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Highlights

• Tidal forces induce internal inertial waves in Europa’s and Enceladus’ oceans.

• Internal waves focus energy along internal shear layers that propagate in the ocean.

• Inertial waves can focus tidal dissipation at the poles.

• Inertial waves can result in ocean currents of significant amplitude (a few cm/s).

• For an ocean of constant thickness, inertial waves cannot prevent freezing.
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Abstract

Some of the moons of the outer solar system harbour subsurface liquid oceans. Tidal dissi-
pation plays an important role in preventing these oceans from freezing. In the past, most
studies considered only tidal dissipation in the solid layers of these bodies (rock and ice).
Recently, new studies considering tidal dissipation in the oceans of these moons have ap-
peared. All of them make use of the shallow water approximation. However, the use of this
approximation might not be adequate. Here we consider the linear non-hydrostatic three
dimensional response of these oceans to tidal forcing with the full Coriolis force. To do so
we consider an ocean of homogeneous density contained within a perfectly spherical shell
and neglect the effect of the ice shell. We force the ocean with a time changing tidal poten-
tial and observe patterns of periodic inertial waves that take energy from the global tidal
forcing and focus it along thin shear layers that propagate in the fluid. We focus on Europa
and Enceladus, showing that inertial waves result in fluid flows of significant amplitude (a
few cm/s). Nevertheless, we find that under the previously mentioned assumptions tidal
dissipation due to inertial waves is several orders of magnitude smaller than Europa’s radio-
genic heating and Enceladus’ observed heat flux. Finally, we propose additional dissipation
mechanisms that might play a relevant role in Europa and Enceladus and could be further
investigated.
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1. Introduction1

Evidence for underground water reservoirs in some of the moons of the outer solar system2

has accumulated over the last few decades. The existence of a subsurface water body in3

Europa was first hypothesised by Cassen et al. (1979). They argued that radiogenic and tidal4

heating could melt Europa’s interior and form an ocean. The hypothesis was confirmed when5

Khurana et al. (1998) and Kivelson et al. (2000) reported variations of the magnetic field6

in Europa associated with an induced magnetic field and showed that a layer of subsurface7

salty water is consistent with these observations. The existence of a subsurface ocean is also8

consistent with the complex geology of Europa’s surface (e.g., Pappalardo et al., 1999).9

The case of Enceladus is markedly different. This tiny moon of Saturn, its radius being10

just over 250 km, features vigorous geological activity. Cassini flybys revealed water plumes11

emanating from long parallel cracks (nicknamed tiger-stripes) on the South Pole (Porco12

et al., 2006; Spencer et al., 2006). The detection of salt-rich grains in the plumes (Postberg13

et al., 2009, 2011) and evidence of hydrothermal activity within the moon (Hsu et al., 2015)14

indicate that the plumes originate from an underground water reservoir. The observed15

forced libration of Enceladus’ surface reveals that the ocean is not only restricted to the16

moon’s southern pole but it completely decouples the ice shell from the moon’s rocky mantle17

(Thomas et al., 2016).18

Far away from the Sun, these oceans cannot be maintained by solar irradiation. Another19

heat source is therefore needed to prevent them from freezing; this heat source is most likely20

tidal dissipation. Due to orbital resonances with Io and Ganymede, Europa orbits Jupiter in21

an eccentric orbit. Similarly, in the Saturnian system, Enceladus’ eccentricity is maintained22

by an orbital resonance with Dione. The orbital eccentricity results in a time-varying tidal23

potential that raises a prominent tide. The moons’ obliquity results in additional latitudinal24

librations of the tidal bulge. Most studies focused on studying tidal dissipation in the solid25

layers of Europa and Enceladus (e.g., Ojakangas and Stevenson, 1989; Roberts and Nimmo,26

2008). These studies show that the Europan ocean can be maintained by tidal and radiogenic27

heating; thermal models suggest that the ocean might be around 100 km thick (Hussmann28

et al., 2002). This is, however, not the case of Enceladus, where tidal and radiogenic heating29

in the solid parts of the moon are not sufficient to prevent a global ocean from freezing30

(Tobie et al., 2008; Bêhounková et al., 2017) unless Enceladus has an unconsolidated rocky31

core (Choblet et al., 2017).32

By analogy with Earth, where most tidal energy dissipation occurs in the ocean, it has33

been suggested that tidal dissipation within the ocean plays a major role. Tyler (2008)34

was the first to propose that oceanic tidal currents could heat the moons of the outer solar35

system. Tyler (2008) considered the response of an ice-free shallow ocean of constant density.36

He solved the Laplace Tidal Equations (LTE) using the method of Longuet-Higgins (1968)37

for the different tidal constituents. He showed that Europa’s obliquity excites planetary38

Rossby waves of considerable amplitude and suggested that this mechanism might close39

Enceladus’ thermal energy budget (Tyler, 2009). However, it was later found that the40

obliquity of Enceladus is too small for this mechanism to generate enough tidal heating41

(Chen and Nimmo, 2011). Tyler (2014) and Hay and Matsuyama (2017) also showed that42
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the eccentricity tide can generate sufficient tidal heating but only for unrealistically shallow43

oceans. Subsequent studies considered the effect that the ice shell has on oceanic tidal44

dissipation and concluded that the ice crust further dampens the ocean response (Beuthe,45

2016; Matsuyama et al., 2018).46

A possible criticism to the previous studies is the assumption of an ocean of constant47

density. An unstratified ocean filters out internal gravity waves which have an important role48

in tidal dissipation and mixing in Earth’s ocean (Garrett, 2003). There is little information49

about the stratification of Europa’s and Enceladus’ oceans. The ocean is heated from the50

bottom by tidal and radiogenic heat within the silicate mantle, likely creating a well-mixed51

convecting ocean (Goodman et al., 2004; Goodman and Lenferink, 2012; Soderlund et al.,52

2013). Nevertheless, under certain conditions the ocean might be stratified (Melosh et al.,53

2004; Vance and Brown, 2005). We do not challenge the assumption of an unstratified ocean54

and focus on the other assumptions underlying the LTE.55

The main assumption of the LTE is that the ocean is in hydrostatic equilibrium, cur-56

rents are predominantly horizontal. Because vertical currents are assumed to be small, the57

hydrostatic approximation is often used together with the traditional approximation, which58

consists in neglecting the terms of the Coriolis force linked to vertical motions in the ocean59

(Gerkema et al., 2008). For an unstratified ocean these assumptions hold as long as the ratio60

of the characteristic vertical and horizontal length scales is small (see Vallis (2006)). Using61

the ocean thickness and body’s radius as a measure of vertical and horizontal length scales,62

respectively, higher ratios are obtained for Europa and Enceladus than for Earth (∼ 0.0663

and ∼ 0.15 versus ∼ 0.001). It is therefore expected that the neglected vertical velocity is64

of more relevance in these bodies, making the LTE incomplete to describe tidal currents in65

Europa’s and Enceladus’ subsurface oceans.66

Without the hydrostatic and traditional approximations, new kinds of waves are possible67

in the unstratified oceans of the icy moons, the so-called internal inertial (gyroscopic) waves68

(Stern, 1963; Bretherton, 1964; Greenspan., 1969; Stewartson, 1971; Maas, 2001). These69

waves have properties that are markedly different from those of the more familiar surface70

waves (Maas, 2005) and have been suggested to be of importance for tidal dissipation in71

giant planets and binary stars (Rieutord and Valdettaro, 1997; Rieutord et al., 2001; Ogilvie72

and Lin, 2004; Rieutord and Valdettaro, 2010; Lainey et al., 2017). In this study, we want to73

take the young field of “planetary oceanography” one step further by exploring the relevance74

of inertial waves for tidal dissipation in the icy moons.75

We consider an ocean contained within a deformable spherical shell and study tidally76

induced inertial waves for different ocean thicknesses. Our main goal is to quantify the77

amount of tidal heating that is generated by these waves to assess whether they are a sig-78

nificant component in the thermal energy budget of these moons. Additionally, we compare79

the flow amplitude of inertial waves to that of surface gravity waves obtained with the LTE80

and consider the footprint that they might have on the satellites’ surface. To do so we solve81

the linearised incompressible Navier-Stokes equations for the different components of the82

eccentricity and obliquity tide using the spectral methods developed to study inertial waves83

in an astrophysical context (stars and giant planets) (e.g., Rieutord and Valdettaro, 1997;84

