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ABSTRACT ARTICLE HISTORY
Transport network criticality analysis aims at ranking transport Received 11 July 2019
infrastructure elements based on their contribution to the Accepted 19 November 2019
performance of the overall infrastructure network. Despite the

wide variety of transport network criticality metrics, little guidance T o
. . . . . ransport network; criticality
is available on selecting metrics that are ﬁt. for the spgaﬁc analysis; criticality metrics;
purpose of a study. To address this gap, this study reviews, multi criteria; transport
evaluates and compares seventeen criticality metrics. First, we interventions prioritisation
conceptually evaluate these metrics in terms of the functionality

of the transport system that the metrics try to represent (either

maintaining connectivity, reducing travel cost, or improving

accessibility), the underlying ethical principles (either utilitarianism

or egalitarianism), and the spatial aggregation considered by the

metrics (either network-wide or localised). Next, we empirically

compare the metrics by calculating them for eight transport

networks. We define the empirical similarity between two metrics

as the degree to which they yield similar rankings of infrastructure

elements. Pairs of metrics that have high empirical similarity

highlight the same set of transport infrastructure elements as

critical. We find that empirical similarity is partly dependent on

the network’s topology. We also observe that metrics that are

conceptually similar do not necessarily have high empirical

similarity. Based on the insights from the conceptual and

empirical comparison, we propose a five-step guideline for

transport authorities and analysts to identify the set of criticality

metrics to use which best aligns with the nature of their policy

questions.

KEYWORDS

1. Introduction

Transportation studies heavily rely on network theory (Lin & Ban, 2013). From a network
point of view, a transport infrastructure system is represented by a set of nodes and
links that together form a network. This perspective has opened up a wide avenue of
policy relevant analyses, such as accessibility impact assessment of new public transport
(Wang, Jin, Mo, & Wang, 2009) and impact assessment of natural hazards to transport ser-
vices (Nagae, Fujihara, & Asakura, 2012). One overlapping theme in these kinds of studies is
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the prioritisation of alternative interventions. From the perspective of a transport auth-
ority, the available budget for the intervention should be spent such that it yields
maximum benefits to the transport users and to society at large. One way to achieve
this is to rank-order the transport infrastructure components based on their contribution
to the performance of the system.

The rank-ordering of infrastructure components in a transport network is termed trans-
port network criticality analysis (Jenelius, Petersen, & Mattsson, 2006). Criticality analysis
has two main characteristics. First, its end goal is not to calculate criticality scores for
each transport network component, rather the aim is to rank the components based on
their criticality scores. Transport authorities can use these rankings to support their inter-
vention planning. Second, the object of the analysis is the transport infrastructure objects,
represented as network components (links or nodes). The second characteristic dis-
tinguishes criticality analysis from other types of transport network studies such as
exposure analysis, where the object of analysis is the user (Jenelius & Mattsson, 2015),
or robustness analysis, where different transport networks are compared (Sullivan,
Novak, Aultman-Hall, & Scott, 2010). Past studies have used different terminologies for cri-
ticality analysis, such as vulnerability analysis (Luathep, Sumalee, Ho, & Kurauchi, 2011) and
importance analysis (Qi, Zhang, Zheng, & Lin, 2015). Despite these terminological differ-
ences, as long as a transport network study exhibits the two characteristics above, we con-
sider it as criticality analysis.

Transport network criticality has gained attention in the past decades. However, there is
no single accepted formalisation of transport network criticality. For instance, Jenelius
et al. (2006) see criticality from a risk perspective. A transport network component is con-
sidered critical if the probability and the consequence of the component’s failure are high.
In contrast, De Oliveira, da Silva Portugal, and Junior (2016) see criticality as a probability-
neutral concept. The different formalizations of criticality have resulted in a large number
of criticality metrics, ranging from a simple measurement of road capacity (Sullivan et al.,
2010) to more complicated indicators such as network connectivity measures (Kurauchi,
Uno, Sumalee, & Seto, 2009). Consequently, transport authorities are left with a large
number of criticality metrics to choose from.

The wide variety of criticality metrics leads to the question whether a single best criti-
cality metric exists. To this end, Knoop, Snelder, van Zuylen, and Hoogendoorn (2012)
empirically compared ten potential metrics. They found very low correlations between
the ranking produced by these metrics. This implies that looking for a single best
metric is not feasible, as different metrics produce distinctive rankings. As an alternative,
a normative approach to choosing the most appropriate criticality metric can be followed
(Jenelius & Mattsson, 2015). Here, transport authorities need to first reflect on the problem
that they want to address before conducting the criticality analysis. The criticality metrics
should be selected based on the policy question at hand. The question now is a metrics
selection problem: how can one select an appropriate set of criticality metrics to use
given a specific analysis purpose?

We review the conceptual and empirical differences between several criticality metrics,
and propose a guideline to select a set of metrics that suits their context. We follow a four-
step process. First, we discuss seventeen widely used criticality metrics (Section 2). Second,
we conduct a conceptual comparison of these metrics in order to reveal the conceptual
dimensions of transport system performance that the metrics try to represent (Section
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3). Third, we conduct an empirical comparison in order to identify metrics that produce
similar rankings of transport infrastructure components (Section 4). Fourth and final, we
develop a guideline for selecting criticality metrics based on the results of the conceptual
and empirical comparisons (Section 5). The selected criticality metrics should cover as
many conceptual dimensions as necessary, while having a low degree of empirical
similarities.

2, Transport network criticality metrics

Recent studies have shown a wide variety of criticality and related metrics used in vulner-
ability, robustness and resilience analysis (Mattsson & Jenelius, 2015). To get a more exten-
sive set of literature, we conducted a semi-systematic literature search through the scopus
database and some seminal papers on transport network analysis (e.g. Berdica, 2002; Jene-
lius et al., 2006; Mattsson & Jenelius, 2015; Reggiani, Nijkamp, & Lanzi, 2015). After finding
almost 400 articles, we filtered by reading the abstracts. We ended up with around 35
articles which we reviewed in detail. Based on these studies, we identify seventeen
metrics that have been used in recent transport network analysis, summarised in Table
1. The table presents information about the definition of the metrics, the requirements
that should be met in order to use each metric, and the conceptual dimensions of trans-
port network performance represented by the metrics. The conceptual dimensions will
later be used for conceptual comparison in Section 3.

