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An Adaptive Semi-autonomous Impedance Controller for Teleoperated
Object Grasping based on Human Grip Safety Margin

Marlies Popken, J. Micah Prendergast, Michaël Wiertlewski, and Luka Peternel∗

Abstract— Humans can effortlessly grasp various objects
when the fingers are in direct physical interaction with the
object. However, the same actions become complicated when
grasping has to be performed via a teleoperated remote robot
due to a lack of direct contact and reduced sensory information.
Having a fully autonomous remote robot can eliminate the
problem of lack of proper feedback to the human operator,
nevertheless, it also prevents human control over the remote
robot’s grasping actions. In this paper, we propose a semi-
autonomous controller for a teleoperated robot grasping where
the human operator controls the grasping aperture while
the robot controls the impedance of the gripper. When the
operator grasps an object with the remote robot, the semi-
autonomous controller maintains the grip force by adjusting
stiffness. The developed stiffness adjustment approach derives
from the concept of grip force safety margin, which is the
central regulation principle humans use to maintain a light
grasp yet prevent object slippage. To detect incipient slippage,
we use a tactile sensor that captures the local deformations due
to the contact and interprets them to determine the proximity
to the object’s slip. To validate the proposed method, we
performed experiments on a teleoperation system composed
of Force Dimension sigma.7 haptic interface and a KUKA
LBR iiwa collaborative robot equipped with a custom-built
gripper. The results show that the proposed controller is robust
to external perturbations while it adapts to the operator’s
commands to prevent grasped object slippage.

I. INTRODUCTION

Humanoid robots are capable of performing tasks in
hazardous environments or locations humans cannot reach,
such as disaster areas [1]. However, humanoid robots still
lack the dexterity and the cognitive capabilities of humans
to accomplish various tasks independently and human in-
volvement is often still required. Such human involvement
can be achieved with teleoperation which enables a human
operator to perform a task with a remote robot via multiple
degrees of freedom interfaces.

A typical action in teleoperation is object grasping, which
is essential for the successful execution of a wide range
of manipulation tasks. Humans excel at directly grasping
objects. When squeezing and lifting the object, we constantly
regulate the grip force based on the sense of touch [2]–[4].
Additionally, humans tend to minimise the impact forces
while establishing contact with an object [5]. To maintain
grasp stability (i.e., object not slipping from the fingers) after
the contact is established, humans apply 10-40% more grip
force than the minimum required, which is called the grip
force safety margin [2]–[4].

The authors are with Cognitive Robotics, Delft University of Technology,
Delft, The Netherlands.

∗Corresponding author (e-mail: l.peternel@tudelft.nl).

While humans can easily perform various complex grasp-
ing actions when in direct physical interaction with an object,
the same actions become complicated when performed via
a teleoperated remote robot. In teleoperation, the human
operator does not have direct physical contact with the
grasped object, which impairs the operator’s perception and
control of the forces required during manipulation. This can
lead to the operator applying too much force and damaging
the object, or too little force, causing it to slip and fall.
While complex feedback interfaces, such as sensorised hand
exoskeletons [6], can replicate the tactile feel at the operator’s
fingers, they may not fully reproduce the capabilities of
humans during direct grasping (especially with time delays
in the teleoperation loop and limitations on transparency).
Therefore, the remote robot grasp controller is important to
help the operator maintain a stable grasp on the remote side.

Generally, teleoperated grasping control methods can be
categorised into three groups: position [6], force [7]–[9],
hybrid position/force [10] and impedance control [11]–[14].
These control methods have different qualities. A position
controller takes the commanded position from the local
device as a reference for the remote robot. Since the position
controller only cares about reaching the desired position and
applies as much force as needed to reach it, it can potentially
damage the object if the position commands are inaccurate.
For example, if the operator commands the remote gripper
to grasp a delicate glass and sets a target position inside it,
the resulting high forces could crush the glass. On the other
hand, the force controller takes the commanded force from
the local device as a reference at the remote gripper. The
controller at the remote robot applies the commanded force
independently of the gripper’s position. While in this case a
safe force can be maintained, the operator has no control over
the grasp position. This could, for example, prevent shaping
deformable objects into a desired shape while being grasped.

