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Abstract
In this thesis report, a new radial basis function (RBF) interpolation mesh deformation method is in­
vestigated that is applicable on periodic domains that contain small clearance gaps. In the field of fluid
structure interaction, there is a strong interaction between a structure and the fluid in which this struc­
ture is immersed. When performing simulations of this interaction, the fluid mesh has to adapt to the
changing domain which occurs due to the structure deforming. The adaption of the fluid mesh can be
done with an RBF interpolation method. Although this is considered to be one of the most robust meth­
ods available, there are specific cases in which the method can still yield some poor quality deformed
meshes. This is for example the case when small clearance gaps are present such as the region be­
tween a blade and the shroud in turbomachinery. Then it becomes beneficial to allow boundary nodes
to slide to improve the mesh quality.

In turbomachinery, periodic domains are also often encountered, for example in a gas turbine. Here,
the same blade is constantly repeated, allowing to use one single blade in computations which will
have a domain with periodic boundaries. In general, the larger the number of blades, the smaller the
distance between the blade and the periodic mesh boundary will be. Hence, also here small clear­
ance gaps are present. As the blade might undergo a large deformation, it is possible for the blade to
even intersect themesh boundary if this boundary is kept fixed, which would lead to a degenerate mesh.

The aim of this thesis is to avoid this scenario by making adaptions to the RBF interpolation method that
allow the periodic boundaries of the mesh to be displaced with the deforming blade. Evidently, this has
to be done in a periodic manner, keeping both periodic boundaries equal. This will yield a higher mesh
quality of the deformed mesh as it will reduce the skewness and avoid the occurrence of degenerate
cells. Two different methods for periodic boundary displacement are investigated in this report. Both
methods work for both translational and rotational periodic boundaries and several two­dimensional
(2D) and three­dimensional (3D) meshes are used as test cases.

The first method is the periodic distance method which is based on making the distance between the
boundary nodes periodic. This method is very similar to the regular RBF method and only requires a
regular Euclidean distance function to be replaced by a periodic distance function. This means that
the computational cost is also similar with an interpolation matrix of size 𝑁𝑚 ×𝑁𝑚. This method shows
good results for both 2D and 3D meshes and both types of periodic boundaries. Apart from giving the
periodic boundaries an identical displacement, it also allows for a smooth transition from one mesh to
another.

The second method is based on equal displacement. Hence, the RBF interpolation matrix is adapted
to include conditions imposing equal displacement of the periodic boundary nodes. These extra con­
ditions yield a larger interpolation matrix of size (𝑁𝑚 +𝑁𝑝)× (𝑁𝑚 +𝑁𝑝). This means the computational
cost for this method is higher than for the periodic distance or the regular RBF method. This method
also shows good results in terms of deformed mesh quality but does not feature the same smoothness
over the interface between two meshes and creates small kinks at the interface.

Even though RBF interpolation can be relatively low in computational cost compared to other mesh
deformation methods that require mesh connectivity information, it still becomes computationally ex­
pensive for large 3D problems with a high number of nodes. Therefore, a greedy algorithm is also used
for larger problems which allows for a reduced amount of nodes selected to perform the interpolation.

In conclusion, the periodic displacement method used with RBF interpolation shows great potential
for different types of problem sizes and periodic boundaries and can potentially make the simulation
process of periodic problems much more efficient.
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1
Introduction

Fluid­structure interaction (FSI) is an interdisciplinary field that studies the interaction between a de­
formable structure and a fluid flow. There are countless natural and engineering applications where
this interaction plays an important role. Some examples are dam­water systems [25], blood flow within
arterial walls [11] and aircraft [10]. The study of these interactions is important to assess the perfor­
mance of the structure once it is deformed and can also be used to predict the instability of the coupled
systems. However, these interaction problems are often too complex for analytical solving, hence the
importance of numerical simulations.

In the past couple of decades, computers have significantly improved in computational power, making
it possible to carry out more advanced numerical computations needed for the FSI simulations. These
simulations are important for shape optimization applications where typically the geometry is optimized
by minimizing an objective function, such as for adjoint­based optimization methods [8]. Other com­
monly used applications include aeroelastic phenomena computations such as flutter [41]. The simula­
tions combine both structural analysis and computational fluid dynamics (CFD). The fluid exerts forces
on the structure, causing it to deform. This displacement of the structural boundary then leads to the
fluid domain having to deform to match the deformed structural geometry, implying a deformation of
the fluid mesh. The mesh can be adapted by either regenerating it, which can be very computation­
ally expensive, or by using a mesh deformation method. When using a mesh deformation method, an
appropriate choice should be made for the specific method such that it is robust and provides good
quality meshes even for large displacements [31]. Another important criterion is that the computational
cost is not too extensive. This could be accomplished for large problems through the use of efficiency
optimization techniques.

1.1. Mesh deformation methods
In computational fluid dynamics (CFD), meshing is used where the fluid volume or domain is broken
down into smaller cells, forming a two­dimensional (2D) or three­dimensional (3D) grid. During a sim­
ulation, the fluid equations are solved for each of these cells. The quality of the mesh is important for
the convergence and the speed of the simulation. It also influences the accuracy and reliability of the
simulation result. As the flow domain in changing, the fluid mesh has to be adapted to conform the new
domain. Regenerating the mesh is a computationally expensive procedure and mapping the solution to
the new mesh can introduce errors. Therefore, a method is required to dynamically deform the mesh.
Several mesh deformation methods have already been presented in literature of which some are more
robust and others are more efficient, depending on what is desired for the specific simulation. There
are a couple of criteria that a mesh deformation method should ideally perform well for, listed here in
descending order of importance:

• Robustness: The method is robust if the yielded mesh quality is still high after it has undergone
multiple deformations and no degenerate cells are present after large deformations. This crite­
rion is important as degenerate cells will cause errors when running the simulation and stop the
simulation from continuing.

2
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• Deformation range: The method should be able to handle both small and large deformations so
it can be applicable for several different cases.

• Computational cost: The method should be computationally efficient as the simulation might
consist of a large number of time steps where the method has to be performed every time. The
size of the mesh can also become very large for 3D applications and therefore the method should
still be efficient to keep the computational cost of the simulation reasonable even for increased
mesh sizes. This efficiency is also influenced by the code its ability to be parallelized as this
allows for accelerated computations with respect to performing serial computations.

• Implementation complexity: The method should preferably be simple to implement, making it
easier for adaptions to be made to the code at a later stage and for errors to be located within the
code.

Generally, it is more important to have a robust method that might be complex to implement opposed
to a simple method that cannot handle large deformations and that will produce poor mesh quality.

The deformation methods can be divided in two main groups: physical analogy based and interpo­
lation based methods. Physical analogy based methods use a physical process to describe the de­
formation and use the connectivity information of the mesh. These methods involve solving a system
of equations that include the complete mesh and therefore result in a higher computational cost. In
unstructured meshes, hanging nodes can occur when using these methods which results in extra com­
putational cost to remove them. The need for connectivity information also makes it more complex for
parallelization to be applied. The most commonly used physical analogy method is the spring analogy
method [2]. Here, the mesh lines are replaced by linear springs with an inversely proportional stiffness
to its length. When the springs are in equilibrium, the force in the node will be zero and this way, the
displacement of the node is found. Although this method is easy to implement, it is less suitable for
larger deformations and might create degenerate cells as a node can possibly cross an edge. There­
fore, several adaptions of the linear spring analogy method have been created to improve some of its
flaws such as the ball­vertex spring [9], the torsional spring [19], the semi­torsional spring [4, 39] and
the ortho­semi­torsional spring method [14]. The latter being the most advanced method and scoring
the highest for the different deformation method criteria.

Another physical analogy method is the linear elasticity method [3, 5, 17, 23, 24]. In this method,
the displacement of the node is computed by modeling the mesh as an elastic body and solving lin­
ear elasticity equations. This allows for larger deformations but comes at an increased computational
cost compared to the spring analogy. Furthermore there are also the Laplacian smoothing method
and the biharmonic operator [15]. The Laplacian is more suitable for smaller deformations and has a
computational cost similar to the spring analogy method. A disadvantage is that there is no mechanism
preventing degenerate cells from forming. The biharmonic operator allows for larger deformations to be
handled as it used a fourth order partial differential equation (PDE) which allows for an extra boundary
condition to be applied compared to the Laplacian. This allows to have both control of the boundary
node coordinates and the normal mesh spacing. This also means the computational cost is two (mod­
ified Laplacian smoothing) to four times higher.

Interpolation analogy based methods are point­by­point methods that do not need mesh connectiv­
ity information. In general, they will be more computationally efficient than physical analogy methods
as they will use a smaller set of control nodes (𝑁𝑐) instead of all mesh nodes to compute the dis­
placements. They can also handle meshes with hanging nodes better. However, there is also the
introduction of interpolation errors. The lack of required connectivity information makes these methods
more suitable for parallelization. Transfinite interpolation (TFI) is a very common computationally ef­
ficient and simple to implement method for structured meshes [42]. Another computationally efficient
method is algebraic damping which can also be used for unstructured meshes [40]. Furthermore a
couple of very robust methods are the Delaunay graph [27], inverse distance weighting (IDW) [38] and
radial basis function (RBF) interpolation [7]. The Delauney graph method is more efficient than the
spring analogy but is also better used with smaller deformation cases since large deformations can
easily result in poor meshes requiring regeneration of the graph and an increase in computational cost.
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Between the IDW and RBF interpolation methods, the IDW is more computationally efficient as it is
explicit and does not require a system of equations to be solved as for RBF interpolation. However,
RBF interpolation can be combined with a data reduction method which can reduce the computational
cost for larger problems [28]. For both methods, adaptions are available to allow for sliding in cases
with small clearance gaps present.

From all the aforementioned methods, the adapted IDW and the adapted RBF interpolation score the
highest for the different criteria. Although no comparison has been made between these two adapted
methods, it is possible that the RBF interpolation with sliding [22] will yield a higher mesh quality than
the improved IDW method [33] since it has a smoother interpolation function. Therefore, the adapted
RBF interpolation method is chosen for this project and the thesis work by Mathew [22] is used as the
base to develop further for periodic domains.

1.2. Periodic domains and sliding method
In some specific cases, mesh deformation might become more tricky and it can be difficult to maintain
a high mesh quality. These cases are illustrated using a turbomachinery application. In the field of
turbomachinery, regions are often encountered where small clearance gaps are present. Figure 1.1
shows such a small clearance gap that is located between the blade tip and the shroud of a turbine or
pump.

Figure 1.1: Small clearance gap between blade tip and shroud [21].

Figure 1.2: Mesh in small clearance gap between blade and shroud, before deformation, after deformation and after sliding [22].

When the blade experiences a relatively large deformation, the computational mesh between the blade
and the shroud might become very distorted, as can be seen in Figure 1.2. This will heavily reduce
the quality of the mesh. Therefore, it is important to make some adjustments to the mesh deforma­
tion method to ensure good mesh quality in these regions. Previous work has already been done by
Mathew [22], where the radial basis function interpolation method was modified for regions with small
clearance gaps using a sliding condition. When there is only a small distance between the nodes on a
deforming boundary and a fixed boundary, the sliding of boundary nodes becomes essential to obtain
a good quality mesh after deformation. The sliding boundary condition allows the nodes to move along
their respective boundary which improves the mesh quality as can be seen on the right side in Figure
1.2. However, this sliding boundary method can still be further improved on in terms of computation
time and mesh quality.
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Another interesting aspect of mesh deformation is the application on periodic domains. Periodicity
can also be found in the turbomachinery application. One single blade is repeated multiple times and
therefore, a single blade passage can be isolated and used as the computational domain (Fig. 1.3).
This computational domain uses periodic boundaries in order to serve as a representation for the full
problem domain. The use of periodic boundaries thus allows for a reduction of the computational cost.
However, as can be seen in Figure 1.3b, it can occur that the regions between the blade and the upper
and lower periodic boundaries are small. Hence, similar as with the blade tip clearance gap, some
issues might occur with deforming the mesh for larger displacements of the blade [1]. An upward
movement of the blade can cause the mesh cells above the blade to get squeezed together while
below the blade the mesh cells will be stretched. In those cases it might be more beneficial for the
mesh quality to allow the periodic boundaries to move with the deforming blade.

(a) Three­dimensional computational domain [26]. (b) Two­dimensional computational domain [13].

Figure 1.3: A single blade passage of a turbine as periodic computational domain.

1.3. Applications
Besides turbomachinery, the nuclear industry is also a field where small clearance gaps and periodic
domains are commonly encountered. In the nuclear industry, flow induced vibration plays an important
role. These occur for example in nuclear reactors where fuel assemblies are present with small spac­
ing between the rods. The turbulent fluid flow around the rods will cause an interaction with the fuel
rod structures [32]. The typical fuel assemblies consist of a large number of rods with small spacing
between them. Performing a simulation for these assemblies might be impossible due to the limited
computational power and memory. One way of reducing the size of the problem is by applying periodic
boundary conditions [20]. Periodic boundary conditions can be used when there is both geometrical
and physical periodicity present in the problem. This is expected to be the case for the central subchan­
nels in a rod assembly. Figure 2.11a shows the cross­section of a 5x5 rod bundle where the red parts
are the split­vane support grid. The shaded area that the arrow points to is the two­subchannel model
which is shown in Figure 2.11b with three pairs of periodic boundary conditions. The periodic boundary
pairs for these cases are dependent on the vane pattern. Small gaps also occur often between a rod
and the containing wall as shown in Figure 1.5. Again, in these situations, sliding boundary nodes can
be beneficial for the mesh quality in this region.
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(a) Cross­section of 5x5 rod bundle model with split­vane support grid. (b) A two­subchannel model with periodic boundary conditions.

Figure 1.4: Geometry of the 5x5 and two­subchannel models [20].

Figure 1.5: Small gap between rod and containing wall of a nuclear fuel assembly [6].

1.4. Research questions
The main research question for the thesis project is the following.

How does the implementation of periodic boundary conditions for the radial basis function mesh de­
formation method affect the mesh quality and computation time for regions including small clearance
gaps?

The sub­questions that will help answer the main research question are as follows:

1. How do the periodic distance and equal displacement method for implementing periodic boundary
conditions compare in terms of mesh quality and computation time?

• How do the two periodic boundary methods compare using different radial basis functions?
• How do the two periodic boundary methods compare for different periodic boundary types?

2. How do fixed periodic boundaries compare to moving periodic boundaries in terms of mesh qual­
ity?

3. How do sliding periodic boundaries compare to moving periodic boundaries in terms of mesh
quality?

4. How does the use of a data reduction method influence the performance of the periodic boundary
condition method in terms of mesh quality and computation time?

1.5. Outline of the thesis report
In Chapter 2, the methodology of the methods that are selected for this thesis project are elaborated
on and justified. The results obtained with these methods are presented and discussed in Chapter 3
for the two­dimensional test cases and in Chapter 4 for the three­dimensional cases. Finally, the final
conclusions of the thesis work and further recommendations are discussed in Chapter 5.



