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Abstract 23 

Coastal management in the Netherlands has the aim to defend coastal zones by preventing 24 

flooding and mitigating erosion. To that end, large-scale nourishments are placed in the 25 

nearshore, which are supposed to dynamically preserve the coastal zone over a timescale of 26 

years. To assess their effectiveness, these nourishments are monitored over large areas and 27 

long durations. As repetitive, in-situ measurements become too expensive, remote sensing 28 

offers an attractive alternative, mapping depth and near-surface current fields via depth 29 

inversion algorithms (DIA). However, the information that can be derived from remotely-30 

sensed data is subject to improvement. In this study a 3D-FFT based DIA named XMFit (X-31 

Band Matlab Fitting) is introduced, which is robust, accurate and fast enough for operational 32 

use. Focusing on depth estimates, the algorithm was validated for two case studies in the 33 

Netherlands: (1) the “Sand Engine”, a beach mega nourishment at a uniform open coast, and 34 

(2) the tidal inlet of the Dutch Wadden Sea island Ameland, characterizing a more complex 35 

coast. Considering both sites, the algorithm performance was characterized by a spatially 36 

averaged depth bias of -0.9 m at the Sand Engine and a time-varying bias of approximately -2 37 

– 0 m at the Ameland Inlet. When compared to in-situ depth surveys the accuracy was lower, 38 

but the time resolution higher. Depth estimates from the Ameland tidal inlet were produced 39 

every 50 min by an operational system using a navigational X-Band radar to monitor the 40 

placement of a 5 million m3 ebb-tidal delta nourishment – a pilot measure for coastal 41 

management. Volumetric changes in the nourishment area over the year 2018, occurring at 7 42 

km distance from the radar, were estimated with an error of 7%. Depth errors statistically 43 

correlated with the direction and magnitude of simultaneous near-surface current estimates. 44 

Additional experiments on Sand Engine data demonstrated that depth errors may be 45 

significantly reduced using an alternative spectral approach and/or by using a Kalman filter. 46 
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1 Introduction 47 

With the extensive urbanization of the coastal hinterland, the role of coastal management in 48 

the Netherlands has become increasingly important to ensure flood safety and the protection 49 

of recreational and ecological values of the coast. Modern coastal maintenance strives 50 

towards a “building with nature” approach (de Vriend and van Koningsveld, 2012), using soft 51 

engineering strategies to mitigate long-term coastal recession. Along uniform coastlines, 52 

large 1-2 million m3 shoreface nourishments have proved to be an effective strategy (Hamm 53 

et al., 2002), and a basic understanding has been established about their behaviour (Huisman 54 

et al., 2019; Lodder and Sørensen, 2015). In pursuit of finding the optimal long-term solution, 55 

larger nourishment designs have been explored of which the Sand Engine, a beach mega-56 

nourishment comprising 21 million m3 of sand is a famous example (Stive et al., 2013). In the 57 

meantime even bigger nourishments have been placed with volumes up to 36 million m3 58 

(Kroon et al., 2016). The most recent experiment involved the construction of a 5 million m3 59 

nourishment in the outer delta of a complex tidal inlet system at the Wadden Sea island 60 

Ameland.  61 

To evaluate the success of these innovative coastal management interventions it is necessary 62 

to map them and to monitor their evolution. Due to the large nourishment volumes and long 63 

lifetime, monitoring with in-situ techniques is expensive and it may be favorable to use 64 

remote sensing techniques instead. Such techniques can capture morphological variability at a 65 

large spatial scale in high temporal resolution over long periods of time (Bergsma et al., 66 

2019). To be used in an operational setting, remote sensing techniques need to be robust. We 67 

define robust as being able to handle variations in environmental conditions and data quality 68 

without the need for manual adjustments and costly person hours. Here, we propose to derive 69 

bathymetries with a technique that meets these desired requirements and uses already 70 

available X-Band radar data from a lighthouse.  71 
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Marine radars operating in the X-Band range are routinely deployed aboard ships and on 72 

marine traffic control towers to detect vessels and other floating objects. In coastal areas, 73 

such radars may also be used to monitor waves, currents and water depths. Their benefits 74 

over in-situ depth surveys are a high spatial and temporal coverage and lower operating and 75 

maintenance costs. However, the spatial resolution of X-Band radars can be coarse and, as 76 

sampling frequencies are often low, they have a lacking ability to recognize shorter period 77 

waves. Moreover, an inherent uncertainty exists in relating radar image intensities to the 78 

observed ocean surface properties, bringing challenges to the analysis of X-Band radar data. 79 

Moreover, X-Band radars are expensive instruments, which is why it may be attractive to 80 

exploit existing navigational radars in areas of interest. 81 

Although considered “noise” for navigational purposes, the wave field leaves a signature on 82 

an X-Band radar known as sea clutter. This imprint is produced by radar signal reflection off 83 

capillary waves, which are modulated by the underlying surface gravity wave field (Borge et 84 

al., 2004; Valenzuela, 1978), the so-called Bragg-scattering (Plant, 1990). Observing the 85 

propagation of a wavefield through time offers a possibility to infer information about the 86 

waves themselves, but also about currents and depths these waves feel.  87 

In particular for the purpose of depth estimation, several depth inversion algorithms (DIAs) 88 

have been developed. Most DIAs use wavefield recordings from either radars or beach 89 

cameras, but these methods may be used interchangeably between instruments (Honegger et 90 

al., 2019). While some DIAs use a sequence of images (i.e. a video of typically 6-12 min) to 91 

link wavenumbers to wave frequencies and estimate depths via the linear dispersion 92 

relationship (Bell, 1999; Dugan et al., 2001; Hessner et al., 1999; Holman et al., 2013), other 93 

DIAs use the average of a sequence of images (i.e. a time exposure) to estimate depths 94 

through spatial patterns of breaking intensity (Aarninkhof et al., 2005; van Dongeren et al., 95 

2008). If the area of interest is large, X-Band radars have an advantage above cameras 96 
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because of their larger field of view. Other advantages are their operability at night and a 97 

smaller sensitvity to rain or sun glare. A large field of view means that depths are estimated 98 

far beyond the breaker zone, therefore a dispersion-based DIA is preferred with a sequence of 99 

images as input.  100 

The commonly used dispersion-based DIAs to analyse image sequences from XBand-radar, 101 

employ three dimensional Fast Fourier Transforms (3D-FFTs) to acquire the necessary 102 

wavenumber – frequency relationships. Spatial variations are captured by discretising an 103 

image sequence into smaller domains known as computational cubes (x,y,t) (Trizna, 2001). 104 

These computational cubes are processed separately. A 3D-FFT then converts each 105 

computational cube from the space-time domain (x,y,t) into wave components in the wave 106 

number – frequency domain (kx,ky,ω). This information is used to constrain the Doppler-107 

shifted linear dispersion shell  108 

 

 
1) 

 109 

to estimate the water depth, d (m), and the two horizontal current vector components [u, v] of 110 

U (m/s). The gravitational acceleration is given by g, the wave number vector by k (rad/m) 111 

with components [kx, ky], and ω (rad/s) is the corresponding frequency.   The idea to use 3D-112 

FFTs originally came from the estimation of U under known d (Young et al., 1985), however, 113 

it could naturally be extended to estimate d as well by keeping d as a free parameter (e.g. Bell, 114 

2008; Hessner et al., 2014; Ludeno et al., 2015; Rutten et al., 2017). The derivation of the 115 

Doppler-shift in the form +U∙k in equation 1, assumes a depth uniform current equal to U. In 116 

practice, the current profile is not uniform over depth and the vector U represents a weighted 117 

average of velocities in the upper layer of the water column (e.g., assuming a linearly sheared 118 

current profile, waves with periods of T = 5-8 s travelling in water depths of d = 5-15 m feel 119 
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velocities that occur at 20-45% of the water depth; see eq. 5 in Campana et al., 2016). 120 

