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IWSCFF 19-43

COMPARATIVE ASSESSMENT OF IMAGE PROCESSING
ALGORITHMS FOR THE POSE ESTIMATION OF

UNCOOPERATIVE SPACECRAFT

Lorenzo Pasqualetto Cassinis*, Robert Fonod†, Eberhard Gill‡, Ingo Ahrns§,
and Jesus Gil Fernandez¶

This paper reports on a comparative assessment of Image Processing (IP) tech-
niques for the relative pose estimation of uncooperative spacecraft with a
monocular camera. Currently, keypoints-based algorithms suffer from partial
occlusion of the target, as well as from the different illumination conditions be-
tween the required offline database and the query space image. Besides, al-
gorithms based on corners/edges detection are highly sensitive to adverse il-
lumination conditions in orbit. An evaluation of the critical aspects of these
two methods is provided with the aim of comparing their performance under
changing illumination conditions and varying views between the camera and
the target. Five different keypoints-based methods are compared to assess the
robustness of feature matching. Furthermore, a method based on corners ex-
traction from the lines detected by the Hough Transform is proposed and evalu-
ated. Finally, a novel method, based on an hourglass Convolutional Neural Net-
work (CNN) architecture, is proposed to improve the robustness of the IP during
partial occlusion of the target as well as during feature tracking. It is expected
that the results of this work will help assessing the robustness of keypoints-
based, corners/edges-based, and CNN-based algorithms within the IP prior to
the relative pose estimation.

INTRODUCTION

In the past years, advancements in the field of Distributed Space Systems have been made to
cope with the increasing demand for robust and reliable engineering solutions in challenging
scenarios for Guidance, Navigation, and Control (GNC), such as Formation Flying missions, In-
Orbit Servicing (IOS), and Active Debris Removal (ADR).

The estimation of the position and attitude (pose) of an inactive target by an active servicer
spacecraft is a critical task in the design of current and planned space missions, due to its rel-
evance for close-proximity operations, i.e. ADR and/or IOS. Relative pose estimation systems
based solely on a monocular camera are recently becoming an attractive alternative to systems
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based on active sensors or stereo cameras, due to their reduced mass, power consumption and
system complexity.

Monocular pose estimation consists in estimating the relative pose of a target spacecraft with
respect to the servicer spacecraft by only using 2D images, either taken by a monocular cam-
era or fused from more monocular cameras, as measurements. More specifically, model-based
monocular pose estimation methods receive as input a 2D image and match it with an existing
wireframe 3D model of the target spacecraft to estimate the pose of such target with respect to
the servicer camera. Key features are extracted from the 2D image and matched to the corre-
sponding elements of the 3D model.

The Image Processing (IP) system is a fundamental step for feature-based pose estimation,
and several methods exist in literature to extract and detect target features from a monocular
2D image, based on the specific application. Interested readers are referred to Ref. 1 for a de-
tailed overview of current IP algorithms. From a high-level perspective, the target features to be
detected can be divided into corners, edges, keypoints (or interest points), and depth maps.

