for the purpose of comparison. It
should be noted that k+

s∗ is used instead of k+
sV

simply because of its higher accuracy. On the contrary, it
is not used for the case of modeled roughness. The modeled roughness technique represents the effect of
roughness uniformly through the domain. There is no localised roughness effect as is observed in the case of
resolved roughness where property variations from roughness trough to crest need to be accounted for.

Case Mb (H+
V

/H+
nor m)p

∆U+
V

Geometry Domain Mb k+
s∗ ∆U+

V

K4M2 2 69.10 6.30 Cube Full-span 2 68.03 6.53
K6M2 2 151.71 8.64 Cube Full-span 2 133.08 8.66
K3M2 2 37.19 4.00 Bar Minimal-span 2 39.62 3.78
K5M2 2 110.45 7.61 Bar Minimal-span 2 86.80 7.49
K4M4 4 55.77 5.87 Cube Full-Span 4 60.21 5.38
K4M6 4 114.42 8.46 Cube Full-Span 4 93.29 8.06

Table 4.1: Comparison between real roughness velocity shift as a function of k+
s∗ and modeled roughness ve-

locity shift as a function of (H+
V

/H+
nor m)p where H+

nor m = 1.31 and p ≈ 2.23. The flow cases are fully described
in Table 3.1

The untransformed mean velocity shift as shown in Figure 4.21a does not perform very well for both
Mb = 2 and Mb = 4 cases for modeled roughness. There are large deviations from the asymptotic fully rough
profile. This is due to the compressibility effects that necessitate compressibility transformations. The most
celebrated van Driest transformation (Van Driest, 1951) is applied and the mean velocity shift is recorded in
Figure 4.21b. While there is an improvement in the accuracy of the results obtained, it is not sufficient to be
used for further study. Figure 4.21c represents the Trettel–Larsson-transformed (Trettel and Larsson, 2016)
mean velocity shift. There is a marked improvement compared to the previous compressibility transforma-
tion. A comparison between the mean velocity shift of resolved roughness and modeled roughness using
Volpiani-transformation ∆U+

V
is offered in Table 4.1. The roughness scaled k∗ is used for resolved rough-

ness and ks is used for modeled roughness. There is a good match obtained between the velocity shifts
and roughness length scales of resolved and modeled roughness. The small discrepancies between k+

s∗ and
(H+

V
/H+

nor m)p is due to the fixed number of η(H) that was tested at specific values during the simulations
of modeled roughness. A better choice of η(H) can provide a closer match between the roughness length
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scales. It is not possible to pick the exact value of η(H) to match k∗ a priori. In essence, the equivalent rough-
ness height cannot be recovered a priori from the model parameters. This is an accepted shortcoming of the
model. However, the benefit of the model is seen only when used in conjunction with fully resolved DNS.
With a tuned model and one single DNS case of a given geometry, it is possible to estimate ks . This reduces
the cost of performing fully resolved DNS by a little less than half since results for at least two roughness
Reynolds numbers are required to estimate ks .

The streamwise density scaled turbulent normal stress profile for Mb = 2 and Mb = 4 is presented in Fig-
ure 4.22a and Figure 4.22b respectively. With an increase in η(H), there is a decrease in the peak value of
the stress. Additionally, the peak is shifted towards the centerline. This was also observed for the case of 3D

cube roughness and 2D bar roughness profiles that are superposed on the results of the modeled roughness
in Figure 4.22a. All the stress profiles collapse beyond the roughness sublayer indicating outer layer similar-
ity. Since the effect of the roughness is modeled uniformly, the roughness sublayer profile from the modeled
roughness cases are not supposed to match the profile from resolved roughness cases that show sharp vari-
ations between the base and the crest of the roughness elements. The 3D cube roughness in full channel
profile at k+ ≈ 80 (+ symbols) and minimal-span channel 2D bar roughness at k+ ≈ 80 profiles (star symbols)
differ from the modeled roughness profiles since they are at Reτ ≈ 1000. A similar trend is noticed in case of
Mb = 4 profiles in Figure 4.22b. The peak stress of the modeled roughness case at the same η(H) is higher in
case of Mb = 4 compared to Mb = 2. Nonetheless, outer layer similarity is achieved.

The wall-normal turbulent stress profile is presented in Figure 4.22c for Mb = 2 and Figure 4.22d for
Mb = 4. The first observation is that the wall normal stress goes to zero as the wall is approached. This is
due to the boundary condition that is impermeable to the flow at the wall. Hence, the wall normal velocity
and its associated fluctuations are zero. Additionally, for the modeled roughness case, the same behaviour is
observed as the channel centerline is approached. This is because of the open channel that is used for mod-
eled roughness cases. The wall impermeable boundary condition is also set on the channel mid plane that
brings the wall normal velocity and its associated fluctuations to zero. Good outer layer similarity is observed
with the peak stress value progressively decreasing and shifting slightly towards the channel centerline with
an increasing η(H). However, this decrease in peak stress value is not as severe as was in the case of stream-
wise turbulent stress. In Figure 4.22d, the wall normal turbulent stress profile for the Mach 4 cube roughness
at Reτ ≈ 500 does not collapse on the other profiles in the outer layer. This is because the modeled roughness
cases are performed on open channels as opposed to the cube roughness simulations that are done on full
channels.

The spanwise turbulent stress profiles show a similar trend and are depicted in Figure 4.22e and Fig-
ure 4.22f. The modeled roughness profiles collapse on each other in the outer layer for both Mach 2 and
Mach 4 cases confirming outer layer similarity. When compared with Mach 2 cube roughness (right trian-
gles) at Reτ ≈ 500, the match with the modeled roughness profiles begin to appear only beyond y+ ≈ 200 as
opposed to y+ ≈ 100−150 for streamwise and wall-normal turbulent stresses. In case of Mach 4, the collapse
of the cube roughness profile with profiles from modeled roughness is not observed (Figure 4.22f). The inner
layer profiles for the modeled roughness flow cases progress a lot differently as compared to the fully resolved
roughness flow cases. There is no change in magnitude of the stress peaks for Mb = 4 flow cases compared
to Mb = 2 flow cases. The Reynolds shear stress profiles for the modeled roughness flow cases show perfect
collapse for all values of η(H) beyond the roughness sublayer. In addition, the resolved roughness flow cases
for 3D and 2D roughness, at Mb = 2 and Mb = 4 show perfect agreement with the modeled roughness profiles
in the outer layer. This reinforces the strength of density scaling for accounting for compressible effects in
case of Reynolds shear stress and the success of the outer layer similarity.

