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Abstract

In the field of Adaptive Optics (AO) a new development has been introduced recently: the
Wavefront Sensorless Adaptive Optics (WFSless AO) approach, which only uses camera mea-
surements to optimize image quality and does not use a Shack-Hartman (SH) Wavefront
Sensor (WFS) [Booth, 2006, Débarre et al., 2009, Hinnen et al., 2008]. In order to optimize
the image quality of a point source or an extended object, the residual wavefront should be
minimised as much as possible. The Model Based Approach [Booth, 2007, Linhai and Rao,
2011] is a very promising approach which can be used for this optimisation, resulting in a sig-
nificant reduction in the amount of measurements. This approach uses an initial measurement
and then excites all the modes that need to be optimised separately and takes a measurement
of the intensity distribution after each excitation. Then, the Second-Moment (SM)’s of the
measured intensity distributions are computed and used for the computation of the optimal
control input, which is the coefficient vector in a Zonal representation of the wavefront. The
control vector can be used to minimise the residual wavefront and thus optimise the image
quality. However, in this approach it is assumed that the incoming wavefront does not change
between the first and last measurement. This assumption is called the frozen window time
and it is not valid for real-time problems. In [Lianghua et al., 2017] a solution was proposed
for this problem, by using a precomputed independent set of modes, which allows a decou-
pling of the modes and computations and reduces the frozen window time. Unfortunately,
this research introduces more measurements which leads to more delay.

In this thesis a new approach will be presented, the Continuous Model Based Approach.
This approach tries to solve both problems simultaneously: a reduction of the number of
measurements and a reduction of the frozen window time. The number of measurements will
be reduced by combining the excitation and optimisation step and the frozen window time
will be reduced by using a two step optimisation, based on [Lianghua et al., 2017]. First,
the validity of this approach will be proven mathematically and with simulations, then it
will be tested in experiments. In order to make the step to real-time experiments, also an
online calibration method will be introduced, proven and tested. This is also a new technique,
based on the Model Based Approach [Linhai and Rao, 2011] and can be used to obtain the
correlation matrix for any set of modes, focussed on actuator responses.
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Introduction

In the field of AO a lot of research has been done over the years and the technology of AO-
systems has become incredibly complicated, big and expensive [Hinnen, 2007, Hippler, 2019,
Spyromilio, 2008]. In order to make this incredible technology accessible to everyone, an
implementation must be realized that can be implemented on very simple set-ups (such as
telescopes for amateur astronomers) and which corrects for low order aberrations. One way
of achieving this, is by implementing a relatively new part of AO, a WFSless AO approach.

In the WFSless AO approach, a metric must be optimised that describes the image qual-
ity, such as; the maximum intensity, image sharpness or SM of the intensity distribution
[Schutter, 2018, Vorontsov and Carhart, 1997]. In this thesis, first the image quality of a
point source is discussed, followed by the proof for extended objects. One of the metrics that
is commonly used, is the SM of the intensity distribution of the image [Booth, 2006, Débarre
et al., 2009]. For this metric it is proven that the SM of the intensity distribution is propor-
tional to the Mean Squared Gradient (MSG) [Yang et al., 2015]. Using this proportionality,
a new method is introduced: the General Model Based approach [Booth, 2007, Linhai and
Rao, 2011]. By applying a known aberration to the incoming wavefront and measuring the
difference in the intensity distribution, the most optimal control vector is computed. This
control vector contains the coefficients for a Zonal wavefront representation, which consists of
the set of modes used for the optimisation. With this method, the total number of required
measurements is reduced to N+1, where N is the number of modes that is accounted for. One
of the limitations of this approach is the assumption that the incoming wavefront does not
change between the first and last measurement, this assumption is called the frozen window
time. In the approach proposed by [Lianghua et al., 2017], this window is reduced significantly
and the modes are decoupled. Resulting in a decrease of the computation time for one mode,
but an increase in the total number of iterations. Both methods rely on the assumption that
the incoming wavefront remains frozen for a certain time, but in more turbulent situations,
such as astronomy, this assumption might not hold and more research on dynamic situations
is needed.

Master of Science Thesis R.I. van Genderen



2 Preface

The first part of this research project was focussed on the design and control of a small
portable AO device. In the process of acquiring the required knowledge for this part of re-
search, a niche was found. As discussed above, the frozen window time assumption is not
valid and it seems scientifically more interesting to look into new ways of solving this problem,
before looking at the design and control of the entire system. This thesis will contribute to
the field of research by proposing two new methods. First, a new approach for the optimisa-
tion process is proposed: the Continuous Model Based Approach, which decreases the frozen
window time, whilst keeping the total number of iterations as low as possible. The second
contribution focusses on the empirical calibration of the system. The empirical calibration
procedure is needed for the practical implementation of the experiments, which are conducted
to prove the efficiency and reliability of the new proposed method. In order to overcome er-
rors introduced by the experimental setup, such as alignment, focussing or approximation
errors (e.g. in the actuator responses), an online empirical calibration procedure is preferred,
compared to analytical or numerical calibration procedures. In this thesis a calibration proce-
dure is proposed that computes the correlation matrix of the system, taking into account any
errors introduced by the system. The two methods are combined and tested with experiments.

This thesis will be built up in the following way: first an overview of the important liter-
ature will be presented. In this part the turbulence model will be discussed, an overview of
the research up till now will be presented with all the different components, the used metric
and different sets of modes will be evaluated and then two different Model Based Approaches
will be introduced. The last part of the literature review focusses on an online mirror cal-
ibration procedure and the implementation of an extended object for the different Model
Based Approaches. After all the relevant literature has been summarised, the new method
will be introduced and the mathematical proof of the new method will be presented. Next,
the results of the simulations and experiments will be presented and discussed. Then, a com-
parison will be made between two existing methods (the General and Synchronous Model
Based Approach) and the new proposed method. Lastly, a conclusion will be drawn on the
effectiveness and reliability of this new method.

R.I. van Genderen Master of Science Thesis
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Chapter 1

Turbulence Model

This chapter introduces the reasons, challenges and limitations of the principles of Adaptive
Optics (AO). It will explain why stars are not sharp when looking at them and why a very
large telescope might not yield images with better quality, compared to smaller telescopes.
The basic ideas behind turbulence will be explained first, followed by the representation of
the (aberrated) wavefront. Then, the Fried parameter is introduced, as this is an important
parameter in the turbulence modelling and in determining the limiting factor for the sharpness
of an aberrated image. Besides turbulence, also the diffraction limited resolving power of a
telescope is discussed when there would be no turbulence. In the last section, a solution is
presented, in order to overcome the deterioration of the image quality due to aberrations
introduced by turbulence.

1.1 Turbulence modelling

In order to understand the idea of turbulence, first the idea of a wavefront must be explained.
When a star emits light, it emits light rays. When these rays are in phase, a line can be

Figure 1-1: The blue lines represent light rays and the red lines connect the parts of the waves
that are in equal phase. As a reference point, the top of the waves is used.
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6 Turbulence Model

Figure 1-2: Example of long propagation distance, making the incoming wavefront flat

Figure 1-3: Example of Kolmogorov turbulence model, from the lecture notes [Verhaegen et al.,
2017]

drawn over the part of the waves that is in equal phase. This can be seen in Figure 1-1 in the
red lines and it can be extended into the third dimension, where the resulting plane is called
a wavefront.
Once a star has emitted the light, it will be in a spherical form. After it has travelled a
long distance, it can be assumed that this spherical form can be neglected and the incoming
wavefront can be approximated by a planar wavefront. This is visualised in Figure 1-2.

1.2 Kolmogorov Turbulance Model

One of the first to discover the relation between image quality and telescope diameter, was
Sir Isaac Newton. However, in his research he found that there would also be a certain bound
on the performance of the telescope. He blamed the so-called perpetual tremor of the air,
which could be observed in the twinkling of stars for example. With this idea, he was one of
the first to directly link the turbulence of the air to the deterioration of image quality. Later,
Andrey Kolmogorov introduced the theory that the turbulence is a result of bubbles of air

R.I. van Genderen Master of Science Thesis



1.3 Point Source 7

Figure 1-4: Example of a wavefront aberration in a simplified form

with different temperatures. These bubbles of air are the result of the absorption of sun light
by the earth. The bubbles start big, but then degrade into smaller bubbles and eventually
dissipate as heat [Verhaegen et al., 2017], see Figure 1-3. As the warmer bubbles of air have
a smaller density, light will move faster through the warmer bubbles, compared to the colder
bubbles. This can be explained by computing the optical path length of every point in the
incoming wavefront [Verhaegen et al., 2017]:

OPL =
∫
P
n(r)dr, (1-1)

where n(r) is the refraction index, dependent on position r. This effect creates a difference
in the phase as the medium through which the light travels is not homogeneous. This results
in an aberration in the incoming wavefront, see Figure 1-4 for an example. Of course, this
is only a really simplified aberration and in the real atmosphere the aberration will be much
more complex due to the random and dynamic nature of the atmosphere and the turbulence
that causes the aberration.

1.3 Point Source

The concept of a point source is important for the resolution of a telescope. A star is an
example of a point source. If the plane waves of a star reach the telescope and are focussed
by a lens, an airy disk can be observed. This airy disk defines the smallest available angular
resolution observable and can be computed with the Rayleigh Criterion.

Master of Science Thesis R.I. van Genderen



8 Turbulence Model

1.4 Rayleigh Criterion

The Rayleigh Criterion describes the angular resolution at which the two airy disks of two
different point sources can still be distinguished:

sin(θ) ≈ 1.22 λ
D

(1-2)

where λ is the wave length of the light and D is the diameter of the telescope. Here it can
be seen that a larger diameter will also lead to a more detailed image. However, as stated
before, after a certain diameter the turbulence will become the limiting factor and active AO
is needed to deal with the turbulence and get a higher quality image. This limiting factor
will be discussed in the next section.

1.5 Fried Parameter

For the phase delay caused by the difference in the OPL, a so-called structure function can
be constructed [Tatarskii, 1971, Verhaegen et al., 2017]:

Dφ(ξ) = 〈|φ(x)− φ(x + ξ)|〉, (1-3)

which can be rewritten into [Roddier, 1999]

Dφ(ξ) = 2.91k2(cos(γ))−1ξ5/3
∫
C2
N (h)dh, (1-4)

where γ is the Zenith angle and C2
N is the Index Structure Coefficient. This equation can be

simplified into

Dφ(ξ) = 6.88
(
ξ

r0

)5/3
, (1-5)

where r0 is the Fried parameter. This parameter can be seen as a sort of measurement for
the turbulence and varies between the 5cm for high turbulence and 20cm for lower turbulence
[Verhaegen and Verdult, 2007]. It can be computed with

r0 =
(

0.423k2(cos(γ))−1ξ5/3
∫
C2
N (h)dh

)−3/5
(1-6)

and it is used for several different computations, e.g. the Strehl ratio or the Power Spectral
Density (PSD). The PSD will bediscussed in the next section.

1.6 Power Spectral Density

The PSD of the Kolmogorov turbulence model is computed using [Noll, 1976]

Φ(f) = 0.023r−3/5
0 f−11/3, (1-7)

where
f =

√
f2
x + f2

y + f2
z , (1-8)
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1.7 Limiting Factor Image Quality 9

which denotes the spatial frequency. When the spatial frequency becomes very small, the PSD
goes to infinity. To overcome this problem, an adapted version is introduced: the modified
Von Kármán turbulence model with the PSD defined as [Verhaegen et al., 2017]

Φ(f) = 0.023r−
5
3

0(
f2 + f2

0
) 11

6
e
−
(

f
fi

)2

. (1-9)

The PSD can be used to compute the Resolving power R. This can be used to find the
limiting factor in the process of finding the highest quality image and is computed using:

R =
∫

Φ(f)df =
∫
T (f)B(f)df, (1-10)

where T (f) is telescope transfer function and B(f) the spectrum of the wavefront aberration.
The last part of Equation 1-10 can be used to find the limiting factor in the process and this
is described in the next section.

1.7 Limiting Factor Image Quality

As can be seen in Equation 1-10, either the turbulence or the telescope diameter is the
limiting factor for obtaining higher quality images. If the wavefront is assumed to be flat, i.e.
there is no aberration, then B(f) = 1 and the limiting factor will be the Resolving Power
of the telescope. This is called the diffraction limited case. On the other hand, if there is
an aberration (induced by turbulence) and the telescope is assumed to be significantly large,
the Resolving Power is assumed to be limited by the turbulence, which is then related to the
Fried parameter.

1.8 Single or Multi Layer Turbulence Approximation

Due to the random and dynamic behaviour of the turbulence, it is very difficult to simulate it.
One of the approximations that has been widely used in the literature, was proposed by Taylor,
[Taylor, 1969]. He approximates the turbulence as a frozen flow and shows the correlation
between two fixed points at various wind speeds. Using this approach, the turbulence can
be modelled as one or more fixed layers that move over the aperture of the telescope with
different wind speeds and directions [Hinnen, 2007]. A schematic overview of a one layered
turbulence approximation can be seen in Figure 1-5 and comes from [Hinnen, 2007]. If a one
layer turbulence is assumed, the process can be described by a Vector Auto-Regressive (VAR)
model. If a first order VAR model is implemented the proces becomes:

φ(k + 1) = Aφ(k) + w(k), (1-11)

where w(k) represents the process noise and A the system matrix of this process. A lot of
research has been done on acquiring this matrix and solutions can be found in many textbooks,
e.g. [Verhaegen and Verdult, 2007]. For the dynamic turbulence the OOMAO [Conan and
Correia, 2014] toolbox in matlab is used to create moving window turbulence models.
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10 Turbulence Model

Figure 1-5: One layer turbulence approximation from [Hinnen, 2007]

1.9 Wavefront Representation

For simulations, it is important to generate, describe and compute the incoming wavefront.
A very common way of constructing the incoming wavefront is by a combination of modes,
such as the Zernike polynomials [Dai, 1995] or the Lukosz-Braat polynomials [Booth, 2007].
The incoming wavefront can be described by

ψ(x, y) =
∞∑
i=1

νiFi(x, y), (1-12)

where νi is the coefficient corresponding to the ith mode of the chosen set Fi(x, y). In chap-
ter 4, several different modes and their characteristics will be discussed and compared. The
coefficients of a wavefront can be estimated using a minimal least squares approach [Fried,
1977], which is discussed in Appendix D and in [Verhaegen and Verdult, 2007].

1.10 Root Mean Squared Error

In order to compare the residual wavefront the Root Mean Squared Error (RMSE) of the
residual wavefront can be computed. This value can be used as a measure for the quality of
the residual wavefront and can be computed with

RMSE =

√√√√ 1
A

N∑
i=1

M∑
j=1

P (i, j)(φ(i, j)− φDM (i, j))2, (1-13)

where A is the area of the aperture P (x, y) and M and N are respectively the x- and y-
dimensions of the matrix that is used to describe the wavefront.
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Chapter 2

WFSless AO Setup and Components

To optimise the image quality of a point source or an extended object, a Wavefront Sensorless
Adaptive Optics (WFSless AO) approach can be used. There has been a lot of research in
this field of science [Booth and Jesacher, 2013, Pozzi et al., 2017, Song et al., 2010] and many
more. In this Chapter an overview of this field of science will be given. First a general
overview will be given (section 2.1), followed by the different elements used in the setup.