Ogilvie and Lin, 2004; Rieutord and Valdettaro, 2010).85
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The text is structured as follows: Section 2 introduces inertial waves and presents their86

main properties, in Section 3 we give the mathematical formulation of the problem, we87

introduce the tidal potential and then explain how the linearised Navier-Stokes equations88

are forced with this tidal forcing. Afterwards, the results are shown and discussed (Section89

4) and conclusions are presented (Section 5)90

2. Properties of Internal Inertial Waves91

To understand the properties of internal inertial waves we start by considering a simplified92

situation. We consider an inviscid fluid of constant density (ρ0) inside a container rotating93

with angular velocity ΩΩΩ. For this situation, the mass and momentum conservation equations,94

written in a co-rotating frame, are given by (e.g., Le Bars et al., 2015):95

∇ · uuu = 0, (1a)
96

∂uuu

∂t
+ uuu · ∇uuu+ 2ΩΩΩ× uuu = −∇W. (1b)

97

uuu is the fluid’s velocity, W is a reduced pressure that contains the fluid pressure, the98

body’s gravity potential and other possible conservative body forces. We neglect non-linear99

terms and seek plane wave solutions of the form:100

uuu = Re
[
ũ̃ũuei(kkk·xxx+ωt)

]
, (2)

with kkk the wavevector, ũ̃ũu the wave amplitude and ω the wave frequency. Introducing this101

trial solution to Equation (1) we obtain a dispersion relation of the form:102

ω2 = 4Ω2

(
k2z

k2x + k2y + k2z

)
, (3)

where z is parallel to the rotational axis and x, y normal to it. This dispersion relation is103

markedly different from that of the more familiar surface-gravity waves. While for surface104

waves the frequency of the wave only depends on the magnitude of the wavenumber, for105

internal inertial waves it only depends on the angle that the wavevector forms with the106

rotational axis. The group velocity, (cgcgcg = ∂ω
∂kkk

) is perpendicular to the wavevector kkk. Energy107

propagates along surfaces of constant slope which form an angle θ with the rotational axis:108

θ = arcsin
( ω

2Ω

)
, (4)

the so-called characteristics (see Figure 1a).109

These properties lead to a fundamental difference in how inertial waves behave upon110

reflection as compared to surface waves (e.g., Maas, 2005). When a monochromatic surface111

wave packet encounters a surface it reflects specularly without changing its wavelength.112

In contrast, an internal inertial wave packet reflects keeping the wavevector inclination113

with respect to the rotational axis constant. Upon reflection, the wavelength can change.114

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

θ

Ω

cg

k

θ = arcsin(ω/(2Ω))

cg group velocity

Ω angular velocity

k wave vector

(a) (b)

Figure 1: Inertial wave propagation. The wave packet propagates with group velocity cgcgcg following char-
acteristics that form an angle θ with the rotational axis. The wavevector kkk is perpendicular to the group
velocity(a). (b) Depending on the container’s geometry a wave packet (blue) can converge towards a periodic
trajectory (black).

Depending on the container’s geometry this can lead to focusing of the wave packet which115

becomes an efficient mechanism to transport energy from large to small scales.116

The focusing properties of inertial waves can result in wave attractors. As its name117

indicates, wave attractors are trajectories in which energy accumulates. For ocean geome-118

tries that have focusing trajectories, two wave packets originating at different locations will119

converge towards the same trajectory (Figure 1b). Wave attractors have the peculiarity of120

focusing the energy of a large-scale forcing to smaller scales regardless of the nature and121

location of the excitation. This phenomenon has been observed in the laboratory, both for122

internal gravity waves (e.g., Maas et al., 1997; Brouzet et al., 2016) and internal inertial123

waves (e.g., Maas, 2001; Manders and Maas, 2003, 2004).124

As it is of special relevance for astrophysical and geophysical applications, the propaga-125

tion of inertial waves in spherical containers has been widely studied (e.g., Bryan, 1889; Stern,126

1963; Bretherton, 1964; Greenspan., 1969; Stewartson, 1971, 1972; Rieutord and Valdettaro,127

1997; Ogilvie, 2009). The response of an inviscid fluid inside an spherical container is given128

by well-behaved eigenmodes (Bryan, 1889). However when a nucleus is added, wave at-129

tractors can develop which lead to singularities; velocity increases without bound along the130

attractor (Stewartson, 1971). Something similar happens at the critical latitude (Θc), the131

latitude at which a characteristic is tangent to the nucleus, where the velocity also develops132

a singularity (Rieutord et al., 2001). In reality, viscosity prevents the development of such133

singularities. The result is the development of prominent internal shear layers that propa-134

gate in the fluid domain following the characteristics where a significant amount of energy135

can be dissipated.136

3. Problem Formulation137

3.1. The tidal potential138

The obvious candidate for the generation of inertial waves in the oceans of the icy moons is139

the tidal potential caused by the obliquity and eccentricity of the moons. We can express the140

6
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tidal potential in terms of the orbital elements of the satellite (Jara-Orué and Vermeersen,141

2011):142

Ψ = (ωR)2
( r
R

)2
{ψ0 + ψns + ψe0 + ψe2 + ψo1} , (5)

where ω is the mean motion of the satellite given by ω2 = GMp/a
3, G is the universal143

gravitational constant, Mp the mass of the planet and a the semi-major axis of the satellite’s144

orbit. As we are considering tidally locked satellites, ω is the same as the rotational frequency145

of the satellite (Ω). R is the satellite’s radius and r the distance from the center of the146

satellite to the considered point inside the satellite. The different components of the tidal147

potential are (Jara-Orué and Vermeersen, 2011):148

ψ0 = −1

2
P2,0(cos θ) +

1

4
P2,2(cos θ) cos(2φ), (6a)

ψns = −1

2
P2,2(cos θ) sin(2φ+ Ωnst) sin(Ωnst), (6b)

ψe0 = −3e

2
P2,0(cos θ) cos(ωt), (6c)

ψe2 =
e

4
P2,2(cos θ) [3 cos(2φ) cos(ωt) + 4 sin(2φ) sin(ωt)] , (6d)

ψo1 = P2,1(cos θ) sin(ε) cos(φ) sin(Φ + ωt). (6e)

θ and φ are the co-latitude and longitude in the body-fixed reference frame, respectively. ψ0149

is the static component of the tidal potential, ψns arises due to non-synchronous rotation.150

The eccentricity tide is given by ψe0, which is caused by the variation in distance between151

the planet and the satellite; and ψe2, caused by the east/west libration of the position of152

the subplanet point on the moon’s surface. On the other hand, the obliquity tide, ψo1, is153

the result of the latitudinal libration of the subplanet point due to the satellite’s obliquity.154

Pl,m are the associated Legendre polynomials of degree l and order m and Φ, e and ε are the155

argument of pericenter, the eccentricity and the obliquity of the moon, respectively. We only156

consider degree two terms of the tidal potential, as the amplitude of the other components157

rapidly decreases with increasing degree as (r/a)l.158

The non-axisymmetric term of the eccentricity tide (ψe2) and the obliquity tide (ψo1)159

can be further divided in a westward (ψe2w, ψo1w) and an eastward (ψe2e, ψo1e) propagating160

wave:161

ψe2 = ψe2e + ψe2w =
7e

8
P2,2(cos θ) cos(2φ− ωt)− e

8
P2,2(cos θ) cos(2φ+ ωt), (7)

ψo1 = ψo1e+ψo1w =
sin(ε)

2
P2,1(cos θ) sin(φ−ωt−Φ)− sin(ε)

2
P2,1(cos θ) sin(φ+ωt+ Φ). (8)

7
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Table 1: Physical parameters for Europa and Enceladus. Radius (R), mass (M), average density (ρav),
surface gravity (g) and rotational rate (Ω) are obtained from: https://ssd.jpl.nasa.gov/?horizons and Chen
et al. (2014). The obliquity (ε) of Europa and Enceladus are obtained assuming that the moons are in
a Cassini state (Baland et al., 2012; Chen and Nimmo, 2011). The maximum amplitude of the different
components of the equilibrium tide are computed considering a non-self gravitating ice-free ocean surround-
ing an infinitely rigid core (Equation (17)) and using the maximum value of the satellites’ obliquity. The
argument of pericenter (Φ) and ocean density (ρo) are assumed to be 0 and 1000 kg m−3, respectively.