Generally, corners and edges are preferred features over keypoints when there are challenges
in extracting textured features from the image due to noise and/or poorly textured targets. Ref-
erence 2 selected the Canny edge detection algorithm to detect edges in the image, and opted
for a subsequent Hough Transform (HT)3 to extract the detected lines. Several tests were con-
ducted to assess the robustness of the IP with respect to image noise at different variance lev-
els. However, a limitation of their method was that it focused on the extraction of rectangular
structures on a large target spacecraft. The same feature detection and extraction methods were
used in Ref. 4 in combination with a Low-Pass Filter. Their method was tested with the PRISMA
image dataset and proved to be flexible with respect to the spacecraft shape, but it lacked of
robustness to illumination and background conditions. Furthermore, the method lacked of ro-
bustness with respect to the spacecraft symmetry. More recently, a novel technique to eliminate
the background of images was proposed in Ref. 5, called Weak Gradient Elimination (WGE). In
this method, thresholding is performed based on the weak gradient intensities corresponding to
the Earth in the background. In the next step, the Sobel algorithm and the HT (S/HT) are used
to extract and detect features. By creating two parallel processing flows, the method proved to
be able to extract main body features as well as particular structures such as antennas, and thus
to solve the symmetry ambiguity which characterized other IP schemes. Furthermore, the im-
plementation of the WGE method returned a much higher robustness with respect to Earth in
the background compared to the other methods. However, scenarios in which the Earth horizon
is present in the background represented a challenge for the IP. Furthermore, the robustness of
the method against adverse illumination conditions was not fully proven. Alternatively, Ref. 6
introduced a new IP scheme in which three different parallel processing streams, which use the
Shi-Tommasi (ST) corners detector, the HT, and the Line Segment Detector (LSD), are exploited
in order to filter three sets of points and improve the robustness of the feature detection. This
was performed in order to overcome the different drawbacks of each single method. Feature fu-
sion was then used to synthesise the detected points into polylines which resemble parts of the
spacecraft body. By including a background removal step similar to the WGE,5 which makes use
of a Prewitt operator in combination with a gradient filter, the authors could demonstrate the ro-
bustness of their IP with respect to the Earth’s horizon in the background. However, despite the
validation of the algorithm with actual space images from the PRISMA mission as well as adverse
illumination conditions, the performance of feature extraction methods in terms of accuracy, ro-
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bustness and sensitivity was not fully proven. Moreover, the repeatability of the detected features
through a sequence of images, which is essential for feature tracking, was not assessed.

If keypoint features are preferred over corners and edges, several methods exist to perform
feature detection and extraction. A Scale Invariant Feature Transform (SIFT),7 in combination
with the Binary Robust Independent Elementary Features (BRIEF) method,8 was implemented
in Ref. 9 to extract the target interest points. Reference 10 investigated the performance of sev-
eral keypoint detectors applied to VIS/TIR synthetic images. In their work, the combination of
the Fast-Hessian feature detector with the Binary Robust Invariant Scalable Keypoints (BRISK)
descriptor proved to have comparable performance in both spectra, resulting in a promising op-
tion when reduced memory usage represent a key requirement. Furthermore, a Fast Retina Key-
point (FREAK) descriptor was adopted in Ref. 11 in combination with the Edge Drawing Lines
(EDL) detector to extract keypoints, corners, and edges to find the correspondence between fea-
tures. In their method, a depth mapping was further performed which aided the features extrac-
tion. The limitation of keypoint-based methods is that they require an offline database for image
matching. In this context, an extensive analysis on the impact of different camera views as well
as different illumination conditions between the offline database and the 2D image acquired in
orbit is still not present.

Recently, some authors investigated the capability of Convolutional Neural Networks (CNN)
to perform keypoint localization prior to the actual pose estimation.12, 13 The output of these
networks is a set of so called heatmaps around pre-trained features. The coordinates of the
heatmap’s peak intensity characterize the predicted feature location, with the intensity indicat-
ing the network confidence of locating the corresponding keypoint at the correct location.12 No-
tably, this statistical information is not included in the other feature method, and it can be used
to threshold the detected features based on the detection accuracy which characterises each sin-
gle feature. Additionally, due to the fact that the trainable features can be selected offline prior to
the training, the matching of the extracted feature points with the features of the 3D wireframe
model can be performed without the need of a large search space for the image-model corre-
spondences, which usually characterizes most of the edges/corners-based methods.4 However,
there is yet no implementation of CNNs for feature extraction from space imagery.

As a general remark, IP algorithms based on keypoint features detectors present some ad-
vantages compared to algorithms based on edge and corner detectors, given their invariance to
perspective, scale, and (to some extent) illumination changes.7, 14 However, they could still be
sensitive to extreme illumination scenarios as well as to partial occlusion of some of the target
features. On the other hand, despite a lower performance under adverse illumination, edges and
corners detectors are retained to be more robust than features detectors in case of partial occlu-
sion of the target, especially during tracking.15

In this framework, the aim of this paper is to provide a comparative assessment of past and
novel IP algorithms for the relative pose estimation of an uncooperative spacecraft. Special fo-
cus is given to the robustness of the selected methods against adverse illumination conditions,
partial occlusions of the target, and feature tracking. In the context of edges/corners detection
and extraction, a novel method is assessed in which the edges extracted by the HT are post-
processed by identifying the intersections between two close lines and associating corner points
to such intersections. The performance of such method during feature tracking is assessed. Be-
sides, several keypoint detectors and descriptors are compared by assessing their performance
during varying illumination scenarios. Finally, a CNN architecture, based on the work conducted
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in Ref. 12, is proposed. The performance of this CNN-based method is assessed during feature
tracking, partial occlusions of the target and adverse illuminations. Results are compared to the
other IP methods. The comparative assessment is performed on representative synthetic images
of the European Space Agency (ESA)’s Envisat spacecraft, rendered in the Cinema 4D software.