2.1. Metrics derived from transport studies

The first five metrics in Table 1 are based on the increase in total travel cost when transport
infrastructure elements are disrupted. Increase in total travel cost can be operationalised in
many ways, depending on the inclusion of actual travel flows and the regionalisation used
when calculating the travel cost increase. Some studies use metric 1 from Table 1 that uses
actual traffic flows in calculating the increase in total travel cost. Thus, travel cost is a func-
tion of travel time and travel demand. Metrics 2 and 3, user exposure analysis, are exten-
sions of this approach. The user exposure metrics measure the impact (e.g. in terms of
increase in total travel cost) experienced by transport users due to some disruption scen-
arios. Here, the focus is on the transport users, rather than on the system-level impacts of
disruptions. To define the transport users, the case study area is compartmentalised into
regions, for instance based on administrative boundaries. The users are aggregated into
user groups based on the selected administrative level, and the impact of disruption scen-
arios are assessed either by taking the average impact across all user groups (metric 2) or
the impact to the worst-off user groups (metric 3).

In contrast to the first three metrics, metric 4 excludes traffic flow when calculating the
increase in total travel cost. In metric 4, travel cost is only a function of travel time. Metric 5
applies user exposure analysis while excluding traffic flow. In this case, the increase in total
travel cost is calculated not for the whole study area, but only for the region where the
disrupted component resides.

Metrics 6 and 7 in Table 1, which are related to accessibility, also originate from the field
of transport studies. Metric 6 (weighted accessibility) accounts for the amount of traffic
flow on the network. Alternatively, accessibility can also be calculated without considering



Table 1. List of criticality metrics used in this study.

Conceptual dimensions represented (see

Technical requirements Section 3)
Origin- Transport
Destination network

No Metric name Description (OD) matrix assignment Others Functionality Ethical Aggregation Relevant references

1 Change in Increase in total travel cost  Calculated All-or-nothing ~ Complemented with  Travel cost Utilitarian ~ Network- (Balijepalli & Oppong, 2014;
weighted total (distance and traffic flow) with socio- or user an interdiction wide Dehghani, Flintsch, &
travel cost among all origin- economic equilibrium method McNeil, 2014; Du, Kishi,

destination pairs due to factors assignment Aiura, & Nakatsuji, 2014;
disruptions on an element Gauthier, Furno, & El
Faouzi, 2018)

2 Changein The average impact of Calculated All-or-nothing ~ Complemented with  Travel cost Utilitarian ~ Network- (Jenelius, 2009; Jenelius &
expected user disruptions experienced with socio- or user an interdiction wide Mattsson, 2015)
exposure by all users in the economic equilibrium method

transport system factors assignment

3 Change in worst-  The maximum impact of Calculated All-or-nothing ~ Complemented with  Travel cost Utilitarian ~ Network- (Jenelius & Mattsson, 2015)
case user disruptions among all with socio- or user an interdiction wide
exposure users in the transport economic equilibrium method

system factors assignment

4 Changein Increase in total travel cost  Calculated All-or-nothing  Complemented with ~ Travel cost Egalitarian  Network- (Wang, Chan, & Li, 2014)
unweighted (only distance) among all without assignment an interdiction wide
total travel cost origin-destination pairs socio- method

due to disruptions on an economic
element factors

5 Change in Increase in total travel Calculated All-or-nothing ~ Complemented with ~ Travel cost Egalitarian  Local (Jenelius & Mattsson, 2015;
region-based distance among all origin- without assignment an interdiction Wang et al., 2014)
unweighted destination pairs within a socio- method
total travel cost certain sub-area where economic

the element is located due factors
to disruptions on an
element

6  Changein Decrease in weighted (by Calculated All-or-nothing ~ Complemented with  Accessibility ~ Utilitarian ~ Network- (Chen, Yang,
weighted transport demand/flow) with socio- or user an interdiction wide Kongsomsaksakul, & Lee,
accessibility accessibility due to economic equilibrium method 2007; Luathep et al., 2011;

disruptions of an element. factors assignment Wang et al., 2014)

The weight is determined
by the socioeconomic
activities

IV LIIONHVIYV'E () v
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n

12

13

14

Change in
unweighted
daily
accessibility

Traffic flow

Traffic density

Weighted
betweenness
centrality

Exposure to
disaster

Nearby
alternative
elements

Unweighted
betweenness
centrality

Change in
network
average
efficiency

Decrease in unweighted,
topological-based
accessibility due to
disruptions of an element

Empirical traffic flow of the
transport network

Traffic volume over capacity.
Normally used as an
approximation of
congestion

The traffic flow among the
economic centroids. The
traffic flow is determined
by the socioeconomic
profiles

Overlay of natural disaster
maps with the transport
network. This is often used
for disaster preparedness
studies

Number of other elements
that are located within an
x kilometre distance from
an element.

