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Abstract

Chiral induced spin selectivity (CISS), the phenomenon in which the interaction within
chiral molecules brings about a selectivity in the spin of electrons, is an important un-
explained problem within physics. Many possible theories have been proposed since
its discovery in 1999, but none of them have been able to explain CISS to its full extent.
Professor Luuk Visscher from the VU Amsterdam has suggested to consider the Breit
interaction for this problem.

The Breit interaction describes the interaction between electrons in the weakly rela-
tivistic limit and its effect on CISS has not yet been studied.

The goal of this thesis was to investigate the Breit interaction in the context of CISS to
contribute to a better understanding of the phenomenon.

First a derivation of the Breit equation is given. Starting from the non-relativistic
Lagrangian that describes an electron in an electromagnetic field, the Breit interaction
is derived:
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)
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This operator acts on bispinors, fourvectors that describe the wave function of both
an electron and its corresponding antiparticle, the positron. It is rewritten to only
work on the electron part of the wave function. The following expression for the Breit
equation is found:
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In the second part of the thesis, the derived Breit equation is used to construct a
simulation of the electron transport through a chiral molecule. For this, the S-shaped
device is introduced. This is a simple two-dimensional chiral molecule of which both
ends will be connected to leads, between which a voltage difference is applied, so that
electron transport takes place within the molecule.
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Abstract

A tight binding Hamiltonian is composed for this problem, which, besides the Breit
interaction, also contains the eigenenergies, hopping and spin-orbit interaction. This
Hamiltonian is written in matrix form and implemented in a transport code.

With the help of Green’s functions and the Meir-Wingreen formula the spin-polarization
of the transmission of electrons through the molecule is determined.

Additionally the spin-polarization is determined for the same Hamiltonian, but now
excluding the Breit-interaction. The spin-polarizations for the two different Hamilto-
nians were then compared and it was concluded that they are substantially different.
From that follows that the influence of the Breit interaction on the transport of an elec-
tron through a chiral molecule is significant and it should therefore not be disregarded
in calculations on CISS.
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1. Introduction

Chiral molecules are molecules that can be distinguished from their mirror image, no
matter how you rotate them. A simple example of a chiral molecule and its mirror
image is given in figure 1.1a. In figure 1.1b it is shown that the two structures cannot
be superimposed to each other.

(a) A chiral molecule and its mirror image
(b) The mirror image cannot

be superimposed onto the
chiral molecule

Figure 1.1.: A chiral molecule, its mirror image and the superimposing of the two [1].

Early in the ninetienth century it was discovered that chiral molecules can have a
remarkable effect on the optical activity of light [2]: if linearly polarized light passes
through a chiral molecule, the orientation of the polarization is rotated. The direction
of the rotation is determined by the handedness of the molecule [3].

At the end of the twentieth century a similar phenomenon was discovered: the inter-
action of electrons within chiral molecules could lead to a spin polarization, which is
also determined by the handedness [4]. This effect has been dubbed Chiral Induced
Spin Selectivity, or CISS for short. In the last twenty years, the topic has been studied
thoroughly and this has lead to many experimental setups in which CISS occurs and
to numerous possible explanations. None of these explanations has however been
capable to fully explain the observations. Many of these attempts have partly ex-
plained the effect, but all lead to magnitudes of a small fraction of the observations
and scientists are still in the dark as to the details of the mechanism.

In early 2020, the Weizman Institute of Science organized a workshop on the topic
of CISS [5]. Numerous scientists from different fields, ranging from theoretical and
computational physicists to chemists and experimentalists, were brought together to
discuss the phenomenon. Ultimately this did not lead to an explanation, but it has
sparked some new interest in the topic.
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1. Introduction

Professor Luuk Visscher from the VU Amsterdam has suggested to look into the effect
of the Breit interaction. This interaction follows from the theory on electron repulsion
in the weakly relativistic limit. It was first described by and named after the American
physicist Gregory Breit [6], who published a seminal paper on the topic almost a
century ago [7]. This theory is not widely known or used and has not yet been applied
to the CISS problem. It is not expected to fully explain the phenomenon, but research
of it may lead to a better understanding of the theory, deliver new insights on CISS
and perhaps function as a stepping stone towards a definitive explanation.

The goal of this thesis is to investigate the Breit interaction in the context of CISS to
gain a better understanding and to examine its influence on electron transport. To that
extent, a derivation of the Breit equation is given. This will then be implemented in a
simulation of electron transport through a chiral atom.

This thesis is structured as follows: in chapter 2 a short background is given on the
topic of CISS, where the experimental observations and the state of theoretical under-
standing are discussed, followed by the derivation of the Breit equation in chapter 3.
In chapter 4 a short introduction of Green’s functions and the Meir-Wingreen formula
is given and in chapter 5 the Breit equation is used to derive the matrix form of the as-
sociated Hamiltonian, which is used to perform a simulation of the electron transport
through a chiral molecule.
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2. A bit on CISS

Chirality means that an object is different from its mirror image and that no matter
how it is rotated, the two can be distinguished. It is aplicable to a wide range of items,
your own hands being a good example (you cannot turn them such that your left hand
is indistinguishable from your right), but in chemistry and physics it is mainly used
for molecules. The helix structure of DNA can for example be either left- or right-
turning. This is illustrated by figure 2.1, where it can be seen that the handedness
makes for two different molecules. The different variants are called enantiomers.

Figure 2.1.: Two different turning helix structures [8].

Chiral molecules can bring about some interesting phenomena. In 1820 optical ro-
tation was discovered. That entails that chiral molecules can rotate the orientation
of linearly polarized light that passes through it. The sign of the rotation angle is
determined by the handedness of the molecule.

Nowadays another similar phenomenon is known, namely CISS. This is short for
Chiral Induced Spin Selectivity and the name already describes what it represents:
the collection of processes in which chiral molecules bring about a selectivity in the
spin of electrons [5].

The phenomenon was first observed by Ray, Ananthavel, Waldeck and Naaman in
1999, when they noticed a significant asymmetry in the scattering probabilities of
electrons that were polarized by transmission through a layer of chiral atoms [4]. At
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2. A bit on CISS

that time, the influence of chiral molecules in optical processes was well known, but
the effect on the electronic spin led to the opening of a new field of physics.

In the following years, more research on CISS has been conducted, and it was dis-
covered that all CISS phenomena belonged to one of either three forms; in the trans-
mission of free, excited electrons through a chiral molecule, the transport of bound
electrons from one lead to another through an enantiomeric interlayer, or in chemical
reactions involving chiral molecules.

The discovery of Ray et al. concerned the transmission. For CISS of this type, usually
electrons from a substrate are excited using photoemission, after which they travel
through a layer of chiral atoms. It is then observed that the electrons exhibit a large
asymmetry in their spin, depending on which type of circularly polarized light was
used and the chirality of the enantiomeric layer. This principle is illustrated in figure
2.2.

Figure 2.2.: Experimental setup for CISS in transmission. Electrons are excited from a
substrate using polarized light. They travel through a chiral medium and their spin
is measured [9].