The paper is organized as follows. Firstly, a detailed overview of the IP methods is provided
together with a description of the framework adopted for the comparative assessment. Prelim-
inary results are then reported for each method separately. Finally, the main conclusions and
recommendations are provided.

REVIEW OF IP METHODS

Edges/corners Detectors

From a high-level perspective, the detection of edges and corners can be summarized as fol-
lows:

1. Image segmentation

2. Feature detection

3. Feature extraction

Figure 1. Generic schematic of a feature detection/extraction flow.

Figure 1 shows a high-level representation of such scheme. Image segmentation aims at sim-
plifying the representation of an image to be handled by the edges and corners detectors. The
segmentation process can be divided into two main steps. Firstly, thresholding and binariza-
tion are applied to convert the pixel image into a binary image. Secondly, dilation and erosion
are used to fill holes and recover the image contour. Generally, WGE is further considered in
the thresholding step to filter the image background in case of Earth-in-the-background geome-
tries. The benefits of image segmentation stand in an improved detection of edges and corners.
After segmentation, features are detected by corner and/or line detectors. Finally, feature ex-
traction is perform to extract the location of the detected features. The Canny algorithm and the
HT are considered in this paper for the detection and extraction of edges from the target image,
respectively. The input to the Canny edge detector is a monocular image after the image seg-
mentation process. The algorithm computes the intensity gradients of the image and detects
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horizontal, vertical and diagonal edges. This information is then used by the HT which iden-
tifies and extracts lines from the image. In the proposed method, the detected lines are finally
post-processed to extract corners from their intersection. More specifically, two Hough lines are
replaced by a corner feature if the minimum relative distance between their ending points is less
than a predefined threshold, herewith set to be 5 pixels.

Keypoints Detectors and Descriptors

Compared to edges/corners detectors, keypoint detectors identify points whose nearby re-
gion in the image is rich in terms of textures. As such, keypoints are usually stable under il-
lumination/brightness variations. As opposed to other methods based on edges/corners, the
application of keypoint detectors prior to pose estimation can be summarized in the following
main steps:

1. Keypoints detection

2. Keypoints description and matching

3. Outliers removal with RANdom SAmple Consensus (RANSAC)16

Figure 2 shows a high-level representation of the feature matching process.

Figure 2. Generic schematic of a feature matching flow.

The keypoints detected in a so called query image, taken in orbit, are matched with keypoints
extracted offline from an image database by comparing their associated descriptors. These de-
scriptors are functions which describe a small patch around each keypoint. This matching step is
not present in edges/corners detectors, and it represents a key task prior to the pose estimation.
In fact, the offline database should generally cover as many camera views of the target as possi-
ble, in order to guarantee a reliable match, while at the same time it should contain as less images
as possible, in order not to make the matching computationally expensive. Once the query fea-
tures are matched with the offline features, the RANSAC algorithm is used to remove potential
outliers in the matching. By using the intuition that outliers will lead to a wrong transformation
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between two images, this iterative method randomly selects a minimum set of matches which
can return a transformation between two images, and returns a set of inliers based on the trans-
formation error that follows from the chosen set. The size of the minimum set of matches used
to initialize RANSAC depends on the type of method used to compute the error. In this paper, the
computation of the fundamental matrix between two images is adopted. This transformation is
preferred over i.e. homography due to the non-planar motion of the target between two images,
which usually occurs in close-proximity operations around uncooperative spacecraft.