2
Methodology

The methodology chapter gives an overview and in depth description of the different methods and
algorithms that are used in the project. The chapter starts with the description of radial basis function
interpolation which is the method used for the mesh deformation. This is followed by a description of the
different periodic boundary types (Sec. 2.2) and methods (Sec. 2.3) that can be used to apply mesh
deformation on periodic domains. Next, the sliding method that is used in cases of small clearance
gaps is explained in Section 2.4. Finally, in Section 2.6 the mesh quality metrics are described that are
used to compare the different methods in terms of deformed mesh quality.

2.1. Regular radial basis function interpolation
A radial basis function (RBF) interpolation method is used for interpolating the boundary displacements
to the internal nodes of a mesh through the use of radial basis functions [7]. The interpolation function
𝑠 for node 𝑥⃗ can be represented as a sum of radial basis functions:

𝑠(𝑥⃗) =
𝑁b
∑
𝑗=1
𝛼𝑗𝜙 (‖𝑥⃗ − 𝑥⃗b𝑗‖) + 𝑝(𝑥⃗) (2.1)

where 𝑁𝑏 is the number of boundary nodes, 𝛼𝑗 are the interpolation coefficients, 𝜙 is the selected
radial basis function with respect to the Euclidean distance ‖𝑥⃗ − 𝑥⃗b𝑗‖, 𝑥⃗𝑏 are the boundary nodes
where the displacement is known and 𝑝 is a polynomial. There will be a different interpolation function
for each coordinate direction: x, y and z (3D). The vectors in the interpolation function represent 3D
vectors containing the spatial coordinates of the node in x­, y­ and z­direction. In Equation 2.1, the
interpolation coefficients and the polynomial are unknown and thus have to be computed first before
the interpolation function 𝑠 can be set up. They are determined by using the known displacements of
the boundary nodes, 𝑑𝑏, and the following conditions:

𝑠(𝑥⃗𝑏𝑗) = 𝑑𝑏𝑗 (2.2)

𝑁𝑏
∑
𝑗=1
𝛼𝑗𝑞 (𝑥⃗𝑏𝑗) = 0 (2.3)

The interpolation condition (Eq. 2.2) states that the evaluation of the interpolation function for the
boundary nodes should equal the known displacements of the boundary nodes. The homogeneous
equation (Eq. 2.3) is valid for every polynomial 𝑞 that has a degree equal to or lower than the degree
of polynomial 𝑝. With these conditions, the following system can be set up that will be solved for 𝛼⃗ and
𝛽:

[ 𝑑b0⃗ ] = [ Φ𝑏,𝑏Φ𝑏,𝑏Φ𝑏,𝑏 𝑃𝑏𝑃𝑏𝑃𝑏
𝑃𝑇𝑏𝑃𝑇𝑏𝑃𝑇𝑏 000 ] [ 𝛼⃗𝛽 ] (2.4)

7
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where Φ𝑏,𝑏Φ𝑏,𝑏Φ𝑏,𝑏 is the interpolation matrix containing the RBF evaluation values with respect to the Eu­
clidean distance between the boundary nodes, ‖𝑥⃗𝑏𝑖 − 𝑥⃗b𝑗‖, 𝑃𝑏𝑃𝑏𝑃𝑏 is the polynomial matrix and 𝛽 are the
polynomial coefficients. The matrix containing the interpolation matrix and the polynomial matrices will
be referred to as the total interpolation matrix, 𝐶. The solving of this system will be called the evalua­
tion step throughout this report. This step will be called the update step. For this project, the additional
polynomial is not useful as it typically helps to ensure exact interpolation of linear transformations [36].
Linear interpolation allows for rigid body translations and rotations, which can also be represented in
a simpler way by using a moving reference frame. When omitting the polynomial, the interpolation
function will be shortened to:

𝑠(𝑥⃗) =
𝑁b
∑
𝑗=1
𝛼𝑗𝜙 (‖𝑥⃗ − 𝑥⃗b𝑗‖) (2.5)

Now, using only the interpolation condition will be sufficient to find the interpolation coefficients. This
results in the following system where the final total interpolation matrix will have the size 𝑁𝑏 × 𝑁𝑏 as it
only containsΦ𝑏,𝑏Φ𝑏,𝑏Φ𝑏,𝑏:

𝑑𝑏 = Φ𝑏,𝑏Φ𝑏,𝑏Φ𝑏,𝑏𝛼⃗ (2.6)

This system is solvable and will give a unique interpolation function when the RBF 𝜙 is positive definite
[30]. Although most radial basis functions are always positive definite, some are only conditionally
positive definite such as the thin plate spline (TPS) or the multiquadric function. The TPS function is
strictly positive definite of order 2, which is the form that is given in Table 2.2. If the RBF is not positive
definite, it will still be necessary to use the additional polynomial. In case of the TPS, a polynomial of
the first order would be added which has the form:

𝑝(𝑥⃗) = 𝛽1 + 𝛽2𝑥 + 𝛽3𝑦 + 𝛽4𝑧 (2.7)

The polynomial will be different for every direction: x, y and z. For a linear polynomial as in Equation
2.7, the polynomial matrix 𝑃𝑏𝑃𝑏𝑃𝑏 will have the form:

𝑃𝑏𝑃𝑏𝑃𝑏 =
⎡
⎢
⎢
⎣

1 𝑥𝑏1 𝑦𝑏1 𝑧𝑏1
1 𝑥𝑏2 𝑦𝑏2 𝑧𝑏2
⋮ ⋮ ⋮ ⋮
1 𝑥𝑏𝑁𝑏 𝑦𝑏𝑁𝑏 𝑧𝑏𝑁𝑏

⎤
⎥
⎥
⎦

(2.8)

As the radial basis functions used in this project are all positive definite, the system in Equation 2.6
can be used to solve for the coefficients. Once the interpolation coefficients 𝛼⃗ are computed, the dis­
placement of internal node i, 𝑑𝑖𝑖 , is found by evaluating the interpolation function 𝑠 for every coordinate
direction:

𝑑𝑖𝑖,𝑥 = 𝑠𝑥 (𝑥⃗𝑖𝑖) =
𝑁b
∑
𝑗=1
𝛼𝑥𝑗𝜙 (‖𝑥⃗𝑖𝑖 − 𝑥⃗𝑏𝑗‖)

𝑑𝑖𝑖,𝑦 = 𝑠𝑦 (𝑥⃗𝑖𝑖) =
𝑁b
∑
𝑗=1
𝛼𝑦𝑗𝜙 (‖𝑥⃗𝑖𝑖 − 𝑥⃗𝑏𝑗‖)

𝑑𝑖𝑖,𝑧 = 𝑠𝑧 (𝑥⃗𝑖𝑖) =
𝑁b
∑
𝑗=1
𝛼𝑧𝑗𝜙 (‖𝑥⃗𝑖𝑖 − 𝑥⃗𝑏𝑗‖)

(2.9)

The computation of the displacements will be referred to as the update step in this report as the com­
puted displacements are used to update the location of the nodes.

Since the RBF interpolation method is an interpolation method, it does not require any connectivity
information as was mentioned in Section 1.1. Therefore, there is no need to solve this system of equa­
tions for every single mesh node, including the internal nodes. It suffices to solve the system only for (a
part of) the boundary nodes and then simply update the internal nodes. In general it could be said that
the method does not require a large system of equations to be solved (w.r.t. connectivity­based meth­
ods). However, for large 3D problems it can become too costly and a data reduction method might be
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required such as a greedy algorithm, which will be further elaborated on in Section 2.5. Furthermore,
the performance of the method is influenced by the RBF that is used but overall it is considered a very
robust method that is able to handle large deformations.

It is important to mention that relative displacements are used in this project. This means that the
displacement of a node at a certain step is w.r.t. the location the node had at the previous step. This is
different from absolute displacements where the displacement is w.r.t. the initial node location before
the simulation. The relative displacement method is advantageous in case of rotations as a curve will
be followed instead of a straight line from the initial position to the updated location [22].

2.1.1. Types of RBF
The RBF’s can be split up into two groups: functions with local and with global support. The local
support generally implies that the nodes within a support radius 𝑟 of the center are influenced and
outside of the circle with radius r, the RBF is zero. The support radius can thus be used to scale the
reach that the influence of the deformation has. For global support, this influence is extended over
an infinite domain and thus the matrix systems for this type of function will be dense, making these
RBF’s generally less efficient than compact supported functions. A list of compact support radial basis
functions tested in [7], proposed by Wendland [37], is given in Table 2.1. In these functions, 𝜉 = 𝛿/𝑟,
thus it can be said that the RBF is scaled by support radius 𝑟. In the regular RBF method, the distance
function 𝛿 is the Euclidean distance between two nodes. The global support functions that were tested
are listed in Table 2.2. In some of these functions, 𝑎 is used as a shape parameter. The functions were
tested for different deformation cases such as rotation and translation as well as rigid body rotation.
The CP functions are polynomials with the lowest degree to obtain a 𝐶𝑛 continuous basis function with
𝑛 ∈ {0, 2, 4, 6} and the CTPS functions are based on the thin plate spine to obtain 𝐶𝑛 continuous basis
functions with 𝑛 ∈ {0, 1, 2} [7].

The five best performing RBF’s in terms of deformed mesh quality according to de Boer et al. [7]
are CP 𝐶2, CTPS 𝐶1, CTPS 𝐶2𝑎, CTPS 𝐶2𝑏 and TPS. In terms of efficiency, the CP 𝐶2 function was the
most efficient with the TPS function in second place. Hence, the best performing RBF for the different
tests was the 𝐶𝑃 𝐶2 function. In other research performed by Bos et al. [34], the TPS function resulted
to be the most robust and highest in mesh quality. In the thesis report by Mathew [22], which is used
as the base for this thesis work, both the CP 𝐶2 and TPS functions are used based on these results
and the same will be done in this thesis. In the report, the support radius that will be used for the CP 𝐶2
RBF is 2.5 times the maximum length of the case­specific mesh as this resulted in the optimal quality
and robustness [7].

Name 𝑓(𝜉)
CP 𝐶0 (1 − 𝜉)2
CP 𝐶2 (1 − 𝜉)4(4𝜉 + 1)
CP 𝐶4 (1 − 𝜉)6 (353 𝜉

2 + 6𝜉 + 1)
CP 𝐶6 (1 − 𝜉)8 (32𝜉3 + 25𝜉2 + 8𝜉 + 1)
CTPS 𝐶0 (1 − 𝜉)5
CTPS 𝐶1 1 + 80

3 𝜉
2 − 40𝜉3 + 15𝜉4 − 8

3𝜉
5 + 20𝜉2 log(𝜉)

CTPS 𝐶2𝑎 1 − 30𝜉2 − 10𝜉3 + 45𝜉4 − 6𝜉5 − 60𝜉3 log(𝜉)
CTPS 𝐶2𝑏 1 − 20𝜉2 + 80𝜉3 − 45𝜉4 − 16𝜉5 + 60𝜉4 log(𝜉)

Table 2.1: List of radial basis functions with compact support [7].
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Name 𝑓(𝑥)
Thin plate spline (TPS) 𝑥2 log(𝑥)
Multiquadric biharmonics (MQB) √𝑎2 + 𝑥2

Inverse multiquadric biharmonics (IMQB) √ 1
𝑎2+𝑥2

Quadric biharmonics (QB) 1 + 𝑥2
Inverse quadric biharmonics (IQB) 1

1+𝑥2
Gaussian (Gauss) e−𝑥2

Table 2.2: List of radial basis functions with global support [7].

2.2. Periodic boundary types
Periodic boundary conditions are often used to simulate a small part of a bigger problem that contains a
repeating pattern. This helps to reduce the computational cost. The periodic conditions can be applied
to identical boundaries of the same length and shape that are located at a certain distance from one
another. The fluid flow across these boundaries is identical and therefore certain variables must be
the same on both boundaries. These variables can, for example, be displacement of a node on the
boundary or the velocity of a particle at the boundary.

From the different applications discussed in Chapter 1, two types of periodic boundaries can be dis­
tinguished. The periodic boundaries can either be periodic in a translational manner (Fig. 2.1a) or
in a rotational manner (Fig. 2.1b). With translational periodic boundaries, the distance between the
boundaries has a constant value 𝜆 along the boundary. For rotational periodic boundaries, there is a
periodic angle 𝜃𝑝𝑒𝑟 between the boundaries. Both types will be used in testing during this project.

(a) Translational periodic boundaries. (b) Rotational periodic boundaries.

Figure 2.1: Different types of periodic boundaries.

In case of large deformations, it might become inevitable to allow movement of these periodic bound­
aries in order to maintain a good mesh quality [1]. In Figure 2.2, an example is shown of a periodic
domain around a blade that undergoes a relatively large deformation w.r.t. the size of the domain. Fig­
ure 2.2a shows the initial mesh where the blade is yet to be deformed. The periodic boundaries are the
upper and lower boundaries of the mesh. In Figure 2.2b, the blade undergoes an upward deformation
and the periodic boundaries are fixed in space. When the blade deforms upwards, the mesh cells in
between the blade and the upper boundary might be squeezed together while on the other side of the
blade the cells might be elongated. Hence, above the blade, the clearance space between the blade
and the periodic boundary becomes small. By allowing the periodic boundaries to move in a similar
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manner as the blade did, a better mesh quality can be maintained as is illustrated in Figure 2.2c). The
displacement of the boundaries should be identical on both periodic boundaries.
Since the RBF interpolation mesh deformation method is used to deform the mesh, some adaptations
will have to be made to this method to guarantee the periodic boundaries to be displaced identically.
In the next section, two different methods for implementing these periodic conditions are described.

(a) Initial mesh before deformation. (b) Deformed mesh with fixed periodic
boundaries.

(c) Deformed mesh with deformed periodic
boundaries.

Figure 2.2: Mesh deformation of a periodic mesh around a deforming blade, including the displacement of the periodic
boundaries.

2.3. Periodic boundary displacement methods
There are two different methods for implementing periodic boundary conditions in the RBF interpolation
method that are tested in this project. The first method is based on making the distance function used
in the RBF periodic. The second method is based on making the displacement of the periodic nodes
equal. The periodic boundary displacement methods will often be referred to as the periodic (boundary)
methods in this report.
Before diving deeper into these periodic methods, a distinction has to be made between the different
types of boundary nodes that are encountered when using the RBF interpolation method on periodic
domains. The boundary nodes can be divided into three different groups as shown in Figure 2.3.
The boundary nodes that are usually used in the evaluation step (see Sec. 2.1) are divided into 𝑁𝑚
moving nodes, 𝑁𝑝 periodic nodes and𝑁𝑆 sliding nodes. The moving nodes are those that have a known
displacement. This displacement can also be equal to zero, making them fixed. The periodic nodes are
those located on the periodic boundaries. Finally, the sliding nodes are those located on a boundary
that is fixed but these nodes are still allowed to slide along their respective fixed boundary. Depending
on which periodic boundary displacement method that is used, different node groups are used in the
evaluation step.