2.1 General Overview of WFSless AO

In the WFSless AO approach, the Wavefront Sensor (WFS) is left out of the system and the
camera measurements are used as an input to find the most optimal control vector for the
Deformable Mirror (DM). In Figure 2-1, the general setup of a WFSless AO configuration is
shown. It can be seen that the WFS is left out of the setup and that the only available sensor
is the CCD-sensor. The CCD-sensor measures the intensity and this intensity measurement
is used as an input for the controller. A disadvantage of this method is that the intensity
measurement can not be used directly for wavefront correction. A lot of iterations are needed
to find the optimal control and combined with the delay that every iteration introduces, this
can add up to a significant delay. This becomes a problem when the incoming aberration is
not static, but dynamic or time-varying, such as in astronomy. Another important challenge
of this approach is to find the global optimum and avoid getting stuck in a local optimum.

2.2 Deformable Mirror

For this thesis a 17channel Tip/Tilt MicroMachinedDM from OKOTECH is available [OKO
Technologies, 2011]. This is a DM designed for correcting low-order aberrations in the incom-
ing wavefront. This DM has a maximum update frequency of 1kHz and a maximum stroke
of 9.4µm. The actuator configuration can be seen in Figure 2-2. Using the actuator responses
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12 WFSless AO Setup and Components

Figure 2-1: Overview of WFSless AO configuration

in Figure 4-1, it is assumed that one can simulate all the possible aberrations in the span of
this DM by a linear combination of the actuator responses:

φDM (x, y) =
N∑
i=1

νiEi(x, y), (2-1)

where νi is the coefficient corresponding to the ith actuator response Ei(x, y). It should be
noted however, that the introduced phase delay introduced by the DM is computed with

∆φDM (x, y) = 2∆l(x, y)2π
λ

, (2-2)

where ∆l(x, y) is the deformation of the DM in meters at (x, y) and λ is the wavelength of
the incoming wavefront in meters. The factor 2 comes from the path that the light travels. If
the DM is retracted, the light has to travel this path twice (towards the DM and away from
the DM), so the introduced phase delay is multiplied with a factor 2.

2.3 Membrane DM

Because a membrane DM is used, not the full aperture can be used for the approximation,
but only a small part. This aperture can be simulated as

P (x, y) =
{

1, r ≤ |R|
0, r > |R| , (2-3)

where R is the recommended radius of the MMDM and

r =
√

(x− x0)2 + (y − y0)2. (2-4)
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2.4 CCD Camera 13

Figure 2-2: Actuator positions of 17 actuator MMDM of OKOtech bv.

(a) Full aperture of the DM (b) Recommended (small) beam diameter

Figure 2-3: Two apertures for the DM. The right picture shows the recommended beam diameter
and the left shows the full aperture.

This is due to the borders, where the membrane of the DM is attached to the machine itself.
Therefore, these borders can not move and it is recommended to only use a smaller diameter.
This is visualized in Figure 2-3.

2.4 CCD Camera

The only available sensor in this setup will be the CCD-sensor. This sensor measures the
light intensity and this is used as an input for the controller. The sensor that will be used for
this project is UI-154xLE-M. The specifications can be found in Figure 2-4

2.5 Noise Implementation

Noise measured by the CCD camera consists of a combination of read-out noise and shot-noise
[Piscaer et al., 2020]:

v(k) = vshot(k) + vread(k), (2-5)

where v(k) is the measurement noise, vshot(k) the shot noise and vread(k) the read-out
noise. The shot noise can be approximated as a Poisson distribution: (ytrue(k) + vshot(k)) ∼
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14 WFSless AO Setup and Components

Figure 2-4: List of the specifications of the UI-154xLE-M camera, which can be found on the
website: https://www.1stvision.com/cameras/sensor_specs/MT9M001-D.pdf, [Semiconductor]

Pois(ytrue). The read-out noise is a gaussian distributed noise: vread(k) ∼ N (0, σ2
rI). In

simulations, this is implemented as the Signal to Noise Ratio (SNR). Where the SNR is
computed as a percentage of the mean of the intensity distribution.

2.6 Control Algorithm

The control algorithm in a WFSless AO approach uses the measurements from the CCD
camera directly. Some examples are optimisation algorithms, such as step search or Stochastic
Gradient Descent (SGD), a model based approach or a prediction method, such as a Kalman
filter [Piscaer et al., 2019, 2020]. The optimisation algorithms aim to optimise a certain metric,
that describes the quality or a feature of an image or point source. The main disadvantages
of these optimisation algorithms is that the number of iterations is relatively high and it is
not always the global optimum that is found. The model-based approach on the other hand
converges to the optimal solution relatively fast and two implementations will be discussed
in chapter 5 and chapter 6.
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Chapter 3

Second Moment of the Intensity
distribution

In order to compare the quality of images, a metric can be used. These metrics are used by the
optimisation algorithms and the characteristics of the metrics are important for the number
of iterations. There are several different metrics that can be used, such as the maximum
intensity metric, the sharpness, the Strehl ratio and the Second-Moment (SM) based metric .
The choice for the most optimal metric is based on the requirements for the system and it
is important to choose a metric that has its most optimal value when there is no aberration.
Another important feature is convexity of the metric. The metric should be convex in order
to find the most optimal value and not get stuck in a local optimum. The metric that will be
extensively discussed, the SM-metric, will be used throughout the rest of this thesis due to the
important properties, which will be discussed in more detail this chapter and in Appendix A
for point sources and Appendix B for extended objects.

3.1 Intensity distribution of a point source

Because a Wavefront Sensor (WFS) is excluded from the system, another input is needed
for the control algorithm. One of the features of light that can be measured is the intensity
distribution of the incoming light and it can be measured by a simple CCD-sensor. In this
section a mathematical expression for the intensity distribution for a point source is derived.
In chapter 8 and in Appendix B a derivation on the intensity distribution for an extended
object will be discussed. The intensity distribution can be described by the convolution of
the Point Spread Function (PSF) and the object or light distribution o(x, y) of the real object

i(x, y) = h(x, y) ∗ o(x, y), (3-1)
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16 Second Moment of the Intensity distribution

where i(x, y) is the ’to be quantified’ intensity distribution. When the object is a point source,
e.g. a star, described by the delta function δ(x, y), Equation 3-1 simplifies to:

i(x, y) = h(x, y) ∗ δ(x, y) (3-2)
i(x, y) = h(x, y). (3-3)

Now the intensity distribution can be described by h(x, y), which is the PSF of the aberration
and it can be computed using:

i(x, y) = |F(aP (u, v)e−iφ(u,v))|2, (3-4)

where (u, v) are the coordinates in the pupil plane and P (u, v) is the aperture discussed in
section 2.3. Using the intensity distribution, metrics can be used for optimisation, such as
the maximum intensity, image sharpness or SM of the intensity distribution.
It should be taken into account that this derivation uses a point source as an object image.
However, if an extended source is to be optimized, several extra steps need to be taken before
it can be described by a metric and optimised. These steps will be described in chapter 8 and
Appendix B.

3.2 Second-Moment Based Metric

One of the metrics that first led to a significant decrease in number of iterations was the
SM based metric. This metric uses the intensity measurement of the image and computes its
second moment. The intensity can computed using the Fourier transform of the image and its
phase and can be found in Equation 3-4. In real life experiments, the intensity distribution
can be simply measured with a CCD-sensor. The SM is computed with

JSM (I) =
∑
i,j I(i, j) · ((i− x0)2 + (j − y0)2)∑

i,j I(i, j) , (3-5)

where x0 and y0 represent the computed centroids of the intensity measurement and must be
computed first:

x0(i, j) =
∑
i,j I(u, v) · i∑
u,v I(u, v) , (3-6)

y0(i, j) =
∑
i,j I(u, v) · j∑
u,v I(u, v) . (3-7)

(3-8)

This metric exhibits parabolic behaviour, which can be observed through the quadratic terms
in the formula. This metric is the basis for one of the important developments in this field
of research. It is used as a metric in the general model based approach and for the Masked
Detector Signal (MDS). In chapter 5, Appendix A and Appendix B the derivation of this
method can be found. This metric can be used to extend these methods from point sources to
extended objects, which is briefly discussed in chapter 8 and more elaborate in Appendix B.
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Chapter 4

Mode Selection

When optimising the image quality of a point source or an extended object, actually the
coefficient vector or combination of a set of modes is optimised. An intuitive example for
this set of modes is the set of actuator responses, as the control vector directly represents a
combination of these responses. The actuator responses can be seen in Figure 4-1. In [Linhai
and Rao, 2011], it is stated that any set of modes can be used for optimisation. However,
not all sets will be the most optimal bases [Booth, 2007, Debarre et al., 2007, Soloviev, 2020]
and in Wang and Booth [2009] and optimal set of modes is proposed. There are several
sets of modes that exhibit different features in orthogonality in the direct functions or in the
gradients of these functions. It must be noted however, that the computed optimal control
vector must converted to a voltage vector, if a set is used that is not the set of actuator
responses, before applying it to the Deformable Mirror (DM). In this section the features of
the different sets will be discussed and some well known sets will be evaluated, comparing the
discussed features. It should be taken into account that these sets are used to approximate
the incoming wavefront, because the adaptive element might not be able to represent the
incoming wavefront entirely. This will be discussed in the last section of this chapter.

4.1 Wavefront Representation of the DM

As discussed in section 1.9, the incoming wavefront can be described by a combination of
modes, when modelling the system for a simulation. However, the DM is usually not able
to represent an infinite amount of polynomials and its span is bounded by the number of
actuators and their positioning. So, when trying to represent the incoming wavefront, there
will always be a part that is orthogonal to the span of the DM. This can be described by

φ(x, y) = φDM (x, y) + φ⊥(x, y), (4-1)

where φDM is the part of the wavefront that can be modelled by the DM and φ⊥ is the part
orthogonal to the wavefronts represented by the DM. So, in order to find the most optimal
set of modes, this orthogonal part must be minimized. In the next section two performance
characteristics for this minimisation are proposed.
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18 Mode Selection

4.2 Orthogonality of the set of modes

There are several things that can be used to compare the performance of a set of modes. In
[Soloviev, 2020], two rms residuals are proposed: the rms of the residual wavefront and the
rms of the residuals of the gradients of the wavefront. The idea is to find a set of modes that
minimises the rms of both residuals.

To compute the orthogonality of a set of modes, a correlation matrix can be computed.
This can be done for the set itself and for the gradients of the set. The following equations
can be used for the polynomials and the gradients of the polynomials respectively:

Ki,j = 1
R

∫∫
R

[Fi(x, y)Fj(x, y)] dxdy, (4-2)

Si,j = 1
R

∫∫
R

[
∂

∂x
Fi(x, y) ∂

∂x
Fj(x, y) + ∂

∂y
Fi(x, y) ∂

∂y
Fj(x, y)

]
dxdy. (4-3)

The result is a matrix, which displays the correlation between the different modes. If this
matrix is diagonal, the set of modes is orthogonal. However, the correlation matrices of both
the polynomials and their gradients should exhibit the diagonal behaviour in order for the
set to be orthogonal. In the next sections four examples for different sets of modes will be
presented. In section 6.1 it will be explained what the advantages of an orthogonal set are.

4.3 Actuator Responses

For the set of modes that can be used for the optimisation algorithms, a very common and
intuitive choice is the set of actuator responses. In Figure 4-1 one can see the actuator
responses of a 17-actuator MMDM, a DM from OKOtech with an actuator positioning that
can be seen in Figure 2-2. The responses of the actuators are an intuitive base to chose and
together they span the base of all possible wavefronts that can be represented by the DM. The
correlation matrices of this set are computed and can be seen in Figure 4-2. It can be seen that
the matrices are not diagonal. This implies that these modes are not orthogonal. Especially
between the first five actuators a lot of correlation is observed, which can be explained by
looking at the actuator responses in Figure 4-1. The first 5 actuator responses look similar.
The correlation between the modes and the gradients of the modes suggests that this might
not be the most optimal set of modes to use for optimisation.

4.4 Zernike Polynomials

Another example of a set of modes is the set of Zernike Polynomials [Hernández-Gómez et al.,
2014]. These polynomials exhibit orthogonal behaviour in the polynomials itself. This can be
seen in Figure 4-3, where the left picture shows a matrix with only non-zero elements on the
diagonal. The gradients of the Zernike polynomials are not uncorrelated, see the right plot in
Figure 4-3. The Zernike Polynomials are frequently used for wavefront representation, when
a modal representation is used. In Appendix C, the Zernike and LB-polynomials are shown
and evaluated in more detail. The polynomials will be shown, together with their correlation
matrices.
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4.4 Zernike Polynomials 19

Figure 4-1: Actuator responses of 17 actuator MMDM of OKOtech bv.

Figure 4-2: Correlation matrix of the actuator responses (left) and the correlation matrix of the
gradients of the actuator responses (right), both computed with the optimal aperture, which can
be seen in Figure 2-3b
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20 Mode Selection

Figure 4-3: Correlation matrix of the Zernike Polynomials (left) and the correlation matrix of
the gradients of the Zernike Polynomials (right)

4.5 Lukosz-Braat Polynomials

Using the approach described in [Debarre et al., 2007], the conversion matrix can be computed,
which yields the LB polynomials which can be found in Appendix C. Another approach can
be by using the Cholensky decomposition [Soloviev, 2020].

4.6 Representing the polynomials with a low order DM

In this section the representation of the Zernike- and LB-polynomials by a low-order DM will
be discussed. If the polynomials are used as a bases for optimisation, it is important to check
if these polynomials can be represented well enough or if there is a need for an optimised basis
based on the actuator responses. In order to answer that question, it must be noted that this
DM is a membrane based DM and is thus fixed at the borders of the mirror. In order to use
the mirror in the most optimal way, only a small part can be used. This means that also the
polynomials and their representations will be evaluated in this ’smaller’ region. The approx-
imations are made using a linear least squares approximation, discussed in Appendix D. In
Appendix C, the representation of the Zernike and LB-polynomials will be evaluated in more
detail. In Figure C-3, the representations of the Zernike polynomials by the DM are plotted
for the first 18 polynomials, excluding the piston term. In Figure C-4, the representations of
the LB polynomials by the DM are plotted for the first 18 polynomials, excluding the piston
term. In order to see if this approximation can be used, also the correlation matrices are
computed for the normal Zernike and LB polynomials and their gradients and the represen-
tations by the DM of the Zernike and LB polynomials and their gradients. These matrices
can be seen in Figure C-5 and Figure C-6.
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For the Synchronous Model Based approach, it is important to choose an independent basis.
In this section the main disadvantage of a basis with a non-diagonal correlation matrix of the
gradients will be discussed. The actuator responses or the Zernike Polynomials are examples
of bases that have non-diagonal gradient-based correlation matrices. Due to cross-correlation
between the different modes in these sets, the optimal solution for the control vector (com-
puted with Equation 5-19) is computed by solving a set of linear equations. This implies that
all the modes must be excited and measured before Equation 5-19 can be solved. This means
that the total time between the first measurement and the last measurement is dependent
on the total number of modes. In Figure 5-1 a schematic representation of the procedure is
displayed. In this picture also the Frozen Window Time is introduced, which is an important
assumption for this approach. The Frozen Window Time lasts from the initial measurement
until the computation of the optimal control vector and it is assumed that the incoming wave-
front does not change over this period of time. This assumption is needed, because the set of
linear equations can not be solved if the incoming wavefront were to change. In section 5.3
the validity of this assumption will be discussed.