It was later confirmed by Göhler et al. that it was indeed the interaction with the
chiral molecules that caused the spin selectivity [9]. In their study, electrons from a
gold substrate were excited by the inciding light and traveled through a monolayer of
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2. A bit on CISS

double-stranded DNA, after which their spin was measured. This is the setup shown
in figure 2.2. It was found that the spin-polariztion differed for what polarization
of light was used: circularly clockwise or counterclockwise or linearly. The results
are shown in figure 2.3. An asymmetry between the spin-polarizations caused by the
different polarizations can be noted.

Figure 2.3.: The spin-polarization of electrons that were excited from a gold substrate
by either clockwise circularly polarized light (A), linearly (B) or counterclockwise
circularly (C), and traveled through a monolayer of double-stranded DNA. The
found polarizations were respectively −(54.5 ± 7.0)% (A), −(57.2 ± 5.9)% (B) and
−(60.8 ± 5.8)% (C) [9].

The transport case is related to bound electrons in contrast to the free electrons of the
transmission. For this, one or more chiral molecules are connected to metallic leads,
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2. A bit on CISS

one of which is magnetized, a voltage difference is applied between the two leads
and the electrons travel from one lead to the other through the chiral molecule. The
presence of certain enantiomers results in an imbalance in the spins of the electrons
arriving at the second lead.

This is illustrated by the work of Lu et al. [10]. In panel A of figure 2.4 their setup
is presented. The tip overhead of the substrate is magnetized either up or down with
respect to the substrate and a voltage difference is applied between the tip and the lead
at the bottom of the substrate. In this experiment has been chosen for a fluorine-doped
tin oxide substrate, which is marked with FTO in the figure. The electrons will travel
from the bottom lead through the layer of chiral molecules to the tip, which is detected
as a current. The results are illustrated in panels B-D of the same figure. These are
for layers of left-handed, achiral or right-handed chiral molecules respectively. An
asymmetry between the different magnetizations for the tip can be seen.

Figure 2.4.: The experimental setup in which CISS can be observed (A). A voltage
difference is applied between the leads and electrons will travel through the chiral
medium. The measured current as function of the voltage and the magnetization
of the tip in panels B-D for respectively left-handed, achiral or right-handed chiral
molecules [10]
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2. A bit on CISS

The last case - CISS in chemical reactions - is the phenomenon that different enan-
tiomers react in different rates with electrons that are either up or down polarized.
This is the form that interests chemists the most.

The range of reactions it can occur in is very broad. One example is in the adsorption
of enantiomers on a ferromagnetic sheet, as shown by Banerjee-Ghosh, Ben Dor and
Tassinari [11]. Different adsorption densities were observed, depending on the mag-
netization of the sheet and the enantiomer used, which is illustrated by figure 2.5. A
strong preference for the magnetization can be noted for the different enantiomers.
The discrepancy was only observed for the ferromagnetic sheet.

Figure 2.5.: The adsorption densities for different combinations of magnetization of the
sheet (indicated by H+ and H−) and enantiomers (indicated by L and D). Shown
for both a ferromagnetic sheet and a gold sheet (indicated by FM and Au) [11].

Despite all the research done into CISS, it still happens to be without a convincing
explanation. Scientists have put forward many theories, but none of them has been
able to describe CISS to its full extent.

It has for example been suggested that the circular motions of electrons traveling
through helical enantiomers induce magnetic fields, which affect the spin of the trans-
mitting electrons. And although that is true in principle, the magnitude of this effect
happens to be only a small fraction of that measured in experiments.
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2. A bit on CISS

Whenever there are effects that have to do with spin in physics, spin-orbit coupling
is one of the first mechanisms that is considered for its explanation and CISS is no
exception. And although it indeed provides some spin polarization, its magnitude is
only a fraction of what is observed in experiments.
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3. Derivation of the Breit equation

In this chapter the Breit equation is derived. This was first done by the American
physicist Gregory Breit in 1929 and this equation describes the interaction between
two electrons in the weakly relativistic limit. As a consequence of the finiteness of the
speed of light, the interaction is not instantaneous and retardation effects are taken
into account. These are correct up to the order 1

c2 .

The derivation can be roughly split up into two parts. In the first part, a mainly classi-
cal derivation of the most general form is given. This derivation takes the Lagrangian
for an electron in an electric field as its starting point and modifies it using the scalar
and vector potential and the Dirac matrices, to account for the velocity-dependent in-
teraction between two electrons. This part is largely based on the textbook by Jackson
[12].

Then, bispinors are introduced, these are the wave functions the operator of the Breit
equation works on and they are used to reduce the dimensionality of the equation
from 4 to 2, following Berestetskii [13]. With this, a new form for the Breit equation is
found, that describes the interaction of two electrons.

3.1. Maxwell equations and potentials

The Maxwell equations form the basis of electrodynamics. Usually they are written in
terms of the electric and magnetic fields, but sometimes it can be useful to write them
in terms of potentials.

Here we introduce the electrostatic potential or the scalar potential Φ(x, t) and the
magnetostatic potential or the vector potential A(x, t). These are the potentials as-
sociated with the electric and magnetic field. Φ is a scalar field, whereas A is a
vector field. They are respectively defined by E(x, t) = −∇Φ(x, t) − 1

c
∂A(x,t)

∂t and
B(x, t) = ∇ × A(x, t). We assume that the electron current that induces the mag-
netic field is constant over time and A(x) does not depend on t. Therefore the scalar
potential simplifies to E(x, t) = −∇Φ(x, t).

Explicit expressions for the potentials are respectively given by
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3. Derivation of the Breit equation

Φ(x, t) =
∫

ρ(x′, t)
|x − x′|d

3x′, (3.1a)

A(x, t) =
1
c2

∫ J(x′, t)
|x − x′|d

3x′. (3.1b)

3.1.1. Gauge transformations

From the definitions of the potentials one can see that they are invariant under so
called gauge transformations, which are given by

A → A′ = A +∇Λ (3.2a)

Φ → Φ′ = Φ − 1
c

∂Λ
∂t

(3.2b)

where Λ(x, t) is a scalar field that specifies the transformation.

For A one can see that B′ = ∇× (A +∇Λ) = ∇× A + 0 = B and that B is thus left
unchanged under this transformation.

For Φ, E′ = −∇(Φ − 1
c

∂Λ
∂t )−

1
c

∂
∂t (A +∇Λ) = −∇Φ − 1

c
∂A
∂t + 0 = E holds. E is thus

also invariant under the gauge transformation.

3.2. Lagrangian

The non-relativistic Lagrangian that describes an electron in an electromagnetic field
is given by [14]

L =
1
2

mv2 − q(Φ − v · A). (3.3)

This expression consists of a kinetic energy term and one of the potential.

From this expression a relativistic Lagrangian can be derived by modifying the kinectic
energy term - it will take on the form of the Lagrangian of a free particle 1 - and by
using the relativistic expressions for Φ and A.

Using this, we can also find an expression for the interaction between two electrons.
One can observe that this is the same as the interaction of an electron with the electric

1This term is not relevant for the derivation of the Breit interaction, but for the sake of completeness, the

free particle Lagrangian is taken as L f ree = mc2
√

1 −
( u

c
)2. Using a Taylor expansion, it can easily be

shown that this reduces to Lkin in the non-relativistic limit.
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3. Derivation of the Breit equation

field induced by the other electron. The free particle term can be neglected for this.
We call this first electron, electron 1. We call the potentials at the position of electron
1 as a result of the electric field of electron 2 Φ12 and A12. Putting everything together
we find

L12 = −q1Φ12 + q1v1·A12. (3.4)

This is thus the relativistic expression for the Lagrangian of the interaction between
two electrons.