The mean temperature profiles are presented next. The mean temperature profile for modeled roughness
superposed with the profiles of resolved roughness is presented in Figure 4.23a and Figure 4.23b. With an
increase in η(H), the temperature gradient beyond 2H+ becomes steeper. The mean temperature peak is
shifted to just beyond the roughness height parameter. The resolved roughness profiles for Mach 2 cube
roughness and minimal-span channel bar roughness at Reτ ≈ 500 follow the K7M2 profile in Figure 4.23a.
The Mach 2 cube roughness and minimal-span channel bar roughness profiles at k+ ≈ 80 are different from
the modeled roughness cases since it is at Reτ ≈ 1000. However, it is observed that they collapse on each other.
In case of Mach 4, the cube roughness case at Reτ ≈ 500 follows the case K6M4 beyond the roughness crest
k+ ≈ 40. The general trend seems to be captured when the roughness height parameter is increased. The
mean temperature peak shifts to a wall normal height that coincides with the roughness height parameter
in the modeled roughness case just as it shifts to the roughness crest in case of resolved roughness. The
Mb = 4 profiles are a lot steeper, with a higher peak values compared to the Mb = 2 flow case at the same
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Figure 4.22: Density scaled turbulent (a,b) streamwise (c,d) wall-normal (e,f) spanwise stresses and (g,h)
shear stress profile of modeled roughness at Mb = 2 (left column of images) and Mb = 4 (right column of
images). The simulations are run at Reτ ≈ 500. Included is the DNS data of 3D resolved roughness at k+ ≈ 40
(right pointing triangles, k+ ≈ 80 (+ symbols) and and minimal-span channel 2D bar resolved roughness
using minimal-span channel at k+ ≈ 40 (∗ symbols). The legend for modeled roughness is the same as in
Figure 4.18a to Figure 4.18h

η(H). The mean density profiles in Figure 4.24c and Figure 4.24d show an inverted trend compared to the
mean temperature profiles. The minimum density keeps reducing with an increase in the roughness height
parameter for modeled roughness. Due to strong compressibility effects, the mean density variation is more
in case of Mb = 4 compared to Mb = 2. This results in a steeper mean density gradient and much greater
variation across the channel.

The temperature fluctuations scaled by T 2
τ are presented in Figure 4.24a for Mb = 2 case and in Fig-

ure 4.24b for Mb = 4 case. With an increase in η(H), the temperature fluctuation peak increases and is shifted
just above 2H+. On the other hand, the density fluctuations profile presents some interesting results. The
profile at Mb = 2 is shown in Figure 4.24c for Mb = 2. It is observed that the mean density fluctuations are al-
most negligible. This is important since it forms the basis of the Morkovin hypothesis. A quick look at Mb = 4
case in Figure 4.24d suggests something different. The magnitude of density fluctuations no longer become
negligible and increases with increasing roughness height parameter. It is almost 1.0 for a roughness height
parameter of 2H = 0.07. This indicates that the limit of applicability of the Morkovin hypothesis is reached.
One consequence of this is the poor performance of the van Driest transformation (Van Driest, 1951) since it
is based on the Morkovin hypothesis. Indeed, Figure 4.18d shows that the van driest-trasformed (Van Driest,
1951) smooth wall mean velocity profile in the log-law region shows a large mismatch with the incompress-
ible law of the wall relation.

The Stanton number skin-friction coefficient augmentation for modeled roughness (squares) is presented
in Figure 4.25. The results from Mb = 2 (solid symbols) and Mb = 4 (hollow symbols) are included along
with the results from resolved roughness of 3D cubes (circles) at Mb = 2 and Mb = 4 and 2D bar roughness
(triangles) at Mb = 2. The empirical relation from (2.69) is shown with α = 0.4,1.3. The modeled roughness
results for η(H) = 0.01,0.02,0.03 at Mb = 2 and Mb = 4 are within the range given by the empirical relation
(2.69). On the other hand, the range is unable to include roughness results at higher k+. The relative increase
in skin friction compared to heat transfer is greater in case of Mb = 2 and Mb = 4. The model is able to predict
the drag increase accurately but the prediction of heat transfer increase is not as accurate.

The contours of 〈ũ〉+ on an x− y plane for modeled roughness case at Mach 2 is presented in Figure 4.26b
to Figure 4.26i. The smooth wall contour plot is shown in Figure 4.26a for the purpose of comparison. It is
observed that there is a retardation of the flow as the value of η(H) is increased from η(H) = 0.01 to η(H) =
0.08. The effect of roughness is seen to increase with η(H). It is also noted that this effect that is modeled, is
uniformly distributed close to the wall. A better idea of the roughness effect can be gathered from Figure 4.27b
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Figure 4.23: (a,b) Mean temperature profile scaled by wall temperature Tw (c,d) and mean density scaled by
density at the wall ρw for modeled roughness at (a,c) Mb = 2 smooth wall and (b,d) Mb = 4. Included is the
data from 3D cube roughness at Reτ ≈ 500 (right pointing triangles) and Reτ ≈ 1000 (+ symbols) and and
minimal-span channel 2D bar roughness (∗ symbols) at k/h = 0.08. The legend for modeled roughness is the
same as in Figure 4.18a to Figure 4.18h
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Figure 4.24: (a,b) Mean temperature fluctuations profile scaled by T 2
τ (c,d) and mean density fluctuations

scaled by density at the wall ρw for modeled roughness at (a,c) Mb = 2 and (b,d) Mb = 4. Included is the data
from 3D cube roughness at Reτ ≈ 500 (right pointing triangles) and Reτ ≈ 1000 (+ symbols) and minimal-
span channel 2D bar roughness (∗ symbols) at k/h = 0.08. The legend for modeled roughness is the same as
in Figure 4.18a to Figure 4.18h The legend for modeled roughness is the same as in Figure 4.18a to Figure 4.18h
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Figure 4.25: Staton number and skin-friction coefficient augmentation using (2.69) for modeled roughness
(squares). Mb = 2 data presented as solid symbols and Mb = 4 data presented as hollow symbols. 3D cube
resolved roughness (circles) and 2D bar roughness (triangles) also included. The dashed lines indicate the
case when St/Sts =C f /C fs and the solid lines indicate α= 0.4,1.3 in (2.69).

to Figure 4.27i where the x − z plane mean velocity contours are displayed. The wall normal distance where
the profiles are extracted is located at a height of 12 viscous wall units above the imaginary roughness crest
denoted by η(H). This is done to capture the flow physics in the buffer layer. For example: at η(H) = 0.04, the
value of 2H+ ≈ 19. The profile in this case is extracted at y+ ≈ 19+12 ≈ 31. The smooth wall data presented
in Figure 4.27a shows the presence of the well known coherent structures (high speed and low speed streaks).
As the value of η(H) is increased, it is quickly observed that the high speed streaks are broken down and
eventually disappear as η(H) approaches 0.08. This disruption in near wall cycle is an effect of the modeled
roughness term that is successful in producing the required effect of a roughness element.