Therefore, U is commonly also referred to as near-surface current (Young et al., 1985; Senet 121 

et al., 2001).  122 

Several authors have applied the dispersion relation without Doppler-shift (+U∙k in equation 123 

1), neglecting the presence of near-surface currents, to remotely sense d from X-Band radar 124 

data (Bell, 1999; Hessner et al., 1999). Although conceptually proven, these early 125 

developments were applied to limited datasets and lacked quantitative validation. Later, 126 

based on two single daily-averaged estimates from Egmond aan Zee (NL) and Teignmouth 127 

Pier (UK), Bell (2001) demonstrated that error margins could be within 1 m accuracy for 128 

depths up to 12 m, with exception of the breaker zone where errors were approximately 2 m. 129 

For the site of Duck (North Carolina, US) with depths up to 6 m, Trizna (2001) reported 130 

depth errors of 0 to 4 m depending on the wave-height and suggested that the inclusion of 131 

non-linear wave theory improves estimates. This was then disproven by Flampouris et al. 132 

(2011) who, for a site near the Wadden Sea island Sylt (GE), reported root-mean-square-133 

errors (RMSE) of at least 1.6 m regardless of the (non-)linear wave theory used.  134 

For airborne optical video, Dugan et al. (2001) were one of the first to include the Doppler-135 

shift in equation 1, for the joint estimation of d and U using 3D-FFTs. The extension was 136 

subsequently also used in the analysis of X-Band radar data from the Dee Estuary (UK) (Bell, 137 

2008). Although near-surface currents could not be validated, it was noted that their inclusion 138 

had improved depth estimates, which is consistent with a recent study showing that currents 139 

can influence depth estimates significantly (Honegger et al., 2020). Based on three high tide 140 

estimates, Bell (2008) found depth errors to be mostly within a 1 m range in the spatial 141 

domain, however, estimates in the deep channel (> 20 m) were larger as waves only weakly 142 

felt the bottom. More recently, 3D-FFT based DIAs have been applied to complex nearshore 143 

situations, for example by Hessner et al. (2014), who built on work done by Seemann et al. 144 
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(1997) and Senet et al. (2001) by solving for d in addition to U for an analysis of two days of 145 

radar data from a coastal site in New Zealand with strong tidal currents. Their near-surface 146 

current estimates reasonably agreed with model data, yet simultaneous depth estimates lacked 147 

validation. Similarly, Hessner et al. (2015) investigated a site at the southeast coast of the UK. 148 

Here, accumulated depth estimates were compared to ground truth measurements and agreed 149 

qualitatively but error metrics were not quantified. Ludeno et al. (2015) used an algorithm 150 

proposed by Serafino et al. (2010) to jointly estimate d and U from 45 min of radar data from 151 

a ferry near the harbour of Salerno (IT) and used a spatial partitioning technique to accelerate 152 

computations. The local depth was between 10 and 20 m, which Ludeno et al. (2015) 153 

estimated to have a bias of approximately 1 m. Rutten et al. (2017) were one of the first to 154 

explore the possibility of estimating volume budgets from estimates of d in the nearshore 155 

region over a long time period of one year, taking a first step from research to a potential use 156 

of radar based DIAs in coastal management. A large depth bias of 2.3 m for depths smaller 157 

than 6 m, however, caused volume estimates to be 3.9 million m3 short of what was expected. 158 

While near-surface current estimates were not presented, they noted that poor d estimates 159 

concurred with poor U estimates.  160 

So far, 3D-FFT based depth inversion from XBand-radar data has focussed on the 161 

development and (often conceptual) testing of DIAs (Bell, 2008; Hessner et al., 2014; Ludeno 162 

et al., 2015). The accuracy of depth estimates is generally in a 1-2 m range and depends on 163 

the location, radar, and the algorithm used. Moreover, presented error statistics are mostly 164 

based on short, experimental data sets. The accuracy is generally lower in deeper areas where 165 

waves are hardly affected by the depth (Bell, 2008) and in very shallow water where waves 166 

become non-linear (e.g., Trizna, 2001; Holland, 2001). Even though the validation of near-167 

surface currents themselves is often lacking, it has been reported that including their effect on 168 

waves is important: while it improves depth estimates (Bell, 2008), a poor current estimate 169 
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can also be an indicator for a poor, joint depth estimate (Rutten et al., 2017). The effect of 170 

higher significant wave heights, Hs, has been shown to increase depth errors in shallower 171 

waters (Trizna, 2001), while a minimum Hs > 1 m is needed for sufficient sea-clutter (Bell, 172 

2008).  173 

3D-FFT based DIAs have mostly been applied in an experimental setting and the question 174 

arises whether they are ready to be used for practical coastal management purposes, such as 175 

the quantification of volumetric changes caused by nourishments. To that end, they need to 176 

run operationally on long-term radar data and hence be able to handle variations in 177 

environmental conditions and data quality. In this paper, we present a 3D-FFT-based DIA 178 

named XMFit (X-Band Matlab Fitting), which manages such variations by selecting the best 179 

values from a set of [d, U]-solutions, for every location in the radar domain at any point in 180 

time. The generation of a set of solutions is done by a set of different energy thresholds to 181 

separate spectral wave data from the noise floor. This is different from other currently used 182 

DIAs, which may (i) optimize a [d, U]-solution by iterating on a first, high energy threshold 183 

guess with a lower energy threshold guess including aliases and higher order effects (Hessner 184 

et al., 2014; Senet et al., 2001) or (ii) by maximizing a normalized scalar product between the 185 

image amplitude spectrum and a characteristic function, which omits the use of thresholds 186 

(Ludeno et al., 2015; Serafino et al., 2010). Similar to those algorithms, the present method 187 

also includes the Doppler-shift (equation 1) to allow for the effect of near-surface currents on 188 

the depth estimates. XMFit uses different spectral filters, an anti-aliasing step and a least-189 

squares fitting procedure.  190 

We validate the DIA using two different sites in the Netherlands: The Sand Engine, and the 191 

ebb-tidal delta of the Ameland Inlet to the Wadden Sea. Detailed ground truth data from 2014 192 

and 2018 are respectively used for validation. With 7.5 km, the XBand-radar range at the 193 

Ameland Inlet is double the range previously reported for depth inversion studies and enables 194 
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us to capture the extensive size of the Inlet. By that, we track a 5 million m3 ebb-tidal delta 195 

nourishment at 7 km distance from the radar, creating a one-year time evolution of its volume. 196 

Section 2 introduces the XMFit algorithm and its features. In section 3, the field sites and 197 

data collection are described. Results on validation and monitoring the placement of the 198 

nourishment are presented in section 4. In the Discussion section 5, we elaborate on errors 199 

and methods to mitigate them and then conclude our findings in section 6. Radar specifics 200 

and details on computational settings are documented in the Appendices. 201 

202 
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2 Depth-inversion Method 203 

The depth-inversion algorithm XMFit is based on an original idea by Young et al. (1985), 204 

where radar image sequences of a wave field are first split into smaller cubes, then processed 205 

via 3D-FFT to retrieve spectral wave characteristics, after which the Doppler-shifted 206 

dispersion relation can be used to obtain estimates of depth and near-surface currents 207 

(equation 1). In order to process an image sequence, the algorithm requires information about 208 

the radar, user settings and optionally a bathymetry and a water level (Figure 1, top row). The 209 

radar information includes the coordinates of the radar, its radius and the framerate of the 210 

image sequence and pixel size. User settings include a grid definition, which consists of the 211 

location and size of the computational cubes, and limiters that are used to constrain the 212 

analysis. 213 
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 214 

Figure 1. XMFit workflow for depth and near-surface current inversion from an image 215 

sequence. Consecutive processing steps in the flowchart are visualized along their left. The 216 

flowchart includes: data (brown), user input (green), decision (red), process loop start (blue; 217 



13 
 

trimmed top corners) and process loop end (blue; trimmed bottom corners), and process 218 