While a position controller does not care about the force,
and a force controller does not care about the position,
the advantage of an impedance controller is that it controls
the relation between position and force. For example, when
teleoperating a gripper to grasp a cup, the impact force can
be reduced if the impedance is set low, while the operator
still has control over the position. The operator can also
directly control the impedance of the remote robot through
teleimpedance [15], employing interfaces based on muscle
activity [11], [14] or external devices [16]. However, this re-
quires extra hardware and additional effort from the operator,
while reduced sensory information may still be detrimental
to achieving grip safety margin in real-time. Several semi-20
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Fig. 1. Overview of the semi-autonomous adaptive impedance controller. On the left is a tele-grasping setup. On the right is a schematic overview of the
controller that consists of four parts: adaptive impedance controller, stiffness adaptation module, safety margin detection, and grasp feedback.

autonomous impedance controllers have been proposed to
relieve the operator from commanding the impedance to the
remote robot so that they can entirely focus on commanding
the position [17]–[20]. However, these controllers do not take
into account the grip safety margin and may not ensure that
the applied grip force guarantees grasp stability.

To address this gap, we propose a semi-autonomous con-
troller for tele-grasping where the operator maintains the
ability to command the desired gripper aperture (position),
while the autonomous impedance controller ensures grasp
stability via a grip safety margin approach. A schematic
overview is shown in Fig. 1. This method achieves that 1)
the operator controls the aperture (position) of the remote
gripper, and 2) the grip force is controlled autonomously to
maintain grasp stability. More details about this controller
are described in Section II. In summary, the contributions of
this paper are:

• A semi-autonomous controller for tele-grasping where
the control over the remote gripper is shared between
the human operator and the robot to enable the operator
to control the gripper aperture while the robot controls
the grasp stability through impedance adjustments.

• A critical deformation parameter identification proce-
dure used for grip force safety margin detection that can
be performed by the operator online during teleopera-
tion, as an alternative to offline calibration procedures
based on a large training dataset.

To test the controller, we implemented it on a tele-grasping
setup, which consists of a local haptic device that the oper-
ator uses to control a gripper on a remote robotic arm. We
performed two proof-of-concept experiments to demonstrate
the main functionalities of the proposed method. The exper-
iments adaptability to external changes and adaptability to

human input test the controller during load force changes and
operator input perturbations (Section III). The results show
that the controller maintains grasp stability (Section IV) and
a discussion of the results is given in Section V.

II. METHOD

The proposed method consists of four elements (Fig. 1):
adaptive semi-autonomous impedance controller for grasping
(Section II-A), stiffness adaptation module (Section II-B),
safety margin detector (Section II-C), and grasp feedback
(Section II-D). The adaptive semi-autonomous impedance
controller enables the operator to control the aperture (po-
sition) of the remote gripper while the robot controls the
forces. The force at the remote gripper is regulated by the
stiffness adaptation module, which adjusts the stiffness and
damping to ensure grasp stability during grasping while
maintaining compliance in non-grasped phases of operation.
The stiffness adaptation module relies on the safety margin
detector to maintain grasp stability. Finally, force feedback
is provided to the operator to inform when contact is made
with an object.