The contours of mean temperature on the x−y plane at Mach 2 is presented for modeled roughness cases
η(H) = 0.01−0.08 in Figure 4.28b to Figure 4.28i. The reference sooth wall case is presented in Figure 4.28a.
It is observed that the region close to the wall has a higher mean temperature due to viscous heating. The
temperature progressively decreases towards the channel centerline. In case of modeled roughness cases,
the thickness of the high temperature region close to the wall increases accompanied with an increase in
the temperature within this region. The effect of the roughness work and heat transfer terms are observed
as η(H) is increased. The contour plots on the x − z plane portray a similar trend. There are pockets of
low temperature dispersed in a high temperature field. With an increase in η(H), the magnitude of high
temperature field increases without noticeable changes to the low temperature pockets. This is observed in
Figure 4.29b to Figure 4.29i.
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Figure 4.26: Contour plots of ũ+ along x − y plane of supersonic flow over modeled roughness in an open
channel at Reτ ≈ 500 and Mb = 2 (a) smooth wall (b) η(H) = 0.01 (c) η(H) = 0.02 (d) η(H) = 0.03 (e) η(H) = 0.04
(f) η(H) = 0.05 (g) η(H) = 0.06 (h) η(H) = 0.07 (i) η(H) = 0.08
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Figure 4.27: Contour plots of ũ+ along x − z plane at a wall normal distance y+ ≈ 12 (above 2H+ in case of
roughness cases) of supersonic flow over modeled roughness in an open channel at Reτ ≈ 500 and Mb = 2 (a)
smooth wall (b) η(H) = 0.01 (c) η(H) = 0.02 (d) η(H) = 0.03 (e) η(H) = 0.04 (f) η(H) = 0.05 (g) η(H) = 0.06 (h)
η(H) = 0.07 (i) η(H) = 0.08
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Figure 4.28: Contour plots of T /T w along x − y plane at a spanwise distance z/h = 0.75 of supersonic flow
over modeled roughness in an open channel at Reτ ≈ 500 and Mb = 2 (a) smooth wall (b) η(H) = 0.01 (c)
η(H) = 0.02 (d) η(H) = 0.03 (e) η(H) = 0.04 (f) η(H) = 0.05 (g) η(H) = 0.06 (h) η(H) = 0.07 (i) η(H) = 0.08
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Figure 4.29: Contour plots of T /T w along x − z plane at a wall normal distance y+ ≈ 12 (above 2H+ in case of
roughness cases) of supersonic flow over modeled roughness in an open channel at Reτ ≈ 500 and Mb = 2 (a)
smooth wall (b) η(H) = 0.01 (c) η(H) = 0.02 (d) η(H) = 0.03 (e) η(H) = 0.04 (f) η(H) = 0.05 (g) η(H) = 0.06 (h)
η(H) = 0.07 (i) η(H) = 0.08
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4.3. RANS
The results from RANS with SA model is discussed in this section. The untransformed mean velocity profile
at Mb = 2 for smooth wall (solid lines with squares) and 3D cube roughness using RANS (dashed lines with
squares) is presented in Figure 4.30a for Reτ ≈ 500 and in Figure 4.30b for Reτ ≈ 1000. Included in the plot is
the result from DNS test case of smooth wall (solid line with triangles) channel flow of full channel at Mach 2,
Reτ ≈ 500 and fully resolved cube roughness at Reτ ≈ 500 (dashed line with triangles). It is easy to notice that
rough wall mean velocity profile computed using RANS for Reτ ≈ 500 shows a large deviation from the DNS
profile for untransformed case (Figure 4.30a) . Since the untransformed mean velocity profile at Reτ ≈ 500
for the rough wall case (which corresponds to k+ ≈ 40) is not accurate, the compressibility transformations
will also not yield accurate results. This is observed in the van Driest (Van Driest, 1951) and Trettel–Larsson
Trettel and Larsson (2016) compressibility transformations (Figure 4.30c and Figure 4.30e) for the flow case
at Reτ ≈ 500. On the other hand, the untransformed mean velocity profile computed using RANS for k+ ≈ 80
shows a closer agreement to the DNS result (Figure 4.30b) compared to the case at k+ ≈ 40. Though the
accuracy of untransformed mean velocity profile computed using RANS has improved for Reτ ≈ 1000, it is still
not sufficient to warrant the usage of compressibility transformations. However, this indicates that the mean
velocity profile computed using RANS (in particular the SA model) is more accurate at a higher roughness
Reynolds number k+ (particularly, when it is well into the fully rough regime).

The mean velocity shift computed using RANS for k+ ≈ 40,80 is presented in Figure 4.31a to Figure 4.31d.
Just as in the case of DNS, a k+

sV
= 1.9k+

V
is applied to the RANS results to match the velocity shift with the

theoretical asymptotic fully rough profile. Figure 4.31a shows the untransformed velocity shift as a function
of k+

s . The results obtained from RANS (hollow diamonds) show a large deviation from the DNS results (solid
diamonds). However, the deviation is reduced at a higher k+ (a relative error of ≈ 72% for k+ ≈ 40 as opposed
to ≈ 43% for k+ ≈ 80). Despite an improvement in ∆U+ with higher k+, the relative errors are too high.

The mean temperature profile is presented in Figure 4.32a for the flow case at Reτ ≈ 500 and in Fig-
ure 4.32b for the flow case at Reτ ≈ 500. Both smooth wall (solid lines) and 3D cube roughness (dashed lines)
results computed using RANS (squares) and DNS (triangles) are included. It is observed that there is a good
agreement between the mean temperature profile of smooth wall computed using RANS and the one com-
puted using DNS for both Reτ ≈ 500,1000. However, there are deviations above the roughness crest that is
observed in case of 3D roughness mean temperature profiles. The mean temperature is underpredicted both
in the case of Reτ ≈ 500,100 when using RANS. The mean density profile of smooth wall computed using
RANS shows a good agreement with the mean density profile computed using DNS. However, a slight over-
prediction of mean density in Figure 4.32c and Figure 4.32d is observed in the RANS profiles when compared
to the DNS profile.

The Stanton number and skin-friction augmentation is presented in Figure 4.33. The results from DNS of
fully resolved cube roughness is included as solid circles and the results from RANS SA model is included as
hollow circles. It is observed that the RANS SA model is capable of replicating the general trend of increase in
heat transfer and drag in case of cube roughness. With an increase in k+, a greater increase in drag compared
to increase in heat transfer is observed. However, there are large discrepancies in the actual magnitude of heat
transfer and drag increase. This points to the inability of RANS SA model to replicate the effects of increase in
drag and heat transfer for a cube roughness element.