(white). Arrows and their annotations signify flow of information. The algorithm requires 219 

input on radar specifics, user settings and optionally a bathymetry and water level (grey 220 

squares top row). The output contains maps of depth estimates and near-surface current fields 221 

(grey square bottom row). Symbols represent: [kx, ky] = wavenumber components, ω = wave 222 

frequency, [dmin, dmax] = depth limits, [Tmin, Tmax] = wave period limits, |Umax| = velocity 223 

magnitude limit, [Eth,low,..Eth,i,..Eth,high] = array of spectral energy thresholds, [d,i, U,i] = depth 224 

and near-surface current estimates corresponding to Eth,i, and [d, U] = optimal depth and near-225 

surface current pair. 226 

 227 

Before an image sequence is analysed, a high-pass threshold on the significant wave heights 228 

of Hs = 0.9 m is made, similar to (Bell, 2008) as a proxy for sufficient sea-clutter (Figure 1, 229 

red diamond). Note that the wave height information has to be provided as an external input 230 

to the DIA. 231 

 232 

The processing of an image sequence commences by dividing it into a number of 233 

computational cubes (c = 1...N) according to the user defined grid. Cubes are processed 234 

consecutively, each providing an estimate for a depth, dc, and near-surface current vector, Uc, 235 

at its location. The inversion of [dc, Uc] consists of seven steps (Figure 1, labels ①..⑦). 236 

Since the procedure is identical for all cubes, we drop the subscript c from here onwards and 237 

use [d, U] for notational simplicity. The first step is to taper the computational cube with a 238 

3D-Hanning window and to generate a kx,ky,ω-energy spectrum via 3D-FFT. If the time-239 

sequence is long enough, the spectrum may also be smoothed through spectral averaging in 240 

time, by dividing the cube into smaller time-bins. Using min-max normalization, the spectral 241 

energy is then converted to the range [0,1] to prepare it for a fitting procedure later in the 242 
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process (Figure 1, ①). At this stage, the spectrum carries redundant information in non-243 

relevant spectral components, such as noise and aliases, which can be discarded to save 244 

computer memory. A wide-dispersion filter removes spectral energy beyond realistic depths 245 

(Figure 1, ②), by means of limiting dispersion shells corresponding to a minimum depth dmin, 246 

and a maximum depth dmax. These limiting dispersion shells do not include a Doppler-shift, as 247 

experience shows that it does not provide additional result accuracy but does increase 248 

computation time. A frequency filter removes spectral energy beyond realistic wave periods 249 

(Figure 1, ③), by means of a minimum wave period Tmin and a maximum wave period Tmax. 250 

The limits for realistic water depths and wave periods are supplied by the user and are 251 

typically set around [dmin, dmax] = [0.5, 25] (m) and [Tmin, Tmax] = [4, 15] (s) respectively; 252 

indicating the ranges where we expect waves to be mostly in intermediate or shallow water to 253 

get reliable depth estimates. Note that for depths larger than approximately 15 m, shorter 254 

period waves (T < 6 s) are mainly useful in determining near-surface currents. 255 

 256 

If the frame rate of the image sequence is low due to a slow turning radar antenna, as is the 257 

case in this study with 1/2.85 s-1, the filtered spectrum may show aliasing since the Nyquist 258 

frequency is close to the governing wave periods. An anti-aliasing step removes these 259 

unwanted by-products, (Figure 2; Figure 1, ④) and permits the use of data up to two times 260 

the Nyquist frequency (Seemann et al., 1997). 261 

 262 
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 263 

 264 

Figure 2. Anti-aliasing on a spectral cube with dimensions kx, ky, ω. Energetic spectral data 265 

with energies above a threshold Eth,low are given by a set of p = 1…P points with coordinates 266 

k↑
x,p , k

↑
y,p, ω

↑
p. This set contains correct data points (red dots) and aliases (blue dots), below 267 

and above the Nyquist frequency (grey plane). Aliases are detected and removed via a 268 

singular value decomposition. The ω-axis rotates (ωrot) towards the correct spectral data by 269 

which aliases can be separated and a non-linear fit can be done on the correct spectral data 270 

(red dispersion shell) according to equation 1. The blue shell indicates the orientation of 271 

aliases in the spectrum. 272 

 273 

To separate the aliases from correct wave data a singular value decomposition (svd) (equation 274 

2) is performed on the energetic parts of the spectrum. Energetic parts are defined by all 275 

spectral data with energies above a user defined threshold Eth,low, which is the lower bound of 276 

the set 0 <{Eth,low…Eth,high} < 1 used in the fitting procedure that follows this anti-aliasing 277 

step. 278 
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2) 

The matrix A lists the p = 1…P energetic points in the spectrum by their spectral coordinates 279 

k↑
x,p , k

↑
y,p, ω

↑
p in the columns [k↑

x , k
↑
y, ω

↑], where the upward arrow signifies energy higher 280 

than Eth,low. The amount of points, P, depends on the value of Eth,low and the spectral wave 281 

signal. The svd factorizes the matrix A into two unitary matrices U, V and a diagonal matrix 282 

Σ. The superscript T denotes the transpose. In practice, V represents a rotation of the kx,ky,ω-283 

coordinate system: V = [kx,rot, ky,rot, ωrot], which best follows the spectral data A. Due to the 284 

position of the aliases in the spectrum, the ω-axis rotates (ωrot) towards the correct spectral 285 

data and away from the aliases, which allows for a clear separation: Correct data have higher 286 

values on ωrot (found via Aωrot) compared to the original ω-axis and for aliases this is the 287 

opposite, which means that they are identified and can be removed. 288 

 289 

After pre-processing the spectrum several spectral fits are done. Using a Levenberg-290 

Marquardt minimisation, the Doppler-shifted linear dispersion relationship (equation 1) is 291 

fitted to all spectral data above a certain energy threshold Eth to yield an estimate for [d, U]. 292 

Since the spectrum has been normalized this threshold lies between 0 < Eth < 1. However, the 293 

optimal value of Eth is not known beforehand. The solution is to iterate an optimal value by 294 

making several fits for an array of energy thresholds {Eth,low,…, Eth,high}, which produces a set 295 

of depth and near-surface current pairs {[dlow, Ulow],…,[dhigh, Uhigh]} (Figure 1, ⑤). By 296 

default, {Eth,low,…, Eth,high} covers the range {0.4, …,0.6} in 10 increments, which is a 297 
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generic setting, but can be adjusted by the user. By using a set of Eth, instead of single 298 

threshold, we omit the need to tailor the algorithm to each image sequence separately, which 299 

makes the algorithm robust to use on long time-series of data. 300 

 301 

The goal is now to find the optimal pair of [di, Ui] among the list of candidates {[dlow, 302 

Ulow],…,[dhigh, Uhigh]}. Pairs are retained using three criteria: (1) di falls within the pre-set 303 

depth range [dmin, dmax], (2) |Ui| is smaller than a user-defined maximum velocity magnitude 304 

|Umax|, and (3) the coefficient of determination r2
 > 0.6, (Figure 1, ⑥). Note that the depth 305 

constraint [dmin, dmax] has been used in an earlier step to reduce the spectrum with a wide 306 

dispersion filter (Figure 1, ②). However, a poor candidate fit on those data may still suggest 307 

a solution beyond those limits, therefore criterion (1) is needed here. To improve estimates of 308 

an operational system, knowledge about previous depth estimates can be used to (A) tighten 309 

criterion (1) or (B) in a Kalman filter. In case of option (A), an average is taken over a certain 310 

number of M previous depth estimates, davg,M, and a margin Δd is chosen to tighten criterion 311 

(1) by redefining dmin, = davg,M – ½Δd and dmax = davg,M + ½Δd. Option (B) is a postprocessing 312 

step and does not affect the depth inversion procedure. In this study we used option (A) for 313 

the site of Ameland (section 4) and experimented with option (B) for the Sand Engine 314 