For each match between point x in image 1 and point x ′ in image 2, the fundamental matrix
F is the matrix which is related to the so called epipolar constraint:

xT F x ′ = 0 → A f = 0, (1)

where A is built from the minimum set of matches and f is a vector which contains all the ele-
ments of F . More specifically, Eqn. 1 exploits the fact that, for a moving camera, a point in image
2 has its corresponding point in image 1 which lies on a so called epipolar line, whose equation is
represented by l = F x ′. A minimum of eight matches are needed to solve the epipolar constraint.
Equation 1 can be solved by the 8-points algorithm.17

CNN Hourglass Architecture

CNNs are currently emerging as a promising features extraction method, mostly due to the
capability of their convolutional layers to extract high-level features of objects with improved
robustness against image noise and illumination condition. In order to optimize CNNs for the
features extraction process, a stacked hourglass architecture has been proposed in Ref. 12, and
other architectures such as the U-net, or variants of the hourglass, were tested in recent years.
Compared to the network proposed in Ref. 12, the proposed single hourglass architecture is com-
posed of only one encoder/decoder block, constituting a single hourglass module. The encoder
includes six blocks, each including a convolutional layer, a batch normalization module and max
pooling, whereas the six decoder blocks accomodate an up-sampling block in spite of the max
pooling one. Each convolutional layer is formed by a fixed number of filter kernels of size 3x3.
In the current analysis, 128 kernels are considered per convolutional layer. Figure 3 shows the
high-level architecture of the network layers, together with the corresponding input and output.

As already mentioned in the Introduction, the output of the network is a set of heatmaps
around the selected features. These heatmaps are extracted by associating them to Gaussian-
like profiles. Ideally, the heatmap’s peak intensity associated to a wrong detection should be
relatively small compared to the correctly detected features, highlighting that the network is not
confident about that particular wrongly-detected feature. At the same time, the heatmap’s am-
plitude should provide an additional insight into the confidence level of each detection, a large
amplitude being related to large uncertainty about the detection. As such, thresholding based
on the relative peak intensity and amplitude could be performed to eliminate the wrong features
and improve the accuracy of the detection.

The network is trained with the x- and y- image coordinates of the feature points, computed
offline based on the intrinsic camera parameters as well as on the feature coordinates in the tar-
get body frame, which were extracted from the 3D CAD model prior to the training. During the
training, the network is optimized to locate 16 features of the Envisat spacecraft, consisting of
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Figure 3. Overview of the complex hourglass architecture. Downsampling is per-
formed in the encoder stage, in which the image size is decrease after each block,
whereas upsampling occurs in the decoder stage. The output of the network consists
of heatmap responses, and is used for keypoints localization.

the corners of the main body, the Synthetic-Aperture Radar (SAR) antenna, and the solar panel,
respectively. Figure 4 illustrates the ground truth features location for a specific target pose.

Figure 4. Example of ground truth of features coordinates.

FRAMEWORK OF COMPARATIVE ASSESSMENT

Synthetic images of the Envisat spacecraft were rendered in the Cinema 4D software. Table 1
lists the main camera parameters adopted in the rendering. Firstly, a yaw rotation of the target
of 2 deg/s is rendered to assess the tracking performance of each method under varying illu-
mination conditions, assuming a constant distance between the servicer and the target. In this
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Table 1. Parameters of the camera used to generate the synthetic images in Cinema 4D.

Parameter Value Unit

Image resolution 512×512 pixels

Focal length 3.9·10−3 m

Pixel size 1.1·10−5 m

Figure 5. Target spacecraft simulated in Cinema 4D under varying illumination con-
ditions - Yaw (top), illumination 1 (middle), and Illumination 2 (bottom) scenarios.
The yaw sequence is shown every 10 frames in order to visualize the target rotation.

case, the different illumination conditions between two subsequent frames are a result of the
changing orientation of the target assembly with respect to the Sun. Secondly, an analysis is
conducted to assess the impact of varying the Sun position with respect to the target on feature
extraction. To accomplish that, two different relative pose of the target spacecraft with respect
to the camera are rendered in Cinema 4D under multiple Sun-target geometries. A total of 1,296
images are rendered for each of the two scenarios, by varying the Sun elevation and azimuth by
10 degrees each to span a full sphere. The initial sequences of both the yaw scenario and the two
illumination scenarios considered in this paper are represented in Figure 5.