The mean flow fields of mean velocity and temperature for RANS and DNS 3D cube roughness is pre-
sented to get a better idea of the flow field. A single roughness element is isolated and presented to allow a
more closer study at the near wall properties. The mean velocity computed using DNS for 3D cube roughness
at Mb = 2 and Reτ ≈ 500 is presented in Figure 4.34a along with the RANS contour plot in Figure 4.34b. The
u − v velocity streamlines are also included. The primary observation is the effective retardation of the flow
along the streamwise direction is more in case of DNS when compared to RANS. This was also evident in the
mean velocity profile in wall units presented in Figure 4.30a. The momentum deficit caused by the roughness
element is not computed accurately using RANS. Secondly, the flow field features are very different. The DNS
flow field presents a recirculation zone with its core located upstream of the roughness element. The core is
also roughly at the center of the roughness element in the wall normal direction. However, it is easy to notice
in Figure 4.34b that the albeit the existence of a recirculation zone, its core is located more towards the crest
of the roughness element. Similar flow fields are observed at Reτ ≈ 1000 in Figure 4.34c and Figure 4.34d. An
additional feature in case of Figure 4.34c is the presence of a very small vortex at the base of the roughness el-
ement on the downstream side. Safe to say, this is not captured by RANS. The flow fields along the x−z plane
are also analyzed. Figure 4.34f has u − w streamlines included and is the flow field at Reτ ≈ 500 (k+ ≈ 40)
computed using DNS. There are two counter rotating vortices downstream of the roughness element, typical
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Figure 4.30: Mean velocity profile (a) untransformed (c) van Driest-transformed (Van Driest, 1951) (e) Trettel–
Larsson-transformed Trettel and Larsson (2016) (g) Volpiani-transformed (Volpiani et al., 2020) computed us-
ing RANS (squares) and compared against DNS (triangles) at Reτ ≈ 500, Mb = 2. Solid lines indicate smooth
wall data and dashed lines indicate surface roughness with k/h = 0.08. The mean velocity profile and its as-
sociated compressibility transformations at Reτ ≈ 1000 are given in the second column of figures in (b,d,f,h).

of flow around a cube. This contributes to the drag in addition to the already existing skin-friction drag. The
flow field features are very different in case of Figure 4.34f that is computed using RANS. The two counter
rotating vortices are absent. The flow retardation is less in the vicinity of the cube when compared to the DNS
case as observed by the velocity contours. The results at Reτ ≈ 1000 (k+ ≈ 80) do not show much variation.

The mean temperature contours are discussed next. Figure 4.35a shows the temperature contour plot
along the x − y plane at Reτ ≈ 500. There is a region of high temperature that is located upstream of the
roughness element with a region of maximum mean temperature located just beyond the edge of it. As you
progress away from the roughness element, the mean temperature decreases. The increase in temperature
close to the roughness element is due to the aerodynamic heating. It is more pronounced on the upstream
side of the roughness element compared to the downstream side. A quick look at Figure 4.35b suggests that
the mean temperature variation is a lot more rapid in case of RANS when compared to DNS. The results are
similar for Reτ ≈ 1000. Analyzing the x − z plane mean temperature contour plots captured at a wall normal
height of y+ ≈ 20 gives a lot of insight. The DNS result in Figure 4.35a is considered first. It is observed that
there is a region of high temperature on upstream of the cube. Interestingly, the downstream of the cube
has a lower temperature. This mean temperature difference between the upstream and downstream sides is
small. This region of low temperature coincides with the region of counter rotating vortices. The contours
from RANS in Figure 4.35f is markedly different. The region upstream of the cube has a higher temperature
compared to the region downstream just as in the case of DNS. However, the overall mean temperature in the
region surrounding the cube is not as high compared to the DNS case. The results at Reτ ≈ 1000 (k+ ≈ 80)
case are reviewed. The contour from Figure 4.35h suggest that the upstream mean temperature is close to
the DNS case in Figure 4.35g. However, the downstream mean temperature contours are totally different. In
the wake of the roughness element, the central portion has a higher temperature in RANS when compared to
DNS.

The eddy viscosity νt profile of DNS and RANS SA model scaled by νw for smooth and cube roughness is
presented in Figure 4.36a for Reτ ≈ 500 and in Figure 4.36b for Reτ ≈ 1000. There are discrepancies observed
in the profiles of DNS (solid lines) and RANS (dashed lines). There is a good agreement between the profiles of
DNS and RANS SA model in the viscous sub-layer for the smooth wall. The eddy viscosity tends to zero in this
region as is expected due to the presence of viscous damping in the region close to the wall. However, general
trend observed outside this layer is the over-prediction of eddy viscosity by RANS SA model in comparison to
DNS for both Reτ ≈ 500 and Reτ ≈ 1000. In addition, there is a kink in the eddy viscosity profile of rough wall
observed between y/h = 0 and y/h = 0.1 which is not modeled by the SA turbulence model. This local peak
in eddy viscosity is below the roughness crest (y/h = 0.08). The eddy viscosity further increases beyond the
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Figure 4.31: Mean streamwise velocity shift ∆U+ of different compressibility transformations: (a) untrans-
formed (b) van Driest (c) Trettel and Larsson (d) Volpiani at Mb = 2 computed using RANS (hollow di-
amonds) and DNS (solid diamonds) 3D cube roughness with roughness Reynolds numbers k+ ≈ 40,80
and sand grain roughness Reynolds number k+

s = 1.9k+ and k+
sI

= 1.9k+
I

. Dashed line is the theoreti-
cal asymptotic relation between equivalent sand grain roughness and Hama roughness function given by
∆U+ = (1/κ)log (k+