Europa Enceladus
R [km] 1565.0 252.3
M [kg] 4.797 · 1022 1.0805 · 1020

ρav [kg m−3] 2990 1606
g [m s−2] 1.31 0.11
Ω [rad s−1] 2.05 · 10−5 5.31 · 10−5

e [-] 0.0094 0.0047
ε [deg] < 0.1 < 0.0015

z
(eq)
e0 [m] 11.08 11.50

z
(eq)
e2e [m] 19.39 20.13

z
(eq)
e2w [m] 2.77 2.88

z
(eq)
o2e [m] 1.03 0.003

z
(eq)
o2w [m] 1.03 0.003

Φ [deg] 0 0
ρo [kg m−3] 1000 1000

For this study we consider the different components of the eccentricity and obliquity tide162

and ignore the non-synchronous rotation of the satellite. We also ignore the static component163

of the tidal potential as it does not induce a dynamic ocean response. The relevant physical164

parameters of Europa and Enceladus are given in Table 1.165

3.2. Governing equations and assumptions166

In contrast to Section 2, we now consider the fluid to be viscous and expand the reduced167

pressure in its different components. The equations of motion can be written as:168

∇ · uuu = 0, (9a)
169

∂uuu

∂t
+ uuu · ∇uuu+ 2ΩΩΩ× uuu = − 1

ρ0
∇p′ + 1

ρ0
∇ · τττ −∇Ψ−∇Ψ′. (9b)

The primed quantities denote deviations from hydrostatic equilibrium. Ψ′ represents the170

gravitational potential of the body, p′ is the fluid pressure and τ the stress tensor of the171

fluid, which we assume to follow Stokes’ constitutive law:172

τττ = µ(∇uuu+∇uuuT ), (10)

where µ is the dynamic molecular viscosity. We further use perturbation theory and consider173

the different quantities to be small. Under such consideration the non-linear advective term174

8
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(uuu ·∇uuu) is neglected. The validity of this assumption will be discussed later (Section 5). We175

introduce an effective viscosity µeff which is higher than the molecular viscosity of the fluid176

and accounts for non-modelled small-scale dissipation mechanisms (e.g., turbulent mixing,177

interactions of waves with turbulent convection, etc.).178

Finally, we obtain the non-dimensional form of the equations of motion by using the179

inverse of the satellite’s rotational frequency (2Ω)−1 and the satellite radius (R) as time and180

length scales respectively:181

∇̂ · û̂ûu = 0, (11a)
182

∂ûuu

∂t̂
+ ezezez × û̂ûu = −∇̂Ŵ + E∇̂2û̂ûu, (11b)

183

with ezezez the direction of the satellite’s rotational axis, W again the reduced pressure:184

W =
p′

ρo
+ Ψ + Ψ

′
(12)

and the non-dimensional variables (indicated with a hat) and parameters defined as:185

uuu = 2ΩRûuu, (13a)

W = 4Ω2R2Ŵ , (13b)

E =
µeff

2ρΩR2
, (14a)

ω̂ =
ω

2Ω
. (14b)

186

We have introduced the non-dimensional Ekman number (E), which gives the ratio of viscous187

to Coriolis forces; and the non-dimensional frequency (ω̂), which, since the problem is forced188

at the diurnal tidal frequency, equals 0.5. In the discussion that follows we use the non-189

dimensional equations; to avoid cumbersome notation we drop the hat from the variables.190

As a starting point we assume that the moons have a free surface. If the surface wave191

speed (
√
gh, with g the satellite’s surface gravity and h the ocean depth) is high enough192

so that the ocean adjusts quickly to forces varying at the tidal potential frequency, we can193

assume that the radial displacement of the ocean surface is given by the equilibrium tide194

(Tyler, 2008; Ogilvie, 2009). This assumption breaks down if the ocean is too shallow, in195

that case surface gravity waves dominate the ocean response and other kinds of resonances196

occur (Matsuyama et al., 2018). For the icy moons, the surface wave speed is high enough as197

long as the oceans are thicker than 0.78 km or 1.6 km for Europa and Enceladus, respectively.198

With ocean thicknesses of ∼ 100 km (Hussmann et al., 2002) and ∼ 38 km (Beuthe et al.,199

2016) for Europa and Enceladus respectively, the previous assumption seems reasonable for200

the problem at hand.201

9
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We follow the approach of Ogilvie (2005) and Rieutord and Valdettaro (2010) and split202

the fluid response into two components: the equilibrium tide u(eq)u(eq)u(eq) plus a dynamical tide u(d)u(d)u(d).203

By using this decomposition Equation (11) becomes:204

∂u(d)u(d)u(d)

∂t
+ ezezez × u(d)u(d)u(d) = −∇W + E∇2u(d)u(d)u(d) + f (eq)f (eq)f (eq). (15)

f (eq)f (eq)f (eq) is an inertial force associated with the equilibrium tide given by:205

f (eq)f (eq)f (eq) = −∂u
(eq)u(eq)u(eq)

∂t
− ezezez × u(eq)u(eq)u(eq). (16)

Note that the dynamic tide is forced indirectly through the equilibrium tide as it does not206

satisfy the momentum equation (Ogilvie and Lin, 2004). If we consider a non self-gravitating207

ocean around an infinitely rigid core with a free-surface the equilibrium tide is simply given208

by:209

z
(eq)
l,mz
(eq)
l,mz
(eq)
l,m =

Ψl,m

g
ererer, (17)

where Ψl,m is the degree l order m component of the tidal potential. The maximum ampli-210

tude of the equilibrium tide for Europa and Enceladus for the different tidal components is211

given in Table 1. If the effect of self-gravitation, the finite rigidity of the core or the presence212

of an ice-shell is considered the equilibrium tide can be obtained as:213

z
(eq)
l,mz
(eq)
l,mz
(eq)
l,m = Zl,m

Ψl,m

g
ererer, (18)

with Zl,m being an admittance factor. Matsuyama et al. (2018) showed that an ice shell214

dampens the response of the ocean resulting in Zl,m to be smaller than or close to 1. In215

particular, for realistic ice shell thicknesses, the admittance is close to 1 for Europa while it216

can be more than one order of magnitude smaller for Enceladus. In this work, we assume the217

ocean to follow the equilibrium tide of an ice-free, non self-gravitating ocean in a satellite218

with a infinitely rigid core (Equation (17)). By doing so, we obtain an upper bound of tidal219

dissipation due to inertial waves in a spherical shell shaped ocean.220

We assume the system to have a response with the same frequency as the forcing tidal221

potential and thus we consider the different fields to be proportional to eiωt. By doing so we222

can eliminate time from the equations of motion and we are left with the system:223