Boundary nodes
Nb

Moving nodes
Nm

Sliding nodes
NS

Periodic nodes
Np

Figure 2.3: Boundary node division for periodic boundary methods.

2.3.1. Method 1: Periodic distance
The first periodic boundary displacement method is based on a periodic distance between the control
nodes. The control nodes refer to the boundary nodes that are used in the evaluation step of the RBF
interpolation method. The periodic distance is obtained by modifying the distance function 𝛿, which the
RBF is a function of (𝜙(𝛿)). The distance function used in the regular RBF is the Euclidean distance
as was shown in Equation 2.5:

𝑠(𝑥⃗) =
𝑁b
∑
𝑗=1
𝛼𝑗𝜙 (‖𝑥⃗ − 𝑥⃗b𝑗‖) (2.5 revisited)
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In this periodic method, the distance function is made periodic by using a sine function. This periodic
distance function is used in both the RBF evaluation step where the interpolation coefficients are com­
puted as well as the update step where the displacements are computed. This gives better results than
when solely using it to update the mesh.
The periodic distance function will have a different formulation depending on the type of periodic bound­
ary used, translational or rotational.

Translational periodic boundaries
For translational periodic boundaries, the Cartesian coordinate system is used for the distance func­
tions. For 2D cases, the implies that the euclidean distance equation will have the form:

𝛿 = √𝛿𝑥2 + 𝛿𝑦2 = √(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 (2.10)

Here, the subscript c refers to control node. For periodic meshes this distance equation can be made
periodic in a specific direction. If the periodic boundaries are periodic in the y­direction, the distance
function can be made periodic over a distance 𝜆 by applying the sine function in y­direction [1]:

𝛿𝑦 = 𝜆
𝜋 sin [(𝑦 − 𝑦𝑐)

𝜋
𝜆 ] (2.11)

The function 𝛿𝑦 is plotted in Figure 2.4. When the distance between two nodes in y­direction, 𝑦 − 𝑦𝑐,𝑖,
is small (relative to 𝜆), the function 𝛿𝑦 has a value that is also small and close to the value of 𝑦 − 𝑦𝑐,𝑖.
This implies that the distance of nodes located in the vicinity of the control nodes will be computed in
the same way for all directions and the influence of the periodicity is not present [1]. This is achieved
by multiplying the sine function with the term 𝜆

𝜋 . With the adapted distance function in y­direction, the
total periodic distance function 𝛿 becomes:

𝛿 = √(𝑥 − 𝑥𝑐)2 + (
𝜆
𝜋 sin [(𝑦 − 𝑦𝑐𝑖)

𝜋
𝜆 ])

2
(2.12)

Figure 2.4: Periodic distance function for y­direction.

For 3D cases, the same principle is used. Only the Euclidean distance formulation changes to 𝛿 =
√𝛿𝑥2 + 𝛿𝑦2 + 𝛿𝑧2. Hence, for periodic boundaries in y­direction the periodic distance function be­
comes:

𝛿 = √(𝑥 − 𝑥𝑐)2 + (
𝜆
𝜋 sin [(𝑦 − 𝑦𝑐)

𝜋
𝜆 ])

2
+ (𝑧 − 𝑧𝑐)2 (2.13)
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Rotational periodic boundaries
When themesh has rotational periodic boundaries, the Euclidean distance will be expressed using polar
coordinates (in 2D) instead of Cartesian coordinates. This way, it is easier to implement the periodicity
over a specific periodic angle 𝜃𝑝𝑒𝑟. Therefore, the node coordinates first require a transformation from
Cartesian to polar coordinates. The formulas used for these transformations can be found in Appendix
B. In 2D, the Euclidean distance expression in polar coordinates is:

𝛿 = √𝑟21 + 𝑟22 − 2𝑟1𝑟2 cos (𝜃2 − 𝜃1) (2.14)

In order to make the distance function periodic over angle 𝜃𝑝𝑒𝑟, a sine function is applied to the part of
the equation containing the difference between the two angles:

𝛿 = √𝑟21 + 𝑟22 − 2𝑟1𝑟2 cos [
𝜃𝑝𝑒𝑟
𝜋 sin((𝜃2 − 𝜃1)

𝜋
𝜃𝑝𝑒𝑟

)] (2.15)

For 3D rotational periodic cases, the Cartesian coordinates are first transformed to cylindrical coordi­
nates. The distance function then changes to:

𝛿 = √𝑟21 + 𝑟22 − 2𝑟1𝑟2 cos [
𝜃𝑝𝑒𝑟
𝜋 sin((𝜃2 − 𝜃1)

𝜋
𝜃𝑝𝑒𝑟

)] + (𝑧2 − 𝑧1)
2 (2.16)

Once the evaluation and update step are done and the displacements of the nodes are computed, the
polar and cylindrical coordinates are converted back to Cartesian coordinates to function with the rest
of the MATLAB code. All the transformations between the different coordinate systems can be found
in Appendix B. Since this method only uses a different distance function, the size of the interpolation
matrix stays the same as for the regular RBF interpolation method. However, when using periodic
boundaries, the evaluation step only uses the moving nodes as control nodes. Therefore, the inter­
polation matrix will have the size (𝑁𝑚) × (𝑁𝑚). Then the sliding and periodic node displacements are
computed in the update step. Once these nodes have an updated location, the sliding nodes are pro­
jected back onto the boundary as they will have moved away from it. This method for sliding nodes
is further elaborated on in Section 2.4.1. Finally, the internal nodes are updated where all boundary
nodes are used as control nodes and also the periodic distance function is used in both steps of the
RBF interpolation.

It is important to note that some extra measures are required in case of periodic control nodes. If
the control nodes contain a periodic node pair, one node per periodic pair is removed from the control
nodes. This is necessary because otherwise the interpolation matrix would be singular because of
identical matrix rows. This would make it impossible to invert the matrix and compute the interpolation
coefficients.

2.3.2. Method 2: Equal displacement
The second periodic boundary displacement method is based on equal displacement of the periodic
nodes. Hence, a pair of periodic nodes will be displaced in an identical way, which requires the following
conditions to be satisfied for every periodic node pair, 𝑝1 and 𝑝2:

𝑑(𝑝1) = 𝑑(𝑝2) ⇔ 𝑑(𝑝1) − 𝑑(𝑝2) = 0 (2.17)

This condition gives 1
2𝑁𝑝 equations, but there are 𝑁𝑝 periodic nodes, each for which an interpolation

coefficient has to be computed. Hence, another 12𝑁𝑝 equations are required and therefore, a second
condition is used. This condition states that the periodic interpolation coefficients should have equal
influence but opposite in direction:

𝛼⃗𝑝1 + 𝛼⃗𝑝2 = 0 (2.18)

This condition can be considered to be a local correction that guarantees that the periodic pairs will have
a periodic displacement. With this additional set of 12𝑁𝑝 equations, there are sufficient equations to
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compute the periodic node interpolation coefficients. Next to the periodic nodes, the moving nodes are
also part of the control nodes. For the moving nodes, the interpolation condition (Eq. 2.2) can be used
to find their interpolation coefficients. The interpolation condition states that the known displacements
of the moving nodes, ⃗𝑑𝑚, have to be equal to the interpolation function evaluations of these nodes,
𝑠( ⃗𝑥𝑚). However, now the interpolation function will have contributions from both the moving nodes and
the nodes on both periodic boundaries, 𝑝1 and 𝑝2. Hence, the displacements in both x­ and y­direction
are shown in Equations 2.19 and 2.20.

𝑑𝑚𝑥(𝑥⃗𝑚𝑖) =
𝑁𝑚
∑
𝑗=1
𝛼𝑚𝑥 ,𝑗𝜙 (‖𝑥⃗𝑚,𝑖 − 𝑥⃗𝑚,𝑗‖) +

𝑁𝑝1
∑
𝑘=1

𝛼𝑝1𝑥 ,𝑘𝜙 (‖𝑥⃗𝑚,𝑖 − 𝑥⃗𝑝1 ,𝑘‖) +
𝑁𝑝2
∑
𝑘=1

𝛼𝑝2𝑥 ,𝑘𝜙 (‖𝑥⃗𝑚,𝑖 − 𝑥⃗𝑝2 ,𝑘‖)

(2.19)

𝑑𝑚𝑦(𝑥⃗𝑚𝑖) =
𝑁𝑚
∑
𝑗=1
𝛼𝑚𝑦 ,𝑗𝜙 (‖𝑥⃗𝑚,𝑖 − 𝑥⃗𝑚,𝑗‖) +

𝑁𝑝1
∑
𝑘=1

𝛼𝑝1𝑦 ,𝑘𝜙 (‖𝑥⃗𝑚,𝑖 − 𝑥⃗𝑝1 ,𝑘‖) +
𝑁𝑝2
∑
𝑘=1

𝛼𝑝2𝑦 ,𝑘𝜙 (‖𝑥⃗𝑚,𝑖 − 𝑥⃗𝑝2 ,𝑘‖)

(2.20)
With these three conditions, the total interpolation matrix can be set up. Although the x­ and y­direction
are not coupled and can be solved in separate systems, they are shown here in one matrix system.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑑𝑚𝑥
𝑑𝑚𝑦
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

ΦΦΦ𝑚𝑚 0 ΦΦΦ𝑚,𝑝1 0 ΦΦΦ𝑚,𝑝2 0
0 ΦΦΦ𝑚𝑚 0 ΦΦΦ𝑚,𝑝1 0 ΦΦΦ𝑚,𝑝2

ΦΦΦ𝑝1 ,𝑚 −ΦΦΦ𝑝2 ,𝑚 0 ΦΦΦ𝑝1 ,𝑝1 −ΦΦΦ𝑝2 ,𝑝1 0 ΦΦΦ𝑝1 ,𝑝2 −ΦΦΦ𝑝2 ,𝑝2 0
0 ΦΦΦ𝑝1 ,𝑚 −ΦΦΦ𝑝2 ,𝑚 0 ΦΦΦ𝑝1 ,𝑝1 −ΦΦΦ𝑝2 ,𝑝1 0 ΦΦΦ𝑝1 ,𝑝2 −ΦΦΦ𝑝2 ,𝑝2
0 0 1 0 1 0
0 0 0 1 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛼𝑚𝑥
𝛼𝑚𝑦
𝛼𝑝1𝑥
𝛼𝑝1𝑦
𝛼𝑝2𝑥
𝛼𝑝2𝑦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.21)
Studying the system of equations, it is clear that only the moving and periodic nodes are included
in the evaluation step and not the sliding nodes. For the equal displacement method, the size of
the interpolation matrix is therefore (𝑁𝑚 + 𝑁𝑝) × (𝑁𝑚 + 𝑁𝑝). This means that the equal displacement
method has to invert a larger matrix than the periodic distancemethod when computing the interpolation
coefficients. This should become clear when comparing computation times for both periodic methods.
Next, during the update step, both the periodic an sliding node displacements are computed using the
following formula (only shown for the periodic nodes) which sums up the contributions of the moving
nodes and the periodic nodes:

𝑑𝑥(𝑝𝑖) =
𝑁𝑚
∑
𝑗=1
𝛼𝑚𝑥 ,𝑗𝜙 (‖𝑥⃗𝑝,𝑖 − 𝑥⃗𝑚,𝑗‖) +

𝑁𝑝1
∑
𝑘=1

𝛼𝑝1𝑥 ,𝑘𝜙 (‖𝑥⃗𝑝,𝑖 − 𝑥⃗𝑝1 ,𝑘‖) +
𝑁𝑝2
∑
𝑘=1

𝛼𝑝2𝑥 ,𝑘𝜙 (‖𝑥⃗𝑝,𝑖 − 𝑥⃗𝑝2 ,𝑘‖) (2.22)

𝑑𝑦(𝑝𝑖) =
𝑁𝑚
∑
𝑗=1
𝛼𝑚𝑦 ,𝑗𝜙 (‖𝑥⃗𝑝,𝑖 − 𝑥⃗𝑚,𝑗‖) +

𝑁𝑝1
∑
𝑘=1

𝛼𝑝1𝑦 ,𝑘𝜙 (‖𝑥⃗𝑝,𝑖 − 𝑥⃗𝑝1 ,𝑘‖) +
𝑁𝑝2
∑
𝑘=1

𝛼𝑝2𝑦 ,𝑘𝜙 (‖𝑥⃗𝑝,𝑖 − 𝑥⃗𝑝2 ,𝑘‖) (2.23)

Once the sliding nodes are updates, they are projected back to their boundary as will be explained in
Section 2.4.1. Then the regular RBF method is used with the known moving, periodic and sliding node
displacements to update the internal mesh.

Deformation effect on method performance
The equal displacement method can still be improved by adapting the condition for the periodic coeffi­
cients. Where both coefficients have an equal influence in Equation 2.18, another combination of the
two periodic node coefficients can be used:

𝜔 ⋅ 𝛼⃗𝑝1 + (1 − 𝜔) ⋅ 𝛼⃗𝑝2 = 0 (2.24)

Here, 𝜔 is a variable ranging from zero to one. For different types of deformation, a different value of
𝜔 will yield an optimal mesh quality. This is investigated by performing a sweep for different 𝜔 values
using steps of 0.01 and comparing the minimum and mean mesh quality achieved. To determine the
optimal mesh quality, the 𝜔 for which the minimum quality is optimal is considered to be the optimal
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𝜔 value if the mean quality for this value is still within a 10% range from the optimal mean quality. If,
however, this value yields a significant decrease in mean mesh quality, another 𝜔 value is selected
where both the mean and minimum mesh quality are within 10% of there optima.

Figure 2.5: Mesh 1: structured square mesh.

The investigation is done on a square mesh as shown in Figure 2.5, which will later be used in the 2D
results chapter. The nodes are periodic in the y­direction and are allowed to move. The subscript 𝑝1
refers to the lower periodic boundary and 𝑝2 to the upper periodic boundary. The block in the middle of
the mesh will undergo displacement in vertical, horizontal and diagonal direction as well as a rotation.
Although this investigation showed that the optimal combination is strongly dependent on the specific
deformation applied, some generalizations can be made to facilitate the choice of combination without
the need to do a sweep for every single different deformation. For every case shown below, three
figures displaying the deformed mesh are included in Appendix C for 𝜔 = 0, 𝜔 = 0.5 and 𝜔 = 1. These
figures can be consulted to help visualise the results.

Vertical displacement

Figures 2.6 and 2.7 show the minimum and mean mesh quality for a 30∘ and 60∘ rotation with zero
horizontal displacement and an increasing vertical displacement. It is clear that for pure rotation, hav­
ing an equal influence from both sides yields the best mesh quality for both rotation angles. When the
block starts to move upwards, the optimal quality starts to shift to the left of the graph. As the vertical
displacement reaches 8 units, the optimal quality for both rotation angles is reached for 𝜔 = 0. For a
30∘ rotation, this was already the case for the smaller vertical displacement of four units but for the 60∘
rotation this would imply a 10% loss in optimal minimum quality. Therefore, using 𝜔 = 0.5 when the
translation is smaller still allows for a goodminimum andmean quality independent of the rotation angle.