s )+B −BS . The incompressible roughness data from Nikuradse et al. (1950) (+ symbols) is
also shown. In (b) experimental data of supersonic boundary layer are reported: Goddard Jr (1959) (squares),
Berg (1979) (crosses), Reda et al. (1974) (upward pointing triangles, Latin and Bowersox (2000) (downward
pointing triangles), Ekoto et al. (2008) (left pointing triangles)
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Figure 4.32: (a,b) Mean temperature profile scaled by wall temperature T w (c,d) and mean density scaled by
density at the wall ρw for smooth wall (solid lines) and rough wall (dashed) with roughness height k/h = 0.08
computed using RANS (squares) and DNS (triangles) for 3D cube roughness at (a,c) Reτ ≈ 500 (b,d) Reτ ≈
1000 and Mb = 2.
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Figure 4.33: Staton number and skin-friction coefficient augmentation using (2.69) for fully resolved cube
roughness compared against RANS SA model for k+ ≈ 40,80 at Mb = 2. Solid circles indicate DNS data
and hollow circles indicate data computed using RANS SA model. The dashed lines indicate the case when
St/Sts =C f /C fs and the solid lines indicate α= 0.4,1.3 in (2.69).
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Figure 4.34: Mean flow fields of ũ+ of 3D cube roughness element at (a-d) x − y plane extracted along the
spanwise direction through the center of the channel and (e-h) x − z plane extracted at a wall normal height
of y+ ≈ 20. Left column of images are results from DNS and right column of images are results from RANS.
(a,b,e,f) Reτ ≈ 500 and (c,d,g,h) Reτ ≈ 1000 at Mb = 2.
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Figure 4.35: Mean flow fields of T w /T w of 3D cube roughness element at (a-d) x−y plane extracted along the
spanwise direction through the center of the channel and (e-h) x − z plane extracted at a wall normal height
of y+ ≈ 20. Left column of images are results from DNS and right column of images are results from RANS.
(a,b,e,f) Reτ ≈ 500 and (c,d,g,h) Reτ ≈ 1000 at Mb = 2.
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Figure 4.36: Profile of eddy viscosity scaled by viscosity at the wall at (a) Reτ ≈ 500 and (b) Reτ ≈ 1000 and
Mb = 2 of smooth wall (triangles) and rough wall (circles) computed using DNS (solid lines) and RANS SA
model (dashed lines).

roughness crest.





5
Conclusions and

recommendations for future work

Supersonic flow over rough walls find application in ablative TPS that are used to protect the surface from
excessive thermal loads. The surface is rough due to the presence of TPS in the form of tiles even before they
start ablating. This pattern of roughness elements on these surfaces cause an increase in the net drag and
heat transfer when compared to a smooth wall. As opposed to incompressible flow over roughness, there is
no consensus on certain topics involving supersonic roughness such as outer layer similarity, delineation of
the roughness regimes, validity of equivalent roughness height in characterising roughness effects and ac-
curacy of compressibility transformations. This is mainly because of the limited number of experimental
studies on supersonic roughness performed over the years. Except for a single study, there are no compu-
tational studies reported in literature either. The usage of DNS as a computational tool to study supersonic
roughness is computationally expensive since resolving the roughness geometry requires even finer grid sizes
than canonical DNS.

Usage of smaller domains known as minimal-span channels have shown success in studying incompress-
ible roughness (MacDonald et al., 2017). However, this has not been tested for compressible flows. Another
approach is to model the effect of roughness that has displayed promising capabilities in emulating certain
important features of rough walls in incompressible flows at a fraction of the cost of studying fully resolved
roughness (Busse and Sandham, 2012). While this has shown to work for incompressible flows, its extension
to compressible flows has not been done yet. Lastly, a popular, cost-effective choice would be to use RANS
where all the turbulent scales of motion are modeled giving an averaged flow field. The goal was to perform a
fully resolved RANS simulation of supersonic roughness to see if the prediction of ∆U+ and subsequently k+

s

is accurate. This would allow implementation of wall models in RANS for roughness that require k+
s as input

to impose the log-law with the velocity shift.
The goal of the current thesis was to explore the following lower cost alternatives to fully resolved DNS

while studying supersonic flow over roughness

1. Minimal-span channel by MacDonald et al. (2017)

2. Parametric forcing approach by Busse and Sandham (2012)

3. RANS of resolved roughness

This was first done by analysing an already existing database of fully resolved 3D cube roughness geometry
at roughness Reynolds numbers k+ ≈ 40,80 for Mach 2 and Mach 4. This addressed the knowledge gaps in
supersonic roughness. It was then followed by using the computational techniques in 1), 2) and 3) to answer
the following research questions

• Can approaches 1), 2) and 3) be used to accurately predict the drag variation over supersonic roughness,
namely predict ∆U+ and k+

s ?

• Can approaches 1), 2) and 3) be used to accurately predict the heat transport over supersonic rough-
ness, namely predict the Stanton number?

97
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5. Conclusions and

recommendations for future work

5.1. Conclusions
The analysis of DNS data of fully resolved cube roughness reveals many similarities with incompressible
roughness when it comes to drag increase. However, the increase in heat transfer is far more complicated.
The effect of roughness extends into the outer region of the temperature field. The minimal-span channel is
capable of accurately predicting the drag in the compressible case. This is due to the presence of outer layer
similarity. The accuracy in heat transfer predictions cannot be determined due to the lack of outer layer sim-
ilarity in the thermodynamic statistics. This makes it difficult to judge the capability of using minimal-span
channel for making heat transfer predictions. The cost savings achieved through the usage of minimal-span
channel when compared to full channel DNS is a factor of O(102) as shown in Table 5.1.

Approach Reference Mb k+ ∆U+

error (%)
Heat transfer increase

error (%)
Order of

cost reduction factor
3D Cube roughness 2 39.85 3.60 27.77 102

3D Cube roughness 2 82.62 0.23 15.63 102

3D Cube roughness 4 41.48 9.10 29.3 102Modeled

3D Cube roughness 4 85.76 4.98 26.67 102

- 2 37.26 - - 102Minimal-span
channel - 2 88.86 - - 102

3D Cube roughness 2 39.44 74.87∗ 63.78 105
RANS

3D Cube roughness 2 83.04 43.21∗ 47.87 105

Table 5.1: Comparison of drag and heat transfer increase between the three approaches (modeled roughness,
minimal-span channel and RANS) and full channel DNS. Mb is the bulk Mach number, k+ is the roughness
Reynolds number, ∆U+ is the mean velocity shift computed using Volpiani (Volpiani et al., 2020) transforma-
tion. ∗ mean velocity shift computed using untransformed profile.

The modeled roughness shows good outer layer similarity with the smooth wall results at Mb = 2 and
Mb = 4 when the roughness height parameter H is increased. This is observed for the density-scaled turbulent
stresses and mean velocity defect profiles. The presence of outer layer similarity reveals the good accuracy
with which drag predictions can be made using the modeled roughness approach. Although the effect of
roughness is simulated, the exact recovery of roughness effects observed in the case of fully resolved DNS
is not possible. In case of heat transfer, the general trends are captured when compared to fully resolved
DNS data. However, the accurate prediction of heat transfer is still far more complicated when compared to
accurate prediction of drag. Additionally, the modeled roughness approach cannot recover the equivalent
roughness height ks from the model parameters a priori. This issue is similar to the lack of a direct relation
between ks and k and represents an inherent limitation of the model. However, the model can be used in
conjunction with fully resolved DNS. The estimation of ks using ∆U+ requires DNS of at least two roughness
Reynolds numbers. It is possible to reduce the cost of performing fully resolved DNS of supersonic flow
over rough walls by less than half. This can be done by matching the mean velocity profile computed using
modeled roughness with the DNS data of fully resolved roughness for a given geometry, at a given k+. The
exponential relation between H+/H+

nor m and k+
s allows the estimation of k+

s without performing the fully
resolved DNS at a second k+. This is one of the strengths of the model. Before performing this exercise,
it is important to tune the model correctly for different geometries, friction Reynolds numbers and Mach
numbers.