A. Adaptive impedance controller

While the operator also controls the pose of the robotic
arm through the haptic device, the focus of the proposed
method is on the control of gripper fingers for grasping. The
gripper control is split between the aperture position, which
is handled by the operator, and the gripper impedance at the
fingers, which is handled by the adaptive semi-autonomous
impedance controller. The gripper impedance controller is
defined by the impedance control law [21] as

F = K(xr − xa) +D(ẋr − ẋa), (1)

Authorized licensed use limited to: TU Delft Library. Downloaded on January 08,2024 at 14:37:23 UTC from IEEE Xplore.  Restrictions apply. 



where F is the gripper force between the fingers and the
object, xr, is the desired reference gripper aperture position
commanded by the operator, xa the actual gripper aperture
position of the remote robot as measured by the encoder,
while K and D are Cartesian stiffness and damping terms
that define impedance of the fingers and are determined
by the stiffness adaptation module. In a general case, F ,
xr, and xa are vectors while K and D are matrices, i.e.,
when grippers with multiple degrees of freedom (DoF) are
employed. In this paper, we used a gripper with one-DoF
fingers, thus these variables can be simplified to scalars.

B. Stiffness adaptation module

The main goal of the stiffness adaptation module is to
adapt the stiffness and damping terms of the gripper in (1)
to the task where a certain object with specific properties is
grasped. When the gripper is not grasping or touching an
object, the stiffness term is set to a low value defined by pa-
rameter K0, creating a compliant low-impedance controller.
This low impedance is useful for establishing safe contact
between the fingers and unknown objects in unstructured
environments. After the gripper establishes safe contact with
an object, i.e., when a small stable force is measured, the
stiffness term becomes dependent on the safety margin to
enable the adaptive impedance controller to apply a force
equivalent to grasp stability. We achieve this by an integral
controller that adapts the stiffness based on the error between
the reference safety margin and the detected safety margin
as

K = K0 + I

∫
e dt, (2)

e = Γr − Γ, (3)

where K0 the feed-forward term of the controller to make
the gripper compliant in case of no contact, I is the gain of
the integral controller, Γ the detected safety margin, Γr the
reference safety margin, and K is the commanded stiffness
term calculated based on the last detected safety margin. The
damping term D is controlled based on the current stiffness
to achieve a critically damped system as D = 2 · 0.7

√
K

[22]. As with (1), K, D, K0, and I are generally matrices
but for grippers with one-DoF fingers they can be simplified
to scalars. In the case of multiple DoF, K and D have to
be aligned with the direction of the contact with the object,
where eigendecomposition or singular value decomposition
can be employed to rotate the matrices.

C. Safety margin detection

The proposed adjusting of the gripper stiffness is inspired
by the human grasp stability based on a grip force safety
margin Γ. Humans typically apply 10-40% more grip force
than the minimum required. This can be achieved based on
the frictional state of the object, where the safety margin
can be viewed as an estimate of how close an object is to
slippage [2], [3]. The safety margin can be determined by
the minimal required grip force, which depends on the lateral
force and the coefficient of friction of the grasped object.
There is no slippage as long as static friction is present

x

B
A

No	slip Incipient	slip Gross	slip

S�ck
Slip

F F

Fig. 2. Stages of slip between a fingertip and an object. A) The stick-slip
ratio in the contact surface. B) The displacement and the force exerted by
a fingertip

between the object and the gripper. This is described by a
classic expression for static friction as

Fl ≤ µsF, (4)

where Fl is the lateral force, µs is the static coefficient of
friction, and F is the grip force. An object starts to slip
when kinetic friction occurs, which is described by a classic
expression for kinetic friction as

F ∗
l = µkF, (5)

where F ∗
l is the critical lateral force and µk is the kinetic

coefficient of friction. The critical lateral force F ∗
l is thus the

force above which slippage occurs. As long as Fl < F ∗
l , the

object is not slipping. Based on this difference between the
lateral force and the critical lateral force, the safety margin
Γ can be computed [23]

Γ = 1− Fl

F ∗
l

. (6)

Slippage consists of two stages: incipient slip and gross
slip (Fig. 2). During incipient slip, the contact area between
the gripper and the object deforms and detaches from the
object in the peripheral area of the contact surface, causing
slippage in the outer area of the contact surface. Despite
this, there is no relative movement because the centre of
the contact area remains in contact with the object, which
can withhold the lateral force. As incipient slip increases,
the detachment moves towards the centre of the contact
area. When the contact area cannot withhold the lateral
force anymore, the entire area detaches and there is relative
displacement leading to gross slip.