In case of a downward vertical displacement, the graphs are equal to the mirrored graphs of the upward
displacement meaning large downward vertical displacement with 𝜔 = 1 yields the most optimal mesh
quality. Furthermore, changing the sign of the rotation does not influence the graph.

Horizontal displacement

In Figure 2.8 and 2.9, a similar investigation is done for a combination of rotation and horizontal transla­
tion. The same trend can be noticed for increasing horizontal displacement to the right as was present
for increasing upward vertical displacement. Hence, when moving more to the right, the optimal mesh
quality is reached for 𝜔 = 0. Also for this case, the trend is already clear for a four unit displacement for
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(a) Zero units vertical displacement. (b) Four units vertical displacement. (c) Eight units vertical displacement.

Figure 2.6: Mesh quality using equal displacement method with 30∘ rotation and upward vertical translation.

(a) Zero units vertical displacement. (b) Four units vertical displacement. (c) Eight units vertical displacement.

Figure 2.7: Mesh quality using equal displacement method with 60∘ rotation and upward vertical translation.

the 30∘ rotation while the minimum quality for 60∘ rotation significantly decreases for 𝜔 = 0. Therefore,
although the optimal quality already shifts to the left of the graph, using 𝜔 = 0.5 for smaller translation
cases might be a better choice as this will still give a decent result for both rotation angles, keeping the
optimal quality loss within 5%.

When changing the sign of rotation, the graphs will be mirrored, since the periodic boundaries are
in the y­direction. Also when the horizontal displacement is to the left, the graph will be mirrored.

Diagonal displacement

When both a vertical and horizontal translation are applied as in Figure 2.10, things start to become
more complex. In general, if the translation motion and the rotation move the block to a specific corner,
the optimal value will be related to the periodic boundary the corner belongs to. Hence, if the block
moves to the upper right corner and the rotation is also positive (Fig. 2.10a), rotating the right part of
the block towards the corner, 𝜔 = 0 will be optimal. When both the translation and rotation move the
block more towards one of the bottom corners (Fig. 2.10b), 𝜔 = 1 will give the most optimal result.

(a) Zero units horizontal displacement. (b) Four units horizontal displacement. (c) Eight units horizontal displacement.

Figure 2.8: Mesh quality using equal displacement method with 30∘ rotation and positive horizontal translation.
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(a) Zero units horizontal displacement. (b) Four units horizontal displacement. (c) Eight units horizontal displacement.

Figure 2.9: Mesh quality using equal displacement method with 60∘ rotation and positive horizontal translation.

(a) Six units horizontal and vertical
displacement with 60∘ rotation.

(b) Six units negative horizontal and vertical
displacement with 60∘ rotation.

(c) Six units horizontal and vertical
displacement with ­60∘ rotation.

Figure 2.10: Mesh quality using equal displacement method with rotation and diagonal translation after 20 steps using
Wendland C2 (r=62.5).

When, however, the translation moves the block towards a corner but the rotation turns it away from
the corner (Fig. 2.10c), 𝜔 = 0.5 is a more optimal choice. Of course, every deformation that does
not clearly move toward a corner has a specific 𝜔 value for which the optimal mesh quality is obtained
but as this would take to much time to compute this for every single deformation possibility, taking
𝜔 = 0.5 is a good approximation. Furthermore, when changing the sign of the displacement in x­ or in
y­direction, the rotation also has to change signs to obtain the same graph.

2.4. Periodic sliding
As was already mentioned in Section 1.2, it can be preferred to not keep boundary nodes fixed when
deforming a mesh in the case of small clearance gaps. Instead, they are given additional degrees of
freedom which reduces mesh skewness and improves the mesh quality. One way to do this is to let
those boundary nodes displace, as is done with the periodic boundary displacement methods discussed
in Section 2.3. However, sometimes it is not necessary to displace the full boundary but just allowing
the nodes to slide along their boundary as illustrated in Figure 2.11 is sufficient to improve the mesh
quality. The sliding method can be applied to periodic nodes, in which case they have to slide in a
periodic manner on both boundaries. On the other hand, the sliding can also be applied to nodes on
the other non­periodic boundaries of the domain. There are two different methods used to slide the
nodes. For the 2D cases, this is the pseudo­sliding method and for the 3D cases this is the direct sliding
method. Both methods have been fully described in the thesis report by Mathew [22]. In the following
sections they are described in a slightly different way, so that they also function with periodic nodes.



18 2. Methodology

(a) Without sliding method. (b) With sliding method.

Figure 2.11: Close­up view of 2D mesh of lower boundary deformed to form a ramp [16].

2.4.1. Sliding 2D: Pseudo­sliding method
The sliding method used for the 2D cases in the thesis is the pseudo sliding method that was proposed
by Mathew [22]. This method was chosen because it was simple to implement both periodic boundary
methods into this method.

The first step is to displace the sliding nodes as if they are internal nodes. Hence, the interpolation
coefficients are computed using a periodic displacement method RBF interpolation where the bound­
ary nodes have a known displacement. Then the interpolation coefficients are used to compute the
displacements of solely the sliding nodes in the same manner as internal node displacements are usu­
ally computed. As the sliding nodes undergo a free periodic displacement, it is possible for them to
have a displacement component perpendicular to their respective boundaries. This results in the slid­
ing nodes no longer lying on the boundary but having moved away from it. Since sliding nodes are only
allowed to slide along their boundary, an extra projection step is required to project the sliding nodes
back to their boundary.

The projection algorithm is illustrated in Figure 2.12. The algorithm uses geometrical information of
the mesh boundaries. This information includes the midpoints of the boundary line segments and their
orientation. It also takes into account the index of the boundary the node belongs to so that it is projected
back onto the correct boundary. The algorithm looks for the mid­point that is closest to the displaced
boundary node (red node, initial position). The normal direction of the nearest midpoint (black arrow)
is used as direction and the boundary node is projected back to the boundary, parallel to this direction
(red arrow). Once the nodes are projected back, it will seem as if the nodes have slid along the bound­
ary. Since, the periodic node pairs are freely displaced in a periodic manner, the projection back onto
the boundary will automatically ensure the maintenance of periodicity.

Figure 2.12: Projection algorithm used in pseudo­sliding method [22].
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2.4.2. Sliding 3D: Direct sliding method

Boundary nodes
Nb

Moving nodes
Nm

Sliding nodes
NS

Sliding edge nodes
Ne

Sliding surface nodes
Ns

Figure 2.13: Division of the boundary nodes in 3D.

The sliding method chosen for 3D cases is referred to as the direct sliding method by Mathew [22].
The sliding of the nodes along a surface or edge is enforced by satisfying specific conditions [12]. Next
to the interpolation condition, two sliding conditions are used to solve the system of equations. The
different conditions apply to different groups of nodes. These groups are shown in Figure 2.13. The 𝑁𝑏
boundary nodes are divided into two groups: 𝑁𝑚 moving nodes (including nodes with zero displace­
ment) and 𝑁𝑆 sliding nodes. In 3D, the sliding nodes are further divided into 𝑁𝑒 sliding edge nodes and
𝑁𝑠 sliding surface nodes. The sliding nodes can either be periodic or not periodic. The indices of all
control nodes are ordered starting with the moving nodes, followed by the sliding edge nodes and then
the sliding surface nodes. The first condition applies to the moving nodes and is called the interpolation
condition.

Interpolation condition

The interpolation condition states that the interpolation function evaluations equal the known displace­
ments of the moving nodes. For the 3D sliding method, the control nodes contain the moving nodes,
sliding edge nodes and the sliding surface nodes.

∀𝑖 ∈ [1, 𝑁𝑚] , 𝑠 (𝑥⃗𝑚𝑖) = 𝑑𝑚𝑖

⇔
𝑁𝑐
∑
𝑗=1
𝜙 (‖𝑥⃗𝑚𝑖 − 𝑥⃗𝑐𝑗‖) 𝛼⃗𝑥𝑗 = 𝑑𝑚𝑖

Zero normal displacement condition

The zero normal displacement condition states that the normal component of the sliding node dis­
placement has to be zero.

∀𝑖 ∈ [1, 𝑁𝑠] , 𝑠 (𝑥⃗𝑠𝑖) ⋅ 𝑛⃗ = 0

⇔
𝑁𝑐
∑
𝑗=1
𝜙 (‖𝑥⃗𝑠𝑖 − 𝑥⃗𝑐𝑗‖) 𝛼⃗𝑥𝑗 ⋅ 𝑛⃗𝑥 +

𝑁𝑐
∑
𝑗=1
𝜙 (‖𝑥⃗𝑠𝑖 − 𝑥⃗𝑐𝑗‖) 𝛼⃗𝑦𝑗 ⋅ 𝑛⃗𝑦 (2.25)

+
𝑁𝑐
∑
𝑗=1
𝜙 (‖𝑥⃗𝑠𝑖 − 𝑥⃗𝑐𝑗‖) 𝛼⃗𝑧𝑗 ⋅ 𝑛⃗𝑧 = 0

Zero tangential contributions condition

This condition states that the sliding nodes cannot have a contribution to the interpolation function
in the tangential direction.

∀𝑖 ∈ [𝑁𝑚 + 1,𝑁𝑚 + 𝑁𝑠] , 𝛼⃗𝑖 ⋅ 𝑡𝑖 = 0
⇔ 𝛼⃗𝑥𝑖 ⋅ 𝑡𝑥𝑖 + 𝛼⃗𝑦𝑖 ⋅ 𝑡𝑦𝑖 + 𝛼⃗𝑧𝑖 ⋅ 𝑡𝑧𝑖 = 0 (2.26)
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The normal and tangential vectors
For the sliding conditions mentioned above, the normal and tangential vectors need to be known. A
sliding surface node has one vector perpendicular to the surface and 2 tangent vectors (Fig. 2.14a).
A sliding edge node has one tangent vector along the edge and two normal vectors to the edge (Fig.
2.14b). For the initial mesh, the sliding surface normal vector and the sliding edge tangential vector are
known. From these, it is possible to compute the two other vectors representing the other orientations
using the following equations which are based on the fact that all vectors are perpendicular to each
other. If the initially known orientation is represented by 𝑣⃗1, than a second orientation vector 𝑣⃗2 is found
by using the relation that 𝑣⃗1 ⋅ 𝑣⃗2 = 0:

𝑣⃗1 = [
𝑣𝑥
𝑣𝑦
𝑣𝑧
] (2.27)

𝑣⃗2 = [
𝑣𝑥 (𝑣𝑦 − 𝑣𝑧)
𝑣𝑦 (𝑣𝑧 − 𝑣𝑥)
𝑣𝑧 (𝑣𝑥 − 𝑣𝑦)

] (2.28)

A third orientation vector can be found by taking the cross­product of these two vectors as 𝑣⃗1×𝑣⃗2 results
in a third vector that is perpendicular to both vectors.

𝑣⃗3 = [
𝑣𝑦 (𝑣𝑥 − 𝑣𝑦) − 𝑣𝑧 (𝑣𝑧 − 𝑣𝑥)
𝑣𝑥 (𝑣𝑥 − 𝑣𝑦) − 𝑣𝑧 (𝑣𝑦 − 𝑣𝑧)
𝑣𝑥 (𝑣𝑧 − 𝑣𝑥) − 𝑣𝑦 (𝑣𝑦 − 𝑣𝑧)

] (2.29)

(a) Sliding surface node. (b) Sliding edge node.

Figure 2.14: Normal and tangential vectors for sliding nodes [22].

With the three different conditions and the different orientations, the evaluation system can be set up
to compute the moving and sliding interpolation coefficients:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑𝑚𝑥
𝑑𝑚𝑦

𝑑𝑚𝑧
0⃗
0⃗
0⃗
0⃗
0⃗
0⃗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΦΦΦ𝑚𝑚 ΦΦΦ𝑚𝑒 ΦΦΦ𝑚𝑠 0 0 0 0 0 0
0 0 0 ΦΦΦ𝑚𝑚 ΦΦΦ𝑚𝑒 ΦΦΦ𝑚𝑠 0 0 0
0 0 0 0 0 0 ΦΦΦ𝑚𝑚 ΦΦΦ𝑚𝑒 ΦΦΦ𝑚𝑠

𝑛𝑒1𝑥ΦΦΦ𝑒𝑚 𝑛𝑒1𝑥ΦΦΦ𝑒𝑒 𝑛𝑒1𝑥ΦΦΦ𝑒𝑠 𝑛𝑒1𝑦ΦΦΦ𝑒𝑚 𝑛𝑒1𝑦Φ𝑒𝑒 𝑛𝑒1𝑦ΦΦΦ𝑒𝑠 𝑛𝑒1𝑧ΦΦΦ𝑒𝑚 𝑛𝑒1𝑧ΦΦΦ𝑒𝑒 𝑛𝑒1𝑧ΦΦΦ𝑒𝑠
𝑛𝑒2𝑥ΦΦΦ𝑒𝑚 𝑛𝑒2𝑥ΦΦΦ𝑒𝑒 𝑛𝑒2𝑥ΦΦΦ𝑒𝑠 𝑛𝑒2𝑦ΦΦΦ𝑒𝑚 𝑛𝑒2𝑦ΦΦΦ𝑒𝑒 𝑛𝑒2𝑦ΦΦΦ𝑒𝑠 𝑛𝑒2𝑧ΦΦΦ𝑒𝑚 𝑛𝑒2𝑧ΦΦΦ𝑒𝑒 𝑛𝑒2𝑧ΦΦΦ𝑒𝑠

0 𝑡𝑒𝑥 0 0 𝑡𝑒𝑦 0 0 𝑡𝑒𝑧 0
𝑛𝑠𝑥ΦΦΦ𝑠𝑚 𝑛𝑠𝑥ΦΦΦ𝑠𝑒 𝑛𝑠𝑥ΦΦΦ𝑠𝑠 𝑛𝑠𝑦ΦΦΦ𝑠𝑚 𝑛𝑠𝑦ΦΦΦ𝑠𝑒 𝑛𝑠𝑦ΦΦΦ𝑠𝑠 𝑛𝑠𝑧ΦΦΦ𝑠𝑚 𝑛𝑠𝑧ΦΦΦ𝑠𝑒 𝑛𝑠𝑧ΦΦΦ𝑠𝑠
0 0 𝑡𝑠1𝑥 0 0 𝑡𝑠1𝑦 0 0 𝑡𝑠1𝑧
0 0 𝑡𝑠2𝑥 0 0 𝑡𝑠2𝑦 0 0 𝑡𝑠2𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼⃗𝑚𝑥
𝛼⃗𝑒𝑥
𝛼⃗𝑠𝑥
𝛼⃗𝑚𝑦
𝛼⃗𝑒𝑦
𝛼⃗𝑠𝑦
𝛼⃗𝑚𝑧
𝛼⃗𝑒𝑧
𝛼⃗𝑠𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.30)
Now, if this sliding method is used for periodic nodes, some adaptions have to be made. In case the
periodic distance method is used to slide the periodic nodes in a periodic manner, all of the interpola­
tion matrices in Equation 2.30 are computed using a periodic distance function. In case the periodic
boundaries are rotational, this distance function will be transformed to cylindrical coordinates. Next to
the transformed coordinates and distance function, this will also require a transformation of the orien­
tations to cylindrical vectors using the transformation matrix given in Appendix B:
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𝑛𝑟 = 𝑐𝑜𝑠(𝜃) ⋅ 𝑛𝑥 + 𝑠𝑖𝑛(𝜃) ⋅ 𝑛𝑦 (2.31)
𝑛𝜃 = −𝑠𝑖𝑛(𝜃) ⋅ 𝑛𝑥 + 𝑐𝑜𝑠(𝜃) ⋅ 𝑛𝑦 (2.32)