In the method proposed by [Booth, 2007], the Lukosz-Braat polynomials are used as the
set of modes. This basis has a diagonal correlation matrix for the gradients of the polynomi-
als. However, it should be taken into account that the DM should be able to represent these
polynomials. In the case of a low-order DM, such as the 17channel MMDM from OKOTech,
this might not be possible (as explained in section 4.6) and the optimal modes should be
computed using a method proposed by [Lianghua et al., 2017]. This method finds the most
optimal modes using a Singular Value Decomposition (SVD) of the correlation matrix of the
gradients of the actuator responses. In section 6.1, the derivation of the most optimal modes
is given. For the derivation of the General Model Based Approach, also other sets of modes
can be used, such as the actuator responses or Zernike/Lukosz-Braat polynomials.

4.7 An Independent Set of Modes

In [Lianghua et al., 2017], a set is proposed that exhibits the features of an independent
set. This means the the correlation matrix (or cross-talk matrix) is diagonal. Using an
independent set has some benefits, compared to non-indendent sets. This will be explained in
chapter 6. As could be seen in Figure 4-2, the set of actuator responses is not an independent
set of modes. The Lukosz-Braat Polynomials are an example of an analytical independent set.
Another way of finding a suitable set of modes for this method is using the actuator responses
as a basis and compute an orthogonal set from these responses numerically. In Figure 4-2 it
was observed that the actuator responses itself are not an independent set of modes. This
implies that there is always some influence on other modes when updating 1 specific mode.
In order to decouple the actuator responses or make the modes fully independent, a singular
value decomposition of the correlation matrix is computed such that:

L = U−1S(V T )−1, (4-4)

where L is a diagonal matrix and U can be used to find the new set of modes corresponding
to L, G(x, y):

G(x, y) = U−1F (x, y), (4-5)
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Figure 4-4: Correlation matrix of the new independent modes

where F (x, y) represents the set of actuator responses. Plotting L yields the expected corre-
lation matrix, i.e. a diagonal matrix, see Figure 6-1. In Figure 6-2, the responses of the new
modes can be found and it can be seen that they are very different from the original actuator
responses.
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Chapter 5

A General Model Based Approach

Using an approach proposed by M.J. Booth [Booth, 2006], an optimal solution could be found
in N + 1 iterations, where N is the number of modes in the chosen set. The General Model
Based Approach is a method that uses the proportionality discussed in Appendix A of light
in order to compute the optimal solution. In order to apply this method several steps must be
taken, proposed by [Linhai and Rao, 2011], which will be explained in the following section.
Also, the proportionality of the change in the intensity distribution and the Mean Squared
Gradient (MSG) [Yang et al., 2015] is used. This proportionality is proven and written out in
Appendix A for completeness and because this is a very important relation for this approach:∫

R2
(I(u)− I0(u)) u2du = a2

4π2

∫
R2
P (x)2 |5φ(x)|2 dx, (5-1)

which can then be normalized by dividing it by the total power, where it is assumed that the
sum of the intensity does not change over time:∫

R2
I(u)du =

∫
R2
i0(u)du =

∫
R2
a2P (x)2dx (5-2)

and written as: ∫
R2 (I(u)− I0(u)) u2du∫

R2 I(u)du = a2

4π2

∫
R2 P (x)2 |5φ(x)|2 dx∫

R2 a2P (x)2dx . (5-3)

5.1 Masked Detector Signal

The metric used for optimisation is based on the Second-Moment (SM)-metric explained in
section 3.2 and this metric lead to the Masked Detector Signal (MDS), which is introduced
in [Linhai and Rao, 2011] and can be computed with

MDS =
∫∫
x,y I(x, y)

(
1− |r|

2

R2

)
dxdy∫∫

x,y I(x, y)dxdy , (5-4)
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which is only integrated over the area where r < R, where R is a suitably chosen Detector
radius and it should be weighted by the system’s Diffraction Limitation. The value for r can
be computed with

r =
√

(xi − x0)2 + (yi − y0)2, (5-5)

where x0 and y0 represent the centroids computed using Equation 3-6.

5.2 N+1 Iteration Solution

In order to come up with the most optimal control vector, the proportionality between the
MSG and the difference in the SM of the intensity measurement will be used. In this approach,
a known aberration (βF (x, y)) is added to the incoming wavefront (φ(x, y)) [Booth, 2007,
Linhai and Rao, 2011]

ε(x, y) = φ(x, y) + βFi(x, y), (5-6)

where Fi(x, y) represents the i-th mode in the chosen set of modes, e.g. the actuator responses
or Zernike polynomials, and β a predetermined coefficient. Now the difference in the SM of
the intensity distribution is measured and computed with

wi,init ≈ SMi − SMinit, (5-7)

where SMi represents the new measured SM and SMinit the initial measurement. Both SM’s
are equal to the corresponding MSG’s and can be written as:

SMi−SMinit = 1
R

∫
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(5-8)
where Equation 5-6 can be substituted for ε(x, y), resulting in

SMi − SMinit = 1
R
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∂
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− 1
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∂
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)2]
dxdy (5-9)

= 1
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φ(x, y)
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∂
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φ(x, y)

)2]
dxdy. (5-10)
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Using linearity of integrals, which states that any integral of linear terms can be represented
by a linear combination of the integrals of the terms.

SMi − SMinit = 1
R
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where SMi − SMinit can be simplified into wi,init. Now Equation 5-11 can be written in the
simplified form [Linhai and Rao, 2011], by substituting Equation 1-12 for ∂

∂xφ(x, y):

W = 2βSV + β2Sm, (5-12)

where

S =


S1,1 S1,2 . . . S1,N . . . S1,M
S2,1 S2,2 . . . . . . . . .
... . . . SN−1,N . . . SN−1,M

SN,1 . . . SN,N−1 SN,N . . . SN,M

 , (5-13)

Sm =


S1,1
S2,2
...

SN,N

 ,W =


w1,init
w2,init

...
wN,init

 , V =



ν1
ν2
...
νN
...
νM


, (5-14)

whereN is the number of modes that the Deformable Mirror (DM) can correct for andM is the
number of modes with which the incoming wavefront can be described. Usually M > N , but
in [Lianghua et al., 2017] a method is proposed where M = N , making the S-matrix squared.
The entries of the S-matrix can be computed using Equation 4-3. Now the control vector,
which contains the coefficients νi that represent the combination of modes that represent the
incoming wavefront, can be computed by rearranging the terms in Equation 5-12 into

V = S−1(W − β2Sm)
2β . (5-15)
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It should be taken into account that Equation B-3 is usually used as a metric and that W
should be converted from

wi,init = SMi−SMinit ≈ c0(1−MDSi)−c0(1−MDSinit) = −c0(MDSi−MDSinit), (5-16)

into
wi,init = −c0mi,init, (5-17)

where
mi,init = MDSEi −MDSEinit. (5-18)

This resulting in

V = S−1(c0M − β2Sm)
2β , (5-19)

where

M =


m1,init
m2,init

...
mN,init

 . (5-20)

Now the most optimal control vector can be found after N + 1-measurements by solving a set
of linear equations. However, as stated before, in a dynamic situation the delay between the
initial measurement and the N th measurement increases with the number of modes and might
become unstable in closed loop form in dynamic situations. In order for this method to work,
it is assumed that the incoming aberration does not change between the initial measurement
and the (N + 1)th measurement. In Figure 5-1, a schematic overview is given of this method.

5.3 Frozen Window Assumption

In this section the Frozen Window Time will be discussed. As mentioned in section 5.2, all
measurements are needed in order to solve the set of linear equations. Therefore, it is required
for this method that the incoming wavefront does not change over time. This might hold in
static situations, but it does not hold in dynamic situations. In static situations, the incoming
wavefront does not change over time and in dynamic situations, the incoming wavefront does
change over time.

This is a very important point of interest for this thesis, as the main goal is to design a
system for astronomy. In astronomy, there must be dealt with turbulence, which is an ex-
ample of a situation where dynamic aberrations occur. In order to apply this method, the
Frozen Window Time must be reduced. In chapter 6, a method is described that reduces the
Frozen Window Time drastically.
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Figure 5-1: Schematic overview of General Model Based Approach over time. It should be taken
into account that this is only a schematic representation of the process
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Chapter 6

A Synchronous Model Based Approach

In order to reduce the Frozen Window Time, a method proposed by [Lianghua et al., 2017]
is evaluated. The main idea of this approach is to decouple the set of modes and use the
independent set of modes as a basis to update every modes independently. In order to do
this, first a basis must be chosen or computed that is fully orthogonal, i.e. has a diagonal
correlation matrix of the gradients of the set of modes. An example of this is the set of
Lukosz-Braat polynomials, but for the Deformable Mirror (DM) that will be used in this
thesis a new set must be derived, as the LB-polynomials can not be represented well enough.
This will be done in section 6.1, followed by the results of this approach in section 6.2. In this
section also the extra benefits for the computation time will be discussed and the development
of the metric value over time will be compared to the method proposed in section 5.2.

6.1 An Independent Set of Modes

In order to decrease this delay, it is proposed in [Lianghua et al., 2017] to increase the total
number of measurements to 2N , and use every uneven measurement as the initial or com-
parison measurement and every even measurement to excite one mode and find the most
optimum solution for that mode. In order to do so, the modes that are to be updated must
be fully independent. If they are not, it is not possible to update one single mode, because
other modes will influence the resulting Point Spread Function (PSF). As could be seen in
Figure 4-2, the set of actuator responses is not an independent set of modes. So the Zernike-
or LB-polynomials can be used for example. It first must be checked if the MMDM can
represent these polynomials. This is done in section 4.6.

Another way of finding a suitable set of modes for this method is using the actuator re-
sponses as a basis and compute an orthogonal set from these responses. In Figure 4-2 it was
observed that the actuator responses itself are not an independent set of modes. This implies
that there is always some influence on other modes when updating 1 specific mode. In order
to decouple the actuator responses or make the modes fully independent, a singular value
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Figure 6-1: Correlation matrix of the new independent modes

decomposition of the correlation matrix is computed such that:

L = U−1S(V T )−1 (6-1)

L will now be a diagonal matrix and U can be used to find the new set of modes corresponding
to L, G(x, y):

G(x, y) = U−1F (x, y), (6-2)

where F (x, y) represents the set of actuator responses. Plotting L yields the expected corre-
lation matrix, i.e. a diagonal matrix, see Figure 6-1. In Figure 6-2, the responses of the new
modes can be found and it can be seen that they are very different from the original actuator
responses.

6.2 2N Iteration Solution

Now that an orthogonal basis is found for the DM, a solution for this method can be derived.
As the correlation matrix of the new modes is diagonal, the control vector computation can
be simplified from a matrix equation into a scalar computation. Starting with:

V = L−1(c0M − β2Lm)
2β (6-3)

This can be simplified, because L is diagonal. This implies that every entry of V can be
computed by a scalar computation:

νi =
L−1
i,i (c0mi,init − β2Li,i)

2β , (6-4)
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Figure 6-2: Responses of the new independent modes in the small aperture of the mirror

This method requires only 2 measurements to update 1 mode and it could be updated in
N+1 measurements, but it is now also possible to update every mode separately. This has
the advantage that the delay between the initial measurement and the update measurement
can be reduced to only 2 measurements. With this, the Frozen Window Time decreases
significantly and the goal of this method is achieved. However, with this method, also the
computation time reduces significantly, as the control vector computation reduces from a
matrix equation, to a scalar equation. One important downside of this method is the increase
in the time to update all the modes, which increases from N + 1 to 2N . In Figure 6-3, a
schematic overview is given of the method proposed by [Lianghua et al., 2017].
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Figure 6-3: Schematic overview of the Synchronous Model Based Approach
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Chapter 7

Mirror Calibration

In this chapter two different calibration techniques will be discussed. The first is based on
the research of [Booth, 2011] and [Pozzi et al., 2018] and will be elaborately discussed in
this chapter. The techniques from these researches are used as a basis for the new proposed
online calibration procedure, which is based on the general model based approach. The SM
will be used as a metric value instead of the Sharpness metric [Booth, 2011]. This calibration
procedure will be introduced in this chapter, but discussed more extensively in section 9.1.

7.1 Emperical Mirror Calibration

Using simulations to verify certain methods is always desirable. It gives insight in the be-
haviour of a method and might show flaws in advance. However, those simulations are only
a reflection of reality and in order to implement the methods into a real experiment, some
important steps must be taken. There are some important errors that are not, or can not,
be taken into account entirely, such as non-common path errors, alignment errors or errors
in the basis set of the actuator responses. In order to overcome these problems, calibration
is needed. In this calibration procedure, several different approaches can be taken. The two
main different approaches are an online or offline approach. Using an offline approach has the
advantage that a Wavefront Sensor (WFS) can be included in the system, which means that
the delay introduced by the Deformable Mirror (DM) can be checked thoroughly and that an
actual representation of the delay can be mapped. However, the offline calibration procedure
does not take into account any misalignment errors if the system is replaced, it can introduce
non-common path errors, due to extra optical elements, and it implies that the setup must
be changed if one wants to calibrate the DM. Using an online calibration procedure has the
advantage that any system induced errors will be taken into account and can be performed
any time and also if anything is changed in the system. In [Booth, 2011] an online calibration
procedure is proposed, which uses the Sharpness metric as a basis for the calibration. In order
to solve this problem, they introduce several different steps. Starting with categorizing the
modes, where the used set of modes is the set of Zernike polynomials. Then, the calibration
procedure is initialized and at last also a check is done on the correlation matrix.
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7.1.1 Mode Classification

Because the Sharpness metric is used, first some modes must be excluded from the used set of
modes. In order to do this, first the set must be categorized. The used set in [Booth, 2011] is
the set of Zernike polynomials, which inhibits some useful characteristics. In order to define
the different categories, the effect of a mode on the intensity distribution is evaluated. There
are 3 categories:

1. Modes that have no effect on image quality or displacement

2. Modes that have no effect on the resolution but do displace the PSF

3. Modes that have influence on the image quality and resolution

7.1.2 Displacement Free Modes

The first category includes only the piston term, the second category includes tip and tilt
for a 2 dimensional image and also the defocus term for a 3 dimensional image and the last
category includes all the other modes. In general, the piston term is always neglected as it
has no effect on the image at all. Due to the used metric, in this approach the displacement
modes must be dealt with first. These are modes that only displace the image. In order to
get rid of these modes, first it is checked how much tip/tilt is present in every mode [Booth,
2011]. Then, an orthogonal projection is made, which projects the part of every mode that is
displacement free.