∇ · u(d)u(d)u(d) = 0, (19a)
224

iωu(d)u(d)u(d) + ezezez × u(d)u(d)u(d) = −∇W + E∇2u(d)u(d)u(d) + f (eq)f (eq)f (eq), (19b)
225

f (eq)f (eq)f (eq) = −iωu(eq)u(eq)u(eq) − ezezez × u(eq)u(eq)u(eq). (19c)

226

We solve Equations (19) in a spherical shell, assuming no-slip boundary conditions at227

the fluid-solid interfaces (ududud = 0).228
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3.3. Numerical Approach229

We solve Equations (19) for the different constituents of the equilibrium tide (Equation230

(17)). As we did with the tidal potential, we expand the equilibrium tide into its different231

constituents: the order 0 eccentricity tide (u
(eq)
e0u
(eq)
e0u
(eq)
e0 ), and the eastward and westward components232

of the order 2 eccentricity tide and order 1 obliquity tide (u
(eq)
e2eu
(eq)
e2eu
(eq)
e2e ,u

(eq)
e2wu
(eq)
e2wu
(eq)
e2w and u

(eq)
o1eu
(eq)
o1eu
(eq)
o1e ,u

(eq)
o1wu
(eq)
o1wu
(eq)
o1w) (see233

Appendix A). We then solve Equations (19) using ω = 0.5 and ω = −0.5 for the westward234

and eastward propagating components respectively.235

We use the method of Rieutord and Valdettaro (1997, 2010), which is detailed in Ap-236

pendix A. We make use of the spherical symmetry of the problem and expand the velocity237

and reduced pressure fields using L spherical harmonics in the horizontal direction. The238

resulting equations are discretised in the radial direction using Chebyshev polynomials on239

N + 1 Gauss-Lobatto collocation nodes. By doing so, Equation (19) and the boundary con-240

ditions result in an algebraic system of (L−m+ 1)(N + 1) linear equations. The associated241

matrix of this linear system is block-tridiagonal, and the system is solved using classical LU-242

factorization of a banded matrix. Except where otherwise indicated, the resolution, given243

by L and N , is chosen so that the truncation error is less than ∼ 10−4.244

We are specially interested in computing tidal dissipation due to the tidally-induced245

flows. We compute the amplitude of tidal dissipation as (e.g., Ogilvie and Lin, 2004):246

D̂v = 2E

∫

V

c∗ijcijdV, (20)

where cij are the elements of the rate-of-strain tensor, cij = 1
2
(∂iuj + ∂jui). We expand247

Equation (20) using spherical harmonics as indicated in Appendix B.248

4. Results249

4.1. Parameter Regime250

The two parameters that control the fluid response are the ocean thickness and the Ekman251

number. We characterise the thickness of the ocean using the ratio of the inner to outer ocean252

radius, η. Europa’s and Enceladus’ ocean thicknesses are still not known. To understand253

the effect of ocean geometry on the propagation of inertial waves, we explore the range η =254

0.3−0.99, which corresponds to ocean thicknesses ranging from 1095.5 to 15.7 km for Europa255

and 176.6 to 2.5 km for Enceladus. For this range we use a resolution of ∆η = 0.005 which256

is equivalent to ocean thickness changes of 7825 m for Europa and 1262 m for Enceladus.257

However, current estimates suggest an η of ∼ 0.93 (Hussmann et al., 2002) for Europa and258

∼ 0.85 (Beuthe et al., 2016) for Enceladus. It is for this reason that we further explore the259

range η = 0.8− 0.99 using a ∆η of 0.0005.260

The Ekman number depends on the fluid viscosity (Equation (14)). If we compute261

the Ekman number using the molecular viscosity of water we obtain a value of 10−14 and262

10−13 for Europa and Enceladus respectively. These low Ekman numbers require currently263

unattainable resolutions. In any case, when linearising the equations of motion we have264

introduced a new effective dynamic viscosity (µeff ) that accounts for small-scale dissipation265
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mechanisms. Given our limited knowledge about these oceans it is difficult to estimate the266

appropriate value of this parameter. It is however expected that the effective viscosity will267

be orders of magnitudes higher than the molecular viscosity (e.g., Ogilvie and Lin, 2004). In268

the following experiments we explore a wide range of Ekman numbers (E = 10−4 − 10−10)269

to account for this uncertainty.270

We first study the propagation of inertial waves for different ocean thicknesses and Ekman271

numbers and explain the main characteristics in terms of the properties defined in Section272

2 such as wave attractors and the critical latitude singularity (Section 4.2). Afterwards,273

we focus on tidal dissipation and quantify the relevance of inertial waves for Europa’s and274

Enceladus’ thermal energy budget (Section 4.3)275

4.2. Wave attractors and the critical latitude singularity276

As explained in Section 2 the response of the fluid is dominated by the convergence of wave277

packets towards wave attractors and the critical latitude singularity. We start by studying278

the structure of wave attractors that are excited by tidal forcing. As the moons are phase-279

locked, the frequency of the forcing equals the rotational frequency of the moon, hence, the280

angle that the characteristics form with the vertical is 30◦ (Figure 1a). We use ray-tracing to281

study the propagation of energy in meridional planes of the fluid domain. The intersection282

of the characteristic surfaces with a meridional plane are straight lines (rays) along which283

energy propagates. We launch a wave packet from a point on the inner sphere without zonal284

velocity and follow its propagation along the characteristics until it converges towards an285

attractor in the same meridional plane. Note that when a wave packet is launched with a286

zonal component it may end up trapped in a meridional plane or escape meridional trapping287

and reflect endlessly around the domain (Rabitti and Maas, 2013, 2014). However, because288

of the symmetry of the tidal potential with respect to rotation around the z axis we focus289

on wave attractors in the meridional plane.290

We launch a wave ray from a point equatorward of the critical latitude (5◦) and one291

poleward (85◦). The latitude of the last 100 inner boundary reflections are then noted and292

shown in a Poincaré plot in Figure 2a. Additionally, we compute the Lyapunov exponent,293

which measures the asymptotic rate at which two neighbouring rays converge:294

Λ = lim
N→∞

N∑

n=1

log

∣∣∣∣
dΘn+1

dΘn

∣∣∣∣ . (21)

dΘ is the angular distance between the reflection points of two neighbouring characteristics.295

High (in absolute value) Lyapunov exponents mean highly attracting wave attractors while a296

Lyapunov exponent equal to 0 indicates non-attracting trajectories. The Lyapunov exponent297

for different ocean geometries is displayed in Figure 2b.298

We distinguish between two types of attractors: equatorial attractors, trapped equator-299

ward of the critical latitude, and polar attractors, with reflections outside the previously300

mentioned interval. As can be seen in Figure 2a, the shape of the attractor depends on the301

ratio of inner to outer ocean radius (η). For some ocean geometries, attractors with few302

reflections (short attractors) and high (in absolute value) Lyapunov exponents exist. This is303
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the case of the band [0.5775, 0.6545] and [0.7235, 0.7420]. In the first case, both equatorial304

and polar attractors exist, while for the second only polar attractors appear. The peak for305

η = 0.6545 corresponds to an attractor with reflections infinitesimally close to the critical306

latitude, where there is nearly infinite focusing. For such attractors, the Lyapunov exponent307

goes to minus infinity as resolution in η increases (Rieutord et al., 2001).308

For η < 0.57, there are non-attracting periodic trajectories with a Lyapunov exponent309

close to 0. In fact, it can be shown that for η ≤ 0.5 all trajectories associated with the fre-310

quency ω/2Ω = 0.5 are strictly periodic and have a Lyapunov exponent equal to 0 (Rieutord311

et al., 2001). For these ocean geometries if a ray is launched from the inner sphere it will312

eventually return to the same point after some reflections, explaining the horizontal lines in313