𝑛𝑧 = 𝑛𝑧 (2.33)

𝑡𝑟 = 𝑐𝑜𝑠(𝜃) ⋅ 𝑡𝑥 + 𝑠𝑖𝑛(𝜃) ⋅ 𝑡𝑦 (2.34)
𝑡𝜃 = −𝑠𝑖𝑛(𝜃) ⋅ 𝑡𝑥 + 𝑐𝑜𝑠(𝜃) ⋅ 𝑡𝑦 (2.35)

𝑡𝑧 = 𝑡𝑧 (2.36)
With all components of the total interpolation matrix transformed, the resulting interpolation coefficients
will also be in cylindrical coordinates. Hence, the matrix system for the evaluation step will change to:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑𝑚𝑟
𝑑𝑚𝜃
𝑑𝑚𝑧
0⃗
0⃗
0⃗
0⃗
0⃗
0⃗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΦΦΦ𝑚𝑚 ΦΦΦ𝑚𝑒 ΦΦΦ𝑚𝑠 0 0 0 0 0 0
0 0 0 ΦΦΦ𝑚𝑚 ΦΦΦ𝑚𝑒 ΦΦΦ𝑚𝑠 0 0 0
0 0 0 0 0 0 ΦΦΦ𝑚𝑚 ΦΦΦ𝑚𝑒 ΦΦΦ𝑚𝑠

𝑛𝑒1𝑟ΦΦΦ𝑒𝑚 𝑛𝑒1𝑟ΦΦΦ𝑒𝑒 𝑛𝑒1𝑟ΦΦΦ𝑒𝑠 𝑛𝑒1𝜃ΦΦΦ𝑒𝑚 𝑛𝑒1𝜃ΦΦΦ𝑒𝑒 𝑛𝑒1𝜃ΦΦΦ𝑒𝑠 𝑛𝑒1𝑧ΦΦΦ𝑒𝑚 𝑛𝑒1𝑧ΦΦΦ𝑒𝑒 𝑛𝑒1𝑧ΦΦΦ𝑒𝑠
𝑛𝑒2𝑟ΦΦΦ𝑒𝑚 𝑛𝑒2𝑟ΦΦΦ𝑒𝑒 𝑛𝑒2𝑟ΦΦΦ𝑒𝑠 𝑛𝑒2𝜃ΦΦΦ𝑒𝑚 𝑛𝑒2𝜃ΦΦΦ𝑒𝑒 𝑛𝑒2𝜃ΦΦΦ𝑒𝑠 𝑛𝑒2𝑧ΦΦΦ𝑒𝑚 𝑛𝑒2𝑧ΦΦΦ𝑒𝑒 𝑛𝑒2𝑧ΦΦΦ𝑒𝑠

0 𝑡𝑒𝑟 0 0 𝑡𝑒𝜃 0 0 𝑡𝑒𝑧 0
𝑛𝑠𝑟ΦΦΦ𝑠𝑚 𝑛𝑠𝑟ΦΦΦ𝑠𝑒 𝑛𝑠𝑟ΦΦΦ𝑠𝑠 𝑛𝑠𝜃ΦΦΦ𝑠𝑚 𝑛𝑠𝜃ΦΦΦ𝑠𝑒 𝑛𝑠𝜃ΦΦΦ𝑠𝑠 𝑛𝑠𝑧ΦΦΦ𝑠𝑚 𝑛𝑠𝑧ΦΦΦ𝑠𝑒 𝑛𝑠𝑧ΦΦΦ𝑠𝑠
0 0 𝑡𝑠1𝑟 0 0 𝑡𝑠1𝜃 0 0 𝑡𝑠1𝑧
0 0 𝑡𝑠2𝑟 0 0 𝑡𝑠2𝜃 0 0 𝑡𝑠2𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼⃗𝑚𝑟
𝛼⃗𝑒𝑟
𝛼⃗𝑠𝑟
𝛼⃗𝑚𝜃
𝛼⃗𝑒𝜃
𝛼⃗𝑠𝜃
𝛼⃗𝑚𝑧
𝛼⃗𝑒𝑧
𝛼⃗𝑠𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.37)
There is also the possibility to implement the equal distance method within the direct sliding method
but that has not been done yet in this thesis and will be left as a further recommendation.

2.4.3. Curvature correction
When the nodes slide along a planar surface or a straight edge, the 3D sliding method does not require
a post­process correction step. The used conditions are sufficient to enforce the nodes to slide along
the surface or edge. However, in case of sliding along a curved surface or edge, it is possible that
the nodes move from the surface or edge when moving along the tangent direction(s). Therefore, a
curvature correction is applied to guarantee that the nodes remain on the surface or edge they are
sliding along. This correction is similar to the projection algorithm mentioned in Section 2.4.1.

2.5. Data reduction: greedy algorithm
Since the RBF interpolation method can become very computationally expensive for larger problems,
the method is often combined with a greedy algorithm. A greedy algorithm makes a reduced selection
of control nodes from the boundary nodes that allows for an accurate representation of the interpolation
function within a set tolerance. The greedy algorithm that is used in this project is referred to as ’greedy
algorithm 2: full point algorithm’ by Rendall and Allen [28]. This means that for every new control node
added to the selection, the interpolation coefficients are recomputed.

The algorithm starts by selecting one moving node, one surface node and one edge node as the initial
selection of control nodes. The first selected moving node is the node with the largest displacement.
The first surface node is the node located the furthest from the selected moving node and the initial
edge node is the node located furthest from both the initial moving and surface nodes. This allows for
a proper distribution of the initial control nodes over the domain.

Next, in the case of rotational periodic boundaries, the known displacements, the node coordinates
and the orientation vectors are all transformed to the cylindrical coordinate system. With the initial con­
trol node selection, the interpolation coefficients are computed and the other non­selected boundary
nodes are updated using the obtained interpolation function. Then the error is evaluated. The error for
the moving nodes 𝜖𝑚 is the difference between the interpolated distance 𝑑𝑚 and the actual known dis­
placement 𝑑𝑒𝑥𝑎𝑐𝑡. Several error descriptions are available [29] but the surface error is an appropriate
choice if the actual boundary displacement is known and will give the most accurate results:

𝜖𝑚 = ‖𝑑𝑚 − 𝑑𝑒𝑥𝑎𝑐𝑡‖ (2.38)

The error for the surface nodes 𝜖𝑠 is based on the requirement for the surface nodes to have zero
displacement in normal direction to the surface:

𝜖𝑠 = 𝑛⃗𝑠 ⋅ 𝑑𝑠 (2.39)
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In a similar way, the edge nodes are not allowed to displace in either normal directions to the edge. For
each normal direction, 𝑛𝑒1 and 𝑛𝑒2 , a separate error is computed, 𝜖𝑒1 and 𝜖𝑒2 , respectively. Then, one
total error for the edge nodes 𝜖𝑒 is computed by taking the norm.

𝜖𝑒1 = 𝑛⃗𝑒1 ⋅ 𝑑𝑒
𝜖𝑒2 = 𝑛⃗𝑒2 ⋅ 𝑑𝑒

(2.40)

𝜖𝑒 = √𝜖2𝑒1 + 𝜖2𝑒2 (2.41)

The node that has the largest error over all three error vectors combined is then selected as control
node and added to its specific list depending on the type of point it is: moving, sliding surface or sliding
edge. In case of rotational periodic boundaries, the interpolated displacements are first transformed
back to the Cartesian coordinate system before the errors are computed. This is done because in the
cylindrical reference frame, r and z are dependent on the domain size but 𝜃 is not. With the way the
error is computed, this independence might cause some inaccuracies.

Every time a node is added to the control nodes, the interpolation function is recomputed, hence the
inverse of the interpolation matrix is computed every time. This is continued until the error is below a set
tolerance value. Since typically not all moving nodes are selected and thus not all are used for the dis­
placement of the sliding nodes (unless the tolerance was not reached before all nodes were selected),
a correction is required for the interpolation error that this will cause. This correction is explained in the
next section.

2.5.1. Greedy correction
The greedy correction is based on the difference between the displacements obtained with the inter­
polation function and the exact known displacements of the moving nodes, 𝑑𝑒𝑥𝑎𝑐𝑡. This difference is
called the error 𝜖:

𝜖 = 𝑑𝑚 − 𝑑𝑒𝑥𝑎𝑐𝑡 (2.42)

Each moving node has its specific error, which is zero for the nodes selected as control nodes. Then
for every sliding surface and sliding edge node, the nearest moving node is selected and a correction is
applied that is proportional to the error of that node. The correction is equal to the error of the nearest
neighbour boundary node 𝜖𝑛𝑛 with known displacement multiplied by the correction factor 𝛽:

𝑥⃗𝑠𝑛𝑒𝑤 = 𝑥⃗𝑠 + 𝛽 ⋅ 𝜖𝑛𝑛 (2.43)
𝑥⃗𝑒𝑛𝑒𝑤 = 𝑥⃗𝑒 + 𝛽 ⋅ 𝜖𝑛𝑛 (2.44)

2.6. Mesh quality
Since the thesis project aims to investigate the performance of different mesh deformation methods for
periodic boundaries, a mesh quality metric is essential. The algebraic expression metrics by Knupp [18]
are chosen as they have advantages over other metrics, including non­dimensionality, a finite range
of metric values and a specified metric domain. The metrics are geometry specific and derived from
the Jacobian matrix, containing information about the orientation, size, shape and skewness of a mesh
cell. They are available for both structured and unstructured meshes and in two and three dimensions.

In this project, the most important metrics are size and skew. In small clearance gaps, the cells can
become heavily skewed after deformation. To check the influence of applying the sliding technique in
these areas, the skew metric is required. Moreover, the sliding technique can also change the size of
the cells when clustering nodes, making the size metric also important. The size metric is also impor­
tant for the displacement of the periodic boundaries to check that the displacement has improved some
of the compressed and stretched mesh cells after deformation.
All metrics are relative and thus determine the cell quality by comparison to a reference element which
is the initial cell. A metric value of 1 represents an ideal cell and 0 represents a degenerate cell.

The Jacobian matrix 𝐴𝑘, listed for the different cell types in Equation 2.45, has the size 𝑑 × 𝑑 for
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𝑑­dimensional cells and differs for every node 𝑘 of the cell. Each matrix column represents the edge
vectors emerging from a cell node. In Figure 2.15, the different cell types are shown with the cell nodes
numbered.

𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 ∶ 𝐴𝑘 = (
𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+2 − 𝑥𝑘
𝑦𝑘+1 − 𝑦𝑘 𝑦𝑘+2 − 𝑦𝑘 )

𝑇𝑒𝑡𝑟𝑎ℎ𝑒𝑑𝑟𝑎𝑙 ∶ 𝐴𝑘 = (−1)𝑘 (
𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+2 − 𝑥𝑘 𝑥𝑘+3 − 𝑥𝑘
𝑦𝑘+1 − 𝑦𝑘 𝑦𝑘+2 − 𝑦𝑘 𝑦𝑘+3 − 𝑦𝑘
𝑧𝑘+1 − 𝑧𝑘 𝑧𝑘+2 − 𝑧𝑘 𝑧𝑘+3 − 𝑧𝑘

)

𝑄𝑢𝑎𝑑𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 ∶ 𝐴𝑘 = (
𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+3 − 𝑥𝑘
𝑦𝑘+1 − 𝑦𝑘 𝑦𝑘+3 − 𝑦𝑘 )

𝐻𝑒𝑥𝑎ℎ𝑒𝑑𝑟𝑎𝑙 ∶ 𝐴𝑘 = (
𝑥𝑘+1 − 𝑥𝑘 𝑥𝑘+3 − 𝑥𝑘 𝑥𝑘+4 − 𝑥𝑘
𝑦𝑘+1 − 𝑦𝑘 𝑦𝑘+3 − 𝑦𝑘 𝑦𝑘+4 − 𝑦𝑘
𝑧𝑘+1 − 𝑧𝑘 𝑧𝑘+3 − 𝑧𝑘 𝑧𝑘+4 − 𝑧𝑘

)

(2.45)

The determinant of the Jacobian is 𝛼𝑘. For every node 𝑘, a symmetric metric tensor is found by form­
ing 𝐴𝑇𝑘𝐴𝑘 which has components 𝜆𝑘𝑖𝑗 for 𝑖, 𝑗 = 1, .., 𝑛. These components are used in the relative metric
formulations. In Table 2.3, the relative skew metrics are given for different mesh cell types: triangular,
tetrahedral, quadrilateral and hexahedral. There is no pure skew metric for the triangular and tethrahe­
dral cells as skewing also changes their shape. Next to the mesh cell type it is shown for which mesh
they are used in this project. Hence, the relative shape metric can be used as given by Knupp [18].

𝑓𝑠𝑘𝑒𝑤
Triangular (2D, unstructured) √3𝛼

𝜆11+𝜆22−𝜆12
Tetrahedral (3D, unstructured) 3(𝛼√2)2/3

3
2 (𝜆11+𝜆22+𝜆33)−(𝜆12+𝜆23+𝜆13)

Quadrilateral (2D, structured) 4

∑3𝑘=0(√𝜆𝑘11𝜆𝑘22)/(𝛼𝑘)

Hexahedral (3D, structured) 8

∑7𝑘=0((√𝜆𝑘11𝜆𝑘22𝜆𝑘33)/(𝛼𝑘))
2/3

Table 2.3: Relative skew metrics [18].

The relative size metric is given by
𝑓size =min(𝜏, 1/𝜏) (2.46)

where 𝜏 is the ratio of the deformed cell over the initial cell volume: 𝜏 = ∑𝑛−1𝑘=0 𝛼𝑘/𝛼0𝑘, for a total number
of nodes 𝑛.

The skew and size metrics can be combined into one by using the expression:

𝑓size − skew = √𝑓size 𝑓skew (2.47)

The mesh quality of the 3D meshes is assessed using the mesh quality filter in Paraview. All 3D
meshes used in this report have hexahedral cells for which the skew metric is used. The skew metric
determines the skewness which is a measure of the difference between the mesh cell shape and a cell
of the same volume with equilateral edges. The skewness has a value between 0 and 1. The closer
the skewness value gets to 1, the more skewed the mesh is and the lower the mesh quality. Hence,
this is opposite of the way the quality metrics work that are used in the 2D cases.
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(a) Triangular cell (2D). (b) Tetrahedral cell (3D).