7.1.3 Empirical Calibration

Next, the calibration procedure is started. This is done by applying a sequence of predefined
input signals to all the different combinations of two modes. For every combination a number
of these input signal are applied and the resulting metric values are stored in a vector. Then,
due to the used metric, a 3 dimensional ellipse is formed and the measurements are fitted
to the standard formula of an ellipse and the parameters that result from the fit represent
the same values as the values in the correlation matrix. Once this new matrix is obtained, a
Singular Value Decomposition is applied and used to obtain a new set of independent modes.
Then, the empirical calibration is performed again to check if the resulting set of modes is
indeed an orthogonal set of modes.

7.2 SM-based DM calibration

The method described in section 7.1 uses the Sharpness metric to find the correlation matrix.
But it must be noted, that the Model Based Approach and its derivations all use the Second-
Moment (SM) as a metric. This means that a different approach is needed, that is based
partially on the above described method. In order to implement the SM-based DM calibration,
the model based approach is used. In section 9.1, an extensive explanation and derivation of
this procedure is presented.
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Chapter 8

Extended Object

The research up till here has been based on a point source. Especially the metrics that have
been derived are based on the assumption that the object image can be represented by a
dirac function, which means that the object is neglected in the computations. However, it
might be very interesting to look into objects that can not be represented as point sources,
i.e. extended objects. In [Yang et al., 2015], an approach is proposed that uses a derivation of
three steps to mathematically prove what metric to use for extended objects. First, a metric
(the Masked Detector Signal (MDS)) is derived for a point source. Next, the point source is
shifted to an arbitrary location and at last this shift is used to find a solution for an extended
object.

The derivation for the first step is also given in Appendix A, up till the proportionality be-
tween the change in the second moment of the intensity distribution and the Mean Squared
Gradient (MSG). Next, the important MDS is introduced. This is based on the practical
limitations of the detector radius of the sensor and is defined as Equation B-3. In Appendix B,
this relation is derived.

The next step in the derivation is proving that the point source can be located at any point on
the sensor. In [Yang et al., 2015] it is proven that it does not matter where the point source
is located, but it should be taken into account that an aberration in the form of tip/tilt
would be undistinguishable from a point source at a shifted location. So the limitation of
this derivation is that in the process, the tip/tilt aberrations should average zero. In Ap-
pendix B, the derivation of [Yang et al., 2015] is summarized in order to prove this relation.
Once this identity is proven, it can be extended to the application on extended objects as well.

The last step in the derivation of a metric for extended object is combining the shifted point
source and the assumption that an extended object can be represented as a combination of all
point sources that represent the object image. This assumption is based on the image of an
extended object, which can be described by a convolution of the object image and the Point
Spread Function (PSF) of the aberration. In Appendix B the full derivation is presented,
based on the derivation of [Yang et al., 2015]. The results are that the change in the intensity
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distribution is still proportional to the MSG, see Equation B-14, and that the MDS could be
used as a metric for an extended object if it is modified∫

R2 (i(u)− i0(u)) |u|2du∫
R2 i(u)du = 1

4π2

∫
R2 (P (x)ϕ′x(x))2 dx∫

R2 P 2(x)dx . (8-1)

This expression can be simplified when the Masked Detector Signal for Extended Objects
(MDSE) is introduced, which can be computed with [Yang et al., 2015]

MDSE =
∫
R2 i(u) |u|2 du∫

R2 i(u)du , (8-2)

which can be used to simplify Equation 8-1 into

MDSE−MDSE0 = c0MSG. (8-3)

R.I. van Genderen Master of Science Thesis



Part II

A Continuous Model Based Approach
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Introduction Continuous Model Based
Approach

In the model based approach the most important assumption is the frozen window time. It
assumes that the incoming wavefront does not change over time, from the initial measurement
until the measurement for the last mode. In [Lianghua et al., 2017], a method is proposed
that decreases this frozen window time significantly by decoupling all the modes. By doing so,
it is possible to update every mode independently using only two consecutive measurements,
which implies that the frozen window time can be decreased to only two measurements. The
downside of this method is that the total number of measurements increases, as every mode
needs two measurements, resulting in a total of 2N measurements. This means that the
time between the initial measurement increases significantly and it is highly doubtful if this
increases the quality and performance of such a system in dynamic situations. In this thesis
a method is proposed which implements the decoupling of the system, while also decreasing
the number of measurements from 2N to N + 1 measurements. This new method is referred
to as the Continuous Model Based Approach (CMBA).

In order to implement the CMBA, it is assumed that the incoming wavefront does not change
over the time between two measurements. Two measurements are needed to compute of the
most optimal control input for one mode. In Figure 9-1 a schematic overview is given of
the proposed method. It should be noted that the frozen windows overlap. However, it is
assumed that every frozen window is different, i.e. the incoming wavefront is different for
every frozen window. This might seem like a contradiction, as this might imply that the first
frozen window must be the same as the second (as they overlap), and the second must be the
same as the third and so on, but for this approach this is not the case. Even though these
windows overlap, it is assumed that the wavefront in every window is based on the incoming
wavefront at the time instance of the first measurement of the window. This implies that the
wavefront is different for every window and that every measurement (except the first) is used
twice and for a different computation.
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In this part of the thesis, two new approaches will be presented and validated in simula-
tions and experiments. First, the mathematical proof of the CMBA will be presented. To
verify the efficiency and validity of the CMBA, simulations and experiments will be conducted
and compared with two known methods; the General Model Based Approach (GMBA) and
Synchronous Model Based Approach (SMBA). In order to be able to implement this method
in the experimental setup, an extra part has been included for the calibration of the DM.
The results for the simulations will be presented in chapter 10 and discussed in chapter 11.
Lastly, conclusions will be drawn in chapter 12 and the recommendations for further research
will be summarised.
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Chapter 9

Method

In this section two new contributions to the field of Adaptive Optics (AO) are proposed: an
online calibration procedure for the experimental implementation and a new method which
uses a Wavefront Sensorless Adaptive Optics (WFSless AO) approach and is referred to as
the Continuous Model Based Approach (CMBA). The CMBA uses only N +1 measurements
and can be updated after each iteration. This reduces the number of measurements, com-
pared to the Synchronous Model Based Approach (SMBA) [Lianghua et al., 2017], and it
reduces the frozen window time significantly to only 2 measurements, compared to the N + 1
measurements in the General Model Based Approach (GMBA) [Linhai and Rao, 2011].

This section will start with introducing the new online calibration procedure for the ac-
quisition of the correlation matrix. This procedure is needed to overcome system induced
errors and can be implemented on any system with a Deformable Mirror (DM) and CCD
camera. Followed by explaining the general idea of the CMBA and the problem that arises
when every mode is updated after every iteration. Then, a solution is formulated, where the
most optimal control input is derived. Followed by the algorithm that solves this problem.
In order to validate the online calibration procedure and the CMBA, first simulations are run
and than experiments are conducted. The implementation of the simulations and experiments
will be discussed in the last part of this section.

9.1 Mirror Calibration

Before the new method can be implemented, first the mirror must be calibrated. In order to
overcome misalignment errors or non-common path errors, an online calibration method is
preferred, as this approach takes these errors into account in its calibration. Implementing an
offline calibration might result in a more accurate representation, but after the calibration,
the DM must be positioned in the setup, where more errors might be introduced.
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In the calibration procedure, there are several steps that need to be taken. First, a basis
set must be chosen, such as the actuator responses or a precomputed set of (independent)
modes. Then the correlation/crosstalk matrix must be determined and from this new obtained
matrix, a singular value decomposition can be computed, which can be used to compute the
new set of modes G(x, y), based on the old set F (x, y):

G(x, y) = BF (x, y). (9-1)

In order to obtain matrix B, several different inputs are applied to the DM and the intensity
distribution is measured. In the following sections, the different parts of the calibration will
be described. Starting with the input computation and the used metric, followed by the
calibration method itself, which is based on the model based approach.

9.1.1 Input Computation

In order to find the correlation matrix, all different combinations of two different modes are
to be excited, resulting in the mirror induced aberration

φDM (x, y) =
N∑
i=1

βiF (x, y) (9-2)

To excite the system, the same inputs are used as in [Booth, 2011]:

β(i) = γ cos(2π
T n)

β(j) = γ sin(2π
T n),

(9-3)

for i 6= j, γ is a scaling term and T is the total number of excitations for every combination
of modes. By using this approach, the total excitation will always be equal to γ.

Another choice for the control input can be to only excite one mode or another combina-
tion of modes. Because this approach is based on the research of [Booth, 2011], the above
described input is used in this thesis and because it has been shown to work in simulations.
It is beyond the scope of this thesis to look into the most optimal control input for this
approach, but it is recommended to do so in further research.

9.1.2 Metric

As the model based approach implements the SM of the intensity distribution is the optimi-
sation metric, it is also desired to use this metric for the calibration procedure. It should be
taken into account that this is a different metric, compared to the research of [Booth, 2011]
and [Débarre et al., 2008], where respectively the total intensity and sharpness metric are
used. The computation of this metric is explained in section chapter 3 and because it uses
the CoG of the intensity distribution as a middle point, it is not necessary to implement the
displacement removal procedure.
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9.1.3 Calibration Procedure

In order to find the correlation matrix, that will be used for the optimisation, a new method
will be described that uses the model based approach as a basis. Using the following relation,
which is equivalent to Equation 5-12:

SMi − SMinit = 2βSV + β2Sm, (9-4)

the goal is to solve for S. This can be achieved by rewriting the matrices into vectors with

SMi − SMinit = 2vec(βV )Tvec(S) + vec(β2)T · vec(I)Tvec(S), (9-5)

which can be simplified into

SMi − SMinit = (2vec(βV )T + vec(β2)T · vec(I)T )vec(S) (9-6)

and solved for S as

vec(S) = (2vec(βV )T + vec(β2)T · vec(I)T )−1(SMi − SMinit) (9-7)

This equation can only be solved if the aberration vector V is known. This can be solved by
implementing a simple optimisation algorithm, such as a Stochastic Gradient Descent (SGD)
or Coordinate Search (CS) algorithm. Then the resulting coefficient or control vector can be
simply filled in in the equation. In the simulations, where there is no system induced error,
this can be implemented by assuming a very small and equal error in the initial measurement.
It must be taken into account that this error does not directly represent the system induced
error. But after the calibration, this applied aberration (the control input used to generate
it) does include the system induced aberration. It must also be taken into account that
Equation 9-7 can only be used to compute the entries of matrix S that correspond to the two
excited modes(Si,i, Si,j , Sj,i and Sj,j). In order to solve for every value of the S matrix, this
means that all the combinations must be excited. In Figure 10-1, the resulting correlation
matrix can be found. This correlation matrix can then be used to compute the new set of
modes, based on the used set of modes, see Figure 10-2.

9.2 General Problem Statement

Once the mirror is calibrated, the optimisation of the image quality can be started. This
can be done by using a model based approach for example, such as described in chapter 5.
However, as mentioned in chapter 6, if the ’general’ model based approach is used, the frozen
window time becomes significantly large. In order to overcome this, a SMBA is proposed
by [Lianghua et al., 2017], which decreases the frozen window time but increases the total
number of measurements. In order to use as few measurements as possible, whilst keeping
the frozen window time as short as possible, a new method is proposed. This ’new’ method
will be referred to as the CMBA. In the next sections, the mathematical proof validation for
this method will be given. In chapter 10, experimental results for the method will be shown
and discussed.
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Figure 9-1: Schematic overview of the proposed method

9.3 Continuous Model Based Approach

In order to overcome the aforementioned problems of the frozen window time and the total
number of iterations, two steps are combined in the optimisation process (compared to the
SMBA). The optimisation of the previous mode will be combined with the addition of a
known aberration to the next mode (which is needed to compute the optimal control input
for the next mode). In Figure 9-1 a schematic overview of the proposed method is displayed.
The combination of the optimisation and excitation is displayed by the yellow and blue
boxes. The measurements are visualised in orange. It can be seen that this method uses
less measurements but keeps the frozen window time relatively low. In order to find the
needed steps in the process, several different steps will be taken, starting with a mathematical
description of the situation. Then, a general problem statement will be formulated for this
problem, followed by a solution.

9.3.1 General Approach

For this method the incoming wavefront is denoted as ψ0 at t = 0. The optimal control vector
v is not known and is assumed to be equal to a column vector of zeros with length N . It is also
assumed that the incoming wavefront remains the same for two consecutive measurements
and is defined as the wavefront at the time instance of the first measurement. In this section
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it will be shown that it is not possible to directly compute the most optimal control input if
both the computed optimal control input for a mode and the known aberration for the next
mode are applied to the DM. In order to show this, the first 3 updates will be discussed and
extended to a more general case. In these cases, it is assumed that the optimal control input
can be computed, using the GMBA described in for example [Linhai and Rao, 2011] and in
subsection 9.3.2. Then this general result will be used to compute the optimal control input
for a certain mode based on the approach of [Linhai and Rao, 2011] and it will be shown that
there will be one variable too much for this approach. The next step will introduce a method
which projects the most optimal Second-Moment (SM) of the intensity distribution and uses
this projection to compute the new optimal control input for the next mode.

First mode In order to compute the first mode an initial measurement is taken at t = 0 and
then a known aberration is added in the form of βF1(x, y). A second measurement is taken
at t = 1 and the wavefronts at these two time instances can be described by

t = 0 φ0 = ψ0
t = 1 φ1A = ψ0 + βF1(x, y). (9-8)

With these two measurements the most optimal control input for the first mode, γ1 can be
computed and filled in the optimal control vector v1.

v1 = v0 = zeros(N, 1), (9-9)
v1(1, 1) = γ1. (9-10)

It is assumed that the incoming wavefront has not changed over these two measurements, but
in a real-time situation, the incoming wavefront has changed and at time instance t = 1, it
can be denoted as ψ1. Using this the second mode can be updated.