The results from fully resolved RANS using SA model at Mb = 2 and k+ ≈ 40 indicate that for a cube
roughness element, there are large discrepancies in the untransformed mean velocity profile of the rough
wall when compared to the results from DNS. These discrepancies reduce when k+ is increased (and enters
the fully rough regime) as shown in Table 5.1. However, these discrepancies are still too large to accurately
employ RANS SA model for roughness prediction in supersonic flow over cube roughness element. The mean
temperature and density profiles of rough wall using RANS SA model show deviations from the DNS results.
There are also discrepancies observed between the RANS SA model and DNS results in the flow structures
when the mean flow field of streamwise velocity in the x − y plane is examined. The streamsie velocity flow
field in the x − z plane also presents similar discrepancies. The mean temperature contours are markedly
different in both x − y and x − z planes of RANS SA model when compared to DNS. These point towards the
weakness of RANS SA model to make realistically accurate roughness drag and heat transfer predictions at
Mach 2 for cube roughness geometry in supersonic flows. The goal was to check if RANS of fully resolved



5.2. Recommendations for future work 99

roughness using SA model is able to accurately predict ∆U+ which is required as input for wall models.

5.2. Recommendations for future work
1. In addition to the compressibility transformations used in this thesis, a very recent one by Griffin et al.

(2021) has shown great accuracy and is applicable to all canonical wall flows such as channel, pipe and
boundary layers and all wall conditions i.e. with or without heat transfer. It is also applicable for the
entire inner layer (viscous sub-layer, buffer and logarithmic layers). It would be interesting to consider
this particular transformation.

2. The roughness geometries investigated were cube and bar roughness in this thesis. An interesting ex-
tension would be to perform a minimal-span channel DNS for diamond roughness element at k+ ≈ 40
and make a comparison with the modeled roughness profiles. This will allow the estimation of ks with-
out having to perform the minimal-span channel simulation at k+ ≈ 80. This enables the verification of
the minimal-span channel concept for another 3D roughness geometry, the diamond roughness ele-
ment. The minimal-span channel DNS has been performed at Mb = 2. By increasing the Mach number
to Mb = 4 or higher, effects of variable Mach number in a minimal-span channel configuration can also
be studied. Finally, a full-span channel DNS of bar roughness can also be performed to compare the
results with the minimal-span channel.

3. The heat transfer effects could not be fully replicated by the modeled roughness approach. One way to
overcome this is to use a different modelling approach for heat transfer term that is added to the energy
equation. The term uses local quantities such as local temperature and local Mach number. It would be
interesting to consider the temperature and Mach number at the hypothetical roughness crest (y ≈ 2H)
to see if it improves heat transfer predictions.

4. The accuracy of mean velocity shift for cube roughness improved with the increase in roughness Reynolds
number. It would be interesting to check whether a further increase in roughness Reynolds number
would improve the accuracy. The analysis has been conducted for a single roughness geometry (cube
roughness) using RANS. It would be interesting to see the accuracy of RANS in capturing the roughness
effects in supersonic flow when different geometries are considered. Additionally, another potential
area of future work could be the testing of different RANS models, in particular, Reynolds stress models
and non-linear eddy-viscosity models.





Bibliography

Abderrahaman-Elena, N., Fairhall, C. T., and García-Mayoral, R. Modulation of near-wall turbulence in the
transitionally rough regime. J.Fluid.Mech, 865:1042–1071, 2019.

Berg, D. Surface roughness effects on a mach 6 turbulent boundary layer. AIAA. J, 17(9):929–930, 1979.

Bernardini, M., Modesti, D., Salvadore, F., and Pirozzoli, S. Streams: A high-fidelity accelerated solver for
direct numerical simulation of compressible turbulent flows. Comput. Phys. Commun., 263:107906, 2021.

Bowersox, R. Survey of high-speed rough wall boundary layers: Invited presentation. In 37th AIAA Fluid

Dynamics Conference and Exhibit, page 3998, 2007.

Bradshaw, P. Compressible turbulent shear layers. Annu. Rev. Fluid Mech., 9(1):33–52, 1977.

Busse, A. and Sandham, N. D. Parametric forcing approach to rough-wall turbulent channel flow.
J.Fluid.Mech, 712:169–202, 2012.

Canning, T. N., Chapman, G., Tauber, M., and Wilkins, M. Orderly three-dimensional processes in turbulent
boundary layers on ablating bodies. AGARD Proceedings No. 30, Paper No. 6, 1968.

Cebeci, T. and Smith, A. Analyses of turbulent boundary layers, acad. Press, New York, 1974.

Chin, C., Ooi, A., Marusic, I., and Blackburn, H. The influence of pipe length on turbulence statistics com-
puted from direct numerical simulation data. Phys.Fluids, 22(11):115107, 2010.

Chung, D., Monty, J., and Ooi, A. An idealised assessment of townsend’s outer-layer similarity hypothesis for
wall turbulence. J.Fluid.Mech, 742, 2014.

Chung, D., Chan, L., MacDonald, M., Hutchins, N., and Ooi, A. A fast direct numerical simulation method for
characterising hydraulic roughness. J.Fluid.Mech, 773:418–431, 2015.

Chung, D., Hutchins, N., Schultz, M. P., and Flack, K. A. Predicting the drag of rough surfaces. Annu. Rev.

Fluid. Mech, 53:439–471, 2021.

Clauser, F. H. Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci., 21(2):91–108, 1954.

Clauser, F. H. The turbulent boundary layer. In Adv. Appl. Mech. 1956.

Coleman, G. N., Kim, J., and Moser, R. A numerical study of turbulent supersonic isothermal-wall channel
flow. J.Fluid.Mech, 305:159–184, 1995.

Czarnecki, K. The problem of roughness drag at supersonic speeds, volume 3589. National Aeronautics and
Space Administration, 1966.

Danberg, J. E. Characteristics of the turbulent boundary layer with heat and mass transfer: data tabulation.
Technical report, NAVAL ORDNANCE LAB WHITE OAK MD, 1967.

De Vanna, F., Picano, F., and Benini, E. A sharp-interface immersed boundary method for moving objects in
compressible viscous flows. Computers & Fluids, 201:104415, 2020.