(c) Quadrilateral cell (2D). (d) Hexahedral cell (3D).

Figure 2.15: Different mesh cell types with numbered nodes [35].



3
Two­dimensional results

In this chapter, the two­dimensional results are presented. They show a comparison of four different
deformation methods. These 4 methods are regular RBF, periodic sliding, periodic displacement with
corners fixed and periodic displacement with corners allowed to move. The method algorithms are
shown in Appendix A. For thesemethods, there is also a comparison between the two periodic boundary
methods, the periodic distance and the equal displacement method, as mentioned in Section 2.3. The
chapter starts with an overview of the different meshes used in the simulations in Section 3.1. Next, the
simulation settings are listed in Section 3.2. Then, the results for the different methods are presented
and analysed in Section 3.3 for the translational cases and in Section 3.4 for the rotational cases. The
greedy algorithm results are discussed in Section 3.5 and finally, some conclusions are made in Section
3.6.

3.1. Two­dimensional meshes
For the two­dimensional simulations, two different meshes are used that represent the two types of
periodic boundaries as discussed in Section 2.2. Mesh 1 is a structured mesh that is used for the
translational periodic boundaries. Mesh 2 is an unstructured mesh used for the rotational periodic
boundaries.

3.1.1. Mesh 1: Structured square mesh
Mesh 1 (Fig. 3.1) is a structured square mesh and is used to examine the performance of the methods
for translational periodic boundaries. The upper and lower boundaries are considered to be periodic,
the left and right boundary are not. The mesh has an inner block that undergoes a set displacement.
The figure also presents the initial mesh quality before a deformation is applied to the block. The mesh
is completely bright yellow, meaning an optimal quality of 1 as shown on the colorbar on the right. The
details for the mesh are shown in Table 3.1.

Mesh 1: Structured square mesh
Minimum quality 1
Mean quality 1

Length 25 units
Height 25 units
Inner block length 5 units
Inner block height 1 unit
Spacing 1 unit

Table 3.1: Mesh 1 properties.

25
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Figure 3.1: Mesh 1: structured square mesh

3.1.2. Mesh 2: Unstructured pie shape mesh
Mesh 2 (Fig. 3.2) is an unstructured pie shape mesh and is used to examine the performance of the
methods for rotational periodic boundaries. The two straight boundaries are periodic and enclose an
angle of 45∘. The arc is a non­periodic boundary. The mesh contains an inner block that has a set
displacement, different from the block displacement in mesh 1. The mesh does not have an optimal
mesh quality before deformation as can be concluded from the darker yellow shades of some of the
mesh cells. The specifications of mesh 2 are listed in Table 3.2.

Mesh 2: Unstructured pie shape mesh
Minimum quality 0.8764
Mean quality 0.9823

Radius of arc 25 units
Periodic angle 45∘
Inner block length 5 units
Inner block height 1 unit

Table 3.2: Mesh 2 properties.

Figure 3.2: Mesh 2: unstructured pie shape mesh.
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3.2. Simulation settings
The nodes that make up the different meshes can be divided into several groups. In Figure 3.3 the
different node groups are indicated for both meshes. The green nodes are the periodic nodes, hence
they lie on the periodic boundaries and will always have identical displacement. The red nodes are the
non­periodic nodes and the blue nodes are the moving nodes for which the displacement is known.
The displacement of the inner block is given in Table 4.4 for both meshes. Moving nodes can also
have a displacement equal to zero, making them fixed. The rest of the nodes (not coloured) are the
internal nodes. Depending on the deformation method used, different node assignments are valid for
the different node groups:

• Regular RBF: All boundary nodes are fixed. Hence, the green, red and blue nodes on the corners
are all fixed. The blue nodes on the inner block are moving nodes. The fixed nodes are also seen
as moving nodes with zero displacement.

• Periodic Sliding: The green nodes are allowed to slide, in a periodic way. The red nodes are
also sliding nodes but not periodic. The corner blue nodes are fixed and the inner block blue
nodes are moving nodes.

• Periodic displacement (fixed corners): The green nodes are allowed to be displaced in a
periodic manner. The red nodes are sliding nodes in a non­periodic manner. The blue corner
nodes are fixed and the inner block blue nodes are moving nodes.

• Periodic displacement (moving corners): (Only for mesh 1) The green nodes are allowed to
be displaced periodically. The red nodes are sliding nodes as well as the blue corner nodes. The
blue sliding corner nodes slide periodically. The inner blue nodes are moving nodes.

Block deformation
Mesh 1 Mesh 2

Rotation 60∘ 30∘
Displacement in x ­5 units ­2 units
Displacement in y ­8 units ­3 units

Table 3.3: Inner block deformation details for displacement of periodic boundaries.

(a) Mesh 1 for translational periodic boundaries. (b) Mesh 2 for rotational periodic boundaries.

Figure 3.3: Node assignment for simulations with periodic nodes (green), moving nodes (including static nodes, blue) and
non­periodic boundary nodes (red).

Furthermore, the support radius 𝑟 is 62.5 for both meshes and the deformation is performed in 20 steps.
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3.3. Translational periodic boundaries results
In this section, the results for the translational periodic boundaries are discussed. The deformed
meshes using the periodic distance method are shown in Figure 3.4 and for the equal displacement
method in Figure 3.5. Using the regular RBFmethod causes a very poor quality region in the left bottom
part of the mesh. When comparing the regular RBF (Fig. 3.4a) and the periodic sliding method (Fig.
3.4b), it can be observed that allowing the nodes to slide already reduces the size of the very poor
quality cells region on the left side of the mesh. This region now seems to be concentrated at the bot­
tom of the mesh, in the small region between the moving inner block and the lower periodic boundary.
The periodic sliding method comes with a slight decrease in mesh quality at the top left corner. This
is because the displacements of the non­periodic sliding nodes are also computed using the periodic
distance function. Allowing the periodic nodes to move (Fig. 3.4c) further improves the minimum mesh
quality of the mesh. The mesh quality at the bottom of the mesh has now improved a large amount.
The lowest quality region is now located around the left bottom corner, which is a fixed node. When
the corner nodes are allowed to slide vertically as well (Fig. 3.4d) this poor region disappears as well
and a relatively good quality mesh is achieved. The lowest quality regions are now located close to the
periodic boundaries.

(a) Regular RBF. (b) Periodic sliding.

(c) Periodic displacement with corners fixed. (d) Periodic displacement with moving nodes.

Figure 3.4: Different deformation methods performed on mesh 1 using the periodic distance method with Wendland C2 (r=62.5)
after 20 deformation steps.

Similar conclusions can be made by investigating the meshes in Figure 3.5 for the equal displacement
method. However, also some differences can be noticed between the two periodic boundary meth­
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(a) Regular RBF. (b) Periodic sliding.

(c) Periodic displacement with corners fixed. (d) Periodic displacement with moving nodes.

Figure 3.5: Different deformation methods performed on mesh 1 using the equal displacement method with Wendland C2
(r=62.5) after 20 deformation steps.

ods. For the equal displacement method, the periodic sliding in Figure 3.5b gives a much better mesh
quality at the left top corner than could be seen for the periodic distance method in Figure 3.4b. This
is because only the regular distance function is used in the equal displacement method. The rest of
the mesh is more or less unaffected by the periodic boundary implementation. On the other hand, the
method seems to yield a slightly bigger lower mesh quality region on the left and underneath the inner
block. When applying the periodic displacement (Fig. 3.5c), the mesh quality is more or less similar to
the mesh obtained with the periodic distance method. Finally, when the corners are allowed to move
(Fig. 3.5d) the trend also seems very similar to the periodic distance method with a slightly higher
overall mesh quality.

The two periodic methods can be further compared by investigating Figures 3.6 and 3.7 for the peri­
odic distance and equal displacement method, respectively. In these figures, two identical, deformed
meshes are stacked upon one another where the focus is put on the interface between the two meshes,
located at 25 units in vertical direction. It is clear that both periodic methods ensure a periodic displace­
ment of the boundaries, as the nodes on the upper and lower boundaries coincide. For the periodic
distance method, it is difficult to point out where one mesh ends and another begins as this method
allows for a smooth transition between the two. This is also the reason for the lower mesh quality region
at the upper left corner that is clearly visible in Figure 3.4b. The mesh in this region starts to adapt to
the cell sizes at the bottom of the mesh. With the equal displacement method, this phenomenon does
not occur. Here, the transition from one mesh to the other is not smooth as the cell sizes and shapes



30 3. Two­dimensional results

close to the interface can differ a lot. This makes the interface between the two meshes more clearly
visible with some obvious kinks present.

(a) Periodic sliding.

(b) Periodic displacement with fixed vertices.

Figure 3.6: Interface between two adjacent meshes after
applying periodic distance method.

(a) Periodic sliding.

(b) Periodic displacement with fixed vertices.

Figure 3.7: Interface between two adjacent meshes after
applying equal displacement method.

The performance of the different methods is illustrated by performance graphs of the computation time,
minimum quality and mean quality for different numbers of deformation steps. These are shown in Fig­
ure 3.8 for the periodic displacement method and in Figure 3.9 for the equal displacement method.
When comparing the computation times for both periodic methods, it can be observed that the periodic
distance method is faster than the equal displacement method. This is because the equal displacement
method has a larger interpolation matrix that needs to be inverted. Some fluctuations can also be seen
in the computation time graph in Figure 3.8a. These mainly occur for lower number of deformation
steps which could be attributed to overhead and sometimes are just random. Furthermore, it makes
sense that the regular RBF method has the lowest computation time as all other methods contain an
extra projection step for the sliding nodes.

In terms of mesh quality, the periodic displacement method with moving corners is the best performing
both for minimum and mean quality. Only the mean quality for the periodic distance method seems to
be most optimal when keeping the corners fixed. This can be due to the higher skewness of the cells
at the top and bottom when the corners are allowed to move. Furthermore, it is clear that allowing the
periodic boundaries to move, for the specific deformation used in this case, improves the mesh quality
compared to keeping them fixed. This is also the case if the periodic nodes are only allowed to slide.
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When comparing the periodic distance and the equal displacement method, it is difficult to distinguish
which one performs better in terms of mesh quality as they show very similar results.

(a) Computation time.

(b) Minimum mesh quality.

(c) Mean mesh quality.

Figure 3.8: Performance of different deformation methods
using the periodic distance method and the Wendland C2
(r=62.5) RBF function on translational periodic boundaries.

(a) Computation time.

(b) Minimum mesh quality.

(c) Mean mesh quality.

Figure 3.9: Performance of different deformation methods
using the equal displacement method and the Wendland C2
(r=62.5) RBF function on translational periodic boundaries.
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3.3.1. Influence of radial basis function
A second RBF, the unscaled TPS function, is used to examine how the periodic boundary methods
perform for a different type of RBF. Only the periodic displacement method with fixed corner nodes is
applied. Figure 3.10 shows the deformed meshes using the TPS function. One aspect that is clearly
different from the scaled Wendland function results is the sharp edges at the corners that result from
using the TPS function. They are present for both periodic methods but in a lesser extent for the equal
displacement method. For the periodic distance method, the very sharp corners create a new poor cell
quality region. These sharp corners are also reflected in the minimum quality graph (Fig. 3.11b) since
the method performs significantly worse than the equal displacement method. When investigating the
mean mesh quality in Figure 3.11c, the method even performs worse than the regular RBF method.
Hence, for the TPS function it is clear that the equal distance method is the better performing one.
Such clear differences in quality between the two periodic methods were not present when using the
Wendland function. One thing that is similar compared to the Wendland RBF is the computation time
that is still higher for the equal displacement method.
A possible solution for the very sharp corners with the periodic distance method could be to scale the
distance function (Eq. 2.11) by changing its amplitude.

(a) Regular RBF. (b) Periodic displacement with corners fixed
using periodic distance method.

(c) Periodic displacement with corners fixed
using equal displacement method.

Figure 3.10: Different deformation methods performed on mesh 1 using TPS (unscaled) in 20 deformation steps.

(a) Computation time. (b) Minimum quality. (c) Mean quality.

Figure 3.11: Performance graphs of different periodic methods applied to mesh 1 using TPS unscaled function.

3.4. Rotational periodic boundaries results
The Figures 3.12 and 3.13 show the different deformation methods applied to the rotational periodic
boundaries mesh for the two different periodic boundary methods. For both methods, the regular RBF
clearly produces a very poor quality region in the mesh between the inner block and the lower periodic
boundary. The use of periodic sliding with the periodic distance method (Fig. 3.12b) only seems to
worsen this region as well as the quality of the cells close to the upper periodic boundary. This is clearly
due to the cells near the upper boundary adapting to the mesh cell size near the bottom boundary. With
the equal displacement method, the periodic sliding also does not seem to offer much improvements.
This is mainly because the clearance gap between the block and the lower boundary is very small. The
cells are severely compressed and sliding will not help this much. Once the periodic boundaries are
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allowed to move (Fig. 3.12c & 3.13c), the region below the inner block is significantly improved while
the region above the block seems to reduce in quality due to the increased skewness of the cells in
that location as well as the changed shape. When comparing both periodic boundary methods it also
seems to be difficult to tell which one is which, purely from the mesh figures. However, when putting
two identical meshes together, it becomes much more clear which periodic method is being used.

(a) Regular RBF. (b) Periodic sliding. (c) Periodic displacement with corners fixed.

Figure 3.12: Different deformation methods performed on mesh 2 using the periodic distance method with Wendland C2
(r=62.5) after 20 deformation steps.

(a) Regular RBF. (b) Periodic sliding. (c) Periodic displacement with corners fixed.

Figure 3.13: Different deformation methods performed on mesh 2 using the equal displacement method with Wendland C2
(r=62.5) after 20 deformation steps.

(a) Periodic displacement with fixed corners using periodic distance
method.

(b) Periodic displacement with fixed corners using equal displacement
method.

Figure 3.14: Two adjacent rotational periodic meshes using Wendland C2 (r=62.5) RBF function after 20 deformation steps.

Figure 3.14 shows two adjacent meshes with displaced periodic boundaries. On the left, the same kind
of smooth transition can be observed over the interface when using the periodic distance method, as
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was the case for translational periodic boundaries. On the right, it is clear that there is again a difference
in cell size between the upper and lower periodic boundary, prohibiting a smooth transition from one
mesh to the next. Hence, it is obvious that the equal displacement has a clear drawback, irrespective
of the type of periodic boundaries.

(a) Computation time.

(b) Minimum mesh quality.

(c) Mean mesh quality.

Figure 3.15: Performance of different deformation methods
using the periodic distance method and the Wendland C2
(r=62.5) RBF function on rotational periodic boundaries.

(a) Computation time.

(b) Minimum mesh quality.

(c) Mean mesh quality.