(section 5). 315 

The r2 of criterion (3) is used as the optimization criterion as it indicates how well the non-316 

linear fit represents the spectral data. This value is unity for a perfect match. Hence, the 317 

optimal [d, U] amongst the remaining candidates is finally found by the fit with maximum r2, 318 

(Figure 1, ⑦) and can be stored as the representative estimate for the computational cube. 319 

After a computational cube has been processed, the sequence of steps repeats for the next 320 

computational cube in the grid (Figure 1: steps ①..⑦), eventually producing full maps of 321 

depths and near-surface currents (Figure 1, output). 322 
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3 Radar in-situ data collection 324 

 325 

Figure 3. Radar locations (centre crosses) and ranges (see top scales) at the two field sites of 326 

Sand Engine (left) and the Ameland inlet (right). A map of the Netherlands (middle) indicates 327 

the location of the two sites.  328 

3.1 Sand Engine 329 

The first field site is the Sand Engine, a sandy mega-nourishment of approximately 21 Mm3 330 

constructed on the southwestern Dutch coast in 2011 (Figure 3,left). It was designed to 331 

combat erosion by diffusing along the coastline over an extended period of 10-20 years, 332 

while minimizing ecological stress and creating space for recreation (Stive et al., 2013). To 333 

gain insight into the development and impact of the unprecedented scale of the nourishment 334 

an extensive monitoring campaign was launched in 2012 (de Schipper et al., 2016). A radar 335 

station was installed 3 km north of the nourishment area, covering approximately 40 km2. 336 

The available radar data covered a short timeframe of 18 h during 20-21 October 2014 and 337 

were used to create a snapshot of the nourishment for that moment. Specific details on the 338 

radar properties are summarized in table A.1.  339 

 340 
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The significant wave height (Hs) ranged from 1.0 m to 1.7 m and the peak period (Tp ) from 341 

6.0 s to 7.0 s, which are average wave conditions for the site (de Schipper et al., 2016). In 342 

total, 184 image sequences were available, each consisting of 128 images in intervals of 2.85 343 

s, translating to 6 min of wave motion at a resolution of 3.75 m. Ground truth data were based 344 

on a detailed bathymetrical survey from 6 September 2014 which was merged with Jarkus 345 

transect data from 2014 to get greater coverage offshore. A local tide gauge was used to 346 

compensate for water level fluctuations in the depth estimates. For consistency, we only use 347 

the term depth throughout this paper, but note that it excludes the influence of water level 348 

modulation and is referenced to NAP (Dutch ordnance datum, about Mean Sea Level) for 349 

both sites. 350 

3.2 Ameland tidal inlet 351 

The second field site is the Ameland Inlet, one of the tidal inlets of the Dutch Wadden Sea 352 

(Figure 3,right). The inlet is characterized by a wave-dominated ebb-tidal delta and deep tide-353 

dominated inlet channels formed by strong tidal currents with maximum velocities around 1.5 354 

m/s. The semi-diurnal tide has a mean range of approximately 2 m. Over the study period 355 

Dec 2017 – Dec 2018, Hs ranged from 0.1 m to 6.2 m and Tp from 1.8 s to 17.0 s. Wave 356 

conditions were on average Hs = 1.3 m and Tp = 5.6 s and exceeded Hs > 3.0 m and Tp > 9.0 s 357 

during 5% of the time. 358 

The inlet is being extensively monitored within the framework of the Coastal Genesis 2.0 359 

(Dutch: Kustgenese 2.0) research program, which was commissioned by the Dutch Ministry 360 

of Infrastructure and Environment in 2017 (Van Prooijen et al., 2019). As part of the 361 

monitoring program, XMFit software runs operationally on X-Band radar data collected at 362 

the Ameland lighthouse. The navigational radar monitors the tidal inlet and has a spatial 363 

coverage of approximately 180 km2 (Figure 3,right). Specific details on the radar properties 364 

can be found in table A.1. The goal of employing the radar is to track the evolution of a pilot 365 
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nourishment of 5 million m3 at the outer rim of an ebb-shield. Commencing 20 March 2018, 366 

the gradual placement of the nourishment ended in February 2019. 367 

Radar image sequences at Ameland consist of 256 images spaced at 2.85 s. Image sequences 368 

cover a time window of 12 min and are produced at 20 min intervals, leaving 8 min of 369 

downtime in between. The pixel size is 7.5 m. Note that the range resolution is 7.5 m, but that 370 

the beam widens with distance from the radar. Depending on the alignment of the radar beam 371 

and wave crests, we estimate the resolution to be between 7.5 m and 57 m at 7 km distance 372 

from the radar (see also table A.1). Due to presently limited storage space (in this case 16 373 

TB), raw image sequences (each 3 GB) are overwritten after 2 months and hence not 374 

available for reanalysis. The image sequences are processed locally in the light house such 375 

that the much smaller sized result files (each 0.1-0.5 MB) can be transferred via a 4G internet 376 

connection. Note that the storage buffer allows for the analysis of up to 72 image sequences a 377 

day; the increasing lag can be caught up during times when Hs < 0.9 m. 378 

Poor depth estimates were supressed by tightening criterion (1) (section 2) using an averaging 379 

window of M = 5 and a depth margin of Δd = 4 m. Initial bathymetry data was needed to start 380 

the process. Tidal depth modulation was accounted for by passing information from a local 381 

wave buoy at Terschelling (Figure 1: grey square, top right). As initial bathymetry data a 382 

combination of surveys from February and September 2017 was used. Their initial influence 383 

on the estimates quickly phased out due to the choice of a rather large depth margin Δd. To 384 

additionally ensure that presented depth estimates were independent from the initial 385 

bathymetry the first 1000 estimates were ignored in this study. The choices for the averaging 386 

window and the allowable depth margin were made arbitrarily and other values may be 387 

chosen, yet the current combination of values underlies the results presented in this study. 388 

 389 
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Between Dec 2017- Dec 2018, the operational system returned approximately 7500 estimates 390 

of morphology. Within this period the Ameland Inlet was surveyed twice using a single beam 391 

mounted on a vessel. The first survey was done in the beginning stage of nourishment works 392 

31 May – 5 June 2018 (Survey #1) and the second survey about half way, from 12 – 14 393 

October 2018 (Survey #2). The surveys were done during calm periods that fell below the 394 

threshold of Hs = 0.9 m used by the operational system to produce depth estimates. For 395 

validation, therefore the average was taken over daily median estimates with similar spatial 396 

coverage shortly before and after each survey. Specifically for the nourishment location, 397 

additional multibeam surveys were available, which were used in this study to compute 398 

volumetric changes over the placement period of the nourishment. 399 

 400 

The computational grids and user settings underlying the analyses of both the Sand Engine 401 

and the Ameland Inlet can be found in Appendix B. 402 

403 
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4 Results 404 

4.1 Sand Engine 405 

The application of XMFit to radar images from the Sand Engine produced spatially smooth 406 

depth estimates (Figure 4a). Comparison of the median depth inversions with depth 407 

measurements revealed an overall bias of -0.9 m, revealing a tendency for depth 408 

overestimation by the DIA. The average standard deviation around a depth estimate was 0.85 409 

m and likely stemmed from tidally induced changes in flow direction relative to the direction 410 

of wave incidence, see also Discussion section 5.1. The spatial root mean square error 411 

(RMSE) was 1.32 m and was mostly caused by inaccuracies close to shore and at the 412 

northern boundary of the radar domain. Near the shoreline, especially around the 5 m depth 413 

contour (Figure 4b), waves start to break over the nearshore bars and the used linear wave 414 

theory is not representative, which causes errors to be locally larger. This is similar to a 415 

previous observation by Bell, (2001) for Egmond aan Zee, a site about 60 km to the north of 416 

the Sand Engine. Close to the boundary of the radar domain, the radar image quality degrades. 417 