3.3. Scalar potential

In order to find an explicit expression for the vector and scalar potentials it is con-
venient to choose the so-called Coulomb gauge. This is a transformation in which Λ
is chosen such that ∇ · A = 0. As a result of this, the Maxwell equation in terms of
potentials,

∇2Φ +
∂

∂t
(∇ · A) = −4πρ, (3.5)

can be simplified drastically. The second term disappears and the equation now
reads

∇2Φ = −4πρ. (3.6)

The other main advantage of using this gauge is that the scalar potential is relativisti-
cally correct for all orders of 1

c .

As one can see, this is a Poisson equation and its solution as an integral involving the
charge is given by

Φ(x, t) = − 1
4π

∫ −4πρ(x′, t)
|x − x′| d3x′. (3.7)

We notice that this is the same expression as (3.1a).

For two electrons, considered as point particles, the interaction between them can
be obtained directly from this. The charge densities are given by delta functions:
ρ(x′, t) = q2δ(x′ − x2). Therefore:

Φ12(x1, t) =
∫ q2δ(x′ − x2)

|x1 − x′| d3x′ =
q2

|x1 − x2|
. (3.8)
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3. Derivation of the Breit equation

3.4. Vector potential

To explicitly express the vector potential, we take equation (3.1b) as the starting point
and note that the current can be split up into a longitudinal and transverse part:
J = Jl + Jt, where the different terms are defined by ∇× Jl = 0 and ∇ · Jt = 0. This
is a so-called Helmholtz decomposition. As a result of the gauge we have chosen, the
current is fully described by the transversal current: J = Jt.

Additionally, we assume that the current is time-independant. The vector potential
then becomes:

A12(x1) =
1
c2

∫ Jt(x′)
|x1 − x′|d

3x′. (3.9)

The next step is to find an expression for Jt. For this the vector identity ∇× (∇× v) =
∇(∇ · v)−∇2v is used:

Jt(x) =
∫

δ(x − x′)Jt(x′)d3x′

= − 1
4π

∫
∇2 Jt(x′)

|x − x′|d
3x′

=
1

4π
∇×∇×

∫ Jt(x′)
|x − x′|d

3x′

=
1

4π
∇×∇×

∫ J(x′)
|x − x′|d

3x′

=
1

4π
∇(∇·

∫ J(x′)
|x − x′|d

3x′)− 1
4π

∇2
∫ J(x′)

|x − x′|d
3x′

= − 1
4π

∫
∇
(

J(x′)·(x − x′)
|x − x′|3

)
d3x′ − 1

4π

∫
−4πδ(x − x′)J(x′)d3x′ (3.10)

Now we substitute J(x′) = v2ρ(x′, t) = v2q2δ(x’ − x2):

Jt(x) =
∫

q2v2δ(x − x’)δ(x’ − x2)d3x′

− 1
4π

∫
∇
(

q2v2·(x − x′)
|x − x′|3

)
δ(x’ − x2)d3x′

=q2v2δ(x − x2)−
q2

4π
∇
(

v2·(x − x2)

|x − x2|3

)
. (3.11)

We can substitute this expression in equation (3.9) and evaluate the potential:
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3. Derivation of the Breit equation

A12 =
1
c2

∫ q2v2δ(x′ − x2)

|x1 − x′| − 1
|x1 − x′|

q2

4π
∇′
(

v2·(x′ − x2)

|x′ − x2|3

)
d3x′. (3.12)

The first term can be integrated directly and the second term can be found using a
substitution y = x’ − x2. Additionally we use r = |x1 − x2|. This gives:

A12 =
q2v2

c2r
− 1

c2

∫ 1
|y − r|

q2

4πc
∇r

(
v2·y
y3

)
d3y

=
q2v2

c2r
− q2

2c2 ∇r

(v2·r
r

)
=

q2v2

c2r
− q2

2c2
rv2 − v2·r

r2

=
q2

2c2

(v2

r
+

v2·r
r2

)
. (3.13)

With this, we have found an expression for the vector potential. This is correct up to
the order 1

c2 .

3.5. Breit interaction

Now that we have found expressions for Φ12 and A12, we can substitute (3.8) and
(3.13) into our interaction Lagrangian (3.4). We then find

L12 = −q1
q2

r
+ q1v1·

(
q2

2c2r

(
v2 +

r(v2·)r
r2

))
= − q1q2

r
+

q1q2

2c2r

(
v1·v2 +

(v1·r)(v2·r)
r2

)
(3.14)

The last step on our way to the Breit interaction is to find a relativistic expression for
v from the Heisenberg equation of motion:

v =
dr
dt

= − i
h̄
[r,H] = − i

h̄
ih̄cα = cα (3.15)

In this equation H is the Hamiltonian in the Dirac wave equation for an electron in an
electric field, as given by [15]

H = −eΦ + βE0 + α·(cp + eA). (3.16)

The α in equation (3.16) has the Dirac matrices αi as its components, with i ∈ {x, y, z}.
These operators are 4 × 4 matrices given by
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3. Derivation of the Breit equation

αi =

(
0 σi
σi 0

)
(3.17)

where the σi’s are the Pauli matrices [16].

Substituting (3.15) into (3.14) gives us the Breit interaction:

B = − q1q2

r
+

q1q2

2r

(
α1·α2 +

(α1·r)(α2·r)
r2

)
. (3.18)

3.6. Bispinors

Our Breit operator is an operator that works on four vectors, due to the dimensions
of the α operators. It works on bispinors, four vectors that describe the wave function
of both an electron and its corresponding antiparticle, the positron. Since we’re only
interested in the electron part, we will look for a way to reduce it such that we only
have to account for this. To do this, we first compose an explicit expression for the
four vectors.

The bispinor can be written as u =

(
uL
uS

)
, where uL and uS, as we shall now see,

are the large and small components of the bispinor corresponding to respectively the
electron and positron. The following relation for uL and uS holds

(2m + E − V)uS = (σ·p)uL (3.19)

If we assume that m ≫ E, V we find

uS =
1

2m
(σ·p)uL (3.20)

and we indeed see that uS is small compared to uL in the weakly relativistic limit.