The approach in (6) requires measured force and typ-
ical mechano-electric tactile sensors rely on displacement
to measure strain [8], [24], [25]. However, displacement
only occurs during the gross slip stage and thus mechano-
electric tactile sensors cannot preemptively detect slippage.
An alternative method is to compute the safety margin based
on deformations in the contact surface between the object and
the gripper, which emerge due to indentation, shear stress and
slippage. Such deformation can be measured visually with
camera-based sensors [26], [27]. Using this information, we
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*

*

Fig. 3. The safety margin relative to the deformations in the contact area.
The critical deformation δ∗, at which gross slip occurs, is represented by
the red horizontal line.

can estimate the safety margin already during the incipient
slip stage, i.e., before the relative displacement occurs.

We track the deformations in the contact area between
the grasped object and the gripper. These deformations are
caused by incipient slip and are indicative of how close an
object is to gross slippage, which corresponds to the safety
margin. This enables us to compute the safety margin Γ as

Γ = 1− δ

δ∗
, (7)

where δ and δ∗ are the measured and the critical deformation,
respectively. The details about how the actual deformation δ
is measured are provided in Section III-A. Critical defor-
mation δ∗ occurs when the object is on the verge of gross
slippage and depends on the grip force and the material of the
grasped object. Therefore, every object has a set of critical
deformations that correspond to different grip forces.

The safety margin, relative to the deformation in the
contact surface, is visualised in Fig. 3. The safety margin is 0
when δ = δ∗, and the object is on the verge of gross slippage.
When δ < δ∗ the safety margin is between 0 and 100%. The
grip force is then adapted through gripper stiffness according
to (2)-(3) to fit a deformation that corresponds with the
reference safety margin Γr. We set Γr = 30% to be in the
upper middle of the typical human range of 10-40%.

The study in [28] already showed that predicting safety
margin based on deformations is possible. The images cap-
turing deformations caused by incipient slip were validated
with force measurements and used as an input to neural
networks, which predicted safety margin as an output. While
such an approach enables object-independent predictions,
the downside is that it requires a long offline calibration
procedure to obtain a large training dataset. Furthermore,
the complexity of input images may limit the safety margin
prediction frequency, which can be crucial for dynamic tasks.

To alleviate these issues, we propose an alternative ap-
proach, which is based on the identification of the relation-
ship between the grip force F and the critical deformation δ∗.
This identification approach can done manually online by the
operator during the teleoperation and is further described in
Section III-B. It should be noted that critical deformation δ∗

is also dependent on object properties (e.g., surface material,

etc.) and must be identified when dealing with a new object.
To identify it, the operator can grasp an object with the
remote gripper and increase the external load to induce a
slippage. The deformations of the dots within the sensor
show a peak when gross slip begins, which corresponds to the
critical deformation. The critical deformation is collected for
several different forces and fitted with a simple polynomial
function that is used for autonomous online predictions by
the robot.

Since detecting deformations with a vision-based sensor
is difficult without a certain minimal pressure, we include a
minimal grip force Fmin in the controller as

F =

{
Fmin, if F < Fmin

F, otherwise.
(8)

D. Force Feedback

Force feedback informs the operator that contact is present
when the remote gripper touches an object. This feedback
activates during the initial moment of contact and consists
of a short vibration of 0.5s at the local haptic interface

θt = A · sin(2π · f · t), (9)

where A is the amplitude of the vibration, f is the frequency
of the vibration, and t is the time. To determine if the
gripper has contact with an object, the contact area of the
gripper is monitored. When deformations in the contact area
exceed a threshold, there is contact with an object. Once the
deformations exceed the threshold, the position of the object
surface xobject is stored. When the desired reference position,
commanded by the operator, is greater than the position of
the grasped object, xr > xobject, contact is lost.