Edges/Corners Detectors

The feature tracking performance of the proposed HT corner detector is assessed by comput-
ing the number of tracked features between two subsequent frames for all three scenarios. More
specifically, a feature is considered to have been tracked from image 1 to image 2 if the minimum
distance between such feature in image 1 and all the features in image 2 is less than a threshold,
herewith arbitrary chosen to be five pixels. This is done since the maximum distance which can
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Table 2. Feature matching methods and their detectors/descriptors.

Method Detector Descriptor
Descriptor

Type
# Descriptor

Elements

ORB oFAST rBRIEF Binary 256
F-Hessian+SURF F-Hessian SURF Floating Point 64

FAST+FREAK FAST FREAK Binary 512
F-Hessian+FREAK F-Hessian FREAK Binary 512

BRISK - - Binary 512

occur between points of a match pair is associated to a small inter-frame rotation (yaw scenario)
or to no inter-frame rotation (illumination scenarios).

Feature Matching

The analysis is conducted by using the 8-points algorithm to detect inliers between two differ-
ent images. Different feature detectors and descriptors are considered, in order to compare the
performance of different matching methods. Table 2 lists each method. Aside from some of the
algorithms mentioned in the Introduction, the Oriented FAST, Rotated BRIEF (ORB)18 and the
Speeded Up Robust Features (SURF)14 algorithms are also considered.

For each match, the True Positive (TP) inliers are extracted from the total number of inliers by
computing the 2-norm between the matched points and by checking if it is below a predefined
threshold, selected in the same fashion as for the edges/corners detectors. In the illumination
scenarios, feature matching is performed between the first image and each subsequent ones,
whereas in the tracking scenario the matching is performed between two subsequent frames. In
both scenarios, the performance is assessed in terms of matching precision, defined as the ratio
of TP inliers to the total number of inliers, which also accounts for False Positives (FP),

precision = T P

(T P +F P )
(2)

CNN Hourglass Network

For the training, validation, and test databases, constant Sun elevation and azimuth angles of
30 degrees were chosen in order to recreate favourable as well as adverse illumination conditions.
Relative distances between camera and target were chosen in the interval 90 m - 180 m. Relative
attitudes were generated by discretizing the yaw, pitch, and roll angles of the target with respect
to the camera by 10 degrees each. The resulting database was then shuffled to randomize the
images, and was ultimately split into training (40,000 images), validation (4,000 images), and
test (∼10,000 images) databases. Figure 6 shows some of the images included in the training
dataset.

During training, the validation dataset is used beside the training one to compute the validation
losses and avoid overfitting. A learning rate of 0.1 is selected together with a batch size of 20 im-
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Figure 6. A montage of eight synthetic images selected from the training set.

ages and a total number of 20 epochs. Finally, the network performance after training is assessed
with the test database.

The performance of the hourglass network during test is assessed in terms of Root Mean
Squared Error (RMSE) between the ground truth (GT) and the x, y coordinates of the extracted
features, which is computed as:

ERMSE =

√√√√√√
ntot∑
i=1

[
(xGT,i −xi )2 + (yGT,i − yi )2

]
ntot

(3)

where ntot = 16 represents the total amount of features that need to be detected per image. The
predicted feature coordinates are obtained from each heatmap’s peak location. Besides, the net-
work performance during the yaw and illumination scenarios is assessed to verify the capability
of the network to perform feature tracking.

PRELIMINARY RESULTS

Edges/Corners Detector

Figure 7 shows the performance of the proposed corner detector during the initial sequences
of the yaw rotation and the two illumination scenarios, respectively. This qualitatively shows the
challenges of tracking the Envisat corners for the above scenarios, as the detected corners seem
quite unstable and highly sensitive to the rotation of the target as well as to changing illumination
conditions. Besides, Figure 8 illustrates the number of tracked features between two subsequent
frames for the full yaw scenario and for the initial sequence of the illumination scenarios. As can
be seen, the number of tracked features varies considerably during the sequences, suggesting
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the lack of robustness of the proposed method against inter-frame rotation of the target and
illumination changes.

Figure 7. Qualitative feature tracking performance for the proposed corner detector.