Furthermore, at the north-eastern end of the domain the radar beam aligns with wave crests, 418 

and depth estimates were poor or not returned. It is interesting to observe that estimates at 419 

large depths d = 10-15 m were generally close to ground truth, although peak wave periods 420 

were relatively short Tp = 6-7 s, meaning that an error in wavenumber leads to a large error in 421 

depth. There are two reasons why such errors are limited in the current approach: First, 422 

wavenumber errors are minimized through spectral averaging with 5 temporal bins (see 423 

Appendix B). Secondly, many spectral coordinates are used for the non-linear fit (Figure 1, 424 

⑤). For the Sand Engine at these large depths on average about 75 coordinates spread over 425 

several angles and 11 frequencies. An important property of 3D-FFTs in combination with 426 

anti-aliasing is that frequencies up to two times the Nyquist frequency can be used for the fit 427 

(Seemann et al., 1997; Senet et al., 2001). This supplies extra spectral coordinates for the fit 428 
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(red points above Nyquist frequency in Figure 2), which especially for Tp = 5-6 s can offer 429 

some extra certainty on the depth estimate in this case.  430 

 431 

Note that it is possible to improve the results by making changes to the spectral treatment of 432 

the radar data or by using a Kalman filter in post-processing, which we address in the 433 

Discussion section 5.  434 

 435 

Figure 4. Radar-derived results for the Sand Engine. (a) Inverted depths dinv (m) (colorbar). (b) 436 

Comparison of dinv against in-situ measured depths d0 (m), where red/blue colors indicate 437 

under-/overestimation of depth respectively. In both panels, contour lines of measured depths 438 

are superimposed for reference. Results represent the median over 184 image sequences 439 

spanning 18 h in total. Values are included for the percentage of grid cells returning a result 440 

(inv. cells), the overall bias (bias) and the root mean squared error (RMSE).  441 

4.2 Ameland Inlet 442 

Depth results for the Ameland Inlet distinctly captured the characteristic morphological 443 

features of the outer delta (Figure 5a,c). The horseshoe-shaped ebb-shield in the west, the 444 

central ebb channel, and the large swash platform fronting Ameland were detected by the 445 
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algorithm. The estimated depths at instances of Survey #1 and Survey #2 compared to ground 446 

truth with spatially averaged biases of respectively 0.85 m and 0.63 m, and RMSEs of 447 

respectively 1.34 m and 1.14 m (Figure 5b,d), which were largely determined by inaccuracies 448 

between the 5-10 m contour lines. We hypothesize these imprecisions to be partly linked to 449 

complex local hydrodynamics, which are not accounted for by equation 1, in combination 450 

with some radar image related effects. For example, we expect some error due to tide driven 451 

shear flows in the channel between the ebb-shield and the swash platform and intense wave 452 

breaking and strong wave driven currents along the northern edges of these two features. In 453 

the region close to the island of Terschelling, in the western part of the domain (Figure 5b), 454 

we ascribe some error to the unfavourable angle of the radar beam with respect to the 455 

incoming wave crests. Yet another source of error was present, as the ebb-shield and the 456 

western branch of the ebb channel appeared slightly shifted to the south compared to single 457 

beam data. This shift stood out in the comparison with ground truth data (Figure 5b,d) 458 

through sharp negative biases around feature-edges facing north and corresponding positive 459 

biases around feature-edges facing south. Revisiting the raw radar images, revealed that this 460 

shift was partly rooted in a localized distortion of the raw radar image data, which was 461 

probably caused by a slight misalignment of the radars Northing, but the full origin is 462 

unknown and could therefore not be assessed in detail. In contrast, the system performed well 463 

for shallow parts such as the large swash platform near Ameland and deep parts to the north 464 

of the outer delta. Here, depth estimates were consistently accurate (Figure 5b,d: white areas).  465 
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 466 

Figure 5. XMFit results from the operational Ameland system as compared to a survey from 467 

31- May to 5- June 2018 (Survey #1) and a survey from 12-14 October 2018 (Survey #2). 468 

Panels (a,c): average depth estimates over two days encompassing each survey, as indicated 469 

by (a) dinv,S1 for Survey #1 and (c) dinv,S2 for Survey #2. Single beam observations are outlined 470 

by white depth contours. Panels (b,d): difference of inverted depths dinv with the 471 

corresponding single beam measurements d0 (now accentuated by black contours instead of 472 

white contours) as indicated by (b) d0,S1 – dinv,S1 for Survey #1 and (d) d0,S2 – dinv,S2 for Survey 473 

#2. Similar to the Sand Engine a mostly negative bias (depth overestimation; blue) is 474 

observed, being a little higher for Survey #1 (bias = -0.85 m) than Survey #2 (bias = -0.63 m).  475 

 476 

The difference between the two time instances of Survey #1 and Survey #2 brought out the 477 

signature of the nourishment at the outer rim of the ebb-shield, in the single beam 478 

measurements (Figure 6b) as well as radar-inverted results (Figure 6a). These results were in 479 

line with the location of the nourishment site as provided by the dredging contractor. A 480 
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succession of sedimentation-erosion patterns across north-eastern direction over the ebb-481 

shield furthermore suggested a slight, clockwise turning of the ebb-shield over this four-482 

month period. Although less pronounced than in the single beam measurements (Figure 6b), 483 

these patterns were also found in the radar-derived results (Figure 6a). 484 

 485 

 486 

Figure 6. Difference between June (Survey #1) and October (Survey #2) as derived for radar 487 

and single beam measurements. (a) radar: inverted depths dinv,S1, of Survey #1 are subtracted 488 

from dinv,S2 of Survey #2. (b) single beam: accordingly, measurements d0,S1 of Survey #1 are 489 

subtracted from d0,S2 of Survey #2. The pilot nourishment fronting the ebb shield is clearly 490 

visible in both cases and its position is in line with expectation (green polygon). Note that the 491 

surveys do not cover the entire radar domain. For visual clarity, differences between radar 492 

results (a) are truncated to the same area as the surveys (b).  493 

 494 

Since the nourishment was clearly visible in the time snapshots, the analysis was refined 495 

towards a more detailed time evolution to see whether we were able to monitor volume 496 

changes in the nourishment area during placement. For this, we used all the results produced 497 

between Dec 2017- Dec 2018. Before analysing nourishment volumes, the noise of the radar-498 

derived depth estimates throughout the radar domain was assessed, as this noise could impact 499 

volume calculations. A timeseries of the spatially averaged depth bias was computed by the 500 
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difference between radar-derived estimates and single beam data from Survey #1 (Figure 7). 501 

It was assumed that the influence of actual morphological change on the bias was negligible 502 

compared to the variability in radar depth estimations (cf. Figure 6b and Figure 5b). Although 503 

tidal water level changes were accounted for, the timeseries of depth biases fluctuated 504 

roughly between -2 m and 0 m. The average standard deviation around a daily depth estimate 505 

was 0.71 m. This noise was inherent to the operational system and was likely a product of a 506 

combination of factors, such as differences in radar image quality due to external factors 507 

(wind, rain, fog), but was also a consequence of applying idealized theory (equation 1) to a 508 

complex and variable outer delta environment: we found weak linear dependencies of the 509 

depth bias on the water level and the wind speed. For low water levels, NAP -1.5 m, the 510 

depth bias was on average -0.74 m and decreased linearly to -1.06 m for high water levels of 511 

NAP +1.5 m. Yet, with a standard deviation of 0.84 m the uncertainty in these depth bias 512 

values was high and showed that it would be difficult to predict the depth bias from a given 513 

water level. A similar linear relation was found between depth bias and wind magnitude: for 514 

wind speeds of 3 m/s the depth bias was on average ~ -0.5 m, while for wind speeds of 15 515 

m/s this bias was ~ -1.2 m. Yet again, the standard deviation was high at 0.81 m, showing 516 

that a prediction of the depth bias based on wind speed would be uncertain. Depth estimates 517 

also correlated with simultaneous near-surface current estimates, whose directions and 518 

magnitudes are indicators for local depth underestimation or overestimation, as we discuss in 519 

detail in section 5.1. Since the current fields constantly change in space and time, they likely 520 

contribute to the observed fluctuations in the overall depth bias. No correlations of the depth 521 

bias with wind direction, wave height or wave period were found.  522 
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 523 