III. EXPERIMENTS

We implemented the proposed adaptive semi-autonomous
impedance controller on a teleoperation setup consisting of a
local haptic device (Force Dimension Sigma.7) and a custom-
built remote gripper mounted on a robotic arm (KUKA
LBR iiwa7). The remote gripper was equipped with the
ChromaTouch sensor to detect deformations for the safety
margin (Section III-A). These different hardware systems
were connected via a software interface based on Robot
Operating System (ROS). Two proof-of-concept experiments
are conducted to test the controller’s functionalities (Section
III-C). The first experiment, adaptability to external changes,
demonstrates that the controller (autonomously) maintains
grasp stability during load force changes. The second ex-
periment, adaptability to human input, demonstrates the
operator’s control over the position of the remote gripper
while holding an object.

A. Deformation tracking in the contact area

To detect deformations for the safety margin we employed
the ChromaTouch sensor (Fig. 4), which was previously
developed by our group [26], [27]. This sensor has a de-
formable dome in which two layers of coloured dots are
present and are captured by a camera. When the sensor is
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(2)

(1)

fisheye
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(3)

(1)

(2)

(3)

a) b)

Fig. 4. a) The ChromaTouch sensor. b) The two-layered dotted dome of the sensor [27]: 1) deformations caused by indentation, 2) deformations caused
by shear force, and 3) the dome during steady-state.

indented or a shear force is applied, the position, shape, and
colour of the dots change. Deformations in the contact area
are captured by tracking the changes in shape and position of
the dots. We neglected the colour changes of the dots in this
study as these are not of value during deformation detection.

The deformation was computed by tracking the position of
the dots in the dome using OpenCV computer vision software
(Fig. 5). In every image, 20 dots in the centre of the image are
detected and labelled with the nearest neighbour algorithm.
The labelled dots correspond to the same dot in the previous
frame. Comparing the vertical position of the dots in different
images give us the estimation of deformation. To reduce the
noise in the position data caused by OpenCV, the average
displacement of the 20 dots was placed into a moving
time window of 10. The output of this window was the
deformation δ in the contact area used in (7).

B. Critical deformation identification

Before conducting the experiments, we gathered data for
the identification of critical deformation parameter δ∗ with
the proposed approach explained in Section II-C. The critical
deformation δ∗ is dependent on grip force F and object
properties, therefore a dataset must be collected for a range
of grip forces. To do so, the following protocol was used:

1) Grasp an object with the remote gripper, with a con-
stant grip force.

2) Lift and hold the object in midair.
3) Add external load to the object until it shows displace-

ment (gross slippage).
4) Record the deformation measured at the verge of

slippage, which is the critical deformation.
5) Repeat this sequence for multiple grip forces and

define a relation between the applied grip force and
deformations.

For our experiments, the critical deformation is collected for
seven different grip forces between 0 and 1.5 N.

C. Experimental protocol

1) Experiment 1: Adaptability to external changes: To
demonstrate adaptability to external changes, an operator
controlled the remote gripper and performed a pick-and-place
task involving a metal can. While the object was held in
midair, an extra load force was added to perturb the grasping

Fig. 5. Image of the inside of the ChromaTouch. The red circles are the
detected dots with computer vision. The dots encircled by the black line are
the 20 center dots tracked for the deformation.

action. To maintain grasp stability, the controller had to
autonomously maintain the safety margin Gamma around
the reference margin Gammar during different stages of the
task. To do this, the controller had to change the grip force
according to the load force by adapting the stiffness term
based on sensory information. The task instructions followed
these steps:

1) Close: position and close the remote gripper to grasp
the object.

2) Lift and hold: lift the object with the remote gripper
from the surface and hold it in midair at a specified
position.

3) Add weight: hold the object (metal can) in midair while
an extra weight (rice) is continuously poured into it.

4) Hold: hold the object in midair to show the grasp is
stable.

5) Place and Open: place the object with the additional
weight on the surface and open the gripper.