Keypoints Detectors and Descriptors

Figure 9 shows the number of detected TP inliers for the yaw scenario. As can be seen, the
ORB algorithm outperforms the other methods for the entire query sequence. Its large number
of inliers is, to some extent, to be associated to the method itself, which, for any feature matching
between two images, always aims at detecting up to 500 matches (see Ref. 18). Besides, the small
inter-frame motion between two subsequent image does not seem to severely affect the number
of TP inliers for all the methods. This suggests that all the methods can return reliable matches,
provided that the camera view does not change considerably between two frames.

Conversely, Figures 10 and 11 illustrate the impact of changing illumination conditions on the
number of detected TP inliers and the associated precision, respectively, for the initial sequence
of the two recreated illumination scenarios. As can be seen in Figure 10, due to large illumination
changes, in the first illumination scenario all methods fail in returning inliers already from the
10th image of the initial sequence. On the other hand, in the second scenario, some of the meth-
ods manage to output a constant number of TP inliers throughout the whole initial sequence, as
a result of the less adverse illumination changes. In particular, SURF and BRISK seem to guaran-
tee nonzero inliers for almost the whole sequence. However, the precision percentages reported
in Figure 11 indicate that the TP inliers detected by SURF are generally less than the FP in-
liers, whereas the precision for BRISK maintains well above 50% throughout the whole sequence.

The analysis is then extended to cover the all the illumination changes. Table 3 reports
the matching performance for the entire sequences of 1,295 images. The percentage of valid
matches, defined as the scenarios in which a method manages to return nonzero TP inliers, are
reported together with the mean TP inliers and the mean precision.
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Figure 8. Feature tracking performance for the proposed corner detector.
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Figure 10. Impact of varying Sun illumination on feature matching performance in
terms of detected TP inliers.
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Figure 11. Impact of varying Sun illumination on feature matching performance in
terms of precision.

Table 3. Feature matching results for illumination scenario 1/2.

Method # Valid Matches (%) Mean # TP Inliers Mean Precision [%]

ORB 28/51 10/11 28/49
F-Hess+SURF 60/100 18/10 22/30
FAST+FREAK 23/20 6/3 21/18

F-Hessian+FREAK 32/48 9/3 20/19
BRISK 26/96 13/17 25/87
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(a) Occulted spacecraft body (b) Non visibility of SAR antenna

Figure 12. Robustness of feature detection with CNNs. The network has been trained
to recognize the features pattern, and can correctly locate the body features which are
not visible, i.e. parts occulted by the solar panel and corners of the SAR antenna.

Despite the limited simulated scenarios considered for keypoints detection, the above analysis
indicates that a careful selection of the offline database is required for a reliable feature matching
with a query image taken in orbit. The images in the database should cover enough camera views
of the target while at the same time span different illumination conditions.

Hourglass Network

Preliminary results for the CNN are firstly reported for the test database. The key advantages
of relying on CNNs for feature detection is that the network is generally capable of learning the
relative position between features under a variety of illumination conditions and relative poses
present in the training. As a result, both features which are not visible due to adverse illumination
and features occulted by other parts of the target can be detected. Figure 12 illustrates some of
these scenarios.

Besides, there are at least two aspect associated to the specific selection of the trainable fea-
tures, which affects the overall network performance over the test database. First of all, since all
the selected features represent highly symmetrical points of the spacecraft, such as corners of
the solar panel, SAR antenna or main body, the network is in some scenarios unable to distin-
guish between similar features, and returns multiple heatmaps for a single feature output. This
is illustrated in the right-hand side of Figure 13, where it can be seen that the heatmap response
of one of the corners of the solar panel includes also the responses of the other similar corners.
As a result, the x, y coordinates extracted from the peak of the heatmap can be associated to the
wrong feature (i.e. one of the other corners of the solar panel), and lead to a large error. Secondly,
besides confusing similar feature, the network has also learned to detect generic corners. As pre-
viously mentioned, this is a result of the features selection prior to the training. In other words,
in some scenario the network is detecting unwanted corners of the target instead of correctly
identifying the wanted features, due to the fact that all the trainable features are corners.