We can use this expression for uS and the identity (σ·p)(σ·p) = p2 to calculate
⟨uS|uS⟩. This leads to

⟨uS|uS⟩ =
〈

uL|
p2

4m2 |uL

〉
, (3.21)∫

|uL|2 +
p2

4m2 |uL|2d3r ≈
∫
(1 +

p2

8m2 )
2|uL|2d3r =

∫
|w|2d3r (3.22)

where we have introduced a spinor w to express uL and uS. This is an unspecified
reference spinor. Equation (3.22) allows us to find an expression for w. This can then
be reformulated to give an expression for uL:
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3. Derivation of the Breit equation

w = (1 +
p2

8m2 )uL, (3.23)

uL ≈ (1 − p2

8m2 )w. (3.24)

Combining (3.20) and (3.24) gives us an expression for uS and thus for u. These are
given by

uS =
1

2m
(σ·p)(1 − p2

8m2 )w ≈ 1
2m

(σ·p)w, (3.25)

u =

(
(1 − p2

8m2 )w
1

2m (σ·p)w

)
. (3.26)

3.7. Breit term

To investigate the Breit interaction, as described by equation (3.18), for two electrons,
it first needs to be modified a bit more. First we substitute the elementary charge in
for qi, because that is the charge associated with the electrons. The expression is then
rewritten, using r = r1 − r2 and r = |r| =

√
(r1 − r2)2. ∇i is the gradient operator ∂

∂ri
acting on ri. This gives

B = − ee
r
+

eα1·eα2

2r
+

(eα1·r)(eα2·r)
2r3

= − e2

r
+

eα1·eα2

r
+

eα1·eα2r + (eα1·r)(eα2· r
r )

2r2

= − e2

r
+

eα1·eα2

r
+

1
2

eα1·eα2∇1
r
r

= − e2

r
+

eα1·eα2

r
+

1
2

eα1·eα2∇1∇2r

= − e2

r
+

eα1·eα2

r
+

1
2
(eα1 · ∇1)(eα2 · ∇2)r. (3.27)

3.8. Fourier transform

To further express this result, (3.27) is Fourier transformed. As a result of the linearity
of the Fourier transform, the transform of each individual term can be calculated.
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3. Derivation of the Breit equation

3.8.1. First and second term

The Fourier transformation of 1
r is calculated by evaluating

F (
1
r
) =

∫ 1
r

e−iq·rd3r. (3.28)

Here q is chosen as the transformation variable. We use q = p′
1 − p1 = p2 − p′

2.

This integral diverges and thus we cannot integrate it directly. To still be able to
evaluate it, we introduce the Yukawa potential: e−λr

r [17]. In the limit λ → 0 it equals
1
r and the Fourier transformation of this expression does not diverge for any finite
value of lambda. Its Fourier transform is given by

F (
e−λr

r
) =

4π

λ2 + q2 . (3.29)

Taking the limit λ → 0, we find that F ( 1
r ) =

4π
q2 . This leads to the Fourier transform of

the first two terms of (3.27). Both e2 and αi do not depend on r and are thus invariant
under the Fourier transformation.

3.8.2. Last term

For the last term, we can directly evaluate the integral of the Fourier transform:

F (∇1∇2r) =
∫

∇1∇2re−iq·rd3r. (3.30)

Writing out the derivatives results in:

F (∇1∇2r) =
∫

∂

∂r1

∂

∂r2
re−iq·(r1−r2)d3r

=
∫

−iq · iqre−iq·rd3r

= −8πq · q
q4 . (3.31)
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3. Derivation of the Breit equation

3.8.3. Total Fourier transform

Combining the results of (3.29) and (3.31) with (3.27), we find

F [B] =− 4πe2

q2 +
4πe2

q2 α1α2 −
4π(eα1 · q)(eα2 · q)

q4 (3.32)

as an expression for the Fourier transform of the Breit interaction.

3.9. Interaction

To investigate how this operator describes the interaction between the two electrons,
the expectation value of it is calculated using the joint wave function of the electrons.
This wave function is the product u1u2, where ui is as given by (3.26). This is done for
each term individually and afterwards the results are combined.

3.9.1. First term

For the first term it is important to first work out u′∗
1 u1 in terms of w1. This is done by

using the definition of u1 as given by (3.26):

u′∗
1 u1 =

√
2m1(1 −

p′2
1

8m2
1c2

)w′∗
1

√
2m1(1 −

p2
1

8m2
1c2

)w1

+
√

2m1
1

2m1c2 w′∗
1 (σ1 · p′

1)
√

2m1
1

2m1c2 (σ1 · p1)w

=2m1(1 −
p′2

1
8m2

1c2
)(1 −

p2
1

8m2
1c2

)w′∗
1 w1 +

1
2m1c2 w′∗

1 (σ1 · p′
1)(σ1 · p1)w1

=2m1w′∗
1 (1 −

p′2
1 + p2

1
8m2

1c2
)w1 +

1
2m1c2 w′∗

1 (σ1 · p′
1)(σ1 · p1)w1

=2m1w′∗
1

(
(1 −

(p′
1 − p1)

2

8m2
1c2

) +
1

4m2
1c2

(σ1 · p′
1)(σ1 · p1)

)
w1

=2m1w′∗
1

(
1 −

(p′
1 − p1)

2

8m2
1c2

+
i

4m2
1c2

(p′
1 × p1) · σ1

)
w1

=2m1w′∗
1

(
1 −

(p′
1 − p1)

2

8m2
1c2

+
i

4m2
1c2

(q × p1) · σ1

)
w1. (3.33)
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3. Derivation of the Breit equation

The derivation of an expression for u′∗
2 u2 is completely analogous to the foregoing.

The only difference in the end result is that the subscripts 1 are replaced by 2 and that
q is substituted by −q.

Using (3.33) and its equivalent for u′∗
2 u2 the first term of equation (3.32) can be evalu-

ated. This leads to

⟨u′
1u′

2| −
4πe2

q2 |u1u2⟩

=(u′∗
1 u′∗

2 )− 4πe2

q2 (u1u2) = −4πe2

q2 (u′∗
1 u1)(u′∗

2 u2)

=− 4πe2

q2 2m1w′∗
1

(
1 −

(p′
1 − p1)

2

8m2
1c2

+
i

4m2
1c2

(q × p1) · σ1

)
w1

2m2w′∗
2

(
1 − (p′

2 − p2)
2

8m2
2c2

− i
4m2

2c2
(q × p2) · σ2

)
w2

=− 4πe2

q2 4m1m2w′∗
1 w′∗

2

(
1 −

(p′
1 − p1)

2

8m2
1c2

+
i

4m2
1c2

(q × p1) · σ1

)
(

1 − (p′
2 − p2)

2

8m2
2c2

− i
4m2

2c2
(q × p2) · σ2

)
w1w2

=− 4πe2

q2 4m1m2w′∗
1 w′∗

2

(
1 −

(p′
1 − p1)

2

8m2
1c2

− (p′
2 − p2)

2

8m2
2c2

+
i

4m2
1c2

(q × p1) · σ1 −
i

4m2
2c2

(q × p2) · σ2

)
w1w2. (3.34)

3.9.2. Second and third term

To evaluate the second and third term, we need to work out u′∗
1 αu1. This is again

evaluated using the definitions of the different terms as in equations (3.17) and (3.26),
resulting into:
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3. Derivation of the Breit equation

u′∗
1 α1u1 =

√
2m1

(
(1 − p′2

1
8m2

1c2 )w
′∗
1

1
2m1c (σ1 · p′

1)w
′∗
1

)
(

0 σ1
σ1 0

)√
2m1

 (1 − p2
1

8m2
1c2 )w1

1
2m1c (σ1 · p1)w1


=2m1

(
1

2m1c
(σ1 · p′

1)w
′∗
1 σ1(1 −

p2
1

8m2
1c2

)w1

+ (1 −
p′2

1
8m2

1c2
)w′∗

1 σ1
1

2m1c
(σ1 · p1)w1

)