Figure 2a.314

The response of the fluid is characterised by the opposing effects of wave focusing and315

viscous diffusion. The focusing effect of the geometry tends to focus energy towards small316

scales ultimately leading to a singularity along the wave attractor. On the other hand,317

viscosity diffuses the velocity countering the geometrical focusing effect and the development318

of wave attractors. As we will now see, these two competing effects determine whether a319

wave attractor is excited for a particular ocean geometry or not.320

We start by choosing two ocean geometries with a high (in absolute value) Lyapunov321

exponent, η = 0.63 and η = 0.73, and force the fluid with the axisymmetric eccentricity322

tidal component for two different Ekman numbers, 10−7 and 10−9. To achieve a truncation323

error less than ∼ 10−4, we use a resolution of L = 500 and N = 200 for E = 10−7 and324

N = 200 and L = 1200 for E = 10−9. A meridional cut of the sphere showing the amplitude325

of the kinetic energy and viscous dissipation is shown in Figure 3. For this tidal component326

the plots are independent of the meridional cut. Also superimposed, we show the wave327

attractors characteristic of these two ocean geometries.328

As can be seen, in both cases wave attractors are generated. Internal shear layers are329

clearly observed along the attractors where both kinetic energy and viscous dissipation are330

enhanced. As in Rieutord and Valdettaro (2010) we observe the importance of the critical331

latitude singularity for producing the attractor. The attractor seems to be “fed” by the332

shear layer emanating from for critical latitude. As expected, as the Ekman decreases the333

internal shear layer becomes thinner.334

We also explore the behaviour of the fluid for ocean geometries with a low (in absolute335

value) Lyapunov exponent. In such cases, the critical latitude singularity dominates the flow336

(Ogilvie and Lin, 2004; Ogilvie, 2009; Rieutord and Valdettaro, 2010). We distinguish two337

cases: ocean geometries where periodic non-focusing trajectories exist (e.g., η = 0.35, 0.5),338

Λ = 0, and geometries with long weakly-attracting wave attractors (e.g., η = 0.75, 0.8815),339

Λ < 0. For the first case, the shear layer emitted from the critical latitude propagates340

following the characteristics and widens slowly due to viscous dissipation and the lack of341

focusing (Figures 4a-4b). In contrast, for the second case we observe the focusing of the342

shear layer upon reflection (Figures 4c-4e).343

For η = 0.75 and 0.8815 we observe that as the ray approaches the polar regions both344

kinetic energy and dissipation are enhanced (Rieutord and Valdettaro, 1997). The effect of345

changing the Ekman number is similar to that reported for those cases where wave attractors346

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−80

−60

−40

−20

0

20

40

60

80

η

L
at
it
u
d
e
(◦
)

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

η

L
ya
p
u
n
ov

E
xp

on
en
t

(b)

(c) (d)

Figure 2: Poincaré plot (a) and Lyapunov exponent (b) for a forcing frequency of ω/(2Ω) = 0.5. In (a) the
latitude of the last 100 reflection points on the inner sphere for rays launched from ±5◦ and ±85◦ latitude
are indicated for different inner to outer ocean radius ratios (η). The shaded region indicates reflections
equatorward of the critical latitude. Two specific ocean geometries for which short, highly attractingwave
attractors exist (η = 0.63, 0.73) are indicated in red and shown in (c) and (d), respectively. (b) gives the
Lyapunov exponent for the polar attractors.
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appear. It is expected that if the Ekman number is sufficiently small the focusing effect will347

prevail over viscous diffusion leading to the generation of long wave attractors for η = 0.75348

and 0.8815 similar to those observed for η = 0.63 and 0.73. However, the low Ekman number349

for which this transition occurs requires resolutions currently computationally unattainable.350

The case of η = 0.8815 is especially interesting as it corresponds to an Enceladan ocean351

thickness of around 30 km, which is close to current estimates for Enceladus (Thomas et al.,352

2016; Čadek et al., 2016; Beuthe et al., 2016). For this ocean thickness we compute the353

maximum velocity amplitude of inertial tides and study the possible manifestation of inertial354

waves on Enceladus’ surface. We find that the maximum velocity amplitude varies from 0.5355

to 3 cm/s for Ekman numbers ranging from 10−7 to 10−10. Moreover, the maximum velocity356

amplitude is always encountered in polar regions. These currents are stronger than those357

induced by the eccentricity tide under the shallow water approximation, which for realistic358

ocean thicknesses have a magnitude of around 1 mm/s (Tyler, 2009).359

Vermeersen et al. (2013) suggested that wave attractors in a polar ocean basin could360

be the origin of Enceladus’ tiger-stripes; here we investigate this hypothesis for the present361

configuration (an unstratified global ocean of constant depth). Interaction between the fluid362

and the ice shell are likely to occur at the inertial waves reflection points, where we observe363

enhanced dissipation. For a 30 km thick ocean, we observe that the pressure at these points364

is in the order of ∼ 1 Pa. Moreover, we can estimate the melting rate of the ice shell at365

these points by assuming that all the energy dissipated in a ray is focused there and does366

not radiate outwards. We obtain a maximum melting rate in the order of 1 m every 10367

kyr. Even though it is unclear how inertial waves would interact with the ice shell, these368

numbers suggest that in an ocean of constant thickness it is unlikely that tidally-excited369

inertial waves could be the origin of observed surface features, such as the tiger stripes.370

More work is needed to study if other ocean geometries can result in enhanced energy371

focusing and higher stresses.372

4.3. Tidal dissipation373

The main focus of this work is to study tidal dissipation within Europa and Enceladus. We374

start by assuming an Ekman number of 10−7 and compute tidal dissipation for the different375

tidal constituents and different ocean thickness (η = 0.3 − 1) as detailed in Appendix B376

(Section 4.3.1). To strengthen our conclusions we analyse the effect of varying the Ekman377

number on the degree-two order-zero tidal constituent (Section 4.3.2). For the different378

shell geometries we first vary the Ekman number between 10−4 − 10−8. We then study the379

asymptotic behaviour of dissipation with decreasing Ekman number for some relevant shell380

geometries for which we use an Ekman number as low as 10−10.381

4.3.1. Tidal dissipation for the different tidal components382

Dissipation due to tidally induced inertial waves in Europa and Enceladus for E = 10−7,383

is shown in Figure 5. As a reference, we also indicate the estimated value of radiogenic384

heating in Europa (Hussmann et al., 2010) and the observed thermal output of Enceladus’385

tiger stripes (Spencer et al., 2013).386

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

−2

0

2

4

lo
g 1

0
(K

in
et
ic

E
n
er
g
y
)

(a) E = 10−7, η = 0.73

−8

−6

−4

−2

0

2

lo
g 1

0
(D

is
si
p
a
ti
o
n
)

(b) E = 10−9, η = 0.73

(c) E = 10−7, η = 0.63 (d) E = 10−9, η = 0.63

Figure 3: Non-dimensional kinetic energy (left quadrant) and viscous dissipation (right quadrant) amplitude
due to the degree two, order zero eccentricity tide for two ocean geometries where short wave attractors
exist. The patterns are shown for different Ekman number (E) and inner to outer ocean radius ratio (η).
Polar and equatorial wave attractors are superimposed in black and green, respectively, and the critical
latitude is indicated in red. A logarithmic scale is used both for kinetic energy and viscous dissipation. The
maximum values of the non-dimensional colour-scale correspond to a kinetic energy of 0.65 J m−3 and 4.69
J m−3; and a viscous dissipation of 0.26 µW m−3 and 4.97 µW m−3 for Europa and Enceladus, respectively.
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Figure 4: Same as Figure 3 but for ocean geometries with a small Lyapunov exponent. Rays emanating
from the critical latitude (and not wave attractors) dominate the flow response.
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It can be seen that the values of the tidal dissipation are well below the reference values387

for both Europa and Enceladus. Moreover, when we consider the region of the plot that388

corresponds to likely values of ocean thickness on Europa and Enceladus, η > 0.9 (Anderson389

et al., 1998; Hussmann et al., 2002) and η > 0.8 (Thomas et al., 2016; Čadek et al., 2016;390