Figure 14 illustrates four different test scenarios which summarize the network performance
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(a) Total heatmap obtained by overlapping each
single heatmap

(b) Heatmap related to a specific feature - solar
panel corner

Figure 13. Example of multiple features detection. A large RMSE errors would re-
sult from the difficulties of the network in distinguishing similar features, such as the
corners of the SAR antenna, the solar panel, and main body.

observed so far. For each test case, the total heatmap is shown together with the RMSE between
each detected feature and the ground truth,

ERMSE,i =
√

(xGT,i −xi )2 + (yGT,i − yi )2 (4)

In the upper-left figure, a good features detection, characterized by a total RMSE of 1.37 pixels,
is presented. As can be seen, each detected feature deviates from its ground truth by less than
2 pixels. The upper-right figure also present a good detection scenario, in which the total RMSE
is even at subpixel level. In the lower-left image, a scenario is presented in which the RMSE re-
lates to an acceptable detection. Finally, the lower-right image shows a scenario in which in the
network is unable to correctly detect the last feature, thus returning a very large RMSE. In the
specific, due to its corner detector behavior, the network has detected a corner in the spacecraft
antenna rather than one of the corners of the solar panel.

Notably, the last scenario suggests that, generally, large RMSE might be associated to the incor-
rect detection of just one (or a few) features, rather than a completely wrong detection. Figure 15
extends this finding by showing the histogram associated to the number of features detected
with a RMSE error above 50 pixels for the whole test database. As can be seen, in most of the
cases only a few features are wrongly detected. Only 5% of the output heatmaps contain more
than 3 features with a very large RMSE error.

Ideally, the heatmap’s peak intensity associated to a wrong detected feature should be rela-
tively small compared to the other detected features, highlighting that the network is not confi-
dent about that particular wrongly-detected feature. At the same time, the heatmap’s amplitude
should provide an additional insight into the confidence level of each detection, a large am-
plitude being related to large uncertainty about the detection. As such, thresholding based on
the relative peak intensity and amplitude should eliminate the wrong features and improve the
RMSE behaviour over the whole test dataset.
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Figure 14. Four different test scenarios for feature detection.

As a starting point for the investigation of the inclusion of the additional heatmap’s information
in the RMSE computation, the left-hand side of Figure 16 reports a comparison of the RMSE
with the Gaussian-like profile parameters extracted from each feature’s heatmap for the low-right
scenario in Figure 14. For clarity, the values are shown for all the features except the last one, due
to its very large error relative to the others. As can be seen, the largest RMSE is associated to
a very weak total brightness and peak intensity, whereas the smallest RMSE relates to a rather
large peak intensity and low amplitude. To extend the reasoning, it can be derived that a very
good detection is generally associated to a Gaussian-like profile with a very large peak and a very
small standard deviation, whereas a wrong detection is associated to a very small peak and a
large standard deviation. An acceptable detection would lie somewhere in between, that is to say,
it could be characterized by both large peak and large standard deviation. The right-hand side of
Figure 14 also reports the Gaussian-like profiles associated to the above-mentioned detections.

Clearly, threshold values for both the peak intensity and the amplitude of the heatmaps have to
be carefully tuned beforehand. In general, very severe threshold values would sensibly decrease
the RMSE and discard many non-optimal features, although they will at the same time decrease
the number of detected features per image. As this latter aspect can severely affect the accuracy
of the relative pose estimation, due to the fact that pose estimation solvers usually require at
least 3-to-6 feature locations, a trade-off is required for the threshold selection, in order to find a
compromise between RMSE reduction and reduction of the total number of available features.

By referring to the scenario depicted in 16, some preliminary threshold values can be selected
to be equal to the median of the peak intensities and amplitudes of the detected features, which
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Figure 15. Histogram of number of features detected with RMSE error above 50 pixels.
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Relation between RMSE and Gaussian-like Profile Parameters

(a) Comparison of RMSE with Gaussian-like profile param-
eters

(b) Gaussian-like profiles derived from the heatmaps

Figure 16. Relation between RMSE and Gaussian-like parameters. Some of the good,
acceptable and bad detections are reported in green, orange, and red, respectively. As
can be seen, a large peak intensity and a small amplitude are associated to the lowest
RMSE. As such, thresholding can discard those features whose amplitude and signal
are too large and/or too weak, respectively.

amounted to 78 and 6, respectively. A heatmap detected by the CNN is discarded if its peak
intensity and amplitude are smaller/larger than their threshold values. Figure 17 illustrates the
histograms of the RMSE and total number of detected features, before and after applying the
threshold. As can be seen in the left-hand side, thresholding greatly helps reducing the RMSE
over the whole test database. However, the effect on the total number of detected features is a
much more stretched-out distribution. As a consequence of that, some scenarios can be found in
which the number of detected features are too few to expect an accurate relative pose estimation.
As such, it might be worth selecting less stringent threshold values.