=
1
c
(
(σ1 · p′

1)w
′∗
1 σ1w1 + w′∗

1 σ1(σ1 · p1)w1
)
+O(

1
c3 )

=
1
c

w′∗
1 ((σ1 · p′

1)σ1 + σ1(σ1 · p1))w1

=
1
c

w′∗
1 (σ1i(σ1j p1j) + (σ1k p′1k)σ1i)w1

=
1
c

w′∗
1 (iϵijlσ1l p1j + p1i + iϵkil p′1kσ1l + p′1i)w1

=
1
c

w′∗
1 (p1i + p′1i + i(p1 × σ)i − i(p′

1 × σ)i)w1

=
1
c

w′∗
1 (2p1i + qi − iq × σ1)w1

=
1
c

w′∗
1 (2p1 + q + iσ1 × q)w1. (3.35)

The expression for u′∗
2 αu2 can again be found by changing the subscripts in (3.35) and

by substituting −q for q. Using this, the second term of (3.32) can be evaluated. That
gives

⟨u′
1u′

2|
4πe2

q2 α1α2|u1u2⟩

=(u′∗
1 u′∗

2 )− 4πe2

q2 α1α2(u1u2)

=
4πe2

q2 (u′∗
1 α1u1)(u′∗

2 α2u2)

=
4πe2

q2
1
c

w′∗
1 (2p1 + q + iσ1 × q)w1

1
c

w′∗
2 (2p2 − q − iσ2 × q)w2

=
4πe2

q2c2 w′∗
1 w′∗

2 (4p1p2 − q2 + 2q(p2 − p1) + q2(σ1 · σ2)− 2ip1(σ2 × q)

+ 2ip2(σ1 × q)− iq(σ1 × q)− iq(σ2 × q))w1w2. (3.36)
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3. Derivation of the Breit equation

Ultimately we only have the third term of (3.32) left. For this we again us the result
(3.35). This way we find the third term to be

⟨u′
1u′

2| − 4πe2 (α1 · q)(α2 · q)
q4 |u1u2⟩

=(u′∗
1 u′∗

2 )− 4πe2 (α1 · q)(α2 · q)
q4 (u1u2)

=− 4πe2

q4 (u′∗
1 (α1 · q)u1)(u′∗

2 (α2 · q)u2)

=− 4πe2

q4
1
c

w′∗
1 (q · (2p1 + q + iσ1 × q))w1

1
c

w′∗
2 (q · (2p2 − q − iσ2 × q))w2

=− 4πe2

q4c2 w′∗
1 w′∗

2 (q2(4p1p2 − q2 + 2q(p2 − p1) + q2(σ1 · σ2)− 2ip1(σ2 × q)

+ 2ip2(σ1 × q)− iq(σ1 × q)− iq(σ2 × q)))w1w2

=− 4πe2

q4c2 w′∗
1 w′∗

2 (4(p1 · q)(p2 · q)− q4 + 2q3(p2 − p1))w1w2. (3.37)

3.9.3. Total interaction

Now that we have expressions for all the terms of (3.32), in the forms of (3.34), (3.36)
and (3.37), they can be substituted back into the original expression, giving:
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3. Derivation of the Breit equation

F (B) =− 4πe2

q2 4m1m2w′∗
1 w′∗

2

(
1 −

(p′
1 − p1)

2

8m2
1c2

− (p′
2 − p2)

2

8m2
2c2

+
i(q × p1) · σ1

4m2
1c2

− i(q × p2) · σ2

4m2
2c2

)
w1w2 +

4πe2

q2c2 w′∗
1 w′∗

2 (4p1p2 − q2 + 2q(p2 − p1)

+ q2(σ1 · σ2)− 2ip1(σ2 × q) + 2ip2(σ1 × q)− iq(σ1 × q)

− iq(σ2 × q))w1w2 −
4πe2

q4c2 w′∗
1 w′∗

2 (4(p1 · q)(p2 · q)− q4

+ 2q3(p2 − p1))w1w2

=− 4πe24m1m2w′∗
1 w′∗

2

(
1
q2 − 1

8m2
1c2

− 1
8m2

2c2
+

i(q × p1)σ1

4m2
1c2q2

− i(q × p2)σ2

4m2
2c2q2

− p1p2

m1m2c2q2 +
1

4m1m2c2 − p2 − p1

2m1m2c2q
− σ1 · σ2

4m1m2c2 +
2i(σ2 × q)p1

4m1m2c2q2

− 2i(σ1 × q)p2

4m1m2c2q2 +
(q · σ1)(q · σ2)

4m1m2c2q2 +
(p1 · q)(p2 · q)

m1m2c2q4 − 1
4m1m2c2

+
p2 − p1

2m1m2c2q

)
w1w2

=− 4πe24m1m2w′∗
1 w′∗

2

(
1
q2 − 1

8m2
1c2

− 1
8m2

2c2
+

(p1 · q)(p2 · q)
m1m2c2q4

− p1p2

m1m2c2q2 +
i(q × p1)σ1

4m2
1c2q2

− i(q × p2)σ2

4m2
2c2q2

+
i(σ2 × q)p1

2m1m2c2q2 − i(σ1 × q)p2

2m1m2c2q2

+
(q · σ1)(q · σ2)

4m1m2c2q2 − σ1 · σ2

4m1m2c2 +
1

4m1m2c2 − 1
4m1m2c2 − p2 − p1

2m1m2c2q

+
p2 − p1

2m1m2c2q

)
w1w2. (3.38)

As one can see, the last four terms cancel each other out and they leave us with the
Fourier transformed result of the Breit interaction. The last step is to transform this
back.

3.10. Inverse Fourier transform

The different terms of (3.38) can be split up into a couple of different groups, according
to their dependence on q. This is important to note for the inverse Fourier transform.
It can be of the form 4π

q2 , such as terms 1 and 5, of the form 4πq
q2 , which are terms 6 up

until 9, of the form 4π(a·q)(b·q)
q4 , as is term 4, of the form 4π(a·q)(b·q)

q2 , such as term 10,
or it can be independent of q, which are terms 2, 3 and 11.
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3. Derivation of the Breit equation

For each of these forms in general the inverse Fourier transform can be determined
using

f (r) =
1

(2π)3

∫
F (q)eiq·rd3q. (3.39)

And using these results the inverse Fourier transform of (3.38) can be determined as
a linear combination of these with the correct prefactors from (3.38).

From (3.28) we know that for the inverse Fourier transform of 4π
q2 the following

holds:

F−1(
4π

q2 ) =
1

(2π)3

∫ 4π

q2 eiq·rd3q =
1
r

. (3.40)

Solving integral (3.39) for the other forms can be quite tedious. To avoid this, (3.40) is
taken as a starting point and modified using the appropriate derivatives, so that the
forms we want to evaluate start to appear within the integral. If we then also take
the same derivative on the right hand side, we have an outcome for the integral of the
inverse Fourier transform.