Betweenness centrality
calculated based on the
shortest paths among the
economic centroids

Decrease in network
efficiency due to
disruptions of an element

Calculated
without
soCio-
economic
factors

Not required

Not required

Calculated
with socio-
economic
factors

Not required

Not required

Calculated
without
s0Cio-
economic
factors

Calculated
without
socio-
economic
factors

All-or-nothing
assignment
method

Not required
Not required
lanes)
All-or-nothing -
or user

equilibrium
assignment

Not required

Not required GIS analysis

All-or-nothing -
assignment

All-or-nothing ~ Complemented with
assignment an interdiction

method

Complemented with
an interdiction

Empirical traffic flow

Empirical traffic flow
and road capacity
(e.g. number of

Overlays maps of
natural disasters

Accessibility

Travel cost

Travel cost

Travel cost

Connectivity

Connectivity

Travel cost

Travel cost

Egalitarian

Utilitarian

Utilitarian

Utilitarian

Utilitarian

Egalitarian

Egalitarian

Egalitarian

Network-
wide

Local

Local

Local

Local

Local

Local

Network-
wide

(Luathep et al., 2011; Wang
et al, 2014)

(Zhou, Fang, Thill, Li, & Li,
2015)

(Scott et al., 2006; Zhou et al.,
2015)

(Aydin, Duzgun, Wenzel, &
Heinimann, 2018; Demirel,
Kompil, & Nemry, 2015;
Kermanshah & Derrible,
2016; Wang & Cullinane,
2014)

(Kermanshah & Derrible,
2016; Koks et al., 2019;
Sohn, 2006)

(Snelder, van Zuylen, &
Immers, 2012)

(Aydin, Casali, Sebnem
Duzgun, & Heinimann,
2019; Demirel et al.,, 2015;
Kermanshah & Detrible,
2016; Wang & Cullinane,
2014)

(Dehghani et al., 2014;
Issacharoff, Limmer,
Rosato, & Helbing, 2008;
Nagurney & Qiang, 2008)

(Continued)
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Table 1. Continued.

Conceptual dimensions represented (see

Technical requirements Section 3)
Origin- Transport
Destination network
No Metric name Description (OD) matrix assignment Others Functionality Ethical Aggregation Relevant references
15 0D Decrease in the number of  Calculated All-or-nothing The assignmenthasto  Connectivity ~ Egalitarian ~ Network- (Mishra, Welch, & Jha, 2012;
k-connectivity distinct shortest paths without assignment be complemented wide Shier, 1979)
among all origin- socio- with a network
destination pair due to a economic distinct path
disruption of an element factors algorithm
16 Minimum link cut ~ The frequency of a link’s Not required Not required Uses cut Connectivity ~ Egalitarian ~ Network- (Snelder et al., 2012)
centrality appearance in the cut sets set algorithms from wide
of all pairs of economic network theory
centroids
17  Unsatisfied Amount of transport activity ~ Calculated All-or-nothing Complemented with Connectivity ~ Utilitarian ~ Network- (Baroud, Barker, Ramirez-
demand that cannot take place due with socio- or user an interdiction wide Marquez, & Rocco, 2014;
to disruptions of an economic equilibrium method Qiang & Nagurney, 2012)
element factors assignment

IV LIONHVIY'E (®) 9
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the actual traffic flow. Furthermore, time constraints can be added to metric 6, resulting in
time-bounded accessibility such as metric 7 (unweighted daily accessibility).

Metrics 8-10 evaluate criticality based on the congestion within the transport network.
This can be calculated both directly and indirectly. The direct approach uses empirical data
on traffic flow and the transport network’s capacity. The indirect approach approximates
congestion by simulating the traffic flow on the network. This metric is normally termed
utility-weighted betweenness centrality.

Transport authorities often use disaster exposure and local redundancy indicators to
analyse the vulnerability of the network to natural hazards. Disaster exposure metrics
are often used jointly with other metrics to narrow down potential interventions. Metric
11 overlays natural hazards maps with the transport network in order to identify the vul-
nerable transport infrastructure. Metric 12 determines the local redundancy of an element
based on the availability of other elements that are geographically close to that element. A
higher number of geographically neighbouring elements implies that transport users have
more alternative routes in case the element under observation is disrupted.

2.2. Metrics derived from network theory

A second family of metrics used in transport network analysis is derived from network
theory. Metric 13, unweighted betweenness centrality, evaluates the criticality of an
element based on the frequency of that element appearing in the sets of shortest paths
between centroids (e.g. the centres of districts). This is similar to the indirect congestion
(metric 10), but in metric 13 traffic flow is not considered. Metric 14 calculates the
change in the network’s average efficiency. Efficiency of a network measures the
degree to which a unit of analysis (in the transport case, the users) is exchanged (in the
transport case, is moved from one node to another) with the least effort (Latora & March-
iori, 2001). It is a function of the inverse of total travel cost, making it similar to unweighted
daily accessibility (metric 7). Efficiency, however, does not have a time threshold factor and
only considers economic centroids, rather than all nodes.

Metrics 15, 16, and 17 are derived from the connectivity concept in network theory.
Most transport networks have redundancies. There is usually more than one possible
path from any node to any other node. Metric 15 measures the decrease in the number
of k-distinct possible paths among all economic centroids. Disruptions on a single
element, thus, may reduce the number of distinct paths in the network. However, as trans-
port networks are often redundant, disrupting only a single element may not instan-
taneously cause disconnection. To capture this phenomenon, metric 16 uses the
minimum link cut calculation stemming from the connectivity concept. A minimum link
cut for a pair of nodes is the minimum set of links that have to be simultaneously disrupted
in order to make the two nodes disconnected (Ford & Fulkerson, 1956). The final metric,
metric 17, takes the connectivity concept further by weighting the links based on the
number of trips that cannot take place due to disruptions.

2.3. Data and methods needed to calculate the metrics

Table 1 shows that each criticality metric has its own technical requirements. Some metrics
require direct observation or empirical data of traffic flows. Most metrics need transport
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assignment techniques, such as all-or-nothing assignment and user-equilibrium assign-
ment, to distribute potential transport activities on the network. When changes in an indi-
cator have to be calculated, interdiction methods are required. Interdiction methods
require network elements to be intentionally removed in order to see how the disruption
affects the flow on the network. The higher the negative consequences due to the changes
of the flow, the more critical the network elements are. There are many variants of inter-
diction methods depending on the inclusion of probability, the level of capacity reduction,
and the number of links to be simultaneously disrupted (Sullivan, Aultman-Hall, & Novak,
2009).