2) Experiment 2: Adaptability to human input: During the
second experiment, the operator held the object in midair
with the teleoperated remote gripper. While the object was
held, the operator perturbed the reference position back and
forth with an increasing magnitude for a while and then
released it. When the commanded position was inside the
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object, the controller had to adapt the stiffness term to
maintain the reference safety margin Gammar regardless of
the commanded position changes xr. When the commanded
position xr went outside of the object, the controller had to
allow the operator to open the gripper and release the object.
The task instructions followed these steps:

1) Hold object: hold the object in midair.
2) Gripper position perturbation: command variable de-

sired gripper positions with increasing amplitude over
time.

3) Gripper open: open the gripper to show the object
can be released with the desired gripper position com-
mands.

The parameter settings for the experiments are presented
in Tab. I.

TABLE I
PARAMETERS FOR THE EXPERIMENTS

Defentition Symbol Value
Feed-forward value (initial stiffness) K0 20 [N/m]
Integral gain (stiffness adaptation module) I 5 [N/(m·s)]
Reference grip force safety margin Γr 30 [%]
Minimal grip force Fmin 0.6 [N]
Amplitude of feedback A 1 [N]
Frequency of feedback f 4 [Hz]

IV. RESULTS

A. Experiment 1: Adaptability to external changes

Fig. 6 shows the results of the proposed adaptive semi-
autonomous adaptive impedance controller during external
changes. In the first row of the graph, we can see that the
operator initially closed the remote gripper and commanded
the desired reference gripper position inside the object in
order to grasp it. When the object was grasped the actual
gripper position stopped following the commanded one as it
remained on the object’s surface.

The second row illustrates the safety margin, which was 0
when the gripper did not touch the object. Once the gripper
was closed and the contact was established, the safety margin
became 100% as there was no load force yet present (the
object was still standing on the table). As the operator lifted
the grasped object with the remote robot, the controller
maintained the actual safety margin close to the desired
safety margin of 30%. Furthermore, the controller maintained
the desired safety margin when the load force increased after
the additional unknown external load was added on top of
the object. It is interesting to note that there was a slight
noise in the safety margin signal, which could be related to
the visual dot detection method that is used to compute the
safety margin. However, the noise did not influence the task
performance.

To maintain the reference safety margin of 30%, the
semi-autonomous adaptive impedance controller adjusted its
stiffness variable while the load force changed, as shown in
the third column of the figure. The stiffness term increased
to adapt the grip force to the increasing load force during
the lifting phase of the object and the added unknown weight

0 5 10 15 20 25 30 35
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Fig. 6. Results of experiment 1: adaptability to external changes in load.
The text on the top indicates the phases of the task during the experiment.
The first graph shows the gripper aperture position. The second graph shows
the grip force safety margin. The third graph shows gripper stiffness. The
bottom graph shows the measured gripper force.

afterwards. The resulting grip force is illustrated in the last
row where we can see how it adapted to accommodate the
changes in the carried load.

Another particular behaviour in the stiffness term is
present during t = 5s and t = 8s, where it fluctuates around
15 N/m. These fluctuations occur because the autonomous
stiffness adaptation module tries to reduce the grip force as
the actual safety margin is higher than desired. To reduce
the grip force, the controller decreases the stiffness term.
However, this is ineffective as the computed force is lower
than the minimum required force. As a result, the minimal
grip force is applied instead, according to (8). This fluctua-
tion in the stiffness term did not cause undesired behaviour
in the grip force and therefore did not influence the task
performance.

B. Experiment 2: Adaptability to human input

Fig. 7 shows the results of the proposed semi-autonomous
adaptive impedance controller’s adaptability to human input
regarding commanded gripper position. In the first graph, we
can see the operator changing the desired gripper position
while holding an object with the remote gripper. When the
desired position was smaller than the actual position, i.e.,
the desired was inside the object, the remote gripper did
not change the actual position since the object was grasped.
When the desired position becomes larger than the actual,
the actual position started to follow the desired position and
the object was released.