Second mode Now it is assumed that the wavefront at time instance t = 1 has changed and
can be denoted by ψ1. However, at time instance t = 1, a known aberration was added in the
form of βF1(x, y) to compute the optimal control input γ1. Now this optimal control input
can be added in the next step (at time instance t = 2), together with the knwon aberration
of the second mode. The wavefronts at the time instances t = 1, 2 can be described by

t = 1 φ1B = ψ1 + βF1(x, y)
t = 2 φ2A = ψ1 +

∑∞
i=1 v1,iFi(x, y) + βF2(x, y). (9-11)

With the measurements at these two time instances, the most optimal control input γ2 can
be computed for the second mode and the optimal control vector updates to v2:

v2 = v1 (9-12)
v2(2, 1) = γ2 (9-13)

Third mode Again, it is assumed that the wavefront at time instance t = 2 has changed and
can be denoted by ψ2. However, at time instance t = 2, a known aberration was added in the
form of βF2(x, y) to compute the optimal control input γ2. Now this optimal control input
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can be added in the next step (at time instance t = 3), together with the knwon aberration
of the second mode. The wavefronts at the time instances t = 2, 3 can be described by

t = 2 φ1B = ψ2 +
∑∞
i=1 v1,iFi(x, y) + βF2(x, y)

t = 3 φ2A = ψ2 +
∑∞
i=1 v2,iFi(x, y) + βF3(x, y). (9-14)

With the measurements at these two time instances, the most optimal control input γ3 can
be computed for the second mode and the optimal control vector updates to v3:

v3 = v2 (9-15)
v3(3, 1) = γ3 (9-16)

kth mode For a more general approach, the kth mode is used. Following the same approach
as for the first two modes, the wavefronts at time instances t = k, k + 1 can be described by

t = k φkB = ψk +
∞∑
i=1

vk−1,iFi(x, y) + βFk(x, y), (9-17)

t = k + 1 φ(k+1)A = ψk +
∞∑
i=1

vk,iFi(x, y) + βFk+1(x, y). (9-18)

With the measurements at these two time instances, the most optimal control input γk can
be computed for the second mode and the optimal control vector updates to vk:

vk = vk−1 (9-19)
vk(k, 1) = γk (9-20)

These representation can be used in the approach to compute the optimal control input. As
stated earlier, in the above cases, it is assumed that it is possible that the optimal control
input can be computed. In the following section, it will be shown that this is not necessarily
true.

9.3.2 Optimal control input computation

In this section the following notations will be used for the derivatives w.r.t. the x- and
y-direction, where it is assumed that the incoming wavefront can be described by a linear
combination of a certain set of modes F (x, y):

∂

∂x
ψk =

∞∑
i=1

vi
∂

∂x
Fi(x, y) = v

∂

∂x

∞∑
i=1

Fi(x, y) = v
∞∑
i=1

∂

∂x
Fi(x, y) (9-21)

∂

∂y
ψk =

∞∑
i=1

vi
∂

∂x
Fi(x, y) = v

∂

∂y

∞∑
i=1

Fi(x, y) = v
∞∑
i=1

∂

∂y
Fi(x, y) (9-22)

It is also assumed that the used set of modes exhibits orthogonal behaviour in the gradients of
the set. Now the proportionality between the Mean Squared Gradient (MSG) and the change
in the SM of the intensity distribution is used:∫∫

R2

(
φ′kB

)2︸ ︷︷ ︸
1

−
(
φ′(k+1)A

)2

︸ ︷︷ ︸
2

= SMkB − SM(k+1)A, (9-23)
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where

1
(
φ′kB

)2
=
(
∂

∂x
φkB

)2

︸ ︷︷ ︸
A

+
(
∂

∂y
φkB

)2

︸ ︷︷ ︸
B

. (9-24)

Now Equation 9-18 can be substituted in A and B , which yields

A
(
∂

∂x
φkB

)2
=
(
∂

∂x
ψk +

∞∑
i=1

vk−1,i
∂

∂x
Fi(x, y) + β

∂

∂x
Fk(x, y)

)2

, (9-25)

B
(
∂

∂y
φkB

)2
=
(
∂

∂y
ψk +

∞∑
i=1

vk−1,i
∂

∂y
Fi(x, y) + β

∂

∂y
Fk(x, y)

)2

, (9-26)

where the value for β can be rewritten as a column vector as

βupd,k+1(1 : N) =


0
0
...
0
0

 , (9-27)

with βupd,k+1(k+ 1) = β, where k+ 1 represents the value of the next mode that is updated.
Using

vupd,k = vk + βupd,k+1, (9-28)

Equation 9-25 can be written as

A
(
∂

∂x
ψk + ∂

∂x

∞∑
i=1

vupd,k,iFi(x, y)
)2

=
(
∂

∂x
ψk

)2
+ 2

(
∂

∂x
ψk

∞∑
i=1

vupd,k−1,i
∂

∂x
Fi(x, y)

)

+
( ∞∑
i=1

vupd,k−1,i
∂

∂x
Fi(x, y)

)2
, (9-29)

Equation 9-26 then becomes

B
(
∂

∂y
ψk + ∂

∂y

∞∑
i=1

vupd,k,iFi(x, y)
)2

=
(
∂

∂y
ψk

)2
+ 2

(
∂

∂y
ψk

∞∑
i=1

vupd,k−1,i
∂

∂y
Fi(x, y)

)

+
( ∞∑
i=1

vupd,k−1,i
∂

∂y
Fi(x, y)

)2
. (9-30)

Using the same approach for 2 yields

2
(
φ′(k+1)A

)2
=
(
∂

∂x
φ(k+1)A

)2

︸ ︷︷ ︸
C

+
(
∂

∂y
φ(k+1)A

)2

︸ ︷︷ ︸
D

. (9-31)
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For C and D , using that the value for β can be rewritten as a column vector as

βupd,k(1 : N) =


0
0
...
0
0

 , (9-32)

with βupd,k(k) = β, where k represents the value of the mode that is updated in this iteration.
Now vupd,k−1 can be written as

vupd,k−1 = vk−1 + βupd,k, (9-33)

which yields the equations for C and D :

C
(
∂

∂x
φ(k+1)A

)2
=
(
∂

∂x
ψk

)2
+ 2

(
∂

∂x
ψk

∞∑
i=1

vupd,k,i
∂

∂x
Fi(x, y)

)

+
(
vupd,k

∞∑
i=1

∂

∂x
Fi(x, y)

)2
, (9-34)

D
(
∂

∂y
φ(k+1)A

)2
=
(
∂

∂y
ψk

)2
+ 2

(
∂

∂y
ψkvupd,k

∞∑
i=1

∂

∂y
Fi(x, y)

)

+
( ∞∑
i=1

vupd,k,i
∂

∂y
Fi(x, y)

)2
. (9-35)
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Now 1 − 2 can be solved, which yields:

1 − 2 = A + B −
(
C + D

)
= A − C + B − D

=
(
∂

∂x
ψk

)2
+ 2

(
∂

∂x
ψk

∞∑
i=1

vupd,k−1,i
∂

∂x
Fi(x, y)

)
+
( ∞∑
i=1

vupd,k−1,i
∂

∂x
Fi(x, y)

)2
−
(
∂

∂x
ψk

)2

− 2
(
∂

∂x
ψk

∞∑
i=1

vupd,k,i
∂

∂x
Fi(x, y)

)
−
( ∞∑
i=1

vupd,k,i
∂

∂x
Fi(x, y)

)2

+
(
∂

∂y
ψk

)2
+ 2

(
∂

∂y
ψk

∞∑
i=1

vupd,k−1,i
∂

∂y
Fi(x, y)

)
+
( ∞∑
i=1

vupd,k−1,i
∂

∂y
Fi(x, y)

)2
−
(
∂

∂y
ψk

)2

− 2
(
∂

∂y
ψk

∞∑
i=1

vupd,k,i
∂

∂y
Fi(x, y)

)
−
( ∞∑
i=1

vupd,k,i
∂

∂y
Fi(x, y)

)2

= 2
(
∂

∂x
ψk

∞∑
i=1

vupd,k−1,i
∂

∂x
Fi(x, y)

)
− 2

(
∂

∂x
ψk

∞∑
i=1

vupd,k,i
∂

∂x
Fi(x, y)

)

+
(
v2
upd,k−1,i − v2

upd,k,i

)( ∞∑
i=1

∂

∂x
Fi(x, y)

)2

+ 2
(
∂

∂y
ψk

∞∑
i=1

vupd,k−1,i
∂

∂y
Fi(x, y)

)
− 2

(
∂

∂y
ψk

∞∑
i=1

vupd,k,i
∂

∂y
Fi(x, y)

)

+
(
v2
upd,k−1,i − v2

upd,k,i

)( ∞∑
i=1

∂

∂y
Fi(x, y)

)2

= 2 ∂

∂x
ψk

∞∑
i=1

(
vupd,k−1,i − vupd,k,i

)
∂

∂x
Fi(x, y) +

( ∞∑
i=1

(
v2
upd,k−1,i − v2

upd,k,i

)
∂

∂x
F 2
i (x, y)

)

+ 2 ∂
∂y
ψk

∞∑
i=1

(
vupd,k−1,i − vupd,k,i

)
∂

∂y
Fi(x, y) +

( ∞∑
i=1

(
v2
upd,k−1,i − v2

upd,k,i

)
∂

∂y
F 2
i (x, y)

)
.

Now Equation 9-21 and Equation 9-22 can be substituted as a representation for the incoming
wavefront, which yields

SMkB − SM(k+1)A =
∫∫

R2
2
∞∑
j=1

vj
∂

∂x
Fj(x, y)

∞∑
i=1

(
vupd,k−1,i − vupd,k,i

)
∂

∂x
Fi(x, y)

+
( ∞∑
i=1

(
v2
upd,k−1,i − v2

upd,k,i

)
∂

∂x
F 2
i (x, y)

)

+ 2
∞∑
j=1

vj
∂

∂y
Fj(x, y)

∞∑
i=1

(
vupd,k−1,i − vupd,k,i

)
∂

∂y
Fi(x, y)

+
( ∞∑
i=1

(
v2
upd,k−1,i − v2

upd,k,i

)
∂

∂y
F 2
i (x, y)

)
dxdy,

which can be written in a simplified matrix form as

SM(k+1)A − SMkB = 2(vupd,k−1 − vupd,k)SV + (v2
upd,k−1 − v2

upd,k)Sm, (9-36)
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where

S =


S1,1 S1,2 . . . S1,N . . . S1,M
S2,1 S2,2 . . . . . . . . .
... . . . SN−1,N . . . SN−1,M

SN,1 . . . SN,N−1 SN,N . . . SN,M

 , (9-37)

Sm =


S1,1
S2,2
...

SN,N

 ,V =



ν1
ν2
...
νN
...
νM


, (9-38)

where
Si,j = 1

R

∫∫
R

[
∂

∂x
Fi(x, y) ∂

∂x
Fj(x, y) + ∂

∂y
Fi(x, y) ∂

∂y
Fj(x, y)

]
dxdy. (9-39)

Using the approach of [Lianghua et al., 2017], the modes can be decoupled and the resulting
S-matrix becomes diagonal. This implies that Equation 9-36 boils down to a multiplication
of scalar values. This will be used later in the next step. The update vectors vupd,k and
vupd,k−1 are defined as

vupd,k = vk + βupd,k+1

= vk−1(:)− vk−1(k) + γk + βupdt,k+1 (9-40)
vupd,k−1 = vk−1 + βupdt,k, (9-41)

where vk−1(k) represents the kth value of the column vector v,k−1 and is only subtracted from
the kth entry of this vector. γk is also just a scalar value and only added to the kth entry of
the column vector. Now the two vectors vupd,k and vupd,k−1 can be subtracted as

vupd,k−1 − vupd,k = vk−1 + βupdt,k − (vk−1(:)− vk−1(k) + γk + βupdt,k+1)
= vk−1(k)− γk − βupdt,k+1 + βupdt,k

=



0
...

+vk−1(k)− γk + βupdt,k
−βupdt,k+1

...
0


(9-42)

and

v2
upd,k−1 − v2

upd,k = (vk−1 + βupdt,k)2 − (vk−1(:)− vk−1(k) + γk + βupdt,k+1)2

=



0
...

(vk−1(k) + βupdt,k)2 − γ2
k

−(βupdt,k+1)2

...
0


. (9-43)
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In Equation 9-42, it can be seen that this method yields two equations and can be written as:

∆SMk,k+1 = 2ΓTSv + ΛTSm, (9-44)

where

Γ =
[

+vk−1(k)− γk + βupdt,k
−βupdt,k+1

]
and Λ =

[
(vk−1(k) + βupdt,k)2 − γ2

k

−(βupdt,k+1)2

]
, (9-45)

∆SMk,k−1 = SMk − SMk−1. (9-46)

9.3.3 General Problem Statement

Equation 9-44 is to be solved for v, but that would not be correct, as the measurement SMk is
taken with a certain aberration added to it. Measuring it again after optimisation, would yield
a different value for the SMk. The problem is that there are now two aberrations added in
one step; the known aberration of the next mode and the optimal control input of this mode.
Thus, the change in the SM of the intensity distribution is dependent on these two changes
and it must first be determined, what part of this change is dependent on the optimisation
of this mode and what part is dependent on the (known) aberration of the next mode. One
option would be to retake the measurement after the optimisation and before the introduction
of the next aberration, but that introduces a delay, which is unwanted. Instead of retaking
the image one can also reverse engineer the optimal SM for one mode. This SM can be seen
as the lowest available SM for a certain mode, which can be achieved if the optimal control
input is used as an input. Then this optimised SM can be used to compute the next optimal
control input and is denoted as SM∗k . This method uses two steps, first the initialisation and
then the optimisation.

9.3.4 Computation of optimal SM and control input

In order to compute the optimal SM of the intensity distribution, first the optimal control
input γk must be computed. This can be done by a method described in many researches
and is computed as:

γk = 1
2β
−1
upd,kS

−1
(
∆SMk−1,k − β2

upd,kSm
)
, (9-47)

where βupd,k also includes the previous control input and actually equals (for continuity pur-
poses)

βupd,k = −2vkβ + β2, (9-48)

if the previous control input is not equal to zero. If both the SM’s of the intensity distributions
are known, before the known aberration βupd,k is applied and after. If the applied aberration
is the only new aberration, this equation can be used to compute the most optimal control
input, i.e. the control input that describes the incoming wavefront in the best possible way
and can thus be used as the most optimal control input for the DM. However, it should
also be taken into account that this formula only solves this problem if solely the known
aberration βupd,k is applied. But, in order to reduce the number of measurements, also the
optimal control input of the previous mode is applied. This can be solved by separating the
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total change in the SM of the intensity distribution. This change is dependent on the two
changes (optimisation and excitation) and it can be separated, because an independent set
of modes is used. The next step is to compute the projection of the SM of the intensity
distribution if the optimal control input would have been applied. This is done by computing
the SM of the optimised mode using the last measurement. First, the change in SM (between
the optimised previous SM and after the excitation with β):

SM∗k−1 − SMk = 2βSγk + (−2vkβ + β2)Sm, (9-49)

where SM∗k denotes the SM if the optimal control input (γk) is applied and it is the only
unknown in this equation. Now, the projection can be computed with the knowledge that
not β is applied, but (vk − γk). This yields

SM∗k−1 − SM∗k = 2 (vk − γk)Sγk + ((−2vk(vk − γk) + (vk − γk)2))Sm, (9-50)

which can be simplified into

SM∗k−1 − SM∗k = −(γk − vk)2S(k, k). (9-51)

From this equation, SM∗k can be easily computed. This optimised SM can be used to compute
the optimal control vector for the next mode with Equation 9-47. For the simulations, the
Masked Detector Signal (MDS) is used due to the capability of extending its use to extended
objects, see section 5.1. This metric is related to the SM of the intensity distribution with
Equation 5-17. It must be noted that a maximum metric value of 1 can be achieved for the
measurements, due to the computation of the MDS. However, it might occur, due to error
build-up in the computations, that the optimal MDS reaches a value above 1. If this happens,
this optimisation run is classified as failed and is not taken into account for the comparison.
The succes rates of the different simulations can be found in Table 10-1.