3. Conceptual comparison of criticality metrics

Results from criticality analysis are useful for ranking infrastructure components based on
their contribution to the performance of the overall transport infrastructure system.
Accordingly, to compare the metrics from a conceptual perspective, we first have to ident-
ify the dimensions that define transport infrastructure system performance. In this study,
we focus on three dimensions: transport functionality (Faturechi & Miller-Hooks, 2014), the
underlying ethical assumptions, i.e. principles that help one in evaluating if his/her actions
are morally good or bad (Thomopoulos, Grant-Muller, & Tight, 2009), and the spatial cover-
age of the measured performance (Urefia, Menerault, & Garmendia, 2009). Aside from
these three, transport infrastructure system performance can also be evaluated based
on broader factors such as economic spillover (Lakshmanan, 2011) and environmental
impacts (Litman, 2007). The use of such factors in transport network criticality, however,
is limited.

3.1. Functionality dimension

The functionality dimension captures the services a transport infrastructure network pro-
vides. From a transport service perspective, three important aspects in designing transport
infrastructure network are connectivity among different places, accessibility to the users,
and travel costs incurred by users (Lakshmanan, 2011; Martens, Bastiaanssen, & Lucas,
2019; Velaga, Beecroft, Nelson, Corsar, & Edwards, 2012). Criticality metrics try to illuminate
the importance of network components based on their contribution to these three
services.

Connectivity-based metrics measure the availability of connections among all locations
of interest in a system. Connectivity is of central concern when analysing the resilience and
vulnerability of a transport network (Reggiani et al., 2015), as reduction in connectivity
implies that there are parts of the network that are unreachable from other parts of the
network. Although the degree of connectivity in a transport network, especially road net-
works, is normally high, simultaneous disruptions in several network components can still
create disconnections (Pant, Hall, & Blainey, 2016). Simply put, a network component has
higher criticality if its removal causes disconnection between locations of interest.

Once connectivity to a certain place has been established, services a transport network
offers are the provision of good accessibility and the reduction of the costs to travel from
and to that place. Total travel costs and accessibility are closely intertwined concepts. Con-
ceptually speaking, total travel cost takes an overall-system perspective while accessibility
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takes a user perspective. Hence, while the object of analysis of the travel cost functionality
is the aggregate system-level transport activities (Balijepalli & Oppong, 2014), the object of
analysis of accessibility is the transport user groups and their ease in reaching destinations
(Morris, Dumble, & Wigan, 1979).

Originally, accessibility refers to the ease by which users from a certain location can par-
ticipate in activities that take place at other locations (Miller, 2018). Accessibility comp-
lements travel cost, where an increase in accessibility is a direct consequence of a
decrease in travel cost (Rietveld, 1994). Accessibility-based metrics examine the decrease
of a network’s accessibility due to disruptions of network components (Hernandez &
Gomez, 2011; Taylor & D’Este, 2007). The Hansen’s index (Hansen, 1959) is often used
for this purpose. This index calculates accessibility as a function of economic potential
and distance between regions.

3.2. Ethical dimension

The ethical dimension unravels the underlying moral considerations, assumptions and
objectives one makes when conducting transport studies. There are underlying principles
of justice and equity, often implicit, to measuring the performance of a transport network
and deciding on alternatives for improving this (Nahmias-Biran, Martens, & Shiftan, 2017).
Transport planners, for example, may have to choose between improving the overall
benefits of the transport system or improving the equality of benefits gained by
different user groups. In many cases, choosing one over the other leads to different invest-
ment decisions. Improving the overall benefits reflects the utilitarian ethical principle while
focusing on the equality of the benefits’ distribution refers more to the egalitarian ethical
principle (Lucas, van Wee, & Maat, 2016).

In the utilitarian ethical principle one aims to maximise the collective welfare of society
(Posner, 1979). In the context of transport system planning, an ethically right decision in
the utilitarian sense is to choose investment options which yield the highest aggregate
benefits in comparison to the other alternatives (Van Wee & Roeser, 2013). In criticality
analysis, utilitarian principles are implemented by performing a weighted aggregation
of a set of benefits from transport system functioning. Hence, actual transport demand
information is used to calculate the benefits. Consequently, there is a tendency to give
higher importance to transport network components that are used more often and are
located closer to hotspots of economic activities.

One main criticism of the utilitarian ethics is that fairness and equity are disregarded.
This concern is addressed in egalitarian ethics. Here, the focus is on the fairness of
welfare distribution across all members of a society (Pazner & Schmeidler, 1978). This prin-
ciple has recently been applied in transport studies (e.g. Delbosc & Currie, 2011; Pereira,
Schwanen, & Banister, 2016). In criticality analysis, this principle can be applied by
giving equal weights to all economic activities locations, signifying equality of treatment
among the locations. Consequently, transport network components that serve rural areas
are given the same importance as components serving urban or industrial areas.

The application of egalitarian ethics in transport network criticality analysis can also
benefit from the use of actual transport demand information. Instead of applying a
linear aggregation, an inverse weighting transformation can be applied on the transport
demand based on the socioeconomic profile of the transport users. A larger weight can
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be put on transport users who are socioeconomically worst-off, hence the importance of
providing transport service to those users increases. However, to our knowledge no trans-
port network criticality study so far has taken such an approach.

3.3. Aggregation dimension

The last dimension examines the spatial extent of the evaluated transport network per-
formance. The main question here is if the performance is assessed for the entire area
covered by the transport network (the network-wide aggregation) or only for a subset
of the area (the localised aggregation). Metrics that adopt a network-wide aggregation cal-
culate the contribution of network components for the performance of the whole trans-
port network system. An example is the increase in total travel time among all origin-
destination (OD) pairs. The network-wide aggregation approach has been proposed as
the most appropriate way to perform criticality analysis as it captures the full interdepen-
dencies among network components (Scott, Novak, Aultman-Hall, & Guo, 2006).