We can see in the second graph that the controller main-
tained the desired safety margin of 30% while the remote
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Fig. 7. Results of experiment 2: adaptability to human position commands.
The text on the top indicates the phases of the task during the experiment.
The first graph shows the gripper aperture position. The second graph shows
the grip force safety margin. The third graph shows gripper stiffness. The
bottom graph shows the measured gripper force.

gripper held the object. When the gripper opened, the safety
margin naturally dropped to 0 as no object was held anymore.

The last two graphs display the stiffness and grip force,
respectively. While the operator held the object, the controller
applied a constant grip force to maintain the desired 30%
safety margin, since there were no changes in the load.
However, to maintain the needed grip force, the stiffness had
to be adjusted to compensate for the changing difference
between the desired and actual gripper position. As the
difference in gripper position became smaller, the stiffness
increased to maintain the constant grip force, as can be seen
at t = 4s, t = 6s, and t = 8s.

V. DISCUSSION

The purpose of this study was to develop a teleoperated
control method which regulates the grip force autonomously
to maintain grasp stability while the operator remains in
control of the position of the remote gripper. To achieve
this goal, we introduced the adaptive semi-autonomous
impedance controller based on grip safety margin. We eval-
uated the semi-autonomous controller’s functionalities by
testing its adaptability to external changes and human input.

The results of the first experiment show that the semi-
autonomous controller was able to maintain grasp stability
during external perturbations. At the same time, the operator
was able to control the position of the remote gripper,
while the grip force is controlled autonomously by the robot
to facilitate adaptation to the load changes. Compared to
standard tele-impedance methods [15], the designed semi-
autonomous feature offloads the operator of direct control of

impedance. The key advantage is that the grasp stability is
maintained by the robot without the need for the operator to
constantly adjust the stiffness when the commanded position
changes. Thus, the operator was able to perform the task
even with very limited force feedback.

The results of the second experiment show that the con-
troller can adapt to the human-commanded gripper position
to maintain grasp stability. The controller achieved grasp
stability by adapting the stiffness autonomously to regulate
the grip force while the operator maintained the ability to
open the gripper. Compared to a force controller, where the
operator cannot control position as it is used to maintain con-
stant desired force, the proposed adaptive semi-autonomous
impedance controller enables the operator to have full control
over the position of the gripper. At the same time, the
designed adaptation of the grip force through stiffness based
on the grip force safety margin maintains the advantages of
the force controller regarding force regulation.

Compared to the state-of-the-art adaptive semi-
autonomous impedance controllers [17]–[20], the proposed
controller stands out by incorporating the safety margin
to maintain grasp stability autonomously. This feature
enables it to prevent slippage during task perturbations by
proactively regulating the grip force. Consequently, the
operator does not need to manually react to these rapid
changes. However, to do so, our controller requires critical
displacement parameters to achieve grasp stability. Since
the critical displacement is dependent on a specific object,
we must be able to detect what object is being grasped and
have a dataset of appropriate critical displacements. Thus,
an extra sensory system is required.

A potential future work would be to develop object-
independent safety margin detection to reduce the depen-
dency on critical deformation. Machine learning can be
employed to compute the safety margin without prior known
object properties [28]. However, a downside of the machine
learning approach is the need for a large amount of training
data. Another potential future work direction is to solve
the limitation related to ChromaTouch sensor. As the sensor
dome is stiff, displacements of the dots only occur when a
certain applied force threshold is exceeded (hence (8) was
needed). This can become problematic when grasping very
delicate objects and decreasing this threshold would improve
the sensitivity of the approach. A further improvement could
be made by replacing the simple vibrational feedback (as de-
scribed in Section II-D) with more complex tactile feedback
if the operator wants to switch to full control over grasping.

The evaluation of the proposed method in this study
was limited to proof-of-concept experiments. In future, the
method evaluation should go beyond proof-of-concept ex-
periments, which could involve tasks beyond pick-and-place
and other objects.
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