Beuthe et al., 2016), respectively, we observe that the values of tidal dissipation are several391

orders of magnitude smaller than radiogenic heating in Europa and the observed heat flux392

in Enceladus. Nevertheless, it is interesting to study the contribution of the different tidal393

constituents. We see that the axisymmetric eccentricity and eastward tide dominate the394

fluid response. Moreover, the order one obliquity tide produces considerably lower tidal395

dissipation, especially in Enceladus. This fact follows from the small amplitude of this tidal396

component as compared with the others (see Table 1) .397

For most tidal constituents the tidal dissipation curve is markedly spiky (Figure 5). There398

are values of η for which dissipation is enhanced by more than one order of magnitude. The399

complex system of internal-shear layers that arise due to the singularities of the problem400

results in different values of dissipation for different ocean geometries. This is not the case401

of the westward propagating obliquity tide whose dissipation is given by a much smoother402

curve. This is because for a degree two, order one forcing the equations of motion admit403

a purely toroidal solution (Rieutord and Valdettaro, 1997), the so called “spin-over” mode.404

This solution is an exact solution of the equations of motion in case stress-free boundary405

conditions are used.406

However, when no-slip boundary conditions are used for the westward obliquity tide407

the “spin-over” mode disappears. The use of no-slip boundary conditions results in the408

development of an oscillatory Ekman layer at the solid-liquid boundary. The thickness of409

this Ekman layer scales with ≈ E1/2, however at the critical latitude it thickens and scales as410

∼ E2/5 over a region of width ∼ E1/5 (Hollerbach and Kerswell, 1995; Kerswell, 1995). The411

thickening of the Ekman layer breaks the symmetry of the problem and launches inertial412

waves that propagates in the interior. However, the resulting internal shear layers are weaker413

in this case than those generated by the other tidal constituents, dissipation is dominated414

by the Ekman layer that forms in the solid-liquid boundary which is less dependent on the415

shell geometry.416

4.3.2. Dependence of tidal dissipation on Ekman number417

We study the dependence of tidal dissipation with Ekman number. For a given ocean418

thickness (η) we distinguish three different cases depending on the behaviour of viscous419

dissipation in the limit E → 0. Dissipation can increase, decrease or become asymptotically420

constant. We call the first and second cases resonance and anti-resonance, respectively,421

after Rieutord and Valdettaro (2010). As we will see, the last case is associated with the422

appearance of a wave-attractor Note that this definition differs from the classic definition of423

a resonance, commonly associated with the excitation of eigenmodes.424

We start by varying the Ekman number from 10−4 to 10−8 for the axisymmetric eccen-425

tricity tide (Figure 6). For low Ekman numbers (E = 10−4, 10−5) the flow is dominated by426

the Ekman boundary layer formed at the solid-fluid boundary and not internal shear layers427

and wave attractors (see Figure 4c). For such cases the dissipation curve is smooth, similarly428
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Figure 5: Tidal dissipation amplitude due to tidally excited inertial waves in Europa (a) and Enceladus (b).
The ocean is assumed to be within a spherical shell of constant thickness (inner to outer ocean radius ratio,
η). All values are computed using E = 10−7. The axisymmetric and non-axisymmetric components of the
eccentricity tide (m = 0 and m = 2 ) as well as the obliquity tide (m = 1) are considered. As reference, an
estimate of Europa’s radiogenic heating and the power radiated from Enceladus tiger stripes are indicated.
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to the westward order one obliquity tide. As the Ekman number decreases, internal shear429

layers and wave attractors become the dominant features of the fluid response and the curve430

becomes more spiky.431

We see that for small values of η dissipation decreases with Ekman number, an anti-432

resonance. The behaviour becomes more complicated for thinner oceans for which resonances433

occur for some values of η (e.g., 0.75, 0.807, 0.8415, 0.8815), moreover, we see that these cases434

correspond to local maxima of tidal dissipation (in η). We select some representative cases435

of η in which we observe wave attractors (η = 0.63 and 0.73), anti-resonances (η = 0.35)436

or resonances (η = 0.76 and 0.8815) for further study. For these cases we further explore437

the change of dissipation as the Ekman number decreases (Figure 7). We use an Ekman438

number as low as 10−10, which requires enhanced resolution (L = 2000, N = 350) to achieve439

a truncation error of ∼ 10−3.440

For a thick ocean (η = 0.35), dissipation decreases with decreasing Ekman number.441

Dissipation approximately follows a power law of the form ∼ E0.35. As explained, for this442

ocean geometry, strictly non-attracting periodic trajectories exist. Rieutord and Valdettaro443

(2018) have shown that in such a situation the fluid responds to the excitation with a444

flow characterised by an ever increasing wavenumber that ultimately, when E=0, inhibits445

any response. This is actually the anti-resonance associated with the periodic trajectory446

ω = sin(π/6).447

We now consider the two cases with highly attracting short wave attractors, η = 0.63448

and η = 0.73, depicted in Figure 3. Figure 7 shows that for these two cases dissipation449

tends towards an asymptotic limit. In a wave attractor there is a balance between focusing450

and diffusion. As the Ekman number is reduced, the thickness of the internal shear layer is451

reduced and the velocity gradient increased in such a way that dissipation remains constant.452

This situation is similar to that observed in Ogilvie (2005) who showed the asymptotic453

convergence of dissipation in wave attractors in a rectangular container. It is also interesting454

to note that the asymptotic limit is reached at higher Ekman numbers for η = 0.63 than for455

η = 0.73. Figure 3 shows that the η = 0.73 attractor is longer and less attracting, viscous456

dissipation acts along a longer distance and prevents the attractor from developing for high457

Ekman number.458

Finally, we focus on two cases where a resonance occurs (η = 0.75 and 0.8815). These459

resonances are of special relevance if the Ekman number of Europa’s and Enceladus’ ocean is460

very low, for example close to that given by the molecular viscosity of water (10−14−10−13).461

In such a case, if a resonant state is attained, dissipation could be considerably higher than462

the values computed for Ekman numbers several orders of magnitude higher. As seen in463

Figure 7, for these two cases dissipation increases with decreasing Ekman number until it464

reaches a maximum and then starts to decrease again. This behaviour can be understood465

by analysing the resonance peaks in Figure 6b. We see that as the Ekman number decreases466

the curve becomes more spiky, the resonance peak narrows. If the exact η for which the467

resonance occurs is not chosen, dissipation will decrease with decreasing Ekman number as468

the resonance peak becomes narrower. As is evident from this plot, our current resolution469

does not allow us to resolve the exact value of η at which dissipation reaches its maximum.470

Higher resolution is needed in our explored parameter space to find the exact resonant471
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values of η. It is likely that at these exact resonant ocean geometries the actual dissipation for472

an Ekman number close to that given by the molecular viscosity of water (E = 10−13−10−14)473

is several orders of magnitude higher than what we find in Figure 6. However, we need to474

recall that as the Ekman number decreases the resonance peak becomes narrower, thus a475

resonance would only occur over a very narrow range of ocean thicknesses. For instance, we476

see that by using ∆η = 126 m for Enceladus or 783 m for Europa the resonance peak for477