Duan, L. and Martin, M. Direct numerical simulation of hypersonic turbulent boundary layers. part 4. effect
of high enthalpy. J.FLuid.Mech, 684:25, 2011.

Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., and Poinsot, T. Large-eddy simulation
of the shock/turbulence interaction. J.Comput. Phys, 152(2):517–549, 1999.

Ekoto, I. W., Bowersox, R. D., Beutner, T., and Goss, L. Supersonic boundary layers with periodic surface
roughness. AIAA J., 46(2):486–497, 2008.

101



102 Bibliography

Flack, K. A. and Schultz, M. P. Roughness effects on wall-bounded turbulent flows. Phys. Fluids, 26(10):101305,
2014.

Flack, K. A., Schultz, M. P., and Shapiro, T. A. Experimental support for townsend’s reynolds number similarity
hypothesis on rough walls. Phys. Fluids, 17(3):035102, 2005.

Flores, O. and Jiménez, J. Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids, 22(7):071704,
2010.

Foysi, H., Sarkar, S., and Friedrich, R. Compressibility effects and turbulence scalings in supersonic channel
flow. J.Fluid.Mech, 509:207–216, 2004.

Furuya, Y., Miyata, M., and Fujita, H. Turbulent boundary layer and flow resistance on plates roughened by
wires. J. Fluids Eng., 98(4):643–643, 1976.

Gaudet, L. and Winter, K. Measurements of the drag of some characteristic aircraft excrescences immersed in
turbulent boundary layers. Technical report, R.A.E Farnborough (U.K.), 1973.

Gaviglio, J. Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. Int.

J. Heat Mass Transf., 30(5):911–926, 1987.

Goddard Jr, F. E. Effect of uniformly distributed roughness on trubulent skin-friction drag at supersonic
speeds. J. Aerosp. Sci., 26(1):1–15, 1959.

Griffin, K. P., Fu, L., and Moin, P. Velocity transformation for compressible wall-bounded turbulent flows with
and without heat transfer. Proc. Natl. Acad. Sci., 118(34), 2021.

Guarini, S. E., Moser, R. D., Shariff, K., and Wray, A. Direct numerical simulation of a supersonic turbulent
boundary layer at Mach 2.5. J. Fluid Mech., 414(1):1–33, 2000.

Hama, F. R. Boundary layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Arch. Marine

Engrs., 62:333–358, 1954.

Hill, J., Voisinet, R., and Wagner, D. Measurements of surface roughness effects on the heat transfer to slender
cones at mach 10. In 18th Aerospace Sciences Meeting, page 345, 1980.

Huang, P., Coleman, G., and Bradshaw, P. Compressible turbulent channel flows: Dns results and modelling.
J.Fluid.Mech, 305:185–218, 1995.

Hwang, Y. Near-wall turbulent fluctuations in the absence of wide outer motions. J.Fluid.Mech, 723:264–288,
2013.

Jiménez, J. Turbulent flows over rough walls. Annu. Rev. Fluid Mech., 36:173–196, 2004.

Jiménez, J. and Moin, P. The minimal flow unit in near-wall turbulence. J.Fluid.Mech, 225:213–240, 1991.

Jiménez, J. and Pinelli, A. The autonomous cycle of near-wall turbulence. J.Fluid.Mech, 389:335–359, 1999.

Kim, J., Moin, P., and Moser, R. Turbulence statistics in fully developed channel flow at low Reynolds number.
J. Fluid Mech., 177:133–166, 1987.

Kistler, A. L. Fluctuation measurements in a supersonic turbulent boundary layer. Phys.Fluids, 2(3):290–296,
1959.

Klebanoff, P. Characteristics of turbulence in a boundary layer with zero pressure gradient. Technical report,
NATIONAL BUREAU OF STANDARDS GAITHERSBURG MD, 1955.

Kocher, B. D., Combs, C. S., Kreth, P. A., and Schmisseur, J. D. Characterizing the streamwise development of
surface roughness effects on a supersonic boundary layer. AIAA Paper 4047, 2018.

Krogstad, P.-Å., Antonia, R., and Browne, L. Comparison between rough-and smooth-wall turbulent bound-
ary layers. J. Fluid. Mech, 245:599–617, 1992.



Bibliography 103

Krogstad, P.-Å., Andersson, H., Bakken, O., and Ashrafian, A. An experimental and numerical study of channel
flow with rough walls. J.Fluid.Mech, 530:327–352, 2005.

Krogstadt, P.-Å. and Antonia, R. Surface roughness effects in turbulent boundary layers. Experiments in fluids,
27(5):450–460, 1999.

Kunkel, G. J., Allen, J. J., and Smits, A. J. Further support for townsend’s reynolds number similarity hypothesis
in high reynolds number rough-wall pipe flow. Phys. Fluids, 19(5):055109, 2007.

Laganelli, A. and Nestler, D. Surface ablation patterns-a phenomenology study. AIAA J., 7(7):1319–1325, 1969.

Larson, H. and Mateer, G. Cross-hatching-a coupling of gas dynamics with the ablation process. AIAA Paper
68-670, 1968.

Latin, R. M. and Bowersox, R. D. Flow properties of a supersonic turbulent boundary layer with wall rough-
ness. AIAA J., 38(10):1804–1821, 2000.

Lee, J. H., Sung, H. J., and Krogstad, P.-Å. Direct numerical simulation of the turbulent boundary layer over a
cube-roughened wall. J.Fluid.Mech, 669:397–431, 2011.

Leonardi, S., Orlandi, P., and Antonia, R. A. Properties of d-and k-type roughness in a turbulent channel flow.
Phys. Fluids, 19(12):125101, 2007.

Lozano-Durán, A. and Jiménez, J. Effect of the computational domain on direct simulations of turbulent
channels up to re τ= 4200. Phys. Fluids, 26(1):011702, 2014.

Luker, J. J., Bowersox, R. D., and Buter, T. A. Influence of curvature-driven favorable pressure gradient on
supersonic turbulent boundary layer. AIAA J., 38(8):1351–1359, 2000.

MacDonald, M., Chung, D., Hutchins, N., Chan, L., Ooi, A., and García-Mayoral, R. The minimal-span channel
for rough-wall turbulent flows. J.Fluid.Mech, 815:5–42, 2017.

Maeder, T. Numerical investigation of supersonic turbulent boundary layers, volume 394. ETH Zurich, 2000.

Maise, G. and McDonald, H. Mixing length and kinematic eddy viscosity in a compressible boundary layer.
AIAA J., 6(1):73–80, 1968.

Mochizuki, M. Hot-wire investigations of smoke patterns caused by a spherical roughness element. Natural

Sci. Report, Ochanomizu University, 12(2):87–101, 1961.