Figure 7. Mean spatial bias over the full radar domain of XMFit estimates with ground truth 524 

data surveyed between 31 May to 5 June 2018 (Survey #1, yellow). The start of nourishment 525 

works is indicated by a vertical green line. Representative bed elevations are obtained by 526 

subtracting local water level measurements from the XMFit depth estimates. Dots represent 527 

the daily median result and whiskers the corresponding 25th and 75th percentiles. Colors 528 

indicate the average depth over the parts of the radar image that contain results and show that 529 

the bias appears lower for moments when only small (small marker size), shallow (magenta, 530 

red) areas could be inverted. When coverage is high (large marker size) the bias also accounts 531 

for sensitive deeper parts (purple, blue). Note that the lack of data during February is due to a 532 

temporary system shutdown. 533 

On the time scale of days, the observed noise would severely impact the calculation of 534 

nourishment volumes, therefore a straightforward solution was to ensemble average over a 535 

time window: we based volume calculations on median depth estimates in the nourishment 536 

area over a sliding time-window of one month. Besides denoising, volume estimates were 537 

then continuous in time, bridging over gap periods where the radar system had not been able 538 

to produce depth estimates for the nourishment area (Figure 8, gaps between grey bars). A 539 

window size of one-month was chosen as most data gaps could be overcome, except for a 540 

large gap in February 2018, while noise was largely suppressed. Volume changes were 541 

calculated by multiplying the average depth changes by the nourishment area (see Figure 6, 542 
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green polygon). For the comparison, volumes were computed based on inverted depths as 543 

well as the depths from the multibeam surveys of the nourishment.  544 

 545 

To focus the comparison between radar-estimates and multibeam measurements on volume 546 

changes, we referenced both the radar estimates and the measurements to the second 547 

multibeam measurement. The reason for this is a bias of 2 million m3 between the radar 548 

estimates and the measurements in the nourishment area at the time of the second multibeam 549 

survey (Figure 5). We assumed this bias to be constant in time, as fluctuations caused by 550 

environmental conditions and data quality should average out using a one-month averaging 551 

window over a long period of time. This meant that volume changes could be studied. 552 

 553 

Computed volume changes in the nourishment area were relatively stable until they started to 554 

increase at the beginning of March 2018 (Figure 8). Considering the start of nourishment 555 

works (20. March 2018), this increase appeared two weeks premature. This could be 556 

explained by the one-month time window to suppress noise, while having no pre-nourishment 557 

data in February to counter balance March data. A RMSE of 276.000 m3 was calculated 558 

based on the 7 instances where radar-derived volumes could be related to the multibeam 559 

surveys. It represented an error of 7% on the total placement volume of 3.8 million m3. It is 560 

interesting to note that the location was at more than 7 km distance from the radar station, 561 

near maximum range.  562 
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 563 

Figure 8. The time-evolution of the sediment volume changes in the nourishment area (Figure 564 

6, green polygon) for the period Dec 2017 – Dec 2018 according to radar (red line) and 565 

multibeam surveys (blue dots). Volume changes are normalized to the 2nd multibeam survey 566 

(cyan dot). Per day, the number of available XMFit results that covered the nourishment area 567 

- and could hence be used for volume calculations - is indicated by a vertical grey band (see 568 

colorbar). The monthly median radar estimate (red line) is presented with corresponding 25 – 569 

75 percentile range (shaded red) and 10th – 90th percentile range (shaded yellow). The start of 570 

nourishment execution, 20 Mar. 2018, is indicated by the vertical green line.  571 

5 Discussion 572 

The depth inversion showed skill for both the Sand Engine as well as the complex Ameland 573 

Inlet. Yet, the depth was often overestimated in regions (i) that were close to the boundary of 574 

the radar domain (ii) where the radar beam aligned with wave crests (iii) where we expected 575 

complex hydrodynamics due to wave breaking, strong currents or shear flows. These errors 576 

are related to the backscatter, but also to the limitations of using a simplified physical model 577 

(i.e., equation 1, idealized wave-current interaction) for depth inversion. The quality of d 578 

estimates by their covariance with U estimates provides insight into the role of the Doppler-579 

shift. This is done from a statistical point of view, based on the extensive dataset from the 580 

Ameland Inlet (section 5.1). The d estimates can also be improved. By changing the 581 

computation procedure (section 5.2) and/or by post-processing the results (section 5.3), errors 582 
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in (i) - (iii) are reduced. Experiments to reduce depth errors were conducted for the Sand 583 

Engine, since the image sequences could be recomputed at this site. Note that Ameland depth 584 

estimates were collected during a time where the DIA did not yet include a measure for error 585 

variance, which means that we could not test the Kalman filter on those data. 586 

5.1 The role of near-surface current estimates in depth inversion 587 

Near-surface currents are estimated per computational cube via the Doppler-shift (+k∙U, 588 

equation 1), being the dot product of a wavenumber vector with a near-surface current vector. 589 

Only current components in/against the wave direction alter the wave frequency and thereby 590 

affect the depth estimate d. To investigate the effect of U on d, near-surface current directions 591 

were translated to near-surface current angles (NSCA) with respect to wave direction, which 592 

was here taken to be the energy-weighted mean wave direction (MWD) over the spectrum.  593 

First a preliminary check was done whether patterns of U and MWD were realistic and 594 

thereby suited for further analysis (Figure 9). This appeared to be the case: The MWD 595 

captured the effect of wave refraction, being stronger during low tide conditions (Figure 9c) 596 

than during high tide conditions (Figure 9a). It also revealed more intricate patterns as for 597 

example waves which followed ebb-channels to meet at the bifurcation just below the 598 

horseshoe-shaped ebb-shield (Figure 9c). Estimated U-vectors also appeared realistic, 599 

reflecting the characteristic tidal flows expected for the area: The tidal wave travels along the 600 

barrier islands (Figure 9b,d: vector fields in north-northeast of domain) pushing water into the 601 

inlets at upcoming tide (Figure 9b: east-south-eastward flow through ebb-channels) and 602 

causing outward flow at falling tide (Figure 9d: westward flow through western ebb-channel 603 

and northward flow through central ebb-channel). Details such as flow through the small 604 

flood channels near Terschelling at rising tide were also captured.  605 
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Figure 9. Examples of mean wave directions (MWD) and near-surface currents (NSC) at the 607 

Ameland Inlet, as estimated by XMFit. Turquoise arrows indicate MWD-patterns. NSC 608 

arrows are scaled and colored according to magnitude (colorbar). Panels (a,b): An example 609 

from 25 Oct 2018 at 05:50, rising tide with a water level (WL) = NAP +1.1 m. Panels (c,d): 610 

An example from the preceding falling tide at 01:30, with WL = NAP -0.9 m. 611 

For the Doppler-shift analysis, we retrieved the required NSCAs by expressing near-surface 612 

currents relative to the collocated MWDs. The accuracy of depth estimates was measured by 613 

the local depth bias d0,S1 – dinv, which was computed for each cube in the domain and for all 614 

available time instances. In this way a comprehensive dataset was constructed, comprising 615 

more than 20 million pairs of depth biases and coincident near-surface current vectors. 616 

Analogous to Figure 7, we used Survey #1 as reference to calculate depth biases.  617 

The analysis revealed that near-surface current estimates in direction of wave propagation 618 

(NSCA → 0°) generally cooccurred with underestimation of depth, while near-surface current 619 

estimates against the direction of wave propagation (NSCA → ±180°) coincided with an 620 

overestimation of depth (Figure 10a: sinusoidal shape). These under- and overestimations 621 

increased with increasing near-surface current magnitudes (Figure 10a: bright colors at peak 622 