9.4 Simulations

To validate the new method, it will be compared to the GMBA and the SMBA in simulations
first. After the empirical calibration procedure, these three optimisation methods will be run
and tested with different levels of noise and different (random) initial aberrations of different
magnitudes. The used levels of noise and maximum amplitudes of the initial aberrations can
be found in Table 9-1. Every optimisation method is run 500 times for every combination of
the noise level and aberration magnitude to get an overview of the resulting values for the
Root Mean Squared Error (RMSE) of the residual wavefront and the MDS of the resulting
intensity distribution. The results can be found in subsection 10.1.1 and subsection 10.1.2.

Variable Value
SNR 0.01 0.1 0.5 1 5

Aberration Magnitude 5 [rad] 15 [rad] 30 [rad] 50 [rad]

Table 9-1: Overview of the different levels of noise and initial aberration magnitudes
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Figure 9-2: Schematic overview of Setup used for the Experiments

9.5 Experiment

In order to verify the new method, experiments are conducted as well. The results are
compared with methods that have been verified in earlier papers, such as the GMBA and the
SMBA. An aberration disk is used for the generation of different random aberrations.

9.5.1 Layout of the Setup

In Figure 9-2, a schematic representation of the experimental setup is shown. In order to
overcome any alignment or focussing errors, an empirical calibration will be performed, as
described in section 9.1. The mirror that is used will be the 17 actuator MMDMwith Tip/Tilt,
see section 2.2 for the specifications. The CCD-camera is the camera discussed in section 2.4.

9.5.2 Turbulence Generation

In order to generate random aberrations, approximately corresponding to the Kolmogorov
turbulence model, a disk is used with added aberrations. For the aberrations, hairspray is
used, which generates bubbles of different sizes and can be used for the aberration generation.
This disk is turned after each optimisation and different aberrations are generated.
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9.5.3 Noise

Due to the camera output, which is an integer in the range of 0-255, the (low-level) noise
starts to play a significant role in the experiments. It was seen that the Center of Gravity
of the intensity distribution was influenced by the Poissonian shot noise significantly and in
order to get more reliable results, a threshold was implemented to get rid of the lower value
inputs of the camera. This threshold ensures that the Center of Gravity is less effected by
the noise and with visual inspection, the height of the threshold was determined.

9.5.4 Experimental setup

A total of 4 runs, each consisting of 50 tests, are conducted. Before the optimisation processes
are executed, first the online empirical procedure is run. This procedure is repeated in the
beginning of every test with the same parameters to be able to compare the results. To judge
the efficiency of every method, also a simple coordinate search algorithm is used to compute
the optimal control input and the corresponding ’optimal’ metric values.

After the online empirical calibration procedure, the proportionality parameter c0 is tuned
manually. This is the parameter that weights the difference in the metric value. This is done
for the all the optimisation processes first, after which an aberration is added to the system
and the optimisation algorithms are run to correct for the aberration.

The metric values after the optimisation processes are computed for every method and will
be used to compare the efficiency of every approach. Also the metric value of the initial aber-
ration is computed and improvement percentages are computed, based on the mean initial
and optimised metric values. As a ground truth, also a CS-algorithm is run and the resulting
metric value is used as the highest achievable metric value.
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Results

In this chapter, the results from the simulations and experiments will be displayed. First,
the results of the simulations will be visualised. Then, the results of the experimental imple-
mentation will be presented. For the simulations, the Root Mean Squared Error (RMSE) of
the residual wavefront and the Masked Detector Signal (MDS) will be used to compare the
efficiency and reliability of the three different approaches. For the experiments, the RMSE of
the residual wavefront is not available and only the MDS will be used for comparison.

10.1 Simulations

To verify the different approaches and check the validity of the new approach, first simulations
are performed. These simulations include the empirical calibration, the General Model Based
Approach (GMBA), the Synchronous Model Based Approach (SMBA) and the Continuous
Model Based Approach (CMBA). All the model based approaches use the empirical calibra-
tion procedure and are later compared for the RMSE of the residual wavefront and the MDS.
In section 9.4, the inputs for the simulations are introduced.

10.1.1 Empirical Calibration

To check the validity of the proposed calibration method, first a set of simulations is per-
formed. The result of the empirical calibration procedure can be seen in Figure 10-1. To
check if this matrix can be used for the optimisation, it is implemented in the optimisation
methods and the results can be seen in subsection 10.1.2. The resulting correlation matrix can
be compared to the numerically obtained correlation matrix, see Figure 4-2 and the resulting
set of modes that results from a singular value decomposition can be seen in Figure 10-2.

10.1.2 Optimisation of Image Quality

After the empirical calibration procedure has finished, the optimisation process can start. In
this section the results for the simulations of the three different approaches will be visualised.
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Figure 10-1: Empirically Determined Correlation Matrix from Simulations, for 17 actuator
MMDM.

Figure 10-2: New set of modes, based on the empirically determined correlation catrix

Starting with the GMBA, followed by the SMBA and finally also the CMBA.
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10.1.2-i General Model Based Approach

In this section the simulation results of the GMBA will be displayed. In Figure 10-3 and
Figure 10-4 respectively the mean initial metric and RMSE values are plotted in pink and the
resulting metric values and RMSE values, after the optimisation, are plotted in the boxplots,
for different levels of noise and magnitudes of the aberrations. The results of these boxplots
will be used for the comparison of the different methods. The boxplots also visualise the trends
in the results due to the varying Signal to Noise Ratio (SNR) and aberration magnitude. These
trends will also be discussed in the discussion.

Figure 10-3: Results for the residual MDS for the simulations of the GMBA.

Figure 10-4: Results for the residual RMSE for the simulations of the GMBA.
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10.1.2-ii Synchronous Model Based Approach

In this section the simulation results of the SMBA will be displayed. In Figure 10-5 and
Figure 10-6 respectively the mean initial metric and RMSE values are plotted in pink and the
resulting metric values and RMSE values, after the optimisation, are plotted in the boxplots,
for different levels of noise and magnitudes of the aberrations. The results of these boxplots
will be used for the comparison of the different methods. The boxplots also visualise the
trends in the results due to the varying SNR and aberration magnitude. These trends will
also be discussed in the discussion.

Figure 10-5: Results for the residual MDS for the simulations of the SMBA.

Figure 10-6: Results for the residual RMSE for the simulations of the SMBA.
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10.1.2-iii Continuous Model Based Approach

In this section the simulation results for the CMBA will be displayed, which are used for
comparison in the discussion. In Figure 10-7 and Figure 10-8 respectively the mean initial
metric and RMSE values are plotted in pink and the resulting metric values and RMSE
values, after the optimisation, are plotted in the boxplots, for different levels of noise and
magnitudes of the aberrations. However, the results plotted in these figures are only results
of succesfull convergences of the method, as explained in subsection 9.3.4. The succes rates
can be found in Table 10-1, where the bold printed values represent the compared values, as
will be explained in the discussion of these success rates.

Figure 10-7: Results for the residual MDS for the simulations of the CMBA.

Figure 10-8: Results for the residual RMSE for the simulations of the CMBA.
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Aberration Magnitude
5 [rad] 15 [rad] 30 [rad] 50 [rad]

SN
R

0.01 47.71% 66.31% 79.87% 98.04%
0.1 48.03% 65.70% 86.36% 97.85%
0.5 81.43% 95.60% 100% 100%
1 100% 100% 100% 100%
10 100% 100% 100% 100%

Table 10-1: Percentages of succesfull convergence of the CMBA

10.1.3 Overview of the different methods

To get a better overview of the efficiency of the different methods, in Table 10-2 and Table 10-3
an overview is displayed that summarizes the improvement rates for the different approaches
for the different levels of noise and initial aberrations. This is done for both the MDS and
the RMSE of the initial aberration. It must be noted that the results for the CMBA, only
include the succesfull optimisations. This will be further discussed in the Discussion section.

Aberration Magnitude 5 [rad] Aberration Magnitude 15[rad]
GMBA SMBA CMBA GMBA SMBA CMBA

SN
R

0.01 0.58% 0.94% 25.19% 5.81% 9.43% 27.68%
0.1 0.57% 0.97% 25.68% 5.60% 9.17% 28.60%
0.5 0.51% 0.86% 7.20% 5.21% 8.59% 13.51%
1 0.44% 0.63% -2.10% 4.89% 7.70% -0.84%
10 0.17% -0.70% -2.13% 2.84% 2.53% -1.06%

Aberration Magnitude 30 [rad] Aberration Magnitude 50[rad]
GMBA SMBA CMBA GMBA SMBA CMBA

SN
R

0.01 21.67% 37.58% 37.00% 30.06% 46.78% 22.07%
0.1 21.31% 36.53% 34.47% 31.33% 46.98% 24.38%
0.5 19.51% 31.03% 22.05% 26.54% 38.85% 14.06%
1 16.61% 25.72% 0.55% 20.95% 30.18% 0.15%
10 5.35% 6.96% -0.47% 3.87% 5.10% -0.26%

Table 10-2: Overview of the average improvement rates for the MDS of the different approaches
for different levels of noise and initial aberration magnitudes

R.I. van Genderen Master of Science Thesis



10.2 Experimental Results 61

Aberration Magnitude 5 [rad] Aberration Magnitude 15[rad]
GMBA SMBA CMBA GMBA SMBA CMBA

SN
R

0.01 -53.26% -70.29% -43.01% -53.20% -82.88% -69.90%
0.1 -53.40% -71.00% -35.52% -53.83% -83.27% -66.09%
0.5 -50.90% -63.43% 158.05% -54.76% -79.55% -13.01%
1 -47.40% -48.89% 276.20% -52.88% -71.94% 43.85%
10 -23.44% 4.08% 319.51% -37.90% -37.86% 58.57%

Aberration of 30 [rad] Aberration of 50[rad]
GMBA SMBA CMBA GMBA SMBA CMBA

SN
R

0.01 -49.20% -69.65% -48.35% -17.24% -22.52% -12.52%
0.1 -47.45% -70.44% -47.12% -16.42% -25.35% -13.69%
0.5 -48.18% -65.46% -38.20% -15.65% -22.47% -10.77%
1 -46.87% -63.04% 4.90% -17.37% -22.39% 4.07%
10 -29.10% -32.63% 14.11% -9.19% -10.13% 6.21%

Table 10-3: Overview of the average improvement rates of the RMSE of the different approaches
for different levels of noise and initial aberration magnitudes

10.2 Experimental Results

In order to verify the new proposed method, besides simulations, experiments are also con-
ducted. The used setup is described in subsection 9.5.1. For comparison, two known methods
will be used, i.e. the GMBA and SMBA. Before the optimisation processes are conducted,
first the correlation matrix for this setup must be determined. The resulting matrix is then
used in all the different approaches, to minimise the differences between the different experi-
ments. A static aberration is added to the system to validate the efficiency.

10.2.1 Empirical Calibration

As described in the literature summary, a large number of system induced errors can be
present. These errors can occur due to misalignment, wrong focussing points or errors from
the optical elements in the setup. In order to take these errors into account, an online empirical
calibration is preferred. Using the described method of subsection 9.1.3 the correlation matrix
displayed in Figure 10-9 is obtained.

10.2.2 Optimisation of Image Quality

Once the correlation matrix is determined, the optimisation process is executed. In the liter-
ature summary, two model based approaches are explained. A comparison is made between
these two existing methods and the new method. In subsubsection 10.2.2-i and subsubsec-
tion 10.2.2-ii the results of these approaches are displayed. In subsubsection 10.2.2-iii the
results of the proposed method are displayed. Before the optimisation algorithms can be
implemented, first the proportionality parameter c0 must be tuned, which scales the differ-
ence between the initial and excited metric value, see Equation 5-17. The results for this are
displayed in the corresponding subsection.
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Figure 10-9: Experimentally determined Correlation Matrix for the experiments.

10.2.2-i General Model Based Approach

First the proportionality parameter c0 must be tuned. In Figure 10-10, the resulting met-
ric value before (red) and after (blue) optimisation are displayed for a fixed aberration with
different values for the proportionality parameter. Once the c0-parameter is tuned, the opti-
misation of the image quality can start. For 50 different random aberrations the mean initial,
resulting metric values and the mean improvements in percentage are computed and displayed
in Table 10-4. In total 4 runs are performed, each consisting of 50 different aberrations. Also,
for every aberration a simple coordinate search algorithm is run, to compute the most optimal
and achievable MDS of the aberration. This value is also displayed in Table 10-4, in order
to make a comparison, the highest achievable improvement percentage is also computed and
presented.

Run: Mean Mean Mean Mean Mean
Initial MDS Resulting MDS Optimal MDS Improvement % Max Improvement %

1 0.8162 0.8362 0.8949 2.4424% 9.6388%
2 0.8399 0.8718 0.9106 3.7978% 8.4097%
3 0.8131 0.8328 0.8864 2.4263% 9.0218%
4 0.7851 0.8016 0.8538 2.1055% 8.7523%

Table 10-4: Mean experimental results for the initial, resulting and optimal MDS value and the
improvement rates for the GMBA.
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Figure 10-10: Experimentally optimised c_0 parameter for the GMBA. In red the metric value
of the initial aberration is displayed and in blue the resulting metric value after optimisation.

10.2.2-ii Synchronous Model Based Approach

First the proportionality parameter c0 must be tuned. In Figure 10-10, the resulting metric
value before (red) and after (blue) optimisation are displayed for a fixed aberration with
different values for the proportionality parameter c0. It can be seen that this approach is
able to correct and improve the used metric value. Once the proportionality parameter c0 is
tuned, the optimisation process can be started for different added random aberrations. The
results are presented in Table 10-5.

Figure 10-11: Experimentally optimised c_0 parameter for the SMBA.
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Run: Mean Mean Mean Mean Mean
Initial MDS Resulting MDS Optimal MDS Improvement % Max Improvement %

1 0.8162 0.8471 0.8949 3.7746% 9.6388%
2 0.8399 0.8821 0.9106 5.0201% 8.4097%
3 0.8199 0.8356 0.8864 2.7679% 9.0218%
4 0.7953 0.8082 0.8538 2.9447% 8.7523%

Table 10-5: Mean experimental results for the initial, resulting and optimal MDS value and the
improvement rates for the SMBA. In red the metric value of the initial aberration is displayed
and in blue the resulting metric value after optimisation.

10.2.2-iii Continuous Model Based Approach

The CMBA does not converge to a solution. A large number of tests have been done, but there
is no value for the proportionality parameter, for which this method converges to a solution.
The algorithm computes the projection of the optimal control input and the corresponding
MDS, which should by definition be lower than 1 (see Equation B-3). But for the experimental
implementation of this approach, the algorithm constantly computes values higher than 1 and
these runs are classified as failed runs, see subsection 9.3.4. In chapter 11, this behaviour will
be evaluated and compared with simulations, in which more successful runs are observed. Due
to the aforementioned reasons, it is not possible to obtain results in the form of Table 10-4
and Table 10-5.
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Discussion

In this chapter the results of the simulations and experiments will be discussed. The discussion
will be divided into two parts. First, the results of the simulations will be discussed. Next,
the experimental results will be discussed.

