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Full Spectrum b-Modulation of Time-Limited
Signals Using Linear Programming

Sander Wahls
Delft Center for Systems and Control, TU Delft, The Netherlands

s.wahls@tudelft.nl

Abstract: We present the first method for the joint modulation of the continuous and the
discrete nonlinear Fourier spectrum of finite duration signals. © 2022 The Author(s)

1. Introduction

The nonlinear Fourier transform (NFT) linearizes the ideal nonlinear fiber channel, which has led to much interest
in the area of fiber-optic communication systems in the last decade [1]. The spectral efficiencies of early systems
were very low, but have been steadily increasing. Recently, a value of 5.51 bits/sec/Hz over a 960 km link has been
demonstrated in simulations [2], which is only about a factor two away from conventional systems. The design
of NFT-based transceivers is complicated by the fact the NFT consists of two parts: a continuous spectrum for
radiation components, and a discrete spectrum for solitonic components. The high spectral efficiency in [2] was
achieved by modulating the continuous spectrum only, using a variant of b-modulation [3]. The advantage of b-
modulation is that it offers control over the temporal support of the generated pulses, a quality earlier approaches
were lacking. Furthermore, it turned out to be more robust to noise. One the other hand, it has been shown that
b-modulation can suffer from power constraints [4]. While there have also been demonstrations of NFT-based sys-
tems that use only the discrete spectrum (multi-soliton transceivers) or combine a few solitons with a continuous
spectrum, these approaches have not been reported to achieve high spectral efficiencies so far.

Inspired by the observation that the NFTs of conventionally modulated signals are typically strongly dominated
by solitonic components [5], it was recently proposed to improve the pulse shapes of multi-solitons by adding a
suitable continuous spectrum that shorten them to a desired finite duration [6]. The advantage of (multi-)soliton
shortening over simple pulse truncation is that does not perturb the discrete spectrum. As a proof of concept, it
was shown that soliton shortening increased the spectral efficiency of a two-soliton on-off-keying transceiver by
40% over a 960 km link. In this paper, we present a new method for full spectrum b-modulation (FSbMOD) that
unifies classic b-modulation for the continuous spectrum [3] with (multi-)soliton shortening for discrete spectra
[6]. FSbMOD is the first method that can jointly modulate the continuous and discrete parts of the nonlinear
spectrum under a finite duration constraint. The proposed algorithm therefore offers control over the temporal
support which conventional full spectrum modulation is missing. Since both parts of the spectrum are utilized,
FSbMOD is not limited in power like classical b-modulation. The FSbMOD algorithm is based on a systematic
optimization approach and can thus be expected to succeed if solutions exist (and tuned properly). The soliton-
shortening methods in [6] in contrast were ad-hoc and could fail even though solutions exist.

2. Theoretical Background of the Nonlinear Fourier Transform (NFT) (see, e.g., [1, 6, 7])

Using path-averaging and normalization, the evolution of a periodically amplified pulse in an optical fiber link is
approximated by the nonlinear Schroedinger equation (NSE) jqz +qtt +2q|q|2 = 0. Here, q(z, t) is the normalized
complex envelope of the pulse, z denotes normalized position, t normalized time, j =

√
−1, and the subscripts

indicate partial derivatives. The NFT of q(z0, t) with z0 fixed is defined using the Zakharov-Shabat problem

d
dt

[
φ1(t;λ )
φ2(t;λ )

]
=

[
−jλ q(z0, t)

−q∗(z0, t) jλ

][
φ1(t;λ )
φ2(t;λ )

]
,

[
1
0

]
t→−∞←−

[
ejλ tφ1(t;λ )

e−jλ tφ2(t;λ )

]
t→+∞−→

[
a(λ )
b(λ )

]
,

where λ is a complex parameter and (·)∗ indicates the complex conjugate. The NFT of q(z0, t) consists of the
continuous spectrum b(ξ ), ξ ∈R, and the discrete spectrum {λk,bk}K

k=1, where the eigenvalues λk are the solutions
to a(λ ) = 0 in ℑ(λ )> 0 and bk = b(λk). Here, ℑ(·) indicates the imaginary part. If q(z0, t) is time-limited, then

a(λ )a∗(λ ∗)+b(λ )b∗(λ ∗) = 1 ∀λ ∈ C =⇒ b(λk)b∗(λ ∗k ) = 1, |b(ξ )|2 = 1−|a(ξ )|2 < 1 ∀ξ ∈ R. (1)

The evolution of the nonlinear spectrum w.r.t. the normalized NSE is trivial with λk(z) = λk(0) and b(λ ;z) =
b(λ ;0)exp(4 jλ 2z). To generate time-limited pulses, ones considers bandlimited continuous spectra of the form

b(λ ) =
1

2π

∫ 2T

−2T
B(τ)ejλτ dτ, B(τ) absolutely integrable. (2)

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 716669).