NSCA = 0°, and trough NSCA = ±180°). However, weak near-surface current estimates in 623 

direction of wave propagation did not guarantee a good depth estimate (Figure 10a: dark 624 

colors between NSCA -60° to +63°). Still, the observations generally show that the Doppler-625 

shift overcompensates for the presence of currents, as without the Doppler-shift we would 626 

expect current-induced depth errors to behave the opposite way (Honegger et al., 2020; eq. 627 

10).  628 

In shallow water, d0,S1 = 0.5-5.0 m, depth overestimations and depth underestimations nearly 629 

balanced each other over the range of NSCAs from -180° to 180° (Figure 10b: median depth 630 
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bias per NSCA, green curve, undulates around zero. Transition from general depth 631 

underestimation to overestimation at NSCA = ±73°, vertical magenta lines). This changed 632 

with increasing depth, d0,S1 = 5.0-10.0 m, as depth overestimations started to dominate depth 633 

underestimations for most NSCAs (Figure 10c: green curve only positive for NSCA between -634 

43° to +52°), with chronical overestimation for d0,S1 = 10.0-25.0 m (Figure 10d: green curve 635 

stays below zero). However, in direction of wave propagation these overestimations were on 636 

average small with values close to zero (Figure 10d: green curve within NSCA < ± 90°). 637 

Besides the tendency towards depth overestimations, also the sensitivity in the depth 638 

estimates increased with increasing depth (cf. Figure 10b-d: bandwidth, given by 2.5th -97.5th 639 

percentile range, increases from b) ~3 m to c) ~4 m to d) ~6 m) especially for situations 640 

where near-surface current estimates pointed in direction of wave propagation (cf. Figure 641 

10b-d: bandwidth larger for NSCA < ± 90°). It was interesting to observe that for shallow 642 

depths estimated maximum near-surface current magnitudes were larger in direction of wave 643 

propagation than against it (Figure 10b: brightest colors for NSCA → 0°, depth 644 

underestimation). For large depths, maximum near-surface current magnitudes were 645 

estimated against direction of wave propagation (Figure 10c,d: brightest colors for NSCA → 646 

180°, depth overestimation), while near-surface current estimates in direction of wave 647 

propagation appeared to be underestimated (Figure 10c,d: dark colors for NSCA < ± 90°).  648 

In summary, observed biases in both depth and near-surface current estimates suggest that the 649 

non-linear fit of equation 1 to the spectral data is sensitive to the local depth and the wave 650 

direction: (1) Generally, depths are underestimated for near-surface currents following the 651 

direction of wave propagation and depths are overestimated for opposing near-surface 652 

currents. (2) Strong near-surface current estimates correlate with strong depth biases, but a 653 

weak near-surface current estimate in direction of wave propagation does not guarantee a 654 

small depth bias. (3) For increasing depth, the depth estimate is more uncertain, tends 655 
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towards overestimation, and especially so for opposing near-surface currents. (4) This is 656 

correlated with near-surface currents against direction of wave propagation having larger 657 

magnitudes than in direction of wave propagation.  658 

The observations suggest that depth estimates may benefit from stricter constraints on 659 

maximum surface current magnitudes (e.g. |Umax| < 0.5 m instead of |Umax| < 1.5 m). This 660 

entails that it be difficult to find an optimal solution among the list of [di, Ui]-candidates 661 

which satisfies the stricter criterion (Figure 1, ⑥). A way to solve this problem could be to 662 

penalize the non-linear fit for large |U|. 663 

 664 

Figure 10. Observed depth bias (vertical axis) as a function of the near-surface current angle 665 

(NSCA) with respect to mean wave direction (horizontal axis). At NSCA = ±0°, near-surface 666 

currents point in direction of wave propagation, whereas for NSCA = ±180° they oppose each 667 

other. The depth bias is used as proxy for the depth error. Corresponding near-surface current 668 

magnitudes (|U|) are shown in bronze colors (colorbar). Panels present data within different 669 

ranges of depth: a) 0.5 < d0,s1 < 25.0 m (all data); b) 0.5 < d0,s1 < 5.0 m; c) 5.0 < d0,s1 < 10.0 m; 670 
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d) 10.0 < d0,s1 < 25.0 m. Depth biases are calculated as the difference between measured 671 

depths from Survey #1 and water level corrected inverted depths, d0,S1 – dinv. Per NSCA, the 672 

95% range of observed depth biases is presented (bandwidth) along with their median value 673 

(green line); the 95%, 80% and 50% range contours are indicated with dotted black lines and 674 

labelled as shown by the green boxes in panel (a). NSCA = ±90° are emphasized by additional 675 

vertical grid lines, to indicate where near-surface currents have no effect on waves according 676 

to equation 1. The angles that are optimal for depth inversion are given by the zero crossings 677 

of the median depth bias and are emphasized by vertical magenta grid lines. The dataset 678 

includes the results of all analysed cubes over the entire period from Dec 2017 – Dec 2018, 679 

amounting to > 20 million observations. 680 

5.2 Choice of spectrum (amplitude vs. energy) 681 

Depth estimates can also be improved in other ways. Depth inversion results are a product of 682 

relating wave characteristics to wave theory. A different representation of the wave 683 

characteristics may lead to different results, which is investigated by using amplitude spectra 684 

instead of energy spectra. The difference is simply that spectra are not squared after 685 

performing the 3D-FFT. It does not alter the wavenumber-frequency relationships, but their 686 

weights and hence changes the sets of spectral data that are passed to the non-linear fitter 687 

during the thresholding procedure (Figure 1, ⑤). 688 

The results of this experiment suggest that more favorable sets of spectral data are established 689 

if amplitude spectra are used, as the overall depth bias (median over all analyzed image 690 

sequences) improved by 0.13 m, from -0.90 m to -0.77 m (cf. Figure 11a,b). The 691 

improvements especially occurred around the bars where waves break (Figure 11a,b, right 692 

column: red line vs. green line between d0 = 4-8 m). This was also emphasized by an 693 

improvement of the bias by 0.22 m for the nearshore area, above the 10 m depth contour. 694 

Similarly, also the RMSE improved by 0.20 m from 1.32 m to 1.12 m with improvements 695 
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being largest in shallow regions and the bar area. This effect can be explained by the 696 

disproportionate spectral weight of breaking waves in the image spectrum who by their 697 

asymmetry do not agree with the linear dispersion assumption underlying the analysis. Using 698 

an amplitude spectrum keeps the spectral weights closer together and thereby reduces the 699 

impact of breakers. Improvements were also noticed for the more difficult area to the north-700 

east of the Sand Engine (Figure 11a,b,left column: whitening of north east area), which we 701 

ascribe to a relatively weaker impact of bad wave representations; in this case due to radar 702 

beam - wave crest alignment and lesser image quality. 703 

5.3 Kalman filtering 704 

An alternative way to improve the XMFit results is through post-processing with a Kalman 705 

filter. The Kalman filter is used in time on the derived morphological changes, assuming 706 

slowly varying morphology in comparison to the radar sampling interval, analogous to 707 

Holman et al. (2013). The Kalman filter is an instrument for quality control and improvement: 708 

It weighs the current depth estimate dt at time t against a previous estimate d̅t-1 at t-1 using the 709 

Kalman gain, K, by d̅t= d̅t-1 + K(dt - d̅t-1), where overbars denote Kalman adjusted estimates. 710 

The Kalman gain requires an indication for the confidence we have in the current dt estimate 711 

(R in eq. 5 of Holman et al. (2013)). In line with Holman et al. (2013), we use the error 712 

variance σ2 of the non-linear fit for this purpose. This error variance of dt is compared against 713 

the variance σ̅2 of d̅t-1 (P in eq. 5-7 of Holman et al. (2013)), which depends on previous 714 

estimates of σ2, but also on process variance (Q in eq. 6 of Holman et al. (2013)). The process 715 

variance, Q, accounts for morphological change that may occur over the period of 716 

observations, but since Sand Engine data only cover a period of 18 h, we neglect it (i.e., Q = 717 