3.10.1. Second form

For 4πq
q2 , we differentiate both sides with respect to r. That results in

∂

∂r
1

(2π)3

∫ 4π

q2 eiq·rd3q =
∂

∂r
1
r

1
(2π)3

∫ 4π

q2 iqeiq·rd3q =
∂

∂r
1√
r2

1
(2π)3

∫ 4πq
q2 eiq·rd3q =

1
i
−1
2

2r

r2
√

r2
=

ir
r3 . (3.41)

3.10.2. Third form

For the term 4π(a·q)(b·q)
q4 , we multiply both sides of (3.40) by 1

2 (a ·
∂
∂r )(b · r) and we use

the variable substitution q = −u:
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3. Derivation of the Breit equation

1
2
(a · ∂

∂r
)(b · r)

1
(2π)3

∫ 4π

q2 eiq·rd3q =
1
2
(a · ∂

∂r
)(b · r)

1
r

−1
2

a · b
1

(2π)3

∫ 4π

u2
∂

∂r
re−iu·rd3u =

1
2
(a · ∂

∂r
)b · r

r

−1
2

a · b
1

(2π)3

∫ 4π

u2
∂

∂r
∂

∂u
−1

i
e−iu·rd3u =

1
2

a · b ·
r − r r

r
r2

1
2

a · b
1

(2π)3

∫ 4π

u2
∂

∂u
− ue−iu·rd3u =

1
2

a · b
1
r
− 1

2
a · b · rr

r3 . (3.42)

The left hand side of the equality is evaluated using integration by parts. To keep
the calculation clear, the prefactors are emmited for now. Later on they will be added
back:

∫ 1
u2

∂

∂u
− ue−iu·rd3u =[

1
u2 − ue−iu·r]−

∫ −2
u3 − ue−iu·rd3u

−
∫ 1

u2 (−1 + iur)e−iu·rd3u

=− [
1
u

e−iu·r]−
∫ 2

u3 ue−iu·rd3u

+
∫ 1

u2 e−iu·rd3u −
∫ 1

u
ire−iu·rd3u

=− [
1
u

e−iu·r]−
∫ 2

u3 ue−iu·rd3u

+ [
−1
u

e−iu·r]−
∫ 1

u
− ire−iu·rd3u

=−
∫ 2

u3 ue−iu·rd3u. (3.43)

If we now combine the results of (3.42) and (3.43), we find

1
2

a · b
1

(2π)3 4π
∫

− 2
u3 ue−iu·rd3u =

1
2

a · b
1
r
− 1

2
a · b · rr

r3

−a · b
1

(2π)3

∫ 4π

u3 u
u
u

e−iu·rd3u =
1
2r

a · b − 1
2r3 (a · r)(b · r)

− 1
(2π)3

∫ 4π(a · u)(b · u)
u4 e−iu·rd3u =

1
2r

(
a · b − 1

r2 (a · r)(b · r)
)

1
(2π)3

∫ 4π(a · q)(b · q)
q4 eiq·rd3q =

1
2r

(
a · b − 1

r2 (a · r)(b · r)
)

(3.44)

and this is the expression for the inverse Fourier transform of 4π(a·q)(b·q)
q4 .
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3. Derivation of the Breit equation

3.10.3. Fourth form

To transform 4π(a·q)(b·q)
q2 back, we multiply both sides of (3.40) with −(a · ∂

∂r )(b · ∂
∂r ):

−(a · ∂

∂r
)(b · ∂

∂r
)

1
(2π)3

∫ 4π

q2 eiq·rd3q = −(a · ∂

∂r
)(b · ∂

∂r
)

1
r

− 1
(2π)3

∫ 4π

q2 (ia · q)(ib · q)eiq·rd3q = −(a · ∂

∂r
)b · − r

r3

1
(2π)3

∫ 4π(a · q)(b · q)
q2 eiq·rd3q = a · b

r3 − r3rr
r6

1
(2π)3

∫ 4π(a · q)(b · q)
q2 eiq·rd3q =

1
r3

(
(a · b)− 3

(a · r)(b · r)
r2

)
. (3.45)

The second derivative at the right hand side of this expression, however, diverges at
r = 0. To prevent this problem, the term 4π

3 a · bδ(r) is added onto the expression.

3.10.4. Fifth form

And lastly, for the constant term, we know that [18]

F−1(1) = δ(r). (3.46)

3.10.5. Total inverse Fourier transform

To calculate the inverse Fourier transform of (3.38), all that is left to do, is combining
the results of (3.40), (3.41), (3.44), (3.45) and (3.46) with the corresponding prefactors
from (3.38). This leads to
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3. Derivation of the Breit equation

B =
e2

r
− πe2

2m2
1c2

δ(r)− πe2

2m2
2c2

δ(r) +
e2

m1m2

1
2r

(p1 · p2 −
(p1 · r) (p2 · r)

r2 )

− e2p1 · p2

m1m2r
− e2 σ1 · r × p1

4m2
1c2r3

+ e2 σ2 · r × p2

4m2
2c2r3

+ e2 σ1 · r × p2

2m1m2c2r3

− e2 σ2 · r × p1

2m1m2c2r3 +
e2

4m1m2c2

(
1
r3

(
σ1 · σ2 − 3

(σ1 · r)(σ2 · r)
r2

)
+

4
3

πσ1 · σ2δ(r)
)
− πe2 σ1 · σ2

m1m2c2 δ(r)

=
e2

r
− πe2

2c2 δ(r)

(
1

m2
1
+

1
m2

2

)
− e2

m1m2

1
2r

(
p1 · p2 +

(p1 · r)(p2 · r)
r2

)
− e2 σ1 · r × p1

4m2
1c2r3

+ e2 σ2 · r × p2

4m2
2c2r3

+ e2 σ1 · r × p2

2m1m2c2r3 − e2 σ2 · r × p1

2m1m2c2r3

+
e2

4m1m2c2

(
1
r3

(
σ1 · σ2 − 3

(σ1 · r)(σ2 · r)
r2

)
− 8

3
πσ1 · σ2δ(r)

)
(3.47)

which is our final expression for the Breit interaction.
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4. Green’s functions and the
Meir-Wingreen formula

A way to calculate the transport of electrons through a material is through so-called
nonequilibrium Green’s function theory [19]. This is a way to find the current in a
quantum device [20]. The theory is based around the Green’s function. For a closed
system that is the operator

G(z) = (zI −H)−1 (4.1)

that is defined in terms of the Hamiltonian H. Using the eigenfunctions |ϕj⟩ of the
Hamiltonian with corresponding eigenvalues ϵj, this can be written as

G(z) = ∑
j
|ϕj⟩

1
z − ϵj

⟨ϕj|. (4.2)

This expression however, diverges for z → ϵj. To prevent this, the retarded and
advanced Green’s function are introduced:

GR(ϵ) = (ϵI −H+ iη)−1 (4.3a)

GA(ϵ) = (ϵI −H− iη)−1 (4.3b)

where η is a small positive number. We see that GA = (GR)∗.

Ultimately, using the retarded and advanced Green’s function, an equation for the
transmission of electrons through a material can be determined. That is the Meir-
Wingreen formula, given by:

T (ϵ) = Tr(GRΓDGAΓS). (4.4)

Here ΓD and ΓS are the couplings with respectively the drain and the source of the
system. These are matrices that determine the in- and outflow of the system. They are
defined by the following set of equations:
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4. Green’s functions and the Meir-Wingreen formula

ΓD,S = i(ΣD,S − Σ∗
D,S) (4.5a)

ΣD,S = τ∗
D,SgD,SτD,S (4.5b)

where τ is the coupling parameter, a constant that determines the flowrate, and gD,S
is the Green’s function of either the drain or the source subsystem.
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5. Simulation of electron transport
through a chiral molecule

To look into the effect of the Breit interaction on the transport of an electron through a
chiral molecule, a transport code is used. Such a code is composed following a couple
of steps. Firstly the chiral molecule which is used in the simulation is introduced
and a tight binding Hamiltonian is constructed for this problem. This is written as a
matrix and its elements are determined and implemented in the simulation. In this
way the electron transport is investigated.