Figure 3.16: Performance of different deformation methods
using the equal displacement method and the Wendland C2
(r=62.5) RBF function on rotational periodic boundaries.
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When examining the performance graphs for the different methods in Figures 3.15 and 3.16, a doubling
in computation time can be noticed for the equal displacement method.
As expected, letting the periodic boundaries move shows a great improvement in the minimum quality
but also improves the mean quality. However, the sliding method shows a decrease in quality for both
periodic methods. Hence, the deformation for the rotational case is to severe for pure sliding to improve
the mesh.
When comparing the two periodic methods, it is again difficult to distinguish which one performs better
in terms of mesh quality. The minimum mesh quality seems to be slightly higher for the periodic dis­
tance method. On the other hand, the mean mesh quality is approximately the same for both periodic
methods, unless periodic sliding is used in which case the equal displacement method scores better.

3.5. Greedy Results
In order to check that a periodic boundary method also performs well with the use of a greedy algorithm,
a denser version of mesh 1 is used with a smaller spacing. Since the number of nodes is still relatively
small, greedy algorithm 2 is used as it faster than greedy algorithm 1 for a smaller number of nodes
[22].

3.5.1. Case 1: Mesh 1 with spacing 0.125, using greedy 2 algorithm

(a) Nr. of indices. (b) Computation time.

(c) Minimum quality. (d) Mean quality.

Figure 3.17: Greedy results on mesh 1 using periodic distance method with Wendland 𝐶2 function (r=62.5).

The greedy case is performed on mesh 1. In order to properly investigate the performance of the peri­
odic method using the greedy data reduction algorithm, the mesh spacing has been reduced to 0.125.
The number of deformation steps is 5. The displacement that is applied to the inner block is the same
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as in Table 4.4 and only the periodic nodes are allowed to move. The results for the periodic distance
method are shown in Figure 3.17.

For the periodic distance method, it can be seen that for a tolerance of 10−5 the same minimum and
mean mesh quality can be achieved using greedy as without using greedy. The greedy algorithm al­
lows to achieve the same mesh quality with only 20% of the control nodes used and almost 6 times as
fast. For the equal displacement method, a similar behavior is expected. This is something that can
still be tested in the future, once the method is adapted to work with a greedy algorithm.

3.6. Discussion of results
From the periodic boundary displacement simulations it can be concluded that the TPS function does
not perform well when used for the periodic distance method. When using the equal displacement
method with TPS, the mesh quality was much higher but similar to the Wendland results. For that
reason, only the Wendland 𝐶2 function was used for the rest of the simulations as it performs well
for both periodic methods. Although none of the periodic methods seems to be superior in terms of
deformed mesh quality, the periodic displacement method does come with two advantages over the
equal displacement method which are independent of the type of periodic boundaries used. Firstly, the
transition between two adjacent meshes is much more smooth for the periodic distance method. The
equal displacement method instead shows clear kinks at the interface. Secondly, the periodic distance
method is more computationally efficient than the equal displacement method. For these reasons, the
3D test cases will only use the periodic distance method, leaving the implementation of the 3D equal
displacement method as a future recommendation.
Furthermore, the most optimal mesh deformation method is when the corner nodes are allowed to
move but sometimes this comes with a slight decrease in mean mesh quality.
Finally, the periodic methods can performwell when using a greedy algorithm, especially if the tolerance
is 10−5 for both periodic boundary methods.
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Three dimensional results

In this chapter, the 3D results are given showing a comparison between the regular RBF and the
periodic displacement method. For the periodic displacement, the periodic distance method is used as
is described in Section 2.3. This was shown to be computationally cheaper than the equal displacement
method in the 2D test cases. It also showed a smooth transition from one mesh to another.
The chapter starts with an overview of the two types of 3D meshes the method will be tested on. Next
the simulation parameters are given. Then the results are discussed for the translational case in Section
4.3 and for the rotational case in Section 4.4.

4.1. Three­dimensional meshes
The periodic boundary deformation method is tested in 3D using two different test cases. The first one
is a blade within a domain that has translational periodic boundaries. The second one is a blade within
a domain with rotational periodic boundaries. Both meshes consist of hexahedral cells.

4.1.1. Mesh 3: Structured mesh of blade with translational periodic domain
The third mesh is a structured 3D mesh with translational periodic boundaries in y­direction. In Figure
4.1, the initial mesh is shown before any deformation is applied. The mesh can be considered quasi
2D as the same surface is repeated multiple times along the z­axis. Therefore, only one surface is
displayed in the figure. The initial mesh already starts of with some highly skewed mesh cells present.

Mesh 3: Structured mesh of blade with translational periodic domain
Periodic distance 0.0575 units
Domain range in x [­0.055,0.079] units
Domain range in y [­0.076,0.027] units
Domain range in z [0,0.1] units

Moving nodes 12248
Sliding nodes 33306
Periodic nodes 14782
Internal nodes 748524

Table 4.1: Mesh 3 properties.

37
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Figure 4.1: Initial mesh 3, only one surface displayed.

4.1.2. Mesh 4: Structured mesh of blade with rotational periodic domain
The fourth mesh is a structured 3D mesh with rotational periodic boundaries. The initial mesh before
deformation is shown in Figure 4.2. The hub and the shroud are the outer surfaces of the mesh where
the blade intersects the surface. The shroud surface, which is visible in the figure, is a type of slightly
curved surface segment of a cone. The rest of the mesh is more or less a copy of the shroud surface
stacked behind it but slightly decreasing in outlet edge size with the hub having the smallest outlet
edge. The outlet is the surface visible on the left side of the mesh. The properties for mesh 4 can be
found in Table 4.2.

Mesh 4: Structured mesh of blade with rotational periodic domain
Periodic angle 5.0704∘
Domain range in x [0.489,0.602] units
Domain range in y [­0.061,0.024] units
Domain range in z [­0.075,0.054] units

Moving nodes 10808
Sliding nodes 10780
Periodic nodes 15832
Internal nodes 280820

Table 4.2: Mesh 4 properties.
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Figure 4.2: Initial mesh 4, showing decreasing size from shroud to hub.

4.2. Simulation parameters
For the 3D test cases, the greedy algorithm is always used as these cases have a large number of
nodes. The greedy variables and the support radius for each case are listed in Table 4.3 and the blade
displacements are listed in Table 4.4. The node assignment for both meshes can be found in Figure
4.3. All nodes that are on the periodic boundaries are colored green. This includes both the surface and
edge nodes. The two different deformation methods have a different node assignment for the different
node groups:

• Regular RBF: All boundary edge and surface nodes are fixed except for the sliding surfaces in
red where the blade intersects the surface. Hence, the green, the remaining red and blue nodes
on the corners are all fixed. The blue nodes on the blade are moving nodes.

• Periodic displacement (fixed corners): The green surface nodes are allowed to be displaced
in a periodic manner. The green edge nodes that are part of the outlet or inlet are fixed for mesh 3
but they are allowed to move for mesh 4. For mesh 3, the inlet and outlet are on the left and right
side of the mesh, respectively. For mesh 4, they are on the bottom and top, respectively. The
remaining green edge nodes are also allowed to move periodically. The red nodes are sliding
nodes. The blue corner nodes are fixed (also included with moving nodes) and the blue nodes
on the blade are moving nodes.
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(a) Mesh 3 for translational periodic boundaries.

(b) Mesh 4 for rotational periodic boundaries.

Figure 4.3: Node assignment for simulations with periodic nodes (green), moving nodes (including static nodes, blue) and
non­periodic surface and edge nodes (red).
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Simulation variables
Mesh 3

Greedy tolerance 0.03
Boundary correction factor 50
Support radius, r (units) 0.335

Mesh 4

Greedy tolerance 0.03
Boundary correction factor 50
Support radius, r (units) 0.323

Table 4.3: Greedy settings and support radii for the 3D mesh deformation cases.

Blade displacement
Mesh 3

x y z

Translation (units) ­0.025 0.01 0
Rotation (deg) 0 0 30
Center of rotation 0 0 0

Mesh 4

x y z

Translation (units) 0 0 0
Rotation (deg) 0 0 0.8
Center of rotation 0 0 0

Table 4.4: Blade deformation details for the 3D mesh deformation cases.

4.3. Translational periodic boundaries results
First, the regular RBF method was applied to mesh 3 (Fig. 4.4a) to be able to properly show the im­
pact of the periodic boundary displacement method. The regular RBF method results in the creation of
some very poor quality cells in the mesh as the maximum skewness is nearly 1. The mesh skewness
values are listed in Table 4.5. The small clearance gap between the blade and the boundary above
the blade only became smaller after the blade deformed, causing the mesh to become heavily skewed
and almost degenerate. Also above and below the trailing edge some heavily skewed mesh cells are
generated. The initial mesh 3 already had a high maximum skewness and somewhat high mean skew­
ness, especially when compared to mesh 4. However, the regular RBF still managed to worsen both,
especially the mean skewness.

Once the periodic boundaries are allowed to move as shown in Figure 4.4b, the mean skewness of the
mesh reduces greatly and is even lower than it was for the initial mesh. When comparing the maximum
skewness, only a slight improvement can be noticed for the periodic displacement method compared
to the regular RBF method. However, it should be kept in mind that the initial mesh already has highly
skewed mesh cells present. It can be seen that the poor quality region of skewed cells is already
present initially along the upper edge of the blade but it has become much smaller with the periodic
displacement method. Also the very poor regions around the trailing edge of the blade have signifi­
cantly improved when compared to the regular RBF method. On the other hand, allowing the periodic
boundaries to move, does create some sharp corners on the left side of the figure which were not yet
present before. Hence, some deterioration of the mesh can also occur with this method, especially
when the vertices of the mesh are kept fixed.



42 4. Three dimensional results

(a) Mesh 3 skewness after applying regular RBF method.

(b) Mesh 3 skewness after applying periodic displacement using the periodic distance method.

Figure 4.4: Mesh 3 skewness after deforming using different methods. The Wendland C2 function is used with r=0.335 after 20
deformation steps.
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Initial Regular RBF Periodic displacement
Maximum skewness 0.972 0.999 0.977
Mean skewness 0.318 0.596 0.308

Table 4.5: Minimum mesh quality for different mesh deformation methods applied to mesh 3.

In order to analyse the mesh smoothness for the periodic distance method, two identical meshes are
stacked upon one another in Figure 4.5. On first sight, the method seems to show a relatively smooth
interface between the two meshes making it difficult to distinguish the actual interface. However, when
zooming in on the interface (Fig. 4.6), it is clear that the method in 3D is not as smooth as is in 2D.
Some small kinks can be noticed at the interface in the region between the two blades. However, it
is only present for a small number of nodes at the interface, as for the rest of the interface nodes the
transition from one mesh to the other is smooth. The reason for these kinks is not a flaw in the periodic
distance method but rather an issue with choosing the periodic nodes to be displaced together with the
internal nodes. After using greedy, a greedy correction is applied as is explained in Section 2.5. This
correction for the internal nodes is based on the error of the nearest boundary point. The issue arises
because the periodic nodes are also lying on a boundary. Hence, the code will not have a known error
for these nodes yet which means that a zero correction is applied to the periodic nodes. This bug in
the code is yet to be resolved.

Figure 4.5: Two adjacent meshes after applying periodic displacement using periodic distance method (20 steps).
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Figure 4.6: Enlarged interface between two adjacent translational periodic boundary meshes.

4.4. Rotational periodic boundaries results
For the rotational periodic boundaries case, also both the regular RBF and the periodic displacement
method (using periodic distance) are applied to the mesh, which are shown in Figure 4.7. When using
the regular RBF method and thus keeping all boundaries fixed except for the surfaces that intersect the
blade, some very poor quality regions occur in the mesh as shown in Figure 4.7a. The worst region is
right above the blade which is to be expected as the blade makes a positive rotation around the z­axis
which results in the blade moving upwards in the domain. As the clearance gap between the blade
and the fixed boundary is small here, the mesh cells become heavily skewed, causing the poor quality
region. Another poorer quality region is at the outlet. Since the blade is relatively close to the outlet of
the domain and the outlet is completely fixed, hence no sliding allowed, the cells become more skewed
when the blade moves upward. This small clearance gap thus again results in poorer mesh quality,
although not in the same amount as the region above the blade. The rest of the mesh between the
blade and the inlet remains roughly the same as the blade deformation hardly affects this region. This
is also reflected in the low mean skewness of the mesh, given in Table 4.6.

After applying the periodic distance method, some great improvements can be immediately noticed
in Figure 4.7b. The first improvement in mesh skewness is in the region right above the blade. The
displacement of the periodic boundaries allows for a better distribution of the nodes along the displaced
boundary. This significantly alleviates the mesh skewness and also the size of the cells are closer to
the original mesh cell size. Another region that shows great improvements is at the outlet since the
nodes on the outlet surface are now allowed to slide. They will slide upwards, improving the quality of
the previously more skewed mesh cells. The vertices are however fixed and with the displaced periodic
edges, some sharper corners are generated at the outlet. As a result, the mesh quality is slightly lower
in these corner regions than it was when using regular RBF. This could potentially be improved by al­
lowing the fixed vertices to slide upward as well. When inspecting the maximum and mean skewness,
it can be observed that the maximum skewness in the mesh is still quite high. However, this is due to
only one specific cell, which is clearly visible on the shroud surface. This cell was already somewhat
skewed in the initial mesh and this slightly worsened when deforming the mesh. The mean skewness
however is almost as low as the initial mesh and again confirms the significant improvement of the
mesh quality when allowing the periodic boundaries to move.
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(a) Mesh 4 skewness after applying regular RBF method.

(b) Mesh 4 skewness after applying periodic displacement using the periodic distance method.

Figure 4.7: Mesh 4 skewness after deforming using different methods. The Wendland C2 function is used with r=0.323 after 20
deformation steps.

When attaching two identical meshes, it can be seen in Figure 4.8 that the meshes (only shroud surface
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Initial Regular RBF Periodic displacement
Maximum skewness 0.433 0.964 0.720
Mean skewness 0.041 0.252 0.097

Table 4.6: Quality (skewness) for different mesh deformation methods applied to mesh 4.

displayed here) fit perfectly at the interface, displaying a smooth transition from one mesh to the other,
also in terms of cell size. Even when zooming in on the interface (Fig. 4.9), the transition seems to
remain smooth. It could be that the deformation of the blade is so that the problem of applying the
wrong correction becomes insignificant and the kinks do not show up for this specific mesh.

Figure 4.8: Two adjacent meshes after applying periodic distance method.