0). For further details on the application of a Kalman filter to bathymetry estimates from a 718 

DIA, we refer to Holman et al. (2013). This experiment presents the results after the last, 719 

184th Kalman filter iteration. 720 
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The Kalman filter reduced the depth bias by 0.21 m, from -0.90 m to -0.69 m, and the RMSE 721 

by 0.25 m, from 1.32 m to 1.07 m (cf. Figure 11a,c). In this case, the improvements were 722 

quite evenly distributed across all depths, including deeper areas (Figure 11a,c,left column: 723 

whitening of northern area; Figure 11a,c,right column: narrowing of dinv-confidence interval 724 

for d0 > 10 m). The combined effect of a Kalman filter and an analysis based on amplitude 725 

spectra was a reduction of the overall depth bias to -0.58 m and RMSE to 0.88 m (Figure 726 

11d). The broad improvements clearly showed when compared to the base case (cf. Figure 727 

11a,d): Depth estimates of the difficult regions in the north and north-east improved (Figure 728 

11a,d,left column), but also the breaker region (Figure 11a,d,right column), which is known 729 

to experience larger errors (Bell, 2008). Hence, on the short term, the application of a Kalman 730 

filter without process variance is superior to using the median estimate. Though we 731 

recommend the data to cover at least one tidal cycle as to dampen out temporary tide induced 732 

inaccuracies. 733 

Although we could not test the Kalman filter on the Ameland data, due to lacking information 734 

on σ2, it is also not straightforward to apply. While the Kalman filter has proved itself 735 

valuable for the Sand Engine and also other uniform coastlines such as Duck (Holman et al., 736 

2013), more complex coastal systems – like an ebb-tidal delta – may pose a problem when 737 

viewed over long periods of time, as morphological change needs to be described by process 738 

variance as a function of time and location, Q(t,x,y). Tidal deltas are subject to various drivers 739 

and mechanisms that move sediment (Elias et al., 2019; Lenstra et al., 2019). Their influence 740 

and interactions continuously change in both space and time, which makes it difficult to 741 

formulate and quantify Q(t,x,y). A spatiotemporally uniform implementation could be the 742 

choice of an upper bound Q = max(morphological change), however, remains subject for 743 

further study. 744 
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Figure 11. Methods to improve the XMFit results for the example case of the Sand Engine, 746 

shown by comparisons of inverted depths dinv (m) against in-situ measured depths d0 (m). The 747 

left column presents difference maps where red/blue colors indicate under-/overestimation of 748 

depth respectively. The right column presents direct comparisons of dinv against d0, including 749 

the 1:1 reference (green), the median over all dinv at a certain d0 (red), and the 5%-95% 750 

confidence interval (dashed red). Panels (a,b): Median depth estimates over all 184 image 751 

sequences from 20-21 Oct. 2014, for (a) the base case using the energy spectrum and (b) 752 

using the amplitude spectrum. Panels (c,d): The final, 184th estimate of the Kalman filter after 753 

application to results produced using (c) energy spectra and (d) amplitude spectra. 754 

By reducing both bias and RMSE, the change of spectrum (section 5.2) and the Kalman filter 755 

(section 5.3) have demonstrated that results can be improved. Stricter constraints on near-756 

surface current magnitudes may also increase the accuracy of depth estimates (section 5.1). 757 

Future work might provide insights that could lead to additional improvement of the results 758 

since some bias and RMSE remains. Early thoughts on common sources of error are (i) more 759 

radar image pre-processing to enhance radar image quality with increasing distance from the 760 

sensor, for example using FFT-accelerated video reconstruction techniques (Chan et al., 2011) 761 

(ii) the application of multiple radars to cover unfavourable wave-angles and (iii) including 762 

breaker intensity as a proxy for depth-induced dissipation to improve estimates in breaker 763 

zones (van Dongeren et al., 2008). 764 

765 
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6 Conclusions 766 

A depth inversion algorithm (DIA), XMFit (X-Band MATLAB Fitting), is a radar-based 767 

technique to monitor coastal evolution on large space (10s of kilometers) and time (months) 768 

scales. We mapped and analyzed two nourishments in the Netherlands using this technique: 769 

(1) an 18-hour snapshot of the beach mega nourishment, the Sand Engine, and (2) a one-year 770 

time-series of a 5 million m3 pilot nourishment in the ebb-tidal delta of the Wadden Sea 771 

island Ameland. Derived morphologies in both cases largely agreed with ground truth data. 772 

Depth biases were around -0.9 m at Sand Engine and fluctuated between approximately -2 – 773 

0 m at the Ameland ebb-tidal delta. By averaging and debiasing the radar-derived 774 

morphologies, it was possible to accurately quantify the growth of the ebb tidal delta 775 

nourishment at Ameland during its placement in 2018 with a volumetric margin error of 7%. 776 

Depth errors in the Ameland delta correlated with near-surface current magnitude and 777 

direction relative to the direction of wave propagation. The depth errors were generally 778 

smaller for small surface current magnitudes and respectively showed under- and 779 

overestimation for near-surface currents, in and against the direction of wave propagation.  780 

For the Sand Engine, experiments with the spectral treatment and the conceptual employment 781 

of a Kalman filter in post-processing improved the depth bias to 0.6 m. Further improving the 782 

results and the algorithm remains a scientific and operational challenge. 783 

This research presents the successful operation of a DIA on data from a navigational X-Band 784 

radar to monitor a mega nourishment in a complex tidal inlet system, allowing coastal 785 

managers to assess volume changes over time.  786 

787 
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Appendices  920 

A 921 

Table A.1. Radar properties at the Sand Engine and Ameland 922 

Properties Sand Motor Ameland Inlet 

Antenna Height [m, NAP] 15 60 

System Type Terma Scanter 2000 Terma Scanter 2001 

Antenna Width [ft] 14 21 

Range [km] 3.75 7.5 

Pulse Length [ns] 50 60 

Horizontal Beam Width 

[deg] 

0.5 0.43 

Vertical Beam Width [deg] 23 23 

PRF [kHz] 4 2.2 

Rotation Speed [rpm] 25 21 

Output Power [kW] 25 25 

Polarization VV VV 

 923 

B 924 

 925 

Figure B.1. Computational grids (green) used for (a) the Sand Engine (b) and the Ameland 926 

Inlet. The grids are overlaid on typical radar images of both sites. 927 

Sand Engine 928 

For computational efficiency of XMFit, a variable grid spacing of 25 m near the shoreline 929 

and 250 m further offshore was used, resulting in 9380 grid points. The computational cubes 930 
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were time-averaged by subdividing them into 32 image bins with 8 images overlap. The 931 

spatial extents were 64px (240 m) within 300 m from the shoreline and 128px (480 m) further 932 

offshore. The reduced cube size in the nearshore region was chosen in order to capture more 933 

morphological detail.  934 

 935 

For consistency, XMFit settings were chosen to be similar to the application at Ameland. The 936 

spectral frequency filter was set to include shorter wave periods, [Tmin, Tmax] = [3.5, 15] (s) 937 

(Figure 1, ②). Depth limits were set to [dmin, dmax] = [0.5, 25] (m) (Figure 1, ③), and the 938 

near-surface current velocity limit was set to |Umax| = 1.25 (m/s) (Figure 1, ⑥). 939 

Ameland Inlet 940 

In case of the Ameland Inlet, a constant grid spacing of 100 m was used amounting to 8328 941 

grid points in total. Computational cubes were time-averaged using 32 image bins without 942 

overlap and had a spatial extent of 128px (960 m).  943 

 944 

The inversion process was constrained by the wave period limits [Tmin, Tmax] = [5, 15] (s) 945 

(Figure 1, ②), depth limits [dmin, dmax] = [0.2, 25] (m) (Figure 1, ③), and |Umax| < 1.5 (m/s) 946 

(Figure 1, ⑥). 947 

 948 