η = 0.8815 at an Ekman number of 10−9 is already missed. It seems impossible that the ocean478

of Europa or Enceladus is of the thickness precisely required for such resonances to occur,479

specially since this would require the sea-floor and ice shell to be devoid of topographical480

features of higher amplitude than the previously mentioned resolution.481

5. Discussion and Conclusions482

In this work we analyse for the first time tidal dissipation due to inertial waves in Europa483

and Enceladus. We consider tides caused by the eccentric orbit of these satellites as well as484

their obliquity. We consider an ocean contained within a spherical shell and use a spectral485

method to compute tidal dissipation for different ocean thicknesses and dynamic viscosity486

coefficients (given by the Ekman number). We neglect the effect of the ice shell and argue487

that our results represent an upper bound estimate for tidal dissipation for an ice-covered488

moon.489

We find that dissipation depends strongly on ocean thickness and Ekman number. One490

of the challenges in computing tidal dissipation is the scarcity of information about Europa491

and Enceladus oceans. For instance, the effective viscosity, which depends on small-scale492

dissipative processes, is not known. It is for this reason that we analyse the behaviour of493

the fluid for a wide range of Ekman numbers. For a given ocean thickness we distinguish494

three different scenarios depending on the behaviour of dissipation with Ekman number. If495

a wave attractor is excited, an asymptotic limit is reached where dissipation is independent496

of viscosity. Otherwise, there can be an anti-resonance or resonance depending on the ocean497

geometry. Anti-resonant states, where we observe a decrease of dissipation with decreasing498

Ekman number, are attained for unrealistically thick oceans; while resonant states, where499

dissipation increases with decreasing Ekman number, are common for shallower oceans.500

After analysing the effect of changing the ocean thickness and viscosity we conclude501

that under the aforementioned assumptions, tidal dissipation due to inertial waves is several502

orders of magnitude smaller than Europa’s radiogenic heating and Enceladus’ observed heat503

flux and thus does not play an important role in preventing these oceans from freezing.504

Still, we observe that the induced tidal currents can be one order of magnitude stronger505

than those obtained using the Laplace Tidal Equations (e.g., Tyler, 2008, 2009). We find506

that for a 30 km thick Enceladan ocean tidal currents of amplitude 3 cm/s are excited.507

We also consider the possible interaction of inertial waves and the ice shell and conclude508

that for global oceans of constant thickness it is unlikely that inertial waves could result in509

observable surface features.510

The difficulty in explaining Enceladus’ present state through tidal dissipation in its solid511

parts (ice and mantle) have led to a focus on tidal dissipation within the ocean in the past512
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Figure 6: (a) Tidal dissipation amplitude in an ocean contained within a spherical shell due to inertial waves
excited by the degree-two order-zero eccentricity tide. The forcing frequency equals the rotational frequency
of the body. Dissipation is given for varying ocean thickness, varying values of inner to outer ocean radius
ratios (η) and Ekman number ranging from 10−4 to 10−8. (b) is a zoom-in of (a) for the most relevant range
of ocean thicknesses for Europa and Enceladus (η = 0.8− 1).
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Figure 7: Non-dimensional tidal dissipation amplitude, as defined in Equation (B.4), as a function of Ek-
man number for different representative inner to outer ocean radius ratio (η) for the degree-two order-zero
eccentricity tidal compinent. η = 0.63, 0.73, corresponds to an ocean with wave attractors with high (in
absolute value) Lyapunov exponent; for η = 0.35 there is an antiresonance; and η = 0.75, 0.8815 correspond
to two resonant states. The markers indicate the different numerical experiments performed.

years. However, so far tidal dissipation estimations using the Laplace Tidal Equations have513

resulted in low values of tidal dissipation for Enceladus’ estimated ocean thickness (Tyler,514

2014; Hay and Matsuyama, 2017; Matsuyama et al., 2018). It was suggested that internal515

inertial waves might produce enough additional tidal dissipation. Here we show that the516

direct generation of inertial waves in a spherical shell does not provide significant additional517

heat to prevent the ocean from freezing either.518

However, the discussion on tidal heating in the subsurface oceans of the icy moons is far519

from settled. In our study we have made several assumptions that need to be revisited. We520

have assumed the ocean to be (1) unstratified, (2) of constant-thickness (no topography),521

and (3) we have neglected non-linear effects. Each of these elements are discussed in the522

next paragraphs.523

We are limited by the absence of direct observations of the extraterrestrial oceans. We524

do not have any information about their density structure, thus, we can only apply our525

knowledge of similar environments on Earth to make an educated guess. Following the526

suggestions of Goodman et al. (2004); Goodman and Lenferink (2012) we have considered527

the ocean to be convectively mixed. However, under some circumstances the ocean can528

be stratified (Melosh et al., 2004; Vance and Brown, 2005). In a stratified ocean, internal529

gravity waves, which play an important role in tidal dissipation on Earth (Garrett, 2003),530
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can also be generated, adding a new possible source of tidal dissipation.531

In this study we consider an ocean contained within a spherical shell. However, it is532

expected that Enceladus’ and Europa’s ocean basins deviate from this idealised shape. It533

is known, for example, that Enceladus’ ocean does not have a constant thickness. On the534

contrary, the ice shell thickness varies from 7 km at the south pole to 24 km at the equator535

(Beuthe et al., 2016; Čadek et al., 2016). Moreover, due to rotation and tidal deformations536

both Europa and Enceladus have the shape of a triaxial ellipsoid (e.g., Nimmo et al., 2007;537

Thomas, 2010). Wave attractors also exist in more general ocean basins. We expect that the538

conversion of large-scale tides into small scale inertial waves will be facilitated by additional539

topographic variations. Inertial waves for complex ocean geometries is an exciting topic for540

future work.541

Besides, the barotropic tide given by the LTE highly depends on the ocean’s basin542

geometry. The interaction of the barotropic horizontal currents with topography excites543

internal waves. On Earth most tidal dissipation occurs on the shallow continental shelf where544

barotropic currents have a higher amplitude, but an additional ∼ 30% of tidal dissipation545

occurs in the oceanic ridges due to the excitation of internal waves (Egbert and Ray, 2000,546

2003). The effect of topography on both the barotropic and internal tide should be further547

studied.548

Finally, in this study we have used perturbation theory, we have ignored the non-linear549

terms in the momentum equations. The use of non-linear terms would change the behaviour550

of the fluid. For example, inertial waves could interact with the underling convective flow.551

Another possible interaction is that of inertial waves with a mean-flow excited by libration552

which can lead to the well-known elliptic instability (Kerswell, 2002). This flow instabil-553

ity gives rise to fully three dimensional turbulence which might enhance dissipation and554

change its geographical pattern. Both Europa and Enceladus might be subject to this in-555

stability (Lemasquerier et al., 2017). Further experimental and numerical work is needed to556

understand the relevance of this phenomenon in heating the icy moons and shaping their557

surface.558
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Appendix A. Numerical approach expanded565

We solve Equations (19) using the spectral method of Rieutord and Valdettaro (1997).566

We expand the different fields using vector spherical harmonics:567
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u(d)u(d)u(d) =
∞∑

l=0

l∑

m=−l

[
ulm(r)Rm

lR
m
lR
m
l + vlm(r)SmlS

m
lS
m
l + wlm(r)TmlT

m
lT
m
l

]
(A.1a)

568

W =
∞∑

l=0

l∑

m=−l
W l
m(r)Y m

l (θ, φ) (A.1b)

569

with:570

Rm
lR
m
lR
m
l = Y m

l ererer SmlS
m
lS
m
l = ∇Y m

l TmlT
m
lT
m
l = ∇×Rm

lR
m
lR
m
l (A.2)

where Y m
l are normalized spherical harmonics which satisfy the following orthogonal rela-571

tions:572

∫

4π

Rm
lR
m
lR
m
l ·Sm

′
l′S
m′
l′S
m′
l′ dΩ =

∫

4π

SmlS
m
lS
m
l · Tm

′
l′T
m′
l′T
m′
l′ dΩ =

∫

4π

TmlT
m
lT
m
l ·Rm′

l′Rm′
l′Rm′
l′ dΩ = 0 (A.3a)

573 ∫

4π

Rm
lR
m
lR
m
l ·Rm′

l′Rm′
l′Rm′
l′ dΩ = δll′δmm′ (A.3b)

574 ∫

4π

SmlS
m
lS
m
l ·Sm

′
l′S
m′
l′S
m′
l′ dΩ =

∫

4π

TmlT
m
lT
m
l · Tm

′
l′T
m′
l′T
m′
l′ dΩ = l(l + 1)δll′δmm′ . (A.3c)