5.1. Chiral molecule

As chiral medium, an S-shaped device is chosen, as depicted in figure 5.1. It is easily
seen that this molecule is different from its mirror image and hence chiral. The sim-
plicity of the molecule ensures that it lends itself well for the analysis of problems in
which chirality plays a role.

Figure 5.1.: An S-shaped device, where each dot indicates a different site with the
given connections inbetween. The colored ends are the connections to the leads
[21].

Each dot is an atom or a site of the molecule and the the lines between are the connec-
tions between different sites. The colored ends are where the molecule is connected

28



5. Simulation of electron transport through a chiral molecule

to the leads. The left lead is magnetized. The molecule is two-dimensional and the
electron transport will exclusively be in the plane of the molecule.

This is not a realistic physical molecule. Rather it is simple arteficial molecule that has
as main purpose to be a sandbox for tests regarding CISS. Calculations made on this,
can not be directly compared to experimental observations and are mainly a directive
and set-up for further research. In a follow-up the calculations could for example be
expanded to physical chiral molecules such as DNA.

5.2. Tight binding

To implement this problem in a simulation, equation (3.47) is rewritten as a tight
binding Hamiltonian.

Tight binding is a model from solid state physics that explains the way electrons in a
chain of atoms behave [22]. The total Hamiltonian of the problem becomes

H = K + V +HSOI + B, (5.1)

where K and V are the contributions of the kinetic and the potential energy of the
electrons to the Hamiltonian and where HSOI is the ’regular’ spin-orbit interaction.

5.3. Matrix Hamiltonian

The Hamiltonian of equation (5.1) is rewritten in the form of a hermitian blockma-
trix, so that it can be implemented in the simulation. In general the matrix looks as
follows:

H =



ϵi1↓ τi1↑i1↓ τi1↓i2↓ τi1↑i2↓
τi1↓i1↑ ϵi1↑ τi1↓i2↑ τi1↑i2↑
τi2↓i1↓ τi2↑i1↓ ϵi2↓ τi2↑i2↓ τi2↓i3↓ . .
τi2↓i1↑ τi2↑i1↑ τi2↓i2↑ ϵi2↑ τi2↓i3↑ . .

τi3↓i2↓ τi3↑i2↓ .
. . .
. . .


. (5.2)

For a system of n sites, this is a 2n × 2n matrix, composed of n2 blocks. Each block
corresponds with the interactions between the electrons of two sites, located at i and
i′. Every block is divided down into the four possible different spin combinations of
the two electrons.

The diagonal elements of the matrix are the eigenenergies of the system and the off-
diagonal elements in the diagonal blocks are the interactions between a spin-down and
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5. Simulation of electron transport through a chiral molecule

a spin-up electron at the same site. The elements in the off-diagonal blocks are the
energies associated with the interactions between different sites of the molecule. For
clarity, only the nearest-neighbour interactions are included in (5.2), but it can easily
be expanded to further neighbour interactions, at the expense of losing particle-hole
symmetry.

5.4. Determining the matrix elements

The matrix elements of (5.2) can be determined by evaluating His,i′s′ = ⟨is|B|i′s′⟩
for the different combinations of is and i′s′. This can be done for all terms of (5.1)
individualy due to linearity, after which they will all be added up to find the total
Hamiltonian in matrix form.

5.4.1. Kinetic and potential energies

The terms K and V together lead to the eigenenergies and hopping [22]. The eigenen-
ergies are elements such that Hi,i = ϵ0. The hopping is given by the hopping pa-
rameter t. This represents the energy associated with the electron moving between
two orbitals. We assume that this can only happen for near-neighbours. This leads to
off-diagonal elements Hi,i′ = −t, where i and i′ are chosen such that they correspond
to neighbouring sites.

5.4.2. Spin-orbit interaction

The Hamiltonian associated with the spin-orbit interaction is given by

HSOI = CS · B = CS · (E × p̂) (5.3)

where C is an unspecified constant and E is an imaginary electric field. This can be
rewritten such that it leads to matrix elements

Hi,i′ = −iασ · (ei,i′ × di,i′). (5.4)

Here a new constant α = eCh̄
2a E( i+i′

2 ) and vectors ei,i′ and di,i′ are introduced, which
respectively are the unit vectors is the direction of the electric field at the middle point
between the two sites and the vector connecting the two sites: di,i′ = i − i′ [21].
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5. Simulation of electron transport through a chiral molecule

5.4.3. Breit terms

The B term of (5.1) can be implemented directly into the Hamiltonian matrix, follow-
ing the expression of (3.47). The terms of that equation become elements of the matrix
and it is assumed that the Breit interaction only works for near-neighbours.

As one can see, we have the momentum p in this expression. This term is represented
by the average motion through a location. That is the average of all the possible paths
that have have that location in the middle and two neighbouring locations as begin
and end points. This is illustrated by an example in figure 5.2.

Figure 5.2.: The momentum at the location of the red dot is calculated as the average
of the possible paths through that location, represented by the arrows.

Here the red dot represents the location we want to determine the momentum for and
the black dots are all neigbouring locations. The paths through this point are repre-
sented by the arrows. The momentum is calculated as the average of these paths:

pi =
1
N ∑

n,m
rn − rm (5.5)

where we sum over the begin and end points n, m of all possible paths through location
i and N is the amount of paths.

5.5. Simulation

Based on the theory of the previous sections an implementation of the Breit interaction
for the transport of an electron through a chiral medium has been constructed. For
this, the Hamiltonian (5.2), with elements as described by section 5.4, is applied to the
chiral molecule of 5.1.
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5. Simulation of electron transport through a chiral molecule

For this, the locations of all sites are stored in an three-dimensional array. These are
chosen such that the molecule lays in the x-y plane. The z coordinate is therefore zero.
In another array the indices of all connected sites are stored. Using these, the distances
between the connected sites are calculated and an expression for the momentum at
each site is determined as described in section 5.4.3.

These arrays are three-dimensional, so that they can seamlessly be used in the deter-
mining of the matrix elements; the spin-orbit terms and the Breit terms are all given
by three-dimensional expressions. Since the molecule is two-dimensional and lays in
the x-y plane, the electron transport also is exclusively in this plane.

The constants that are present in the Hamiltonian are estimated: the onsite energy and
the hopping as ϵ0 = 1 and t = 4 and the α from the spin-orbit interaction as α = 1.6.
The electric field of the spin-orbit interaction is chosen in the x-direction along the
molecule. These estimates are based on an earlier thesis on a similar topic [21].

These estimates are not exact and have as main purpose to provide an indication for
the effect of the Breit interaction in CISS. Since the S-shaped device we have chosen is
not a real physical molecule, there is no way to make experimental observations from
which more accurate values for all constants can be determined. This is an issue that
could be considered in a follow-up research.