Two perspectives exist within the localised aggregation approach: localised contribution
to transport system performance (Chen, Lam, Sumalee, Li, & Li, 2012) and local character-
istics of network components (Nourzad & Pradhan, 2016). In the first perspective, criticality
is calculated by evaluating the contribution of network components only until a certain geo-
graphical subset of the entire area is served by the transport network. For example, instead
of calculating the increase in travel time among all OD pairs, one can calculate the increase
in travel time of only OD pairs that reside within the same administrative area. In the second
perspective, criticality is calculated based on static characteristics of the network com-
ponents, such as the number of culverts and bridges on a road segment.

Based on the three dimensions described above, the “Conceptual dimensions rep-
resented” columns in Table 1 provide the conceptual comparison of the criticality
metrics. Some combinations of concepts within these dimensions, such as travel cost - uti-
litarian — network-wide, are represented by more than one metric. Metrics with the same
combination of concepts are expected to yield empirically similar criticality results. The
next two sections test and evaluate this hypothesis.

4. Empirical comparison of the criticality metrics: a case study of
Bangladesh

In the empirical comparison, we calculate the 17 criticality metrics for several actual trans-
port networks and observe the empirical (dis)similarities among the metrics. The topolo-
gical properties of the networks have to be heterogeneous in order to ensure the
robustness of the comparison. Furthermore, it is worthwhile to select a case study
where transport infrastructure investment decision is a strategic one due to the limited
budget availability and the criticality of the transport sector to the economy. To this
end, we use the multimodal freight transport networks in Bangladesh as a case study.

4.1. The Bangladesh freight transport network

The main transport modes in the Bangladesh freight transport networks are roads, inland
waterways, and railways. Due to a lack of data on the rail transport, only roads and inland
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waterway networks are considered in this case study. Together, roads and inland water-
ways account for 96% of the freight transport activities (Smith, 2009).

In order to test the robustness of the empirical comparison, we calculate the metrics
both for the entire network as well as for seven distinct subnetworks of the seven admin-
istrative divisions (highest administrative units) within Bangladesh. To ensure that the net-
works used are topologically diverse enough, we assess the dissimilarities between these
networks by calculating several topological indices (Lin & Ban, 2013): beta index (approxi-
mating the degree of connectivity), average clustering coefficient, betweenness centrality,
and global efficiency. Table 2 presents the results. Only the Rajshahi and Chittagong net-
works have more than one topological similarity. Other pairs of networks may only have
one similar property. For instance, the networks of Rangpur and Barisal have similar global
efficiency, but the mean betweenness centrality of the former is almost six times as large
as the latter. This shows a high degree of topological diversity among the eight transport
networks used in the case study.

The economic model has been set-up in such a way that transport demand originates
from the 64 districts in Bangladesh. Each district is represented by a single centroid node
that acts as both the production and attraction point. Additional centroids are added for
land and sea ports. A doubly constrained gravity model (lvanova, 2014) is used to estimate
an OD matrix between these centroids. The model requires information about the pro-
duction and attraction factors in each centroid, which was obtained from the Bangladesh
Bureau of Statistics (2013). This study makes use of the production values of key commod-
ities, including garments, basic metals, non-metal minerals, textiles, and foods, in each dis-
trict. These key commodities make up to 82% of Bangladesh'’s total economic output. The
attraction factor is split into local demand, approximated by population, and export
demand, approximated by the economic values of export activities at land and sea
ports. To ensure the validity of the generated OD matrix, several consultation meetings
with local experts and stakeholders were conducted.

Table 2 shows that the number of links in a network can be as high as 1200. The large
number of links poses a computational burden when calculating metrics that require inter-
diction methods. For these metrics, a single link complete removal approach is followed,
where each link is removed individually from the network (Sullivan et al., 2009). The trans-
port demand has to be redistributed on the network each time a link is removed. This
implies that the transport network assignment algorithm has to be carried out hundreds
of times. Therefore, a simple all-or-nothing assignment technique is used to afford a
reasonable computation time.

Table 2. Topological properties of the networks.

Number of Number of Beta Average clustering Mean betweenness Global
links nodes index coefficient centrality efficiency

Bangladesh 1258 962 1.308 0.0411 0.0159 0.0673
Barisal 344 294 117 0.0164 0.0359 0.1089
Chittagong 922 733 1.258 0.0589 0.0283 0.0617
Dhaka 173 969 1.211 0.0363 0.0205 0.0589
Khulna 489 424 1.153 0.0263 0.0432 0.0749
Rangpur 115 89 1.292 0.0187 0.1933 0.1109
Rajshahi 581 456 1.274 0.0522 0.0289 0.0863

Sylhet 165 138 1.196 0.0193 0.0621 0.1427
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4.2. Approach to identify empirically similar metrics

Figure 1 shows the three-step approach that is followed for the empirical comparison. In
the first step, we calculate the 17 metrics for each of the eight networks. Having the criti-
cality scores for each link, not all links are used in the next step. Rather, only the union of
the 100 most critical links from each metric is considered. For instance, out of 922 links in
the Chittagong network, only 224 links are considered for further analysis as these links
appear in at least one of the 100 most critical links from the 17 metrics. This is because
some metrics require transport assignment techniques, where the shortest paths
between all OD pairs are identified. Some links eventually are not part of the shortest
paths between any OD pair. As their contribution for the national freight transport activi-
ties is relatively small, including them may conceal the main links that are of interest.

In the second step, we calculate the correlation of each pair of metrics for each network.
Given that the aim of criticality analysis is to rank-order the transport network com-
ponents, the empirical correlation should reflect the degree of similarity of the rankings
produced by two metrics. Therefore, we use the Spearman-rank correlation coefficient.
This coefficient focuses on the similarity of the ordering (i.e, ranking) of elements
between any two sets, rather than on the actual values of the elements. A high and posi-
tive correlation coefficient between two metrics implies that both identify the similar set of
links as critical.