It has to be mentioned that, even in case no thresholding is performed, it is still expected that
the RANSAC algorithm, embedded in most of the pose estimation solvers, would return a pose
which is not affected by the outlier features. Also, beside RANSAC, the intensity of the feature
peak can be accomodated in a weight matrix which accounts for the uncertainty of the feature.12
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Figure 17. Impact of applying a threshold to the feature detection on the RMSE (left)
and the total number of features detected per image (right).

Finally, the performance of the hourglass network is assessed for the yaw rotation and the two
illumination scenarios. Figure 18 illustrates the number of tracked features using the threshold
values previously described. When compared to the results in Figure 8, these results indicate
that the CNN outperforms the HT-based method in regards to features tracking for the entire
yaw sequence. However, a performance drop can be observed at the start as well as towards the
end of the sequence. This is a consequence of having selected highly symmetrical features, as
already anticipated for the test database. More specifically, the network is confusing between
similar features for some of the camera views of the target. As such, the improvements in the
network performance resulting from selecting asymmetrical features shall be assessed. Besides,
the performance in the two illumination scenarios is still characterized by less than four tracked
features for most of the two sequences. Since this is a consequence of the fixed Sun azimuth and
elevation adopted in the training phase, more illumination conditions shall be recreated in the
offline database in order to return a robust detection in changing illumination scenarios.
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Figure 18. Feature tracking performance for the proposed CNN-based detector.
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CONCLUSIONS

In this paper, a comparative assessment of IP algorithms has been conducted to evaluate their
performance with respect to illumination variations, partial occlusion, and inter-frame rotation,
during close-proximity operations around a target spacecraft.

A novel corner detection method, based on the HT, was implemented and evaluated in terms
of performance during yaw rotation of the target and illumination changes due to varying Sun-
target geometries. Despite the potentials compared to a simple Hough detection and extraction
algorithm, results showed a certain level of instability of the detected corner in both scenarios.
Specifically, the feature tracking performance resulted to be affected by both small target rotation
and illumination changes.

Besides, the performance of five feature detectors/descriptors was assessed in the context
of feature matching. Results highlighted the challenges of feature matching when illumination
conditions between two images vary during the orbit, suggesting to carefully select the illumi-
nation conditions to be recreated in an offline database, when matching this latter with a query
image taken in orbit. Future works will extend these finding by assessing the number of cam-
era views as well as the number of different Sun azimuth and elevation which are required in an
offline database to guarantee a robust and reliable feature matching.

The CNN performance results obtained for the simple hourglass architecture already illus-
trated the key advantages of relying on CNNs for feature extraction. Above all, the capability of
detecting non-visible and occulted features, together with the additional statistical information
returned by the detected heatmaps, represent a considerable advantage with respect to stan-
dard methods. Furthermore, the corner detection during the selected tracking scenario proved
to be more robust than the HT-based method. Nevertheless, there are still some aspects which
would require further analyses. First of all, due to the fact that the training was performed with
a fixed Solar azimuth and elevation, it is not guaranteed that the network will be able to per-
form a reliable detection in case the illumination conditions in orbit differ from the offline one.
Moreover, the impact of selecting asymmetrical features during the training phase on the detec-
tion performance is still unclear. Secondly, the absence of any object in the image background
during the training phase might lead to a completely wrong feature detection, in case of Earth-
in-the-background geometries in orbit. Moreover, a stacked hourglass architecture, in which two
or more hourglass modules are stacked together in order to refine the heatmap response, has not
been assessed yet. Future analyses will focus on these aspects in order to improve the robustness
of CNN-based feature extraction methods for space applications.

Finally, future works will validate all the methods with realistic images acquired in a laboratory
environment to assess the performance of IP on space-like imagery. Software-In-the-Loop tests
are planned to also assess the capability of implementing such methods in space-representative
processors.
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