Using this all, the total Hamiltonian in its matrix form is constructed and implemented
in the coding software. The total Hamiltonian for this problem looks like figure 5.3.

(a) The real part of the Hamiltonian. (b) The imaginary part of the Hamiltonian.

Figure 5.3.: Visualization of the total Hamiltonian in matrix form.

5.5.1. Transmission

This Hamiltonian is used to construct the advanced and retarded Green’s functions,
as described by equations (4.3a) and (4.3b). For η a small value is chosen, namely
η = 0.001 and the value of ϵ is varied over.
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5. Simulation of electron transport through a chiral molecule

The coupling matrices ΓD and ΓS are taken independently of the energy. This is the
wide band limit. It are 28 × 28 matrices and they are non-zero for spin-up and down
on the red sites in figure 5.1 only. The left lead is magnetized. These matrices are
depicted in figures 5.4a and 5.4b.

(a) The coupling of the S-shaped molecule
to the left lead.

(b) The coupling of the S-shaped molecule
to the right lead.

Figure 5.4.: The matrices for the coupling of the S-shaped molecule to the leads visu-
alised. The color difference between the two spin-directions in the first four diagonal
elements of the left lead arises as a result of the fact that the left lead is magnetized.

These coupling matrices are then multiplied with the spin occupations of the electron.
The left lead with the spin occupation of the electron that enters the molecule and
the right lead with that of the leaving electron. We do this for all possible combina-
tions (down-down, up-up, down-up and up-down). This way we can calculate the
transmission for the different spin-combinations.

This is all combined in the Meir-Wingreen formula, which was given by (4.4). This
way the transmission of an electron through the S-shaped molecule is obtained for the
different spins: T↓↓, T↑↑, T↓↑ and T↑↓, with the subscripts representing the states of the
ingoing and outgoing electron.

This is done for a whole range of values of ϵ. In figure 5.5 the total transmission
is plotted. That is the sum of the different transmissions of all spin-combinations:
T = T↓↓ + T↑↑ + T↓↑ + T↑↓. In appendix A, the plots for the different transmissions
can be found. The plots have been cut off at T = 100 for clearity.
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5. Simulation of electron transport through a chiral molecule

Figure 5.5.: Plot of the total electron transmission as a function of ϵ.

In total 28 distinct peaks can be seen in the figure. This makes sense, because the
Hamiltonian is a 28 × 28 matrix with 28 distinct eigenvalues ϵ. And because we chose
η to be small, the transmission will assume high values for these ϵ’s and relatively low
values away from these resonances.

Using the transmissions found the spin-polarization is determined. That is done as

P =
T↑↑ + T↑↓ − T↓↓ − T↓↑
T↑↑ + T↑↓ + T↓↓ + T↓↑

. (5.6)

This is also done for the range of ϵ values and this is plotted in figure 5.6.
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5. Simulation of electron transport through a chiral molecule

Figure 5.6.: The spin-polarization of the electron transport through the chiral molecule
as a function of ϵ.

5.5.2. Non-Breit Hamiltonian

This process is repeated for the Hamiltonian H = K +V +HSOI . That is thus the same
Hamiltonian as in the foregoing sections minus the Breit interaction. The constructing
of the matrix Hamiltonian and the calculating of the transmission is done the same as
before.

For this Hamiltonian we find figures 5.7 and 5.8 for the total transmission and the
spin-polarization respectively.

35



5. Simulation of electron transport through a chiral molecule

Figure 5.7.: The electron transmission for the Hamiltonian excluding the Breit interac-
tion as a function of ϵ.

Again 28 peaks can be distinguished in this plot. This is because of the same reason
as before: The Hamiltonian has 28 eigenvalues, for which a high transmission value
is obtained.
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5. Simulation of electron transport through a chiral molecule

Figure 5.8.: The spin-polarization of the Hamiltonian excluding the Breit interaction,
plotted as a function of ϵ.

5.5.3. Comparison

The spin-polarization of the two different Hamiltonians can be plotted in one figure.
That is done in figure 5.9. Here the blue graph is the spin-polarization of the Hamil-
tonian including the Breit interaction and the red is for the Hamiltonian excluding
it.

37



5. Simulation of electron transport through a chiral molecule

Figure 5.9.: The spin-polarization of the Hamiltonians including and excluding the
Breit interaction plotted in one figure, in respectively blue and red. Both as a func-
tion of ϵ.

One can clearly see that these different Hamiltonians result in a different spin-polarization.
From this we can conclude that the influence of the Breit interaction on the transport
of an electron through a chiral molecule is significant and of the same order of mag-
nitude as the hopping and the spin-orbit interaction. It is therefore not sensible to
disregard the Breit interaction in further calculations on CISS.

It should however be noted that this simulation is not physical and its conclusion is
therefore only a directive. The chosen chiral molecule is an artificial enantiomer and
can therefore not directly be compared to experimental observations on CISS and the
estimates for all constants are most certainly not exact. In further research it could for
example be expanded to cover set-ups in which chiral induced spin selectivity can be
observed in experiments, so that better physical results can be obtained and a more
well-advised conclusion can be made, which can also be compared to experimental
observations.

38



6. Conclusion

The goal of this thesis was to investigate the Breit interaction in the context of CISS and
to examine its influence on electron transport. To do so, a simulation of the transport
of an electron through an S-shaped device, a simple chiral molecule, was made. This
was performed for a Hamiltonian that includes eigenenergies, hopping, spin-orbit
interaction and the Breit interaction, as well as that same Hamiltonian excluding the
Breit interaction. For both simulations the transmission and the spin-polarization were
determined, which were compared to each other.

It was found that the spin-polarizations associated with the two Hamiltonians formed
substantially different patterns when determined as function of the energy.

From this it was concluded that the Breit interaction has a significant influence on the
transport of an electron through a chiral molecule and that it is of the same order of
magnitude as the hopping and spin-orbit interaction.

Additionally the conclusion has been drawn that because of its significant influence,
it is not sensible to neglect the Breit interaction in any future calculations of chiral
induced spin selectivity.

This study has not found a definitive explanation for the phenomenon of CISS. There-
for there is one main suggestion that follows from this thesis to further help in the
search. In future research the simulation can be improved upon by enhancing its
physical correctness. The S-shaped device is simple chiral molecule that was chosen
to ease the calculations, but in future research it can be replaced by a chiral molecule
that is used in experimental research of CISS, such as DNA. This way the simulation
results can be compared to the experimental observations. Furthermore, the accuracy
of the estimates of the constants in the Hamiltonian can be improved upon, possibly
on the basis of experimental observations of a more physical model. Since the current
estimates have as main purpose to provide an indication for the effect of the Breit
interaction and are not exact.
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A. Appendix

In this appendix, the plots of all the individual spin-combination transmissions, T↓↓,
T↑↑, T↓↑ and T↑↓, are presented.

Figure A.1.: Plot of the down-down electron transmission as a function of ϵ.
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A. Appendix

Figure A.2.: Plot of the up-up electron transmission as a function of ϵ.
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Figure A.3.: Plot of the down-up electron transmission as a function of ϵ.
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A. Appendix

Figure A.4.: Plot of the up-down electron transmission as a function of ϵ.
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