Modesti, D. and Pirozzoli, S. Reynolds and mach number effects in compressible turbulent channel flow.
Int.J.Heat.Fluid.Flow, 59:33–49, 2016.

Modesti, D. and Pirozzoli, S. A low-dissipative solver for turbulent compressible flows on unstructured
meshes, with openfoam implementation. Comput. Phys, 152:14–23, 2017.

Morkovin, M. V. Effects of compressibility on turbulent flows. Mécanique de la Turbulence, 367:380, 1962.

Moser, R. D., Kim, J., and Mansour, N. N. Direct numerical simulation of turbulent channel flow up to re τ=
590. Phys.Fluids, 11(4):943–945, 1999.

Natali, M., Kenny, J., and Torre, L. Thermoset nanocomposites as ablative materials for rocket and military
applications. In Thermosets, pages 477–509. Elsevier, 2018.

Nikuradse, J. et al. Laws of flow in rough pipes (Vol. 2). National Advisory Committee for Aeronautics Wash-
ington, 1950.

Orszag, S. A. and Patterson Jr, G. Numerical simulation of three-dimensional homogeneous isotropic turbu-
lence. Physical Review Letters, 28(2):76, 1972.

Patel, A., Peeters, J. W., Boersma, B. J., and Pecnik, R. Semi-local scaling and turbulence modulation in variable
property turbulent channel flows. Phys.Fluids, 27(9):095101, 2015.



104 Bibliography

Peltier, S., Humble, R., and Bowersox, R. Crosshatch roughness distortions on a hypersonic turbulent bound-
ary layer. Phys.Fluids, 28(4):045105, 2016.

Perry, A. E., Schofield, W. H., and Joubert, P. N. Rough wall turbulent boundary layers. J. Fluid Mech., 37(2):
383–413, 1969.

Pirozzoli, S. Generalized conservative approximations of split convective derivative operators. J.Comput.

Phys, 229(19):7180–7190, 2010.

Pope, S. B. Turbulent flows, 2001.

Prandtl, L. 7. bericht über untersuchungen zur ausgebildeten turbulenz. J. Appl. Math. Mech, 5(2):136–139,
1925.

Raupach, M., Antonia, R., and Rajagopalan, S. Rough-wall turbulent boundary layers. Appl. Mech. Rev., 44(1):
1–25, 1991.

Reda, D., KETTER, F., JR, and Fan, C. Compressible turbulent skin friction on rough and rough/wavy walls in
adiabatic flow. In 7th Fluid and PlasmaDynamics Conference, page 574, 1974.

Richardson, L. Weather prediction by numerical processes, cambridge univ. P., London, 1922.

Schlichting, H. and Gersten, K. Boundary-layer theory. Springer, 2016.

Sharif, M. and Guo, G. Computational analysis of supersonic turbulent boundary layers over rough surfaces
using the k–ω and the stress–ω models. Appl.Math.Model, 31(12):2655–2667, 2007.

Smits, A. J. and Dussauge, J.-P. Turbulent shear layers in supersonic flow. Springer Science & Business Media,
2006.

Spalart, P. and Allmaras, S. A one-equation turbulence model for aerodynamic flows. In 30th aerospace sci-

ences meeting and exhibit, page 439, 1992.

Spina, E. F., Smits, A. J., and Robinson, S. K. The physics of supersonic turbulent boundary layers. Annu. Rev.

Fluid Mech., 26(1):287–319, 1994.

Stock, H. W. Surface patterns on subliming and liquefying ablation materials. AIAA J., 13(9):1217–1223, 1975.

Sutton, G. W. Ablation of reinforced plastics in supersonic flow. J. Aerosp. Sci., 27(5):377–385, 1960.

Toh, S. and Itano, T. Interaction between a large-scale structure and near-wall structures in channel flow.
J.Fluid.Mech, 524:249–262, 2005.

Townsend, A. The structure of turbulent shear flow. Cambridge university press, 1980.

Trettel, A. and Larsson, J. Mean velocity scaling for compressible wall turbulence with heat transfer.
Phys.Fluids, 28(2):026102, 2016.

Trevino, L. and Candler, G. V. Numerical simulation of regular surface patterns on sublimating ablative ma-
terials. In 53rd AIAA Aerospace Sciences Meeting, page 1452, 2015.

Tyson, C. and Sandham, N. Numerical simulation of fully-developed compressible flows over wavy surfaces.
Int.J.Heat.Fl.Flow, 41:2–15, 2013.

Uyanna, O. and Najafi, H. Thermal protection systems for space vehicles: A review on technology develop-
ment, current challenges and future prospects. Acta Astronaut., 2020.

Van Driest, E. R. Turbulent boundary layer in compressible fluids. J.Aero.Sci., 18(3):145–160, 1951.

Venkatapathy, E., Szalai, C. E., Laub, B., Hwang, H. H., Conley, J. L., Arnold, J., and ARC, N. Thermal protection
system technologies for enabling future sample return missions. White paper submitted to the Planetary

Science Decadal Survey, National Research Council, Washington, DC, 2009.

Volpiani, P. S., Iyer, P. S., Pirozzoli, S., and Larsson, J. Data-driven compressibility transformation for turbulent
wall layers. Phys.Rev.Fluids, 5(5):052602, 2020.



Bibliography 105

Walz, A. Compressible turbulent boundary layers with heat transfer and pressure gradient in flow direction.
J. Research Natl. Bur. Standards, 63, 1959.

Weller, H. G., Tabor, G., Jasak, H., and Fureby, C. A tensorial approach to computational continuum mechan-
ics using object-oriented techniques. Comput. Phys, 12(6):620–631, 1998.

Wenzel, C., Selent, B., Kloker, M., and Rist, U. Dns of compressible turbulent boundary layers and assessment
of data/scaling-law quality. J.Fluid.Mech, 842:428, 2018.

Wu, Y. and Christensen, K. T. Spatial structure of a turbulent boundary layer with irregular surface roughness.
J.Fluid.Mech, 655:380, 2010.

Wu, Y. and Christensen, K. Outer-layer similarity in the presence of a practical rough-wall topography.
Phys.Fluids, 19(8):085108, 2007.

Zhang, Y.-S., Bi, W.-T., Hussain, F., Li, X.-L., and She, Z.-S. Mach-number-invariant mean-velocity profile of
compressible turbulent boundary layers. Physical review letters, 109(5):054502, 2012.

Zhang, Y.-S., Bi, W.-T., Hussain, F., and She, Z.-S. A generalized reynolds analogy for compressible wall-
bounded turbulent flows. J.Fluid.Mech, 739:392–420, 2014.