11.1 Simulations

In this section, the results of the simulations will be discussed. First, the empirical calibra-
tion results will be evaluated, followed by the evaluation of the optimisation processes. The
trends that can be seen in the results of the simulations of the optimisation processes can be
divided into the following categories; a difference in magnitude of aberrations, a difference
in the level of noise and the differences between the three approaches. Each category will
be discussed separately in the following subsections. In the last subsection, the results of
the Continuous Model Based Approach (CMBA) will be discussed, here the focus is on the
converging percentages of this method.

11.1.1 Empirical Calibration

With the empirical calibration procedure, a correlation matrix can be computed. This corre-
lation matrix is displayed in Figure 10-1. It can be seen that the resulting correlation matrix
looks similar to the numerically computed correlation matrix of Figure 4-2 (right). In the
correlation matrix obtained in the simulations, a lot of details can be found in the off-diagonal
parts of the matrix. These details can also be seen in the numerically computed correlation
matrix, but some differences can still be observed. The use of the empirically determined cor-
relation matrix in the different optimisation methods yields the expected results; convergence
of every method. To compare the methods, the same procedure will be used for all three
different optimisation processes. In order to judge the quality of the correlation matrix, a
large number of simulations need to be run for comparison. Further research is recommended,
as this procedure already yields promising results and optimising the used parameters shall
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lead to an increase in the performance.

Besides the optimisation of the different parameters, it is also recommended to look into
the inputs that are used for the calibration procedure. This is because the optimal control
input is used as an input for the system and is usually not equal to zero. This implies that a
different combination of modes can be used (with different magnitudes) and that the combi-
nation is not necessarily bounded by the input proposed by Booth [2011]. It is recommended
to continue with this research in order to study the effects of different control inputs and
different sets of modes that can be used for the calibration procedure.

11.1.2 Aberration Magnitudes

Increasing the aberration magnitude has a negative influence on the results of the optimi-
sation processes. The resulting metric values remain smaller and the Root Mean Squared
Error (RMSE) of the residual wavefronts remain larger after optimisation. The percentage
of improvement is higher for larger aberrations, which can be explained by the fact that
the initial aberration is larger. This implies that there is a larger aberration in the initial
measurement and thus more aberration to correct for. This explains the higher improvement
percentages for the higher initial aberrations in Table 10-2 and Table 10-3. Also, the largest
initial aberration (50 [rad]), has a larger range for the residual Masked Detector Signal (MDS)
and RMSE. For the largest aberration, the different methods resulted in a mide range of val-
ues for the MDS, ranging from 0.35 to 0.95. Which implies that the approaches might find an
optimum or fail in the optimisation process. Yet, for all of the methods, the mean resulting
MDS and RMSE have improved for the larger aberrations, compared to the mean initial MDS
and RMSE.

11.1.3 Noise Levels

The level of noise, implemented as the Signal to Noise Ratio (SNR), significantly influences
the results of the optimisation processes. It can be seen that the MDS and the RMSE after
optimisation degrade, with an increasing level of SNR, for all of the optimisation procedures.
Looking at the boxplots in Figure 10-4, Figure 10-6 and Figure 10-8 it can be seen that the
mean initial RMSE does not change for higher levels of noise, whilst the resulting RMSE
of the residual aberrations degrades for higher levels of SNR. Comparing the values in Ta-
ble 10-2 and Table 10-3 shows that the noise negatively effects all optimisation methods for
all aberrations, as could be expected.

However, the CMBA is effected more significantly than the General Model Based Approach
(GMBA) and Synchronous Model Based Approach (SMBA). It can be seen that the CMBA
does not improve the quality of the image for higher noise levels, but in some cases it actually
results in a decrease of the image quality. This behaviour will be discussed more elaborately
in the next subsection, where the CMBA will be evaluated.
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11.1.4 Continuous Model Based Approach

The results for the CMBA must be processed with caution. Occasionally error build-ups can
cause the algorithm to ’fail’, as was explained in subsection 9.3.4. It can be seen that these
fail-cases occur mainly when the metric value converges to 1 or if the initial value starts close
to 1. Due to this characteristic, it can be seen that for the successful runs the initial values
for the MDS are lower and the initial mean RMSE of the initial aberration are higher.

For the CMBA, only the combinations of noise and aberration magnitude for which a success
rate of approximately 100% was reached can be accurately compared. Combinations with a
success rate of 80% or more are used in the analysis, which are marked in bold in Table 10-1.
These are the combinations that will be compared in the next subsection.

For the higher noise levels, it can be seen that the CMBA does not correct for the small
aberrations (e.g. 5 [rad]). This can be seen in Table 10-3, where relatively large increases
in the residual RMSE can be observed, for small aberrations with larger noise levels. The
CMBA shows this behaviour when the MDS of the image starts to converge to 1. For higher
levels of noise the CMBA does not succeed in optimising the image quality, which can be
explained by the method of optimisation. Previous measurements are used to predict the
optimal wavefront, which then in turn are used for the computation of optimal control input
for the next mode. Any error in the first measurement builds up and causes an integration
error in the new computations.

11.1.5 Comparison of the Different Approaches

Looking at the resulting RMSE of the residual aberrations and the resulting MDS, it can be
seen that the SMBA results in the largest percentage increase, compared to the other two
approaches. However, it also uses almost twice the number of measurements, so this must be
taken into account as well when comparing the different approaches.

The second best performing approach is the GMBA. Compared to the SMBA, the resulting
values of the RMSE and MDS after optimisation of the GMBA have a larger variation and are
less concentrated around the mean resulting values, implying that the GMBA is less precise.
One reason for this can be the process of the SMBA, in which every mode is updated an
optimised after two iterations. The optimised control vector is then used for the optimisation
of the next mode. Due to this, the quality of the image increases after every 2 iterations. As
was shown in the results of the simulations, less aberrated images will have a better resulting
MDS and RMSE. Combined with the increasing image quality during the optimisation pro-
cess, this might be why the SMBA yields more precise results.

The CMBA does not perform as good as the other two approaches and yields a lot of (so-
called) ’failure’ runs. These aspects must be weighted against the advantages of decreasing
the number of iterations and reducing the frozen window time. These characteristics were
required and form the basis of this approach, but due to the non-optimal performance of the
procedure, it is highly doubtful if this method will increase the overall performance of the
system.
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11.2 Experiments

The results for the experiments can also be divided into two parts. First, the empirically
determined correlation matrix will be discussed. Next, the results for the optimisation pro-
cesses will be evaluated for all three discussed approaches. The setup for the experiments is
discussed in section 9.5.

11.2.1 Empirical Calibration

The matrix obtained with the experimental empirical calibration is displayed in Figure 10-9.
By comparing it to the matrix obtained with simulations, it can be seen that the values on
the diagonal are more present for the first five modes. The ratio of the diagonal values can
be compared to the results of the simulations. This ratio can be explained by the rings in
which the actuators are positioned and the values of the diagonal show the same ratio as in
the simulations. However, the off-diagonal values are different from the simulations. This
can be partly explained by the system induced errors, which are the main reason for imple-
menting an online calibration procedure. More details were expected to be present in these
regions, since these were observed in both the numerically determined correlation matrix and
the correlation matrix from the simulations.

The calibration procedure was not changed between the different tests, such that the tests
could be accurately compared. However, it is highly recommended for further research to
optimise the calibration procedure, but this is beyond the scope of this thesis project.

Further research on this procedure is recommended, since it shows promising results and
is easy to implement on any system which exhibits non-diagonal features in the correlation
matrix, i.e. deformable mirrors where the set of actuators correspond to the set that is to
be optimised. In further research the efficiency of all the methods could be compared if a
Wavefront Sensor (WFS) is incorporated in the system for the computation of the correlation
matrix.

11.2.2 Optimisation Algorithms

The results of the different optimisation algorithms were not as good as expected, when com-
pared to the simulations. Both the GMBA and SMBA showed an improvement in the metric
value, where the SMBA resulted in the largest improvements. However, both methods do not
optimise the image quality as well as the Coordinate Search (CS) algorithm, which is used as
a ground truth.

The SMBA shows the largest improvement in the metric value, compared to the other two
methods. This was also seen in the simulations for any combination of noise and initial aber-
ration magnitude. From the simulations it can also be seen that for some combinations of
noise and aberration magnitude the CMBA does not converge to a more optimal solution in
terms of the used metric value. This might be one of the reasons why this method does not
converge to a solution in the experiments either. If the aberration is too large and the noise
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is too large as well, thus potentially explaining the behaviour of the CMBA in experiments.

It is also important to notice that the simulations of the CMBA show that the CMBA fails
relatively fast if the metric value is close to one. This was also observed in all the experiments.
To overcome this problem, the radius of the mask of the MDS is made smaller, resulting in
lower values for the MDS. However, this radius must contain every part of the intensity
distribution that is of importance and can thus only be reduced up till a suitably chosen
detector radius. Still, for smaller radii and lower initial values for the MDS, the success rate
of the CMBA does not improve.

Another reason for the difference between the simulations and real-time experiments might
be the CCD camera and its implementation in the simulations. In the experiments, an 8-bit
camera is used, which means that its outputs are integers between 0 and 255. In the simula-
tions, the values for the measured PSF are not integers and can take any value. Saturation of
the sensor is also not taken into account in the simulations. Therefore, it is one of the main
recommendations to take the characteristics of the camera into account for the simulations
and compare the different methods, if more research is to be put into this topic.
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Chapter 12

Conclusion and Recommendations

The goal of this thesis was the design and control of a portable Adaptive Optics (AO) system.
A system should be designed that is implementable on very simple AO-systems and make the
technology of WFSless AO accessible to a larger audience. In the process a niche in this field
of research was found, where the important assumption of the frozen window time is not
valid for more dynamic situations and that proposed solutions for this problem require more
measurements than the original approach. The new goal was to find a method that reduces
the number of measurements, whilst keeping the frozen window time as low as possible. The
Continuous Model Based Approach (CMBA) is proposed as a solution. The proof for the
CMBA is mathematically worked out. This approach is verified with the use of simulations
and experiments. Due to the implementation of real-time experiments, the need for an online
calibration procedure rose and a new procedure was proposed. This procedure can be imple-
mented on any system and aims to find the correlation matrix of the set of modes, which can
be used in any of the model based approaches.

Tests have been done on both the calibration procedure and the CMBA, using computer
simulations and an experimental setup. The results of these tests are presented in chapter 10
and discussed in chapter 11. In this chapter, conclusions will be drawn on both new methods
and their advantages and disadvantages will be discussed. First the online calibration proce-
dure will be evaluated, followed by the new approach for the optimisation.

The new online calibration procedure shows promising results. Especially in the simula-
tions, where a reliable correlation matrix is obtained after the calibration procedure. This
matrix can be used for the GMBA and after decoupling of the modes with a SVD also for
the SMBA. In the experiments, the calibration procedure shows different behaviour. One
of the differences is that the values on the diagonal are more present in the experiment for
the first 5 modes, compared to the simulations. Next, the off-diagonal values are different.
In the simulations, more structured details can be seen in the off-diagonal values, compared
to the off-diagonal parts of the correlation matrix obtained in the experiments. In the ex-
perimentally obtained correlation matrix, the influence of the system induced aberration is
more present. To conclude, it is recommended to further investigate the optimisation of the
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control inputs and the parameters of this approach. As it is easy to implement and can be
implemented on any system without the need for a WFS. It is also recommended to verify the
resulting correlation matrix with an included WFS, instead of comparing the results of the
optimisation processes. This will reduce the time and measurements needed for this research.

The results of the optimisation processes show that the new proposed method, the CMBA,
works in simulations, but the results are less optimal, compared to the other approaches. In
experiments, the error-build-up in the new method seems to be too large to overcome and
the method does not work in the experimental setup. These results are also observed in the
simulations for combinations of (higher) noise and (larger) aberrations and this might cause
the CMBA to fail in finding the optimal solution.

Another reason for the difference between the simulations and experiments is the imple-
mentation of the CCD camera in the simulations. The CMBA might be successful in the
simulations, due to the more precise approximation of the PSF, compared to the real time
experiments, where a bit-depth of 255 bits is used. It is recommended to check this more
thoroughly, by simulating the camera. Lastly, the used approach for acquiring the correlation
matrix might cause the CMBA to fail in finding the optimal solution, so it is recommended
to compare this approach with predetermined and correct correlation matrices, obtained with
an incorporated WFS.

For further research it is recommended to test the different optimisation processes with more
different aberrations, such as dynamic aberrations or static aberrations with extended objects
as the image source. For these dynamic aberrations the MATLAB toolbox OOMAO [Conan
and Correia, 2014] is recommended. For the extended object, the known optimisation algo-
rithms (GMBA and SMBA) have been implemented and shown to work in some preliminary
simulations, but more research is needed for this implementation.

To conclude and summarise the results of this research, it was shown that the CMBA can
be implemented in simulations, yet is unable to converge to an optimal solution in experi-
ments. The CMBA does not improve the image quality in real time experiments, compared
to known methods, such as the GMBA and the SMBA. The online calibration procedure
shows promising results and can be implemented on simple systems, such as telescopes used
by (amateur) astronomers. This calibration procedure accounts for the system induced error
of any system and can be used for systems with off-diagonal elements in the correlation ma-
trix, such as systems with a DM. This approach does not increase the cost of the system and
will contribute to making this part of science more accessible for anyone.