In the third step, we check the robustness of the Spearman-rank correlation coefficients
across all eight networks by using three indicators. The first indicator is the average of the
coefficients, where a higher average indicates a more robust empirical similarity. However,
this indicator by itself cannot detect outliers in the distribution. The second indicator,
which is the range, addresses this issue. This indicator calculates the difference between
the highest and the lowest correlation coefficients across the eight networks. If a pair of
metrics has both a high average and a large range, then there may be some outliers in
the empirical similarity. The third indicator checks for consistency in the direction of the
empirical similarity. This consistency indicator follows a logical function where the value
is one if the correlation coefficients of a pair of metrics are always negative (or positive)
in all networks, and zero if the coefficients are negative in some networks but positive
in the other networks.

<
Metric 1 .

Metric 2

N '

Ih |

L1259
(c)

Metric 17

(a)

Figure 1. lllustration of the three-step empirical comparison: (a) listing of the 100 most critical links
based on each metric for each network, (b) Spearman-rank correlations among the metrics in each
network, (c) three robustness indicators summarising the eight networks.
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4.3. Results of the empirical comparison

Figure 2 displays the robustness of the Spearman-rank correlations as heatmaps. The 17
criticality metrics are enlisted in both the x and y axes of the figure. Figure 2(a) shows
that there are several metrics pairs that have very high positive correlation coefficients,
while other pairs of metrics have negative correlation coefficients. Metric 11 (exposure
to disaster) and metric 12 (availability of nearby alternative links) have low correlations
to all other metrics. This implies that using these two metrics will yield unique sets of
critical network components that cannot be found by using any of the other criticality
metrics.

By comparing Figure 2(a) with Figure 2(b), we can see that metrics pairs that have high
average correlation coefficients tend to have small ranges. Metric 5 (change in region-
based unweighted total travel cost) has a unique, distinctive pattern. This metric has
large ranges of correlation coefficients with all other metrics. This implies the degree of
similarity between metric 5 and other metrics change substantially in different networks.
Figure 2(c) shows the results of the consistency indicator. This figure indicates which pairs
of metrics have inconsistent empirical similarity (negative correlation coefficients in some
networks while positive in others). The consistency indicators for metric 5 and 11, for
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Figure 3. Grouping of empirical similarities among the metrics.

example, are always zero. This implies that the robustness of the empirical similarity of
these metrics with all other metrics is very low, as the directions of the correlation coeffi-
cients change in different networks.

In Figure 3, we categorise the empirical similarity among the metrics based on the
robustness indicators. Pairs of metrics that belong in group 1, such as metric 3 (change
in worst-case user exposure) and metric 4 (change in unweighted total travel cost),
have a high average correlation coefficient as well as a small range of correlation coeffi-
cients across the eight networks. This implies that metric 3 and 4 have high and stable
empirical similarity, irrespective of the transport network for which they are calculated.
If a metrics pair belongs to this category, we can just use one of the two metrics as
they identify roughly the same set of links as critical. Metrics pairs in group 2 and group
3 have lower average and higher ranges of correlation coefficients. However, they are
still consistent: the values of their coefficients are either always positive or always negative
in all networks. In general, the degree of empirical similarity decreases from group 1 to
group 4.

5. Discussion
5.1. Factors affecting correlation patterns between the networks

From a network theory point of view, it is important to identify the causes of the (dis)sim-
ilarity of the metrics correlation patterns (i.e. the correlation heatmaps) across the eight
networks. We can observe this by calculating the pairwise difference of the metrics corre-
lation patterns between any two networks. If two networks have similar topological prop-
erties and similar correlation patterns, then we can say that these properties could explain
the correlation patterns. We conduct pairwise comparisons for five pairs of networks, each
pair sharing one similar topological property (see Table 2).

Figure 4 summarises the results of the pairwise comparisons. Note that each point in
the figure represents a pairwise absolute difference of metrics correlation coefficients
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Figure 4. Distribution of absolute difference in metrics correlation coefficients among several pairs of
networks.

between two networks. Networks that have similar average betweenness centrality (Ban-
gladesh and Dhaka networks) tend to produce similar correlation patterns. The analysis
also shows that having similar global efficiency (Barisal and Rangpur networks) or
similar clustering coefficient (Rangpur and Sylhet networks) results in dissimilar correlation
patterns. Interestingly, networks having multiple similar topological properties (e.g. Raj-
shahi and Chittagong networks) have slightly less similar correlation patterns compared
to networks having only average betweenness centrality in common (e.g. Bangladesh
and Dhaka networks). Based on the Rajshahi and Chittagong networks, the effect of
having similar beta index and similar average betweenness criticality counteracts the
effect of having similar clustering coefficient.

The average betweenness centrality can explain the similarity of the correlation pat-
terns between the networks because assignment techniques are involved when one cal-
culates some of the criticality metrics. These metrics are calculated in a way that is quite
similar to average betweenness centrality, as both require the set of shortest paths
between nodes. The difference is located in the set of nodes used for calculating the criti-
cality metrics and the average betweenness centrality. In the former case, the representa-
tive centroid nodes of districts are used while in the latter case, all nodes in the network
are considered.

The outlier points in Figure 4 indicate that even among networks with the most similar
correlation patterns (i.e. Bangladesh and Dhaka), there are some metrics pairs that have
substantially different correlation coefficients. This implies that the networks’ topological
properties alone are insufficient for explaining the differences in the metrics’ correlations.
Other non-network factors that may contribute to these differences are the spatial distri-
bution of the OD nodes and the spatial distribution of the weight of production and attrac-
tion factors across these OD nodes. These non-network factors have a direct effect on the
identification of the set of shortest paths, used in many of the criticality metrics. Conse-
quently, we can expect that the correlation pattern may change if a different set of
nodes is used as the centroid nodes, or if different production and attraction weights
are given to these nodes. Regardless, future studies on understanding criticality metrics
and their behaviour given topological characteristics of the underlying network would
be a valuable research avenue.
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Another factor that may play a role is the choice of the assignment techniques. The
analysis in this study uses all-or-nothing assignment, resulting in only one shortest path
between each pair of nodes. Using other techniques, such as congested assignment tech-
niques, might result in a different set of shortest paths. This may not substantially influence
correlation patterns between pairs of metrics that both require assignment techniques. For
instance, if there are changes in the criticality scores of network components based on
metric 1 (because we use congested assignment instead of all-or-nothing assignment),
then the pattern of changes would be similar for metric 2, as long as both metrics
require assignment techniques and are empirically similar in the first place. The choice
of the assignment techniques, however, may slightly influence the correlation pattern
between criticality metrics that require assignment techniques and those that do not.