If |b(ξ )| < 1 for all real ξ and the discrete spectrum satisfies b(λk) = bk, b(λ ∗k ) = 1/b∗k , then the inverse NFT
results in a time domain signal q(z0, t) that is time-limited in the sense that q(z0, t) = 0 for |t|> T .

3. Full Spectrum b-Modulation (FSbMOD) Algorithm

We now describe the FSbMOD algorithm. The algorithm contains both classic b-modulation and soliton shorten-
ing as special cases. The problem will be formulated as an interpolation problem that is then solved using linear
programming. The approximation errors in the formulation and the linear program can be made arbitrarily small.

Problem Statement The goal is to find – if it exists – a time-limited pulse of duration 2T with a desired nonlinear
Fourier spectrum. The algorithm therefore determines a b(λ ) as in (2) that satisfies the interpolation conditions

rn ≤ℜ(b(ξn))≤ rn, in ≤ ℑ(b(ξn))≤ in︸ ︷︷ ︸
continuous spectrum

, b(λk) = bk︸ ︷︷ ︸
discrete spectrum

, b(λ ∗k ) = 1/b∗k , |b(νl)|< 1− ε︸ ︷︷ ︸
required because of (1)

∀n,k, l, (3)

where the desired pulse duration 2T , the interpolation nodes ξn and λk, the bounds rn, rn, in, in and the values bk
are specified by the user; ℜ(·) denotes the real part. Note that it is possible to enforce equality constraints on the
continuous spectrum by setting rn = rn and in = in, but it can be advantageous to relax them. It is not possible to
relax the constraints on the discrete spectrum since that destroys the symmetry b(λ ∗k ) = 1/b∗(λk) required by (1).
The purpose of the real grid points νl is to approximate the condition |b(ξ )|< 1, which is also required by (1).

Description of the Algorithm To find a b(λ ) that satisfies both (2) and (3) numerically, we exploit that ban-
dlimited functions can be expressed using generalized sampling series

b(ξ ) =
R

∑
r=−R

crψ(ξ −Wr), ψ(ξ ) =
1

W
sin(πξ/W )

πξ/W
cos(πβξ/W )

1− (2βξ/W )2 for ξ /∈ {0,±W/(2β )}, W = π
1+β

2T
, (4)

where cr = b(Wr), R = ∞, W > 0 and 0≤ β ≤ 1. To make the problem computationally feasible, we consider only
finite values of R in (4). The task of the algorithm now reduces to finding coefficients cr such that (3) is satisfied
by (4). Note that ψ(ξ ) is the frequency response of a raised cosine filter, so that T = π(1+β )/(2W ) in (2). Let
us now introduce the evaluation matrix V(zi1 , ...,zi2) = [ψ(zi−Wr)]i2,Ri=i1,r=−R for arbitrary complex interpolation
nodes zi. Furthermore, let v(y1, ...,yi) denote the column vector obtained by stacking arbitrary values y1, ...,yi. The
first interpolation condition in (3) can then be written as the real-valued linear equation system

v(r1, . . . ,rN , i1, . . . , iN) ≤ C[V(ξ1, . . . ,ξN)]c[c]
≤ v(r1, . . . ,rN , i1, . . . , iN)

, where C[·] :=
[

ℜ(·) −ℑ(·)
ℑ(·) ℜ(·)

]
and c[·] :=

[
ℜ(·)
ℑ(·)

]
. (5)

We can similarly express the second and third interpolation condition in (3) as C[V(λ1, . . . ,λK)]c[c] =
c[v(b1, . . . ,bK)] and C[V(λ ∗1 , . . . ,λ

∗
K)]c[c] = c[v(1/b∗1, . . . ,1/b∗K)]. The fourth condition in (3) contains complex

absolute values. We can approximate it arbitrarily well by the S real-valued systems of conditions [8][
cos(θs) sin(θs)

]
C[V(ν1, . . . ,νn)]c[c]≤

[
1 . . . 1

]T
, θs = 2π(s−1)/S, s = 1, ...,S. (6)

Using that y≤ Bx⇔−Bx≤−y and Bx = y⇔ y≤ Bx≤ y for arbitrary matrices B and vectors x,y with compat-
ible dimensions, we can combine the condition (5) with the others in one large system of inequalities of the form
Ac[c]≤ b. This is a linear programming problem that can be solved for c[c] with standard solvers.