Figure 4.9: Enlarged interface between two adjacent rotational periodic boundary meshes.
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Conclusions and recommendations

5.1. Conclusions
As expected, allowing the periodic boundaries to displace yields much higher mesh qualities than fixed
boundaries for large deformations or for small clearance gap regions. This goes for both the periodic
distance and the equal displacement method. However, the periodic distance clearly performs better
in terms of smoothness once the periodic meshes are connected, allowing a smooth cell size transition
over the interface for both the translational and rotational periodic boundary 2D cases. For the 3D
translational case, some kinks occur at the mesh interface making the method less smooth. However,
this was not caused by the periodic boundary displacement method but rather by a bug in the code
concerning the greedy correction. Therefore, it is expected that the periodic distance method also pro­
duces smooth mesh transitions in 3D as is the case for the 2D cases. For the 3D rotational case, these
kinks were not clearly visible, which allowed for a smooth transition. Apart from the smoothness, there
did not seem to be a clear superior periodic boundary method (in 2D) in terms of minimum and mean
mesh quality for both types of periodic boundaries. Furthermore, for the 2D cases, the mesh quality
seems to be the highest when the mesh vertices are allowed to move in the form of sliding nodes, which
mainly causes an improvement of the minimum mesh quality.
For the 3D cases, only the periodic distance method was used hence no comparison can be made
between both periodic methods.

In terms of computation time, the periodic distance is shown to be faster than the equal displace­
ment method since the evaluation matrix size is 𝑁𝑚 ×𝑁𝑚 compared to (𝑁𝑚 +𝑁𝑝) × (𝑁𝑚 +𝑁𝑝). When
comparing translational and rotational periodic boundary cases of the same mesh size for the periodic
distance method, the rotational boundary cases would likely have a higher computation time due to the
several transformations required between coordinate systems.

Next, the equal displacement method showed to be highly dependent on the specific deformation ap­
plied to the mesh. However, using an 𝜔­value of 0.5 and thus an equal influence of both periodic
boundaries seems to be a reasonably good choice, independent of the deformation.

When comparing different RBF’s, the Wendland C2 function gives good results with both periodic dis­
placement methods for both types of periodic boundaries. Especially compared to the TPS RBF func­
tion, the Wendland C2 function gives superior mesh quality results for the periodic distance method.
This is because with the TPS function, the mesh corners become very sharp with a highly skewed mesh
in this region as a result.

For the 2D cases, using a greedy algorithm with a tolerance of 10−5 allows for the samemesh quality as
when using all boundary nodes but the computation time is six times less. When the greedy algorithm
is used in the 3D cases, the desired outcome was not exactly obtained because of the bug with the
greedy correction as mentioned earlier.
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48 5. Conclusions and recommendations

5.2. Future recommendations
Although a small investigation has already been done into the equal displacement method, there is still
room for further investigation and improvement of the method. Some way of automatizing the selection
of the optimal 𝜔 value would be convenient when using the method on different meshes. It might also
be interesting to look at other types of combinations instead of simply using a linear combination of the
two interpolation coefficients.
The equal displacement method is yet to be implemented in 3D. This means that some adaptions have
to be made to the greedy slide method in 3D to incorporate the total interpolation matrix for the periodic
nodes. Hence, one large total interpolation matrix would be required that includes all of the conditions
for the sliding nodes and all conditions for the periodic nodes. However, this might become a very large
matrix to be inverted. Another option could be to use the pseudo sliding method as is used for the 2D
cases. In that case, the greedy slide method would be replaced by a regular greedy method and an
additional projection step for the sliding nodes.
Also, a more extensive comparison could be done for the computation time of the periodic distance
and the equal displacement method. This was only done for small 2D cases and although a difference
could already be noticed, it is expected to be much more distinct for 3D cases.

The vertices for the 3D cases have remained fixed so far, so here there is still potential to improve
the mesh quality by adapting the method for sliding vertices as was used in the 2D cases. For the
rotational periodic boundary case used in this project, this would imply that some extra information
would be required about the geometry. The edges where the hub and the shroud intersect the outlet
are located on imaginary circles of different radii‘. The radii and center points of these circles would
have to be implemented in the code so that the vertices know what direction to slide along.

The test cases that are used in this thesis project are relatively simple test cases where the periodic
boundaries were periodic in one specific direction and there is only one pair of periodic boundaries per
case. In the example that was used for the nuclear industry application, a periodic domain was shown
that included three different pairs of periodic boundaries. Two of these where periodic in vertical direc­
tion but one boundary of one pair was located below a boundary of the other pair and then the opposite
was true for the second boundaries of each pair. This makes the mesh more complicated and would
require some adjustments to the code to be able to move all these periodic boundaries simultaneously.

So far, the only mesh deformation method used here is the RBF interpolation method. However, it
should also be possible to implement the periodic boundary displacement method with other types of
interpolation mesh deformation methods such as the IDW method.

Finally, performing a CFD simulation could serve as a proper validation of the performance of the
periodic boundary displacement method on periodic domains, for which the resulting data can be com­
pared with other available data. This would allow to assess the accuracy of the solution when using
the periodic displacement method.
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A
Algorithms

This appendix contains some of the most important algorithms used in the code for this project.

A.1. Regular RBF

Input moving and internal 
node coordinates,

  and 

Input moving
node displacements, 

Compute interpolation
matrix  

Compute displacements

Update internal nodes, 

Output updated coor-
 dinates  and 

 

Compute interpolation
coefficients 

Compute interpolation
matrices 

Figure A.1: Flowchart of regular RBF algorithm.
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A.2. Periodic sliding (2D) 53

A.2. Periodic sliding (2D)

Which periodic method?
Use regular RBF algorithm (A.1.)
with periodic distance function
and  instead of internal nodes

Input moving, 
sliding and internal 

node coordinates, 

Equal
displacement

Use projection algorithm (A.4.) to
project 

 back onto boundary

Merge  and 
 as new control nodes

Input moving
node displacements, 

Compute sliding node
displacement, 

Merge  and 
 as new known displacements

Get updated sliding 
nodes coordinates, 

Use regular RBF algorithm (A.1.)
with periodic distance function
to obtain updated internal nodes, 

Periodic 
distance

Compute interpolation matrices 
 and 

Split periodic and non-
periodic sliding nodes, 

 and 
 

Compute total interpolation matrix
 and solve for interpolation
coefficients,  and  

Compute interpolation matrices 
 and 

Update periodic and sliding
nodes,  and 

Use projection algorithm to
project  and 

 back onto boundary

Compute displacements 

 and 

Merge , 
 and  as new control nodes

Merge  and 
 as new known displacements

Use regular RBF algorithm to
obtain updated internal nodes, 

   Output updated coordinates, 
 and 

 

Output updated coor-
 dinates  and 

 

Figure A.2: Flowchart of periodic sliding algorithm in 2D.
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A.3. Periodic displacement (2D)
In the 2D results chapter (Ch. 3), periodic displacement is applied to mesh 1 with the vertices of the
outer block either fixed or allowed to move. When they are allowed to move, they are considered to
be part of the sliding nodes and not the periodic nodes. The difference between the periodic sliding
and the periodic displacement method is that the nodes on the periodic boundaries are not projected
back onto their initial boundaries when using periodic displacement. When only a displacement of the
periodic boundaries is desired and no sliding of the other boundary nodes, the periodic displacement
is the same as the regular RBF with a different distance function for the periodic distance method.

Which periodic method?

Use regular RBF algorithm
with periodic distance

function and  as internal
nodes

Input moving, periodic, 
sliding and internal 
node coordinates,
 

Use projection algorithm to
project 

 back onto boundary

Merge  and 
 as new control nodes

Input moving
node displacements, 

Compute sliding node
displacement, 

Merge  and 
 as new known
displacements

Get updated sliding 
nodes coordinates, 

Use regular RBF algorithm
with periodic distance

function to obtain updated
internal and periodic nodes,

 and 

Periodic 
distance

Compute interpolation
matrices  and 

Compute total interpolation
matrix  and solve for

interpolation coefficients, 
 and  

Compute interpolation
matrices  and 

Update periodic and sliding
nodes,  and 

Use projection algorithm to
project 

 back onto boundary

Compute displacements 

 and 

Merge , 
 and  as new control

nodes

Merge  and 
 as new known
displacements

Use regular RBF algorithm
to obtain updated internal

nodes, 

Output updated coor-
dinates  and 

 

Output updated coor-
 dinates  and 

 

Equal
displacement

Figure A.3: Flowchart of periodic displacement algorithm in 2D.
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A.4. Projection algorithm

Input sliding 
node coordinates,

 

 Input initial mesh geometry:
midpoints of sections,

 slopes

Find nearest midpoint

Project node onto nearest
midpoint section in the normal

direction

Update new location of sliding
nodes, 

Update slopes in case of curved
boundary

  Output updated sliding node
coordinates 

 and slopes

Figure A.4: Flowchart of projection algorithm.
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A.5. 3D greedy Sliding
The transformations between the different coordinate systems are highlighted in blue and are only
required for the periodic distance method on domains with rotational periodic boundaries.

Select initial moving, sliding
surface and sliding edge

node

Transform all nodes and
displacements from

Cartesian to cylindrical
coordinates

Compute interpolation
matrices using selected

control nodes

Transform normal and
tangential unit vectors to

cylindrical coordinates

Set up evaluation matrix and
compute interpolation

coefficients

Compute displacements of
non-selected boundary

nodes

Transform displacements
back to Cartesian

coordinates

Evaluate error between
known and computed

displacements

Error < tolerance? Add node with largest error to
greedy selection

Compute interpolation
matrices for new set of

control nodes 

Set up evaluation matrix and
compute interpolation

coefficients

Compute displacements of
non-selected boundary

nodes

Transform displacements
back to Cartesian

coordinates

Final evaluation using all
selected nodes

Compute interpolation
coefficients

Compute displacements of
non-selected boundary

nodes

Transform displacements
back to Cartesian

coordinates

No

Yes

Input moving, sliding  
 surface and edge nodes, 

normal and tangent 
vectors

Output displacements of
sliding surface and edge

nodes

Figure A.5: Flowchart of 3D sliding greedy algorithm.



B
Frame transformations

When the domain has rotational periodic boundaries, some transformations are usually performed
between the Cartesian coordinate system and the polar (2D) or cylindrical (3D) coordinate system.

B.1. Coordinates
B.1.1. From 2D Cartesian to polar
From (x,y)­coordinates to (r,𝜃)­coordinates.

𝑟 = √𝑥2 + 𝑦2
𝜃 = arctan(𝑦𝑥 )

(B.1)

B.1.2. From polar to 2D Cartesian
From (r,𝜃)­coordinates to (x,y)­coordinates.

𝑥 = 𝑟 cos𝜃
𝑦 = 𝑟 sin𝜃 (B.2)

B.1.3. From 3D Cartesian to cylindrical
From (x,y,z)­coordinates to (r,𝜃,z)­coordinates.

𝑟 = √𝑥2 + 𝑦2
𝜃 = arctan(𝑦𝑥 )
𝑧 = 𝑧

(B.3)

B.1.4. From cylindrical to 3D Cartesian
From (r,𝜃,z)­coordinates to (x,y,z)­coordinates.

𝑥 = 𝑟 cos𝜃
𝑦 = 𝑟 sin𝜃
𝑧 = 𝑧

(B.4)

B.2. Vector fields
A cylindrical vector can be expressed in terms of Cartesian vectors using the following transformation:

[
𝐴𝑟
𝐴𝜃
𝐴𝑧

] = [
cos𝜃 sin𝜃 0
− sin𝜃 cos𝜃 0
0 0 1

] [
𝐴𝑥
𝐴𝑦
𝐴𝑧

] (B.5)

Here, 𝜃 is computed using the expression from Equation B.1
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58 B. Frame transformations

B.3. Euclidean distance
The Euclidean distance function is used when setting up the interpolation matrices. When the mesh
contains rotational periodic boundaries, the Euclidean distance expression has to be altered to work
with either polar (2D) or cylindrical (3D) coordinates. The derivation of the adapted expressions are
shown in the following sections.

B.3.1. From Cartesian to polar (2D)
The 2D Euclidean distance function in polar coordinates is obtained by substituting the expressions
from Eq. B.2.

𝛿 =√𝛿𝑥2 + 𝛿𝑦2

=√(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2

=√(𝑟2 cos𝜃2 − 𝑟1 cos𝜃1)
2 + (𝑟2 sin𝜃2 − 𝑟1 sin𝜃1)

2

=√𝑟2 cos2 𝜃2 + 𝑟21 cos2 𝜃1 − 2𝑟1𝑟2 cos𝜃1 cos𝜃2 + 𝑟22 sin2 𝜃2 + 𝑟21 sin2 𝜃1 − 2𝑟1𝑟2 sin𝜃1 sin𝜃2

=√𝑟21 (cos2 𝜃1 + sin2 𝜃1) + 𝑟22 (cos2 𝜃2 + sin2 𝜃2) − 2𝑟1𝑟2 (cos𝜃1 cos𝜃2 + sin𝜃1 sin𝜃2)

=√𝑟21 + 𝑟22 − 2𝑟1𝑟2 cos (𝜃1 − 𝜃2) 𝑢𝑠𝑖𝑛𝑔 cos(𝐴 − 𝐵) = cos𝐴 cos𝐵 + sin𝐴 sin𝐵

(B.6)

B.3.2. From Cartesian to cylindrical (3D)
The 3D Euclidean distance function in cylindrical coordinates follows the same derivation as in Equation
B.6, with an additional component in the z­direction.

𝛿 =√𝛿𝑥2 + 𝛿𝑦2 + 𝛿𝑧2

=√(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2

=√𝑟21 + 𝑟22 − 2𝑟1𝑟2 cos (𝜃1 − 𝜃2) + (𝑧2 − 𝑧1)
2

(B.7)



C
Equal displacement method

This appendix shows mesh 1 after applying the equal displacement method in 20 deformation steps
using the Wendland C2 RBF function (r=62.5) for 𝜔­values 0, 0.5 and 1.

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.1: 30∘ rotation, 0 units vertical displacement and 0 units horizontal displacement.

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.2: 30∘ rotation, 4 units vertical positive displacement and 0 units horizontal displacement.
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60 C. Equal displacement method

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.3: 30∘ rotation, 8 units vertical positive displacement and 0 units horizontal displacement.

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.4: 60∘ rotation, 0 units vertical displacement and 0 units horizontal displacement.

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.5: 60∘ rotation, 4 units vertical positive displacement and 0 units horizontal displacement.

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.6: 30∘ rotation, 8 units vertical positive displacement and 0 units horizontal displacement.
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(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.7: 30∘ rotation, 0 units vertical displacement and 4 units positive horizontal displacement.

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.8: 30∘ rotation, 0 units vertical displacement and 8 units positive horizontal displacement.

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.9: 60∘ rotation, 0 units vertical displacement and 4 units positive horizontal displacement.

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.10: 60∘ rotation, 0 units vertical displacement and 8 units positive horizontal displacement.
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(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.11: 60∘ rotation, 6 units positive vertical displacement and 6 units positive horizontal displacement.

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.12: 60∘ rotation, 6 units negative vertical displacement and 6 units negative horizontal displacement.

(a) 𝜔 = 0. (b) 𝜔 = 0.5. (c) 𝜔 = 1.

Figure C.13: ­60∘ rotation, 6 units positive vertical displacement and 6 units positive horizontal displacement.
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