5.2. Key findings from the empirical and the conceptual comparisons

One hypothesis made in the conceptual comparison is that criticality metrics that rep-
resent similar concepts would also have a high empirical similarity. We can evaluate this
hypothesis on two levels: observing the empirical similarity among metrics that represent
exactly the same concepts (within-category), and among metrics that represent different
concepts (between-category). There are four possible outcomes: (i) whether two metrics
have to share exactly the same three concepts in order to yield similar rankings, (ii)
whether two metrics that share one or two (out of three) similar concepts may yield
similar rankings, (iii) whether there is one dimension that strongly affects the empirical
similarity of criticality metrics, or (iv) whether there is no relationships between the con-
ceptual and empirical similarity.

5.2.1. Observation for the within-category

Rankings of network components from criticality metrics that share the same concepts are
not necessarily highly correlated. For instance, both metric 15 and 16 (see Table 1) share
the same concepts (connectivity — egalitarian — network-wide), but their degree of empiri-
cal similarity belongs to group 3 (low or negative empirical similarity, see Figure 3). The
empirical similarity between metric 5 and 13 even belong to group 4 (inconsistent).
There are also some metrics that have both conceptual and empirical similarity. Examples
of these metrics are those that are based on travel cost, utilitarian, and network-wide
aggregation concepts (metric 1, 2, and 3) and those with the travel cost, egalitarian,
and network-wide aggregation concepts (metric 4 and 14). Nonetheless, this finding elim-
inates the first possibility discussed in the previous paragraph, as there are some metrics
sharing the same concepts but having a low empirical similarity.

5.2.2. Observation for the between-category
There are four findings worth discussing from the between-category analysis. First, there is
a high empirical similarity between metric 6 (accessibility — utilitarian — network-wide) and
the network-wide travel cost metrics, regardless of the ethical dimension (metric 1, 2, 3, 4,
and 14). This is the only high empirical similarity found between metrics that represent
different functionalities.

Second, metrics that represent the travel cost functionality, and having a similar level of
aggregation, tend to be highly correlated. Five metrics representing network-wide travel
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cost (metric 1, 2, 3, 4, and 14) have high and robust empirical similarity with each other.
Adopting different ethical principles does not matter here. The same phenomenon
applies to metrics based on local travel cost (metric 10 and 13). Hence, instead of calculat-
ing multiple metrics, we can simply use one metric and still reveal a similar critical links
pattern on the network. This finding confirms the second possibility (metrics sharing
some similar concepts would yield similar rankings), and thus eliminates the fourth possi-
bility (no relationships between conceptual and empirical similarities).

Third, when comparing the results from travel cost metrics that share the same ethical
principle but have different aggregation levels, lower correlations are found. The corre-
lations can be moderately high, such as those between metric 13 and 14, metric 4 and
13, as well as metric 2 and 10. It can also be low (e.g. between metric 3 and 8) or even
inconsistent (e.g. between metric 4 and 5). This implies that if transport authorities and/
or analysts want to focus on the travel cost functionality, they can disregard the ethical
dimension and focus on selecting the appropriate level of aggregation.

Fourth, except for the network-wide travel cost metrics, having an identical functional-
ity concept and aggregation level but a different ethical principle results in low or incon-
sistent empirical similarity. This follows from observing the correlation between metric 5
and 6. Both metrics represent the network-wide accessibility concept, but the former
adopts the utilitarian principle while the latter adopts the egalitarian principle. In Figure
3 we see that the empirical correlation between them belongs to the inconsistent
group. Similar observations can be made regarding metric 8, 9, and 13 (local travel cost
metrics), metric 15, 16, and 17 (network-wide connectivity metrics), as well as metric 11
and 12 (local connectivity metrics). This fact highlights the importance of the ethical prin-
ciples. Transport authorities and/or analysts should carefully reflect on this both when
selecting the criticality metrics to use and when deriving policy conclusions.

5.3. A guideline for selecting criticality metrics

We use the findings from the previous subsection to develop a guideline that can help
transport authorities in choosing the appropriate criticality metrics to use. In line with
the suggestion made by Jenelius and Mattsson (2015), the criticality metrics selection
guideline follows a normative approach. The guideline consists of two steps. First, we
have to categorise the policy problem that is being addressed. The three dimensions pre-
sented in the conceptual comparison can aid this process. Second, the set of metrics to use
can be further narrowed down by observing the empirical dissimilarities among them.

Figure 5 details the two general steps described above into five steps. The first three
steps require us to reflect on the three conceptual dimensions to be considered in the cri-
ticality analysis. The functionality dimension comes first, as the empirical analysis reveals
that there is almost no empirical similarity found among metrics with different function-
alities. If the travel cost functionality is selected, we can skip the ethical dimension and
chooses the aggregation level directly (indicated by the dashed line in Figure 5). This is
because travel cost metrics with the same aggregation level have high empirical similarity
regardless of their ethical principles. For other functionalities, choosing the ethical prin-
ciple comes before choosing the aggregation level. The fourth finding of the between-cat-
egory observation underlies this ordering. The ethical dimension influences the empirical
results more strongly compared to the aggregation dimension.
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Figure 5. A five-step guideline to select criticality metrics.