Summary The full spectrum b-modulation algorithm works as follows. The user specifies the desired nonlinear
spectrum by providing the nodes ξn and λk, bounds rn, rn, in and in as well as the values bk for (3). The desired
duration 2T and the parameters νl ,ε in (3), R in (4) and S in (6) that control the quality of approximations also have
to be provided. The linear program Ac[c]≤ b described above is then solved – if it is solvable – for c[c]. Together
with the specified discrete spectrum {λk,bk}, the resulting continuous b(ξ ) from (4) is provided to an inverse NFT
algorithm, which computes the desired time-domain signal q(z0, t). This signal will be of finite duration 2T .

4. Numerical Example

The proposed algorithm is the first that can modulate the complete nonlinear Fourier spectrum under a finite
duration constraint. We now compare it with conventional full spectrum modulation (CFSMOD), which was im-
plemented by using the FSbMOD algorithm without the discrete spectrum constraints so that the continuous spec-
trum would not be matched to it. The FSbMOD algorithm is run with the carrier parameters β = 0.1, W = 0.4,
R = 10, and S = 24. The discrete spectrum is λk = 0.5 j + k− 2, k = 1,2,3. The bk are QPSK-modulated bk
with |bk| = eℜ(λk). The continuous spectrum nodes are ξn = 2W (n− 5), n = 1, . . . ,9. The continuous spectrum
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Fig. 1. Numerical example. The link parameters used for denormalization and simulation are α = 0.2
dB/km, β =−21.5×10−27 s2/m, γ = 1.3×10−3 1/(Wm), lumped amplification, 5dB noise figure.

was also QPSK modulated, but in a relaxed form. We only require the algorithm to achieve ℜ(b(ξn)) ≷ 0.2 and
ℑ(b(ξn)) ≷ 0.2. This was done because the problem became infeasible when equality constraints were used. For
the same reason, the spacing of the ξn is 2W instead of W . The νl are a equidistant grid on [−(2R+1)W,(2R+1)W ]
with spacing W/16. We set ε = 0.01. Fig. 1a shows an exemplary denormalized time domain signal generated us-
ing the proposed FSbMOD and using CFSMOD. FSbMOD has clearly shortened the signal to a finite duration.
Fig. 1b shows the linear Fourier spectra, while Fig. 1c contains the corresponding continuous nonlinear spec-
tra. The nonlinear spectrum of FSbMOD is stronger than that of CFSMOD since it is also used to shorten the
signal. To compare FSbMOD and CFSMOD, the transmission of a train of 250 signals was simulated over a
12×80km link. The signals were pre-compensated by removing half of the phase-shift the NFT incurs at the
transmitter (TX). As this widens the signals, the pulses were therefore truncated to different durations 2T s, where
s = 0.9,1,1.1,1.2,1.3,1.4 is a scaling factor. Similarly, the TX/RX bandwidth was swept from 6 to 13.5GHz
in steps of 500MHz. The constellation diagrams for the best performing configurations [i.e., highest number of
bits/s/Hz with a bit error ratio (BER) ≤ 0.02] are shown in the Figs. 1d (FSbMOD) and 1e (CFSMOD). The inner
and outer points correspond to the continuous and discrete spectrum, respectively. FSbMOD exploits the relaxed
constraint and puts the continuous spectrum at larger values to shorten the signal. The best FSbMOD configuration
achieved 0.99 bits/s/Hz at a BER of 0.013, the best CFSMOD achieved 0.96 bits/s/Hz at a BER of 0.0075.

5. Conclusion

We presented the first method for the joint modulation of the continuous and discrete nonlinear spectrum that
offers control over the duration of the generated pulses. We demonstrated joint modulation in a numerical example,
where the pulse was clearly shortened to a finite duration. However, this did not translate into a higher spectral
efficiency. It is not yet clear if that is because of the specific setup considered in the example. The proposed method
is very versatile due to its optimization approach and could also be used in other ways (e.g., for power control with
conventional b-modulation, modulation of b(λ ) with λ not an eigenvalue, ...). It furthermore provides a systematic
approach to soliton shortening, which has already been shown to be beneficial for soliton on-off keying in [6].
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