Using the previous expansion the continuity equation becomes:575

vlm =
1

l(l + 1)r

∂r2ulm
∂r

. (A.4)

Taking the curl of Equation (15) to eliminate the potential and introducing Equation576

(A.4) we get the following Equations for the Rm
lR
m
lR
m
l , and TmlT

m
lT
m
l velocity components:577

E∆lw
l
m +

(
im

l(l + 1)
− iω

)
wlm =

−A(l,m)rl−1
d

dr

(
ul−1m

rl−2

)
− A(l + 1,m)r−l−2

d

dr

(
rl+3ul+1

m

)
+ fR,

(A.5a)

E∆l∆l(ru
l
m) +

(
im

l(l + 1)
− iω

)
∆l(ru

l
m) =

B(l,m)rl−1
d

dr

(
wl−1m

rl−1

)
+B(l + 1,m)r−l−2

d

dr

(
rl+2wl+1

m

)
+ fT ;

(A.5b)

578

with:579

A(l,m) =
1

l2

√
l2 −m2

4l2 − 1
, B(l,m) = l2(l2 − 1)A(l,m); ∆l =

1

r

d2

dr2
r − l(l + 1)

r2
. (A.6)
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The forcing terms fR and fT are given by :580

fR = − r

l(l + 1)
∇× f (eq)f (eq)f (eq) ·Rm

lR
m
lR
m
l (A.7a)

fT = l(l + 1)∇× f (eq)f (eq)f (eq) · TmlTmlTml (A.7b)

The values of fT and fR are obtained for the different tidal constituents. We need581

to obtain the non-dimensional components of the different constituents of the equilibrium582

tide uequequeq in terms of spherical harmonics. We compute their amplitude by taking the time583

derivative of Equation (6) and using the definition of the equilibrium tide given in Equation584

(16). We write the resulting expressions using the previously defined normalised spherical585

harmonics Yl,m:586

u
(eq)
e0u
(eq)
e0u
(eq)
e0 = −i3

2

√
π

5

ω2eR

g
r2R0

2R
0
2R
0
2 = ke0ir

2R0
2R
0
2R
0
2 (A.8a)

u
(eq)
o1eu
(eq)
o1eu
(eq)
o1e = −

√
3π

5

ω2R sin ε
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r2R1

2R
1
2R
1
2 = −ko1er2R1

2R
1
2R
1
2 (A.8b)

u
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√
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2 (A.8c)

u
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e2eu
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e2eu
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2 (A.8d)

u
(eq)
e2wu
(eq)
e2wu
(eq)
e2w = −i1

4

√
6π

5

ω2eR

g
r2R2

2R
2
2R
2
2 = ke2wir

2R2
2R
2
2R
2
2. (A.8e)

Introducing Equation (A.8) into Equation (A.7) we can get the values of fR and fT for587

m = 0, m = 1 and m = 2 components, (f 0
R, f

0
T , f 1

R, f
1
T and f 2

R, f
2
T ).588

f 0
R = ke0i

r2√
35
δl,3 − ke0i

r2√
15
δl,1, f 0

T = 6ke0ωrδl,2 (A.9a)

589

f 1
R = ko1

2r2

3

√
2

35
δl,3 − ko1

r2

2

√
3

15
δl,1, f 1

T = −6ko1ir(ω +
1

2
)δl,2 (A.9b)

590

f 2
R = ke2i

r2√
63
δl,3, f 2

T = 6ke2ωrδ2,l + 6ke2rδl,2. (A.9c)

ke2e (ko1e) or ke2w (ko1w) should be used in the place of ke2 (ko1) depending if we solve for591

the westward or eastward wave. Note that the constant k contains information about the592

physical characteristics of each moon. Due to the fact that the PDEs are linear we solve the593

system for k = 1 and multiply the solution by the corresponding value of k to obtain the594

solution for each configuration.595
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By inspecting Equations A.5 it is clear that the different orders are decoupled, but there596

exists a coupling between degrees. However, not all the degrees are coupled, symmetric597

(XXX+
m) and antisymmetric (XXX−m) modes with respect to the equator are decoupled and can598

be solved independently.599

XXX+
m =




umm
wm+1
m

um+2
m

wm+3
m
...




XXX−m =




wmm
um+1
m

wm+2
m

um+3
m
...



. (A.10)

Note that for the m = 0 and m = 2 tidal components the XXX+
0 and the XXX+

2 solutions are600

excited, respectively, while m = 1 excites the XXX−1 solution.601

The partial differential equations A.5 are discretised in the radial direction using the602

Chebyshev polynomials on the Gauss-Lobatto collocation nodes (see Section 3.3). More603

details about this method can be found in Rieutord and Valdettaro (1997).604

Appendix B. Tidal dissipation computation605

We expand Equation (20) as:606

D̂v = E

∫ 1

η

d(r)r2dr, (B.1)

where d(r) is the dissipation in a spherical layer with radius r. We can write the previous607

equation using the spherical harmonic decomposition of the velocity (Equation (A.1)):608

d(r) =
L∑

l=0

L∑

m=−L
3

∣∣∣∣
∂ulm
∂r

∣∣∣∣
2

+l(l+ 1)(|slm|2 + |tlm|2) + (l− 1)l(l+ 1)(l+ 2)
|vlm|2 + |wlm|2

r2
, (B.2)

with:609

slm =
∂vlm
∂r

+
ulm − vlm

r
(B.3a)

610

tlm = r
∂

∂r

wlm
r
. (B.3b)

e.g. Rieutord (1987). The total value of D̂v is obtained by numerically integrating Equation611

(B.1). Finally, we obtain the dimensional value as:612

Dv = 8k2ρoω
3R5D̂v (B.4)

where k depends on the tidal component considered and is given by Equation (A.8).613

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References614

Anderson, J. D., Schubert, G., Jacobson, R. A., Lau, E. L., Moore, W. B., Sjogren, W. L., 1998. Europa’s615

differentiated internal structure: Inferences from four galileo encounters. Science 281 (5385), 2019–2022.616

URL https://doi.org/10.1126/science.281.5385.2019617

Baland, R.-M., Yseboodt, M., Van Hoolst, T., 2012. Obliquity of the Galilean satellites: The influence of a618

global internal liquid layer. Icarus 220 (2), 435 – 448.619

URL https://doi.org/10.1016/j.icarus.2012.05.020620
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Tobie, G., Čadek, O., Sotin, C., 2008. Solid tidal friction above a liquid water reservoir as the origin of the819

south pole hotspot on Enceladus. Icarus 196 (2), 642 –652.820

URL https://doi.org/10.1016/j.icarus.2008.03.008821

Tyler, R. H., 2008. Strong ocean tidal flow and heating on moons of the outer planets. Nature 456 (7223),822

770–772.823

URL http://dx.doi.org/10.1038/nature07571824

Tyler, R. H., 2009. Ocean tides heat Enceladus. Geophys. Res. Lett. 36 (15), L15205.825

URL http://dx.doi.org/10.1029/2009GL038300826

Tyler, R. H., 2014. Comparative estimates of the heat generated by ocean tides on icy satellites in the outer827

solar system. Icarus 243 (Supplement C), 358 – 385.828

URL https://doi.org/10.1016/j.icarus.2014.08.037829

Vallis, G. K., 2006. Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge,830

U.K.831

Vance, S., Brown, J., 2005. Layering and double-diffusion style convection in Europa’s ocean. Icarus 177 (2),832

506 – 514.833

URL https://doi.org/10.1016/j.icarus.2005.06.005834

Vermeersen, B. L., Maas, L. R., van Oers, S., Rabitti, A., Jara-Orue, H., 2013. Tidal-Induced Ocean835

Dynamics as Cause of Enceladus’ Tiger Stripe Pattern. AGU Fall Meeting Abstracts, P53B–1848.836

32