R.I. van Genderen Master of Science Thesis



Appendices

Master of Science Thesis R.I. van Genderen





Appendix A

Proportionality Mean Squared
Gradient and Intensity Distribution

This Appendix shows the derivation proposed in [Yang et al., 2015]. It shows the proportion-
ality of the intensity distribution to the mean squared gradient. Starting with the PSF of the
aberrated pupil function

I(u) = |F(aP (x)e−iφ(x))|2≡ |F(A(x))|2, (A-1)

where P (x) is the unaberrated pupil function, which is one when inside the lens aperture and
zero if it outside the aperture. Also A(x) = aP (x)e−iφ(x) and the object function is defined
as: o(ξ) = aδ(ξ). Using the Fourier property:

F(f ? g) = F(f)∗ · F(g), (A-2)

where the ? denotes the cross correlation and the ∗ denotes the complex conjugate. The next
thing that is used is

F(f ′x(x)) = 2πiuF(f(x)), (A-3)

where the above equations are all combined into

I(u)u2 = |F(A(x))|2u2 (A-4)
= F(A(x)u)∗F(A(x)u) (A-5)

= − 1
2πiF(A′x(x))∗ 1

2πiF(A′x(x)) (A-6)

= 1
4π2F(A′x(x) ? A′x(x)). (A-7)

Now the following property is used:∫
R2
F(f)(u)du = f(0) (A-8)
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The goal is to show that the integral of the Second-Moment (SM) of the intensity distribution
is proportional to Mean Squared Gradient (MSG). Here it is used that the Fourier transform
of A(x) results in a coordinate change to the angular coordinates.∫

R2
I(u)u2du =

∫
R2

1
4π2F(A′x(x) ? A′x(x))du (A-9)

= 1
4π2 (A′x ? A′x)(0) (A-10)

= 1
4π2

∫
R2

(A′x(x) ·A′x(x + 0))dx (A-11)

= 1
4π2

∫
R2
|A′x(x)|2dx. (A-12)

Rewriting |A′x(x)|2, in order to substitute it later, using A(x) = aP (x)e−iφ(x) yields

|A′x(x)|2 = |aP ′x(x)e−iφ(x) − iφ′x(x)aP (x)e−iφ(x)|2 (A-13)

= |A(x)|2
∣∣∣∣(P ′x(x)
P (x) − iφ

′
x(x)

)∣∣∣∣2 (A-14)

= aP (x)aP (x)e−iφ(x)eiφ(x)
((

P ′x(x)
P (x)

)2
+
(
φ′x(x)

)2) (A-15)

= a2
(
P ′x(x)2 + P (x)2φ′x(x)2

)
. (A-16)

Substituting Equation A-12 yields∫
R2
I(u)u2du = 1

4π2

∫
R2
a2
(
P ′x(x)2 + P (x)2φ′x(x)2

)
dx. (A-17)

For PSF’s (apertures in P (x)) with sharp boundaries the first part of the above integral won’t
converge. This problem can be overcome using the following steps. First an unaberrated PSF
is denoted as φ(x) = const. Then it can be said that two parts arise. One part that is constant
and the second part that is variable and dependent on the gradient of the aberration. The
first part can be written as the unaberrated intensity distribution∫

R2
(P ′x(x)2)dx =

∫
R2
I0(u)u2du. (A-18)∫

R2
I(u)u2du =

∫
R2
I0(u)u2du + a2

4π2

∫
R2

(
P (x)φ′x(x)

)2 dx, (A-19)∫
R2

(I(u)− I0(u)) u2du = a2

4π2

∫
R2

(
P (x)2φ′x(x)

)2
dx (A-20)

= a2

4π2

∫
R2
P (x)2 |5φ(x)|2 dx. (A-21)

The last step is to normalise this using the total power∫
R2
I(u)du =

∫
R2
I0(u)du =

∫
R2
o(ξ)2dξ

∫
R2
P 2(x)dx, (A-22)

∫
R2 (I(u)− I0(u)) |u|2du∫

R2 I(u)du = 1
4π2

∫
R2 (P (x)ϕ′x(x))2 dx∫

R2 P 2(x)dx . (A-23)
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Appendix B

Derivation MDS and MDSE

In this appendix a summary will be presented on the derivation of the Masked Detector Signal
and the Masked Detector Signal for Extended Objects based on the derivation of [Yang et al.,
2015]. It is an important derivation for this thesis as it forms the bases of the working principle
of the Model-Based approach in chapter 5 and chapter 6. Also chapter 8 is based on this
derivation. The most important parts will be explained in this appendix in three steps. First,
using Appendix A, the Masked Detector Signal (MDS) will be computed for a point source.
Then, following the same structure as [Yang et al., 2015], this is done for a point source with
any arbitrary coordinates and at last an extended object will be used to come up with the
Masked Detector Signal for Extended Objects (MDSE).

B.1 Masked Detector signal for a Centered Point Source

Using Equation A-23, only one more step is needed to come up with the MDS. In [Booth, 2007]
and [Yang et al., 2015], it is suggested that only a certain radius of the intensity measurement
should be taken into account and a so-called detector radius is introduced as

m(r) =
{

(1− r2

R2 ) if |r|≤ R
0 if |r|> R,

(B-1)

where r is equal to the distance from the centre to the measured point

r =
√

(x− x0)2 + (y − y0)2. (B-2)

Using this mask instead of |u|2 yields

MDS =
∫∫
R2 I(u)

(
1− |r|

2

R2

)
du∫∫

R2 I(u)du . (B-3)
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B.2 Proportionality of Intensity Distribution of a Point Source with
Arbitrary Coordinates

In this section the important steps of this derivation will be summarized, as these are needed
for the next section, in which a metric for an extended object will be derived. First, an
unaberrated point source is introduced with coordinates that are not on the optical axis,
which is related to the unaberrated central point source by

I0,ξ(u) = I0(u− ξ) =
∣∣∣F(aP (x)e−ikξx)

∣∣∣2 . (B-4)

Then a very important assumption is stated on aberrations that introduce tip or tilt. As
these aberrations would be indistinguishable from a point source with any coordinates that
are not on the optical axis, they are excluded from the derivation and it is assumed that the
average gradient in x- and y-direction is equal to zero. Then, the aberrated shifted point
source is introduced with

Iξ(u) = I(u− ξ) ≡
∣∣∣F (aP (x)e−i(ϕ(x)+kξ·x)

)∣∣∣2 . (B-5)

Using the same approach as the derivation from Equation A-9 up till Equation A-21, the
following steps are proposed in [Yang et al., 2015]:∫

R2
Iξ(u)|u|2 du =

∫
R2
I0(u)|u|2 du+ a2

4π2

∫
R2

(P (x)(∇ϕ(x) + k|ξ|))2 dx (B-6)

=
∫
R2
I0(u)|u|2 du+ a2k2

4π2

∫
R2
P 2(x) · |ξ|2 dx (B-7)

+ 2a2k

4π2

∫
R2
P 2(x) · |ξ|∇ϕ(x)dx+ a2

4π2

∫
R2

(P (x)∇ϕ(x))2 dx (B-8)

=
∫
R2
I0,ξ(u)|u|2 du+ 0 + a2

4π2

∫
R2

(P (x)∇ϕ(x))2 dx, (B-9)

which proves the same proportionality between the change in the second moment and the
Mean Squared Gradient (MSG) as for the central point source∫

R2
Iξ(u)|u|2 du−

∫
R2
I0,ξ(u)|u|2 du = a2

4π2

∫
R2

(P (x)∇ϕ(x))2 dx. (B-10)

It should be taken into account that point sources closer to the edge might not work with
this rule, as the detector can only measure in a certain region. The next step is combining
this derivation with the assumption on how extended objects are formed.

B.3 Masked Detector Signal for Extended Objects

For the last step of this derivation point sources are evaluated. The image of a point source
can be described by (see Equation 3-1)

i(u) = h(x) ∗ o(ξ), (B-11)
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where i(u) is the intensity distribution of the image in the image plane with the coordinates
u = (u, v). h(x) represents the Point Spread Function (PSF) of the aberration in the pupil
plane with the coordinates x = (x, y) and o(ξ) is the (true) intensity distribution of the object
in the object plane with the coordinates ξ = (ξ, η). The ∗ denotes a convolution operator.
As the image is formed of a convolution of the PSF and the object intensity distribution,
every point in the image can be seen as a point source and the image can be made of the
superposition of the images of all point sources [Yang et al., 2015]. This superposition can be
used to represent an (unaberrated) image

i0(u) =
∫
R2
I0,ξ(ξ)dξ. (B-12)

Now using the superposition of all point sources, the intensity can be computed. First sum-
ming up the intensity for every point source individually and the adding all point sources up,
one obtains the difference in the total intensity. This is the same relation as before and can
thus be used to compute the MSG. This can be summarised by∫

R2
(i(u)− i0(u)) |u|2du =

∫
R2

∫
R2

(Iξ(u)− I0,ξ(u)) |u|2dudξ

= 1
4π2

∫
R2
o(ξ)dξ

∫
R2

(P (x)|∇ϕ|)2dx. (B-13)

The last step in this derivation is the conversion to a suitable metric. In [Yang et al., 2015],
the Masked Detector Signal for Extended Objects (MDSE) is introduced, to be distinguished
from the MDS and it is computed by normalising Equation B-13 with the total power of the
intensity, which can be computed with∫

R2
(i(u)) |u|2du =

∫
R2

(i0(u)) |u|2du =
∫
R2
o(ξ)dξ

∫
R2
P (x)2dx. (B-14)

Now the MDSE can be defined as Equation 8-2 and the Equation 8-3 is obtained.
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Appendix C

Zernike Polynomials

In Figure C-1 and Figure C-7 the Zernike polynomials are plotted. In Figure C-2 the LB
polynomials are plotted. Table C-1 [Hernández-Gómez et al., 2014] shows a table containing
the first 16 Zernike polynomials, index-numbering and their formulas.
In Figure C-3 and Figure C-4 the DM representations of the Zernike and LB polynomials are
plotted using the small aperture. In section 4.5, it is described how the LB polynomials are
computed and in section 4.6 the method of obtaining the DM approximations is discussed.
From the polynomials and their DM representations, also the correlations matrices are com-
puted, they can be found in Figure C-5 and Figure C-6. The acquisition of these matrices is
discussed in section 4.2, in Equation 4-2 and Equation 4-3.

Name Index Formula
Piston Z0

0 1
tip Z1

1 x

tilt Z−1
1 y

defocus Z0
2 2x2 + 2y2 − 1

primary astigmatism Z2
2 x2 − y2

primary astigmatism Z−2
2 2xy

coma Z1
3 3x3 + 3y2x− 2x

coma Z−1
3 3y3 + 3x2y − 2y

trefoil Z3
3 x3 − 3xy2

trefoil Z−3
3 3x2y − y3

spherical Z0
4 6x4 + 12y2x2 − 6x2 + 6y4 − 6y2 + 1

fifth order astigmatism Z2
4 4x4 − 3x2 − 4y43y2

Table C-1: Zernike polynomials, expressions, indexing and numbering of first 16 polynomials
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Figure C-1: Flat plots of first 16 Zernike polynomials

Figure C-2: Flat plots of first 16 LB polynomials
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Figure C-3: Approximation of the Zernike Polynomials by the 17 actuator MMDM, using the
small aperture.

Figure C-4: Approximation of the LB Polynomials by the 17 actuator MMDM, using the small
aperture.
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Figure C-5: In this figure four correlation matrices are plotted. In the top left corner the
correlation matrix of the Zernike polynomials is plotted. In the top right corner the correlation
matrix of the gradients and in the bottom left, the correlation matrix of the representations by the
DM and in the bottom right figure, the correlation matrix of the gradients of the representations
is plotted.

Figure C-6: In this figure four correlation matrices are plotted. In the top left corner the
correlation matrix of the LB polynomials is plotted. In the top right corner the correlation matrix
of the gradients and in the bottom left, the correlation matrix of the representations by the DM
and in the bottom right figure, the correlation matrix of the gradients of the representations is
plotted.
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Figure C-7: Surface plots of first 16 Zernike polynomials
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Appendix D

Least Squares Approximation

In order to approximate the wavefront with a DM, the least squares approximation can be
used [Verhaegen and Verdult, 2007] to find the control vector that approximates the wavefront
in the most ’correct’ way. In order to do this, the following minimisation problem must be
solved:

vψ = arg min
v∈[−1,1]N

‖ψ − ϕ(v)‖22 (D-1)

where ψ represents the incoming wavefront and ϕ(v) the delay introduced by the Deformable
Mirror (DM). This delay can be represented by ϕ =

∑N
i=1 νiFi(x, y), where every column in

Fi(x, y) represents a mode of a set that is chosen in advance and (x, y) are coordinates on
the DM. The set of actuator responses or an orthogonal base can be used for the set. The
choice for this set is dependent on the usage of the system and is discussed in chapter 4. The
coefficients νi are coefficients of the control vector and the goal is to find the most optimal
combination of these coefficients.

vψ = arg min
v∈[−1,1]N

(ψ −
N∑
i=1

νiFi(x, y))T (ψ −
N∑
i=1

νiFi(x, y)) (D-2)

This can be written in vector and matrix notation, by substituting

N∑
i=1

viFi(x, y) = Fv (D-3)

yields
vψ = arg min

v∈[−1,1]N
(ψ − Fv)T (ψ − Fv) (D-4)

There are two ways of computing the most optimal control vector. Both are discussed in
[Verhaegen and Verdult, 2007]. The first computes the derivative wrt the control vector
and equals it to zero to find the most optimal solution. The second method uses the Schur
Complement to find the most optimal control vector. In order to do so, first the column rank
of the matrix F must be checked.
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D.1 Computing the Optimal Solution Using the derivative

Calculating the derivative w.r.t. v, and setting this equal to zero yields the least squares
solution:

∂

∂v
(ψ − Fv)T (ψ − Fv) = 0 (D-5)

∂

∂v
(ψTψ −ψTFv − (Fv)Tψ + (Fv)TFv) = 0 (D-6)

2F TFv − 2F Tψ = 0 (D-7)
F TFv = F Tψ (D-8)

v = (F TF )−1F Tψ (D-9)

D.2 Computing the Optimal Solution Using the Schur Comple-
ment

The second (and more elegant) way of computing the optimal solution is by using the Schur
complement and completion of squares [Kailath et al., 2000]. First, the rank of the matrix
F must be checked and it is full rank for this set. Then, again, the optimisation problem of
Equation D-4 must be solved. Then the term (ψ − Fv)T (ψ − Fv) is rewritten into

(ψ − Fv)T (ψ − Fv) = ψTψ −ψTFv − (Fv)Tψ + (Fv)TFv (D-10)

=
[

1 vT
] [ ψTψ −ψT
−vTF Tψ vTF TFv

]
︸ ︷︷ ︸

M

[
1
v

]
. (D-11)

Now the Schur Complement can be used to rewrite the matrix M in the last expression into

M =
[
I −v̂
0 I

] [
ψTψ −ψTF v̂ 0

0 F TF

] [
I 0
−v̂ I

]
, (D-12)

where v̂ must satisfy
F TF v̂ = F Tψ. (D-13)

With this expression, the minimisation problem of Equation D-4 can be rewritten into

arg min
v∈[−1,1]N

(ψ − Fv)T (ψ − Fv) = (ψTψ −ψTF v̂)− (v − v̂)TF TF (v − v̂), (D-14)

where a minimum is reached if v = v̂, which is (again)

v̂ = (F TF )−1F Tψ. (D-15)

D.3 QR-factorisation

To reduce the computational complexity of some systems, a so-called QR-factorisation can
be used. This factorisation aims to reduce the dimensions of the system

min
x
‖Ax− b‖, (D-16)
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where the QR-factorisation of A can be written as

A = QR. (D-17)

This can be substituted in the part of Equation D-16 that is to be minimised

Ax = b (D-18)
QRx = b (D-19)

QTQRx = QT b (D-20)
Rx = QT b (D-21)

min
x
‖Rx−QT b‖, (D-22)

Then, this minimisation problem can be solved with the least squares approximation for
example.
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Glossary

List of Acronyms

AO Adaptive Optics
WFS Wavefront Sensor
DM Deformable Mirror
WFSless AO Wavefront Sensorless Adaptive Optics
PSF Point Spread Function
SM Second-Moment
SH Shack-Hartmann
CS Coordinate Search
SGD Stochastic Gradient Descent
MDS Masked Detector Signal
MDSE Masked Detector Signal for Extended Objects
MSG Mean Squared Gradient
PSD Power Spectral Density
VAR Vector Auto-Regressive
SVD Singular Value Decomposition
SH Shack-Hartman
GMBA General Model Based Approach
SMBA Synchronous Model Based Approach
CMBA Continuous Model Based Approach
SNR Signal to Noise Ratio
RMSE Root Mean Squared Error
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