After making choices regarding functionality, ethical principles, and the level of aggre-
gation, we can filter out metrics that are empirically similar (step 4 in Figure 5). For
instance, if the network-wide and travel cost concepts are selected, we can select just
one out of the five available metrics (metric 1, 2, 3, 4, and 14). In this case, selecting
metrics with an egalitarian principle has practical advantages as they induce less compu-
tational cost. We may also want to evaluate more than one combination of conceptual
dimensions. Accordingly, the first four steps are iterative. Once an exhaustive set of can-
didate metrics has been identified, the final step (step 5 in Figure 5) is performing a
final check to ensure that there are no empirically similar metrics.

The empirical similarity grouping presented in Figure 3 serves as a basis to filter the can-
didate metrics in step 4 and 5 (see Figure 5). It is safe to assert that two metrics are highly
empirically correlated if they belong to group 1, or that they are lowly correlated if they
belong to either group 3 or 4. However, if the correlation of two metrics belongs to
group 2, then the choice is left to the authorities and/or analysts. Practical considerations,
such as data availability and computation cost, can help in making this choice.

5.4. Application of the guideline: a hypothetical policy problem

To demonstrate the application of the guideline, we propose the following hypothetical
metrics selection problem for the Barisal Division of Bangladesh. Barisal Division is
located in the south of the country. Having the smallest population size and lowest popu-
lation density, Barisal Division is considered as one of the rural regions of Bangladesh. The
division also has the shortest stretch of N and R roads in comparison to the other divisions.
As the overall transport infrastructure network in this division is still in an earlier phase of
the development, the transport authorities want to focus on providing adequate access to
all towns within the division.

The first three steps of the guideline (see Figure 5) concern the selection of conceptual
dimensions to be addressed: the functionality, ethical, and aggregation dimensions. The
problem statement of the transport authorities indicates that the connectivity and the
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Table 3. Spearman-rank correlation coefficients of criticality metrics for the Barisal division.

Connectivity — Connectivity — Accessibility —
Egalitarian — Egalitarian — Egalitarian —
Network-wide Local Network-wide
#15 #16 #12 #7
Connectivity — Egalitarian — Network-wide #15 1 0.28 -0.23 0.28
#16 0.28 1 0.064 0.26
Connectivity — Egalitarian — Local #12 -0.23 0.064 1 0.054
Accessibility — Egalitarian — Network-wide #7 0.28 0.26 0.054 1

accessibility functionalities are the current concern. Choosing these functionalities
requires one to select the ethical paradigm to be adopted. Based on the problem state-
ment, the transport authorities are concerned with providing services to all towns, imply-
ing an egalitarian principle. We assume that both the local and the network-wide
aggregations are considered since the problem statement does not touch upon this
concern. ldeally, we would use a set of metrics that covers four combinations of concep-
tual dimensions. However, since there is no metrics identified in this study (see Table 1)
that represents the accessibility — egalitarian - local concepts, in this hypothetical policy
problem we only cover three combinations. Table 3 lists the four metrics that cover
these three combinations.

The last two steps consist of identifying empirically similar metrics and retain metrics
which are dissimilar since they highlight different sets of links as critical. Table 3 shows
the rank correlation coefficients between the four accounted metrics. Because there is
no pairs of metrics that has a high degree of empirical similarity, all metrics are kept in
the final set of metrics for further deliberation with the transport authorities.

6. Conclusion

This paper conceptually and empirically compares seventeen widely used criticality
metrics, identifies the relations between empirical and conceptual similarities across the
metrics, and develops a guideline that helps in selecting an appropriate set of metrics.
The guideline urges transport authorities and researchers to adopt a normative approach
where they first have to explicitly delineate the specific aims of their analysis. The insights
gained from both the conceptual and empirical comparisons were used to develop the
guideline for selecting the appropriate metrics for a given policy question.

The conceptual comparison contrasted the seventeen metrics on three dimensions:
transport functionality (either travel cost, connectivity, or accessibility), the ethical prin-
ciples (utilitarian or egalitarian), and the level of aggregation (network-wide or localised).
Each metric is characterised by these dimensions, while the concepts represented in each
dimension may differ between metrics. The alternative concepts within each dimension
may not be exhaustive yet. For instance, other ethical principles, such as sufficientarianism,
have been considered to be relevant in transport studies (Lucas et al., 2016). However, we
did not identify any criticality metric grounded in this principle.

The empirical comparison showed two irregularities in the correlations of the metrics’
results. First, the rank correlations varied across the 8 different networks. This variation
could be attributed mainly to the topological properties of these networks. If criticality
metrics are calculated for networks with similar average betweenness criticality and
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beta index, the rank correlations across the metrics are typically high. Second, after
aggregating the correlations across the eight networks, we found that metrics
representing the same combination of concepts did not necessarily yield similar rankings.
Nevertheless, some patterns could still be observed. For instance, travel cost metrics with
the same aggregation level were highly correlated, despite differences in the ethical
principles.

The metrics selection guideline consists of two main steps. In the first step, transport
authorities and/or analysts determine the aim of the criticality analysis based on the
three conceptual dimensions. They have to select, in order, the transport functionality
they are interested in, the underlying ethical principles, and the level of aggregation.
This order is based on the empirical comparison where it is found that the functionality
dimension is the most influential dimension in explaining low empirical similarity across
metrics. Next, in the second step the remaining criticality metrics are further filtered
based on their empirical similarity. It is unnecessary to calculate multiple metrics when
the results of the calculations are expected to be the same.

The guideline can help transport authorities and/or analysts in making an informed
choice for a set of criticality metrics. The guideline is systematic, as it starts with a con-
scious selection of transport-related concepts to be considered. The guideline is also
efficient, as it can help its users in selecting metrics that require less data and compu-
tation without losing relevant insights. The guideline, however, is still semi-generic, as
there may be other criticality metrics or conceptual dimensions not accounted for
here. Nevertheless, the first stage of the guideline, which was founded on the conceptual
comparison, is generic enough for selecting among other metrics that are not covered in
this study.
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